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Abstract

Tropical forests are declining at unprecedented rates in favour of agriculture, and streams

can be severely impacted due to effects of multiple stressors that have rarely been consid-

ered together in tropical studies. We studied the effects of multiple stressors associated with

agricultural practices (pesticide toxicity, nutrient enrichment and habitat alteration–quanti-

fied as TUmax, soluble reactive phosphorus concentration and sedimentation, respectively)

on macroinvertebrate communities in a tropical catchment in Panama (13 stream sites sam-

pled in 20 occasions from 2015 to 2017, with 260 samples in total). We examined how

macroinvertebrate abundance, taxonomic richness, community composition and biotic indi-

ces (SPEAR and BMWP/PAN, which were specifically designed to detect pesticide toxicity

and nutrient enrichment, respectively) varied depending on the studied stressors, consider-

ing their single and combined effects. Our analyses revealed significant effects of the stud-

ied stressors on macroinvertebrate communities, with two particular results that merit

further attention: (1) the fact that pesticide toxicity affected BMWP/PAN, but not SPEAR,

possibly because the former had been adapted for local fauna; and (2) that most stressors

showed antagonistic interactions (i.e., lower combined effects than expected from their indi-

vidual effects). These results highlight the need for toxicity bioassays with tropical species

that allow adaptations of biotic indices, and of observational and manipulative studies

exploring the combined effects of multiple stressors on tropical macroinvertebrate
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communities and ecosystems, in order to predict and manage future anthropogenic impacts

on tropical streams.

Introduction

Agriculture is one of the human activities with greatest impact on the Earth’s ecosystems [1].

Agricultural land now occupies c. 40% of the terrestrial surface [2], and it will most likely

expand in the next few decades as a result of the higher demand of a larger global population

[3]. This is particularly true for undeveloped countries, many of which are located in tropical

regions [4]. Tropical forests are declining at unprecedented rates in favour of agriculture [5],

and streams flowing through tropical agricultural catchments can be severely impacted [6].

Agriculture can alter stream communities and ecosystems for several reasons, including

the increase in both inorganic and organic pollution as a result of the use of pesticides and fer-

tilizers, respectively [7], and the alteration of riparian vegetation and physical habitat charac-

teristics [8]. Streams are thus affected by multiple stressors [9,10], all related to agricultural

practices, which should be considered together when assessing how agriculture impacts stream

communities [11]. Such an approach, however, has rarely been used for the study of streams in

the tropics, where information about effects of pesticides is scarce [6] and studies have gener-

ally considered the separate effects of nutrient enrichment [12] or altered habitat [13].

Effects of pesticides on tropical stream macroinvertebrates are largely unknown. Most

information available on toxicity effects pertains to temperate species [14], which have been

used to develop indices such as the widely used Species at Risk index (SPEARpesticides, hereaf-

ter SPEAR; [15]). Thus, while temperate studies have often found strong correlation between

pesticides and SPEAR [16,17], the only tropical study using this approach, to our knowledge,

did not find a similarly high correlation with SPEAR [6]. Effects of nutrient enrichment on

stream macroinvertebrates have been generally assessed using indices such as the Biological

Monitoring Working Party (BMWP), which is based on the sensitivity or tolerance of different

macroinvertebrate families to nutrient enrichment [18]. The BMWP has been often used in

the tropics, with adaptations of these indices accounting for differences in local fauna (e.g.,

[19]). Lastly, effects of altered habitat features (e.g., sedimentation, low dissolved oxygen, loss

of riparian cover) on tropical stream macroinvertebrates have been assessed more often [20–

22], but rarely within the context of agricultural practices.

We studied the effects of multiple stressors associated with agricultural practices on stream

macroinvertebrate communities in a tropical catchment in Panama. We examined how

macroinvertebrate abundance, taxonomic richness and biotic indices (SPEAR and BMWP)

varied depending on pesticide toxicity (quantified as maximum toxic units, TUmax), nutrient

enrichment and habitat alteration, examining the single and combined effects of these

stressors.

Material and methods

Study area and site selection

Our study area was the upper catchment of the Chiriquı́ Viejo stream, located on the Pacific

coast of western Panama (N 8˚15’– 9˚00’, W 82˚15’– 83˚00’; Fig 1) [23]. Catchment area is

1,376 km2; total length of the main stream is 161 km; and maximum altitude is 3,474 m asl at

Vocán Barú [24]. The climate is tropical with minimum, average and maximum annual tem-

peratures of 17.8, 28.0 and 35.5 ˚C, respectively [25]. Total annual precipitation is 3,400 mm
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on average and up to 7,000 mm on the highlands, with 87.7% occurring in the rainy season

(May-December) [24].

The study catchment is intensely used for agriculture, being one of the most productive

areas in Panama [26]. The strong erosion, as a result of native vegetation removal, steep slopes

and high precipitation, causes the progressive deterioration of the catchment, and stream

water quality is affected by the entrance of fine sediment, pesticides and nutrients, the latter

coming both from fertilizers and from the inefficient treatment of waste water in the area [27].

We conducted the study at 13 sites (Fig 1; S1 Table) from May 2015 to June 2017, with a total

of 20 sampling campaigns at each site (March, May, August and October 2015, and monthly

samplings from January to October 2016 and from January to June 2017; collecting permits

issued be the Ministry of the Environment, Ref: SE/A-44-15, SC/A-5-16 and SE/A-42-17).

Physico-chemical characterization

At each site we selected a 100-m long representative stream reach, where we (1) characterized

the habitat; (2) measured several physico-chemical variables in situ, including substrate com-

position, coarse and fine particulate organic matter (CPOM> 1 mm; 0.5 μm< FPOM< 1

Fig 1. Location of study sites within the Chiriquı́ Viejo stream catchment in Panama.

https://doi.org/10.1371/journal.pone.0220528.g001
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mm), and water chemistry; (3) collected water samples for further physico-chemical analyses

and determination of pesticides; and (4) sampled macroinvertebrates.

We characterized the habitat using the rapid habitat assessment protocol developed by Bar-

bour et al., [28] for the United States Environmental Protection Agency (EPA) for high-gradi-

ent streams. This consisted of qualifying 10 variables (epifaunal substrate/available cover,

embeddedness, velocity/depth regime, sedimentation, channel flow status, channel alteration,

frequency of riffles, bank stability, bank vegetative protection, and riparian vegetative zone

width) using a numerical scale from 0 to 20 (maximum). Each variable was assessed indepen-

dently, and their sum was assigned to one of four categories of habitat quality (i.e., optimal,

suboptimal, marginal or poor).

Substrate composition was characterized visually as the proportion of different size classes

of mineral substrate (boulder, cobble, gravel, coarse and fine sand, and clay) and CPOM and

FPOM were quantified visually as the proportion of streambed covered by each type of organic

matter [28]. We measured pH, temperature (˚C), conductivity (μS cm-1), turbidity (mg L-1)

and dissolved oxygen (% saturation) in situ using a multiparametric probe (YSI 556), and col-

lected two sets of 2-Lwater samples from the mid column in middle of the stream, which were

transported to the laboratory on ice. The first set of water samples was analysed at the Environ-

mental Quality Laboratory of the Ministry of Environment (Panama) for concentrations (mg

L-1) of total solids using a gravimetric method (SM 2540 B), and nitrate and soluble reactive

phosphate (SRP) using spectrophotometric methods (SM 4500-NO3 B and SM 4500-P B5 and

E) [29].

Determination of pesticides

The second set of water samples was analysed for pesticides at the Plant Health Laboratory

from the Agricultural Development Ministry (MIDA, Panama). A 2-L water sample was col-

lected at each site from the middle of the stream and the mid column. Samples were immedi-

ately refrigerated and transported to the laboratory, and kept at 4 ˚C until analysis was

performed within 24 h of receipt. Pesticides were determined using two methods: liquid-liquid

microextraction [30] and direct injection [31]. The first method was used for organophos-

phates, organochlorines and pyrethroids; pesticides were extracted with ethyl acetate and

residuals were quantified by gas chromatography and mass spectrophotometry (GC-MSMS;

limit of quantification: 0.11 μg L-1). The second method was used for triazines, carbamates and

other polar pesticides; samples were injected and analysed with high performance liquid chro-

matography and mass spectrophotometry (LC-MSMS; limit of quantification: 0.10 μg L-1) and

electrospray ionization with dynamic acquisition (MRM mode), which avoids solid phase

extraction. The percentage of recovery ranged between 70 and 110% (CV = 11%). Linearity

was measured by the R2 coefficient for the individual pesticide calibration curves, always

resulting in R2� 0.99. Each set of samples was analyzed in duplicate, simultaneously with a

laboratory blank. To avoid matrix effects we used a matrix-matched calibration curve.

Macroinvertebrate sampling and processing

Macroinvertebrates were kick sampled using a 30-cm wide D-net with a 0.5-mm mesh. At

each site we took three 2-m long samples, which were subsequently pooled, with a total area of

1.8 m2 sampled per site. Samples were taken on a variety of habitats including mineral sub-

strate, leaf litter patches and bank vegetation, in proportions similar to their presence in the

stream. The net contents were transferred to a 0.5-mm mesh sieve and then to a white tray,

where macroinvertebrates were preliminary sorted, and stones, leaves and wood discarded.

The rest of the sample was introduced in labelled vials with 96% ethanol and transferred to the
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Freshwater Macroinvertebrate Laboratory at the COZEM-ICGES (Panama). Macroinverte-

brates were sorted and identified to family level–which is the usual procedure to calculate the

SPEAR and BMWP indices [18,32]–using identification keys for tropical taxa [33–36].

Calculation of pesticide toxicity

In order to have a standard value of toxicity associated with pesticide concentrations measured

at each site we used the Toxic Unit (TU) approach [37]. The TUs were given as maximum TU

(TUmax), a simple approach widely used in the literature [15;38,39]. To calculate TUmax we

considered all pesticides found across samples at each site, excluding those below the quantifi-

cation limit. Given that toxicity data for tropical stream macroinvertebrates are unavailable,

we calculated TUmax based on data available for Daphnia magna [15] based on the following

equation:

TUðD:magnaÞ ¼ maxni¼1
ðlogðCi=LC50iÞÞ ð1Þ

where TU(D. magna) is the TUmax of n pesticides detected in the study site, Ci is the concentra-

tion of pesticide i (μg L-1), and LC50i is the 48 h acute median lethal concentration (μg L-1)

reported for pesticide i in D. magna.

Calculation of biotic indices

To calculate the SPEAR index, taxa were classified into species at risk (SPEAR) or species not

at risk (SPEnotAR) according to several ecological and physiological traits [15], which were

obtained from an online database (http://www.systemecology.eu/spear/spear-calculator/). The

SPEAR value for each site was calculated as follows:

SPEAR ¼
Pn

i¼1
logðxi þ 1Þ � y
logðxi þ 1Þ

� 100 ð2Þ

where n is the number of taxa, xi is the abundance of taxon i, and y is 1 if taxon i is classified as

SPEAR, otherwise 0.

The BMWP index is one of the most often used indices based on macroinvertebrates to

assess nutrient enrichment in streams [40]. It was originally developed for the United King-

dom [18] and has been adapted to the local fauna of many countries, including Panama

(BMWP/PAN; [27]). The BMWP/PAN was adapted based on tolerance to nutrient enrich-

ment of local macroinvertebrate families, following the methods of Ruiz-Picos et al., [40]. The

BMWP score at a given site is the sum of the individual scores of the families present at that

site, which range from 1 (most tolerant families) to 9 (most sensitive families).

Statistical analyses

All analyses were performed in R software, version 3.6.0 [41]. We first explored bivariate scat-

terplots and Pearson correlations to select the most relevant and uncorrelated environmental

variables (r� 0.70) to be used in further analyses (S1 Fig; [42]); these variables were TUmax

(hereafter pesticide toxicity), SRP concentration (hereafter nutrient enrichment), the sediment

deposition index (hereafter sedimentation index; inversely related to sedimentation), and

water temperature (hereafter warming); other variables were discarded. Scatterplots and corre-

lations were performed with the “chart.Correlation” function in PerformanceAnalytics pack-

age [43].

Secondly, we examined the individual and interactive effects of pesticide toxicity, nutrient

enrichment and sedimentation index on macroinvertebrate abundance, taxonomic richness
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and biotic indices (SPEAR and BMWP/PAN), using linear mixed-effects models accounting

for temporal autocorrelation. Warming influence was not considered in these models to avoid

the complexity of a four-way interaction model, and because sedimentation was a better repre-

sentation of habitat alteration (S2 Table). Models were first defined in terms of random struc-

ture, and a model selection procedure was used to identify interactions between predictors

[42]. The optimal model random structure (i.e., the need for a variance structure, temporal

correlation structure and/or random term) was defined by comparing models containing dif-

ferent terms using the Akaike Information Criterion corrected for sample size (AICc) (S3

Table). Final models were fit using the “lme” function (linear mixed effects), with site as a ran-

dom term (except for the richness model, which lacked this component), temporal autocorre-

lation (ARMA correlation structure), and a variance structure (VarIdent in relation to site to

control for different variances within sites).

Interactive effects were explored through five models, all containing the three predictors,

but varying in the number of interactions. The null model (model 1) assumes no interactions

between predictors (i.e., additive effects only); three models (models 2, 3 and 4) included pair-

wise interactions between nutrient enrichment and sedimentation index, pesticide toxicity

and sedimentation index, or pesticide toxicity and nutrient enrichment; and one model

(model 5) included all interactions, including the three-way interaction. The five models were

compared using an AICc-based model selection approach, with the most plausible models

being selected based on delta AICc (Δi; i.e., difference in AICc value relative to the best model)

and Akaike weights (wi; i.e., the probability that a model is the best among the whole set of

models). Residuals from each model were inspected to ensure there were no visual patterns

and that linear model assumptions (i.e., independence and homogeneity assumptions) were

not violated. Estimates and 95% confidence intervals for single predictors and their interac-

tions were obtained using a model averaging approach, which averages the estimates of the

retained models containing the parameter. Models were constructed, selected and averaged

using nlme (“gls”, “lme”, “VarIdent” and “corARMA” functions; [44]) and MuMIn (“model.

sel” and “model.avg” functions; [45]) packages.

Thirdly, we evaluated the effect of pesticide toxicity, nutrient enrichment and habitat alter-

ation (sedimentation index and warming) on macroinvertebrate community composition

using redundancy analysis (RDA; [46]), where the species dataset was predicted by the envi-

ronmental dataset. Both datasets contained multiple samples taken over time and were aver-

aged to produce a single value per site. Lastly, to quantify the amount of variability in

macroinvertebrate community composition that can be attributed to each of the above envi-

ronmental factors, as well as to their shared contribution (i.e., interactions between predic-

tors), we used partial redundancy analysis [47]. The amount of variability explained by each

factor and their shared contribution was based on adjusted R2 (R2
adj), and their statistical sig-

nificance tested through permutation tests (999 randomizations). Macroinvertebrate data

were Hellinger-transformed prior to both procedures to provide an unbiased estimate of vari-

ance partitioning based on pRDA. Variance partitioning and permutation tests were per-

formed using the “varpart” and “cca.anova” functions, respectively, both from the vegan

package [48]. Results were presented using a Venn diagram, which was drawn on Inkscape, an

open-source vector graphics editor.

Results

Physico-chemical characteristics

The study streams were circumneutral, pH being 7.5 on average (range across study sites: 6.7–

7.9); water temperature was 16.1 ˚C (range: 13.3–18.2); conductivity was 44.2 μS s-1 (range:
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8.3–111.4); turbidity was 21.6 mg L-1 (range: 2.3–82.7); dissolved oxygen saturation was 75.2%

(72.9–77.3); total solids were 130.1 mg L-1 (range: 31.1–342.4); NO3 concentration was 12.6

mg L-1 (range: 1.5–33.5); and PO4 concentration was 0.23 mg L-1 (range: 0.04–0.53). The sub-

strate was dominated by cobble at most sites, followed by gravel and coarse sand, and boulder

was dominant at one site (S4 Table).

Pesticides and TUmax

We detected 29 pesticides in total, with 12 pesticides per site on average (range: 8–17). These

included 19 insecticides (mostly chlorpyrifos and DDE-p.p’, which were present at all study

sites; and diazinon, HCB-gamma and mirex, present at 60% of sites), 9 fungicides (mostly car-

bendazim and iprobenfos present at 60% of sites) and one herbicide (metribuzin) (S5 Table).

TUmax were -1.64 on average (range: 0.24– -4.46) (S6 Table).

Macroinvertebrates

We collected 43,294 macoinvertebrate individuals from 57 families (S7 Table). The most com-

mon families were the Simuliidae (Diptera; 33.3% of total abundance), Baetidae (Ephemerop-

tera; 26.3%), Chironomidae (Diptera; 18.6%) and Physidae (Basommatophora; 4.6%). The

average value of SPEAR was 28.2 (range: 0–73.4), and average BMWP/PAN was 28.5 (range:

1–103) (S8 Table).

Interactive effects of pesticide toxicity, nutrient enrichment and habitat

alteration on macroinvertebrate communities

The model selection procedure revealed that, in most cases, there were two best models

explaining the observed patterns (~ 60% probability based on Akaike weights); the exception

was abundance, which was explained by a single model with pairwise interactions. The SPEAR

and BMWP indices were best explained by one additive model (i.e., without interactions) and

one model containing pairwise interactions; the two most plausible models explaining richness

contained pairwise interactions (Table 1; S9 Table). Overall, individual effects of pesticide tox-

icity and nutrient enrichment were negative, while the sedimentation index had a positive

effect (indicating a negative effect of sedimentation, which was inverse to the index). The sedi-

mentation index was the only factor individually affecting all the response variables; the indi-

vidual effect of nutrient enrichment was important for both biotic indices, but not for

abundance or richness; and pesticide toxicity individually affected all variables except SPEAR

(Fig 2). The interaction between pesticide toxicity and sedimentation index was significant for

abundance, richness and BMWP, always having a negative antagonistic effect (i.e., lower than

predicted by the sum of individual effects); the interaction between nutrient enrichment and

sedimentation index was important for richness and SPEAR, with a positive additive and a

negative antagonistic effect, respectively (Fig 2).

All stressors explained 62% of variance in macroinvertebrate community composition.

Nutrient enrichment and sedimentation were mostly related to RDA1 (both with positive rela-

tionships; the sedimentation index being inversely related to sedimentation), while pesticide

toxicity and warming were related to RDA2 (both with negative relationships) (Fig 3). Thus,

some taxa were related to sites with lower levels of pesticide toxicity, nutrient enrichment and

habitat alteration (i.e., sites S-02, S-04 and S-10; Hyalellidae, Leptophyphidae, Leptophlebiidae,

Planariidae, Planorbidae, Ptilodactylidae, Odontoceridae and Tabanidae) and others were

associated to more impacted sites, that is, affected by nutrient enrichment and sedimentation

(i.e., S-08 and S-12; Baetidae and Hydroptilidae) or higher levels of pesticide toxicity and

warming (i.e., S-06 and S-07; Chironomidae, Lumbriculidae and Psychodidae).
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The pRDA showed that a large proportion of variance in macroinvertebrate communities

was driven by nutrient enrichment (R2
adj = 0.51) and habitat alteration (R2

adj = 0.37), while

pesticide toxicity contributed to a lower proportion of variance (R2
adj = 0.13). The proportion

of variance attributable to the combination of pesticide toxicity and nutrient enrichment

(R2
adj = 0.50), nutrient enrichment and habitat alteration (R2

adj = 0.46) or the whole set of

environmental predictors (R2
adj = 0.62), was lower than expected based on the sum of individ-

ual stressor effects (i.e., the additive expectation), indicating antagonistic effects. On the other

hand, the combination of pesticide toxicity and habitat alteration (R2
adj = 0.33) was slightly

higher than expected, suggesting a synergism between these two stressors (Table 2; Fig 4).

Discussion

Assessing the effects of agricultural practices on tropical stream communities is an urgent chal-

lenge, given the fast conversion of tropical forests to agricultural land due to the rising

demands of human populations [4,5,49]. Studies, however, are scarce and have only partially

addressed this question, as they have focused on single stressors such as pesticide toxicity

Table 1. Summary of model selection testing for interactions between multiple stressors on macroinvertebrate

abundance and richness and the SPEAR and BMWP indices, based on the Akaike information criterion corrected

for sample size (AICc). Models are ordered from the best to the poorest fit according to Akaike weights (wi). K, num-

ber of estimated parameters for each model; Δi (delta AICc), difference in AICc value relative to the best model; wi,

probability that a model is the best among the whole set of models. For each response variable, five models were con-

structed, which are ordered from the simplest model without interactions (model 1: null model, with no interactions)

to the most complex one (model 5, containing the 3-way interaction). Models differ in the number of parameters

according to the most parsimonious combination of structure and terms described in S9 Table. PT, pesticide toxicity

(Tumax); SE, sedimentation index; NE, nutrient enrichment (SRP).

Model K AICc Δi wi
Abundance

(3) PT + NE + SE + PT × SE 20 2771.8 0 0.657

(1) PT + NE + SE 19 2774.3 2.5 0.189

(2) PT + NE + SE + NE × SE 20 2776.4 4.66 0.064

(4) PT + NE + SE + PT × NE 20 2776.6 4.87 0.058

(5) PT + NE + SE + PT × NE + PT × SE + NE × SE + PT × NE × SE 23 2777.8 6.01 0.033

Richness

(3) PT + NE + SE + PT × SE 8 1017.1 0 0.361

(2) PT + NE + SE + NE × SE 8 1017.9 0.86 0.236

(1) PT + NE + SE 7 1018.4 1.28 0.191

(5) PT + NE + SE + PT × NE + PT × SE + NE × SE + PT × NE × SE 11 1019 1.91 0.139

(4) PT + NE + SE + PT × NE 8 1020.3 3.19 0.073

SPEAR

(1) PT + NE + SE 19 1730.8 0 0.489

(2) PT + NE + SE + NE × SE 20 1732.7 1.85 0.194

(4) PT + NE + SE + PT × NE 20 1733 2.24 0.159

(3) PT + NE + SE + PT × SE 20 1733.2 2.37 0.15

(5) PT + NE + SE + PT × NE + PT × SE + NE × SE + PT × NE × SE 23 1738.8 7.96 0.009

BMWP

(3) PT + NE + SE + PT × SE 20 1638.1 0 0.378

(1) PT + NE + SE 19 1638.4 0.36 0.316

(2) PT + NE + SE + NE × SE 20 1640.2 2.13 0.13

(4) PT + NE + SE + PT × NE 20 1640.9 2.78 0.094

(5) PT + NE + SE + PT × NE + PT × SE + NE × SE + PT × NE × SE 23 1641.1 3.05 0.082

https://doi.org/10.1371/journal.pone.0220528.t001
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[6,50,51], nutrient enrichment [52] or habitat alteration, mainly deforestation [53–55] and

sedimentation [20,56]. Our study is, to our knowledge, the first to assess the joint effect of mul-

tiple stressors associated with agriculture on tropical stream macroinvertebrate communities.

We demonstrated negative effects of the studied stressors (pesticide toxicity, nutrient

enrichment, sedimentation and warming) on macroinvertebrate community descriptors and/

or biotic indices. Sedimentation was the only factor with negative effects on all the variables;

this factor has been shown to have large effects on tropical macroinvertebrates, which move

downstream in response to increased sedimentation [20]. Abundance and richness were not

affected by nutrient enrichment, in agreement with other tropical studies and possibly because

other factors (e.g. light) limited primary productivity [12]. In contrast, abundance and richness

were negatively affected by pesticide toxicity, an effect that has not been found elsewhere in

the tropics [6,50]. The different stressors caused shifts in community composition, with some

taxa being more tolerant to pesticide toxicity or warming (i.e., some dipterans and oligo-

chaetes) and others to nutrient enrichment or sedimentation (i.e., some mayflies and

caddisflies).

Interestingly, pesticide toxicity affected the BMWP/PAN but not the SPEAR index, which

had been specifically designed to assess pesticide effects on macroinvertebrates [15]. This may

Fig 2. Estimates (slope of regression models) and 95% confidence intervals (CI, lower and upper whiskers) of individual stressors (pesticide

toxicity, PT; nutrient enrichment, NE; and sedimentation index, SE, which was inverse to sedimentation) and their interactions present in the

two most plausible models after model averaging (except for abundance, which was explained by a single model). Confidence intervals that

intercept the zero line indicate no effect (i.e., do not reject the null hypothesis). Open circles denote the additive expectation for the interaction (i.e., the

sum of the component individual effects); CIs containing the additive expectation indicate additive effects, while CIs not matching the additive

expectation indicate either antagonistic effects (when the interaction does not surpass the effect of individual stressors) or synergistic effects (when it

surpasses the effect of individual stressors).

https://doi.org/10.1371/journal.pone.0220528.g002
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Fig 3. Redundancy analysis (RDA) exploring effects of pesticide toxicity (quantified as TUmax), nutrient enrichment (SRP

concentration) and habitat alteration (sedimentation index and warming) on macroinvertebrate community composition; RDA1

and RDA2 are the RDA axes, and S-01 to S-13 are the sampling sites.

https://doi.org/10.1371/journal.pone.0220528.g003

Table 2. Results of partial redundancy analysis (pRDA). Exploring the amount of variance in macroinvertebrate community composition explained by pesticide toxicity

(TUmax), nutrient enrichment (SRP) and habitat alteration (temperature and sedimentation index). We shown the degrees of freedom (dfmodel, dfresidual), adjusted R2

(R2
adj), associated p-values (p; after permutation tests using 999 randomizations), additive expectation (sum of R2

adj of individual stressors), and interaction type (A; antag-

onistic when R2
adj of interaction is lower than the sum of individual stressors; S, synergistic when R2

adj of interaction surpasses the sum of individual stressors).

Variables df R2
adj p AD Interaction

Pesticide toxicity (PT) 1, 11 0.13 0.114 - -

Nutrient enrichment (NE) 1, 11 0.51 0.006 - -

Habitat alteration (HA) 2, 10 0.37 0.024 - -

PT × NE 2, 10 0.50 0.011 0.64 A

PT × HA 3, 9 0.55 0.047 0.50 S

NE × HA 3, 9 0.46 0.021 0.88 A

PT × NE × HA 4, 8 0.62 0.049 1.01 A

Residual - 0.58 - - -

https://doi.org/10.1371/journal.pone.0220528.t002
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be due to the fact that the SPEAR index is based on physiological traits associated with pesti-

cide sensitivity in temperate species, which highlights the need for conducting biological toxic-

ity tests with tropical macroinvertebrates, as these are likely to show different environmental

sensitivities even at the taxonomic resolution of family [57]. This is supported by the fact that

only studies in temperate areas have shown reduced levels of SPEAR with increased pesticide

toxicity [15,58,59].

In our study, BMWP/PAN was affected by all the studied stressors, including pesticide tox-

icity. While the BMWP index was designed to assess effects of nutrient enrichment on macro-

invertebrates [60], we used an index that had been adapted for local fauna (in contrast to

SPEAR) and statistically calibrated [27,40], which may explain its significant response to all

stressors. Temperate studies have also found an effect of pesticide toxicity on BMWP (but see

[16,61]), while this has not been the case for other tropical studies using adapted versions of

the index, such as the BMWP/COL [51].

Importantly, our analyses revealed interactive effects of different stressors that, in most

cases, were antagonistic. Specifically, effects of pesticide toxicity or nutrient enrichment in

combination with sedimentation on community descriptors and biotic indices were lower than

expected from single effects, and the combined effects of most stressors on community compo-

sition were also antagonistic. These results suggest that assessing effects of stressors associated

Fig 4. Partial redundancy analysis (pRDA). Quantifying the amount of variability in macroinvertebrate community

composition attributable to pesticide toxicity (quantified as TUmax), nutrient enrichment (SRP concentration) and

habitat alteration (sediment deposition index–inversely related to sedimentation–and warming) and their shared

contribution. The amount of variability explained by each factor or their shared contribution is based on R2
adj;

asterisks indicate significant results (at p< 0.05, based on 999 permutations).

https://doi.org/10.1371/journal.pone.0220528.g004
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to agriculture individually can overestimate their overall effect, and highlights the importance

of using a multi-stressor approach in real-context studies, because of the complex and often

unpredictable interactions between stressors [10]. Our results are in accordance with a recent

literature review, which found that additive and antagonistic interactions of multiple stressors

were more prevalent than synergistic interactions [62]. Further studies should explore interac-

tions of co-occurring stressors in the field, but also under controlled conditions where stressors

can be easily manipulated (e.g., fully factorial designs in microcosms or mesocosms).

In summary, we provided novel evidence about negative effects of agricultural practices on

tropical stream macroinvertebrate communities, which were affected by multiple stressors act-

ing in combination. Our results highlight the need for (1) further tropical studies using a

multi-stressor approach, including observational and manipulative studies assessing how

macroinvertebrate communities and ecosystems respond to different combinations of stress-

ors and; and (2) toxicity bioassays with tropical species that allow the adaptation of biotic

indices to local fauna. Moreover, functional metrics such as leaf litter breakdown or other eco-

system processes can be useful tools for detecting ecosystem responses to nutrient enrichment

[63,64], although these metrics also respond to other stressors and environmental drivers.

Thus, the combined use of structural and functional metrics (e.g., biotic indices and ecosys-

tem-level processes) could provide a more comprehensive assessment of the ecological effects

of multiple stressors [65]. This is particularly needed in tropical areas, which are understudied

and subject to rapid transformation by human activities [5], and whose responses compared to

their temperate counterparts are difficult to predict [66].
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24. ETESA. Resumen Técnico Análisis Regional de Crecidas Máximas de Panamá, Periodo 1971–2006.
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