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Abstract

The Roma population is the largest transnational ethnic minority in Europe, characterized by

a linguistic, cultural and historical heterogeneity. Comparative linguistics and genetic studies

have placed the origin of European Roma in the Northwest of India. After their migration

across Persia, they entered into the Balkan Peninsula, from where they spread into Europe,

arriving in the Iberian Peninsula in the 15th century. Their particular demographic history

has genetic implications linked to rare and common diseases. However, the South Asian

source of the proto-Roma remains still untargeted and the West Eurasian Roma component

has not been yet deeply characterized. Here, in order to describe both the South Asian and

West Eurasian ancestries, we analyze previously published genome-wide data of 152 Euro-

pean Roma and 34 new Iberian Roma samples at a fine-scale and haplotype-based level,

with special focus on the Iberian Roma genetic substructure. Our results suggest that the

putative origin of the proto-Roma involves a Punjabi group with low levels of West Eurasian

ancestry. In addition, we have identified a complex West Eurasian component (around

65%) in the Roma, as a result of the admixture events occurred with non-proto-Roma popu-

lations between 1270–1580. Particularly, we have detected the Balkan genetic footprint in

all European Roma, and the Baltic and Iberian components in the Northern and Western

Roma groups, respectively. Finally, our results show genetic substructure within the Iberian

Roma, with different levels of West Eurasian admixture, as a result of the complex historical

events occurred in the Peninsula.

Author summary

Human demographic processes and admixture events leave traceable footprints in the

genomes of the populations and they can modulate the genetic architecture of complex
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diseases. Here, we aim to study the Roma people, an admixed population with a particular

demographic history recognized as the largest ethnic minority in Europe. Previous studies

suggest that they originated in South Asia 1,500 years ago and followed a diaspora towards

Europe with extensive admixture with non-Roma West Eurasian groups. However, the

genetic components of the Roma have not been deeply characterized. Our study reveals a

common South Asian origin of all European Roma, closely related to a Punjabi group

from Northwestern India. Through fine-scale haplotype-based methods, we describe a

complex West Eurasian genetic component in the Roma groups, identifying a common

Balkan ancestry and country-specific admixture footprints consistent with the dispersion

through Europe. Our findings provide new insights into the demographic history and

recent admixture events that have shaped the genetic composition of European Roma

groups and could enable a better genetic characterization of complex disease in this

population.

Introduction

The diaspora of the Roma people, also known with the misnomer of Gypsies, is a not-well doc-

umented human movement, which is characterized by recent dispersals and multiple founder

events. The Roma population is recognized as the largest transnational ethnic minority in

Europe, with an estimated population of up to 10 million, although their exact number is diffi-

cult to estimate due to the lack of reliable census surveys. They consist of a heterogeneous and

substructured mosaic of populations that differ linguistically, culturally, historically, and in

their relation to nearby populations [1]. Their demographic history together with their endog-

amous social practices [1] have contributed to a particularly different spectrum of Mendelian

disorders when compared with other neighboring European populations [2,3]. Historical rec-

ords confirm the persecution and social marginalization that this population has suffered since

their arrival to Europe [1].

Comparative linguistics has placed the origin of European Roma in India, particularly in

the northwestern region, as Romani is closely related to Punjabi and Kashmiri languages [4,5].

However, the social organization and cultural dynamics in Indian populations lead to sub-

structure in closely-related linguistic groups, as is reflected in the different proportions of

Ancestral North Indian (ANI) and Ancestral South Indian (ASI) genetic components [6]

shown in groups even living in the same geographic region, which prevents them to be consid-

ered as genetically homogeneous groups [7] and challenges the retrieval of the origins of Roma

based solely on linguistic data. The Indian genetic component of the Roma population was

first proposed after the identification of shared disease-causing mutations with Indian and

Pakistani patients [8,9]. In addition, analyses of uniparental markers permitted to assign an

Indian origin for some maternal and paternal lineages found in the Roma [10–12], namely

those belonging to the M-haplogroups (M5, M18, M25, M35) in the mitochondrial DNA [13],

and to H-M69 in the Y-chromosome [14]. Furthermore, genome-wide studies indicate that

the European Roma originate from a reduced number of founders (proto-Roma) whose ances-

tral homeland was the current Punjab state of India [10,15,16].

According to previous historical and anthropological evidence, a subsequent migration

from Northwest India through Persia and Armenia preceded the entrance in the Balkans,

from where they spread across the entire Europe. During the 11th and 12th centuries, some

Roma settled in the surroundings of the Ottoman Empire, in the Balkan Peninsula (Balkan

Roma), other groups spread across the Danubian Principalities (present-day Romania,

Fine-scale characterization of European Roma genetic components
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Moldova, and Hungary), where they were forced into slavery (Vlax Roma), while the Romun-

gro group started a dispersion across the Austro-Hungarian Empire [2]. Finally, other small

groups moved into North, Central, and Western Europe (Northwestern Roma), having arrived

into Iberia in the early 15th century, as document a number of Iberian historical records men-

tioning the presence of Roma groups in Zaragoza and Barcelona in 1425 and 1447, respectively

[17]. The Roma diaspora through the Middle East, Caucasus, and Europe was a very complex

process during which the emerging pattern of genetic substructure was highly influenced by

differential gene flow from different West Eurasian (European, Middle Eastern and Caucasian)

non-Roma populations [15,18] and even within Roma groups [19]. Genome-wide data showed

that the Roma genomes harbor around 80% of Western Eurasian ancestry, while the remaining

ancestry is from South Asian sources [16]. However, this estimate of the West Eurasian com-

ponent is not only derived from their recent (post-exodus) admixture with non-Roma Europe-

ans, as prior to their arrival into Europe, Roma might already carried an Ancestral West

Eurasian (AWE) component from South Asian sources [16], due to admixture events that

occurred in South Asia around 1,900–4,200 years ago (ANI component) [20], thus before the

proto-Roma people left South Asia.

However, previous genetic studies of the European Roma, despite the wealth of insights

provided into their demographic history, show multiple limitations. First, South Asian pop-

ulations have been primarily studied using the linguistic affiliation as criteria to classify

individuals into groups, which often conflicts with genetic intra-group homogeneity. Sec-

ond, the European Roma population has been approximated as a simple admixture between

South Asian and European sources, without a detailed analysis of the West Eurasian compo-

nent in Roma. In addition, most of the analyses relied in allele frequency-based methods,

yet haplotype-based approaches provide a fine-scale characterization, and perform better

than allele frequency analyses in populations that have been under strong genetic drift

[21,22]. Finally, there are still few studies focused on the Iberian Roma population, which

represents the westernmost expansion of the Roma diaspora in Eurasia. To overcome the

mentioned limitations, the present study consists of a genome-wide analysis of the Euro-

pean Roma (including new samples from the Iberian Roma), with the following aims: (i) to

shed light on the South Asian origin of the proto-Roma population; (ii) to assess the level of

admixture of the Roma with other European populations as well as with Middle Easterners

and North Africans; and, (iii) to characterize the patterns of genetic substructure among the

Iberian Roma. Our analysis unravels at fine-scale the genetic components of European

Roma groups, dissecting the original South Asian, ancestral West Eurasian, and recent

European components.

Results

European Roma genetic substructure

The European Roma population was first assessed in a worldwide context (Dataset1, S1 Table,

see Materials and Methods). A Principal Component Analysis (PCA) was performed with

samples from Europe, Africa, Middle East, Caucasus, Central and South Asia. Roma samples

fall between non-Roma European and South Asian populations (S1 Fig), in agreement with

their demographic historical records [1] and previous genetic studies [15]. In addition,

ADMIXTURE results further confirm PCA results, as at k = 3, European Roma show a combi-

nation of two cluster components (dark red and dark blue) mainly found in South Asian and

West Eurasian samples. At k = 6 (lowest cross-validation error value), the Roma individuals

displayed membership in a specific cluster and a yellow component mainly found in south-

western Eurasia, which reproduces previous results [15] (S2 Fig).

Fine-scale characterization of European Roma genetic components
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To further describe the Roma genetic substructure and to reveal fine-scale patterns, we

used haplotype-based methods: ChromoPainter and fineSTRUCTURE. Most European Roma

samples cluster together in a sister clade of MiddleEast-Caucasus and Europe super-group (S3

Fig). These Roma samples belong to ten different clusters correlated with geography, grouping

together individuals from the same European regions (North, West, Central, and Balkans) (Fig

1A and 1B). As shown in the dendrogram (Fig 1A) and based on the Total Variance Distance

(TVD) values, the most significantly differentiated Roma clusters are RomaIberia-2 and

RomaMix-4 (p< 0.001) (S4 Fig, S2 Table). The non-Roma reference samples were classified

in 51 genetic clusters from four different large super-groups (Europe, MiddleEast-Caucasus,

Central-SouthAsia, and MiddleEast-Africa) (S3 Fig).

Admixture in Roma and South Asian origin of the proto-Roma population

Admixture events that have shaped the genetic composition of the Roma population were

inferred with GLOBETROTTER. For all European Roma clusters, “one-date” type of admix-

ture event (single admixture date between two sources) was detected involving two sources: a

West Eurasian-like major source and South Asian-like minor source, around 1270–1580 (S3

Fig 1. European Roma substructure (Dataset1). (A) European Roma fineSTRUCTURE dendrogam showing the 10 European Roma clusters.

(B) European Roma sample location and sample size (pie charts are colored according to the clusters in A).

https://doi.org/10.1371/journal.pgen.1008417.g001
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Table, Fig 2, Table 1). This interval of admixture dates overlaps with the period when the first

historical records report the presence of Roma groups in each European country, although

these records represent the lower limits for the actual first Roma settlements. In general, Roma

from the surroundings of the Balkan Peninsula and Central Europe (RomaMix-1, RomaMix-

2, RomaMix-3, RomaUkr) have earlier admixture dates (Table 1), which supports the disper-

sion into Europe via the Balkans [15].

Regarding the South Asian-like source, it contributes around 35% to the admixture and its

most representative cluster is Punjabi-1, from Northwestern India, (Fig 2, S3 Table). Although

Punjabis have a linguistically uniform identity [23], they are genetically heterogeneous. In fact,

Punjabi samples do not cluster together, instead they are spread along PC2 (S1 Fig), as well as

in the fineSTRUCTURE dendrogram (S3 Fig), with three different Punjabi clusters with

increasing levels of ANI component (S5 Fig, S4 and S5A Tables). Thus, most of the South

Asian ancestry of the Roma is mainly shared with the group of individuals from Punjab with

less West Eurasian component (Punjabi-1, S3 Table).

The rest of South Asian surrogates identified in the minor source correspond to southeast-

ern Dravidian-speaking populations (E-India, Irula clusters) (Fig 2, S3 Table), which also

exhibit low levels of West Eurasian ancestry (S5 Fig, S5A Table).

Altogether, these findings suggest that the most likely proxy for the South Asian origin of

the proto-Roma, is the ancestral source here described as a mixture of present-day South

Asian groups with a low West Eurasian signature.

Recent West Eurasian admixture

The West Eurasian-like source contributes around 65% to the admixture event. This compo-

nent captures the recent West Eurasian admixture between the proto-Roma and West Eur-

asians during their diaspora from India to Europe, in other words, it does not include the

AWE component present in South Asian populations (S1 Note, S6 Fig) estimated to be around

15% (S5B Table). This recent West Eurasian ancestry is lower in the Roma groups from the

Balkan Peninsula and Central Europe (RomaMix-1 and RomaMix-2), around 60%, and it

increases up to 80% (RomaIberia-2) as the distance from the Balkans increases (Fig 2, S3

Table).

The main contribution of this major source is from southeastern European clusters (Bal-

kan-1 and Balkan-2), with this area being the historically reported gateway of the Roma groups

into Europe [1]. The component from Middle East and Caucasian clusters was found to be

moderate in the Roma groups. Besides these two components, additional distinct European

ancestries are detected in the Northwestern Roma groups from the Baltic (Estonia-Lithuania)

and Iberia (Spain-Portugal). Specifically, while RomaBalt cluster shows a northeastern Euro-

pean component (NE-Europe1 cluster), RomaIberia-1 and RomaIberia-2 contain a southwest-

ern European component (SW-Europe1 and SW-Europe2) each. This result indicates that, in

the Roma groups that migrated to Northern and Southwestern Europe, the Balkan component

left a footprint still clearly detectable today, though having been highly reconfigured by admix-

ture in the Baltic region and the Iberian Peninsula, respectively (Fig 2, S3 Table).

Regarding the Iberian Roma, the samples constitute two highly differentiated clusters

(RomaIberia-1 and RomaIberia-2) not found elsewhere, which suggests a deep genetic sub-

structure within the Roma settled in Iberia (Figs 1 and 2, S3 Table).

Sex-biased gene flow

As mentioned above, the European Roma ancestry contains two main sources: the West Eur-

asian (European and MiddleEast-Caucasus) and the South Asian components. However, these

Fine-scale characterization of European Roma genetic components
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ancestry proportions differ significantly when comparing the X chromosome to the auto-

somes: the South Asian ancestry is significantly higher in the X chromosome while the Mid-

dleEast-Caucasus proportion is significantly higher in the autosomes (S6 Table, S7 Fig). These

results point to a sex-biased admixture during the Roma diaspora, likely characterized by a

higher influx of non-Roma males than females from the Middle East and Caucasus. The pro-

portions of European ancestry contained in the autosomes and the X chromosome are similar,

although RomaBalt, RomaIberia-1, RomaIberia-2 and RomaMix-4 show higher levels of Euro-

pean ancestry in the autosomes. These findings can also indicate different sex-biased gene flow

processes in the European Roma groups, which might be the result of different social patterns

among groups. Future studies with mtDNA and Y- chromosome data could add further

insights into these results, as well as sex-specific fertility inheritance processes in the Roma

population [24].

Roma demographic patterns

To investigate the effective population size (Ne) dynamics, we have estimated the Ne of each

Roma group and the ancestry-specific Ne. On one hand, all Roma groups show a long uninter-

rupted Ne decrease followed by an increase of Ne (without reaching the levels of the NorthItaly

cluster, which we used as a European reference) (S8 Fig). The change of the Ne trend is slightly

correlated with the start of the admixture in each Roma group (S9 Fig), which might point to

the gradual settlement of the Roma population in Europe. On the other hand, we inferred Ne

through time for the three ancestral Roma source populations (European, MiddleEast-Cauca-

sus and SouthAsian), focusing on their Ne before the admixture: 34 generations ago, as the

more ancient lowest confidence interval (CI) inferred from GLOBETROTTER is found in

RomaMix-2 at 1164 CE (S7A Table). The European Neg = 34 is 2.12 to 2.64 times higher than

the South Asian Neg = 34, which is 1.27–1.43 times higher than the MiddleEast-Caucasus

Fig 2. West Eurasian and South Asian ancestry of the European Roma (Dataset1) from GLOBETROTTER results. Pie charts on the map show the geographic

location of the donor populations. Grey diamonds display those samples that do not contribute to the Roma ancestry. For each Roma cluster, the major source (West

Eurasian like) and minor source (South Asian like) are shown: the proportion (in percentage) of each source and a horizontal bar with the proportions of the donor

populations in each source. Only donor groups that contribute a minimum of 3% to the Roma genomes are shown. 1000G population labels are used in the map for ITU

(Indian Telugu from the UK), STU (Sri Lankan Tamil from the UK), BEB (Bengali from Bangladesh), PJL (Punjabi from Lahore, Pakistan).

https://doi.org/10.1371/journal.pgen.1008417.g002

Table 1. Admixture dates inferred by GLOBETROTTER for each European Roma cluster with each estimated date and 95%CI from 100 bootstrap resamples in

generations ago (GA) and years CE (considering a generation time of 25 years). The first historical records of Roma presence in each sampled European country

[1,60,61] are shown with the same assumptions as in [15].

Recipient cluster Date (GA) CI 95% (GA) Date (CE) CI 95% (CE)

RomaMix-1 27.286 19.761–31.705 1318 1207–1505

RomaMix-2 25.103 20.664–33.405 1372 1164–1483

RomaMix-3 23.001 17.589–31.596 1425 1210–1560

RomaUkr 24.867 21.134–30.97 1378 1225–1471

RomaSlo 18.465 15.089–24.039 1538 1399–1622

RomaBalt 20.752 16.726–24.971 1481 1375–1581

RomaIberia-1 24.269 16.883–30.228 1393 1244–1577

RomaCro 19.969 14.959–25.845 1501 1353–1626

RomaIberia-2 17.905 12.668–28.058 1552 1298–1683

RomaMix-4 18.589 9.858–30.801 1535 1229–1753

1st historical records of Roma presence: Serbia (1348), Croatia (1362), Bulgaria (1378), Romania (1385), Greece (1386), Hungary (1402), Spain (1425), Slovakia (1444),

Portugal (1462), Ukraine (1501), Lithuania (1501), Estonia (1540)

https://doi.org/10.1371/journal.pgen.1008417.t001
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Neg = 34 (S7B Table). In contrast, the fold-change between the European and South Asian

ancestry proportions is lower than 2 in all Roma groups (except RomaIberia-2 and RomaMix-

4) and between South Asian and MiddleEast-Caucasus ancestry proportions is higher than 1.5

fold in all Roma groups (S7C Table). These differences between the ancestry proportions and

the ancestry-specific Ne could be explained by the fact that a small South Asian proto-Roma

group of founders had a continuous gene flow with different non-related groups from the

MiddleEast and Caucasus and different non-Roma European populations, during their West

Eurasian diaspora (see S4 Note).

Runs of homozygosity (ROH) were computed to assess the levels of inbreeding and the

degree of genetic isolation in the Roma groups. In general, the mean ROH length of the Roma

groups is significantly higher than the mean of the non-Roma reference Balkan-2 and Punjabi-

1 clusters. For all ROH length categories, Roma groups present similar values than those of

Kalash (S10 Fig, S8A Table), which is known to be a highly inbred population [25], possibly

due to genetic isolation, although their isolation degree is in debate [26,27]. The average ROH

lengths of the Roma maintain high values after a first significantly decrease between the first

and the second categories (1–2 and 2–3 Mb, respectively) (S8B Table), which suggest that the

inbreeding signals of Roma are the result of a continuous, although decreasing, level of isola-

tion, from historical to recent times. Furthermore, the Roma groups with more West Eurasian

ancestry (IberianRoma-2 and RomaMix-4) are the clusters with the lowest mean ROH length

values across all categories (S10 Fig). Thus, these results additionally evidence a degree of het-

erogeneity within Roma from the Iberian Peninsula that need to be further investigated.

Iberian Roma genetic characterization

Iberian Roma substructure. To further explore the genetic structure of the Iberian Roma

population, we included 34 newly genotyped Roma samples from the Iberian Peninsula (Data-

set2, S9 Table, see Material and Methods). These samples fall between European and South

Asian populations in the PCA (S11 Fig), the ADMIXTURE analysis (S12 Fig), and the fineS-

TRUCTURE dendrogram (S13 Fig), in agreement with the above results using European

Roma individuals (Dataset1). Iberian Roma samples were classified in four different genetic

clusters (S14 Fig). Although the four Iberian Roma groups are only partially clustered by geog-

raphy, different patterns are discerned: IberianRoma-1 and IberiaRoma-2 contain samples

from the northeastern region of the Iberian Peninsula, IberianRoma-3 is restricted to the

south, and IberianRoma-4 is mainly formed by samples from the northwestern region (S14A

and S14B Fig). As shown in the dendrogram (S14B Fig), IberianRoma-4 is the most signifi-

cantly differentiated group (p< 0.001) (S15 Fig, S10 Table).

Analogously to Dataset1 dendrogram (S3 Fig), the non-Roma reference samples were clas-

sified in 83 clusters, which can be summarized in four large super-groups (MiddleEast-Africa,

Europe, MiddleEast-Caucasus, and Central-SouthAsia) (S13 Fig).

Recent West Eurasian admixture in Iberian Roma groups. Admixture events in the Ibe-

rian Roma clusters were inferred with GLOBETROTTER. As shown above for the general

Roma groups (Dataset1), one admixture event between a West Eurasian-like major source and

a South Asian-like minor source was detected in each of the four Iberian Roma groups (S11

Table). The date intervals (95% CI) of the inferred admixture event for each Iberian Roma

cluster are: 1210–1557 (IberianRoma-1), 1241–1536 (IberianRoma-2), 1279–1583 (Iberian-

Roma-3), and 1532–1730 (IberianRoma-4), having the latter the most recent dates (S16 Fig).

Regarding the minor source, the most contributing clusters are Punjabi-1, E-India, NE-In-

dia and Irula (S11 Table), as observed in Dataset1, which fits the hypothesis that the Roma ori-

gin can be placed in a group of South Asian individuals with low West Eurasian ancestry.

Fine-scale characterization of European Roma genetic components
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The West Eurasian-like source mainly consists of Balkan and Southwestern European clus-

ters (SW-Europe2, SW-Europe3, and Basque) and, in less proportion, Middle Eastern and

Caucasian populations (Egypt-Bedouin, W-Caucasus2, and Georgia) (Fig 3, S14C Fig, S11

Table), which reinforces the evidence of the three main focus of migration of the Iberian

Roma: their way out from Northwestern India, the entrance into Europe from the Balkan Pen-

insula, and the arrival into the Iberian Peninsula. Although the surrogate populations involved

in the admixture event of the four Iberian Roma groups are similar, some distinctness can be

appreciated. IberianRoma-4, as mentioned above, is the most differentiated group and

GLOBETROTTER results suggest that it is due to the different source and proportion of Euro-

pean ancestry: first, the contribution of Southwestern European clusters is higher than in the

rest of the Iberian Roma clusters; and second, other European clusters (NorthItaly, E-Europe2,

and NW-Europe2) are also identified, but they are absent in the rest of Iberian Roma groups

(Fig 3, S14C Fig, S11 Table). The inferred IberianRoma-4 admixture event is the only one that

contains Balkan and Middle East surrogates in the minor source, possibly as a result of its high

non-Roma European ancestry (S11 Table). Moreover, IberianRoma-3 exhibits some degree of

Northwest African admixture (~1%), probably due to its southern location in the Iberian Pen-

insula (S14C Fig, S11 Table), where historically the North African gene flow into the general

Iberian population was more relevant [28,29]. Besides, IberianRoma-3 is also the group with

more NE-Europe2 (~2%) (S14C Fig, S11 Table). IberianRoma-2 contains exclusively Roma

samples from the Basque country and, accordingly, it shows the highest non-Roma Basque

ancestry. Altogether, these results confirm the presence of genetic substructure and differential

admixture within the Iberian Roma population, revealing four distinct patterns of spatial dis-

tribution (Fig 3), and, furthermore, reject a putative North African origin of the Iberian Roma

groups [30].

Demographic patterns in Iberian Roma. Overall, Iberian Roma show a significantly

higher mean ROH length than the non-Roma reference European populations (Basque and

SW-Europe2) and the Punjabi-1 cluster. At larger ROH length categories, Iberian Roma pres-

ent higher values than Kalash (S17 Fig, S12A Table). In addition, some specific trends can be

recognized in the Iberian Roma groups. Namely, the progressive decline of ROH length in

IberianRoma-4 is significantly different from the rest of Roma groups and it mirrors the

SW-Europe2 one, being their differences not significant (S12A Table). On the other hand,

IberianRoma-2 exhibits a sudden decrease of ROH length at 4–5 ROH category, although dif-

ferences are not significant probably due to their low sample size (S12B Table); while

Fig 3. West Eurasian ancestry of the Iberian Roma (Dataset2). Kriging model of the spatial distribution of the major source donor proportion inferred with

GLOBETROTTER, reflecting the West Eurasian ancestry proportions in each Roma group (A-D).

https://doi.org/10.1371/journal.pgen.1008417.g003
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IberianRoma-1 and IberianRoma-3 show high levels of inbreeding (significant p-values only

between the 1-2Mb category and the rest of ROH length categories), suggesting different

degrees of relatedness in the Iberian Roma groups.

The Ne estimations through time in each Iberian Roma group are lower than the ones from

SW-Europe2, and a constant Roma Ne reduction is detected from around 750 to 1600 (S18

Fig). This Ne reduction trend is reversed after the admixture event inferred by GLOBETROT-

TER. These results agree with the ones obtained for Dataset1, which contains all European

Roma groups.

Discussion

The demographic history of the Roma population is characterized by a series of bottlenecks

and admixture events that have occurred since the proto-Roma left India, after their arrival to

the Balkans and spread throughout Europe, and in the case of Iberian Roma, after their settle-

ment in the Iberian Peninsula. The study of their genetic profile in a worldwide context places

them between South Asians and Europeans, which confirms previous findings of admixture

[10,15,16]. A fine-scale approach has allowed us to distinguish the recent West Eurasian com-

ponent, which is the result of the admixture with non-Roma West Eurasian populations. Our

estimates of this recent West Eurasian component, around 65%, are lower than the previously

reported 80% [16], as it only includes the “post-exodus from India” admixture and not the

“pre-exodus from India” AWE component (around 15% based on the f4 ratio estimates). This

recent West Eurasian component was acquired between 1270–1580. Although GLOBETROT-

TER infers this admixture as a single pulse event (“one-date”), it would require large datasets

to distinguish continuous from single pulse admixture [31].

Regarding the origin of the proto-Roma population, Northwestern India has been previ-

ously proposed as the putative source of their South Asian ancestry [4,5]. Although it is a geo-

graphically well-defined area, their populations are socially, linguistically, and genetically

heterogeneous, with high levels of stratification and substructure: their lands comprise from

tribe clans to upper-caste groups, and from Dravidian to Indo-European speaking groups [32].

Our analyses show that they are dispersed along the PC with different admixture proportions

(S1–S3 and S5 Figs). Within the boundaries of Northwestern India, the Punjab region has

been further placed as the ancestral homeland of the proto-Roma, through different

approaches: identity by descend (IBD) sharing analyses [16], Approximate Bayesian Computa-

tion models [15], and mitochondrial M lineages [10] and tau haplotype [33] comparisons

between Roma and South Asians. However, the linguistic identity that characterizes the Pun-

jabi population is independent of their historical origin and social designation [23]. Punjab is a

strategic region that has suffered repeated invasions from different sources [32], explaining

why nowadays encompasses heterogeneous population with differential admixture and ances-

tral components. We have shown that the Punjabi samples are genetically heterogeneous,

which mainly differ in the proportion of West Eurasian ancestry, further confirming previous

results [7]. Our results add in the indication that the original genetic composition of the proto-

Roma seems nearest to that of the Punjabi cluster from the less West Eurasian admixed group.

Assuming that the individuals from this Punjabi cluster were already in Punjab when the rest

of Punjabi clusters admixed with West Eurasians, socio-historical factors might have deter-

mined their differential admixture. In other words, this Punjabi cluster might derive from

Punjabis who belonged to a lower caste group, since in agreement with previous studies,

Indian lower caste groups are characterized by less West Eurasian admixture [6,7]. In addition,

we have reported that Dravidian-speaking populations with high ASI ancestry (i.e. E-India

and Irula clusters) are also involved in the South Asian source of the Roma individuals. These
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two sources of South Asian ancestry could solve the contradiction regarding the identification

of uniparental Roma lineages with a Northwestern Indian origin [11] and the high Y-STR hap-

lotype sharing among Roma and South Indian populations [34], as these findings could be

explained by two overlapping scenarios. The first one, first mentioned by Turner [4], consists

in considering a previous migration of nomadic groups into Northwestern India from Central

India around 250 BCE and, after several centuries in Punjab with few external admixture, a

single group of proto-Roma individuals left India. The second scenario refers to the fact that

the genomes of present-day North Indians have more West Eurasian ancestry due to subse-

quent gene flow from West Eurasians after the proto-Roma left India [20], which explains the

combination of populations with low West Eurasian ancestry identified in the South Asian

Roma component. These two scenarios fit the idea that the Roma people descend from a single

initial founder population [15].

After the exodus from India and during the diaspora through West Eurasia, the Roma pop-

ulation admixed with multiple non-Roma European, Middle Eastern and Caucasian groups.

First, the European Roma ancestors arrived to Armenia through Persia [1]. Our results agree

with a moderate Middle East and Caucasus gene flow during a rapid migration across this ter-

ritory [15], specifically, we detect a higher rate of male gene flow, which could be related to the

incorporation of Persian nomadic groups with the Roma [1]. Then, historical records suggest

that, in Armenia, they followed the same route as the displaced Armenians towards Anatolia,

due to the Mongol and Seljuq invasions (a Persian Muslim dynasty), from where they were

pushed to the west until their entrance into Europe through the Thrace region in the Balkan

Peninsula [35]. They settled in the Balkans for almost 200 years [35], where the Greek impact

on the Romani language was much more extensive than the Persian [1]. Accordingly, we have

identified the Balkan admixture footprint in the European Roma genomes with an ancestry

gradient correlated with the distance to the Balkans: from 45% in Bulgarian, Greek, and Ser-

bian Roma; to 25% in Lithuanian, Estonian, and Iberian Roma, which is further evidence that

the dispersion into Europe took place via the Balkans [15]. After subsequent migrations and

dispersions across Europe, Roma groups reached Northeastern Europe (e.g. Lithuania and

Estonia) and Southwest Europe (e.g. Iberian Peninsula), at the beginning of the 16th and 15th

centuries, respectively [1]. Particularly in these groups, we have identified the Baltic and Ibe-

rian components besides the common Balkan component.

In relation to the demographic dynamics, we have shown that the Ne reduction of the

Roma groups ceased after the start of the admixture event, which points to the settlement of

Roma in Europe and the beginning of more intense assimilation politics during the seven-

teenth century [1]. The Ne estimates (as discussed in S3A Note) might reflect Ne changes in

the Roma groups due to a population expansion or the non-Roma West Eurasian admixture.

In addition, the levels of inbreeding in the Roma population are higher than in non-Roma

Europeans and similar to those of South Asian groups, which could be the result of endogamy

practices and/or multiple founder events.

In the Iberian Peninsula, Roma groups were well-accepted at their arrival, but at the end of

the fifteenth century, with the unification of Castile and Aragon crowns, the nomad Roma

groups were forced to become sedentary and suffered continuous persecutions [1]. As we

remark, the present-day Iberian Roma exhibit high levels of non-Roma European ancestry,

with an admixture event estimated around 1250–1600. Although GLOBETROTTER did not

infer two independent admixture events as might be expected in the Iberian Roma, two differ-

ent European footprints are identified: the Balkan and the non-Roma Iberian components.

The detection of a single signal of admixture could be explained by a rapid expansion from the

Balkans to the Iberian Peninsula, with a short time gap between the two events, or due to con-

tinuous gene flow between non-Roma Europeans and Roma groups during their migration
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within Europe. In fact, if the time ranges between two events are close, the ability of GLOBE-

TROTTER to distinguish between two admixture pulses from a single pulse decreases [31].

Besides between-country heterogeneity, the present study further identifies within-country

Roma substructure in the Iberian Peninsula, partially correlated with geography: two clusters

are restricted to the northwestern and central part of the peninsula (IberianRoma-1 and Iber-

ianRoma-2), another cluster mainly represents Roma samples from the south (IberianRoma-

3) and the last one contains all the northeastern individuals (IberianRoma-4). These groups

differ both in ancestry proportions and inbreeding levels, which can be the result of different

demographic patterns, as the different laws concerning the Roma people in the Iberian Penin-

sula were neither homogeneous nor permanent [1]. As mentioned above, IberianRoma-4 is

the most differentiated cluster. It exhibits more non-Roma Iberian ancestry, the inferred date

of the admixture event is the most recent one (1532–1730), and it presents the lowest inbreed-

ing levels. Altogether this can be explained by the extensive admixture with the non-Roma Ibe-

rian population. In fact, historical records confirm that both nomadic and sedentary Roma

groups in the Principality of Catalonia were highly linked and interrelated with the non-Roma

society [36]. In addition, their European ancestral source contains groups from North Italy

and Northwestern Europe that are absent in the rest of Iberian Roma samples, which might

point to either a posterior arrival to the Iberian Peninsula after admixing with these European

populations or due to the constant movement of Roma groups between Southeastern France

and Northeastern Spain [36]. The Iberian group representing the most southern location, Iber-

ianRoma-3, has a genetic particularity: it has around 1% of Northwest African ancestry, which

probably corresponds to the North African admixture found in the southern and western

parts of the Iberian Peninsula, during the Arab expansion (711–1248) [28,29]. The fact that the

North African component is only found in IberianRoma-3 samples, who also show Balkan

ancestry, contributes to reject the hypothesis of a Roma migration route to Iberia from North

Africa [30]. IberianRoma-1 has more non-Roma Iberian component than IberianRoma-2,

although these two clusters contain samples from the same region. These results highlight that,

even within Roma groups who live in the same geographic region, distinct social dynamics (ie.

itinerant vs sedentary lifestyles) caused the application of different laws that might have shaped

their current genetic landscape. On the contrary, some geographical patterns have probably

been diluted due to the continuous movement and admixture among Roma groups, especially

after 1749 with the general imprisonment of Spanish Romani, who were captured and relo-

cated, although the effects of this event were not uniform throughout the Roma community,

enabling the identification of present-day geographical patterns within Iberia Roma [37].

The present study attempts to characterize the European Roma and describe their South

Asian and West Eurasian components using fine-scale methods. On the one hand, we have tar-

geted the putative South Asian ancestry of the Roma in a specific group of Punjabi and South-

eastern Indian individuals, representing a small group of proto-Roma founders with low levels

of the West Eurasian ancestry. Besides, our results show that the recent West Eurasian compo-

nent (around 65% of the Roma genomes) was acquired between 1270–1580, during the Roma

diaspora. Specifically, we have detected and characterized the Balkan genetic footprint in all

European Roma groups and the Baltic and Iberian components in the Northern and Western

Roma groups, respectively, likely due to a continuous non-Roma gene flow during their dis-

persal through Europe. On the other hand, we have found genetic substructure within the Ibe-

rian Roma, with different groups and different levels of non-Roma admixture, as a result of the

complex historical events occurred in the Peninsula. Further studies are needed to fully under-

stand the genetic substructure of the Roma population as well as to provide new insights into

the migration routes undertaken by the European Roma shaping their current genetic land-

scape. The use of migration group data (Balkan, Romungro and Vlax group assignation)
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would add an additional layer of information in both genome-wide and complete uniparental

markers analyses, as it has been suggested that Roma genetic diversity might be primarily

structured by migration route [11,12].

Materials and methods

Ethics statement

Written informed consent was obtained from all the volunteers and the present project has the

corresponding IRB approval (CEIC-Parc de Salut Mar 2016/6723/I).

Samples and genotyping

Dataset1. The present study is based on 152 previously published European Roma

genome-wide data from Bulgaria, Croatia, Estonia, Greece, Hungary, Lithuania, Portugal,

Romania, Serbia, Spain, Slovakia, Ukraine, and Wales, genotyped with Affymetrix 6.0 platform

[15]. As non-Roma reference samples, the present dataset includes previously published whole

genome sequences and genotyping data from Europe, Middle East, Caucasus, Africa, and Cen-

tral and South Asia [38–41]. Populations from the reference dataset were normalized to 20 indi-

viduals to minimize possible biases as a result of different sample sizes, except for Punjabis from

Lahore (PJL) and Iberian population in Spain (IBS) from 1000G [38], due to their pivotal rele-

vance for the goals of the present project. Missing SNPs in more than 10% of the individuals or

with a minor allele frequency (MAF) below 0.01 were removed, and individuals with more than

10% of missing calls or sharing more than 85% of identity by state (IBS) values were removed.

We applied the same quality control filters both in the autosomes and the X chromosome. The

final Dataset1 with the European Roma and the non-Roma reference samples includes 324,075

autosomal SNPs and 23,182 X chromosome SNPs in 952 individuals (S1 Table).

Dataset2. In addition, the present study uses 34 newly genotyped Iberian Roma samples,

from Romani self-defined volunteers residing in Barcelona, Bilbao, Granada, Madrid, and

Porto areas, whose four grandparents were born in these regions. Blood and saliva samples

were used to extract the DNA, which was genotyped with the Affymetrix Axiom Genome-

Wide Human Origins 1 array, and genotype calling was performed with the Axiom Analysis

Suite 2.0 software using standard parameters. A standard quality control protocol was applied

with PLINK 1.9 [42] in order to filter out genotyping errors: missing SNPs in more than 10%

of the individuals, individuals with more than 10% of missing calls, SNPs failing Hardy-Wein-

berg exact test at 0.05 significance threshold, and SNPs with a MAF below 0.01. In addition, to

avoid possible relationships among individuals, samples sharing more than 85% of IBS values

were removed. Data is available in https://figshare.com/articles/Iberian_Roma_dataset/

7594730. Previously published whole genome sequences and genotyping data were merged

with our Iberian Romani dataset, including samples from Europe, Middle East, Caucasus,

Africa, and Central and South Asia [38,40,41,43]. As in Dataset1, reference non-Roma popula-

tions were normalized to 20 individuals to minimize possible biases, except PJL and IBS sam-

ples from 1000G [38]. The final Dataset2 with the Iberian Roma and the reference samples

includes 360,676 SNPs and 1,333 individuals (S9 Table).

In order to keep a high density of SNPs, we did not merge Dataset1 with Dataset2, instead, we

performed all the analyses separately, as they were genotyped with two different array platforms.

Population structure analyses

A linkage disequilibrium pruning was performed for the analyses that require it using PLINK

1.9 [42] with standard parameters (window size of 50 SNPs, 5 SNPs shift at each step, and an
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r2 threshold of 0.5) in both Dataset1 and Dataset2, leaving 192,815 and 186,374 SNPs,

respectively.

In order to examine the Roma population structure in a worldwide context, a PCA was per-

formed with SmartPCA program implemented in EIGENSOFT 4.2 package [44], and 20 runs

of ADMIXTURE [45] with different random seed tests were computed for different ancestral

components (k = 2 to 8). We used pong [46] to identify and visualize modal ADMIXTURE

results for each value of K. Both analyses were performed in Dataset1 and Dataset2

independently.

Fine-scale population genetic characterization (ChromoPainter and

fineSTRUCTURE)

The phasing of the Dataset1 and Dataset2 autosomal data was performed, independently, with

SHAPEIT [47], using the population-averaged genetic map from the HapMap phase II [48]

and the 1000G dataset as a reference panel [38].

ChromoPainter [21], based on a Hidden Markov Model (HMM) algorithm, aims to

reconstruct the chromosome of each target individual (“recipient”) as a mosaic of haplo-

types from the reference individuals (“donors”). This procedure is known as chromosome

painting and their results can be summarized in a coancestry matrix, which shows for each

recipient the total counts and length in cM of haplotypes that share a most recent common

ancestor with each donor [21]. Intuitively, this matrix shows the haplotypes shared between

each recipient and each donor individual. First, in order to infer the switch rate and global

mutation probability (n and m parameters), ChromoPainter v2 was run in chromosomes 1,

7, 14, and 20, for 10 iterations of the expectation-maximization (EM) algorithm, painting

each recipient (all individuals in the dataset) using all the donors (the rest of individuals in

the dataset). For Dataset1, the inferred n and m parameter values were 251.11459 and

0.00023, respectively. Then, ChromoPainter v2 was run again in all chromosomes fixing

these parameters. The total counts and lengths coancestry matrices were obtained by adding

the matrices of all chromosomes.

FineSTRUCTURE [21] is an algorithm that infers the clustering of the samples consider-

ing the information in the ChromoPainter coancestry matrix. Using this clustering, it is

possible to group the samples into genetically homogeneous clusters. First, fineSTRUC-

TURE was run for 2 million Markov Chain Monte Carlo (MCMC) iterations, sampling val-

ues every 10,000 iterations after 1 million “burn-in” iterations [49]. Then, fineSTRUCTURE

was run again to perform 100,000 additional hill-climbing moves from the MCMC sample

with the highest posterior probability to get the final cluster membership in a dendrogram

format. This procedure was repeated three times and after comparing the consistency of the

three dendrograms, we classified the 952 individuals from Dataset1 into 63 clusters, where

the European Roma branch contains ten Roma clusters. The rest of Roma samples outside

this clade (e.g. Welsh Roma) cluster with other European non-Roma samples, due to high

levels of non-Roma European ancestry as described previously [15], thus they were removed

for further analyses.

In order to estimate the copying profiles (i.e. average proportion of ancestry attributed to

each donor group), ChromoPainter v2 was run in a different mode than described above: hap-

lotype sharing was inferred between groups rather than independent individuals [49]. For this

analysis all the individuals were grouped in the genetic clusters established according to fineS-

TRUCTURE where the ten European Romani clusters were settled as recipients and the rest of

clusters as donors. In addition, we calculated the TVD metric as described in [49], which mea-

sures the differences between a pair of clusters (A, B) with copying vectors a and b and it can
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be calculated as:

TVDðA;BÞ ¼ 0:5�
Pn

i¼1
ðai � biÞ ð1Þ

where n is the total number of donor groups. As suggested by Leslie S. et al [49], for each pair

of clusters, individuals were randomly reassigned in one of the two clusters, and the new copy-

ing vectors a’ and b’, and the TVD values were recalculated for 1,000 permutations. P-values

correspond to the proportion of permutations where TVD(A’,B’) > TVD(A,B) and reflect the

strength of differences between the inferred pair of clusters. Corrected p-values were obtained

after Bonferroni multiple test correction.

For Dataset2, the above procedures (ChromoPainter, fineSTRUCTURE, and TVD metric

calculations) were also performed using the same approach, and the ChromoPainter switch

rate and global mutation probability inferred using Dataset2 were 259.85269 and 0.00016,

respectively. The fineSTRUCTURE dendrogram of Dataset2 was used to classify the 1,332

individuals into 88 clusters, where four of them belonged to Iberian Roma clusters. One Ibe-

rian Romani sample from Madrid (G32) was excluded, as it clustered with Iberian non-Roma

samples, suggesting an extensive non-Roma ancestry.

We checked whether the ChromoPainter algorithm is able to correctly distinguish between

the two sources of West Eurasian ancestry in the Roma population, in order to avoid mislead-

ing results when inferring the admixture sources: the AWE component (pre-exodus from

India) as South Asian ancestry, and the recent West Eurasian admixture (post-exodus from

India) as West Eurasian (see S1 Note, S5 and S6 Figs, S4 Table).

Inferring admixture events with GLOBETROTTER

GLOBETROTTER [31] is a method designed to characterize and date admixture events

between source populations (which are a composite of surrogate populations) that have

shaped the genetic history of a target population. The dating estimation is based on the

principle that the size of the haplotypes decreases over successive generations due to recom-

bination. GLOBETROTTER algorithm uses the haplotype sharing results from Chromo-

Painter considering donor and recipients as groups of individuals. GLOBETROTTER was

run for each of the ten Roma clusters in the European Roma branch from Dataset1 using

ten painting samples per individual from ChromoPainter and the coancestry matrix of the

genome-wide length of haplotype sharing. In order to identify the admixture events

between source populations that have shaped the genetic history of European Roma, the

surrogate populations included were all the European, Middle Eastern, Caucasian, and

Asian clusters. The sample size of these clusters was normalized to a maximum of 21, which

corresponds to the third quartile of all clusters sample sizes. First, in order to estimate p-val-

ues for evidence of admixture, GLOBETROTTER was run using the NULL procedure (stan-

dardize the coancestry curves by a “NULL” individual), with 100 bootstrap resamples.

Then, GLOBETROTTER was run using the non-NULL inference to characterize the admix-

ture events. These two GLOBETROTTER runs were checked for consistency. To estimate

admixture date CIs, 100 bootstrap iterations were performed and a generation time of 25

years was considered.

The same procedure was used to infer admixture events that have shaped the genetic his-

tory of the Iberian Roma from Dataset2. Thus, the target populations were the four Iberian

Roma clusters, and the surrogate populations were all the European, North African, Middle

Eastern, Caucasian, and Asian clusters. Spatial distributions of the major source propor-

tions in each Iberian Roma cluster were computed in R using the kriging model in the pack-

age fields [50].
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When describing the admixture sources that have shaped the Roma today, we use the term

“non-Roma populations” to facilitate the understanding, although the admixture events

occurred with “non-proto-Roma” groups.

Characterizing South Asian origin of the proto-Roma

To further characterize the South Asian component of the Roma, we have estimated the pro-

portion of WE ancestry in the South Asian clusters (ANI component) using f4 ratio estimation

implemented in ADMIXTOOLS [51] as: a ¼
f4ðYRI; Basque;India;OngeÞ

f4ðYRI; Basque;Georgians;OngeÞ
[20], computing standard

error with a Block Jackknife with a block size of 5cM. For this analysis, we have included Onge

samples from [52]. We have calculated the ANI proportion in the Roma groups from the rela-

tive contribution (inferred by GLOBETROTTER) of each South Asian cluster.

Testing sex-biased gene flow through ancestry proportion differences

between X chromosome and autosomes

The X chromosome from Dataset1 was phased using the same parameters as the autosomes, as

described previously [39]; and ChromoPainter v2 [21] was run with all European Roma sam-

ples as recipients and the non-Roma European, Middle East, Caucasus, and South Asian clus-

ters as donors using only the X chromosome. Then, the ancestry profiles of the X chromosome

were estimated for each individual in each Roma cluster by applying SOURCEFIND, a new

Bayesian model-based approach [53], with 200,000 MCMC samples, sampling every 1,000 iter-

ations. Once we obtained the estimated proportions of each donor cluster in the X chromo-

some of the Roma from the MCM sample with the highest posterior probability, we summed

them to get the European, MiddleEast-Caucasus, and South Asian proportions that contribute

to the Roma ancestry. The same procedure was applied to the autosomes. To test for sex-biased

gene flow in the Roma samples, we obtained the ancestry differences per individual by sub-

tracting the European, MiddleEast-Caucasus, and South Asian proportions between the auto-

somes and the X chromosome grouping all Roma individuals together. A Wilcoxon signed-

rank test across individuals between the autosomes and the X chromosome was applied to

obtain a p-value of the differences, with Bonferroni correction. In addition, we tested the Euro-

pean ancestry differences for each Roma cluster. To avoid possible biases due to different num-

ber of SNPs, we not only compared the whole set of autosomes against the X chromosome, but

also each autosome separately against the X chromosome (see S2 Note, S7 Fig, S6 Table).

Inbreeding analyses and Ne estimation

ROH analyses were performed to assess the inbreeding levels among the Roma groups. ROH

segments were identified using PLINK 1.9 [42], considering ROH with at least 50 SNPs of

length 500 kb and a maximum gap between a pair of consecutive SNPs of 100 kb, as these

parameters account for locally low SNP density in SNP arrays [54]. For comparative purposes,

Dataset1 analysis included two clusters with putative higher levels of inbreeding, from Europe

(Basque) and from South Asia (Kalash); and two with low levels, from Europe (Balkan-2) and

from South Asia (Punjabi-1). For Dataset2, we included Basque and Kalash clusters, and

SW-Europe2 and Punjabi-1.

Changes in Ne through generations were estimated for the Roma groups from IBD seg-

ments. The Roma samples belong to an admixed population, and thus, in order to detect IBD

segments, we applied RefinedIBD [55], a haplotype-based method, with default parameters;

and merged the segments with gaps to avoid the underestimation of segment lengths [56].

Then, using these IBD segments and the HapMap GRCh37 genetic map [48], IBDNe [57] was
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run with default parameters to infer Ne estimates with 95% CIs at each generation, assuming

25 years per generation. Although these methods were first designed to deal with sequence

data, this approach applied to genome-wide array data has a high confidence in recent periods

(from present to around 50 generations ago) [57]. For Dataset1, the analysis was performed on

the ten European Roma clusters and the reference cluster NorthItaly. For Dataset2, it was per-

formed on the four Iberian Roma clusters and SW-Europe2 as reference. In addition, we

checked whether the Ne estimations correlate with the admixture event detected with GLOBE-

TROTTER in each Roma group, regarding both the proportion of West Eurasian source and

the admixture dates (see S3A Note).

Finally, we estimated the Ne of the ancestral Roma populations, following the same proce-

dure as in Browning et al. [56], to compare the ancestry-specific Ne of the European, Mid-

dleEast-Caucasian and South Asian sources prior to the admixture, grouping all Roma

samples together (as we assume that the Roma groups split after the arrival to Europe). First,

we performed a local ancestry inference (LAI) with RFMix v1.5.4 [58], using as sources the

donor populations identified in the GLOBETROTTER analysis, grouped in three categories:

Europe, MiddleEast-Caucasus and South Asia. Although Europe and MiddleEast-Caucasus

ancestries are similar, Xue et al. [59] showed that RFMix is able to accurately infer local ances-

try segments, using balanced reference panels with key features comparable to our study (e.g.

SNP array data and admixture sources). After checking the correlation between the ancestry

proportions of RFMix and GLOBETROTTER (see S3B Note, S19 Fig), we followed Browning

et al. [56] pipeline: rephasing of the RFMix output, filtering of the IBD segments by ancestry

and calculation of the ancestry-adjustment number of pairs of sampled haplotypes. Then,

IBDNe [57] was run with default parameters to infer ancestry-specific Ne estimates with 95%

CIs at each generation, assuming 25 years per generation. Finally, we calculated the fold-

change of the Ne CIs between the three ancestral populations, one generation before the start

of the admixture (i.e. lowest CI inferred from GLOBETROTTER) and compared it with the

fold-change between the current ancestry proportions inferred with GLOBETROTTER.

Supporting information

S1 Note. Two sources of West Eurasian ancestry in the Roma population.

(DOCX)

S2 Note. X chromosome and autosomes ancestry comparisons.

(DOCX)

S3 Note. Correlations between Ne estimates and admixture events inferred from GLOBE-

TROTTER. A. Ne estimation for each European Roma group. B. Ancestry-specific Ne estima-

tion.

(DOCX)

S4 Note. Comparison between ancestry-specific Ne and ancestry proportions in the Roma

groups inferred with GLOBETROTTER.

(DOCX)

S1 Fig. PCA with samples from Europe, Africa, Middle East, Caucasus, Central and South

Asia, and European Roma (black border) (Dataset 1).

(PDF)

S2 Fig. ADMIXTURE analysis for k = 2 to 8 ancestral components using samples from

Europe, Africa, Middle East, Caucasus, Central and South Asia, and European Roma

(Dataset 1). Each vertical line represents one individual and each color represents the
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proportion of each ancestral component. Major modes are shown in A and minor modes in B.

(PDF)

S3 Fig. fineSTRUCTURE dendrogram with 952 samples, reflecting the five super-groups

(Europe, MiddleEast-Caucasus, European Roma, Central-SouthAsia, and MiddleEast-

Africa) (Dataset 1). Colored boxes include clusters from the European Roma branch and

those non-Roma clusters identified as contributing sources to the Roma genomes in the

GLOBETROTTER results.

(PDF)

S4 Fig. Total Variance Distance (TVD) values for each pairwise comparison between the

ten European Roma clusters (Dataset 1).

(PDF)

S5 Fig. Notched boxplots (showing the median, 95% confidence interval of the median,

25th and 75th percentiles across indiviuals from each cluster) of the chunklengths given by

all West Eurasian donor populations to each Indian cluster inferred by ChromoPainter

(Dataset 1).

(PDF)

S6 Fig. Density plots of the chunklegths (A) and chunkcounts (B) given by all West Eurasian

donor populations to the European Roma, when using all Indian clusters as South Asian

donors (in blue) and when using only NE-India2 as South Asian donor (in black). C. Density

plot with, in black, the overlapping segments between the two analyses (using all Indian clus-

ters and using only NE-India2) (median = 442569) and, in blue, the distribution of those seg-

ments found only when using only NE-India2 (median = 92252) (Dataset 1).

(PDF)

S7 Fig. A. Density distributions of European, MiddleEast-Caucasus, and South Asian ancestry

differences between the autosomes (whole set of autosomes) and X chromosome (estimated

through SOURCEFIND method) grouping of Roma samples together. B. Density distributions

of European ancestry differences between the autosomes (whole set of autosomes) and X chro-

mosome for each Roma cluster. Positive values indicate higher ancestry proportions in the

autosomes than in the X chromosome, while negative values indicate higher ancestry propor-

tions in the X chromosome than in the autosomes. (Dataset 1).

(PDF)

S8 Fig. Effective population size changes in log scale through time with 95% confidence

intervals for each European Roma cluster, with NorthItaly cluster as a reference (Dataset

1). X-axis corresponds to number of generations ago. The vertical dotted lines represent the

start of the admixture in each group (lowerCI of the admixture date inferred with GLOBE-

TROTTER).

(PDF)

S9 Fig. Correlations between the admixture events inferred with GLOBETROTTER and

the Ne estimates. Each dot represents a Roma cluster (Dataset 1). A. Correlation between the

start of the admixture (lower CI date in generations ago) and the inflection time (in genera-

tions ago) from the upper CI Ne (i) and from the lower CI Ne (ii). B. Correlation between the

proportion of the GLOBETROTTER major source (West Eurasian proportion) and inferred

current Ne (at g0) from the upper CI Ne (i) and from the lower CI Ne (ii). C. Correlation

between the proportion of the GLOBETROTTER major source (West Eurasian proportion)

and the slope after the “inflection time” calculated from the upper CI Ne (i) and the lower CI
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Ne (ii).

(PDF)

S10 Fig. Mean total length of each individual genome in runs of homozygosity in each

ROH category (from 1–2 to 9–10 Mb) (Dataset 1). Each vertical bar represents a population

group: reference populations (greyish colors) and European Roma clusters.

(PDF)

S11 Fig. PCA with samples from Europe, North Africa, Middle East, Caucasus, Central

and South Asia, and Iberian Romani (black border) (Dataset 2).

(PDF)

S12 Fig. ADMIXTURE analysis for k = 2 to 8 ancestral components with samples from

Europe, North Africa, Middle East, Caucasus, Central and South Asia, and Iberian Romani

(Dataset 2). Each vertical line represents one individual and each color represents the propor-

tion of each ancestral component. Major modes are shown in A and minor modes in B.

(PDF)

S13 Fig. fineSTRUCTURE dendrogram with 1,332 samples, reflecting the five super-

groups (MiddleEast-Africa, Europe, Iberian Roma, MiddleEast-Caucasus, and Central-

SouthAsia) and the Iberian Roma clusters (Dataset 2). Colored boxes include Iberian Roma

clusters and those non-Roma clusters identified as contributing sources to the Roma genomes

in the GLOBETROTTER results.

(PDF)

S14 Fig. Iberian Roma substructure and West Eurasian ancestry (Dataset 2). (A) Iberian

Roma sampled groups (pie charts are colored according the clusters in B) and their West Eur-

asian donors in the GLOBETROTTER analysis. (B) Iberian Roma fineSTRUCTURE dendro-

gam showing the four Iberian Roma clusters. (C) Major source of the admixture event inferred

by GLOBETROTTER: for each Roma cluster, the proportion (in percentage) of the major

source and a horizontal bar with the proportions of each donor populations (colored as in A),

that contribute a minimum of 0.2 to the major source, are shown.

(PDF)

S15 Fig. TVD values for each pairwise comparison between the four Iberian Roma clusters

(Dataset 2).

(PDF)

S16 Fig. Density plots showing the GLOBETROTTER estimations of admixture dates with

100 bootstrap iterations for each Iberian Roma cluster (Dataset 2). Admixture dates (x-

axis) are shown in years CE (assuming a generation time of 25 years) and in generations agp

(GA).

(PDF)

S17 Fig. Mean total length of each individual genome in runs of homozygosity in each

ROH category (from 1–2 to 9–10 Mb) (Dataset 2). Each vertical bar represents a population

group: reference populations (greyish colors) and Iberian Roma clusters (greenish colors).

(PDF)

S18 Fig. Effective population size changes in log scale through time with 95% confidence

intervals for each Iberian Roma cluster and SW-Europe2, as a reference (Dataset 2). X-axis

corresponds to number of generations ago. The vertical dotted lines represent the start of the

Fine-scale characterization of European Roma genetic components

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008417 September 23, 2019 19 / 24

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s019
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008417.s022
https://doi.org/10.1371/journal.pgen.1008417


admixture in each group (lowerCI of the admixture date inferred with GLOBETROTTER).

(PDF)

S19 Fig. Correlation between the West Eurasian proportion inferred from GLOBETROT-

TER and the West Eurasian proportion from RFMix LAI. Each dot represents a Roma clus-

ter (Dataset 1). The dashed line represents the line of equality (x = y).

(PDF)

S1 Table. Sample dataset including information of population, cluster classification, sex

(for Roma samples) and reference (Dastaset1).

(XLSX)

S2 Table. Total Variance Distance and p-values between pairs of European Roma clusters

(Dastaset1), after Bonferroni correction.

(XLSX)

S3 Table. GLOBETROTTER results for each European Roma cluster (Dastaset1), describ-

ing type of admixture (and its measures of “goodness-of-fit”), mean date and CI 95% and

composition of the major and minor sources.

(XLSX)

S4 Table. p-values resulting from Wilcoxon test of West Eurasian haplotype lengths for

each pair of Indian clusters (after Bonferroni correction) (Dastaset1).

(XLSX)

S5 Table. A) Proportions of ANI component in South Asian clusters (ANI estimates from f4

ratio results with standard error and Z scores). B) Proportions of AWE component in Euro-

pean Roma clusters, estimated from the relative contribution of each South Asian cluster to

the Roma genomes inferred by GLOBETROTTER.

(XLSX)

S6 Table. A) Number of snps per chromosome. B) Difference of ancestry proportions (Euro-

pean, MiddleEastern-Caucasus, South Asian), between the autosomes and the X chromosome

grouping of Roma samples together. Positive values indicate higher ancestry proportions in

the autosomes than in the X chromosome, while negative values indicate higher ancestry pro-

portions in the X chromosome than in the autosomes. Standard deviations and Bonferroni

corrected p-value (p< 0.05 �; p< 0.01 ��; p< 0.001 ���) are shown in brackets C) Difference

of European ancestry proportions between the autosomes and the X chromosome. Positive

values indicate higher ancestry proportions in the autosomes than in the X chromosome,

while negative values indicate higher ancestry proportions in the X chromosome than in the

autosomes. Standard deviations are shown in brackets. (Dastaset1).

(XLSX)

S7 Table. A) Ne estimates and 95%CI for each ancestral-specific population at 34 generations

ago. B) Fold change of the Ne 95%CI between the ancestral populations at 34 generations ago.

C) Fold change of the ancestry proportions inferred with GLOBETROTTER. D) Fold change

of the globel ancestry proportions inferred from the local ancestry inference with RFMix.

(Dastaset1).

(XLSX)

S8 Table. A) p-values resulting from Wilcoxon test for each pair of Roma clusters in each

ROH category (after Bonferroni correction). p<0.05 are in bold. B) p-values resulting from

Wilcoxon test for each pair of ROH categories in each Roma clusters (after FDR correction).
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p<0.05 are in bold. (Dastaset1).

(XLSX)

S9 Table. Sample dataset including information of population, cluster classification and

reference (Dastaset2).

(XLSX)

S10 Table. Total Variance Distance and p-values between pairs of Iberian Roma clusters

(Dastaset2), after Bonferroni correction).

(XLSX)

S11 Table. GLOBETROTTER results for each Iberian Roma cluster (Dataset2), describing

type of admixture (and its measures of “goodness-of-fit”), mean date and CI 95% and com-

position of the major and minor sources.

(XLSX)

S12 Table. A) p-values resulting from Wilcoxon test for each pair of Roma clusters in each

ROH category (after Bonferroni correction). p<0.05 are in bold. B) p-values resulting from

Wilcoxon test for each pair of ROH categories in each Roma clusters (after FDR correction).

p<0.05 are in bold. (Dastaset2).

(XLSX)
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nando el Católico; 2006.

37. Martı́nez MM. Los gitanos y gitanas de España a mediados del siglo XVIII. El fracaso de un proyecto de

“exterminio” (1748–1765). Soc Educ Hist. 2015; 4(3):312–4.

38. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human

genomes. Nature. 2012; 491(7422):56. https://doi.org/10.1038/nature11632 PMID: 23128226

39. Arauna LR, Mendoza-Revilla J, Mas-Sandoval A, Izaabel H, Bekada A, Benhamamouch S, et al.

Recent historical migrations have shaped the gene pool of Arabs and Berbers in North Africa. Mol Biol

Evol. 2017; 34(2):1–12.

40. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons genome diversity proj-

ect: 300 genomes from 142 diverse populations. Nature. 2016; 538(7624):201. https://doi.org/10.1038/

nature18964 PMID: 27654912

41. Pagani L, Lawson DJ, Jagoda E, Mörseburg A, Eriksson A, Mitt M, et al. Genomic analyses inform on

migration events during the peopling of Eurasia. Nature. 2016; 538(7624):238. https://doi.org/10.1038/

nature19792 PMID: 27654910

42. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81

(3):559–75. https://doi.org/10.1086/519795 PMID: 17701901

43. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. Genomic insights into the ori-

gin of farming in the ancient Near East. Nature. 2016; 536(7617):419. https://doi.org/10.1038/

nature19310 PMID: 27459054

44. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006; 2:e190.

https://doi.org/10.1371/journal.pgen.0020190 PMID: 17194218

45. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.

Genome Res. 2009; 19(9):1655–64. https://doi.org/10.1101/gr.094052.109 PMID: 19648217

46. Behr AA, Liu KZ, Liu-fang G, Nakka P, Ramachandran S. pong: fast analysis and visualization of latent

clusters in population genetic data. Bioinformatics. 2016; 32(18):2817–23. https://doi.org/10.1093/

bioinformatics/btw327 PMID: 27283948

Fine-scale characterization of European Roma genetic components

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008417 September 23, 2019 23 / 24

https://doi.org/10.1126/science.1078311
http://www.ncbi.nlm.nih.gov/pubmed/12493913
https://doi.org/10.1016/j.ajhg.2015.03.012
https://doi.org/10.1016/j.ajhg.2015.03.012
http://www.ncbi.nlm.nih.gov/pubmed/25937445
https://doi.org/10.1016/j.ajhg.2015.12.025
https://doi.org/10.1016/j.ajhg.2015.12.025
http://www.ncbi.nlm.nih.gov/pubmed/26849116
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1126/science.1243518
http://www.ncbi.nlm.nih.gov/pubmed/24531965
https://doi.org/10.1016/j.gene.2012.04.093
http://www.ncbi.nlm.nih.gov/pubmed/22609956
https://doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
https://doi.org/10.1038/nature18964
https://doi.org/10.1038/nature18964
http://www.ncbi.nlm.nih.gov/pubmed/27654912
https://doi.org/10.1038/nature19792
https://doi.org/10.1038/nature19792
http://www.ncbi.nlm.nih.gov/pubmed/27654910
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/nature19310
https://doi.org/10.1038/nature19310
http://www.ncbi.nlm.nih.gov/pubmed/27459054
https://doi.org/10.1371/journal.pgen.0020190
http://www.ncbi.nlm.nih.gov/pubmed/17194218
https://doi.org/10.1101/gr.094052.109
http://www.ncbi.nlm.nih.gov/pubmed/19648217
https://doi.org/10.1093/bioinformatics/btw327
https://doi.org/10.1093/bioinformatics/btw327
http://www.ncbi.nlm.nih.gov/pubmed/27283948
https://doi.org/10.1371/journal.pgen.1008417


47. O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplo-

type phasing across the full spectrum of relatedness. PLoS Genet. 2014; 10(4):e1004234. https://doi.

org/10.1371/journal.pgen.1004234 PMID: 24743097

48. International HapMap Consortium. The international HapMap project. Nature. 2003; 426(6968):789.

https://doi.org/10.1038/nature02168 PMID: 14685227

49. Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T, et al. The fine-scale genetic structure

of the British population. Nature. 2015; 519(7543):309. https://doi.org/10.1038/nature14230 PMID:

25788095

50. Nychka Douglas, Furrer Reinhard, Paige John, Stephan Sain. fields: Tools for spatial data. Boulder,

CO, USA; 2017.

51. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y. Ancient Admixture in Human History.

Genetics. 2012; 192:1065–93. https://doi.org/10.1534/genetics.112.145037 PMID: 22960212

52. Mondal M, Casals F, Xu T, Olio GMD, Pybus M, Netea MG. Genomic analysis of Andamanese provides

insights into ancient human migration into Asia and adaptation. Nat Genet. 2016; 48(1066–1070).

53. Chacón-Duque J-C, Adhikari K, Fuentes-Guajardo M, Mendoza-Revilla J, Acuña-Alonzo V, Barquera

R, et al. Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on

physical appearance. Nat Commun. 2018; 9(1):5388. https://doi.org/10.1038/s41467-018-07748-z

PMID: 30568240

54. Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of homozy-

gosity record population history and consanguinity. PLoS One. 2010; 5(11):e13996. https://doi.org/10.

1371/journal.pone.0013996 PMID: 21085596

55. Browning BL, Browning SR. Improving the Accuracy and Efficiency of Identity-by-Descent Detection in

Population Data. Genetics. 2013; 194:459–71. https://doi.org/10.1534/genetics.113.150029 PMID:

23535385

56. Browning SR, Browning BL, Daviglus ML, Durazo RA, Schneiderman N, Kaplan RC, et al. Ancestry-

specific recent effective population size in the Americas. PLoS Genet. 2018; 14(5):e1007385. https://

doi.org/10.1371/journal.pgen.1007385 PMID: 29795556

57. Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population size

from segments of identity by descent. Am J Hum Genet. 2015; 97(3):404–18. https://doi.org/10.1016/j.

ajhg.2015.07.012 PMID: 26299365

58. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: A Discriminative Modeling Approach for

Rapid and Robust Local-Ancestry Inference. Am J Hum Genet. 2013; 93(2):278–88. https://doi.org/10.

1016/j.ajhg.2013.06.020 PMID: 23910464

59. Xue J, Lencz T, Darvasi A, Pe’er I, Carmi S. The time and place of European admixture in Ashkenazi

Jewish history. PLoS Genet. 2017; 13(4):1–27.

60. Tcherenkov L, Laederich S. The Roma. History, Language, and Groups. Basel: Schwabe Verlag

Basel; 2004.

61. Kenrick D. Historical dictionary of the Gypsies (Romanies). Vol. 7. Scarecrow Press; 2007.

Fine-scale characterization of European Roma genetic components

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008417 September 23, 2019 24 / 24

https://doi.org/10.1371/journal.pgen.1004234
https://doi.org/10.1371/journal.pgen.1004234
http://www.ncbi.nlm.nih.gov/pubmed/24743097
https://doi.org/10.1038/nature02168
http://www.ncbi.nlm.nih.gov/pubmed/14685227
https://doi.org/10.1038/nature14230
http://www.ncbi.nlm.nih.gov/pubmed/25788095
https://doi.org/10.1534/genetics.112.145037
http://www.ncbi.nlm.nih.gov/pubmed/22960212
https://doi.org/10.1038/s41467-018-07748-z
http://www.ncbi.nlm.nih.gov/pubmed/30568240
https://doi.org/10.1371/journal.pone.0013996
https://doi.org/10.1371/journal.pone.0013996
http://www.ncbi.nlm.nih.gov/pubmed/21085596
https://doi.org/10.1534/genetics.113.150029
http://www.ncbi.nlm.nih.gov/pubmed/23535385
https://doi.org/10.1371/journal.pgen.1007385
https://doi.org/10.1371/journal.pgen.1007385
http://www.ncbi.nlm.nih.gov/pubmed/29795556
https://doi.org/10.1016/j.ajhg.2015.07.012
https://doi.org/10.1016/j.ajhg.2015.07.012
http://www.ncbi.nlm.nih.gov/pubmed/26299365
https://doi.org/10.1016/j.ajhg.2013.06.020
https://doi.org/10.1016/j.ajhg.2013.06.020
http://www.ncbi.nlm.nih.gov/pubmed/23910464
https://doi.org/10.1371/journal.pgen.1008417

