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Abstract: The aim of this paper is to improve the dynamic window approach algorithm for mobile
robots by implementing a prediction window with a fuzzy inference system to adapt to fixed
parameters, depending on the surrounding conditions. The first implementation shows the advantage
of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy
inference to optimize each of the fixed parameters’ values to increase the algorithm performance.
Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead,
an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS
system with a back-propagation technique. Each parameter would have a particular ANFIS, in order
to modify the αD, βD, and γD parameters individually. At the end of the article, different scenarios
are analyzed to determine whether the developments in this article have improved the DWA behavior.
The results show that the prediction step and ANFIS adapt DWA performance by optimizing the
path resolution.
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1. Introduction

Presently, mobile robots are becoming more intelligent and can move autonomously in
unknown environments. Mapping, localization, path-planning, and path-following aspects have
to be implemented in order to solve this inconvenience. Jin et al. [1] remarked that the smart
movement of the robot is associated with the intelligence that has been implemented. Hence, these
intelligences are improved by using a combination of sensors and information processing algorithms,
as Ortigoza et al. [2] explained.

Local path-planning or path-following algorithms autonomously move automated guided vehicles
(AGVs) to their goal position. Thus, this problem can be described as the process of determining a
suitable and safe path, avoiding collisions with the obstacles [3]. There are many well-known methods
to implement this task, such as the dynamic window approach (DWA), which calculates a potential
path considering speed restrictions, as Fox et al. [4] explained. A vector field histogram was developed
with the aim of being computationally efficient and robust. In practice, the algorithm became fast and
reliable in populated obstacle scenarios, as Borenstein et al. [5] related. The TangentBug and PointsBug
algorithms are really popular, and were compared by Buniyamin et al. [6]. The TangentBug algorithm
depends on the range of the sensor, which is mounted on the robot. Hence, the action plan to reach to
the goal uses the sensor information and the knowledge of the robot current position and goal position.
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However, PointsBug depends on the sensor range, the sudden point, and the trigonometric function.
Thus, the algorithm calculates where the next point is to move from the starting point to the goal.

Apart from these classic functions for motion planning, there are some more modern algorithms,
for example, swarm optimization (SO), as Ever [7] has shown. This method is based on a population
of candidate solutions that are moving around the search space. The movement of these particles is
influenced by the best local particle position. These aspects move the swarm toward the best solutions,
which is the goal position. Dynamic movement primitives (DMP), as Mei et al. [8] analyzed, are another
solution, which were motivated by the desire to find a way to represent complex motor actions that can
be flexibly adjusted without manual parameter tuning or having to worry about instability. On the end,
this intelligence tries to simplify complex movements on a set of primitive actions. Apart from DMP,
there is also moving to a point with obstacle avoidance, which uses simple mathematical equations to
avoid obstacles, and is proposed by Teso-Fz-Betoño et al. [9]. Furthermore, it is important to consider
Garcia et al. [10], who proposed a method for industrial mobile robots, which it improve the trajectory
in dynamic environments, applying an elastic-band-based method in combination with a model
predictive trajectory planner. Apart from this, Pfeiffer et al. [11] described another investigation, which
uses a supervised model to learn complex mapping, and processes the steering commands to arrive at
the goal position. Moreover, a model predictive control (MPC), as Yu et al. [12] proposed, is another
intelligence for the vehicles, which provides vehicle control to track the path. With the same technique,
Qingjia et al. [13] improved the results by adopting multi-constraints model predictive control (MMPC).
Genetic algorithms are also implemented in mobile robots. Sathiya et al. [14] explained a novel concept
by adopting two techniques, namely multi-objective differential evolution and non-dominated sorting
genetic algorithm (NSGA-II), in order to obtain a safer path by optimizing travel time and actuators
effort. The ant algorithm is implemented in navigation problematics, such as Xiaoping et al. [15]
explained. However, the recent investigation has been improved by adopting different techniques.
For example, Dai et al. [16] implemented the A* characteristics into an ant algorithm and Yang et al. [17]
presented an efficient double layer ant colony, which is called DL-ACO. This novel concept uses two
ant colony running independently and successively. First one controls a collision free path and then
the second one optimizes the results of the first ant colony trajectory.

As Bellotto et al. [18] and Truong et al. [19] analyzed, there are some situations where the AGV
has to interact with humans. This is the reason algorithms must change their behavior, performing
harmless maneuvering depending on the scenario conditions.

In the end, the motion planning algorithms have to adapt their behavior with dynamic
surroundings. Thus, it is essential to implement an intelligence that changes these parameters
from motion planning algorithms. Some investigations apply new solutions to modify DWA constants,
depending on the area conditions. In the past, Hong et al. [20] adapted DWA using a fuzzy logic
controller, achieving new suitable weights. These weights are modified considering the goal position
and obstacles position information. Abubakr et al. [21] adopted the same controller; however, the
weights were adjusted with obstacle distribution information.

Nevertheless, another alternative for the dynamic window approach is reduced-DWA, which
requires much less processing power, as proposed by Arras et al. [22]. Abubakr et al. [21] analyzed a
novel concept of reduce-DWA, applying a reduced cascaded fuzzy logic controller. The cascade uses
two reduced fuzzy logic controllers. Hence, both controllers update three weights of DWA according
to the environmental situation. The first controller inspects the surrounds of the robot and identifies
the position of the obstacle for determining the obstacle distribution type. The second controller adopts
the obstacle distribution type and assigns the best constant for a particular period time.

Overall, the DWA behavior can be adapted to the scenario conditions with fuzzy logic rules.
In recent decades, however, fuzzy logic has been improved in learning capabilities, and is known as
neuro-fuzzy, as Salleh [23] mentioned. In 1993, an adaptive neuro-fuzzy inference system (ANFIS)
was introduced by Jang [24]. ANFIS has some limitations, such as the problem of dimensionality
and training complexity, which restricts some applications with large datasets. Apart from that,
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Zamani et al. [25] explained that ANFIS has a huge generalization capability compared with other
neural networks or machine learning techniques. Furthermore, Badde et al. [26] compared the
difference between fuzzy logic and ANFIS, concluding that ANFIS has better performance solving
complex problems than the fuzzy controller.

Today, in mobile robots, ANFIS calculates the difference of angular velocity, adopting the smallest
distance to the obstacles and the target angle, as Lu et al. [27] has shown. Singh et al. [28] investigated
a solution for real-time navigation, in which ANFIS has to decide the optimal time for a collision free
path in an unknown and dynamic environment. Imen et al. [29] presented a cascade controller. The first
controller uses fuzzy logic, which identifies the curvature of the path and generates the input for the
second controller, which is ANFIS. The second controller determines the path for the mobile robot.
Pandey et al. [30] analyzed how ANFIS works as a controller for navigation and obstacle avoidance in
unknown static environments.

There are different alternatives for path planning technique. The recent investigations try to
develop classic algorithms to improve their performance. DWA algorithm that is a classic function,
could be adopted another technique to improve the optimization of the path selection. DWA depends
on the AGV model to solve a safe path, such as MPC. It seems logical to modify the optimization
function, in order to analyze the future by adopting a prediction window like MPC does. Furthermore,
this classic algorithm adopts different weights depending on the human criterion, hence, ANFIS, neural
networks or fuzzy logic techniques can be adopted to optimize the fixed parameters. In Table 1 an
overview of presented algorithms is made.

Table 1. An overview of presented algorithms.

Algorithm Reference Advantages Weakness

Dynamic window
approach [4] Consider robot constraints to calculate an

optimum path.
Use fixed weights and select one path per

sample time.

A vector field
histogram [5]

Places great emphasis on dealing with
uncertainty from sensor and modeling

errors.

Requires the kinematics and shape of the
robot.

TangentBug [6] Produces very short paths given purely
local information.

Need ideal localization Heuristic function
may cause navigation to become slower.

PointsBug [6] Has better performance than TangentBug. Require high accuracy localization based
on output of trigonometric function.

Swarm optimization [7]
Allows searching for an optimum

trajectory by using particles in search
space.

Requires a constant computing to
optimize a solution.

Dynamic movements
primitives [8] The complex movements are simplified

by creating a set of primitive actions.
Requires updating all kernel weights and
the quality of the path is compromised.

Moving to a point
with obstacle

avoidance
[9]

Simple equations are used to avoid
obstacles and it does not need the
kinematics equations for motion

calculation.

Use fixed weights in the main function.

Model-based
algorithms [10–13]

The prediction step gives the chance to
analyze the future and adjust the

trajectory.

Require a perfect model of the plan to
obtain a good prediction.

Genetic Algorithms [14] Normally uses the robot kinematic and
dynamic parameters to optimize the path.

Uses a high computational capacity to
optimize the function.

Ant colony
optimization [15] Adopts a multiple agent to optimize the

path resolution.

The probability distribution can change
for each iteration and it is not optimized

to real time, because of it requires
uncertain time to converge.

Ant algorithm with
A* characteristic [16]

A* accelerates the ant colony conversion
and increases the smoothness of global

path.

A premature convergence could happen,
because of bad adjustment of the limits.

Double Layer ant
colony [17] Thanks to both executions the precision is

increased.

The algorithms require a trajectory
optimization to improve the path

resolution.

Predictive DWA with
ANFIS (Developed in

this article)
-

Improves Fuzzy logic controller by
adopting ANFIS technique to adjust DWA

weights and foresee the future
implementing a prediction.

Require a perfect model of the plan to
obtain a good prediction and adjustment

of the prediction step.
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The main goal of the present study is to improve the DWA algorithm, not only by adapting each
weight depending on the scenario circumstance, but also by implementing a prediction step to improve
the optimization of the path selection. For the α, β and γ parameter calculations, despite using a
classical fuzzy logic controller, ANFIS will be implemented. To make that possible, data collection will
be made executing classical DWA with different weight configurations. The AGV speed, heading to
the target and the distance to the obstacle will be evaluated in the data collection, so as to change the
behavior of ANFIS to DWA by modifying these controller parameters to the scenario conditions.

2. Materials and Methods

DWA is a classical motion planning solution, as Fox et al. [4] analyzed. This algorithm is divided
into two sections in order to predict the best trajectory. The first one is the search space, where different
possible Vagv and

.
γ are considered. Moreover, this first section is divided into three subsections so as

to filter these admissible variables, depending on the actual state. The first subsection is known as
the circular trajectories, where the two-dimensional velocity

(
Vagv,

.
γ
)

is calculated based on space.
The second one takes all of the calculated velocities and selects only those admissible velocities that
have a safe trajectory. The last subsection only contemplates these velocities that can be reached in a
short time interval, considering the robot acceleration limitations.

In the second section, however, optimization is made by applying the target heading, distance
to the obstacles, and actual velocity. This optimization just selects the best trajectory, rejecting other
trajectories. This optimization, however, can be improved by adopting more than one path, as Kim et al.
presented, such as in a confidence random tree-based algorithm [31]. In this article, this problem will
be solved, applying a prediction step to the DWA algorithm, known as a predictive dynamic window
approach (P-DWA).

Hence, to develop the P-DWA, it is important to place the basic aspect of the DWA optimization
function, as Equation (1) represents and in Table 2 the DWA parameter and variable definition
is represented.

G
(
Vagv,

.
γ
)
= σ

(
αD·heading

(
Vagv,

.
γ
)
+ βD·dist

(
Vagv,

.
γ
)
+ γD·vel

(
Vagv,

.
γ
))

(1)

Table 2. Dynamic window approach (DWA) parameter and variable definition, as defined in the
literature [4]. AGV—automated guided vehicle.

Description Name Units

Linear speed of vehicle Vagv m/s
Angular speed of vehicle

.
γ rad/s

Alignment of the robot with the target direction heading
(
Vagv,

.
γ
)

-
Distance to obstacle dist

(
Vagv,

.
γ
)

m
Displacement speed vel

(
Vagv,

.
γ
)

m/s
Heading coefficient αD rad−1

Ostacle distance coeffient βD m−1

Speed coefficient γD s/m
Fitness function G

(
Vagv,

.
γ
)

-
Normalization function σ -

The heading is given by 180◦— θ, where θ is the angle of the target point relative to the AGV
heading direction as Figure 1 shown.
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Figure 1. Angle θ to the target.

Moreover, αD, βD, and γD are the constants that will be adapted using ANFIS. DWA does
not always have the capability to avoid the obstacle, as Hong et al. [20] reviewed. In Figure 2,
there are two different scenarios, in which AGV has to calculate the path using the DWA algorithm.
For both scenarios, different weight values will be applied to analyze the consequence of unacceptable
configuration. The cases in Figure 2a,c used the same parameters for different scenarios. The same
logic is implemented in the cases in Figure 2b,d.
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and γD, as follows: (a,c) αD = 0.8, βD = 0.1 and γD = 0.1; (b,d) αD = 0.1, βD = 0.8 and γD = 0.1.

Hence, the ANFIS system will choose these parameters depending on the scenario conditions.
For each parameter, an adaptive neuro-fuzzy inference system is proposed. The train will be made
individually so as to obtain a better resolution, adopting specific inputs. In the fuzzy DWA, however,
the rules are designed manually. This tune is not optimized for the scenario, and depends on
human criterion.

With the aim of training ANFIS and simplifying the fuzzy logic controller adjustment, DWA will
be executed several times in order to collect data. With these data, ANFIS develops a fuzzy inference
system (FIS) using a back-propagation algorithm. Thus, FIS will change the DWA parameters to solve
a particular scenario.

This functionality is similar to that of a neural network, in which the inputs go through the
membership function and associated parameters. Then, the information will propagate to the output
membership function and associated parameters in order to obtain a specific output. Moreover, the
associated parameters adapt their values depending on the learning process.
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3. DWA Improvement

This research will implement two novel concepts for the DWA algorithm. The first one comes
from Equation (1), where the classic DWA optimizes the trajectory, just considering the next sample
time or step. In this article, however, the DWA algorithm will be executed twice per sample time.
In the first execution, DWA analyzed more than one possible path, and in the second one, the DWA
analyzed different paths and predicted which one had a better resolution.

The second implementation comes from the DWA constant parameters. As shown in Figure 3,
the importance of selecting the correct weights for each situation is essential. To solve this problem,
despite using classic fuzzy inference, ANFIS will be implemented.

3.1. Predictive DWA

The classic DWA optimization step will be modified to introduce a prediction step.
The optimization function, which it is represented in Equation (1), selects the best path, considering
the admissible trajectories. On a predictive DWA (P-DWA), however, it is essential to select more
than one path. Otherwise, it cannot implement the prediction step. Hence, for this particular case,
DWA calculates the three best trajectories (A, B, and C). These trajectories are considered to be the new
possible position for the AGV.

After calculating these three new possible positions, it is time to foresee the future. This step is
known as the prediction step, where the DWA will be executed for each best trajectory (A, B, and C),
so as to obtain another three paths. Thanks to that, the AGV analyzes nine different positions to arrive.
These nine positions are theoretical and are used to make an optimization. Thus, the AGV should
select the best path to arrive at one of these nine optimum positions. Nevertheless, the vehicle is just
going to move to the A, B, or C position. For example, if the prediction estimated that the fifth position
was the best one, the AGV would move to the B position. To have a general idea of this, an example is
shown in Figure 3.
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Overall, with the normal DWA, the AGV is going to select the best path considering the A, B, or C
trajectories. Predictive DWA (P-DWA) gives the chance to analyze the next sample time so as to make
a better optimization, as a result of analyzing a large period of time and using more information from
the scenario. It is remarkable that it has no sense of how to use a huge prediction time. By using an
extensive sample time, the computational cost will be increased considerably. Moreover, by adopting a
large period of time, the environment condition could change. Thus, this optimization will not be the
best one.

Despite stopping the explanation here, DWA and P-DWA will be compared so as to understand
which application has better performance, using the scenarios in Figure 4b,c. The trajectory results are
shown in Figure 3, and the analytical results are shown in Tables 3 and 4.
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Table 3. DWA and predictive (P)-DWA comparison in train map 2.

Description DWA P-DWA

Time to arrive at goal (s) 34.2 32.95
Mean speed (m/s) 0.79 0.82

Minimum distance to obstacle (m) 0.67 0.69
αD 0.5 0.5
βD 0.5 0.5
γD 0.5 0.5
σD 3 3

Sample time (s) 0.05 0.05
Prediction Sample time (s) - 0.5
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Figure 4. DWA and P-DWA actuation in different scenarios: (a) Map2 and (b) Map 3.

In the first execution, for which the trajectory is shown in Figure 4a and the analytics values are
represented in Table 3, P-DWA has a better performance, arriving at the goal position in less time.
Thus, AGV is faster than the normal DWA. The time difference is about 1.25 s, and the speed value
variation is 0.03 m/s.

For this particular case, the P-DWA algorithm is executed every 0.05 s, and it calculates three best
paths (A, B, and C), and the prediction window is working with 0.5 s sample time to calculate another
three trajectories for each best path.

P-DWA analyzes the future by executing the AGV model, and tries to guess the future by foreseeing
what will be happen if it moves to a new point, like whether a model predictive control (MPC) [32]
works. Thanks to the prediction window, the algorithm has a better performance and arrives faster at
the goal position.

Comparing the paths, both are really similar. P-DWA tries to search an ideal path, giving
more space between the AGV and obstacles. With this action, the vehicle can go faster because the
dist

(
Vagv,

.
γ
)

calculation has less influence.
The last affirmation can be confirmed with Table 4. For the second comparison, P-DWA diverts

more from the last obstacles so as to maintain a top speed. Hence, AGV diverts more from the ideal
path, which is a straight line from the start position to goal position. Nevertheless, P-DWA has the
capacity to arrive at the goal point faster than DWA, because the classic algorithm has to cross between
two obstacles, thus reducing the speed.
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Table 4. DWA and P-DWA comparison in train map 3.

Description DWA P-DWA

Time to arrive at goal (s) 41.25 34.9
Mean speed (m/s) 0.65 0.83

Minimum distance to obstacle (m) 0.44 0.65
αD 0.5 0.5
βD 0.5 0.5
γD 0.5 0.5
σD 3 3

Sample time (s) 0.05 0.05
Predictive window(s) - 0.5

Overall, these comparisons give a general idea about how the DWA path calculation can be
optimized, introducing a predictive window. The most relevant parameter is the speed incrementation,
where AGV arrives at the goal position in less time. Therefore, there is a path variation between
DWA and P-DWA. Depending on the predictive window, the answer will change. Huge predictive
windows require a high computational cost. Moreover, if the obstacles change their position, the
optimization of the path will not be the best one. Small predictive windows, however, do not affect the
path optimization. Thus, P-DWA and DWA will have almost identical paths.

3.2. ANFIS Development

After developing the P-DWA, it is time to evaluate how to adapt the weights using an adaptive
neuro-fuzzy inference system. ANFIS, as with the other neural network, depends on the train-data
to adjust the fuzzy inference. Therefore, the first action is to develop different scenarios for data
acquisition, as shown in Figure 5. In these scenarios, the AGV will move using a classical DWA
algorithm, adopting different αD, βD, and γD parameters per execution. It is true that P-DWA has a
better performance, as shown in Section 3.1. The purpose of this section; however, it is to obtain the
speed, distance to the obstacles, and direction for the target information to train ANFIS.

It has to be considered that when P-DWA uses ANFIS, this fuzzy inference will be executed twice.
One for the first step, as with a normal DWA, and another for the prediction step, in order to recalculate
the αD, βD, and γD parameters so as to have a better optimization for the trajectory.

The scenarios are built thinking that the AGV starts in pose x = 1, y = 1, and σ = 1, and the goal is
in x = 20 and y = 20. Hence, the obstacles are around the y = x line, so as to interrupt the AGV best
path, which is a straight line between the start point and goal.
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The data acquisition is built with 600 samples for each map. In each sample, random αD, βD, and
γD values are employed. The random function uses a uniform distribution and the values are from
zero to one.

As shown in Figure 2, the DWA behavior depends on the weight values, because these values,
for AGV, in some cases, cannot arrive at the goal position. To reject these invalid parameters, a timer
will be used. This timer controls how much time the AGV needs to arrive at the goal. Hence, if the
AGV does not arrive at the goal position after 250 s, these parameters would be discarded from the
data acquisition. Apart from this, in this research, the αD, βD, and γD parameters will use individual
ANFIS to optimize the fuzzy inference.

The data acquisition will be transformed to train the data, in order to achieve the ANFIS. Thus,
the values have to be prepared using some functions. In Table 5, there are some term definitions that
are used in the equations.

Table 5. Term definitions.

Term Definition

h Heading value for each sample time
H Mean heading for each data acquisition
v Speed value for each sample time
V Mean Speed for each data acquisition
d Distance to the obstacle value for each sample time
D Mean Distance for each data acquisition

ArriveGoal The distance between the AGV and goal for each sample time
XGoal X-position of the goal
YGoal Y-position of the goal
XAGV X-position of the AGV
YAGV Y-position of the AGV

n Number of sample execution
i Number of sample time

To develop the αD fuzzy inference, which is heading to the target correction, ANFIS will be trained
using only the headings means, as shown by Equation (2). Apart from this, for this particular case, the
n-maximum value will be 2400, considering that there are 600 for each map, and there are four maps.
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Moreover, the i-maximum value must be 5000, as a result of the multiplication of the DWA sample
time, which is 0,05 s, and the time limit, which is 250 s.

Hn =

∑
hi

i
(2)

For βD, which is the object detection parameter, the trained-data will have the AGV mean speed
and the mean distance to the obstacle, as in Equation (3) and Equation (4), respectively. In an obstacle
avoidance maneuver, it is important to consider the AGV speed, and how far away the obstacle is from
the AGV. Nevertheless, if the trained-data only considers the distance to the obstacle, the AGV could
avoid some objects with a high speed. In other words, the AGV is going to make an unsafety avoidance.

Vn =

∑
vi

i
(3)

Dn =

∑
di

i
(4)

Finally, there is γD, which controls the speed. The trained data will analyze the mean speed,
as shown in Equation (3). The γD parameter will have a high value when the AGV is far away from
the goal. Nevertheless, when AGV has a top speed, this value has to be low, in order to not influence
the obstacle detection and avoidance.

As a future work, the ANFIS trained-data preparation could be optimized. Instead of applying the
means of the direction, speed, or distance, the variance of the obstacle to determine a moving obstacle,
the divergence from the ideal path for heading parameter, and so on could be adopted. The aim of
this research, however, it is to introduce a novel concept of intelligence, which can simplify the fuzzy
inference adjustment.

ANFIS, as with other fuzzy inference systems, needs to define the fuzzy type. For this, a Sugeno
model was used, as represented in Table 6. Hence, it was used as the default configuration for ANFIS,
because the aim of this research is to ensure that this algorithm has the capability to adapt the P-DWA
and DWA parameters.

Table 6. Configuration of artificial neuro-fuzzy inference system (ANFIS).

Fuzzy Type Sugeno

And Method Product of fuzzified input values
Or Method Probabilistic OR of fuzzified input values

Defuzzy Method Weighted average of all rule outputs
Implication Method Scales the consequent membership function by the antecedent result value
Aggregation Method Sum of the consequent fuzzy sets

The αD parameter inference is analyzed in Figure 6. As a consequence of the default configuration,
the αD membership function has two fuzzy rules, which are optimized to solve four train maps, thanks
to the backpropagation algorithm.
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Figure 6. αD selection, depending on the AGV heading value.

βD has two inputs, which depend on the obstacle distances and AGV speed. Both inputs are
represented in Figure 7. As a result, of adopting two inputs, βD has two membership functions. Like
the other parameter, each membership has two rules.
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Figure 7. βD selection depending on two different inputs, namely: (a) Distance to the obstacle and
(b) AGV actual speed.

For the last parameter, which is γD, the configuration is similar to the first one. It has a single
membership function with two rules, as represented in Figure 8. For this time, the membership degree
is determined by the mean speeds.
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Figure 8. γD selection, depending on the distance to the goal position.

4. DWA Improves Results

Now it is time to analyze the AGV behavior, considering the four train-maps. The principal idea
is to understand how the parameters change using the ANFIS technique, and to adapt the P-DWA and
DWA parameters, depending on the scenario conditions. Moreover, it is remarkable that P-DWA uses
the fuzzy inference two times per sample time. In other words, the first time uses FIS to obtain the
A, B, and C paths. The second time uses FIS in a prediction step to obtain another nine paths. These
results are divided in four sections so as to individually analyze the advantage of this improvement.

4.1. Map 1 Results

Map 1 corresponds to Figure 5a. In Table 7 and Figure 9 are the values for comparing DWA ANFIS
with P-DWA ANFIS.

Table 7. Map 1 data comparison.

Description P-DWA ANFIS DWA ANFIS

Time to arrive at goal (s) 31.55 33.95
Mean speed (m/s) 0.86 0.8
Mean heading (◦) 151.55 150.96

Minimum distance to obstacle (m) 0.69 0.74
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Figure 9. Cont.
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Figure 9. P-DWA ANFINS and DWA ANFIS values comparison during the execution, as follows:
(a) Heading comparison, (b) distance to the obstacle comparison, (c) speed comparison, and (d) AGV
trajectories with different algorithms.

As the results show, P-DWA ANFIS is faster than DWA ANFIS, because the prediction step can
analyze the future and selects the path with the least speed variation. This affirmation can be confirmed
with Figure 9c. DWA needs to reduce the speed from 10 s to 13 s, as a result of not considering obstacle
x = 10 and y = 10 in the trajectory. Moreover, in the same period of time, the direction to the target
has a value change, caused by the obstacle avoidance maneuver. DWA ANFIS, however, is more
conservative in obstacle avoidance, hence, it maintains more distance between the obstacle and AGV.
Apart from these observations, the trajectory of both functions is almost identical in first ten meters
and in the last six meters. Thus, ANFIS works similarly for both algorithms, and the difference comes
from the prediction that anticipates to the approaching obstacle and modifies the path searching for a
new space, reducing the speed as little as possible.

Furthermore, Figure 9a–c appreciate some AGV model aspects. For example, at the maximum top
speed, which is 1 m/s, AGV will be aligned with the goal position when the heading value is 180◦ and
AGV has a 2 m visibility for the obstacle.

4.2. Map 2

Adopting the same evaluation method as in Section 4.1, map 2 analytics results are represented in
Table 8 and Figure 10.

Table 8. Map 2 data comparison.

Description P-DWA ANFIS DWA ANFIS

Time to arrive at goal (s) 33.65 38.15
Mean speed (m/s) 0.81 0.71
Mean heading (◦) 151.31 154.35

Minimum distance to obstacle (m) 0.68 0.56
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Figure 10. DWA ANFINS parameters change during the scenarios, as follows: (a) αD change during
the execution, (b) βD change during the execution, (c) γD change during the execution, and (d) AGV
trajectories with different configurations.

For map 2, as with the map 1 results, P-DWA ANFIS is faster than DWA ANFIS. The predictive
algorithm needs less time to arrive at the top speed, because it starts considering the x = 4 and y = 4
obstacle earlier, as shown in Figure 10b. Apart from that, DWA takes another route, which is closer
to the obstacle so as to avoid the object, causing a huge speed reduction. Furthermore, if Table 3 is
considered, it seems that ANFIS has the worst performance. For this time and with this particular
configuration, the classic DWA or P-DWA has better time results. This problem can be solved, however,
by applying another time restriction for data-trained rejection. By modifying this restriction, which is
250 s, ANFIS will have another performance, because the trained-data has faster solutions.

According to the map 1 conclusions, for this execution, the global idea maintains. In other words,
the P-DWA ANFIS continues to have a better performance than DWA ANFIS. Moreover, the trajectory
continues, being almost identical in the beginning and the end. Nevertheless, there is a difference
this time. The DWA ANFIS gives less distance to the obstacle. This is the conclusion of Section 3.1.
In Section 4.1, however, this the global idea changes.

4.3. Map 3

As with the rest of the subsections, the map 3 results are represented in Table 9 and Figure 11.
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Table 9. Map 3 data comparison.

Description P-DWA ANFIS DWA ANFIS

Time to arrive at goal (s) 46.7 50.7
Mean speed (m/s) 0.59 0.54
Mean heading (◦) 153.47 156.20

Minimum distance to obstacle (m) 0.47 0.46
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Figure 11. DWA ANFINS parameters change during the scenarios, as follows: (a) αD change during
the execution, (b) βD change during the execution, (c) γD change during the execution, and (d) the
AGV trajectories with different configurations.

To not repeat the same explanation, the general ideas will be mentioned in Sections 4.3 and 4.4.
For Section 4.3, the global idea maintains. Overall, the P-DWA ANFIS is faster than DWA ANFIS, thanks
to the prediction step. Moreover, the ANFIS trained data can be improved using better resolution
samples, because Table 4 shows a better performance than Table 9. Apart from that the P-DWA is more
conservative, maintaining more space between the AGV and obstacles. Therefore, the idea is that in
general, P-DWA safely gains strength.

4.4. Map 4

Adopting the same logic from other cases, map 4 results are represented in Table 10 and Figure 12.
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Table 10. Map 4 data comparison.

Description P-DWA ANFIS DWA ANFIS

Time to arrive at goal (s) 57.75 67.60
Mean speed (m/s) 0.49 0.41
Mean heading (◦) 153.7 159.66

Minimum distance to obstacle (m) 0.2 0.08
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Figure 12. DWA ANFINS parameters change during the scenarios, as follows: (a) αD change during
the execution, (b) βD change during the execution, (c) γD change during the execution, and (d) AGV
trajectories with different configurations.

This is the most chaotic case. In Figure 12d, AGV crosses between the obstacles, reducing the
speed significantly. Hence, AGV needs more time to arrive at the goal position. To improve these
results, the ANFIS train data could be more restrictive. Thus, in the data selection process, more
restriction could be applied to avoid these situations, such as, AGV cannot cross between two obstacles.
Nevertheless, as Figure 12b shows, AGV continues to have enough space to cross it. The minimum
distance to the obstacle for DWA ANFIS is 0.08 m, which is really close. Hence, in comparison with
P-DWA ANFIS, this action significantly reduces the speed of the vehicle, arriving more than 10 s later
to the goal position.

For this resolution, different to the other tested maps, the paths are almost identical in the end.
Furthermore, P-DWA ANFIS tries to predict an ideal path to solve the first obstacles. The prediction step,
however, is not large enough to solve this situation, and the ideal path crosses between the obstacles.
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In other words, this ANFIS optimization should be made individually for each map. Thus, the AGV
could improve the resolution, because the weight calculations are trained for a particular scenario.
Moreover, the restriction in trained-data should give a better resolution for this chaotic case. Apart
from that, in these situations, offline path planning could be used.

5. Conclusions

The prediction step and ANFIS technique improvements were proposed in this research work.
The development of a P-DWA increases the path mean speed, because the prediction step has better
optimization than the DWA. In other words, the prediction step can analyze what will be happen
in the next steps, and it can anticipate some situations. Thus, it could be possible to obtain a better
performance for the path.

In comparison, P-DWA is faster than DWA, adopting an alternative trajectory to maintain the top
speed, despite reducing speed and crossing between two obstacles. Thus, P-DWA maintains more
distance between the AGV and obstacle, doing a safety avoidance maneuver.

Furthermore, the prediction sample time has a fixed value, which is 0.5 s. It could be interesting to
analyze the behavior of the P-DWA algorithm with different values. Obviously, the low or high values
can alter the improvement of the prediction step. With large prediction values, the dynamic obstacles
can change the position, hence, the prediction would be wrong. With low values, the algorithm does
not have enough information to find an optimum path to avoid an obstacle. Therefore, DWA and
P-DWA would have the same behavior.

Apart from P-DWA, the ANFIS algorithm is introduced to optimize the fuzzy inferences. The results
show that ANFIS can improve the P-DWA and DWA behavior, changing the parameters depending on
the scenario conditions. This configuration is optimized to solve four maps. To improve the ANFIS
performance, this algorithm should have a particular training for each map.

Moreover, it is remarkable that the trained-data selection is not the best one to easily solve all of
the maps. Nevertheless, adopting different restrictions, such us not crossing obstacles, if the gap is less
than a particular distance; speed restriction; and time restriction, the ANFIS behavior can be improved
significantly. The aim of this research is not to obtain the best fuzzy inference to solve these four maps.
It is to introduce a novel system to develop a classic motion controller, which uses static parameters.

For future work, it could be interesting to analyze the obstacles variance to determinate if there is
any moving obstacle. Considering this parameter, AGV has to change speed and direction in order to
solve this particular case. Furthermore, it could be interesting to adopt different restrictions to improve
the ANFIS resolution, like implementing a more restrictive rejection time.
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