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Chapter 1

Introduction

For many years the Solid State Physics has contributed significantly to the modern society, giving a
profound understanding of how semiconductors behave, which led to a revolution with the improvement
of transistors. Furthermore, the striking advances in computation have assisted to solve numerically
heavy calculus, such as the ones arisen from Quantum Theory, which includes calculations regarding
crystals.

Recently, a whole new field of Solid State Physics has arisen, the Topological Materials, but we
will focus on the Topological Insulators (TI). A topological insulator is a material with non-trivial
symmetry-protected topological order that behaves as an insulator in its interior but whose surface
contains conducting states, meaning that electrons can only move along the surface of the material.
However, having a conducting surface is not unique to topological insulators, since ordinary band
insulators can also support conductive surface states. What makes TI special is that their surface states
are symmetry-protected by particle number conservation and time-reversal symmetry. Topological
insulators are characterized by an index (known as Z2 topological invariants) similar to the genus1

in topology. As long as time-reversal symmetry is preserved, in other words, as long as there is no
magnetism, the Z2 index cannot change by small perturbations and the conducting states at the surface
are symmetry-protected. A brand new way to study TI is presented in the literature [1], where they
use Group Theory in order to determine the topology of crystals.

One important property of these topological invariants is that they are robust against perturbations.
In a few years, different phases displaying topological properties have been found: topological insula-
tors, Weyl semimetals and non symmorphic materials whose electric properties are protected by time
reversal symmetry or some crystalline symmetry. A Weyl node is basically a band crossing close to
the Fermi level, where the dispersion is linear and is protected by time reversal or inversion symmetry.
Consequently, the charge carriers, responsible for electrical conduction, can be considered as massless
fermions, supported theoretically by the Dirac equation.

The main objective of this project is to seek topological materials, for this purpose we will study two
crystals, Ag3AuSe2 and Ag3Te2Au. These materials are trivial insulators under zero pressure, therefore,
we will apply pressure to each material and calculate their band structure, with the information obtained
from those calculations we will be able to determine if the material is topological or not, as we will
explain in section B.

In this dossier we will start introducing topological matter, then we will explain some basics about
the Density Functional Theory (DFT), and we will define some important concepts about topology,
which are related with the topic of this project, such as representations and irreducible representations.
Next we will expose some general properties of the materials we are studying (symmetry group, lattice
parameters, band structure...). After that we will apply pressure to the materials and observe how the
band structure changes, yielding to new topological properties. Finally, we will present some conclusions
about the results we obtain.

1The genus of an orientable surface is the number of holes it has, so that a sphere has genus 0 and a torus has genus 1.
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Chapter 2

Brief introduction of TI

The study of Topological Insulators began with a deeper understanding of the polarization and
magnetization of crystalline materials. In this theoretical framework of solid state physics electromag-
netism and quantum mechanics are two paramount pillars. When solving Schrödinger’s equation for
the electron distribution throughout a crystal, the resulting charge density peaks around the atomic
positions, but it does not vanish between atoms. As a result, there is no natural way to decompose the
electron charge into polarized units, equally, the same problem arises for magnetization.

With the discovery of quantum Hall effect (QHE) in 1980, which consists in applying a magnetic
field at low temperature to a 2-dimensional electron gas, a transverse conductivity was measured in
terms of quantized integers of e2/h. This provided one of the first hints that concepts of quantization,
invariance and topology may play an important role in condensed matter theory.

2.1 Polarization and surface charge density

The main problem with the old definition of polarization is that it is heavily dependent on which
unit cell is chosen to calculate it,

P =
1

Vcell

∫

cell

rρ(r)dr (2.1)

where ρ(r) is the charge density, which due to translational symmetry is periodic in the crystal, thus
the main issue comes from the ill defined r operator, because it is not periodic at all. One suggestion
could be to average over all possible unit cell locations, but unfortunately the result of this procedure
is always exactly zero, which is useless.

Now we consider a static situation in which a crystalline insulator with polarization P has a surface
normal to n̂. We expect a bound charge on the surface, related to P by,

σsurf = P · n̂ (2.2)

where σsurf is the macroscopic surface charge density. However, this relation is not accurate enough,
the real form is demonstrated in chapter 1 of [2] to be the following one:

σsurf := P · n̂ (2.3)
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2.2. POLARIZATION AND BERRY PHASE CHAPTER 2. BRIEF INTRODUCTION OF TI

The special notation ”:=” (introduced by Vandelbrit and Resta in 2006) means that the object
on the left-hand side is equal to one of the values on the right hand side, where P · n̂ is interpreted
as a multivalued object whose values are separated by the lattice values of e/Asurf , being Asurf the
area of the surface where the charge resides. Evidently, n̂ is uniquely defined, therefore P carries the
branch-choice uncertainty. For this argument to work, P must be defined modulo a 3D lattice value:

∆P =
eR

Vcell
(2.4)

Where R is a lattice vector, since ∆P · n̂ = e(n̂·R)
Vcell

= me
Acell

(m an integer) is satisfied.

2.2 Polarization and Berry phase

In 1990 the electromagnetic structure community was able to calculate derivatives of P, but not
P itself. This paradox was resolved with the arrival of a new theory of polarization based on Berry
phases. The Berry phase is the dynamical phase an electron acquires after a closed loop, where the
path lies within the wavector space k and the phase is related to the electron quantum state in the crystal.

Without going into further detail, it was proven that the polarization is related to the Berry phase
(see a further explanation in 3). This relation is demonstrated in depth in the literature [2, 3]. For
example, with a cubic cell the polarization has the form,

P = − e

Vcell

∑

j

φj
2π

aj (2.5)

where j = 1, 2, 3 indicates the direction x, y, z in which the Berry phase was calculated respectively,
and aj are the real space lattice vectors. Each berry phase is not gauge invariant, therefore they are
undetermined by modulo 2π: φj → φj + 2πmj . As a consequence, we obtain the uncertainty of P

introduced in 2.4, ∆P = eR
Vcell

, being R = −∑jmjaj .

2.3 Group theory, a new framework

Crystalline materials consist of ordered arrays of atoms at lattice sites, with electrons in local orbitals
that hybridize and determine many physical properties of the material. Due to the non-vanishing
overlap of orbitals, the Hamiltonian contains terms coupling different lattice sites. Therefore, the
real-space Hamiltonian is not diagonal in real space. Although the chemical description and many
physical properties are local, physicists have chosen to understand crystals using band theory, because
the Hamiltonian is diagonal in momentum space. The momentum space picture, while extremely useful,
also obfuscates the local physics present in crystals.

To remedy this disconnect, Zak introduced the concept of a band representation (BR) for spinless
systems, with and without time-reversal symmetry [4]. These band representations are, speaking
generally, mathematical vehicles that relate the orbital representation of electrons on sites in real space
to the momentum space description of the electron bands in the Brillouin zone. Zak realized that
band representations can be decomposed into ’elementary building bricks’, which are themselves band
representations, but which cannot be further subdivided while preserving the symmetry operations of
the system. Physically, the Elementary Band Representation (EBR) connectivity represents the number
of energy bands that are connected together in the Brillouin zone, and which cannot be disconnected
without breaking the space-group symmetry of the crystal.

3



2.3. GROUP THEORY, A NEW FRAMEWORK CHAPTER 2. BRIEF INTRODUCTION OF TI

In order to determine the properties of the BR Group theory is needed, with Group theory we are
able to compute how each BR decomposes in different EBR on each point within the Brillouin zone.
Among this, a local description1 of atomic orbitals induces a global description of the band structure
that determines a local k · p description at every point in momentum space.

In this work we have chosen to study the materials Ag3AuSe2 and Ag3Te2Au for many reasons.
First of all, they have a clean band structure under zero pressure, and they are trivial insulators.
On the other hand, their space group is a chiral group2 which could lead to the quantized Circular
Photo-galvanic Effect (CPGE) presented in [6]. The CPGE is the contribution to the optical response
that switches sign when reversing the sense of the polarization of light. Second order nonlinear effects
require the breaking of inversion symmetry, a condition that permits the existence of topologically
charged Weyl points, and both materials have no inversion symmetry. Furthermore, they have a small
gap which is manageable with the pressure, this way we pretend to close the gap around the Fermi
level in order to get Weyl nodes and obtain topological bands.

1Mathematically, a site-symmetry group representation.
2Chiral groups are space groups that only contain pure rotations, they do not contain any mirror or inversion.
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Chapter 3

Berry phase and Chern theorem

Our goal here is to introduce the concept of the Berry phase and explain how it enters into the
quantum-mechanical band theory of electrons in crystals. We will begin by introducing the Berry phase
in its abstract mathematical form, and then discuss its application to the adiabatic dynamics of finite
quantum systems.

Definition: A Berry phase is a phase1 that describes a global phase evolution of a complex vector2

while is carried around a path in its vector space.

As we are interested only in the phase, we will suppose our complex vectors are unitary, and we
will identify them with a ground-state wavefuntion of some Hamiltonian. First of all, we will give
the formulation for the discrete case, ergo there will be N finite vectors, labelled as |ui〉 and being
|u0〉 ≡ |uN 〉. Then the Berry phase is defined to be,

φ = −Im ln[

N−1∏

i=0

〈ui|ui+1〉] (mod 2π) (3.1)

with this definition all the phase differences between the neighbours vectors are summed up, return-
ing the global phase variation, with the branch choice of Im ln z ∈ [0, 2π). Recall that for a complex
number z = |z|eiϕ the expression Im ln z = ϕ gives the phase of said number, ignoring the magnitude.

It is easily demonstrated that the Berry phase is independent of the choices made for the phases of
the individual |ui〉. Suppose that we define a new vector set:

|ũi〉 = e−iβi |ui〉 ; βi ∈ R (3.2)

This transformation is called a Gauge transformation, and leaves φ invariant, because each vector
|ũi〉 appears as bra and ket in the equation 3.1 therefore the added phase cancels with its conjugate.
Thus the Berry phase is gauge invariant, which strongly hints that it may be related to some physically
observable phenomena.

Another hint that the Berry phase formula above may be physically meaningful arises from the
fact that it has a well-defined continuum limit. In the continuous formulation, we parametrize the
vectors by a real variable λ→ |uλ〉, where |uλ〉 are assumed to be smooth and differentiable function of
λ. Then the expression for the Berry phase is derived from 3.1:

ln 〈uλ|uλ+dλ〉 = ln 〈uλ|
(
|uλ〉+ dλ

d |uλ〉
dλ

+ ...
)

= ln(1 + dλ 〈uλ|∂λuλ〉+ ...)

' dλ 〈uλ|∂λuλ〉

(3.3)

1Berry phase is defined in the interval φ ∈ [0, 2π).
2Where the complex vector in question is a Bloch wavefunction (eigenstate of the Hamiltonian), and the path lies in

the space of wavevectors k within the Brillouin zone.
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CHAPTER 3. BERRY PHASE AND CHERN THEOREM

In solid state physics the Berry phase is defined for each Block function, ergo each band has a
Berry phase (with |unk(r)〉, φn is the berry phase of the band n). Here λ can be any parameter, with
any dimension. It can describe an adiabatic deformation, so the Berry phase will measure how the
phase of the Block function is transformed throughout the adiabatic process, or it can also be the
momentum k (3-dimensional) of the reciprocal space, then φn will describe how the phase of |un(k)〉
varies along a path (Γ) in the reciprocal space. For simplicity, we will consider for now on that our pa-
rameter λ to be k, and the vector set to be the Block states of a crystal |unk(r)〉3 presented in 5.26, where:

Ĥk = e−ik·rĤeik·r

Ĥk |unk(r)〉 = Enk |unk(r)〉
(3.4)

Combining 3.1 and 3.3 we obtain the Berry phase in the continuous formulation:

φ = −Im
∮

Γ

〈uλ|∂λuλ〉 dλ (3.5)

In fact it is easily proven that 〈uλ|∂λuλ〉 is purely imaginary4. Hence:

φ = i

∮

Γ

〈uλ|∂λuλ〉 dλ =

∮

Γ

〈unk(r)|i∇k|unk(r)〉 dk ≡ φn (3.6)

The integrand is known as the Berry connection or Berry potential:

An(k) = 〈unk(r)|i∇k|unk(r)〉 (3.7)

When the path described in the integral is closed, then by Stock’s theorem, we can calculate the
Berry phase with a surface integral:

∮

Γ

An(k)dk =

∫∫

∂Γ

∇k ×An(k)dS =

∫∫

∂Γ

Ωn(k)dS (3.8)

Where Γ is the closed path, ∂Γ is the surface described by C and Ωn(k) is called the Berry curvature.
But the Berry curvature is gauge-invariant5, so it should be well defined without a modulo 2π the same
as the Berry phase. Therefore the relation obtained above must be rewritten as6:

∫∫

∂Γ

Ωn(k)dS :=

∮

Γ

An(k)dk (3.9)

3In this section we use bracket notation. Notice that in this notation: 〈un′k′ (r)|unk(r)〉 =
∫
un′k′ (r)unk(r)dr.

42Re 〈uλ|∂λuλ〉 = 〈uλ|∂λuλ〉+ 〈∂λuλ|uλ〉 = ∂λ 〈uλ|uλ〉 = 0
5When we use a smooth gauge transformation, as can be seen in 3.1 the divergence of the curl of β(k) will always be

zero, making Ωn(k) gauge-invariant.
6This formula resembles the equation 2.3, where the special character := is introduced.
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CHAPTER 3. BERRY PHASE AND CHERN THEOREM

In fact, as the curve Γ is in the surface of a 3D volume, two surfaces can be chosen (∂Γ1 and ∂Γ2)
and the Berry phases for each surface can be easily calculated, because they differ only by having
reverse direction around Γ. Consequently

∫∫
∂Γ1

Ωn(k)dS = φ ;
∫∫
∂Γ2

Ωn(k)dS = −φ and then the

integral over the hole (∂Γ = ∂Γ1 ∩ ∂Γ2) surface:

∮

∂Γ

Ωn(k)dS := 0 (3.10)

Finally, we introduce the Chern Theorem, which states:

Chern Theorem: The integral of the Berry curvature over any closed 2D manifold is 2π times
some integer:

∮

∂Γ

Ωn(k)dS = 2πCn ; Cn ∈ Z (3.11)

This integer is known as the Chern number of the surface, and can be regarded as a topological
index or topological invariant attached to the manifold of states |un(k)〉 defined over the closed surface
∂Γ7. But one could use the divergence theorem and conclude erroneously that this integral must always
vanish, where V is the volume enclosed by the surface ∂Γ:

∮

∂Γ

Ωn(k)dS =

∫

V

∇k(Ωn(k))dV =

∫

V

∇k(∇k ×An(k))dV =

∫

V

0dV = 0?? (3.12)

This statement is erroneous because the divergence theorem can only be applied to smooth and
continuous functions. Although we could try to find a choice of gauge to be smooth and continuous
everywhere in the surface, there are some cases where it is impossible to find such a gauge, thereby the
Chern number for that manifold will be non-zero. We present briefly a case where the manifold has
a singularity, which is a spinor on the magnetic unit sphere8. In this system the eigenstates can be
represented as,

|↑n̂〉 =

(
cos(θ/2)

sin(θ/2)eiϕ

)

where (θ, ϕ) are the polar and azimuthal angles of n̂. A gauge choice is implicit in this representation,
which makes |↑n̂〉 smooth and continuous everywhere, except of a singularity at θ = π, where the

eigenstate takes different values depending on the azimuthal angle ϕ: |↑−ẑ〉 =

(
0
eiϕ

)
. Thus it exists a

vortex-like singularity in the south pole. We could try to avoid this singularity multiplying a phase
e−iϕ to the eigenvector, which is another valid gauge described by,

|↑n̂〉 =

(
cos(θ/2)e−iϕ

sin(θ/2)

)

but this gauge simply moves the singularity to the north pole (θ = 0). Indeed, there is no possible
choice of gauge that is smooth and continuous everywhere in the unit sphere. In such a case, we say
that the presence of a non-zero Chern number presents a topological obstruction to the construction of
a globally smooth gauge.

7When we consider that λ is the reciprocal vector k a closed path in the reciprocal space describes precisely a two
dimensional surface.

8The system is described by the Hamiltonian: H = −γB · S = −
(
γ~B
2

)
n̂ · σ. Where σ is the vector of the Pauli

matrices and n̂ is the direction of B. This example is deeply explained in [2].
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CHAPTER 3. BERRY PHASE AND CHERN THEOREM

We have seen before in the discrete formulation that the Berry phase is gauge invariant when is
defined modulo 2π, here we have summarized how each of the Berry quantities transform under a gauge
transformation:

Definition Gauge transformation

|unk(r)〉 |ũnk(r)〉 → e−iβ(k) |unk(r)〉
An(k) = 〈unk(r)|i∇k|unk(r)〉 Ãn(k)→ An(k) +∇kβ(k)

φn =
∮
C
An(k)dk φ̃n → φn + 2πm ≡ φn ; m ∈ Z

Ωn(k) = ∇k ×An(k) Ω̃n(k)→ Ωn(k)

C = 1
2π

∫∫
∂C

Ωn(k)dS C̃ → C

Table 3.1: Gauge transformations of Berry quantities.

8



Chapter 4

Group Theory

Using Group Theory it is possible to determine the behaviour of a band structure just by looking
to the symmetries of a crystal. But first of all, we need to introduce some basic concepts of Group Theory:

Let G be a set of elements which has a defined operation denoted as ◦, and satisfies these axioms:

Identity: exists an element(e) that for each g ∈ G fulfils: e ◦ g = g ◦ e = g .

Inverse: for each element g ∈ G exists its inverse which fulfils: g−1 ◦ g = g ◦ g−1 = e .

Closure: if g1, g2 ∈ G then their product also belongs to G : g1 ◦ g2 ∈ G1.

Associativity: for all g1, g2, g3 ∈ G : (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

For further information and demonstrations about the definitions and theorems that will be explained
consult [7].

4.1 From site-symmetry to band representation

In this appendix we will deduce how the orbitals transform under the symmetries of the crystal,
and give some definitions regarding band representations. First of all, if we consider nq orbitals on site
q they can be described by a set of Wannier functions2 Wi1(r), where i = 1, ..., nq. Now we shall define
the orbit of a Wyckoff position:

Definition: The set of symmetry operations that leave q invariant is called the site-symmetry
group of q, and is denoted Gq ≡ {g|gq = q} ⊂ G.

Definition: Any two sites whose site-symmetry group are conjugate are said to lie in the same
Wyckoff position. Given a site in the Wyckoff position, the number os sites in its orbit3 that lie in a
single unit cell defines the multiplicity of the position.

Definition: A site-symmetry group is non-maximal if exists a finite group H 6= Gq, such that
Gq ⊂ H ⊂ G. Then a site-symmetry group that is not non-maximal is maximal. And we say a position
q is maximal when Gq is maximal.

Similarly to the orbital of a Wyckoff position, we define the Wannier functions localized in different
Wyckoff positions as Wiα(r) = gαWi1(r) = Wi1(g−1

α r). For each g ∈ Gq, the functions transform as:

gWi1(r) = [ρ(g)]jiWj1(r) (4.1)

1In general g1 ◦ g2 6= g2 ◦ g1, equality only occurs in abelian groups.
2Wannier functions are a set of orthogonal functions, widely used in Solid State Physics to determine how localized

the orbitals are.
3The orbit of a Wyckoff position is the set of sites generated by applying operations that are not in the site-symmetry

group, so we label those sites by qα ≡ gαq1, where α = 1, ..., n and q1 ≡ q. This group is called the coset representative
Gqα .

9



4.1. FROM SITE-SYMMETRY TO BAND REPRESENTATION CHAPTER 4. GROUP THEORY

The Wannier functions localized in other unit cells are defined by {E|tµ}Wiα(r) = Wiα(r − tµ),
where tµ is a Bravais lattice vector. Hence we have n× nq ×N Wannier functions, where N →∞ and
n is the multiplicity of the Wyckoff position. In order to reduce the n× nq ×N basis for a finite n× nq
basis we define the Fourier transformed Wannier functions, which are labelled by k’s residing in the
First Brillouin Zone:

aiα(k, r) =
∑

µ

eik·tµWiα(r− tµ) (4.2)

Definition: The band representation ρG, induced from nq-dimensional representation ρ, of the
site-symmetry group Gq, of a particular point q whose orbit contains the sites {qα ≡ gαq} in the unit
cell, for the operation h = {R|t} ∈ G, is defined by the action

ρG(h)aiα(k, r) ≡ ρG(h)
∑

µ

eik·tµWiα(r− tµ)

=
∑

µ

eik·tµ [ρ(g)]jiWjβ(r− tµ − tβα)

= e−i(Rk)·tβα [ρ(g)]ji
∑

µ

ei(Rk)·(Rtµ+tβα)Wjβ(r− tµ − tβα)

= e−i(Rk)·tβα [ρ(g)]jiajβ(Rk, r)

(4.3)

Where in the second step we have used the result (B1) of Appendix B in [1], ρG(h)Wiα(r− tµ) =
[ρ(g)]jiWjβ(r−Rtµ − tβα), on the third step we have used the fact that R is orthogonal. In the final
result Einstein’s notation is assumed, where j = 1, ..., nq and the index β is determined by the unique
coset of G that contains hgα:

hgα = {E|tβα}gβg (4.4)

Where g ∈ Gq, gβ are coset representatives4, and tβα must be a Bravais lattice vector, which is
obtained from the previous equation tβα = hqα − qβ .

The matrix form of ρG(h) consists of infinitely many (n · nq)× (n · nq) blocks, which are labelled by
k in the first BZ, so we denote each block by ρkG(h)jβ,iα ≡ e−i(Rk)·tβαρji(g

−1
β {E|− tβα}hgα). Now if we

want to compute how the band representation is composed with the irreps of a specific k-point, σk
i , we

have to do the subduction of ρG onto Gk, where Gk is the little group5 of k. The subduction is denoted
by ρG ↓ Gk, in order to know the decomposition we need to calculate the characters of the representation:

χk
G(h) ≡

∑

α

e−i(Rk)·tααχ[ρ(g−1
β {E| − tβα}hgα)] (4.5)

4The coset representatives are the symmetry operations that transform a Wyckoff position into the other sites in its
orbit, up to a lattice vector, thus gβq ≡ qβ .

5Gk is defined by Gk = {h = {R|t|Rk ≡ k, h ∈ G}.Where the equality is up to a reciprocal lattice vector.
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4.2. ENFORCED SEMIMETALS CHAPTER 4. GROUP THEORY

When the characters are calculated, we can obtain the decomposition with the Magic Formula (A.5)
explained in Appendix A, thus we can find how many times each σk

i appears in ρG ↓ Gk:

(ρ ↑ G) ↓ Gk
∼=
⊕

i

mk
i σ

k
i (4.6)

Once we have established how to decompose a band representation, now we can define topological
bands.

Definition: A set of bands are in the atomic limit of a space group if they can be induced from
localized Wannier functions consistent with the crystalline symmetry of that space group. Otherwise,
they are topological. Thus, topological bands must be groups of bands that satisfy the crystal symmetry
in momentum space, but do not transform as a band representation.

In this work, we will not compute this operations manually. Instead, we will use the program
vasp2trace and the tool ’Check Topological Mat’ [5] in order to determine the topology of the crystals.
For a more detailed explanation on how this procedure is performed see Appendix B.

4.2 Enforced Semimetals

In order to understand what enforced semimetals are we need to introduce the concept of compati-
bility relations. A set of Block wavefunctions that obey the crystal symmetry will, at each point in the
BZ, transform as a sum of irreps of the little group at that point. For instance, given a high-symmetry
line (q0) that connects two high-symmetry points (q and q′), the little group of the line (Gq0

) is the
intersection of the little groups of both points Gq0

= Gq ∩Gq′ . It follows that each irrep that appears
in the band decomposition at the point can be subduced to a sum of irreps that appear on the line,
therefore the irreps that appear along the line are completely determined by the irreps in the point.
This decomposition is known as the compatibility relation between a high-symmetry point and line.

Moreover, this relations are remarkably useful to determine how bands are connected throughout
the BZ. For instance, following the general example from before, with two high-symmetry points (q
and q′) that are connect with the line q0, if it is determined that the band representations from each
point along the line decompose as ρ1

q → ∆1 ρ
1
q′ → ∆1; ρ2

q → ∆2 ρ
2
q′ → ∆2, then when the crystal is

imposed to an adiabatic deformation, if the symmetry of the crystal is conserved during this process,
the compatibility relation ensures that ρ1

q will be connected to ρ1
q′ the same as ρ2

q will be connected to ρ2
q′ .

Notice that this relation does not guarantee that there will not be a crossing along the line q0,
if exists a crossing along the line that is not a consequence of a symmetry it is denominated as an
accidental crossing. This accidental crossing may occur when E2(q) < E1(q) ; E2(q′) < E1(q′), like
in figure 4.1b. However, depending on the Hamiltonian it could exist a configuration like 4.1a, where
there is no crossing, but when a deformation is applied, the energies of both bands could interchange
in one point, while conserving their compatibility relation, as a consequence a crossing would occur
between the two points without a doubt 4.1c. Thus this crossing is demanded by the symmetry of the
crystal, and when this happens we say the material is an enforced semimetal.
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q q′

ρ1
q

ρ2
q

ρ1
q′

ρ2
q′

∆1

∆2

(a) No crossing

q q′

ρ1
q

ρ2
q

ρ1
q′

ρ2
q′

∆1

∆2

(b) Accidental crossing

q q′

ρ1
q

ρ2
q

ρ2
q′

ρ1
q′

∆2

∆1

∆1

∆2

(c) Enforced crossing

Figure 4.1: Three different band structures with the same compatibility relation. (a) E2(q) <
E1(q) ; E2(q′) < E1(q′) is satisfied but there is not a crossing protected by symmetry along the line,
(b) there is a crossing that is not protected by symmetry thus it is accidental, (c) the energies in q′ are
swapped so there must exist a crossing which is protected by symmetry.
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Chapter 5

First principles calculations

Many abinitio programs have been developed to perform different calculations, such as ionic re-
laxation, band structure or phonon and dynamics. Vienna Abinitio Simulation Package (VASP) is a
software developed by G. Kresse et al. [8, 9, 10, 11], which solves the many-body Schrodinger equations,
using approximations such as DFT (Density Functional Theory) or the Hartree-Fock approximation.

We will need this program for our particular case, because we aim to study a crystal with 24 atoms
and 224 electrons in the unit cell. Thus in order to obtain results as accurate as possible we will need
to rely on First principles calculations, and VASP is a perfect candidate to fulfil our goal.

In this chapter we introduce the principles in which VASP is based, but without going into too much
detail about the algorithms it uses to do the calculations. Although VASP is programmed to reduce
time and memory usage while performing an accurate calculation, ab initio algorithms are so time and
memory expensive that we will have to use a supercomputer in order to get results in a plausible time
frame. The one we are using is the supercomputer Atlas, provided by the DIPC (Donostia International
Physics Center).

5.1 Density Functional Theory

DFT is used to solve a many-body problem, concretely the ground state of a crystal. Considering
Hartree atomic units we assume that e = me = ~ = 1, so a general Hamiltonian for a system consistent
of N electrons (N being of the order of Avogadro’s number ∼ 1023) is,

H = −1

2

∑

i

∇2
i −

1

2MI

∑

I

∇2
I +

1

2

∑

i6=j

1

|ri − rj |
−
∑

i,I

ZI
|ri −RI |

+
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

(5.1)

where the contribution from the left to right are the kinetic energy of all electrons, the kinetic
energy of the nucleus, the Coulomb interaction between electrons, the interaction between nucleus
and electrons, and the nuclei-nuclei interaction. Due to its complexity this Hamiltonian is straight up
intractable, thus some approximation are considered in order to simplify the problem.

The first one is to consider the nuclei frozen, ergo, they do not move, therefore their kinetic energy
contribution is totally nullified and their positions (RI) are considered parameters. Then the last
contribution in equation 5.1 is constant with respect to the electron positions (ri), so we can ignore it.
This approximation is called the Born-Oppenheimer or the adiabatic approximation.
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5.1. DENSITY FUNCTIONAL THEORY CHAPTER 5. FIRST PRINCIPLES CALCULATIONS

Nonetheless, even removing nuclei variables, there are still N electrons to consider in the problem,
so a rough way to calculate the ground state is to construct a wave function1 which is antisymmetric
to permutations2 (5.2), and maximize the Hamiltonian over the wave function with the constrains of
normalization. Thus, Lagrange multipliers method is necessary for this task (5.3).

ψ(r1σ1, ..., rNσN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(r1σ1) . . . ψ1(rNσN )
...

. . .
...

ψN (r1σ1) . . . ψN (rNσN )

∣∣∣∣∣∣∣∣∣
(5.2)

F [{ψi(rjσj); εi}] = 〈H〉ψ −
∑

i

εi(〈ψi|ψi〉 − 1) ⇒ δF

δεi
= 0 ;

δF

δψi
= 0 (5.3)

With this method we get the well known Hartree Fock equations 5.4, where the third term is
the screening contribution of the other electrons and the fourth term is the exchange correlation
energy, which is a purely Quantum contribution to the Hamiltonian. However, those εi must not be
confused with the eigenenergies of the crystal, actually, Koopman’s theorem proves that those values
the ionisation energies but with the opposite sign.

−1

2
∇2ψi(rσ) + Uion(r)ψi(rσ) +

∑

j,σ′

∫
dr′
|ψj(r′σ′)|2
|r− r′| ψi(rσ)

−
∑

j,σ′

∫
dr′

δσ,σ′

|r− r′|ψj(r
′σ′)ψi(r

′σ)ψj(rσ
′) = εiψi(rσ)

(5.4)

On the other side, DFT ensures that the ground state energy of a crystal and the external potential
are totally determined by the ground state electronic density [12]. It is founded on these two theorems:

Theorem 1: For any system of interacting particles in an external potential Vext(r), the potential
is determined uniquely (except for a constant), by the ground state particle density n0(r).

Theorem 2: A universal functional for the energy E[n] in terms of the density n(r) can be defined,
valid for any external potential Vext(r). The previous mentioned ground state particle density minimizes
that energy.

In other words, we can write the electronic Hamiltonian as a functional of the electronic density
n(r), and calculate its ground state energy by using the functional derivative and equalising it to zero:

H = E[n(r)] ;
δE

δn(r)

∣∣∣
n0(r)

= 0 ; E[n0(r)] = E0 (5.5)

1σ means a spin state.
2This wave function is also known as Slater determinant.
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5.2. THE KOHN-SHAM METHOD CHAPTER 5. FIRST PRINCIPLES CALCULATIONS

5.2 The Kohn-Sham method

Now that we know the paramount of DFT, we need to know the form of the Hamiltonian in function
of the density. First of all, we can decompose the energy functional as down below.

E[n] = T [n] +

∫
Vext(r)n(r)dr + EH [n] + EXC [n] (5.6)

The Kohn-Sham method assumes that the kinetic energy has the form of the free electron kinetic
energy (5.7), otherwise there is no way to know its form. The next term is the external potential
created by the nuclei, followed by the Hartree energy, which represents the electron-electron Coulomb
interaction (5.8). Finally, the last term is the Exchange-Correlation energy, it has an unknown form,
and different estimations are considered to approximate it, which we will discuss them in section 5.4.

T [n] =
3

10
(3π2)

2
3

∫
[n(r)]5/3dr (5.7)

EH [n] =
1

2

∫ ∫
n(r)n(r′)

|r-r′| drdr′ (5.8)

It is important to specify that the density is calculated with equation 5.9, φi(r) being the wave
function of the i-th electron, and the wave function of the system is a Slater determinant, which is
constructed as the equation 5.2.

n(r) =

N∑

i=1

|φi(r)|2 (5.9)

Now we minimize the energy functional with respect to the density, although it is equivalent to
derive respect to the wave function φi(r), because they fulfil the relation δn(r) = δφi(r)φi(r). To
do such minimization we use again the Lagrange multipliers method as before in equation 5.3, but
replacing 〈H〉ψ by E[n]. With this procedure we get:

Heffφi(r) =
(
− 1

2
∇2 + Vext(r) + VH(r) + VXC(r)

)
φi(r) = εiφi(r) (5.10)

Here VH(r) = 1
2

∫
dr′ n(r′)
|r−r′| is the Hartree potential, and VXC = δEXC [n]

δn(r) is the Exchange-Correlation

potential3. Now, the last step is to solve the equations 5.10, but they are a set of coupled equations,
because the effective Hamiltonian depends on the density n(r), which depends in all the wave func-
tions φi(r). Thus, this must be solved with an iterative method, which we will explain in the next section.

3The sum of all the potential is called the Kohn-Sham method : Vs(r) ≡ Vext(r) + VH(r) + VXC(r)
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5.3 Self Consistent Calculation

Continuing with the Kohn-Sham method, we have arrived to a set of coupled equations with the
form 5.11. These equations can be solved with iterative algorithms, in this section we will explain
briefly the Self Consistent Calculation (SCC), which can be easily visualised in the figure 5.1.

Heff [n(r) =

N∑

i=1

|φi(r)|2]φi(r) = εiφi(r) (5.11)

In this diagram δ is an energy threshold which determines the accuracy of the ground state energy
we get from this algorithm, this is calculated with the difference between the energy related to the
density of the previous iteration and the new one: |E[nnew]− E[nprevious]| = |∆E|.

Set a trial density:
nin(r) = ntrial(r)

Set up the Hamilto-
nian: Heff(nin(r))

Diagonalization, get the
wave functions φi(r)

Calculate the new
charge density:

nnew(r) =
∑N

i=1 |φi(r)|2

Set the new density:
nin(r) = nnew(r)

|∆E| < δ

Ground state density
and energy converged:
n0(r) = nnew(r)
E0 = E[n0]

No

Yes

Figure 5.1: Self Consistent Calculation algorithm diagram.

The calculation starts with a trial density (ntrial(r)), then the effective Hamiltonian is calculated4.
When the Hamiltonian is diagonalized the wave functions are obtained, therefore the density can be
recalculated, which will give a new value of the energy (E[nnew]). Finally, the difference between the
new and the previous energy is calculated, and it is checked if that difference is smaller than the given
threshold, if it is bigger then we go back to the second step with the new density, otherwise we have
concluded the calculations and we know the ground state density and energy of the system.

4As DFT states this Hamiltonian depends on the electric density, but there is one term which has unknown form, the
Exchange correlation potential, two approximations to estimate its form are discussed in the following section.
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5.4 Pseudopotentials

Pseudopotentials are widely used in solid state calculations [13], the main idea is to replace the
exact potential (if known) by an approximated one, which is commonly obtained from phenomenological
data. In this way, instead of calculating a really difficult Hamiltonian’s (Hexact) spectrum, we get
as close as possible to the exact one, simplifying lot of calculations because the eigenfunctions and
eigenvectors of HPP are more easily accessible through efficient computer codes rather than calculating
in the traditional way with Hexact, at least at the region of interest.

It is well known that the valence electrons are the most important in a chemical process, while
core electrons remain unaware, therefore, core electron’s contribution to the potential are commonly
not taken into account5. Core states are localized in the vicinity of the nucleus, whereas the valence
states must oscillate in order to keep the orthogonality with the core eigenfunctions. This involves
large kinetic energy around the core region, which is roughly cancelled by the Coulomb interaction. In
1934 Hans G.A. Hellmann replaced this effects with a pseudopotential, which was repulsive in the core
region and kept the electrons away from the core.

Figure 5.2: Here we can understand graphically the main intention of the pseudopotential method.
Instead of having a divergent potential (the Coulomb potential V ), which produces oscillating eigenfunc-
tions, we replace it with a potential (Vpseudo) that converges in r = 0 and tends to equal V when r > rc,
rc being the cut-off radius which determines our range of interest. We choose the pseudopotential to
get eigenfunctions which have no nodes and change smoothly. Ref: [14].

In general, pseudopotentials are angular momentum dependent, thus it can be expressed as:

Vps(r) =

l=0∑

∞

m=−l∑

l

vl(r)Y
m

l (θ, φ)Y ml (θ, φ) (5.12)

5This is known as Frozen-core approximation.
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However, when Spin Orbit Coupling (SOC) is considered, angular momentum L is not be conserved,
therefore l is not a good quantum number anymore. What is conserved is the total angular momentum
J = L + S, and due to the electron having spin = 1

2 the values of J are J = L ± 1
2 . Regularly, this

pseudopotentials are constructed using both values of J , nevertheless, we are not going into much detail
in this topic, and a general way to consider this interaction is to add this relativistic effect with the form:

V SOCps (r) =

∞∑

l=0

m=−l∑

l

vSOCl L · S Y
m

l (θ, φ)Y ml (θ, φ) (5.13)

Hence, the total pseudopotential would be:

V totalps (r) = Vps(r) + V SOCps (r) (5.14)

On top of that, the wave function now are spinors, with one component for each spin value S = ± 1
2 :

φi(r) =


φ↑i(r)

φ↓i(r)


 (5.15)

As a result, the new normalization condition has the form:

∫
dr|φ↑i(r)|2 + |φ↓i(r)|2 = 1 (5.16)

The main issue when using DFT is to know the form of the Exchange-Correlation energy, thus, many
approximations have been developed, among them we will discuss the Local Density Approximation
(LDA) and the Generalized Gradient Approximation (GGA).

5.4.1 Local Density Approximation (LDA):

In this approximation it is assumed that the εXC has at each r point the value it would have a
uniform electron gas with density n(r). If we decompose the X-C energy density, the exchange energy
density of a uniform electron gas has the form 5.18:

εXC(n) = εX(n) + εC(n) (5.17)

εunifX (n) = −3

4

( 3

π

)1/3

n1/3 (5.18)

Even so, we can not know the exact form of correlation energy density, but it can be numerically
calculated using accurate quantum Monte Carlo method. Here we show a parametrized estimation of
the uniform electron gas correlation energy density:

εunifC (n) ≈





A ln(rs) +B + Crs ln(rs) +O(rs) if High-density: rs −→ 0

a
rs

+ b

r
3/2
s

+O( 1
r2s

) if Low-density: rs −→∞
(5.19)

Where rs is the radius each electron would occupy in the uniform electron gas with a density n:

rs =
(

3
4πn

)1/3

. However, the most used parametrization is the one Perdew and Wang presented in

1992 [15]:

εunifC (n) = 2A(1 + αrs) ln
[
1 +

1

2A(β1r
1/2
s + β2rs + β3r

3/2
s + β4r

p+1
s )

]
(5.20)

Where the fitting parameter values can be found in the reference.
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5.4.2 Generalized Gradient Approximation (GGA):

The first step after the LDA approximation was to consider that the X-C energy depends also on
the gradient of the density, the Gradient-Expansion Approximation6 included a new term in the X-C
energy as we can see in 5.21:

EGEAXC (n) =

∫
εunifXC n(r)

[
1 + C

( ∇n
2kF (r)n(r)

)2]
dr ; kF (r) = (3π2n(r))1/3 (5.21)

Nonetheless, GEA was later confirmed to be worse than LDA for real systems. Thus, they
generalized that idea defining the Generalized-Gradient Approximation, which states: EGGAXC (n) =∫
f(n(r),∇n(r)dr, where f is an unknown function that needs to be estimated.

Perdew et al. published a GGA implementation in 1996 [16], called Perdew-Burke-Ernzerhof (PBE):

EGGAX =
∫
n(r)εunifX (n)FPBEX (s)dr EGGAC =

∫
n(r)(εunifC (n) +HPBE(rs, t))dr

FPXBE(s) = 1 + γ − γ
1+µs2 HPBE(rs, t) = β2

2α ln
[
1 + 2α

β
t2+At4

1+At2+A2t4

]

s = |∇n|
2kF (r)n(r) A = 2α

βe−2αε
unif
c (n)/β2−1

t = |∇n|
2ks(r)n(r) ; ks =

(
4kF
π

)1/2

(5.22)

5.5 Block wavefunctions

In order to construct a crystal a unit cell is needed, where the atoms reside, and three lattice vectors
which determines the Bravais lattice7, which we will refer to as direct space. A general lattice vector
would have the form:

R = n1a1 + n2a2 + n3a3 ; ni ∈ Z (5.23)

As the crystal has a translational symmetry8 so does the Hamiltonian of the system:

T̂RĤ(r) = Ĥ(r + R)T̂R = Ĥ(r)T̂R ⇒ [T̂R, Ĥ(r)] = 0 (5.24)

This symmetry is fundamental for the Band Structure theory and calculation [17], because it provides
really important information about the Hamiltonian eigenfunctions. It is a well known result that if
two operator commute (5.24) they can be simultaneously diagonalized, which in other terms means that
they share the eigenfunctions. What is more, we know the form of the eigenfunctions of the translation
operator:

T̂Re
ikr = eik(r+R) = eikReikr (5.25)

So the eigenvalue is eikR, where the vector k is the label of the eigenfunction. This can be generalized,
if the eigenfunction is multiplied by a periodic function in R then it will also be an eigenfunction of the
operator T̂R:

ψk(r) = eikruk(r) ; uk(r + R) = uk(r)⇒ T̂Rψk(r) = eikRψk(r) (5.26)

6This method would be equivalent to take more terms in a Taylor series approximation.
7A Bravais lattice is an array of discrete points created by discrete translations.
8The discrete translation operator T̂R leaves the crystal invariant.
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Consequently, the eigenfunctions of the Hamiltonian have the form9, this are called the Block wave
functions (5.26). On the other hand, we could ask ourselves if different k labels could have the same
eigenvalue:

eikR = eik’R ⇒ ei(k−k’)R = 1⇒ (k− k’) ·R ≡ G ·R = 2πn ; n ∈ Z (5.27)

Thus, a vector G can be defined which satisfy the equation 5.27:

G = m1b1 +m2b2 +m3b3 ; mi ∈ Z (5.28)

Where the basis vectors {bi} are the ones who fulfil ai · bj = 2πδi,j . Remarkably, the form in which G
is constructed is equal to the form 5.23, therefore G describes another Bravais lattice, which is called
the reciprocal lattice (or reciprocal space). In general, if the crystal was infinite a lattice vector k could
take any continuous value, but real crystals are not infinite, thus it is assumed the has N unit cells10.
Considering Born-von Karman periodic boundary conditions k can only take this quasi-continuous
values11:

k = k1b1 + k2b2 + k3b3 ; ki =
ni
Ni

; ni ∈ [0, Ni − 1] (5.29)

The next obvious step is to express the Hamiltonian eigenfunctions in terms of plane waves12:

un,k(r) =
∑

G

Cn,k(G)eiGr

ψn,k(r) =
∑

G

Cn,k(G)ei(k+G)r

(5.30)

VASP works with plane waves, however, we need to truncate the values of G for numerical reasons,
thus a parameter called cutoff energy can be specified on the calculations, which determines how many
terms will be taken into account (5.31). Increasing this value results in more accurate calculations,
even so more computation time will be needed.

(k + G)2

2
≤ Ecutoff (5.31)

Finally, we can calculate the eigenvalues of the Hamiltonian:

Ĥψn,k(r) = εn(k)ψn,k(r) (5.32)

The set of energies {εn(k)} are the so called bands, and they are functions of the reciprocal lattice
vector. In order to plot those bands in two dimensions a specific path is chosen in the reciprocal space,
this path consists of high-symmetry lines inside or in the boundaries of the first Brillouin Zone. The
first Brillouin Zone, also called simply Brillouin Zone, is the Wigner-Seitz cell of the reciprocal space,
which is the set of points (describing a volume, a zone) that are closer to the origin (Γ point) than to
any other point in the Bravais lattice. The shape of the BZ depend on the Bravais lattice of the direct
space, leading to different K-paths, in section 6.3 the BZ and K-path for our material will be shown.

9But we have to consider different energy levels (n), so the equation 5.26 can be generalized: ψn,k(r) = eikrun,k(r)
10It is more accurate to say that the crystal has {N1, N2, N3} cells for each direction{a1,a2,a3}, then the total number

of cells would be N = N1N2N3.
11As a consequence of k’ ≡ k + G we have stated that ni is bounded, but it could take any integral value.
12It can be proven that a periodic function’s expression has the form 5.30:

un,k(r) = un,k(r + R) =
∑

k’ Cn,k(k’)eik’(r+R) = un,k(r)eik’R ⇒ eik’R = 1⇒ k’ ∈ G
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Chapter 6

Material features

Before applying pressure to our materials we will discuss their different physical properties. In this
chapter we present their crystalline structure and symmetries, then we see the interatomic distances
as well as the energy per atom provided by VASP, and finally we compare the band structures for
Ag3AuSe2 with LDA and GGA approximations along with considering spin-orbit coupling or not.

6.1 Crystalline structure and symmetries

Ag3AuSe2’s space group is I4132(214), as well as Ag3Te2Au’s, which is non-symmorphic1. Its
primitive cell has a rhombohedral structure, with angles α=β=γ=109.4712◦. However, relaxation has
been made with the cubic cell due to simplicity. Furthermore, in order to later calculate the Electronic
Band Structure, the primitive unit cell was needed, which can be constructed2 from the cubic one
(6.1b).

a

b

c

(a) (b)

(c)

Figure 6.1: (a)Ag3AuSe2’s primitive cell obtained with VESTA [18], Ag3Te2Au’s is not shown because it
has basically the same form, they only differ in the lattice parameter and the interatomic distances. (b)
Ag3AuSe2’s conventional (cubic) cell. (c) First Brillouin Zone of the group 214 and the high symmetry
points. K-path described with red lines: Γ−H −N − Γ− P −H|P −N .

1A non-symmorphic group is a group which has fractional lattice vector translations.
2This can be achieved with a program named phonopy, which takes the cubic structure as input and returns the

primitive cell in the file PPOSCAR.
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The group 214 consists of 6 symmetry generators (Table 6.1) and other 3 pure translations, one
for each lattice vector. As previously stated, the group is non-symmorphic, because its symmetry
operations imply partial translations, for example operation number 2.

No. Symmetry operation(Seitz symbols)

1 {E|0}
2 {2001|1/2 0 1/2}
3 {2010|0 1/2 1/2}
4 {3+

111|0}
5 {2110|3/4 1/4 1/4}
6 {1|1/2 1/2 1/2}

Table 6.1: 214 space group’s symmetry operations. On the left we have the symmetry operator and on
the right the coordinates of the translation in terms of lattice vectors.

Any material’s structure can be found in the Materials Project website [19], where we have gathered
all this information.

6.2 Atomic parameters

In this section we only focus on Ag3AuSe2, because as we have stated before, both material’s
structures are practically identical. Furthermore, there is another reason why we focus only on this
material, but this is due to the results in section 7.3.

In Table 6.2, different lattice parameters are shown, depending on which approximation has been
used in order to calculate them3, including the experimental value, as well as the total energy per atom,
considering different approximations.

Lattice parameter LDA(Error%) GGA(Error%) Experimental

a (Å) 9.75(6) 10.14(2) 10.38

(a) Lattice parameters

Energy per atom LDA NSOC LDA SOC GGA NSOC GGA SOC

Etot(eV/atom) -4.01 -4.06 -3.15 -3.20

(b) Total energy per atom

Table 6.2: (a) Lattice parameter of the crystal for a body centered cubic cell, errors with respect the
experimental value are given in percentages. (b) Energy per atom when the structure is relaxed.

We see in 6.2 that the energy per atom is greater (in magnitude) when LDA approximation is
considered, this is due to more repulsive core-valence contribution to the exchange-correlation energy in
GGA. Precisely, as a consequence of this repulsion the lattice parameter is greater with GGA, leading
to larger interatomic distances, these distances can be observed in Table 6.3.

3For LDA or GGA, the lattice parameters do not differ if SOC is considered or not.
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VASP also provides interatomic distances, which differ if they are calculated with LDA or GGA
pseudopotentials, those distances are presented in Table 6.3. Notice LDA calculations give smaller
distances than GGA.

Ag-Se 2.68 2.68 2.83 2.83

Au-Se 2.48 2.48

Ag-Ag 2.95 2.95 3.03 3.04

Au-Au 3.45 3.45 3.45

Ag-Au 2.95 2.95

(a) Interatomic distances in Å(LDA NSOC)

Ag-Se 2.69 2.69 2.82 2.82

Au-Se 2.48 2.48

Ag-Ag 2.94 2.94 3.04 3.04

Au-Au 3.45 3.45 3.45

Ag-Au 2.93 2.93

(b) Interatomic distances in Å(LDA SOC)

Ag-Se 2.79 2.79 2.92 2.92

Au-Se 2.50 2.50

Ag-Ag 3.08 3.08 3.13 3.13

Au-Au 3.58 3.58 3.58

Ag-Au 3.08 3.08

(c) Interatomic distances in Å(GGA NSOC)

Ag-Se 2.79 2.79 2.92 2.92

Au-Se 2.50 2.50

Ag-Ag 3.08 3.08 3.13 3.13

Au-Au 3.58 3.58 3.58

Ag-Au 3.08 3.08

(d) Interatomic distances in Å(GGA SOC)

Table 6.3: Interatomic distances between nearest neighbours

First of all, we notice that the average distance between the atoms is ∼ 3Å, in addition, Au-Se
are the nearest so we could expect a stronger interaction among those atoms. What is more, we can
see that interatomic distances do not depend on SOC, since with LDA the difference vary only in
the second decimal and with GGA there is no difference at all. However, those distances do change
when considering LDA or GGA, it is easy to see that LDA gives smaller distances, therefore we can
understand why total energy (6.2) is bigger (in magnitude), it is due to a higher contribution of the
Coulomb interaction.

6.3 Band Structure

In this section we calculate the electronic band structure with different pseudopotentials and in-
cluding or excluding Spin-Orbit Coupling. Band Structures with different approximations are given
in Figure 6.2. Because the energy depends on the three coordinates of k (5.5) , in order to plot the
energy in 2 dimensions we need to define a K-path, this path is already established for every cell
structure, which we can see in the Figure 6.1, it is constructed by high symmetry lines in the Brillouin
Zone4 and can be demonstrated that this path has all the information about the energy structure. A
Monkhorst-Pack k-point grid of (7× 7× 7) has been used for reciprocal space integration and a 500 eV
energy cutoff (5.31) of the plane-wave expansion.

4The first Brillouin Zone is the Wigner-Seitz cell of the reciprocal space.
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(b) Band structure SOC and LDA
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(c) Band structure NSOC and GGA
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(d) Band structure SOC and GGA

Figure 6.2: Band Structure within the range [−1eV, 1eV ] having the Fermi level at the origin. The red
bands represent empty (conduction) bands. The BS (c) coincides reasonably with the one Materials
Project website provides, since this one is also calculated without SOC and with GGA.

When SOC is considered the bands split, as it is expected the spin contribution breaks the degeneracy
of the bands. The clearest example is the crossing above the Fermi level at point H, before SOC is
considered there is a three-fold crossing of doubly degenerate bands5, this crossing splits into two
crossings, a two-fold and a four-fold of non degenerate bands.

We do not see many differences with the BS using LDA or GGA whatsoever, but the main contrast
is the band gap, with LDA there is a very small one, but with the GGA there is no gap. However, this
deviation is not very relevant, considering the experimental value of the gap is ∼ 0.9eV , thus both
approximations fail when it comes to calculate the band gap. This is a well known problem of the DFT
method, because it performs poorly when computing band gaps.

For the sake of simplicity, as we have seen in 5.4, GGA is theoretically more accurate than LDA
because it includes density’s gradient on the calculations6, therefore we will proceed our next calculations
with only GGA approximation.

5When spin is omitted all bands are doubly degenerate: H 6= H(σ)⇒ Hψ±(k) = ε(k)ψ±(k).
6It would be analogous to consider higher terms of Taylor’s series of a function, meaning we want to be more accurate.
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Chapter 7

Results

As mentioned in Chapter 1 our aim is to cause a phase transition of the both crystals from trivial
insulators to topological, by applying pressure, positive and negative pressures will be applied, even
though the negative pressures are physically impossible to achieve they will serve for academical
purposes.

7.1 Seeking a topological transition

In order to apply pressure, we have manually altered lattice parameters of each crystal, by means
of lattice parameter percentages, thus the new parameters are calculated by a′ = a0(1 + γ), where
γ = ∆a

a0
∈ [−8%, ..., 0%, ..., 7%]. Therefore, the negative values of γ correspond to compression (positive

pressure) and the positives to expansion (negative pressure, physically infeasible). Furthermore, as the
lattice parameter of both crystals are of order a0 ∼ 10Å, then lattice parameters are varied with steps
of order ∆a ∼ 0.1Å.

Afterwards, we have performed a relaxation calculation, this way we ensure the crystal is in
equilibrium. We make an atomic relaxation while fixing the lattice parameters, this way the volume
and shape remain intact and thus the symmetry is not changed. This calculation also returns the
internal energy (U) of the crystal as well as the pressure (P ), which their relation is given by:

P = −∂U
∂V

(7.1)

Where V is the volume of the unit cell, this relation is fulfilled when T ∼ 0K, so it is expected a
good agreement between the pressure given by VASP calculation and the numerical one obtained with
7.1, because VASP performs those calculations with low temperature. Both results for each material
are presented in the following Figure.
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Figure 7.1: Graphics showing the pressure (kBar) of both materials as a function of the unit cell volume
(Å3), where the orange line is the pressure returned by the relaxation calculation and the blue one is
obtained from 7.1, for numerical reasons the first and last point was not computed for the blue line.
The dashed lines indicate the equilibrium volume of the cell, where the pressure must be 0.
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These graphics demonstrate that 7.1 is satisfied, as the ”experimental” and numerical data coincide
in a wide range, although they differ a little when negative pressure is applied.

After applying pressure the band structure can be calculated, the band structures for P = 0 have
already been presented in the previous chapter 6. Here we present the BS for both materials when
γ = −8% and γ = 7%.
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Figure 7.2: BS for Ag3AuSe2 and Ag3Te2Au with the maximum positive and negative pressure applied.
It is not possible to see with these two examples but Ag3AuSe2’s gap decreases when positive pressure
tends to zero and start increasing when negative pressure increases. Unlike Ag3Te2Au’s case, where the
gap increases when pressure decreases, even when pressure is negative.

Even though it is of interest to see how the BS transform when pressure is applied, the main interest
is to see if these materials exhibit a phase transition into topological insulators. This phase transitions
are studied with Vasp2trace in the next section.
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7.2 Vasp2trace analysis

As explained in Appendix B, we have computed trace.txt files for each BS with different pressures
and attached to Dgenpos [5], obtaining whether the material is topological or not. Ag3Te2Au has a
phase transition from trivial insulator into an Enforced Semimetal with Fermi Degeneracy (ESFD)
when 1% ≤ γ ≤ 5%, and Ag3AuSe2 is also an ESFD when 1% ≤ γ. This phase transition arises when
an irrep inversion is produced, fortunately Dgenpos provides the irreps that lie below the chemical
potential, so in the Table and Figure below this phenomena is visible for Ag3AuSe2.

Trivial ESFM

N Γ P N Γ P

N5(2) Γ8(4) P 7(3) N5(2) Γ8(4) P 7(3)

N5(2) Γ8(4) P 5(1) N5(2) Γ6(2) P 7(3)

N5(2) Γ6(2) P 7(3) N5(2) Γ8(4) P 5(1)

N5(2) Γ8(4) P 4(1) N5(2) Γ6(2) P 4(1)

N5(2) Γ6(2) P 7(3) N5(2) Γ8(4) P 7(3)

Table 7.1: Irreducible representations below the Fermi level at N, Γ and P for Ag3AuSe2. Where
the number between the brackets indicates the dimension of each irrep. Notice that the irreps in N
are always the same and do not change in the phase transition, whereas in Γ and P those irreps are
changed. The lines over the representations indicate that they are double valued, because spinful states
are considered.
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Figure 7.3: In concordance with 7.1, a band inversion is observed in this Figure. The twofold band in Γ
above the Fermi level (Γ6) in the trivial case swaps with the fourfold band (Γ8).

In the paper [20] is proved that non-symmorphic groups lead to enforced band crossing, which is
a property of the enforced semimetals. Thus we have shown that varying the lattice parameter of
Ag3AuSe2, an ESFD has arisen with group I4132(214) which is indeed non-symmorphic, and produces
the band inversion present in table above.
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7.3 Possible Dark Matter detector

Even though a topological transition has not been achieved, a particular BS of Ag3AuSe2 may be of
interest, which is the one with γ = −2%.
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Figure 7.4: Here the BS is plotted only in the k-path N − Γ−P because the dispersion around the Γ is
crucial for the purpose of detecting dark matter.

In this case, a small gap of ∼ meV in the Γ point, as well as the linear dispersion of the conduction
bands and the valence bands being quite plane around the Γ point makes this a good candidate for a
Dark matter detector. What’s more, a paper has been published about the utility of this material for
the DM detection [21], where it has been studied following the methodology presented in [22]. On this
paper [21] an effective model has been calculated, which is used to derive the optical conductivity from
the band structure.

In order to deduce the form of the effective model group theory has been used. This can be fulfilled
obtaining the irreps of the valence and conduction bands, and determining which bands contribute the
most for those bands. The latter can be plotted with a program written in Python, pyband color.py,
which uses the data from the OUTCAR and the PROCAR1. This permits to see in a coloured map of
the BS to visualize each orbitals weights, also allowing to perform this analysis for each atom in the
unit cell. Here we show two examples, one for a negligible contribution and another which has a high
weight in certain region of the BS.

1The OUTCAR contains the values of the energy bands, whereas the PROCAR contains the weights.
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Figure 7.5: Orbital contributions for certain orbitals in certain atoms. (a) Low weights for s orbitals
in gold. (b) Appreciable contribution for the valence bands for p orbitals in selenium, being the grey
colour the maximum.

Analysing every orbital for each type of atom in the cell, we conclude that these orbitals are the
most relevant in the BS: s orbitals in silver and selenium, p orbitals in selenium and d orbitals in silver
and gold. With this information (also with the irreps of bands) a k ·p Hamiltonian describing the band
structure near the Γ point has been developed in Mathematica. This general form consists in a 6× 6
matrix:

H(k) =


 H2band(k, α, vF ) + ∆12×2 Hcp(k, δ)

Hcp(k, δ)
† H4band(k, v

1
F , v

2
F )−∆14×4


 , (7.2)

Where the 2× 2 block H2band describes the two conduction bands, the 4× 4 block H4band to the
four valence bands, Hcp parametrises the overlap of these bands and the parameter ∆ determines the
direct band gap width. The exact form of each block and the values for the fitting parameters can be
checked in Appendix C.

These parameters are fitted to the BS obtained with VASP for hydrostatic pressures with compres-
sions γ = −1%,−2%,−3%. In the three cases the band structure exhibits a fourfold node below the
Fermi level and a Weyl node above it, separated by a gap that varies with the pressure. The interband
contribution to the conductivity tensor σµν , where µ, ν = x, y, z, can be calculated using standard
linear response theory as the real part of2:

σµν(w) =
ie2

wV

∑

m 6=n

〈n| jµ |m〉 〈m| jν |n〉
εn − εm + ~w + iδ

(nF (εn)− nF (εm)) (7.3)

2This equation is a generalization of the one presented in Appendix A of the paper [22]. As we are considering optical
transitions q ∼ 0 and for simplicity we do not write the integral over k in the first Brillouin Zone.
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Where jµ = 1
~∂kµH is the current operator defined by the Hamiltonian, e is the charge of the

electron, V is the volume, |n〉 and En are an eigenstate and the corresponding eigenvalue of the
Hamiltonian respectively, δ is an infinitesimal broadening; εn = En − µ, where µ is the chemical
potential and nF is the Fermi distribution, which depends on En, µ and the inverse temperature
β = 1/kBT in units of Boltzmann constant kB. With this equation σxx has been computed using
the effective model considering valence to conduction band transitions and valence interband transitions.
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Figure 7.6: Optical conductivity of the low energy k · p model of Ag3AuSe2 under 1% hydrostatic
pressure. (a) and (b) show the same band structure within two different energy windows, together with
the relevant frequencies for optical transitions (colored vertical arrows) and the chemical potential (blue
horizontal line). The bands are labelled with numbers from 1 to 6 from bottom (orange band) to top
(pink band). Figures (c) and (d) show the optical conductivity corresponding to valence to conduction
band transitions (c) and interband transitions between the valence bands (d), with β = 1/kBT = 2×103.

The feasibility for dark matter detection is determined by four main requirements [22]: i) If one is
to detect dark matter with keV mass, it is necessary a band gap of order ∼ meV . As we have argued,
Ag3AuSe2’s band gap with the pressures we have applied reaches the range of meV , satisfying the first
point. ii) Fermi velocity must be smaller than the largest possible dark matter velocity, vmax ∼ 10−3c.
Indeed, from C.1 we know that all the Fermi velocities are vF ∼ 10−4c < vmax, so it satisfies the second
point. iii) There must be small photon screening at energies close to the energy deposition range. The
imaginary part of the dielectric tensor determines the absorption of the material, and is related to the
optical conductivity by ε = 1 + iσ/w. In Figure 7.6 (c) we see that the optical conductivity tends to a
constant value except for the 3% case, where it grows linearly (σ ∝ w) with a small slope, resulting in
a dielectric constant that renders a small in-medium polarization for the photon, thus satisfying the
third point. iv) Finally, a dark matter detector must be sensible to a small number of counts per year,
for which the target material must be grown as large and pure as possible. Currently we do not know if
Ag3AuSe2 satisfies this condition.
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Chapter 8

Conclusions

In this work, we have studied how the electronic band structure of Ag3AuSe2 and Ag3Te2Au change
when pressure is applied. It was observed that the gap for Te1 did not close for any applied pressure,
furthermore, its transition to ESFD occurs with negative pressure, thus it is not physically feasible
to obtain that phase transition. On the other hand, for Se, for some values of negative pressure the
gap disappears (1% ≤ γ ≤ 4%), and it also has a transition to ESFD with negative pressure, which is
produced by an irrep inversion, as visualized in 7.1. For none of the pressures applied a topological
transition is achieved, consequently, our search for a topological material has not been successful.

Nevertheless, another interesting result was obtained from this research. When a pressure with
γ = −2% was applied to Se, its band dispersion around Γ seemed to be appropriate to use as a detector
for Dark Matter. In order to study profoundly its optical properties an effective model was constructed2,
and the results derived from that calculus were published in [21]. For a proper analysis experimental
results will be needed in the future, because our ab initio calculations could be erroneous, or rather a
small difference between theoretical and the experimental BS could lead to very different behaviour of
the material. For example, a wrong estimation of the band gap could make our material’s gap to be
too large to detect DM, as stated in 7.3 we need a band gap of ∼ meV , and one of the main flaws of
DFT is precisely the estimation of the band gap.

Another line of study could be to consider magnetic interactions within the crystal, applying an
external magnetic field. This is a tricky one, because when magnetism is considered time-reversal
symmetry takes an essential role, because spinful particles are not invariant under time-reversal any
more. This leads to consider all the spatial symmetries alongside time-reversal (resembling the operation
of a full 2π rotation E when spinful states are considered). There are 32 point group, which are the
groups that have symmetries without any translation, when translations are considered more groups can
be constructed, which leave 230 space groups, but when time-reversal is also considered, the magnetic
space group contains 1651 symmetry groups in it. Hence when a magnetic field is applied to the crystal,
a bunch of new symmetries and representations take part in the group theory, which hinders the calculus.
Fortunately, Bilbao Crystallographic Server also provides the representations, Wyckoff positions and
many other features of magnetic groups, which helps considerably with a complete examination of any
material, though this was not of our concern for our inquiry.

Moreover, other materials similar to Ag3AuSe2 can be analysed with the methodology presented in
this work, for instance, Ag3AuS2 or Ag3AuSeS. With these material we expect the spin orbit splitting
to be smaller, as selenium is heavier than sulfur, and according to the paper [23] in general heavier
materials experience larger splitting. Another way to acquire topological matter is to reduce in some
way the symmetries of the crystal, this could be accomplished for example adding some iron to PtSe2,
which would break the mirror symmetries, as well as for Fe1/4TaS2 in paper [24].

We must remark that group theory was a key element in this work, we have used its tools to analyse
if our materials were topological, and it was also used to obtain the general form of the effective model
for Se (γ = −2%), demonstrating how powerful it is, as mentioned in 2.3. Another crucial tool has been
the ab initio package VASP, which was used to calculate all BS that were needed in order to develop
our research, as well as the wavefunctions for the Vasp2trace analysis.

1As both materials difference is just Te or Se, we will use this abbreviation.
2As presented in the last section 7.3.
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Appendix A

Representations and Characters

Isomorphism: a transformation [a(ej) = aijei] that admits an inverse transformation (det(a) 6= 0).

Linear representation: a homomorphism (a function that preserves the operations defined on an
object) from the group G into the group GL(V). In other words, we associate with each element s ∈ G
an element ρ(s) of GL(V), in such a way1:

ρ(st) = ρ(s) · ρ(t) (A.1)

ρ(e) = I ρ(s−1) = ρ−1(s) (A.2)

Similar representations: Let ρ and ρ′ be two representations of the same group G in vector space
V and V’. We say they are similar if exists a linear isomorphism τ : V −→ V ′ which transforms ρ into ρ′2:

τ · ρ(s) = ρ′(s) · τ ; for ∀s ∈ G (A.3)

Subrepresentations: Let ρ : G −→ GL(V ), and W be a subspace of V. Suppose that W is
stable(invariant) under the elements of G(x ∈W ⇒ ρ(s) · x ∈W ). The restriction of ρ to W is then an
isomorphism of W onto itself. And ρW : G −→ GL(W ) is said to be a subrepresentation of ρ.

Irreducible representations(irreps): ρ : G −→ GL(V ) is irreducible or similar if no subspace
of V is stable under G. In other words, V is not the direct sum of irreducible representations, except
the trivial decomposition V = 0⊕ V .

Trace(”Character”): The trace of a matrix as we know is the sum of all its diagonal components
(Tr(a) =

∑n
i aii), this sum does not depend on the basis we use to represent said matrix, this is a very

convenient property, because we do not want our calculations to depend on the basis used, therefore, the
traces of the representations will be crucial. The set of traces of a representation(of the matrices ρ(s))
is called the character of a representation3. It is denoted as χ, being χρ(s) = Tr(ρ(s)) and fulfilling
these properties:

• χρ(e) = n ; n is the dimension of the vector space V and e the identity of the group G.

• χρ(s−1) = χρ(s) ; characters in general are complex numbers.

• χρ(tst−1) = χρ(s)

• χρ(ts) = χρ(st)

Proposition: Let ρ1 : G −→ GL(V1) and ρ2 : G −→ GL(V2).

i The character χ of V1 ⊕ V2 is equal to χ1 + χ2.

ii The character of ψ of V1 ⊗ V2 is equal to χ1 · χ2.

1In pursuit of simplifying our notation we will assume s ◦ t ≡ st.
2Notice that we represent the product between matrices with · , which does not have any relation with the product

between two elements of G(◦).
3It is quite misleading but the name ”character” is also used to refer to traces, but strictly it means the set of traces.
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APPENDIX A. REPRESENTATIONS AND CHARACTERS

Scalar product: A scalar product between characters can be defined. In the future it will be
highly important, since key conclusions are derived from properties of this product:

(χ|ψ) =
1

g

∑

t∈G
χ(t)ψ(t) (A.4)

Theorem:

i If χ is the character of an irrep then (χ|χ) = 1. What is more, the latter only is true if and only if
the representation is irreducible. This gives a good criteria in order to check if the representation is
irreducible or not.

ii If χ and χ′ are characters of two non isomorphic irreps then (χ|χ′) = 0.(i.e. χ and χ′ are orthogonal)

Theorem: Let V be a lin. rep. of G, with character ψ, and being the decomposition V =
m1W1 ⊕ ...⊕mkWk (k is the number of not equivalent irreps of G). If Wi is an irrep with character χi,
the multiplicity of said irrep is equal to the scalar product (ψ|χi). This is called the number of times
that Wi occurs in V. Furthermore, A.5 equation is called the Magic formula, because of its importance
knowing how a representation decomposes, computing its character with the characters of the irreps.

mi = (ψ|χi) (A.5)

Conjugacy classes: Let t, t′ ∈ G, we say that t and t′ are conjugate(or belong to the same
conjugacy class) if exist s ∈ G such that t′ = sts−1. For example, there are three classes4 in the group
C3V : {{E}, {C+

3 , C
−
3 }, {σd1, σd2, σd3}}.

Theorem: The number of non-equivalent irreducible representations for a finite group G(previously
denoted as k) is equal to the number of classes in G.

Theorem: The sum of the squares of the dimensions of the non-equivalent irreps of a finite group
G is equal to the order of the group(the number of elements in G).

k∑

i=1

n2
i = g (A.6)

Double valued representations: When spin is considered (s = 1
2 ), then ρ will be a double valued

representation, such that a 2π rotation gives a phase e2πis = −1. Thus other symmetry operations
must be taken into account, being E the one corresponding to the 2π rotation, which is −I, and the
rest being composition of the previous symmetry operations and E. Computing their characters is as
simple as χ(tE) = χ(t)χ(E).

Physically irreducible representations: Time-reversal symmetry is crucial and every physical
system must respect that symmetry (when magnetic moments are not considered). If we want to know
if a representation is time-reversal invariant, we can compute the Frobenius-Schur indicator, which is
defined by:

Φ(ρ) =
1

g

∑

t∈G
χ(t2) =





1, ρ is real

0, ρ is complex

−1, ρ is pseudoreal

As far as we are concerned, the representations ρ are always double valued, and as it is demonstrated
in [1], if ρ is pseudoreal and double valued, then it is time-reversal invariant. However, if it is not
invariant, ρ must be paired with its complex conjugate representation in order to have an invariant
representation ρ⊕ ρ∗.

4Conjugacy class is usually shorten to class.
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Appendix B

Vasp2trace

In order to analyse the topology of a crystal, transformation properties of the Wannier functions1

must be calculated, this procedure is explained in section 4.1. This requires a lot ot work if calculated
by hand. However, fortunately the Bilbao Crystallographic Server [25, 26, 27] has useful tools to search
topological insulators using VASP outputs. The program we used for this project is called ’Check
Topological Mat’ [5], and it has been developed based on the article [28].

This program takes as input a file denominated ”trace.txt”, which is calculated using the program
”vasp2trace” (implemented in Fortran) and the output files obtained from a Band Structure calculation
with VASP, the OUTCAR and WAVECAR files. However, the band structure is calculated in a
particular k-path, determined by the maximal k-points2 of the symmetry group. With this information
the program ”vasp2trace” creates the file ”trace.txt” which has this structure:

1. The number of bands below the Fermi level. It should be clarified that if a gap exists in the band
structure, the Fermi level does not exist, nevertheless, normally the chemical potential is referred
to as the Fermi level in Solid State Physics, so whenever the Fermi level is mentioned this must
be considerate.

2. A tag of 1 or 0 indicating if SOC is considered or not, respectively.

3. The number of symmetry operation of the group.

4. A table, with each line representing a symmetry operation. A general symmetry operation being
{R⊗S|t}3, it is represented as: R11,R12,...,R33,t1,t2,t3,Re(S11),Im(S11),...,Re(S22),Im(S22).

5. Number of maximal k-points and their coordinates.

6. For each maximal k-point, this information is presented in order. Number of symmetry operations
of the little co-group of the k-point, then a list of indexes specifying which symmetry operation
of the list above is part of the little co-group4, and finally a table with each line specifying
information for each band: number of bands below+1, degeneracy of the band, energy of the
band in the k-point and the eigenvalues for each symmetry operation (real and imaginary part)
of the little co-group.

As mentioned before, this file is delivered to the program [5] and it analyses whether the material is
topological,trivial, an enforced semimetal... Thus this program will be really helpful in order to detect
materials which are not trivial, since we will apply different pressure to our materials of interest, arising
different properties.

1The Wannier functions are a set of orthogonal functions, which can be chosen to be localized. A further definition is
provided in Appendix 4.1.

2A point q is maximal, if the site-symmetry group of that point (Gq) is maximal. The site-symmetry group of a point
q is a subgroup of the symmetry group G that leaves q invariant, and it is maximal if there is no other subgroup of G
containing Gq.

3In the general symmetry operation {R
⊗
S|t}, R is a orthonormal (3× 3) matrix which is the symmetry operation

acting on the real space, t is a 3D translation vector and S is the spin operation which is a (2× 2) matrix.
4The little co-group of the point q is the group which leaves q invariant. Gq = {Gqq = q | Gq ⊂ G}. This group

combined with the translational group is called the little group.
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Appendix C

Effective model

In section 7.3 the effective Hamiltonian H(k) was given, which was constructed around the Γ point
and determined to respect the symmetries, and defined with three matrices. In this manner, we give
the exact form for each block, as well as the values for the fitting parameters, which were computed for
the optical properties analysis in [21].

The matrix component related to the valence bands, which has two parameters α and vF
1, has the

form:

H2band = α|k|2σ0 + vFk · σ =


 α|k|2 + vF kz vF (kx − iky)

vF (kx + iky) α|k|2 − vF kz


 , (C.1)

Where σ0 denotes the identity (2× 2) and σ is a vector consisting of Pauli matrices. Similarly, the
block describing conduction bands:

H4band = v1
Fk · λ1 + v2

Fk · λ2 (C.2)

=




kzv
1
F (kx − iky)v1

F

(
e−

11iπ
12 kx + e−

iπ
12 ky

)
v2
F e−

3iπ
4 kzv

2
F

(kx + iky)v1
F −kzv1

F e
3iπ
4 kzv

2
F

(
e

7iπ
12 kx + e

5iπ
12 ky

)
v2
F(

e
11iπ
12 kx + e

iπ
12 ky

)
v2
F e−

3iπ
4 kzv

2
F −kzv1

F (ky − ikx)v1
F

e
3iπ
4 kzv

2
F

(
e−

7iπ
12 kx + e−

5iπ
12 ky

)
v2
F (ikx + ky)v1

F kzv
1
F



.

Where v1
F and v2

F are fitting parameters as well, and λi are complex Hermitian matrices that form
a basis under which the Hamiltonian can be expanded. Finally, we define Hcp to describe transitions
across the gap that connect the fourfold and twofold bands, parametrised by δ:

Hcp = δ

(
−kx e

iπ
3 ky + e−

5iπ
6 kz −e 5iπ

12 ky − e
7iπ
12 kz e

iπ
4 kx

e
iπ
3 ky − e−

5iπ
6 kz kx −ie iπ4 kx ie

5iπ
12 ky − ie

7iπ
12 kz

)
. (C.3)

1vF is known as the Fermi velocity, it is directly related to the viability of a DM detector as explained in [22].
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APPENDIX C. EFFECTIVE MODEL

-1% -2% -3%

v1
F 0.164 0.141 0.105

v2
F 0.228 0.211 0.178

vF 0.390 0.398 0.371

α 55.637 50.891 44.694

δ 0.370 0.587 0.690

∆ 0.009 0.030 0.056

Table C.1: Fitted values for different choices of lattice parameter compression. The units are expressed
in terms of ~ = c = 1 with ~k in units of 2π/a, where a = pa0, a0 is the unperturbed lattice constant
and p = 0.99, 0.98, 0.97 for 1%, 2%, 3% hydrostatic pressure respectively. It is important to remark
that in units of c the Fermi velocities are of order vF ∼ 10−4c.
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