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Introduction

In recent years great advances in quantum information processing, communication
and sensing among other applications of quantum technologies have been made.
One of the most common platforms to implement these technologies is the Ni-
trogen Vacancy centre (NV centre), a lattice impurity that appears in diamond.
These impurities exhibit some interesting properties that make them suitable to
be applied in the field of quantum technologies.

The objective of this work is to present the main characteristics of the NV centre
and explain how they can be used to perform quantum sensing. For the latter I
will explain a simple quantum sensing protocol that can be implemented and I
will carry out numerical simulations to show its performance and results.

In the first chapter I will explain what NV centres are and, most importantly,
which are the properties that make them so interesting and suitable for the de-
velopment of quantum sensing.

The second chapter will introduce the required mathematical tools to face a deeper
analysis of the NV centre. That is, I will explain the most important concepts
that will be used to carry out the numerical simulations.

Finally, in the third chapter, I will apply the content of the first and second
chapters to perform a Nanoscale Nuclear Magnetic Resonance protocol to detect
a 13C nucleus controlling the spin state of the NV centre. With that objective, I
perform numerical simulations with MATLAB and present the results.





Chapter 1

Nitrogen Vacancy Centre

Diamonds present several crystallographic defects. These may be the consequence
of irregularities within the lattice or due to the substitution of carbon atoms by
other elements. The latter leads to the appearance of the so called colour centres.
This kind of impurities absorb visible, infrared or ultraviolet light and give a
characteristic colour to the solid[1].

Some of the most typical colour centres of diamond are Boron Vacancy centres
(BV centres), Silicon Vacancy centres (SiV centres) , Nickel Vacancy centres (NiV
centre) or Nitrogen Vacancy centres (NV centres). On this chapter we describe
the NV centres. We concretely analyse their electronic structure as well as some
of some of its most useful properties. Finally we explore some of the applications
these impurities have. Among these we will especially focus on those related with
Nanoscale Nuclear Magnetic Resonance (NNMR).

1.1 Electronic structure

NV centres along with other colour centres (BV centres, NiV centres...) are one
of the many impurities that can be found in diamond structure. In particular,
the NV centre is the result of the binding between a nitrogen atom and a vacancy
in the crystal structure. NV centres can be created during the synthesis of the
diamond itself or the diamond can be irradiated, with nitrogen ions, in order to
generate vacancies within the crystal structure [2]. Varying the energy of this
beam would lead to a change in the depth of the implant.[2]

As we can see in Fig. 1.1 the nitrogen1 atom is bonded to three neighbouring
carbon atoms and to the vacancy. The nitrogen has 5 valence electrons. Three of

1To perform NNMR we need to apply an external static magnetic field that lifts the de-
generacy of NV centre’s electronic levels. Nevertheless this field also affects the nuclear states.
For this reason, the NV centres that are normally used have 15N. Their nuclear spin is S = 1,
namely, it is a three level system with |−1〉N, |1〉N and |0〉N states. We could then polarise the
nucleus in the |0〉N state and thus the structure of the NV centre would remain unaltered.

If the nitrogen atom was 14N the nuclear spin would be S = 1/2 and its state would affect the
structure of the NV centre.
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Figure 1.1: Primitive cells of diamond (a) and diamond with a NV centre (b). Grey represents carbon
atoms, blue represents nitrogen and white a vacancy. The side of the primitive cell is about 0.35 nm
long.

them form a covalent bond with the electrons of the surrounding carbon atoms
and the remaining two stay a lone pair. The vacancy, on the other side, has 4
electrons. Three of them come from the surrounding carbon atoms and the forth
one is taken from the lattice. Two of these electrons on the vacancy form a bond.
Thus we get two free electrons in the vacancy that form a system with spin S = 1.
This charge state is known as NV−. This is the charge state we are interested in.
[3]2.

As stated above, there are two free electrons in the NV centre and this generates
a system with spin S = 1. Consequently a triplet ground level 3A2 and a triplet
excited level 3E appear [3]. These two levels have a spin conserving optical tran-
sition with λ = 637 nm. There are also another two metastable singlet levels 1A1

and 1E [3].

Figure 1.2: Energy levels of NV−. Continuous lines indicate radiating transitions, while dashed lines
indicate non radiating transition. Image taken from [2].

The spin Hamiltonian of the NV centre is3 [2]

2There is also another relevant charge state of the NV centre (NV0) which only has one
free electron in the vacancy. Theoretically this charge state of the NV centre should have two
hyperfine states with m = ±1/2. This would allow to perform NNMR, but these states have
not been experimentally observed [3]. Thus it is impossible to use NV0 to perform NNMR and
we are not interested in it.

3In this work we adopt the convention ~ = 1
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H = Dgs

(
S2
z −

1

3
[S(S + 1)]

)
+ ~SAN

~IN +
∑
i

(~SAi
~Ii) (1.1)

with Dgs = (2π)×2.87 GHz[2] and Sz is the electronic z-spin operator. This is the
ground state zero field splitting, namely the splitting between m = 0 and m = ±1
states. The z-axis is chosen to be the symmetry axis of the NV centre, that is,
the axis that is parallel to the line connecting the nitrogen atom and the vacancy
in Fig. 1.1.

The second term in the Hamiltonian represents the hyperfine interaction of the
NV centre’s nitrogen atom. ~S is the electronic spin operator, AN is the hyperfine
interaction tensor and~IN is the operator of nitrogen’s nuclear spin. The last term
in Eq. (1.1) represents the interaction of the NV centre with its surrounding spin
bath. However, this form of the Hamiltonian is not used throughout this project.
To carry out the simulations we will simply take the first term with S = 1 and
substitute the latter terms with a stochastic function that will simulate their effect

H = Dgs

(
S2
z −

2

3

)
+
δ(t)

2
Sz. (1.2)

Where the added term represents the stochastic function mentioned above.

The term −2/3 does not contribute to the analysis and numerical simulations
in this work so we can ignore it. Finally the Hamiltonian we consider for the
electronic ground state is:

H = Dgs

(
S2
z

)
+
δ(t)

2
Sz (1.3)

1.2 Properties

1.2.1 Optical properties

One of the most interesting kind of properties the NV centre presents are the
optical ones since they allow us to readout its spin state and polarize it.

If we illuminate the impurity with visible radiation (typically 532 nm), the NV
centre emits radiation. During approximately the first 300 ns of illumination get
a contrast between the luminosity of both radiative decays (continuous lines in
Fig. 1.2)[4]. This is because the excited state with m = ±1 has a non radiative
decay path through the singlet levels to the ground state level with m = 0. This
contrast allows to read out the spin state of the NV centre.

After the illumination the system will be partly polarised in the | 3A2;m = 0〉 = |0〉
state and partly in the | 3A2;m = ±1〉 = |±1〉 state [4]. Polarisations in the |0〉
state between 46% and 96% have been reported at room temperature [3], while
polarisations larger than 99% haven achieved at low temperatures of ≈ 4 K [5].
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1.2.2 Interactions

Other useful properties the NV centres exhibit are their interactions with the
lattice and with external fields.

Diamond exhibits a natural abundance of a 1.1% of 13C (SC = 1/2). This spin
bath interacts with the NV centre and it is the main source of decoherence4. At
room temperature and with no external field acting upon the NV centre, it loses
its coherence after a time T ∗2 = 10 µs [6]. However, if we ’protect’ the NV centre
(for instance, applying an external oscillating magnetic field) we can extend this
coherence time up to T2 = 1.8 ms [3]5. This coherence time allows the coupling
between the impurity and surrounding spins to be manipulated.[3].

Besides these interactions with the surrounding spins the NV centre also exhibits
a strong interaction with external magnetic fields which allows us to extend the
coherence time as well as to lift the degeneracy of the |±1〉 state. This last feature
will be analysed later on and we will see how useful this property of the NV centres
is.

1.3 Applications

In recent years NV Centres have emerged as entities with a great variety of appli-
cations. This is due to their high stability, their optical activity and their strong
interaction with magnetic, electric and strain fields.

Some of the most important applications are nanoscale sensing, ion concentration
monitoring, strain and pressure sensing, scanning magnetometry or NNMR [7].
In this work we focus on the last one.

One way of performing NNMR consists of putting the quantum system on a high
magnetic field and measuring the Larmor precession of the surrounding nuclear
spins [7]. In this manner, we can detect different nuclei surrounding the NV
Centre. This protocol might, for example, enable us to know the internal structure
of proteins and biological systems in a more precise way [7].

In the last chapter we simulate an experiment where the NV centre evolves under
the an oscillating magnetic field. The amplitude of the field would be varied. For
each amplitude we would let the system evolve a certain time and we would then
check the spin state of the NV centre. Checking which value of the amplitude
provokes a change in NV centre’s spin state, would allow us to determine the
gyromagnetic ratio of the surrounding nuclear spins. If we know the gyromagnetic
ratio we can deduce what type of nuclei we detect.

Evidently, in our simulation we previously know the gyromagnetic ratio of the

4We refer to coherence time as the time during which some quantum mechanical properties
(entanglement or superposition for instance) of the system are not affected by the environment.
Decoherence is thus the loss of those quantum mechanical properties

5From now on we refer to the coherence time of the unprotected NV centre as T ∗
2 . On the

other hand T2 will be the coherence time of the protected NV centre.
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element (13C in our case) and such deduction will not be made. Our aim is to
predict which result we could expect in such experiment.

Page 11





Chapter 2

Theoretical Background

In this chapter we introduce the necessary theoretical background to make a
deeper analysis of the NV centre and its applications. The following mathematical
tools as well as the information exposed in the previous chapter will be applied
in the third chapter to perform numerical simulations of a Nanoscale Nuclear
Magnetic Resonance protocol.

2.1 The interaction picture and the Rotating Wave

Approximation

There are three different pictures with which we can treat quantum mechanical
systems. Typically, one considers the Schrödinger, Heisenberg and interaction
pictures. We are only interested in the Schrödinger and interaction pictures.

In the Schrödinger picture we suppose that state kets

|α〉 (2.1)

evolve in time affected just by the time evolution operator

e−iH0t (2.2)

where H0 is the Hamiltonian. Namely, in the Schrödinger picture we would have

|α, t〉 = e−iH0t |α〉 . (2.3)

Let us now suppose we have the following Hamiltonian describing our system.

H = H0 + V (t). (2.4)

Where V (t) is a time dependent potential.

13
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We now define the quantum state of a system in the interaction picture as [8]

|α, t〉I = eiH0t |α, t〉 . (2.5)

Where the ket at the right hand side is the quantum state in the Schrödinger
picture.

The operators in the interaction picture are

AI = eiH0tAe−iH0t. (2.6)

The potential of the Hamiltonian Eq. (2.4) in the interaction picture is thus

VI = eiH0tV (t)e−iH0t. (2.7)

If we now take the time derivative of Eq. (2.5) and consider the Hamiltonian of
the system to be Eq. (2.4) we get the following,

i
∂

∂t
|α, t〉I =i

∂

∂t

(
eiH0t |α, t〉

)
(2.8)

= −H0e
iH0t |α, t〉+ eiH0t(H0 + V (t)) |α, t〉 (2.9)

= eiH0tV e−iH0teiH0t |α, t〉 . (2.10)

Then, we find an equation similar to Schrödinger’s:

i
∂

∂t
|α, t〉I = VI |α, t〉I . (2.11)

That is why we refer to VI as the interaction Hamiltonian. We can use VI to
know the evolution of the system in the same way we use the Hamiltonian in the
Schrödinger picture.

When defining the potential in the interaction picture Eq. (2.7) we might get
some terms within it that rotate much faster than others. If this were the case we
could apply the RWA (Rotanting Wave Approximation), that is, we could ignore
those terms since they would hardly contribute to the evolution of the system.
This can be better visualised with the following example. Let us suppose we have
the following Hamiltonian of a system with S=1/2,

H = E0σz + Ωσxcos(ωt) = E0σz +
Ωσx

2

(
eiωt + e−iωt

)
. (2.12)

Where σ matrices are Pauli matrices and we take |↑〉 (m=1/2) and |↓〉 (m=-1/2)
as our base.
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We now take the interaction picture with respect to E0σz and we get

HI =
Ω

2

(
eiωt + e−iωt

) (
|↓〉 〈↑| e−iE0t + |↑〉 〈↓| eiE0t

)
. (2.13)

The exponentials with ω+E0 rotate much faster than the other ones, thus we can
ignore them. We get

HI =
Ω

2

(
|↓〉 〈↑| e−it(E0−ω) + |↑〉 〈↓| eit(E0−ω)

)
(2.14)

Both the interaction picture and the RWA are widely used throughout this work
to reach some interesting results and to ease computation.

2.2 External fields

We now study the evolution of the NV centre subject to both static and oscillating
external magnetic fields.

2.2.1 Spin magnetic resonance

Perturbation through a static magnetic field

If we apply an external static magnetic field, ~B = Bz ẑ, we add the following term

∆H = −~µ · ~B (2.15)

where ~µ = γe~S and where γe = 2π × 28 GHz/T[7] is the gyromagnetic ratio.

As it has been pointed out, we only have magnetic field in the z-axis direction.
This means

∆H = −γeSzBz (2.16)

The eigenvalues of this term are

∆E = −γeBzm (2.17)

where m = ±1, 0. γeBz is called the Larmor frequency.

Rabi cycle

If we apply an external static magnetic field in the z-axis to the NV centre the
degeneracy will be lifted in the |3A2;m = ±1〉 level. But for the analysis of the
Rabi cycle we treat the problem as a two level problem. The levels are labelled
as |0〉 = |3A2;m = 0〉 and |1〉 = |3A2;m = ±1〉. We call them ground and excited
states respectively.

Page 15
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The hamiltonian in the Schrödinger picture of a two level system subject to a
weak magnetic field is

H = ω |1〉 〈1| − ~µ · ~B (2.18)

With ω being the frequency between both ground and excited states.

~µ = γe~σ is the magnetic dipole moment operator.

The magnetic field is an oscillating one

~B =
~B0

2

(
eiωLt + e−iωLt

)
So the time dependent part of the Hamiltonian is

H ′(t) = γe~σ ·
~B0

2

(
eiωLt + e−iωLt

)
(2.19)

Taking ~B0 = B0x̂, we would get the following in the interaction picture with
respect to ω |1〉 〈1|:

H ′I(t) =
γeB0

2

(
|1〉 〈0|

(
ei(ω+ωL)t + ei(ω−ωL)t

)
+ |0〉 〈1|

(
ei(−ω+ωL)t + e−i(ω+ωL)t

))
(2.20)

We can ignore the exponentials with ω + ωL because they rotate a much faster
rate than the frequency ω − ωL. We get the following interaction Hamiltonian

H ′I(t) =
γeB0

2

(
|1〉 〈0|

(
ei(ω−ωL)t

)
+ |0〉 〈1|

(
e−i(ω−ωL)t

))
(2.21)

This indicates that the oscillating magnetic field provokes the system to transi-
tion between two levels. We get a better perspective of this turning back to the
Schrödinger picture and solving the system.

We first introduce the Hamiltonian H in the time dependent Schrödinger equation

i~
∂

∂t
|ψ〉S = H |ψ〉S (2.22)

and considering that the state of the system is |ψ〉S = c0 |0〉+c1 |1〉1, the following
system of equations is obtained

1S subscript indicates that we are working in the Schrödinger picture

Page 16



Iñigo J. Galindo Nanoscale NMR

i
dc0

dt
=
γeB0

2
eiωLtc1 (2.23)

i
dc1

dt
= ωc1 +

γeB0

2
e−iωLtc0. (2.24)

Now, we change to the interaction picture

|ψ〉I = α |0〉+ β |1〉 = eiH0t |ψ〉S = ei|1〉〈1|ωt |ψ〉S (2.25)

Where H0 = ω |1〉 〈1|. Now we apply the ei|1〉〈1|ωt =
∑∞

0

(iωt |1〉 〈1|)n

n!
operator in

each component of |ψ〉S and we get

|ψ〉I = α |0〉+ β |1〉 = c0 |0〉+ c1e
iωt |1〉 (2.26)

This means that

α = c0 (2.27)

β = c1e
iωt (2.28)

We define how far the frequency of the applied field is from resonance as δ = ωL−ω.
We call this quantity the detuning.

Finally we get this set of equations

dα

dt
=
γeB0

2
eiδtβ (2.29)

dβ

dt
=
γeB0

2
e−iδtα (2.30)

We call γeB0 = Ω.

Solving these equations leads to

|α(t)|2 =
Ω2

(Ω/2)2 + (δ/2)2
sin2

(√
(Ω/2)2 + (δ/2)2t

)
. (2.31)

This is the probability of finding the system in the fundamental level |0〉 after a
time t.

The analysis above implies, as we mentioned at the beginning of this section, that
when we apply an external oscillating magnetic field to a two level system, it starts
flipping between both levels and thus the spin state of the system changes. This

Page 17
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result will be of great help later on. We will concretely see that, in fact, the Rabi
cycle, and therefore the change in the spin state, will only happen under certain
conditions. Observing the change in the spin state and knowing in advance these
conditions is what allows us to perform the quantum sensing protocol in the third
chapter.

2.3 Decoherence

As explained on the first chapter the NV centre can get a long coherence time
at room temperatures. On this section we explain how we are going to model
the main source of decoherence and we present a way of extending this coherence
time.

2.3.1 Ornstein-Uhlenbeck process

In the first chapter we presented the complete Hamiltonian of the electronic ground
state of the NV Centre in Eq. (1.1). The main source of decoherence on the NV
centres is the spin bath of 13C [3]. To represent the effect of the spin bath upon the
NV Centre we use, as mentioned, a stochastic function. This stochastic function
is in our case described by an Ornstein-Uhlenbeck (OU process). The function
has this form:

δ(t+ ∆t) = δ(t)e−∆t/τ +
[cτ

2

(
1− e−2∆t/τ

)]1/2

N(t) (2.32)

Where N(t) refers to a temporally uncorrelated random variable that ranges be-
tween 0 and 1, c is the diffusion constant that depends only on τ (correlation
time) and T ∗2 (coherence time) [9]. The explicit form of c is:

c =
4e2T ∗

2 /τ

τ 2(4eT
∗
2 /ττ − τ + e2T ∗

2 /τ (2T ∗2 − 3τ))
(2.33)

The function looks like this
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Figure 2.1: Plot a an OU process. This plot was drawn with variables τ = 5 · 10−5 s, ∆t = 10−5 s and
c = 1.5 · 1011.

We could really use any stochastic function to simulate the effect of the spin bath
on the NV centre, but there are two main reasons to use the Ornstein-Uhlenbeck
process.

On the one hand, this process simulates a noise that is not white, namely it is
centred around some frequencies[9]. This way we are able to depict a more realistic
scenario when simulating.

On the other hand, we saw above that the Ornstein-Uhlenbeck process only de-
pends of T ∗2 and τ . These are both values that can be experimentally measured.
We can take advantage of that to simulate the actual effect of the surroundings in
a very accurate way. In the simulations we concretely use T ∗2 = 10 µs and τ = 1
ms. These are experimental values obtained through a private communication
with Prof. Boris Naydenov (Ulm University, Germany).

2.3.2 Continuous dynamical decoupling

One of the greatest problems one is faced with when treating with quantum me-
chanical systems, such as NV centres, is the coherence time. As we mentioned, this
is the time some properties of quantum mechanical system such as superposition
or entanglement do not get affected by the environment. The two level system
described above has its own specific coherence time. It is of critical importance
to be able to extend this coherence time so we can take advantage of the useful
properties quantum mechanical systems exhibit.

Now we talk about the continuous dynamical decoupling, a method one can extend
the coherence time with.
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Let us suppose that the Hamiltonian of a system with spin S = 1/2 is

H =
γB0

2
σz =

ω0

2
σz. (2.34)

To reflect the effect of the environment we introduce a new time dependent term
in out Hamiltonian.

H =
ω0

2
σz +

δ(t)

2
σz (2.35)

This new term reflects the noise we would have in our experiment. The function
δ(t) represents a stochastic process. In this case an Orstein-Uhlenbeck process
has been chosen.

If we now represent our Hamiltonian in the interaction picture with respect to
ω0

2
σz we get

HI =
δ(t)

2
σz (2.36)

Because the Hamiltonians at different times commute, the time evolution operator
of the system would then be given by

U(t, t0) = exp

[
−i
∫ t

t0

δ(t′)σz
2

dt′
]

(2.37)

If we choose our time interval (∆t = t− t0) to be very small with respect to the
correlation time we can approximate this operator in the interval ∆t to

U(t, t0) ≈ exp [−iδ(t)σz∆t] (2.38)

With this approximation we can simulate how a system whose initial state is |↑〉x =
1√
2

(|↓〉+ |↑〉) evolves through time. The evolution is reflected in te following

plots.
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Figure 2.2: 〈σx〉 with respect to time (seconds). For this simulation we took the following numerical
values τ = 50µs, c = 1.5 · 1011 and ∆t = 0.5µs. We did 1000 shots and averaged them. The dashed red
line indicates the coherence time. We needed 511.166 s to compute this.
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Figure 2.3: 〈σx〉 with respect to time (seconds). For this simulation we took the following numerical
values τ = 5ms, c = 1.5 · 1011 and ∆t = 0.05ms. We did 1000 shots and averaged them. The dashed
red line indicates the coherence time. We needed 2.395 s to simulate this.

These plots show the different kind of decays that can be simulated with the OU
process. On the one hand the exponential decay represented by Fig. 2.2 and the
Gaussian decay Fig. 2.3. This decays appear depending on the relation between
T ∗2 and τ . If T ∗2 << τ the decay is Gaussian and if T ∗2 ≈ τ the decay is exponential
[9]. In the case of the NV centre we later see that the decay is Gaussian.

In both plots we can now identify the coherence time. This corresponds to the
time in which the system decays 1/e of its initial value.

Our aim is now to extend the coherence time. In order to do that we introduce a
driving field. In the interaction picture with respect to

ω0

2
σz the Hamiltonian of

the system is
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HI =
δ(t)

2
σz + Ω cos(ωt)σx. (2.39)

Following a similar procedure as when solving the Rabi cycle and making the the
Rotating Wave Approximation we get to

HI =
δ(t)

2
σz +

Ω

2
σx (2.40)

In the following graphs we see the evolution of the system that undergoes due to
Hamiltonians (2.39) and (2.40) if we start in the |+〉x apply the time evolution
operator U(t, t0) = eiH∆t several times.
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<
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Driving(complete Hamiltonian)
Decay with no driving
Driving (RWA)

Figure 2.4: 〈σx〉 with respect to time. τ = 50µs, ∆t = 0.5µs, c = 1.5 · 1011 and Ω = 2π · 0.5KHz. In
the case of the complete Hamiltonian, namely, the one with the Ω cosωt term, ω = 2π · 1MHz has been
used. We averaged 750 shots. We used 3792.672 s to perform this simulation.

We should also take into account that if the amplitude of the driving (the Ω
frequency) lies in the region where the noise spectrum is negligible, the effect of
the stochastic function can also be neglected. In the graph below we can appreciate
how the coherence time grows as we increase Ω.
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Figure 2.5: 〈σx〉 with respect to time for different Ω frequencies. Same numerical values as in the prior
simulation were used, but changing Ω from case to case. We averaged 750 shots. We needed 5080.870
s to compute the result.

If we calculated the Fourier Transform of the Ornstein-Uhlenbeck process we
would see that the frequencies involved are centred around certain value. If we
take the Ω frequency away from those central values the effect of the noise will be
diminished since it would not interfere with the flopping. That is what the plots
above reflect [9].
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Chapter 3

Nanoscale NMR

In this final chapter we finally apply all the data presented before to the case of
the NV centre and we simulate a Nanoscale Nuclear Magnetic Resonance protocol
that will allow us to detect the presence of a nuclear spin in the surroundings of
the impurity.

3.1 Resonance of the NV Centre

As explained before, if a two level system were put under the effect of an oscillating
magnetic field, the system would transition periodically between the fundamental
and the excited level. At first this might seem inapplicable to the NV centre
described because it is in fact a three level system. But it can be mathematically
shown that, if the NV centre is driven with an oscillating field with the appropriate
frequency, the system would only be able to transition between the state |0〉 and
one of the |1〉 or |−1〉 states1. This happens if the frequency of the oscillating field
is equal to that of the splitting between |0〉and |1〉 or |−1〉, i.e., the frequency of
the field must be equal to

ω = Dgs ± γeBz (3.1)

Figure 3.1: Energy levels of the ground state. The degeneracy of the | 3A2;m = ±1〉 = |±1〉 level is
lifted with the Bz field. Image taken from [2].

1The quantum numbers -1 and 1 correspond to the magnetic quantum number m.
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We now show this fact both analytically and numerically.

3.1.1 Analytical proof

The Hamiltonian of a NV centre affected by a magnetic field in the z-direction is
the following

H = DgsS
2
z − γeBzSz = (Dgs + |γe|Bz) |1〉 〈1|+ (Dgs − |γe|Bz) |−1〉 〈−1| (3.2)

Introducing the following oscillating magnetic field

|γe|B0Sx cosωt = ΩSx cosωt (3.3)

and changing to the interaction picture with respect to Eq. (3.2) we get

HI =
Ω

2
(|1〉 〈0| ei(ω10t) + |−1〉 〈0| ei(ω−10t) + H.c.)(eiωt + e−iωt) (3.4)

where ω±10 = Dgs ± |γe|Bz.

Developing the expression a bit more

HI =
Ω

2
(|1〉 〈0| ei(ω10−ω)t + |1〉 〈0| ei(ω10+ω)t+

|−1〉 〈0| ei(ω−10+ω)t + |−1〉 〈0| ei(ω−10−ω)t + H.c.)
(3.5)

If we now take ω = ω10 and make the rotating wave approximation, i.e., we ignore
all the terms much bigger or much lower than ω10, we get

HI =
Ω

2
(|1〉 〈0|+ |0〉 〈1|) =

Ω

2

0 0 0
0 0 1
0 1 0

 (3.6)

From now on we call

0 0 0
0 0 1
0 1 0

 = M .

This means that the propagator of the Hamiltonian would be

U(t) = e
−iΩ

2
Mt (3.7)

This exponential can be split in two summations of even and odd terms

U(t) =
∞∑
n=0

(−iΩt/2)2n

(2n)!
M2n +

∞∑
n=0

(−iΩt/2)2n+1

(2n+ 1)!
M2n+1 (3.8)
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Using recurrence relations it can be easily shown that

M ′ = M2n =

0 0 0
0 1 0
0 0 1

 (3.9)

M2n+1 =

0 0 0
0 0 1
0 1 0

 (3.10)

Thus,

U(t) = M sin

(
Ωt

2

)
+M ′ cos

(
Ωt

2

)
(3.11)

If we began our experiment in the base state |0〉 and after a certain time t = t0
we calculated the probability of finding our system in that same state we would
find the following

〈0|U(t0) |0〉 = cos

(
Ωt0
2

)
→ P (|0〉)t=t0 = cos2

(
Ωt0
2

)
(3.12)

According to the analysis we just made, we can only have transitions between the
state |0〉 and |1〉 if we choose the frequency of the driving field to be ω10.

In the following section we give a numerical proof that validates the conclusions
reached here.

3.1.2 Numerical simulation

To make the following simulation Eq. (2.39) was taken to define the propagator

U(t, t0) = e−i
∫ t0
0 HI(ω,t)dt (3.13)

Taking sufficiently small time intervals between t = 0 and t = t0 it is possible to
approximate this propagator as

U(t, t0) = Πn
k=0e

−iHI(ω,t)tk−tk−1 = Πn
k=0e

−iHI(ω,t)∆t (3.14)

Fig. 3.2 shows the probability of finding the system in the |0〉 state after a certain
time t0 with respect to different driving frequencies.
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Figure 3.2: Probability of finding the system in the |0〉 state after t = 200
1

ω
with respect to ω. The

numerical values that were used in the simulation were γe = 2π × 28.024 · 109 Hz/T, Dgs = 2π ×
2.87 · 109Hz/T, Ω = −1.9816 · 106Hz and Bz = 0.02T. Different time intervals(∆t) were used for
different driving frequencies. This simple equation was used ∆t = 1/(ω × iterations). In the present
case iterations=200. This way one single oscillation was divided in 200 steps. Since the propagator is
periodical, then it was only necessary to raise it to the power of 200 so we could get the propagator that

took the system from t = 0 to t = 200
1

ω
. The dots indicate the analytical result. We needed 68.236s to

simulate this.

Thus, the analytical proof gets confirmed. There are only two frequencies at
which the system can jump from |0〉 to |−1〉 (first peak in the graphic, with
ω = 2.3095 · 109 Hz) and to |1〉 (second peak in the graphic, with ω = 3.4305 · 109

Hz). In fact, if the probability in equation (3.12) is computed, we get the exact
value of the peaks.

Now we can go on and start making more a more complex analysis of the system
of the NV centres and its surroundings.

3.1.3 Decoherence in the case of the NV centre

Now, we must take into account that if we choose a resonant frequency as the
frequency of the driving the system will only make transitions between only two
states, so the third one can be ignored. In Fig. 3.3 a comparison between time of
evolution of 〈σx〉 under the action of these two interaction Hamiltonians is shown
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H1 =
δ(t)

2
σz +

Ω

2
σx (3.15)

H2 =
δ(t)

2
. (3.16)

We consider |+〉x =
1√
2

(|0〉+ |1〉) as the initial state.
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Time(s) 10-6

0
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1

<
x>

Figure 3.3: 〈σx〉 with respect to time (seconds). For this simulation same numerical values as in figure
3.2 have been used. Apart from that we have considered τ = 1 ms as correlation time and T ∗

2 = 10
µs in order to characterize the noise in our system[6]. We averaged 1500 shots. We used 65.450 s to
simulate this.

As we can see the Hamiltonian that has the term of the driving in it, maintains

the initial state |+〉x =
1√
2

(|1〉+|0〉), for a much longer time. Namely, introducing

the driving field we are able to extend the coherence time of the system. This way
we will be able to take advantage of the quantum properties of the NV Centre
and use it to apply a protocol to perform NNMR.

3.2 Sensing of 13C nucleus

Finally, we are going to describe the protocol used to detect a carbon atom in
the surroundings of the NV centre. This protocol basically aims to achieve the
Hartmann-Hahn condition. Once we cover this issue we will perform a simulation
of the detection of a 13C nucleus close to the impurity.
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Iñigo J. Galindo Nanoscale NMR

3.2.1 Interaction between NV-Centre and 13C nucleus

The Hamiltonian of a system consisting of a NV Centre and a 13C nucleus under

the action of magnetic file ( ~B = Bz ẑ) is

H = DgsS
2
z − γeBzSz − γ13CBzIz (3.17)

Sz represents the z-spin operator of the NV Centre while Iz represents the z-spin
operator of the 13C nucleus. These two operators act on different Hilbert spaces.
For the sake of simplicity we still take ~ = 1, that is, we will consider these
operators as Pauli matrices acting on different spaces. The one acting on the space
of the NV centre is a 3× 3 Pauli Matrix because S = 1 and the one acting on the
space of the nucleus i a 2× 2 Pauli Matrix because I = 1/2. γe = 2π× 28 GHz/T
and γ13C = 2π×10 MHz/T are the gyromagnetic ratios of the NV Centre and the
13C nucleus respectively.

We should add the magnetic dipole-dipole interaction term

Hdd =
1

r3

[
~S ·~I− (~S · n̂)(~I · n̂)

]
(3.18)

If we calculate the interaction picture with respect to DgsS
2
z − γeBzSz the terms

that include Sx and Sy rotate much faster that Dgs. Thus if we apply the RWA,
we can rewrite Hdd simply as

Sz(~A ·~I) (3.19)

where

~A =
µ0γ13Cγe

2r3

[
ẑ − 3(ẑ · ~r)~r

|~r|2

]
(3.20)

Where µ0 = 4π · 10−7NA−2 is the vacuum magnetic permeability. The actual
formula would have an additional ~2 term multiplying, but we took ~ = 1. Nev-
ertheless, when performing the simulation we need to multiply a ~ term for ~A to
preserve the scale.

We also introduce the driving field to extend the coherence time and to cause
Rabi cycles.

Ωσx cos(ωt). (3.21)

We explained above that in order to allow transitions between the |0〉 state of
the NV Centre and one of the |±1〉 states, ω = Dgs ± γeBz. Besides, in the
interaction picture with respect to DgsS

2
z − γeBzSz we can ignore all the terms
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that oscillate much faster or much slower than Dgs ± γeBz. So if we write the
complete interaction Hamiltonian we get the following

HI
dd = −γ13CBzIz + Sz(~A ·~I) +

Ω

2
σx. (3.22)

As stated above Sz is a 3 × 3 matrix, but we are going to consider only the
transition between two levels. We can manipulate Sz so it only takes into account
the transition between |0〉 and |1〉 levels. This way we will get a 2×2 matrix instead
of a 3× 3 this we will allow for a more efficient computation when performing the
simulation.

Sz = − |−1〉 〈−1|+ |1〉 〈1| = |1〉 〈1|+ |0〉 〈0| − |0〉 〈0|+ |1〉 〈1|
2

− |−1〉 〈−1| (3.23)

The last term can be ignored in the interaction picture because, as we showed
earlier, when we apply an external oscillating field that has the same oscillating
frequency as the splitting between levels |0〉 and |1〉 there are only transitions
between this states. This way we get,

HI
dd = −γ13CBzIz +

1

2
(1 + σz) ~A ·~I +

Ω

2
σx. (3.24)

We can rewrite this as follows

HI
dd =

(
A1Ix + A2Iy + A3Iz

2
− γ13CBzIz

)
+
σz
2
~A ·~I +

Ω

2
σx. (3.25)

Finally,

HI
dd = −wŵ ·~I +

σz
2
~A ·~I +

σxΩ

2
(3.26)

Hartmann-Hahn condition

If we took the interaction Hamiltonian with respect to H0 = −wŵ ·~I +
σxΩ

2
we

would get

Heff = eiH0t
σz~A ·~I

2
e−iH0t = e(iΩ

2
σxt)

σz
2
e(−iΩ

2
σxt)e(−iwŵ·~It)~A ·~Ie(iwŵ·~It). (3.27)

If we use the relation ei
~Il̂φ~I~be−i

~Il̂φ = ~I
[
(~b− (~b · l̂)l̂) cosφ− l̂ ×~b sinφ+ (~b · l̂)l̂

]
we

get
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Heff =
1

2

(
e(iΩ

2
t) |1〉 〈0|+ e(−iΩ

2
t) |0〉 〈1|

)(
A⊥x Ix cos(wt) + A⊥y sin(wt) + A‖zIz

)
(3.28)

where A⊥x = |~A− (~A · ŵ)ŵ|, A⊥y = |ŵ × ~A| and A‖z = |(~A · ŵ)ŵ|.

If we now take w = Ω/2 and apply the RWA, we get

Heff =
A⊥x
2

[
|1〉 〈0| I+ + |0〉 〈1| I−

]
(3.29)

with I± = 1
2

(Ix ± iIy).

This result indicates that the NV centre only transitions between levels when
Ω = 2w. This is the so called Hartmann-Hahn condition [10].

Knowing this we can sense a surrounding nucleus. We can increase the Bx field
to change Ω. Once 2w = Ω the NV centre would start flipping between levels and
the spin state would also change. Taking note of the field Bx where this happens
we could deduce the kind of nucleus we are detecting.

3.3 Numerical simulations

3.3.1 Noiseless simulation

First we simply simulated (Eq. 3.26) for different Ω to check that what we pre-
dicted is true. To simulate the quantum system we began in the state (|ψ〉 〈ψ|)⊗ρI .
Where ρI indicates a random state of the 13-Carbon nucleus. We represent that
with a density matrix,

ρI =
1

2

[
1 0
0 1

]
. (3.30)

The initial state of the NV centre is represented by a density matrix too. Taking

|ψ〉 =
1√
2

(|0〉+ |1〉) we get,

ρ0 =
1

2

[
1 1
1 1

]
. (3.31)

The initial state is consequently represented by the Kronecker product of these
two matrices.

We fix the position of the nucleus and the Bz field. This way the w frequency is
also fixed. Then we let the system evolve under the action of (3.26) for different
Ω. To check the change in the state of the NV Centre we calculate 〈σx〉 after some
time. In Fig. 3.4 we present the results of the simulation.
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Figure 3.4: 〈σx〉 for different Ω frequencies (Hz). The parameters set were ~r = (2, 1, 3) ·10−9m (position
of the 13-Carbon atom), Bz = 0.02T and w = 2.00 · 105 Hz. We let the system evolve for times
t = 5000/Ω and for 500 different frequencies between 5.02 · 104 Hz and 5.00 · 105 Hz. We needed 7.911
s to compute this.

As expected we got a peak, that is, a change in the state of the NV centre when
we made the simulation with 2w = Ω = 4.00 · 105Hz.

3.3.2 Simulation with noise

In a real situation we would be forced to repeat the experiment several times
in order to get accurate information. We should average the results obtained in
different ’shots’ so we could distinguish the noise introduced by the spin bath and
the measuring instruments from the actual changes in the state of the NV centre.
The stochastic function about which we have widely spoken helps us to depict
such scenario. The Hamiltonian we will simulate is

HI
dd = −wŵ ·~I +

σz
2
~A ·~I +

σxΩ

2
+
δ(t)

2
σz (3.32)

where δ(t) is the Ornstein-Uhlenbeck process.

First, we tried to carry out the simulation with the same magnetic field as in the
noiseless case. We got Fig. 3.5.
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Figure 3.5: 〈σx〉 with respect to Ω frequencies with Bz = 0.02T. In this simulation we took T ∗
2 = 10 µs

and τ = 1 ms to characterise our noise. We let the system evolve for a time t = 100/Ω and for 1000
different Ω. We repeated the evolution 100 times and averaged the result. The time needed to carry
our this simulation was 3366.452 s.

We cannot see a change in the state. This is probably due to the frequencies w and
Ω lying close to the central frequency of the Ornstein-Uhlenbeck process. Namely,
the noise is destroying our simulation. To avoid this we must get a greater w and
Ω so it lies away from that central frequencies. To accomplish this we simply
apply a greater Bz and Bx fields. By doing so we get the Fig. 3.6
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Figure 3.6: 〈σx〉 with respect to Ω frequencies with Bz = 5T. In this simulation we took T ∗
2 = 10 µs and

τ = 1 ms to characterise our noise. We let the system evolve for a time t = 100/Ω and for 1000 different
Ω. We repeated the evolution 100 times and averaged the results.w = 0.5× 108 Hz. ~r = (2, 1, 3) · 10−9

m. The time to compute this was 3305.561 s.

As we can see there is a peak in precisely where 2w = Ω. This would in a
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real experiment confirm the existence of a nucleus nearby. By noting at which
frequency the flipping occurs we could deduce the nucleus’ gyromagnetic ratio
(which was known for us during the simulation) and deduce exactly what kind of
nucleus we are detecting.

However, in the simulation we carried out the scale of the peak is distinguishable
only because MATLAB enables us to have such precession. In a real experiment
such peak would probably be impossible to detect. We should simulate the evo-
lution of the system for a longer time in order to have a better scale, that is, to
have a deeper peak. We did not simulate the evolution of the system for a longer
time because the computation time would increase a lot.
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Conclusions

Throughout this work we have revised some of the most important characteristics,
properties and applications of the NV Centre. We then have presented the most
important mathematical tools needed to simulate and apply a protocol to perform
Nanoscale Nuclear Magnetic Resonance.

The results predict a change on the the state of the NV centre when we introduce
a driving field whose amplitude is equal to the double of w and whose frequency
is equal to the splitting between |0〉 and |1〉 levels. This protocol could be used
in an actual experiment to detect not only one but several quantum entities both
13C nuclei or other. It all comes down to calculating the Larmor frequency and
deducing which nuclei it belongs to. If we had several nuclei surrounding our NV
centre we would get similar peaks as the one in Fig. 3.6 but for different Ω
frequencies depending on their position and gyromagnetic ratio.

Nevertheless, we were restricted to simulating the sensing of just one nucleus be-
cause of the computation time. Making the last simulation took 3305.561 seconds.
Each extra nuclei added to the simulation would have increased the computation
time exponentially. Therefore, to make more accurate predictions and to simulate
more complex scenarios we are forced to use a more powerful computer.

Thus, we can conclude that the application of the kind of protocol described here
can be used to effectively sense surrounding atoms. Further development of this
kind of protocols could for example result, as mentioned, in a way to know the
exact 3D structure of proteins and molecules. This structure is one of the factors
that determines the behaviour and properties molecules have. Thus, deepening
in this issue could let us reach a great milestone in science.
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