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A B S T R A C T

In this work, we propose an interferometric humidity sensor based on a polymer micro-cap bonded off-center on
the polished end of a standard single mode fiber (SMF). In our sensor, the sensitive part is the micro-cap. In the
interferometer fabrication process, we can adjust the misalignment between the core and the micro-cap. It
allowed us to control the visibility of the interference pattern. In our device, water molecules absorbed by the
polymer microcap causes changes in the height of the microcap. This results in measurable shifts of the inter-
ference pattern. The fabricated samples were tested in a calibrated climatic chamber in the range from ˜10 to
˜95% of relative humidity (RH). The sensitivity and resolution of our device was found to be 148 pm per %RH
and 0.04% RH, respectively. The obtained results suggest that our sensors can be useful to monitor relative
humidity (RH) in miniature spaces.

1. Introduction

Humidity measurements have relevant importance in many areas of
applications including, for example, manufacturing processes, [1]
breath monitoring [2–5], or meteorological studies [6]. Every of such
application demands specific humidity sensors. Therefore, factors such
as range of detection, stability, response and recovery times, sensitivity
or accuracy must be tailored when designing a humidity sensor. In
addition, cost, simple design, and small size of the sensor are also im-
portant.

The most mature technology to develop humidity sensors exploit
changes in resistance or capacitance of a humidity-sensitive thin film.
The material the film is made of, can be polymer, bio-material, metal
oxide, ceramic, or 2D material [7–11]. The physical changes of the thin
film induced by humidity are measured by means of electronic tech-
nology. Nevertheless, electronic humidity sensors have some draw-
backs. For example, they cannot measure humidity levels less than 5%,
have nonlinear behavior or hysteresis, and need regular calibration.
Besides, electronic humidity sensors may not work or cannot be used in
environments where electromagnetic fields are present.

As an alternative to well-established electronic humidity sensors,
those based on fiber optics technology have been proposed. Fiber optic
humidity sensors have important features such as electromagnetic

compatibility, remote sensing and multiplexing capabilities.
Additionally, fiber optic humidity sensors have miniature size and are
lightweight. As optical fibers are insensitive to humidity, an inter-
mediate hygroscopic material is usually necessary. Such material can be
deposited on a section or on the tip of an optical fiber. In this manner,
the guided light interacts with the hygroscopic material, which in turn
is exposed to humidity. The changes induced by humidity to such
material result in measurable changes of the guided light.

Optical absorption is a technique to detect humidity [12–15]. In this
technique, the evanescent field of the guided light interacts with the
hygroscopic material and the transmitted spectrum is monitored as a
function of humidity. The main disadvantage of this technique is that
power fluctuations of the light source or curvature in the optical fiber
can be misinterpreted as humidity.

Long period gratings (LPGs) [16] coated with a humidity-sensitive
material can also be used to detect humidity. In an LPG cladding modes
are excited [17], such modes are highly sensitive to changes of re-
fractive index of the material that coats the LPG [18]. Nevertheless, it is
difficult to have full control of the cladding modes that are excited with
an LPG, thus sensors based on LPGs have low yield [19–22].

Fiber Bragg gratings (FBG) [23] are also widely used to design and
fabricate humidity sensors. The working principle of these sensors is
based on changes in the Bragg wavelength of the FBG caused by the
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swelling of a hygroscopic material deposited around the segment of
fiber that has the grating [24,25]. An important advantage of FBG
sensors is their multiplexing capability. However, FBG humidity sensors
have low sensitivity, narrow measuring range, and slow response time
[26]. Since different materials possess different swelling properties,
many materials have been proposed by different groups in an effort to
improve the performance of such humidity sensors [27–29]. Also, dif-
ferent coating methods and thicknesses have also been studied with the
aim to improve the sensitivity of FBG humidity sensors [30–32].

Interferometry is another technique widely used for humidity sen-
sing. There are different ways to implement interferometers, as for
example, with tapered optical fibers [33,34], photonic crystal fibers
[35–37], or with a combination of different types of fibers [38,39]. The
main characteristic of most interferometric humidity sensors is their
cross sensitivity to humidity and to other parameters such as tem-
perature. An advantage of interferometers is the fact that they can de-
tect humidity even without a hygroscopic material [40]. Interfero-
metric humidity sensors have also some disadvantages. These include
low sensitivity to humidity and the narrow humidity range that they
can measure [41–43].

Fabry-Perot (FP) cavities are also good alternatives to monitor hu-
midity. In this case, a thin layer of hygroscopic material is deposited on
the end face of an optical fiber [44–47]. The advantage of this type of
humidity sensors is their miniature size. However, in most cases, the
deposition of the material is carried out manually [43,48–51]. Thus, the
reproducibility is low [48]. Many research groups have proposed dif-
ferent configuration of FP-based humidity sensors have to improve their
performance [52,53], but the thermo-optic (TO) and thermo-expansion
(TE) effects on the polymer have not been analyzed. On the other hand,
FP-based humidity sensors that can compensate temperature effect,
require an additional temperature sensor [49]. Therefore, despite the
many advantages that humidity sensors based on optical fibers have,
their characteristics must be improved to compete with their electronic
sensors counterpart. These characteristic include simpler design and
reproducible fabrication methods which may lead to lower sensor costs.
Other important factor include high sensitivity and accuracy, wide
measurement range, miniature size, no hysteresis, linear behavior,
stability, etc.

Based on the aforementioned, in this work, we propose a miniature
interferometric humidity sensor. The design of our device is simple
which allowed us to achieve high reproducibility. As a hygroscopic
material, we used nanoliter amounts of a UV-curable polymer (NOA 81
from Norland Products, Inc) that is commercially available. A simple
setup was implemented to monitor the fabrication process in real time.
In this manner, we achieved devices with well-defined interference
patterns that were analyzed with a low cost spectrometer. In addition,
in our devices, the effect of temperature on the polymer micro-cap can
be compensated with another interferometer isolated from humidity
[54].

According to the manufacturer, the polymer, once cured and aged,

can withstand temperatures from −150 °C to 125 °C. Therefore, the
devices here proposed are suitable for a myriad of environments or
aplications. The fabricated samples were exposed to humidity from 10
to 95% at different temperatures. The obtained results show that our
devices are highly sensitive to humidity (148 pm per %RH), are accu-
rate and as fast as a commercial capacitive humidity sensor. In addition,
the behavior of our sensor is linear over a broad range of humidity and
has no hysteresis. An additional advantage of our humidity sensors is
their microscopic dimensions.

2. Sensor fabrication process

The device fabrication consists of the following steps. Firstly, a
standard single mode fiber (SMF) was cleaved using a fiber optic
cleaver (model CT-32 from Fujikura). After that, the cleaved fiber was
polished flat with a fiber optic polishing machine, model NOVA from
Krell Tech. Once this was done, the SMF was cleaned and then clamped
to an optical fiber alignment stage (ULTRAlign™ from Newport).
Additionally, a short piece of cleaved SMF was submerged in a com-
mercial polymer (NOA 81, from Norland Products). The polished and
the cleaved SMFs were clamped is separated fiber alignment stages that
were in vertical position. The SMF coated with polymer was placed
beneath of the polished SMF. Next, light from a super luminescent
diode (SLD) source, with peak emission at 850 nm, was launched to the
polished SMF end by means of a suitable optical coupler. The inter-
ference pattern generated by the two SMF faces was analyzed using a
mini spectrometer. Then, the SMF coated with polymer was approached
to polished SMF tip until the spectrum from the air gap formed between
the end face of the SMF and the polymer had a well-defined interference
pattern, see Fig. 1(b).

After this, the fibers were misaligned. The next step was to gently
move the dispensing fiber in the direction of the polished SMF until
both fibers were in contact, see Fig. 1(c). Then, the dispensing SMF was
moved downwards. As a result, an off-center micro-size polymer cap on
the end face of the polished SMF was formed, see Fig. 1(d). Finally, to
solidify the polymer cap, it was exposed to UV light during a few sec-
onds. By the polymer manufacturer recommendation, for an optimum
adhesion, the device was aged at 50 °C during 12 h. In Fig. 1(d), we
show micrographs of the front and lateral views of the resulting
polymer cap onto the polished SMF.

We would like to point out that the process described above can be
carried out automatically. For example, similar opto-mechanical com-
ponents (mini cameras, translation stages, etc.), techniques, and
alignment process implemented in commercial fiber fusion splicers can
be adopted to align the dispensing and receiving fibers. Therefore, the
fabrication of the devices proposed here can be carried out in seconds.

3. Operation principle

The operating principle of our device is explained as follows. The

Fig. 1. (a) Schematic representation of the set-up used to
monitor the fabrication process and to interrogate devices. (b)
and (c) Micrograph of the fabrication steps where the polymer
is added to the end face of the SMF.(d) Micrographs of a
fabricated sensor sample. On top, frontal view of the off-center
of the micro-cap. Below, lateral view of the sensor. (e)
Illustration of the theoretical principle of our interferometer.
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fundamental SMF mode is considered as a Gaussian beam with ampli-
tude E0. Part of this beam, due to Fresnel reflection, will be reflected
towards the SMF core once it reaches the SMF-polymer interface. The
amplitude of the reflection is denoted as r1, see Fig. 2(a). Therefore, the
reflected wave, denoted as Er1, can be expressed as:

=E r E ,r1 1 0 (1)

where r1 is the reflection coefficient and is calculated as r1 ≈ (np-
nc)/(np+nc). In the latter equation, np and nc are the refractive index of
the polymer and the core of the SMF, respectively. The non-reflected
part of the wave will travel in the polymer until it reaches the polymer-
SMF interface. As the beam is Gaussian, the waist radius of such a beam
can be calculated as = +w w d n w[1 ( / ) )]1/2p1 0 0

2 2 . The accumulated
phase of the beam is given by the expression: = n d2 /p . In the ex-
pressions of w1 and φ, d is the height of the polymer microcap and λ the
centered wavelength of the optical source, and is w0 is the waist of the
beam before leaving the SMF core.

After reaching the polymer-external medium interface, the wave
will be reflected back due to the Fresnel reflection. The amplitude of the
reflected beam can be mathematically written as:

=E E r r exp i(1 ) ( ),r2 0 2 1 (2)

where r2 is the reflection coefficient in the interface polymer-outside
medium and is calculated as r2≈ (ne / np)/(ne+np), being ne the re-
fractive index of the external medium. The waist radius of Er2 beam that
reaches the SMF core can be denoted as ωd. It can be expressed in a
similar manner than w1.

Due to the misalignment of the polymer-cap, the portion of the re-
flected wave that is coupled in the SMF core will be [55,56]:

=E r E r i(1 ) exp( 2 ),c 2 0 1
2 (3)

where η is the coupling coefficient that can be calculated from Eqs.
A7 and A(8) given in reference [55]. It depends strongly on the angular
misalignment, θ, see Fig. 1(e). Thus, the amplitude of the total reflected
wave (ET) is the sum of Er1 and Ec, that it is:

= +E E r r r exp i[ (1 ) ( )].T 0 1 2 1
2 (4)

Therefore, the total reflected intensity that can be measured with a
light detector can be expressed as Ir = (ET/E0)2. The result of this op-
eration turns out to be:

= + +I r r r r r r(1 ) 2 (1 ) cos(2 ).r 1
2 2

2
2

1
4

1 2 1
2 (5)

It can be noted that Eq. (5) is not the typical expression assumed by
most authors for Fabry-Perot interferometers [48,57] which is con-
sidered as a two beam interferometer. The divergence of the beam that
leaves the SMF and the features of the interface of the polymer (or any
other material) and the external medium determine the performance of
the interferometer, hence of the sensor.

From Eq. (5) it is possible to deduce that the maximums of the Ir will
be given when φ =2mπ and the minimum when φ = (2m+1)π, m

being a positive integer. So, the wavelengths of the interference pattern
where Ir takes maximum values will be located at:

= (2n d)/mm p (6)

The visibility (V) of an interference pattern is defined as the dif-
ference over the sum between the maximum and minimum of such a
pattern. Thus, from Eq. (5), we can derived V as:

=
+

V
r r r

r r r
4 (1 ) )

2 2 (1 )
.1 1 2

1
2

1
2

2 (7)

From Eq. (7), it can be deduced that it is possible to achieve a
maximum value of V by adjusting the coupling coefficient ƞ, which
depends on the axial misalignment θ, np, d, λ, ω0, and wd [55,58].

According to Eq. (5), the maximum value of V is found when the
ƞ=0.17. This value was found by calculating ƞ when θ=1.26°. We
also have plotted Eq. (5) when θ = 0, that is when ƞ=1. In Fig. 2(a),
we have graphed the comparative of both mentioned situations. It can
be seen that the visibility increases 40% due to the off-centering of the
microcap. Fig. 2(b) shows the strong influence of the misalignment on
the coupling coefficient ƞ, and consequently, on the visibility of the
interference pattern, see Eq. (7).

4. Experimental results

The polymer that we used to fabricate the micro caps onto the SMF
can absorb water molecules [59]. Such polymer swells when it is ex-
posed to relative humidity (RH). Consequently, the height of the micro-
cap d, will increase if RH increases. Thus, our device can be used as a
humidity sensor. According to Eq. (6) and, by assuming constant tem-
perature, λm will shift to the red if d increases (RH increases), or will
shift to the blue if the RH decreases.

Our devices were assessed as humidity sensors in the Aerospace Test
Laboratory located in Miñano, Spain. To do so, the interrogation system
shown in Fig. 1(a) was used. A broadband light from a super lumines-
cent diode source (SLD), model OFLS- S from Safibra, was launched into
the core of the SMF through a suitable optical coupler. By means of a
mini-spectrometer (CCS 100 from Thorlabs), one of the maximum wa-
velengths (λm) of Ir, was tracked and analyzed. After that, our devices
were placed inside of a calibrated climatic chamber (mode Climacell,-
from MMM Group). A capacitive humidity sensor was used as a re-
ference. The climatic chamber was programmed in order to subject our
devices to different tests.

In Fig. 3(a), it can be seen the shift of the spectrum of one of our
device when it was exposed to different concentration of RH at 22 °C.
Note the good agreement between the experimental spectrum and the
theoretically calculated spectrum shown in Fig. 2(a). Fig. 3(b) shows
the response of our device when it was exposed to RH from ˜10 to ˜ 95%
in steps of 15% and down to ˜10% in the same steps. It can be noted that
our device provided information about RH as accurate as the electronic

Fig. 2. (a) Theoretical simulation of our interferometric device, calculated from Eq.(5) with an angular misalignment of 1.26° and without angular misalignment,
solid and dashed line, respectively. (b) Coupling coefficient versus axial misalignment.
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sensor located in the climatic chamber.
The aforementioned tests, were also carried out at 50 and 70 °C and

the results obtained are shown in Figs. 4(a) and 4(b). These graphs
show how the tracked wavelength (λm) of the spectrum, shifts to the
red or to the blue according to the climatic chamber RH variations.
From the data of the aforementioned graphs, our sensor was calibrated
for each temperature test carried out. The result as summarized in
Fig. 5(a). From the sensor calibration, it can be seen that our sensor
behaves linearly and without hysteresis.

The response of our device to cycles of RH between 30 and 90% was
also studied. The results are shown in Fig. 5(b). Note also that in this
case of our device provides again accurate information as an electronic
humidity sensor.

To compensate the temperature effect on our sensor we need to
understand the response of the polymer micro-cap to temperature. By
differentiating Eq. (6) with respect to temperature we get [54]:

= +
T n

n
T d

d
T

1 1 .m

p

p
m

(8)

This means that temperature will cause a shift to λm. Thus, to
compensate the temperature effect on our devices will be necessary to
use two SMF with polymer microcaps, one of them must to be isolated
from humidity.

The effect of temperature on the maximum of the interference
pattern (λm) and on the RH sensitivity (SRH) is calculated according to
the two following equations:

= +T T( ) 827, 6 0.254 (nm/ºC),m (9)

= +S T T E T( ) 0.148 0.0033 5, 9 5 (nm /%RH).RH
2 (10)

Furthermore, the resolution of our sensor was found to be 0.04%
RH.

Fig. 3. (a) Spectra at different RH of our sensor, λm denotes the tracked maximum. (b) Comparative in real time between our device and the capactive humidity
sensor of the calibrated climatic box.

Fig. 4. (a) Comparative in real time between our device and the capactive humidity sensor of the calibrated climatic box at 50 °C. (b) The same comparative that the
previous one but with the climatic box at 50 °C.

Fig. 5. (a) Plot of RH versus of λm at differents temperatures. At all temperatures the response of our sensor was linear and without hysteresis. (b) Response of our
sensor when it is exposed to several cycles of RH variations from ˜30 to ˜90% at 22 °C.
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5. Conclusions

We have reported on an accurate interferometric fiber optic hu-
midity sensor which has miniature size. Experimentally, it has been
shown to be as fast, accurate and sensitive as a commercial capacitive
humidity sensor with which it has been compared. Our sensor provides
linear response, broad humidity measuring range, and high sensitivity
over the whole measuring range. The fabrication of the sensors is
simple and reproducible. In our humidity sensor, the key element is an
off-center polymer microcap bonded onto the polished facet of a single
mode optical fiber. It can be possible compensate the temperature effect
on the polymer by using two of our devices, one of them isolated from
humidity.

We believe that the devices here proposed can be useful in minia-
ture spaces where reliable and accurate humidity measurements are
needed. Other applications that we foresee are in the field of bio-che-
mical sensing. In these applications, synthetized polymers with tailored
optical and physical properties will be required. Then, under the pre-
sence of the parameters to sense, the interference pattern will change,
and therefore will be detected or monitored with the techniques pro-
posed in this work.
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