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Director:
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Introduction and Objectives

In our day-to-day we are surrounded by processes in which detectors play
a fundamental role. We do not need to think on complex activities such
as industrial automatization, but on something as simple as turning on the
television employing a remote control. They would be impossible to perform
without these kind of devices.

The requirement of more precise and sensitive measuring devices has led
to the design of detectors employing quantum resources. These devices could
completely change the way we understand the world, triggering great devel-
opments in multiple disciplines. For instance, the detection of early signs of
diseases, the early prediction of earthquakes, and a deeper understanding of
the fundamental laws of nature could be some of the consequences to which
this technology could lead.

A paradigmatic example of these devices are photodetectors, which are
able to resolve single photons. Highly efficient photodetectors are essential
in cutting-edge and innovative fields such as optical quantum computation,
quantum communication and quantum cryptography, among others. These
detectors have been developed specially for the optical frequency range.
However, novel applications related to the development of quantum tech-
nologies based on superconducting platforms, such as quantum computing
or quantum radars, have stimulated the interest (and necessity) of photode-
tection in the microwave regime, where strong efforts have been performed.
This work will focus in understanding some of the proposals of flying single-
photon photodetectors in the 1-10 GHz regime.

The main theoretical proposals are based on detecting a transition gen-
erated by the energy of the arriving photon emulating the photocurrent
generated by the n-p photodetectors in the optical regime. Therefore, we
need a physical two-level system with an energy gap similar to the energy of
the photon. This kind of systems are available thanks to superconducting
circuits, which are introduced in Chapter 1. After describing the linear cir-
cuit elements and their dynamics, we characterize the non-linear ones, based
on the so-called Josephson junctions, an isolator sandwiched by supercon-
ducting material.

Once we have described the theoretical aspects of superconducting ele-
ments, in Chapter 2, we introduce superconducting qubits, constructed mak-
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ing use of Josephson junctions, and analyse three simple but paradigmatic
examples. Afterwards, we present the field of circuit quantum electrody-
namics (cQED), which describes the interaction between superconducting
qubits and a transmission line resonator.

Finally, in Chapter 3, we describe the problems associated to the creation
of a working and efficient microwave photodetector, and analyse in depth a
theoretical proposal for this device introduced in Ref. [12]. This proposal,
developed in 2010, is the continuation of a previous work (Ref. [1]), which
proposes a setup consisting of an infinite transmission line with a phase qubit
in it. The performance achieved was of 50% efficiency employing one qubit,
which could be improved by placing multiple qubits one after the other. The
proposal we analyse adds a mirror to the previous setup, creating a semi-
infinite transmission line. As we will see, this simple change has enormous
consequences in the performance of the device.



Chapter 1

Superconducting Circuits

Superconductivity is the capacity of some materials, under certain condi-
tions, to conduct electricity without resistance and to completely shield mag-
netic fields. These materials allow us to engineer superconducting circuits
with intrinsic quantum behaviour, which can be controlled with external
drivings.

In Section 1.1, we introduce the fundamental elements of a linear non-
dissipative circuit. Then, we develop the techniques to obtain the Hamil-
tonian of a complete circuit to afterwards apply them to characterize the
dynamics of the linear LC oscillator. To finish this Section, the transmission
line and the resistor are briefly presented and analysed.

Finally, in Section 1.2, non-linear circuit elements are introduced. These
elements are based on a non-linear superconducting element called Joseph-
son junction (JJ). Using the Hamiltonian description, we analyse the Joseph-
son LC circuit and compare it against the linear LC oscillator. Then, we
present two relevant structures based on the Josephson junction, which are
the DC SQUID (two JJ in parallel) and the Josephson junction array (JJ in
series).

1.1 Linear Circuits

We start this Section by analysing the linear non-dissipative superconduct-
ing circuit elements, namely, linear capacitances and inductances. Then, we
introduce the theoretical description of superconducting circuits. We start
by presenting the canonical variables involved in a superconducting circuit,
and then, we build the Hamiltonian of a circuit through the Lagrangian. Fi-
nally, we obtain the Hamiltonian of some of the most relevant linear circuits,
which are the LC oscillator, the transmission line, and the resistance.

7



8 CHAPTER 1. SUPERCONDUCTING CIRCUITS

Figure 1.1: Scheme of a branch b formed by a two-terminal element and the signs
of the variables of current ib(t) and voltage vb(t) associated to the branch.

1.1.1 Basic Elements

We can define an electrical circuit as a set of idealized elements connected
among them in nodes, generating branches and loops, when there exist two
different paths connecting two nodes. In order to mathematically analyse
a circuit, we firstly need to describe the elements that form it. In this
Section, among the linear non-dissipative elements, we will analyse the ones
connected to two nodes, since these are the most common ones. First, we
will introduce the variables that characterize the different elements and the
energy of each one.

Variables of Superconducting Elements

Each branch of a circuit is characterized by two variables, namely, the cur-
rent which crosses through it, ib(t), and the voltage difference, vb(t) (see
Fig. 1.1). These quantities are defined by

vb(t) =

∫
along b

~E · ~dl, (1.1)

ib(t) =
1

µ0

∮
around b

~B · ~dS. (1.2)

The energy of a given branch in each instant depends on its voltage and
current, and is given by

εb(t) =

∫ t

−∞
vb(t

′)ib(t
′)dt′ (1.3)

Let us now introduce the variables of branch flux and branch charge,
which are defined as

φb(t) =

∫ t

−∞
vb(t

′)dt′, (1.4)
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Qb(t) =

∫ t

−∞
ib(t
′)dt′. (1.5)

The limit −∞ of the integral is due to the assumptions that the circuit was
initially at rest, and that the dissipation is negligible.

We can classify the basic non-dissipative elements into two different
types, depending on the relation between its variables: inductances and
capacitances.

For an inductive element, the current ib(t) only depends directly on the
flux φb(t), while for a capacitive element, the voltage vb(t) is exclusively a
function of the charge Qb(t):

ib(t) = f(φb(t)), (1.6)

vb(t) = g(Qb(t)). (1.7)

Replacing these equations in the relation of the energy given by Eq. 1.3, we
can obtain the energy of a branch depending on whether it is an inductive
or capacitive element, which are respectively

ε(φb) =

∫ φb

0
f(φ)dφ, (1.8)

ε(Qb) =

∫ Qb

0
g(Q)dQ. (1.9)

Linear Elements

The simplest non-dissipative elements are the linear inductance and the
linear capacitance, for which the relations given by Eqs. 1.6 and 1.7 are
indeed linear. These relations are consequently

ib(t) =
φb(t)

L
, vb(t) =

Qb(t)

C
, (1.10)

where L and C are the inductance and capacitance of each element respec-
tively. Now, we can find the energy of these elements by replacing Eq. 1.10
into the expression for the energy.

In case of the linear inductance, we replace it into Eq. 1.8, and obtain

εL =
φ2

2L
. (1.11)

Similarly, for the capacitance, we replace into Eq. 1.9, and get the energy
of a capacitance,

εC =
Q2

2C
=
Cφ̇2

b

2
. (1.12)
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1.1.2 Hamiltonian Description

Once the different linear non-dissipative elements of a circuit have been
introduced, let us explain the theoretical description of a complete circuit.
We start by presenting the variables involved in a superconducting circuit,
and then, we obtain the Hamiltonian by means of the Lagrangian of the
circuit.

Variables of a Circuit

First of all, we need to find the degrees of freedom of the circuit, which can
be variables associated to either branches or nodes. Therefore, we have at
least as much degrees of freedom as elements in the circuit. However, not
all of them are true degrees of freedom, and this is due to Kirchhoff’s laws,
which are

n∑
k=1

Vk = 0 −→
∑

b around
loop

φb = φ̃l, (1.13)

n∑
k=1

Ik = 0 −→
∑

b arriving
at node

Qb = Q̃n, (1.14)

where φ̃l is the static flux through a loop and Q̃n the charge offset in a node.
We have already described the variables associated to the branches formed

by linear elements (Eq. 1.10), so let us now introduce the connection be-
tween the descriptions employing branches and using nodes.

The node description is based on building a spanning tree from a par-
ticular node of our choice, which we call ”ground”. The spanning tree is
built by connecting the rest of the nodes through branches in a way that no
loop is formed. The branches which are not chosen in the spanning tree are
called closure branches. We can now define the flux of a node as the sum of
the fluxes of all the branches in the path between the ground and the node
itself. Therefore, the flux of a branch b can be defined in terms of the flux
of the nodes connected by the branch, n and n′, as

φb = φn − φn′ . (1.15)

In the case of a closure branch, the one which closes a loop l, from Eq. 1.13
we deduce that

φb = φn − φn′ − φ̃l. (1.16)

Lagrange-Hamilton Formulation

To obtain the Hamiltonian, we firstly need the Lagrangian of the circuit,
which is defined as the difference between the kinetic energy and the po-
tential energy. This can be obtained by arbitrarily attributing the potential
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energy to the inductances and the kinetic energy to the capacitances. There-
fore, the Lagrangian is given by

L =
∑

C

Tb −
∑

L

Ub, (1.17)

where Tb and Ub are respectively the kinetic and potential energies of the
branches of the circuit. Both quantities are written in terms of the flux of
the branches, and its time derivative. In order to write the Hamiltonian, we
need the conjugate momenta of the branch fluxes, which are defined as

qb =
∂L
∂φ̇b

. (1.18)

We now write the Hamiltonian H as the Legendre transform of the La-
grangian,

H =
∑
b

φ̇bqb − L, (1.19)

by replacing the φ̇b by the canonical momenta. Finally, we perform the
canonical quantization replacing the classical variables by operators and
imposing that the commutator is given by the usual relation

[φb, qb] = i~. (1.20)

1.1.3 LC Circuit

The LC oscillator is the simplest superconducting circuit comprising a linear
capacitance and a linear inductance in parallel (Fig. 1.2a). In order to find
its Hamiltonian, we first define the Lagrangian by replacing the energies of
the elements, given by Eqs. 1.8 and 1.9, into Eq. 1.17. The results is

L =
Cφ̇2

2
− φ2

2L
, (1.21)

H =
Cφ̇2

2
+
φ2

2L
=

q2

2C
+
φ2

2L
. (1.22)

Notice that this Hamiltonian is the same as for a mechanical harmonic
oscillator, H = p2/2m + mω2x2/2, where m = C, ω = 1/

√
LC, and the

operator q is equivalent to the momentum and φ to the position. After
defining two new operators, namely, the reduced charge n = q/2e and the
reduced flux ϕ = 2π φ

φ0
, where e is the electron charge and φ0 = h/2e

is known as the superconducting flux quantum, the Hamiltonian can be
written as

H = 4ECn
2 +

1

2
ELϕ

2, (1.23)
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(a) (b)

Figure 1.2: Representation of a LC oscillator (a) and its respective potential
and energy levels (b). In figure (b) is plotted the potential term of Eq. 1.23, which is
a parabola. The energy levels are all equally distant, with an energy gap of ~ω.

where EC = e2/2C is the electrostatic energy and EL = φ2
0/(4π

2L) is the
inductive energy. In order to represent the Hamiltonian in a more compact
and convenient form, we describe the operators n and ϕ in terms of the
ladder operators (a, a†):

n =

(
EL

32EC

)1/4

i(a− a†), ϕ =

(
2EC
EL

)1/4

(a+ a†). (1.24)

This change of operators results in [2]

H = ~ω(a†a+ 1/2), (1.25)

where the operator a†a represents the number of charge units in the res-
onator. In the case of a superconducting circuit, this unit of charge is the
Cooper pair, formed by two electrons and, therefore, with a charge 2e.

The state of the system, |n〉, is determined by the number of Cooper
pairs in the resonator. Notice that the energy levels given by this circuit,
represented in 1.2b, are equispaced by a value of ~ω = ~/

√
LC.

1.1.4 Transmission Line

Transmission lines are central elements in experimental superconducting cir-
cuits, since they are used to control other elements and for the read-out of
information from superconducting circuits.

There is a wide variety of transmission lines, but the one used in super-
conducting circuits is the coplanar waveguide (CPW). It is a pretty simple
structure: a superconducting line in the centre with two ground planes on
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(a)

(b)

Figure 1.3: Coplanar waveguide (CPW). (a) Physical scheme of a CPW, made of
three superconducting strips in the same plane on a substrate. The central strip carries
the signal, and the lateral strips are the ground planes. (b) Theoretical model. The
scheme of the bottom of the figure represents a CPW in the limit ∆x → 0. The infinite
nodes are labelled with i, each with a node flux φi.

its sides, and all on top of a dielectric substrate (see Fig. 1.3a). This par-
ticular configuration is used in printed circuits and transports signals in the
microwave regime [3].

We can model a coplanar waveguide as N individual ∆x-wide slices con-
nected in series in the limit ∆x → 0 (or N → ∞), where N∆x is equal to
the total length of the transmission line [4]. Each individual slice can be
represented as a LC circuit (see Fig. 1.3b). The capacitive element, with
capacitance C∆x, represents the capacitance formed between the super-
conducting central line and the ground planes, and the inductive element,
with inductance L∆x, represents the magnetic field produced by the cur-
rent passing through the superconductor, where C and L are the density of
capacitance and inductance per length unit of the transmission line.

Therefore, the Lagrangian (Eq. 1.17) of a CPW is an infinite sum over
the energy of the capacitances, whose branch flux is the same as the node



14 CHAPTER 1. SUPERCONDUCTING CIRCUITS

Figure 1.4: Scheme of a coplanar waveguide resonator. The orange lines represent
a stationary mode, forming antinodes at the ends.

flux φi, and another sum over the inductances, whose branch flux is φi−φi−1.
The Hamiltonian (Eq. 1.19) results in

H = lim
∆x→0

∞∑
i=−∞

[
C∆x

2
φ̇2
i +

1

2L∆x
(φi − φi−1)2

]
. (1.26)

Microwave Resonators

Apart from signal communication, superconducting coplanar waveguides are
also used in the design of microwave resonators. In a transmission line res-
onator, the electric field travels confined in the space between the central and
the ground planes. Two gaps in the central superconducting line, which be-
have as capacitances, delimit the boundaries of the resonator (see Fig. 1.4).
This boundary conditions mean that the electric field has an antinode in
both ends of the cavity.

1.1.5 Resistor

It is noteworthy to briefly describe the case of a paradigmatic linear dissipa-
tive element:the resistor. As the dissipation is an irreversible phenomenon,
the Hamiltonian formulation is subtle. This problem is solved by considering
the resistor characterized by an admittance Y (ω) = 1/Z(ω) as an infinite
set of LC circuits (see Fig. 1.5) and, afterwards, finding a master equation
for the system by tracing out the LC degrees of freedom. This leads to the
so-called Caldeira-Leggett model [5]. The Hamiltonian of this model results
in

H =
∞∑
i=1

[
Ci
2
φ̇2
i +

1

2Li
(φi − φ)2

]
, (1.27)

where the sum runs for every LC circuit and φ denotes the node flux of one
of the ends of the admittance. The remaining node has been considered as
the ground.

1.2 Non-Linear Circuits

In the previous Section, we have observed that the LC circuit shows quan-
tum behaviour in the quantization of the energy levels. Let us now add
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Figure 1.5: Caldeira-Leggett model of an admittance Y (ω). The node flux of one
of its ends is φ, and the other one is taken as ground. Each of the infinite number of LC
circuits, with capacitance Ci and inductance Li, is characterized by the node flux φi.

(a) (b)

Figure 1.6: Scheme of a Josephson junction (a) and its equivalent circuit (b)
in therms of a non-linear inductance (LJ) and a linear capacitance (C). It can also be
pictured as a cross in a square.

non-linear elements into the circuits. The element at our disposal for this
purpose is the Josephson junction, which consists in an isolator sandwiched
by superconductors. In this Section, we describe this element and solve the
Hamiltonian for the Josephson LC oscillator. Finally, we present two useful
devices composed of Josephson junctions, which are the DC SQUID and the
Josephson junction array.

1.2.1 Josephson Junction

The Josephson junction (JJ) is a non-linear element formed by two supercon-
ducting plates with a 1-10 nm thin insulating layer in between (see Fig. 1.6a),
through which pairs of electrons, called Cooper pairs, cross due to the tunnel
effect. This element is considered a cornerstone in superconducting circuits.

The pure JJ, i.e. discarding dissipative contributions, can be theoret-
ically modelled as a non-linear inductance (Josephson element) in paral-
lel with a linear capacitance (see Fig. 1.6b). Let us now characterize the
Josephson element to obtain the energy corresponding to the whole Joseph-
son junction. It can be obtained by replacing the two Josephson relations
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in Eq. 1.8, which leads to

I = Ic sin(ϕ(t)), V =
~
2e

dϕ(t)

dt
, (1.28)

with Ic the critical current, the maximum current which can cross the junc-
tion before it becomes resistive. The flux ϕ = 2π φJ (t)

φ0
= 2e

~ φJ(t) is known
as the reduced flux, where φJ is the flux through the Josephson element and
φ0 is the superconducting flux quantum. Using these relations and keeping
in mind that the inductance of an inductive element is Lb = ( dib

dφb
), we find

out that the inductance of a Josephson junction is clearly non-linear:

LJ =
φ0

2πIc cos
(

2π φJφ0

) . (1.29)

Now, we use this equation to find the energy of the non-linear inductance

εJ =

∫ φJ

0
Ic sin

(
2πφ

φ0

)
dφ =

φ0

2π
Ic(1−cos

(
2πφJ
φ0

)
) = EJ(1−cosϕ), (1.30)

where EJ = φ0Ic/2π is the Josephson energy.

1.2.2 Josephson LC Circuit

The equal spacing between energy levels in the LC harmonic oscillator (Fig.
1.2) makes impossible to address the excitation of a specific state, since the
energy required is the same. This fact limits the usefulness of the linear LC
oscillator in quantum computation since we need a well defined two-level
subsystem to be used as a qubit. To address this problem, we introduce the
non-linear Josephson junction to replace the linear inductance (Fig. 1.7a).
The new system is described by the Hamiltonian

H = 4ECn
2 − EJ cos(ϕ), (1.31)

where EC = e2/2CΣ and CΣ = CS + CJ depend on both the shunt capaci-
tance CS and the capacitance of the junction CJ .

The potential energy is now sinusoidal instead of parabolic (Fig. 1.7b).
Therefore, the energy levels are no longer equally spaced [6], which allows
us to control the transitions between only two levels. This is typically per-
formed using the ground and the first excited states, with a transition energy
of ~ω01. As the excitation between two levels can be individually addressed,
this circuit can be considered a qubit.

The characteristics of a qubit highly depend on which is the dominant
term of the Hamiltonian. A qubit with a JJ and a linear capacitance is char-
acterized by the ratio EJ/EC . It is worth mentioning that the general form
of a simple superconducting qubit also includes a linear inductance shunting
the Josephson junction, which adds an additional term to the Hamiltonian.
Then, in general, superconducting qubits are also characterized by another
ratio, EJ−EL

EL
.
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(a) (b)

Figure 1.7: Representation of a Josephson LC oscillator (a) and its potential
energy and energy levels (b). In figure (b) is plotted the potential term Eq. 1.31 in
blue and the potential of the linear LC circuit (Eq. 1.22) with an orange dashed line. The
energy gap between two levels is not constant.

(a) (b)

Figure 1.8: (a) DC SQUID with an external flux φext throughout the loop,
formed by two Josephson junctions in parallel. (b) Josephson junction array, formed
by Josephson junctions in series.

1.2.3 DC SQUID

The circuit called DC SQUID (from Superconducting Quantum Interference
Device) consists of two Josephson junctions in parallel, forming a super-
conducting loop (see Fig. 1.8a). We can calculate its Hamiltonian using the
energy of the Josephson junction, which is composed of a Josephson element
(Eq. 1.30) and a lineal capacitance (Eq. 1.9). The Hamiltonian of a DC
SQUID is

HSQ = 4ECn
2 − EJ1 cos(ϕ1)− EJ2 cos(ϕ2), (1.32)

where EC = e2/2CΣ, CΣ = CJ1 + CJ2 is the energy corresponding to the
capacitances of the Josephson junctions, and EJ1, EJ2 the energy of the
Josephson elements.

For the sake of simplicity, we will consider both Josephson junctions
identical (EJ1 = EJ2 = EJ). Employing Eq. 1.13, we can relate the fluxes
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of each junction as ϕ1−ϕ2 = 2π φextφ0
, where φext is the external flux through

the loop. After these considerations, the Hamiltonian transforms into

HSQ = 4ECn
2 − 2EJ cos

(
ϕ1 + ϕ2

2

)
cos

(
ϕ1 − ϕ2

2

)
= 4ECn

2 − 2E′J cosϕ,

(1.33)
where ϕ = (ϕ1 + ϕ2)/2 and E′J = 2EJ cos(πφext/φ0). Note that the term
of the Hamiltonian related to the inductances is equivalent to the potential
energy of a single Josephson element with a tunable Josephson energy (E′J).
This is modified by controlling the threading external flux with a magnetic
field. Therefore, the Hamiltonian is a periodical function in φext, with a
period of 2φ0. In the case of EJ1 6= EJ2 the result is slightly more complex,
but the behaviour of the Hamiltonian is similar [4].

1.2.4 Josephson Junction Array

A set of Josephson junctions in series present a particular characteristic that
make it a very useful device in superconducting circuits. Let us consider
M identical Josephson junctions and suppose that the capacitances across
them can be neglected. This allows the reduced flux across the array ϕ to
be equally distributed among all the junctions [4]. The Hamiltonian of a JJ
array results in

Harr = −MEJ cos(ϕ/M). (1.34)

This expression is only valid when the electrostatic energy, EC = e2/2CΣ,
is much smaller than EJ . For large values of M the argument of the cosine
is very small, so we can approximate the Hamiltonian to its second-order
expansion,

Harr ≈ −
EJ
2M

ϕ2. (1.35)

Comparing this result with Eq. 1.8 we notice that an array of JJ can be con-
sidered as a linear inductance with Larr = M/EJ under certain conditions.
This is known as a superinductance due to the large value of Larr, which is
not obtainable with geometric inductances [4].



Chapter 2

Superconducting Qubits

A qubit is the basic unit of information in quantum computing, analogous
to the bit in classical computing. Physically, it is a two-level quantum
system. There exist two different kind of qubits in quantum platforms.
The first type takes advantage of finite-dimensional quantum systems which
already exist in nature, such as the spin of an electron or the polarization
of a photon. The second one, however, makes use of anharmonic infinite-
dimensional systems which are non-linear, so that we are able to address the
transition between only two levels. A paradigmatic example of the latter
group is the superconducting qubit, in which the Josephson junction plays
a crucial role, as explained in Section 1.2.2.

In this Chapter, we present the three simplest superconducting qubits
which contain only one Josephson junction. These are the charge qubit
(Cooper pair box), the flux qubit (RF SQUID) and the phase qubit (current-
biased Josephson junction). In Section 2.4, we introduce the circuit quantum
electrodynamics (cQED) [7]. This research field studies the interaction be-
tween a superconducting qubit and a waveguide resonator, which can be
considered analogous to the interaction between electromagnetic radiation
and an atom in a cavity. Finally, in Section 2.5, we briefly comment some
experimental aspects about superconducting circuits, such as the materials
and the ranges of temperatures and operational frequencies. To conclude,
we present a real picture of a superconducting circuit for cQED obtained
from Ref. [8] identifying the different components observed in the picture.

2.1 Charge Qubit

The charge qubit, also known as Cooper pair box, is a superconducting
qubit made of a Josephson junction shunted by a linear capacitance, so that
EJ/EC � 1 (small Josephson junction), and controlled by a voltage source.
This circuit can be understood as a superconducting island connected to
a reservoir of charge through a Josephson junction (see Fig. 2.1a). The
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(a) (b)

Figure 2.1: (a) Cooper Pair Box and (b) Split Cooper Pair box. The island, in
an orange box, is connected to a reservoir (ground) through the Josephson junction (a)
or through a DC SQUID (b) with inductance LJ and capacitance CJ . The junction is
biased by a controllable voltage source V in series with a linear capacitance CS .

Hamiltonian of the circuit is

H = 4EC(n− nS)2 − EJ cos(ϕ). (2.1)

Notice that there is only one thing that distinguishes this Hamiltonian from
Eq. 1.31, which is the term nS = V CS

2e + Qo, where V is the voltage of the
source, CS is the shunting capacitance and Qo is the possible offset charge
on the island. This parameter is externally controllable, since it is propor-
tional to the applied voltage, which allows us to tune the Hamiltonian [6],
usually with an external electric field. As the electrostatic energy (EC) is
the dominant term, the state of the circuit is determined by the number of
charges n (Cooper pairs) which have tunnelled across the junction into the
island. For this reason, the circuit is also known as charge qubit.

By replacing the JJ of a Cooper pair box (Fig. 2.1a) by two of them in
parallel (DC SQUID) we can modify the energy levels of the qubit via an
external magnetic field. The resulting qubit is known as split Cooper pair
box (Fig. 2.1b).

2.2 Flux Qubit

The flux qubit has its origin in the RF SQUID, which is a Josephson junc-
tion shunted by an inductance creating a loop, in which an external flux
φext is applied (see Fig. 2.2a). However, flux qubit also refers sometimes
to a Josephson junction shunted by a Josephson junction array instead of a
geometric inductance. Its Hamiltonian can be approximated by the Hamilto-
nian of a linear inductance, as we have shown in Eq. 1.35. The Hamiltonian
of a RF SQUID results in
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(a) (b)

Figure 2.2: (a) RF SQUID (flux qubit) and (b) current biased Josephson junc-
tion (phase qubit). with inductance LJ and capacitance CJ .

H =
CJ
2
φ̇2 +

1

2L
φ2 − EJ cos

[
2e

~
(φ− φext)

]
= 4ECJn

2 +
1

2
ELϕ

2 − EJ cos(ϕ− ϕext), (2.2)

where the electrostatic energy ECJ corresponds to the capacitance of the
Josephson element and φext is the external flux throughout the loop. As
there is no longer an isolated island, this circuit is insensitive to any offset
charge Qo [6]. In order to reduce the effects of possible fluctuations in the
charge, the regime EJ/ECJ � 1 is chosen, so the term related to the charge
is not dominant in the Hamiltonian. The eigenstates of the flux qubit are
states of current in the loop (clockwise or anticlockwise), and the excitation
energy of the ground state is a function of EJ and φext, and therefore,
controllable by an external applied flux.

2.3 Phase Qubit

The phase qubit (Fig. 2.2b) consists of a large Josephson junction (EJ/EC �
1) biased by a DC current I. We can consider that the current is generated
by a inductance with L → ∞ crossed by a flux φ → ∞, so that I = φ/L.
The Hamiltonian describing the dynamics of this circuit is

H = 4ECJn
2 − 1

2π
Iφ0ϕ− EJ cos(ϕ)

= 4ECJn
2 − Iϕ0ϕ− ICϕ0 cos(ϕ)

= 4ECJn
2 − EJ

(
I

IC
ϕ+ cos(ϕ)

)
, (2.3)

where I is the applied current, IC is the critical current of the Josephson
junction and ϕ0 = φ0/2π. The potential in ϕ has the shape of a tilted
dashboard, as we will see in the following Chapter. As well as the flux
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qubit, the phase qubit is not affected by charge offset Qo, and EJ/EC is
chosen large for the same reason as for the flux qubit.

Using Eq. 1.29, we can find the frequency of the classical oscillation in
the minima of a well, also known as plasma frequency, which leads to [6]

ωp =
1√

LJ(I)CJ
=

√
IC cos(ϕ)

ϕ0CJ
≈ 1√

LJ0CJ

(
1− (I/IC)2

)1/4
, (2.4)

where LJ(0) = ϕ0/IC . Considering the circuit as a quantum system, the
levels in the well are not equally spaced, and the transition frequency of the
two lowest states is ω01 ≈ 0.95ωp, therefore, tunable by changing the value
of the bias current I.

2.4 Circuit QED

The interaction between a single-mode of a cavity and a two-level system is
described by the Jaynes-Cummings model [9]. We consider that the qubit
is much smaller than the resonator, so it can be considered a point. This is
known as dipole approximation. The Hamiltonian of the system, known as
the quantum Rabi Hamiltonian, is

H =
~ωq
2
σz + ~ωfa†a+ ~gσx(a† + a), (2.5)

where ~ωq denotes the excitation energy of the qubit, ωf the frequency of the
field in the cavity and g the strength of the interaction. The qubit operators
are denoted by Pauli matrices σx and σz, whereas the ladder operators a,
a† refer to the field in the cavity. If the coupling is small in comparison to
the resonator frequency (g � ωf ), the quantum Rabi Hamiltonian can be
simplified by the rotating wave approximation. This results in the so-called
James-Cumming Hamiltonian [10],

HRWA =
~ωq
2
σz + ~ωfa†a+ ~g(σ−a

† + σ+a), (2.6)

where σ± = (σx ± iσy)/2 are the ladder operators for the qubit, so that
σ+ |0〉 = |1〉 and σ− |1〉 = |0〉 (σ+ |1〉 = σ− |0〉 = 0).

The system operates in different regimes depending on the relation be-
tween the parameters of the Hamiltonian g, ωf and ωq. In the so-called
dispersive limit the coupling strength is much smaller than the detuning
between the resonator and the qubit, g � |ωq − ωf |. In this regime, the
qubit readout can be performed by applying a microwave signal to the res-
onator and measuring the reflection properties [10]. Taking into account
this approximation [2], the Hamiltonian results in

Hdis =
~ω̃q
2
σz + ~ω̃fa†a, (2.7)



2.4. CIRCUIT QED 23

where ω̃f = ωf + χσz, χ = g2/|ωq − ωf | is the dispersive shift, and ω̃q =
ωq + χ is known as Lamb shift. Notice that this Hamiltonian describes a
situation in which the qubit and the resonator have no direct interaction,
but the resonator suffers a frequency shift which depends on the state of the
qubit.

2.4.1 Readout Signal

The capability of measuring the state of the qubit of the system (readout)
in a fast and reliable manner is fundamental. We have seen that, in the
dispersive limit, the resonator suffers a frequency shift depending on the
state of the qubit (χ), a characteristic that can be used for the readout of
the state of the two-level system. This is performed by probing the system
with a short microwave signal with a frequency ωR, called carrier frequency,
and measuring the reflection properties. The reflected signal is given by

s(t) = AR cos(ωRt+ θR), (2.8)

where AR and θR are the amplitude and phase of the returning signal.
The information about the qubit state is stored in these parameters. This
expression can be written as the real part of an exponential,

s(t) = Re
[
ARe

i(ωRt+θR)
]

= Re
[
ARe

iθReiωRt
]
. (2.9)

In this representation, all the information is contained in the phasor ARe
iθR .

The objective of the readout is to measure the in-phase I and quadrature
Q parts of the phasor: ARe

iθR = I + iQ.
Let us briefly discuss a method to obtain I and Q called microwave

homodyne detection [2] with an I-Q mixer. This procedure consists in com-
paring the signal which carries the information s(t) against a local signal
which resembles the carrier one as if it had no information, i.e. with the
same frequency, y(t) = AL cos(ωRt). Both signals are split into two equal
parts, s(t) = sI(t) + sQ(t) and y(t) = yI(t) + yQ(t). One of the parts of the
carrier signal is multiplied by one half of the local one. The other half of the
carrier signal is multiplied by the local oscillator shifted a π/2 phase. The
resulting signals are:

I(t) = sI(t)yI(t) =
AR
2

cos(ωRt+ θR)
AL
2

cos(ωRt) (2.10)

=
ARAL

8
(cos(2ωRt+ θR) + cos(θR)),

and

Q(t) = sQ(t)yQ(t) = −AR
2

cos(ωRt+ θR)
AL
2

sin(ωRt) (2.11)

=
ARAL

8
(sin(2ωRt+ θR)− sin(θR)).
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Notice that both I(t) and Q(t) contain two different terms, namely, an AC
term with a frequency twice the sent signal and a DC term. A low-pass filter
is employed in order to take only the DC contributions,

I =
ARAL

8
cos(θR) , Q =

ARAL
8

sin(θR) (2.12)

from which we can obtain the desired amplitude AR = 8
√
I2 +Q2/AL and

phase θR = arctan(Q/I).

2.5 Experimental Aspects

Until this point, we have discussed the theoretical bases of the different
building blocks of a superconducting circuit. However, the technical specifi-
cations and the experimental aspects are equally important. In this Section,
we briefly introduce different topics related with the experimental realization
of a integrated superconducting circuit [6].

2.5.1 Temperature and Frequency Ranges

There are mainly two requirements for an integrated circuit to show a quan-
tum behaviour, namely, low energy dissipation and low noise in the system.

In order to carry a signal from one part of the circuit to another without
energy loss, a material with no electrical resistance is necessary, supercon-
ductors. Typical choices for this task are low temperature superconductors,
such as aluminium or niobium [6].

However, employing superconductors is not a sufficient condition to pre-
serve the quantum states of the circuit. We also need low thermal noise,
which is related with the temperature of the system. We must cool it down
so that the thermal energy kBT is much smaller than the energy required
to excite a qubit, kBT � ~ω01.

The working temperature of superconducting circuits is mainly deter-
mined by the Bose-Einstein distribution, which gives an estimation of the
number of photons with frequency between ν and ν+dν per unit volume at
a given temperature T :

n(ν) ≈ 1

e
hν
kBT + 1

, (2.13)

where kB is the Boltzmann constant. If we consider a working frequency of
5 GHz and a temperature of 298 K, the number of photons with the same
frequency due to the temperature are n ≈ 1240. Reducing the temperature
to 1 K would result in 3− 4 thermal noise photons, which are still too many
if we want to work with single photons. Indeed, the superconducting qubits
operate in the microwave regime with frequencies between 3-5 GHz, and the
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Figure 2.3: Real picture of a superconducting circuit [8]. (a) Coplanar waveguide
resonator fabricated employing optical lithography. (b) Coupling capacitance formed by
two fingers. (c) Scanning electron picture of a Cooper pair box located in the center of
the resonator. (b) Simple coupling capacitance.

temperature T is around 10 − 30 mK, which translates into less than 10−4

microwave thermal photons per unit volume.

We have to keep in mind that the metals must lie below a certain temper-
ature, called the critical temperature Tc, to present superconducting proper-
ties. This temperature is Tc = 1.2 K for the aluminium and Tc = 9.26 K for
the niobium. Due to the requirement of low noise, this condition is already
fulfilled for both elements. The higher critical temperature of the niobium
makes it a better option than aluminium in terms of feasibility, but the
aluminium is much more abundant and cheap.

2.5.2 Fabrication and Design

The techniques of fabrication of superconducting circuits are similar to the
ones used for classical integrated circuits. These are the photolithography
or e-beam lithography on silicon (Si) or sapphire (Al2O3) wafers and the
posterior thin-film deposition of the metal [6].

In order to consider that the elements of our circuit are ideal, their
dimension must be much smaller than the wavelength of the signal operating
in our circuit. This is known as the lumped element approximation, and it
forces the size of the elements to be much smaller than the typical wavelength
of the signal, which is around 1 cm.

2.5.3 Example of a Superconducting Circuit

Let us now characterize the real superconducting circuit depicted in Fig. 2.3,
which is taken from Ref. [8]. This chip comprises a transmission line res-
onator and a superconducting qubit. The resonator is made of a niobium
coplanar waveguide fabricated employing photolithography. The width of
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the centre line is 10 µm and it forms a gap with the ground planes of 5 µm.
Since the length of the transmission line (2.4 cm) is greater than the size of
the chip, it must be displayed in a sinusoidal form.

The output and input ports are connected to the resonator by two ca-
pacitors of different architectures but identical values. The left one (b) is
made of two superconducting fingers, 4 µm wide and 100 µm long, separated
by a 2 µm gap. The right coupling capacitance (d) is made with a gap of
4 µm.

The final component (c) is a split Cooper pair box, introduced in Sec-
tion 2.1, made of aluminium employing electron beam lithography. It is
situated between the central line and the bottom ground plane of the copla-
nar waveguide. The ground plane is connected to the island through the
SQUID, and the island forms a capacitance with the central line of the
resonator.



Chapter 3

Photodetector Proposal

Single flying photon photodetectors are a essential tool in quantum optics,
required for almost every quantum protocol involving photons. This device
already exists for the optical regime, which is commercially available. This
is the case of the single-photon avalanche diode (SPAD) [11]. It is a single-
photon detector based on the avalanche current triggered when radiation is
applied to a reverse biased p-n junction. A single optical photon unleashes a
charge carrier which, thanks to a high electric field, is capable of triggering an
avalanche of electrons. However, due to the low energy of microwave photons
(≈ 0.1 meV) in comparison to the energy of optical photons (≈ 1 eV), we
cannot take advantage of this effect to design a single-photon detector for
microwaves.

In this Chapter, we describe the proposal of a 100% efficient single-
photon detector in the microwave regime introduced in Ref. [12]. This
perfect photodetector relies on the interaction between the photon on a
semi-infinite transmission line and a mirror at the end with a phase qubit
at a fixed distance L from the mirror. Firstly, in Section 3.1 we explain the
motivation for using the current-biased Josephson junction, briefly reviewed
in Section 2.3 (see Fig. 2.2b). We also develop the basic tools for the analysis
of any photodetector based on an interaction between a transmission line
and a qubit with a washboard potential.

In Section 3.2, we present the setup of the microwave detector proposal,
consisting of a semi-infinite line and a qubit placed at a given distance from
a perfect mirror, which is at the end of the transmission line. We analyse
its performance and calculate the efficiency for one single qubit (absorber).
Finally, the analysis is generalized for the case of N absorbers.
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(a) (b)

Figure 3.1: (a) Tilted dashboard potential of Eq. 2.3 and (b) three level Λ
system representation. The energy needed to excite the state |0〉 is given by ~ω01, and
the state |1〉 decays to a continuum with a rate Γ.

3.1 Photodetection with Current-Biased Joseph-
son Junctions

The most important feature of a current-biased Josephson junction (CBJJ)
or any other phase qubit is its built-in readout, which is due to the shape
of its potential (Fig. 3.1a). The readout of a phase qubit is possible thanks
to a quantum effect known as quantum tunnelling, a phenomenon which
allows a particle to tunnel through a potential barrier. This effect allows a
photon in the state |1〉 to cross the barrier into the continuum with a rate
Γ, generating a voltage difference across the Josephson junction [6]. The
tunnelling rate of the state |0〉 is approximately 500 times smaller than the
one for the state |1〉 and, therefore, can be neglected. This is known as a
three-level Λ system, which is represented by the scheme in Fig. 3.1b.

The performance of a photodetector is given by the probability of ab-
sorbing an arriving photon. In order to calculate it, we need the Hamiltonian
of the system, which is

H = ~(ω01 + iΓ/2) |1〉 〈1|+ i~vg
∫
dx(ψ†L∂xψL − ψ

†
R∂xψR)

+ ~V
∫
dxδ(x− xi)[(ψR + ψL) |1〉 〈0|+H.c.]. (3.1)

The first term of the non-Hermitian Hamiltonian corresponds to the Λ sys-
tem, where ~ω01 is the excitation energy of the qubit and Γ is the decay
rate of the state |1〉 to the continuum |g〉. This term can be understood in
the following way: the evolution of a wave function Φ(x, t = 0) is given by
Φ(x, t) = e−iHt/~Φ(x, 0), where H is the Hamiltonian of the system. The
decay of a function is given by Φ(x, t)e−Γt, where Γ is the decay rate. There-
fore, the evolution of a decaying function is Φ(x, t)e−i(−i~Γ)t/~, where −i~Γ
can be considered the Hamiltonian term responsible for the decay.
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The second term is associated to the propagating electromagnetic fields,
where ψR/L is the wave function of the field travelling right/left. The energy
of a radiation field is the expected value ~ωph = ~vgk = vgp, with vg the
group velocity of the propagating photon and p the momentum operator,
which is defined as −i~∂x.

The third and last term corresponds to the interaction between the pho-
ton and the qubit, where H.c. denotes the Hermitian conjugate. It is mod-
elled with a delta potential V δ(x) located at the position of the qubit xi,
and is the responsible for exciting the qubit from the state |0〉 to |1〉. This
Hamiltonian generates the evolution of the quantum state of the system
which, in the case of a state with zero or one photons, leads to

|φ〉 =

∫
dx[ξR(x, t)ψ†R(x) + ξL(x, t)ψ†L(x)] |0, vac〉+ e(t) |1, vac〉 , (3.2)

where |0, vac〉 is the state of the system with the absorber in the state 0

and the field in vacuum. The operator ψ†R/L(x) applied to the state |vac〉
creates a photon moving to the right/left at the position x. The function
ξR/L represents the wave-packet of a single photon moving to the right/left.
Finally, the function e(t) denotes the population of the excited state of the
absorber.

Let us now find the efficiency of the design, which is defined as the
probability of finding the system the state |g〉 at long times. This would
mean that the absorber has detected a photon. The probability is calculated
as Pg = 1− ||φ||2 [1], where ||φ||2 is the probability of finding the system in
any other state. For this, we need to find the value for the coefficients ξR/L
and e(t), which is done by solving the Schrödinger equation i~ ∂

∂t |φ〉 = H |φ〉,
for the state given by Eq. 3.2 with the Hamiltonian provided in Eq. 3.1. This
results in the three following equations, which relate the field amplitudes
ξR/L with the absorber population e(t):

i∂tξR(x, t) = −ivg∂xξR(x, t) + V δ(x)e(t),

i∂tξL(x, t) = +ivg∂xξL(x, t) + V δ(x)e(t), (3.3)

(i∂t − ω01 + iΓ/2)e(t) = V/2[ξ+
R(t) + ξ−R(t) + ξ+

L (t) + ξ−L (t)],

where we have considered that the absorber is located in the origin (xi = 0)
and ξ±R/L(t) = ξR/L(0±, t) are the wavepackets just before (−) and after (+)

the absorber (see Fig. 3.2a).
Integrating the first two equations, the conditions for the field around

the absorber hold

ξ+
R(t) = ξ−R(t)− i V

vg
e(t) , ξ−L (t) = ξ+

L (t)− i V
vg
e(t). (3.4)

We can now replace this boundary conditions into the third Eq. 3.3, which
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(a)

(b)

Figure 3.2: (a) Scheme of the absorber and the fields around it propagating to
the right (R) or left (L). (b) Representation of the complete system proposed
in Ref. [12]. The absorber is represented by an orange square, and it is located in a
transmission line separated a distance L from the mirror at the end of the transmission
line.

leads to an ordinary differential equation for the population e(t) of the ex-
cited state,

i∂te(t)−
[
ω01 − i(Γ/2 + V 2/vg)

]
e(t)− V (ξ−R + ξ+

L ) = 0. (3.5)

Notice that the decaying term, which was previously iΓ/2, has been ampli-
fied by the interaction of the Λ system with the transmission line by iV 2/vg,
where V is the strength of the interaction and vg is the group velocity.

3.2 Photodetector with a Mirror

The analysis performed in the previous Section is common for every design
consisting of a Λ system interacting with a transmission line. The remaining
terms are the entering fields to the absorber from the left (ξ−R) and from the
right (ξ+

L ). These terms depend on the specific design of the photodetector.
For instance, in the case of an absorber in an infinite transmission line,
we would only expect an entering field from one of the sides, for example,
from the left ξ−R = Φ(t), which implies ξ+

L = 0. After interacting with the
absorber, one part is transmitted (ξ+

R) and another part is reflected (ξ−L ).

3.2.1 Single Absorber

The proposal developed in Ref. [12] comprises a mirror located a distance
L from the phase qubit (see Fig. 3.2b). In this case, the transmitted part
of Φ(t) is totally reflected by the mirror with a phase change given by the
factor κ. The wave reflected by the mirror enters to the absorber from the
left after a certain time a. Therefore, the entering field ξ+

L results in

ξ+
L (t) = κξ+

R(t− a) = κΦ(t− a)− iκV
vg
e(t− a), (3.6)
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where we have employed Eq. 3.4. The time taken by the signal to reflect
in the mirror an return to the absorber is a = 2L/vg. We can replace this
equation into Eq. 3.5, resulting in a delay differential equation (DDE),

i∂te(t)−
[
ω01 − i

(
Γ

2
+
V 2

vg

)]
e(t)−V (Φ(t) +κΦ(t−a)− iκV

vg
e(t−a)) = 0.

(3.7)
Due to the difficult treatment of these equations, an approximation for the
wavepacket Φ(t) is taken for the sake of simplicity. This is the adiabatic
modulation, which assumes that the function can be written as

Φ(t) = χ(t)e−iω0t, (3.8)

where ω0 is the frequency of the wavepacket and χ(t) varies slowly with
respect to the exponential, |∂tχ(t)| � ω0. Therefore, the function displaced
a sufficiently small time a results in

Φ(t− a) = χ(t)e−iω0teiω0a. (3.9)

This assumption implies that the absorber population evolves with the same
frequency e(t) = f(t)e−iω0t. Applying these changes to Eq. 3.7, we obtain

i∂tf(t) + ω0f(t)−
[
ω01 − i

(
Γ

2
+
V 2

vg

)]
f(t)− V (χ(t) + zχ(t)− izV

vg
f(t)) =

i∂tf(t) + i
V 2

vg

[
1 +

vg
V 2

(
Γ

2
+ i(ω01 − ω0)

)]
f(t)− V (1 + z)χ(t) + i

zV 2

vg
f(t)

= i∂tf(t) + i
V 2

vg
(1 + γ + z)f(t)− V (1 + z)χ(t) = 0, (3.10)

where z = κeiω0a and γ =
vg
V 2

(
Γ
2 + i(ω01 − ω0)

)
. Making the change f(t) =

vgx(t)/V and the change of variable t = vgτ/V , the previous equation yields

∂τx(τ) + i(1 + γ + z)x(τ) = −i(1 + z)χ(τ), (3.11)

which is a non-homogeneous linear first-order differential equation. It can
be straightforwardly solved for x(τ),

x(τ) = −i(1 + z)

∫ τ

−∞
e−(1+γ+z)(τ−s)χ(s)ds. (3.12)

To sum up, we have found x(τ) and, therefore, the population of the
excited state of the qubit e(t), in terms of two free parameters z and γ, as
well as of the exact form of the wavepacket χ(t)→ φ(t).

In order to finally calculate e(t) and, consequently, the efficiency of the
photodetector, we need to choose the shape of the wavepacket. In this work,
the performance is analysed with a normalized Gaussian wavepacket,

χ(τ) =
1√
σπ1/2

e−τ
2/(2σ2), (3.13)
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where σ is the variance. This function only makes sense if it varies slowly
with respect to ω0 (|∂tχ(t)| � ω0), this is, σ � ω−1

0 .

We have now all the ingredients for computing the efficiency of this
proposal, which is the probability of absorbing the photon and tunnelling
to the state |g〉. For long times, the probability of the decay of the state |1〉
is 1, thus we can define the efficiency of the detector as the fraction of the
signal, the wavepacket, that was absorbed, i.e. one minus the fraction of the
outgoing wavepacket (ξ−L ) over the incoming one (ξ−R),

α = 1−
∫∞
−∞

∣∣ξ−L (t)
∣∣2dt∫∞

−∞
∣∣ξ−R(t)

∣∣2dt (3.14)

As the Gaussian wavepacket is normalized, the denominator results in∫ ∞
−∞

∣∣ξ−R(τ)
∣∣2dτ =

∫ ∞
−∞

∣∣∣χ(τ)e−iω
′
0τ
∣∣∣2dτ =

∫ ∞
−∞

χ(τ)2dτ = 1. (3.15)

The numerator is obtained from Eqs. 3.4 and 3.6, which yields∫ ∞
−∞

∣∣ξ−L (τ)
∣∣2dτ =

∫ ∞
−∞

∣∣∣∣ξ+
L (τ)− i V

vg
e(τ)

∣∣∣∣2dτ
=

∫ ∞
−∞

∣∣∣∣zχ(τ)− (1 + z)2

∫ τ

−∞
e−(1+γ+z)(τ−s)χ(s)ds

∣∣∣∣2dτ
=

∫ ∞
−∞

e−τ
2/σ2

σ
√
π

∣∣∣∣z − (1 + z)2

1 + z + γ

∣∣∣∣2dτ =

∣∣∣∣z − (1 + z)2

1 + z + γ

∣∣∣∣2, (3.16)

It is useful to write the parameter γ as γ = Γ
′
+iδ

′
, where Γ

′
is the decay rate

and δ
′

is the detuning between the detector and the photon, ω01 − ω0, both
in units of V 2/vg. Finally, the expression for the photodetector efficiency α
is

α = 1−
∣∣∣∣z − (1 + z)2

1 + z + Γ′ + iδ′

∣∣∣∣2 = 1−
∣∣∣∣−eiθ − (1− eiθ)2

1− eiθ + Γ′ + iδ′

∣∣∣∣2, (3.17)

where we have assumed κ = −1. Notice that the efficiency does not depend
on the shape of the Gaussian wavepacket σ, as long as the condition for the
adiabatic approximation is fulfilled, σ � ω−1

0 .

In Fig. 3.3, we represent the efficiency of the detector in terms of the
decay rate Γ′ and the phase change generated by the distance between the
mirror and the absorber, θ. The first representation, Fig. 3.3a, corresponds
to the case of no detuning between the signal and absorber, δ′ = 0. We
observe that the detection reaches to a 100% efficiency for Γ′ = 2 and θ = π.

Let us now analyse the case in which the photon and the absorber are
not in resonance, δ′ 6= 0. In Fig. 3.3b, for a value of δ′ = 0.5, there are
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Figure 3.3: Contour plot of the efficiency in terms of the phase θ and the decay
rate Γ′. (a) No detuned system (δ′ = 0). A perfect performance is achieved for Γ′ = 2
and θ = π. (b) Slightly detuned system (δ′ = 0.5). A perfect performance is achieved for
two sets of parameters.

two sets of parameters for which the efficiency reaches 100%. These two
points of maximum efficiency come closer as δ′ increases, until they become
a single point and disappear. This can be seen in Fig. 3.4, where we have
plotted the maximum efficiency of the device in terms of the detuning δ′. In
this Figure, we can appreciate that an optimal efficiency is achieved until
a detuning value of δ′ ≈ 1 → δ = ω01 − ω0 ≈ V 2/vg. Therefore, replacing
the values for the parameters V 2/vg used in Ref. [1], the bandwidth of the
detector is BW ≈ 2V 2/vg ≈ 100 MHz.

3.2.2 Multiple Absorbers

The performance of the detector can be improved by enhancing the op-
erational bandwidth of the device. This is achieved by placing multiple
absorbers in the semi-infinite transmission line. In order to find the perfor-
mance of a multiple absorber photodetector, firstly, we simplify the model
by using a monochromatic plane wave Φ(t) = e(−iω0+σ)t instead of a Gaus-
sian wavepacket. Secondly, we introduce an alternative and simpler analysis
method [1] that scales with multiple absorbers better than the previous
method.

This new method studies the interaction as a scattering process. The
first interaction between the signal and the absorber results in reflected and
transmitted signals. In this moment, we can consider that the incoming field
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Figure 3.4: Maximum absorption efficiency α in terms of the detuning δ′ . The
red dashed line indicates the maximum detuning for 100% efficiency, which is γ′ ≈ 1 in
units of V 2/vg.

by the right is ξ+
L = 0. Under this assumption, Eq. 3.5 results in

i∂te(t)−
[
ω01 − i(Γ/2 + V 2/vg)

]
e(t)− V Φ(t) = 0. (3.18)

The solution of this differential equation is straightforward,

e(t) = −iV
∫ t

−∞
e
−V

2

vg
(1+γ)(t−s)+i(ω01−ω0)s

ds

= −ivg
V

1

1 + γ
e−iω0t. (3.19)

We can find a relation between the population of the excited state and
the fields around the absorber by replacing Eq. 3.19 into the third equation
of Eqs. 3.3 and solving for e(t), which results in

e(t) =
vg
iV γ

[ξ+
R(t) + ξ−R(t) + ξ+

L (t) + ξ−L (t)] (3.20)

Finally, we find the relation between the incoming and outgoing fields by
replacing the obtain result into the conditions of Eq. 3.4, which can be
written in matrix form as(

ξ+
R

ξ+
L

)
= T

(
ξ−R
ξ−L

)
, T =

(
1− 1/γ −1/γ

1/γ 1 + 1/γ

)
, (3.21)

where T is the transfer matrix of a single absorber. In the case of N ab-
sorbers with a separation between them of Lj , the global transfer matrix
is

T =

N∏
j

ei
2πLj
λ

σz

(
1− 1/γj −1/γj

1/γj 1 + 1/γj

)
. (3.22)
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Figure 3.5: (a) Contour plot of the efficiency of a 4 absorber resonant detector
(δ′ = 0) in terms of the phase θ and the decay rate Γ′. (b) Maximum efficiency α
for N = 1 (blue), N = 4 (orange) and N = 8 (green) absorbers.

For the sake of simplicity, we will consider that all the absorbers are identical,

γj = γ ∀j, and separated by a constant distance so that ei
2πLj
λ = eiθ/2. The

transfer matrix for N identical equidistant absorbers is

T =

[
ei
θ
2
σz

(
1− 1/γ −1/γ

1/γ 1 + 1/γ

)]N
. (3.23)

The particularity of this proposal is the interaction with the mirror,
which sets a boundary condition to the field obtained employing Eq. 3.6,(

1
κ

)
= ei

θ
2
σzT

(
ξ−R
ξ−L

)
, (3.24)

where θ = ω0a and κ represents the phase induced by the mirror, typically
κ = −1. Multiplying by

(
κ , −1

)
both sides of the equation, we obtain

an expression for the outgoing field ξ−L in terms of ξ−R . Making use of this
result, we obtain the absorption efficiency from Eq. 3.14, which is given by

α = 1−
∣∣∣∣T11 + e−iθT21

T12 + e−iθT22

∣∣∣∣2, (3.25)

where Tij are the elements of the transfer matrix, which depend on the
number of absorbers N , γ and θ. Finally, we find the performance of a
detector with four Λ systems, and depict it in Fig. 3.5a in terms of the decay
rate Γ′ and θ. The detector now offers an optimal efficiency for more sets of
parameters, which means that the relative position of the absorbers lacks of
importance in the performance. Furthermore, we have also computed and
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represented the maximum efficiency in terms of the detuning (Fig. 3.5b)
for N = 1 (blue), N = 4 (orange), and N = 8 (green). By observing this
figure, we can conclude that increasing N notable enhances the operational
bandwidth, for example tripling it in the case of N = 4 absorbers.
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Conclusions

We have started this work by describing the main superconducting circuit el-
ements, both linear and non-linear. Then, we have learned how to obtain the
Hamiltonian which characterizes the dynamics of superconducting circuits.
Finally, we have compared the linear LC oscillator against the Josephson LC
circuit. Indeed we have observed that the non-linearity added by the Joseph-
son junction to the LC circuit generates an anharmonic energy spectrum.
This feature allows us to address the transition between only two energy
levels, which is a fundamental requirement to be employed as a qubit.

Superconducting qubits are key elements in the superconducting circuit
platform. We have calculated the Hamiltonian of the simplest ones, namely,
the charge, flux and phase qubit, and analysed their fundamental properties.
Then, we have reviewed the research field of circuit QED, which studies the
interaction between a qubit and a transmission line resonator. We have seen
that, in the limit in which the coupling between the qubit and the resonator
is small compared with their detuning, it is possible to read the state of the
qubit by probing the resonator with a microwave signal and measuring the
reflection properties of the system.

The motivation of this work is to study the fundamental models of mi-
crowave single-photon photodetectors. We have studied a photodetector
based on qubits interacting with a transmission line with a dashboard-like
potential and, in particular, we have reviewed the proposal developed in
Ref. [12], based on a semi-infinite line with a mirror at the end. We have
calculated the efficiency of the photodetector for a single qubit and found
that it reaches 100% for some values of the parameters. We have also shown
that it operates correctly in a reasonable bandwidth, for which the detection
is still perfect. Finally, we have calculated the efficiency of the detector with
multiple qubits in the transmission line, and observed that a perfect detec-
tion is achieved for a larger set of parameters, which means an improvement
in the operational bandwidth and robustness.

An efficient detection of microwave single propagating photons is crucial

37
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in several protocols and technologies, including, for instance, quantum tele-
portation, quantum sensing and metrology, quantum radars and distributed
quantum computing, just to mention a few. The proposal reviewed in this
work is a promising candidate for a feasible design of an efficient microwave
photodetector, but it is far from being the only one. Only an experimental
development and testing will decide which is the optimal approach.
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Appendix A

Mathematica Figures

In this program, we compute the efficiency of the photodetector. Firstly, it
is performed for 1 absorber and represented graphically with a contour plot.
Then we compute the maximum efficiency for different values of detuning
δ′. This is repeated for multiple absorbers, in particular, N = 4. Finally
we compare the maximum efficiency in terms of δ for N = 1, 4 and 8
absorbers.
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