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Abstract
For a Riemannian foliationF on a compact manifold M , J. A. Álvarez López proved that the
geometrical tautness ofF , that is, the existence of a Riemannian metric making all the leaves
minimal submanifolds of M , can be characterized by the vanishing of a basic cohomology
class κ M ∈ H1(M/F) (the Álvarez class). In this workwe generalize this result to the case of
a singular Riemannian foliationK on a compact manifold X . In the singular case, no bundle-
like metric on X canmake all the leaves ofKminimal. In this work, we prove that the Álvarez
classes of the strata can be glued in a unique global Álvarez class κ X ∈ H1(X/K). As a
corollary, if X is simply connected, then the restriction ofK to each stratum is geometrically
taut, thus generalizing a celebrated result of E. Ghys for the regular case.
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1 Introduction

1.1 Tautness and cohomology

A foliation F on a manifold M is said to be (geometrically) taut if there exists a metric
such that every leaf of F is a minimal submanifold of M . Tautness is a relevant property
of foliations, which has been extensively studied since the eighties and nineties of the last
century. It is essentially a transverse property: A. Haefliger proved that if M is compact, the
tautness ofF depends only on its transverse structure, namely, on the holonomy pseudogroup
of F (see [9, Theorem 4.1]).

In the case of Riemannian foliations (those admitting a bundle-like metric, that is, a metric
whose orthogonal component is holonomy invariant), tautness is remarkably of topological
nature, as the following results show. In [13], X. Masa proved that if F is an oriented and
transversally oriented Riemannian foliation, then it is taut if and only if the top degree group
of the basic cohomology is isomorphic to R, as conjectured by Y. Carrière in his Ph.D.
Thesis. In [1], J.A. Álvarez López defined the so-called Álvarez class (or tautness class)
κ M ∈ H1(M/F)whose vanishing characterizes the tautness of a Riemannian foliationF on
a compact manifold M . As a corollary, he removed the assumption of orientability of Masa’s
characterization. Another immediate consequence of Álvarez’s result is that any Riemannian
foliation on a simply connected and compactmanifold M is taut, whichwas proven previously
by E. Ghys in [7, Théorème B]. One more characterization is obtained by combining these
results with F. Kamber and Ph. Tondeur’s Poincaré duality property for the basic cohomology
[12, Theorem 3.1]:

H∗(M/F) ∼= Hom(Hq−∗
κ (M/F),R), (1.1)

whereq is the codimensionofF and theκ-twisted basic cohomology H∗
κ (M/F) stands for the

cohomology of the basic de Rham complex with the twisted differential dκω = dω−κ∧ω. It
follows that, under the assumptions ofMasa’s theorem,F is taut if andonly if H0

κ (M/F) ∼= R.
For an account of the history of tautness and cohomology of Riemannian foliations see [23]
and V. Sergiescu’s Appendix in [15].

1.2 Tautness of strata of singular Riemannian foliations

Weare interested in finding the singular version of those results in the less explored framework
of a singular Riemannian foliation (SRF, for short) K on a compact manifold X . We now
summarize some results we have obtained in this direction.

One major difference with the regular case is that, in an SRF, geometrical tautness is not
to be achieved globally: there exists no bundle-like metric on X making all the leaves of K
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minimal submanifolds of X (essentially, because they are of different dimensions, see [22,
p. 186] and [16]). It is natural, then, to focus on the foliations KS induced by K on each
stratum S, which are regular. Notice that strata may not be compact submanifolds of X . The
mean curvature form for non-compact manifolds has a different behavior: Example 2.4 of [5]
describes a Riemannian foliation F on a non-compact manifold M whose mean curvature
form κ is basic, but not closed, showing that the Álvarez class may not even be defined if M
is not compact.

Nevertheless, in [22] and [23]we proved that, for a certain class of foliations calledCERFs,
the Álvarez class is well defined and the characterizations of tautness described above hold.
CERFs are regular Riemannian foliations on possibly non-compact manifolds that can be
suitably embedded in a regular Riemannian foliation on a compact manifold called zipper,
and whose basic cohomology is computed by a compact saturated subset called reppiz.

The main point is that the singular strata of an SRF are CERFs. Although the compactness
of X does not imply the compactness of the strata, each stratumwill inherit the cohomological
behavior of tautness from its zipper. Hence, the rich classical cohomological study of tautness
applies to each stratum of any SRF defined on a compact manifold.

1.3 Main result

In this work we intend to understand the tautness character of all strata globally, by show-
ing that the topology of X has, indeed, a strong influence on the tautness of each stratum,
individually. Our main result is the following:

Theorem 1.1 Let K be an SRF on a closed manifold X. Then there exists a unique class κ X ∈
H1(X/K) that contains the Álvarez class of each stratum. More precisely, the restriction of
κ X to each stratum S is the Álvarez class of (S,KS).

We will say that κ X is the Álvarez class of K, and that K is cohomologically taut if its
Álvarez class vanishes. To prove Theorem 1.1 we shall need to exploit the local description
of the neighbourhood of a stratum of an SRF, and use strongly the fact that its associated
sphere bundle admits a compact structure group. The key technical point needed to patch
up the Álvarez classes of all strata together is Proposition 4.7, which establishes that the
Álvarez class of a singular stratum S is induced by the Álvarez class of a tube along S. As
a consequence, although taut and non-taut strata may coexist in an SRF (as it happens in
Example 6.11), all strata below a taut stratum must be taut. As an application, we retrieve a
singular version of the classical result by E. Ghys referred to above:

Corollary 1.2 Every SRF on a compact simply connected manifold X is cohomologically taut.

Organization of the article. In Sects. 2 and 3 we recall some known facts about SRFs and
CERFs, respectively, and prove that certain bundles of singular strata are CERFs. In Sect. 4
we introduce the notion of thick foliated bundle and study the interplay between the Álvarez
classes of their components. We apply this study in Sect. 5, as thick foliated bundles appear
in the local structure of an SRF, which we shall use to prove the main results in Sect. 6. The
Appendix is devoted to the reduction of the structure group of the sphere bundle of a stratum.
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4266 J.I. Royo Prieto et al.

2 Singular Riemannian foliations

In this section we present the class of foliations we are going to study in this paper, which
were introduced by P. Molino in [15, Chapter 6]. They are essentially Riemannian foliations
whose leaves may have different dimensions.

2.1 SRFs

A Singular Riemannian Foliation (SRF, for short) on a connected manifold X is a partition
K by connected immersed submanifolds, called leaves, satisfying the following properties:

i) the module of smooth vector fields tangent to the leaves is transitive on each leaf;
ii) there exists a Riemannianmetricμ on X , called adapted metric, such that each geodesic

that is perpendicular at one point to a leaf remains perpendicular to every leaf it meets.

The first condition implies that (X ,K) is a singular foliation in the sense of [25] and [27].
Notice that the restriction ofK to a saturated open subset V ⊂ X induces an SRF in V , which
we shall denote by KV . Any regular Riemannian foliation (RF for short) is an SRF, but the
first interesting examples of SRFs are the following:

• the partition defined by the orbits of an action by isometries of a connected Lie group;
• the partition defined by the closures of the leaves of a regular Riemannian foliation;
• the partition defined by the closures of the leaves of a singular Riemannian foliation (this

is Molino’s conjecture, recently proved in [2]).

2.2 Stratification

Let Li denote the union of all the leaves ofK of dimension i .Wedenote by SK the stratification
of X whose elements, called strata, are the connected components of the subsets Li , for every
i ≥ 0. The restriction of K to a stratum S is an RF KS . The strata are partially ordered by:
S1 � S2 ⇔ S1 ⊂ S2. Denote by ≺ the corresponding strict partial order. For every stratum
S, we have S = ⋃

Si �S Si . Thus, the minimal strata are the only closed strata. The maximal
stratum, called the regular stratum, is an open dense subset of X , and shall be denoted by R.
The other strata will be called singular strata. Recall that two strata S and S′ are comparable
if either S′ � S or S � S′ holds.

The depth of a stratum S ∈ SK, written depthK S, is defined to be the largest i for which
there exists a chain of strata Si ≺ Si−1 ≺ · · · ≺ S0 = S. So, depthK S = 0 if and only if S
is a closed stratum. The depth of SK is defined as the depth of its regular stratum, and will
be denoted by depth SK. Notice that depth SK = 0 if and only if K is regular.

We now recall some geometrical tools which we shall use for the study of the SRF (X ,K).

2.3 Foliated tubular neighbourhoods

Since a singular stratum S ∈ SK is a proper submanifold of X , we can consider a tubular
neighbourhood TS = (TS, τS, S)with fibre the open diskDnS+1. The following smooth maps
are associated with this neighbourhood:

• The radius map ρS : TS → [0, 1) defined fibrewise by z �→ |z|. Each t 
= 0 is a regular
value of ρS , and we have ρ−1

S (0) = S.
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• The contraction HS : TS ×[0, 1] → TS defined fibrewise by (z, r) �→ r ·z. The restriction
(HS)t : TS → TS is an embedding for each t 
= 0 and (HS)0 ≡ τS .

These maps satisfy ρS(r · u) = rρS(u). This tubular neighbourhood can be chosen to satisfy
the two following important properties (see [15, Lemma 6.1] and [3, Lemma 1]):

• Each (ρ−1
S (t),K) is an SRF, and

• Each (HS)t : (TS,K) → (TS,K) is a foliated map.

We shall say that TS is a foliated tubular neighbourhood of S. The core of TS is the
hypersurface DS = ρ−1

S (1/2). The following map

LS : (DS × (0, 1),K × I) → ((TS\S),K), (2.1)

defined by LS(z, t) = HS(z, 2t), is a foliated diffeomorphism, where I stands for the
foliation of (0, 1) by points.

2.4 Thom–Mather system

In Sect. 5 we shall need the foliated tubular neighbourhoods of the strata satisfying certain
compatibility conditions.We introduce the following notion, inspired by the abstract stratified
objects of [14,28].

A family of foliated tubular neighbourhoods T = {TS | S singular stratum} is a foliated
Thom–Mather system of (X ,K) if the following conditions are satisfied:

(TM1) For each pair of singular strata S, S′ we have

TS ∩ TS′ 
= ∅ ⇐⇒ S and S′ are comparable.

Let us suppose that S′ ≺ S. The other conditions are:

(TM2) TS ∩ TS′ = τ−1
S (TS′ ∩ S).

(TM3) ρS′ = ρS′ ◦τS on TS ∩ TS′ .
(TM4) ρS◦(HS′)t = ρS , and ρS′ ◦(HS)t = ρS′ on TS ∩ TS′ , for all t ∈ (0, 1).

This notion was already defined in [22, Appendix], but without the condition (TM4). In
that paper we constructed a collection of tubular neighbourhoods T satisfying (TM1), (TM2)
and (TM3). Let’s show that, in turn, it also satisfies the condition (TM4).

Proposition 2.1 Let K be an SRF defined on a compact manifold X. Then there exists a
foliated Thom–Mather system of (X ,K).

Proof Consider the collection T of foliated tubular neighbourhoods constructed in [22,
Appendix], where it is proven to satisfy (TM1), (TM2) and (TM3). Let’s see (TM4).

Consider two singular strata S′ ≺ S. For every (y, t) ∈ TS ∩ TS′ × (0, 1), we have

ρS′ ◦ (HS)t (y)
(T M3)= ρS′ ◦ τS(HS)t (y) = ρS′(y),

and so, the latter part of (TM4) follows.
To prove the first part of (TM4) we recall the description of TS ∩ TS′ shown in [22, 3.2].

Consider the SRF (DS′ ,KDS′ ) and notice that S′′ = DS′ ∩ S is a stratum of that SRF. The
following restriction of LS′ (2.1) is, in fact, an isometry:

LS′ : (DS′ ∩ TS × (0, 1),K × I, μ|DS′ + dt2) −→ ((TS′ ∩ TS),K, μ). (2.2)
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TS

DS

S

S
DS ∩ TS

∼= TS

S

TS

Fig. 1 The shaded area is TS′ ∩ TS ∼= TS′′ × (0, 1)

Using μDS′ we can take a foliated tubular neighbourhood (TS′′ , τS′′ , S′′) of S′′ in DS′ ∩ TS

(see Fig. 1). In fact, TS′′ = DS′ ∩ TS .
Now, to prove the first part of (TM4), take y ∈ TS′ ∩ TS and (x, r) ∈ TS′′ × (0, 1) such

that LS′(x, r) = y. On one hand, notice that (2.2) implies that ρS(LS′(x, r)) = ρS′′(x) for
any r , and thus, we have ρS(y) = ρS′′(x). On the other hand,

ρS ◦ (HS′)t (y) = ρS ◦ (HS′)t (LS′(x, r)) = ρS ◦ (HS′)t (HS′(x, 2r))

= ρS (HS′(x, 2r t)) = ρS (LS′(x, r t)) = ρS′′(x),

and (TM4) follows. ��
Notice that (TM4) does not hold for S′ = S since ρS(HS(z, r)) = r · ρS(z). We fix for

the rest of this paper a such foliated Thom–Mather system T .

Remark 2.2 Given two singular strata S and S′, using (TM1) and (TM4), we have:

TS ∩ TS′ 
= ∅ ⇐⇒ DS ∩ TS′ 
= ∅ ⇐⇒ DS ∩ DS′ 
= ∅ ⇐⇒ S and S′ are comparable.

2.5 Structure group

We can take an atlas of the bundle TS whose cocycle takes values in the structure group
O(nS + 1). By [15], we have that the fibres of this bundle are modelled on an SRF ES on
the open disk D

nS+1. Moreover, this foliation is invariant by homotheties and the origin is
the only 0-dimensional leaf. This implies that the sphere bundle DS = (τS, DS, S) which is,
indeed, a restriction of TS , satisfies depth SKDS

= depth SKTS
− 1.

Molino and Boualem ([3]) prove that there exists a foliated atlas

B =
{
ϕi : (τ−1

S (Ui ),K) → (Ui × D
nS+1,KS × ES)

}

i∈I

of TS whose cocycle takes values in the following structure group

Diff(DnS+1, ES) = {
f ∈ Diff(DnS+1)| f preserves ES and | f (v)| = |v| if v ∈ D

nS+1}.
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We do not know whether this structure group can be reduced to the compact Lie group
O(nS + 1)∩Diff(DnS+1, ES), but the following lemma shows that the sphere bundleDS has
a richer structure group than that of TS .

Lemma 2.3 The sphere bundle DS admits an atlas with values in the compact Lie group

O(nS + 1,GS) = {A ∈ O(nS + 1)|A preserves GS},
where GS is an SRF on the fibre S

nS with no 0-dimensional leaves.

Proof See Appendix. ��

3 Tautness of Riemannian foliations

In this section we recall that, although a stratum S of an SRF K is, in general, not compact,
the tautness of KS can be characterized cohomologically. More precisely, the classical study
of tautness applies to a class of RF on possibly non-compact manifolds called CERFs, and
KS is a CERF.

3.1 Differential forms

Let F be an oriented foliation of dimension p on the Riemannian manifold (M, μ). The
characteristic form χμ ∈ �p(M) is defined by

χμ(X1, . . . , X p) = det(μ(Xi , E j )), ∀X1, . . . , X p ∈ C∞(T M), (3.1)

where {E1, . . . , E p} is a local oriented orthonormal frame of TF . The mean curvature form
κμ ∈ �1(M) is determined by κμ(X) = 0 for all X ∈ C∞(TF) and Rummler’s formula
[24]:

κμ(Y ) = −dχμ(Y , E1, . . . , E p), ∀Y ∈ C∞((TF)⊥μ). (3.2)

Notice that both χμ and κμ are determined by the orthogonal subbundle (TF)⊥μ and the
volume formalong the leaves.Notice also that κμ is defined even if no orientation assumptions
aremade, and it is determined by (3.2) in an open setwhere orientation conditions are satisfied.

We say that μ is taut (it is also called minimal or harmonic in the literature) if every leaf
of F is a minimal submanifold of M , which is tantamount to saying that its mean curvature
form is zero. We shall say that F is taut if M admits a taut metric with respect to F . If TF is
oriented, tautness is characterized by Rummler-Sullivan’s criterion [26, Remark in p. 219],
which says that F is taut if and only if there exists a form ω ∈ �p(M) whose restriction to
TF is positive and such that it is dF-closed; namely, dω(X1, . . . , X p, Y ) = 0 for any vector
fields X1, . . . , X p ∈ C∞(TF) and Y ∈ C∞(T M).

We say that μ is tense if its mean curvature form is basic. We shall say that a tense metric
μ is strongly tense if κμ is also closed (see [19, Def. 2.4]; in [22] and [23] it is called a
D-metric).

If F is an RF on a compact manifold M , then there exists a tense metric ( [6, Tenseness
Theorem in p. 1239]). As M is compact, any tense metric must also be strongly tense by [11,
Eq.4.4].

Strong tenseness is not guaranteed if M is not compact. Example 2.4 of [5] shows an
RF of dimension 2 on a noncompact manifold with a tense metric that is not strongly tense.
Nevertheless, in [19, Theorem1.1] it is shown that any transversely completeRFof dimension
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1 on a possibly non-compactmanifold M admits a strongly tensemetric. In [18, Corollary 1.9]
the result is extended to any uniform complete RF.

3.2 The CERFs

Let M be amanifold endowedwith an RFF . A zipper ofF is a compactmanifold N endowed
with an RF H satisfying the following property:

(a) The manifold M is a saturated open subset of N and HM = F .

A reppiz of F is a saturated open subset U of M satisfying the following properties:

(b) the closure U in M is compact;
(c) the inclusion U ↪→ M induces the isomorphism H∗(U/F) ∼= H∗(M/F),

where H∗(M/F) stands for the basic cohomology, that is, the cohomology of the complex
of basic forms�∗(M/F) = {ω ∈ �∗(M)|iXω = iX dω = 0 ∀X ∈ C∞(TF)}. We shall also

use the notation U
q.i .
↪→ M to denote a quasi-isomorphism in basic cohomology.

We say that F is a Compactly Embeddable Riemannian Foliation (or CERF ) if (M,F)

admits a zipper and a reppiz. We have shown in [23, Proposition 2.4] that, for any stratum S
of an SRF K defined on a compact manifold, the foliation KS is a CERF.

3.3 Tautness of CERFs

In [23, section 3] we prove that for a CERF F on a possibly non-compact manifold M the
classical study of cohomology and tautness holds. We summarize the main results here:

(i) The CERF F admits a strongly tense metric μ.
(ii) The class [κμ] ∈ H1(M/F) does not depend on the choice of the strongly tense metric

μ. We shall call it the Álvarez class of F , and denote it by κF .
(iii) If U is a saturated open subset of M , then the Álvarez class of (U ,F) is the restriction

of the Álvarez class of (M,F).
(iv) The tautness of F is equivalent to any of the following statements:

(a) κF = 0,
(b) Hn(M/F) 
= 0 (when F is transversally oriented),
(c) H0

κ (M/F) 
= 0 (when M is oriented and F is transversally oriented),

where n = codimF and the κ-twisted cohomology H∗
κ (M/F) is the cohomology of the

complex of basic forms with the twisted differential dκω = dω−κ∧ω, being κ ∈ �1(M/F)

any representative of the Álvarez class of F .

4 Thick foliated bundles

In this sectionwe slightly generalize the notion of a foliated bundle. Principal foliated bundles
were introduced by Molino (see [15, section 2.6]) to study objects such as the lifted foliation
to the transverse frames bundle (see [15, Proposition 2.4]). In such bundles, if a vector is
tangent to a leaf, then it cannot be tangent to the fibre of the bundle The fibres of a thick
foliated bundle may carry a richer foliated structure. All foliations considered in this section
are regular, unless otherwise stated.
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Definition 4.1 Let B, F and E be foliations on the manifolds B, F and E , respectively.
A fibre bundle π : (E, E ) −→ (B,B) with fibre (F,F ) and structure group G is a thick
foliated bundle if G ≤ Diff (F,F ) and there exists an atlas of the bundle {(Ui , ψi )}i∈I such
that the charts

ψi :
(
π−1(Ui ), E

) −→ (Ui × F,B × F )

are foliated diffeomorphisms.

Example 4.2 Let K be an SRF over a compact space X and π : DS −→ S be the sphere
bundle of a singular stratum S, for some Thom–Mather system. The restriction of π to the
regular part E = DS ∩ R is a thick foliated bundle over B = S whose fibre is the regular part
of the model SRF on a sphere (see section 2.5). The foliations E andB are the corresponding
restrictions of K.

Example 4.3 The following classical structures are particular cases of thick foliated bundles:

(i) If G = F , π is principal andF is the pointwise foliation, then π is a principal foliated
bundle.

(ii) If B is the one leaf foliation and F is the pointwise foliation, then π is a foliated
bundle in the sense of [8].

(iii) If B is the pointwise foliation, F is compact and F is the one leaf foliation, then π

is a Seifert bundle.

If π : (E, E ) −→ (B,B) is a thick foliated bundle of fibre (F,F ), the condition G ≤
Diff (F,F ) allows us to define a fibrewise foliation H on E , just considering

ψi :
(
π−1(Ui ),H

) −→ (Ui × F, {points} × F ) (4.1)

as foliated diffeomorphisms. We will say that H is the fibrewise foliation associated to π .
The following Lemma shows the interplay between themean curvature forms of the foliations
involved in a thick foliation bundle. The proof is similar to the first part of the proof of [17,
Lemma 7].

Lemma 4.4 Let π : (E, E ) −→ (B,B) be a thick foliated bundle. Let γ be a metric on E and
denote by κγ the mean curvature form of (E,H , γ ), where H is the associated fibrewise
foliation. Then for any metric μB on B, there exists a metric μE on E such that the mean
curvature form of (E, E , μE ) is

κμE = (κγ )0,1 + π∗κμB , (4.2)

where the bigrading is associated to T E = TE ⊕ (TE )⊥γ .

Proof We consider a bundle decomposition

T E =
︸ ︷︷ ︸
ker π∗

ζ1⊕
TE

︷ ︸︸ ︷
TH ⊕ ζ2 ⊕ζ3 satisfying

(i) ker π∗ = ζ1 ⊕ TH ;
(ii) TE = TH ⊕ ζ2;
(iii) ζ1 ⊕ ζ3 ≤ (TH )⊥γ ;
(iv) π∗|ζ2 : ζ2 −→ TB is an isomorphism;
(v) π∗|ζ3 : ζ3 −→ (TB)⊥μB is an isomor-

phism.

To construct such a decomposition, first, take ζ1 = (TH )⊥γ ∩ ker π∗, which gives (i). Take
ζ2 any supplementary of TH in TE , thus satisfying (ii). As π∗ : TE → TB is surjective
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4272 J.I. Royo Prieto et al.

and TH ≤ ker π∗, for degree reasons we have (iv). Now, consider D a supplementary of
ζ1 in (TH )⊥γ . Notice that π∗|D : D → T B is an isomorphism. Finally, we take ζ3 =
(π∗|D)−1((TB)⊥μB ), which gives (iii) and (v).

Now, we define the metric μE = γ |ker π∗ + π∗μB so that the four summands of the
previous decomposition are μE -orthogonal. To prove formula (4.2) it suffices to check it
locally; namely, for any neighbourhood U ⊂ E small enough so that both HU and EU are
oriented (and thus, Bπ(U )). We now claim that, in U , we have

χμE = χγ ∧ π∗χμB , (4.3)

where χγ is the characteristic form of (M,H , γ ). By definition (see (3.1)) χμE is the form
that vanishes when applied to any vector orthogonal to E and whose restriction to its leaves
is a volume form of norm one.

So consider a γ -orthonormal and positively oriented parallelism X1, . . . , X p of THU

and a μU -orthonormal and positively oriented parallelism Z1, . . . , Zq of TB|π(U ), which
are π∗-related to the μB -orthonormal parallelism Y1, . . . , Yq of ζ2|U . As π∗(Xi ) = 0 for
i = 1, . . . , p, we have:

(χγ ∧ π∗χμB )(X1, . . . , X p, Y1, . . . , Yq) = χγ (X1, . . . , X p)π
∗χμB (Y1, . . . , Yq)

= χS(Z1, . . . , Zq) = 1 = χμE (X1, . . . , X p, Y1, . . . , Yq).

Now, take Y a section of (TE )⊥μE |U = ζ1|U ⊕ ζ3|U . By (iii), we have Y ∈ C∞(TH ⊥γ ),
and thus, iY χγ = 0. We also have iY (π∗χB) = 0, because π∗(Y ) ∈ C∞((TB)⊥μB |π(U ))

(due to (iii) and (v)). So (4.3) follows.

To prove (4.2), first take X a section of TE
(i i)= TH ⊕ ζ2. We have π∗(κμB )(X) = 0,

because π∗(X) ∈ C∞(TB), and (κγ )0,1(X) = 0 because of the bigrading. So (4.2) holds
for TE .

It remains to check (4.2) for Y a section of (TE )⊥μE |U = ζ1|U ⊕ ζ3|U . Notice that
π∗Y ∈ C∞((TB)⊥μB ) and Y ∈ C∞((TH )⊥γ ). So we finally have:

κμE (Y )
(3.2)= −dχμE (Y , X1, . . . , X p, Y1, . . . , Yq)

(4.3)= −dχγ (Y , X1, . . . , X p) π∗χμB (Y1, . . . , Yq)
︸ ︷︷ ︸

=1

− χγ (X1, . . . , X p)
︸ ︷︷ ︸

=1

π∗dχμB (Y , Y1, . . . , Yq)

(3.2)= κγ (Y ) + π∗κμB (Y ) = (κγ )0,1(Y ) + π∗κμB (Y ).

��
Lemma 4.5 Let π : (E, E ) −→ (B,B) be a thick foliated bundle with taut fibre (F,F )

and compact structure group G. Then there exists a foliated Galois Z/2Z-covering map
τ : (E�, E �) → (E, E ) such that π� = π ◦ τ is a thick foliated bundle whose fibre (F�,F �)

is taut, and admitting G as structure group, which preserves a given orientation in TF �.

Proof Consider p : (F�,F �) −→ (F,F ) the tangent orientation covering (see [10, p. 162])
of (F,F ), which is a Galois Z/2Z-covering space such that TF � is orientable. Notice that
F � is taut for the pullback of a taut metric on F . For any f ∈ Diff (F,F ), we can define
f � ∈ Diff (F�,F �) as the only lifting of f which preserves a given orientation of TF �.
This unicity gives (I dF )� = I dF� and ( f ◦ g)� = f � ◦ g�. So, we have defined an algebraic
group action �G : G × F� −→ F�.
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Let’s prove that �G is, indeed, a smooth Lie group action. It suffices to see that it is
continuous, which we will show from its local expression. Without loss of generality, we can
take (Ui , ϕi ) and (U j , ϕ j ) two foliated charts of (F,F ) satisfying f (Ui ) ⊂ U j . We then
have

Ui × Z/2Z
f �

p

U j × Z/2Z

p

Ui
f

U j ,

where the vertical maps are just the projection on the first factor. We have f �(x, t) =
( f (x), sign(|A(x)|)), being

(
ϕ j ◦ f ◦ ϕ−1

i

)

∗ϕi (x)
=

(
A(x) 0
B(x) C(x)

)

.

We thus get that the correspondence f �−→ f � is continuous, and thus �G is continuous,
hence smooth. We just have to change the fibre (F,F ) by (F�,F �) in the thick foliated
bundle π to get τ as desired. ��

The proof of the following Lemma is partially similar to that of [7, Theorem 3.1]:

Lemma 4.6 The fibrewise foliation associated to a thick foliated bundle with taut fibre and
compact structure group is taut.

Proof In [1, Lemma 6.3] it is proven that the tautness character of a foliation is preserved by
finite coverings (that result is established for Riemannian foliations on compact manifolds,
but the proof does not use those assumptions). So by Lemma 4.5, we can assume that the fibre
(F,F ) is tangentially oriented and that the structure group G preserves a given orientation
on TF to prove that H is taut.

Take χ ∈ �p(F) a dF -closed characteristic form, and consider its averaged form

χ =
∫

G
g∗χ dg ∈ �p(F),

where p = dimF . We have that χ is also dF -closed because the elements of G preserve
F . As they also preserve the orientation of TF , then the restriction χ |TF is positive.

We can take {(Ui , ψi )}i∈I an atlas of the thick fibre bundle π whose cocycle belongs to
G, and a partition of unity {(Ui , ρi )}i∈I . For all i ∈ I , define φi and ri so that the following
diagrams are commutative:

[0, 1] π−1(Ui )
ri

ψi
φi

Ui

ρi

Ui × Fpi (pF )i
F

where pi and (pF )i are the projections onto each factor. Now, we define

χ =
∑

i

ri · φ∗
i χ ∈ �p(E),
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being E the total space of the thick fibre bundle. We now prove that the associated fibrewise
foliation H is taut by showing that χ satisfies the conditions of the Rummler-Sullivan
criterion. First, we have that χ |TH is positive because χ |TF is positive and the maps
φi : (π−1(Ui ),H ) → (F,F ) are foliated (see (4.1)). It remains to see that χ is dH -
closed. Take X1, . . . , X p ∈ C∞(TH ) and Y ∈ C∞(T E). On one hand, for all i ∈ I and
j ∈ {1, . . . , p}, we have

dri (X j ) = X j (ri ) = X j (ρi ◦ pi ◦ ψi ) = 0, (4.4)

because ρi ◦ pi ◦ ψi is constant along the leaves of H . On the other hand, for all i, j ∈ I ,
we have that φ∗

i χ = φ∗
j χ , because φ j ◦ φ−1

i ∈ G and χ is G-invariant. Thus, fixing i0 ∈ I ,
we have

∑

i∈I

dri (Y )φ∗
i χ(X1, . . . , X p) = φ∗

i0χ(X1, . . . , X p)
∑

i∈I

dri (Y ) = 0, (4.5)

because
∑

i∈I dri (Y ) = d
(∑

i∈I ri
)
(Y ) = d(1)(Y ) = 0. Now, (4.4) and (4.5) yield

∑

i∈I

dri ∧ φ∗
i χ(X1, . . . , X p, Y ) = 0,

which, finally, leads to

dχ(X1, . . . , X p, Y ) =
∑

i∈I

ri · dχ(φi∗ X1, . . . , φi∗ X p, φi∗Y ) = 0,

because χ is dF -closed and φi∗ X j ∈ C∞(TF ) for all i ∈ I and j = 1, . . . , p. ��
Proposition 4.7 Let π : (E, E ) −→ (B,B) be a thick foliated bundle of CERFs with taut
fibre and compact structure group. Then the Álvarez classes of E and B satisfy

κE = π∗κB .

Proof The associated fibrewise foliation H is taut by Lemma 4.6. Take γ a taut metric on
(E,H ), that is, satisfying κγ = 0, and take μB a strongly tense metric on (B,B). By
Lemma 4.4, we get a metric μE such that κμE = π∗κμB . Notice that κμE is a closed E -basic
form, and thus, μE is strongly tense. By 3.3(ii), we get κE = π∗κB . ��

We finish this section with two illustrations of Proposition 4.7.

Remark 4.8 Denote by π : (M1,F1) −→ (M,F) the transverse orthonormal frame bun-
dle of the RF (M,F). Then π is a thick foliated principal bundle. The fibre O(q) carries
the pointwise foliation, which is trivially taut. Then by Proposition 4.7 we get that their
Álvarez classes satisfy κF1 = π∗κF . This result was proven in [17, Lemma 7] without
using Domínguez’s Theorem. This remark applies for any other foliated principal bundle
with compact structure group.

As an application, if we want to study the tautness of the foliation induced by the action
of the product of some groups on a manifold, we can drop the compact factors in the sense
precised by the following result.

Corollary 4.9 Let G1 be a compact Lie group and G2 be another Lie group, with G1 × G2

acting freely on M. Denote by F and F2 the foliations induced on M by G1 × G2 and G2,
respectively, and by F̃2 the foliation induced by G2 on M/G1. Suppose that those foliations
are also CERFs. Then, the following statements are equivalent:
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(i) (M,F) is taut;
(ii) (M,F2) is taut;
(iii) (M/G1, F̃2) is taut.

Proof Consider F ′ = F or F2. Then the principal bundle π : (M,F ′) −→ (M/G1, F̃2)

is a thick foliated bundle whose compact fibre G1 carries either the one leaf foliation or
the pointwise foliation, respectively. As both foliations on G1 are taut, the hypothesis of
Proposition 4.7 are satisfied and the equivalence holds. ��

5 Local structure of SRFs

Let K be an SRF on the compact manifold X . In this section we prove that the Álvarez class
of a stratum of K induces the Álvarez class of its corresponding sphere bundle, which will
be a key step to extend the Álvarez class to the whole manifold X in the next section.

We first show that the regular part of the sphere bundle of a singular stratum is a CERF.
Recall the quasi-isomorphism notation used in 3.2 (c).

Lemma 5.1 Let (Y ,K) be an SRF with a foliated Thom–Mather system. Consider S and S′
two singular strata and take ε ∈ (0, 1

2 ). Consider M = DS ∩ R the regular part of the sphere

bundle DS, and the subset Mε = M\ρ−1
S′ ([0, ε]). Then we have Mε

q.i.
↪→ M.

Proof First notice that if S = S′, then M ⊂ DS ⊂ ρ−1
S ( 12 ), and hence, M = Mε . If S and S′

are not comparable, then by Remark 2.2 we also have M = Mε . So in both cases, the lemma
follows trivially.

Suppose that either S ≺ S′ or S′ ≺ S holds. The restriction of the map (2.1)

LS′ : (DS′ × (0, 1),K × I) → ((TS′ \S′),K),

to the regular part is the foliated diffeomorphism:

LS′ : (DS′ ∩ R × (0, 1),K × I) −→ ((TS′ ∩ R),K). (5.1)

We now prove the following identity by double inclusion:

LS′(DS ∩ DS′ ∩ R × (0, 1)) = DS ∩ TS′ ∩ R. (5.2)

For the “⊆” part, take x ∈ DS ∩ DS′ ∩ R and t ∈ (0, 1). Then

ρS(LS′(x, t)) = ρS(HS′(x, 2t))
(T M4)= ρS(x) = 1/2, (5.3)

which implies LS′(x, t) ∈ DS , and by (5.1), we are done. For the reciprocal, take x ∈
DS ∩ TS′ ∩ R. As x ∈ TS′ , there exists (y, t) ∈ DS′ × (0, 1) such that

x = HS′(y, 2t) ⇒ 1/2 = ρS(x) = ρS(HS′(y, 2t))
(T M4)= ρS(y), (5.4)

that is, y ∈ DS , which proves the “⊇” part.
We now define the covering M = Mε ∪ V , where V = M ∩ TS′ . We have the following

chain of foliated diffeomorphisms:

Mε ∩ V = DS ∩ R ∩ TS′ ∩ ρ−1
S′ ((ε, 1))

(5.2)= LS′(DS ∩ DS′ ∩ R × (ε, 1))

∼= DS ∩ DS′ ∩ R × (ε, 1) ∼= DS ∩ DS′ ∩ R × (0, 1)
(5.2)∼= DS ∩ R ∩ TS′ = V ,
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and thus the Mayer-Vietoris sequence for basic cohomology yields Mε

q.i.
↪→ M . ��

Remark 5.2 Notice that we need both parts of (TM4) to prove (5.3) and (5.4) because we are
considering both cases (S ≺ S′ and S′ ≺ S).

We now fix some notation for the rest of this article. For each i ∈ Z we shall write:

• �i =
⋃

depthK S≤i

S

and, for i ∈ {0, . . . , r − 1}, where r = depth SK,

• Ti =
⋃

S⊂�i \�i−1

TS

• τi : Ti → �i\�i−1;
• ρi : Ti → [0, 1) its radius function, and
• Di = ρ−1

i ( 12 ) the core of Ti .

Notice that both Ti and Di have a finite number of connected components. The proof of
the next proposition is similar to that of [23, Proposition 2.4]:

Proposition 5.3 Let S be a singular stratum of K, denote by TS its tubular neighbourhood
in T and DS its corresponding core. Then the restrictions of K to both TS ∩ R and DS ∩ R
are CERFs.

Proof The foliated diffeomorphism (5.1) implies that it suffices to show that (DS ∩ R,K)

is a CERF to prove the proposition. Notice that any zipper of the CERF (R,K) is a zipper
for (DS ∩ R,K), which yields property (a) of 3.2. So it suffices to construct a reppiz of
M = DS ∩ R by removing a small neighbourhood of each singular stratum.

Take ε ∈ (0, 1
2 ) and consider T ε

i =
i⋃

j=0

ρ−1
j ([0, ε]) for all i = 0, . . . , r − 1. Notice that

X\R = �r−1 ⊂ T ε
r−1. We now show that U = M\T ε

r−1 is a reppiz of M , i.e., U satisfies
properties (b) and (c) of 3.2.

We define, for i = 0, . . . , r − 1 :

• the subset Ui = M\T ε
i ;• the space Yi = X\T ε

i ;• the collection Ti = {
T \T ε

i |T ∈ T
}
;

• the statement Pi ≡ “Ti is a foliated Thom–Mather system of the SRF (Yi ,K), and

Ui
q.i.
↪→ M .”

We now prove Pr−1 by induction on i , which implies 3.2 (b).
As �0 is a union of minimal (closed) strata of (X ,K), then T ε

0 = ρ−1
0 ([0, ε]) is a satu-

rated closed subset of (X ,K), and the first part of P0 follows. Now by repeatedly applying
Lemma 5.1 with Y = X and S′ each connected component of �0, we get the second part,

that is, U0
q.i.
↪→ M .

Suppose now that Pi−1 is true, and let’s prove Pi . We have

Yi = X\T ε
i = Yi−1\ρ−1

i ([0, ε]) and Ti =
{

T \ρ−1
i ([0, ε])|T ∈ Ti−1

}
.

Notice that, for every S′ ∈ �i we have that S′\T ε
i−1 is a minimal (hence, closed) stratum of

Yi−1. So ρ−1
i ([0, ε]) is a saturated closed subset of (Yi−1,K) and as a consequence, we get
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the first part of Pi . By repeatedly applying Lemma 5.1 with Y = Yi−1 and S′ each connected
component of �i , we get Ui

q.i.
↪→ Ui−1. By induction hypothesis, we have Ui−1

q.i.
↪→ M , and

hence, Ui
q.i.
↪→ M holds. So we get Pi and the induction proof is completed.

We have proven Pr−1, which implies that U = Ur−1 satisfies 3.2 (b).
We now have to prove that the closure of U in M is compact (property (c) of 3.2).

Consider the union of open tubes Tε =
r−1⋃

i=0

(T ε
i )◦ =

r−1⋃

i=0

ρ−1
i ([0, ε)), where (·)◦ stands

for the interior operator. We define K = M\Tε, which is a subset of M containing U . Let’s
compute its closure in X :

K ⊂ M\(Tε)
◦ = M\Tε

(�)= M\Tε = K .

So K is closed in X , and thus, compact. Hence,U is compact, and 3.2 (b) is satisfied. To justify
step (�), it suffices to see (DS ∩ R)\(DS ∩ R) ⊂ �r−1, because in that case, M\M ⊂ Tε.

By construction, the core DS is a closed subset of X\�s−1, being s = depthK S. So we get
DS\DS ⊂ �s−1 and therefore:

DS ∩ R\(DS ∩ R) ⊂ DS\(DS ∩ R) = DS\DS ∪ DS\R ⊂ �s−1 ∪ X\R = �r−1,

which ends the proof. ��
We get that the Álvarez class of a singular stratum induces that of its sphere bundle.

Proposition 5.4 Let S be a minimal stratum of an SRF (X ,K), and let π : DS −→ S be
its associated sphere bundle. Suppose that the foliation of the fibre is taut. Then the Álvarez
classes of KDS∩R and KS satisfy κ DS∩R = π∗κ S.

Proof From Proposition 5.3,KDS∩R is a CERF. FromLemma 2.3,π is a thick foliated bundle
with compact structure group and taut fibre. Proposition 4.7 gives the result. ��

6 Tautness of singular Riemannian foliations

Let K be an SRF on the compact connected manifold X . In Proposition 5.4 we proved that
the Álvarez class of each stratum is related to that of the regular part of a tube around it. This
resembles a lot Verona’s approach to differential forms on stratified spaces, cf. [29]. In this
section we shall follow that approach to patch up the Álvarez classes of all the strata into a
unique cohomology class.

Notice that the definition of the basic forms (see Sect. 3.2) in the context of a regular
foliation makes sense when the foliation is singular. We shall thus use the same notation and
denote the basic cohomology of (X ,K) by H∗(X/K). The existence of basic partitions of
unity implies the existence of Mayer-Vietoris sequences for the basic cohomology of open
K-saturated subsets of X (see [30, Lemma 3]).

Remark 6.1 By degree reasons, the inclusion�1(X/K) ↪→ �1(X) induces amonomorphism
in cohomology H1(X/K) � H1(X).

The following example will be used in the proof of the main theorem:

Lemma 6.2 Let G be an SRF on the sphere S
k without 0-dimensional leaves. Then

H1(Sk/G) = 0.
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Proof If k = 1, since there are no 0-dimensional leaves, G must be a regular foliation of
dimension 1, that is, the one leaf foliation, and the statement holds trivially. If k 
= 1, then
the lemma follows by Remark 6.1, because H1(Sk) = 0. ��

Assume the notation used in Sect. 5, and put r = depth SK.We have the following compact
saturated subsets of X :

∅ = �−1 ⊂ �0 ⊂ · · · ⊂ �r−1 = X\R ⊂ �r = X .

We also consider the open saturated subsets Ri = X\�r−i and the inclusions

∅ = R0 ⊂ R = R1 ⊂ R2 ⊂ · · · ⊂ Rr ⊂ Rr+1 = X .

Proposition 6.3 Let K be an SRF on X, and denote by R its regular part. Then the inclusion
induces a monomorphism in basic cohomology

ιR : H1(X/K) � H1(R/K).

Proof We consider, for i ∈ {1, 2, . . . , r + 1} the following statement:

Pi ≡ “The inclusion Ri−1 ↪→ Ri induces a monomorphism H1(Ri/K) � H1(Ri−1/K)”.

We shall show that Pi holds for every i ∈ {1, 2, . . . , r + 1}, thus proving the Proposition. P1

holds trivially. Take, for short, T = Tr−i+1, which is a tube of the singular strata forming
Ri\Ri−1. From the saturated open covering {Ri−1, T } of Ri , we have the Mayer-Vietoris
exact sequence for basic cohomology, which begins:

H0(Ri/K) −→ H0(Ri−1/K) ⊕ H0(T /K) −→ H0((Ri−1 ∩ T )/K) −→ . . . (6.1)

By (6.1), H0(Ri/K) ∼= H0(Ri−1/K) and H0(T /K) ∼= H0((Ri−1 ∩ T )/K), we get the exact
sequence:

0 −→ H1(Ri/K)
φ−→ H1(Ri−1/K) ⊕ H1(T /K)

ρ−→ H1((Ri−1 ∩ T )/K). (6.2)

If we prove that H1(T /K)−→H1((Ri−1 ∩ T )/K) is injective, we get that φ is injective and
thus Pi . As Ri−1∩T = Tr−i+1\�r−i+1, it suffices to prove that, for each singular stratum S,
the inclusion ι : TS ∩ Ri−1 ↪→ TS induces a monomorphism in basic cohomology. We have

H1(TS/K)
ι∗

H1((TS ∩ Ri−1)/K)

∼=ι∗D

H1(S/K)

τ∗ ∼=
π∗

H1(DS ∩ Ri−1)/K),

(6.3)

where ιD is induced by the inclusion DS ↪→ TS and π = τ |DS . As ι∗D is an isomorphism we
just have to prove that π∗ is injective. Take [α] ∈ H1(S/K) so that π∗α = d f , with f a basic
function on DS∩Ri−1. As iX d f = iX (π∗α) = 0 = iX f for every X ∈ ker π∗, we have that f
is π-basic, and so there exists g ∈ C∞(S) so that f = π∗g. Hence π∗(α) = dπ∗g = π∗dg,
which yields α = dg, because π is a submersion. By degree reasons, we have that g is
K-basic and thus [α] = [dg] = 0 in H1(S/K). We get that π∗ is injective, which ends the
proof. ��
Theorem 6.4 (bis.) Let K be an SRF on a closed manifold X. Then there exists a unique
class κ X ∈ H1(X/K) that contains the Álvarez class of each stratum. More precisely, the
restriction of κ X to each stratum S is the Álvarez class of (S,KS).
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Proof First notice that the unicity of κ X comes from the fact that it induces theÁlvarez class of
the regular part and fromProposition 6.3. For the existence,we proceed by complete induction
on r = depth SK. When r = 0 the SRF is indeed an RF and the result follows trivially. If
r > 0, we assume that the theorem is true for depth SK < r and prove it for depth SK = r .
We shall construct inductively on i ∈ {0, 1, . . . , r + 1} a form κ i ∈ H1(Ri/K) satisfying

κ i |Ri−1 = κ i−1 and κ i |S = κ S ∀S ⊂ Ri\Ri−1,

and finish the proof by taking κ X = κr+1. Suppose that we have constructed the classes
0 = κ0, κ1, . . . , κ i−1 and let’s construct κ i . As in the proof of Proposition 6.3 we take the
open covering {Ri−1, T } of Ri , which yields the exact sequence (6.2). We shall prove that
ρ(κ i−1, τ

∗κ S) = 0 for each singular stratum S ⊂ Ri\Ri−1, which would give κ i by the
exactness of 6.3, thus completing the induction.ByProposition 6.3, ιi : H1((Ri−1∩T )/K) �
H1((T ∩ R)/K) is a monomorphism. So, if we prove that ιi ◦ ρ(κ i−1, τ

∗κ S) = 0, we are
done. We have

ιi ◦ ρ(κ i−1, τ
∗κS) = κ i−1|R∩T − τ ∗κ S |R∩T = · · · = κ R |R∩T − τ ∗κ S |R∩T , (6.4)

where κ R is the Álvarez class of R = R1. Notice that the nullity of (6.4) can be checked on
H1(DS ∩ R)/K) via the isomorphism ι∗D of (6.3). There only remains to prove that

κ R |R∩DS = π∗κ S ∈ H1((DS ∩ R)/K). (6.5)

Let (SnS ,G) be the fibre of the bundle DS . Then depth G < r , and by induction hypothesis,
there exists a class κS ∈ H1(SnS /G) whose restriction to the regular part RS of G is the
Álvarez class of (RS,G). By Lemma 6.2, we have that κS = 0, which yields κ RS

= 0 and
thus (RS,G) is a taut CERF. Then by Proposition 5.4 we get (6.5) and the proof is complete.

��
This theorem leads us to the following natural definitions:

Definition 6.5 LetK be an SRF on a compact connected manifold X . Then the Álvarez class
of (X ,K) is the unique class κ X ∈ H1(X/K) which induces the Álvarez class of every
stratum of SK. We shall say that an SRF is cohomologically taut if its Álvarez class is zero.

Notice that although geometrical tautness cannot be achieved globally for an SRF (see 1.1),
we have been able to define cohomological tautness by means of a basic class (which may be
regarded as a class in H1(X), byRemark 6.1). The geometricalmeaning of the cohomological
tautness of an SRF must be interpretated individually on each stratum, as we summarize in
the following theorem:

Theorem 6.6 LetK be an SRF on a compact manifold X. Then, the following three statements
are equivalent:

(a) The foliation K is cohomologically taut;
(b) The foliation KS is taut for each stratum S ∈ SK;
(c) The foliation KR is taut.

Proof The only nontrivial implication is (c) �⇒ (a), which follows because ιR(κX ) = κ R =
0 and Proposition 6.3. ��

The following Corollary generalizes E. Ghys’ celebrated result about tautness of Rieman-
nian foliations on simply connected spaces (see [7, Théorème B]:
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Corollary 6.7 (bis.) Every SRF on a compact simply connected manifold X is cohomologi-
cally taut.

Proof By Remark 6.1 we have H1(X/K) = 0, and thus κ X = 0. ��
Remark 6.8 Recall that Molino’s desingularization (X̃ , K̃) of (X ,K) is an RF that is taut
if and only if KR is taut [22, Remark 2.4.3]. Nevertheless, Corollary 6.7 cannot be proved
directly from that fact, because the desingularization of a simply connected manifold may
not be simply connected. Notice also, that, as a consequence of Theorem 6.6 and Corollary
6.7, the foliation induced on each stratum of a SRF on a simply connected compact manifold
is a geometrically taut RF, which is not evident a priori.

As in the regular case, cohomological tautness can be detected by using some other
cohomological groups. The first one is the twisted cohomology H0

κ (X/K) where κ is any
representative of the Álvarez class κ X .

Proposition 6.9 Let X be a connected compact manifold endowed with an SRF K. The
following two statements are equivalent:

(a) The foliation K is cohomologically taut.
(b) The cohomology group H0

κ (X/K) is isomorphic to R.

Otherwise, H0
κ (X/K) = 0.

Proof We proceed in two steps.
(a) ⇒ (b). If K is cohomologically taut then κ X = [κ] = 0. So, H0

κ (X/K) ∼=
H0(X/K) = R.

(b) ⇒ (a). From Theorem 6.6 it suffices to prove that KR is a taut foliation; that is, that
H0

κR
(R/K) 
= 0 (cf. [23, Theorem 3.5]). Proceeding as in Proposition 6.3, we get that the

restriction ιR : H0
κ (X/K) → H0

κR
(R/K) is a monomorphism. This gives (a).

Since H0
κR

(R/K) = 0 or R (cf. [23, Theorem 3.5]) then we get H0
κ (X/K) = 0 or R. ��

The second one has been proved in [21, Corollary 3.5]. Recall that a singular stratum
is a boundary stratum1 if there exists a stratum S′ satisfying S � S′ and codimX K =
codimS′ KS′ + 1. The union of boundary strata of K is denoted by ∂(X/K).

Proposition 6.10 Let X be a connected compact manifold endowed with a CERF K such that
KR is transversally oriented. Put n = codimKR. Then, the following three statements are
equivalent:

(a) The foliation K is cohomologically taut.
(b) The cohomology group Hn(X/K, ∂(X/K)) is isomorphic to R.
(c) The intersection cohomology group IHn

p(X/K) is isomorphic to R, for any perversity

p ≤ t .

The inductive construction of the Álvarez classes κ i in the proof of Theorem 1.1 implies
that if S′ � S andKS is cohomologically taut, thenKS′ must be cohomologically taut. In fact,
theÁlvarez class is an obstruction to foliatedly embedRiemannian foliations: it is not possible
to foliatedly embed a non-taut RF in a taut SRF. As an application of Corollary 6.7, we can,
for example, get that Carrière’s well-known non-taut Riemannian flow on the manifold T 3

A
(see [4, Exemple I. D. 6]) cannot be foliatedly embedded in any sphere with a SRF.

Nevertheless, both taut and non-taut strata can coexist in the same SRF, as the following
example shows.

1 In [21, p. 431] there’s a typo in one sign of the formula of the definition, which says codimM F =
codimS′ FS′ − 1.
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Fig. 2 The ends of the handle are
diffeomorphic to T3 N

S

S
4

∂K1

∂K2

Id

∼

Example 6.11 ([20, Sect. 3.5]) Consider the unimodular matrix A = (
2 1
1 1

)
and v = (v1, v2)

one of its irrational slope eigenvectors. Denote by Fv the Kronecker flow induced on the
torus T2, which can be naturally extended to the linear flow FS3 on S

3 corresponding to
the R-action �S3(t, (z1, z2)) = (ei ·v1t · z1, ei ·v2t · z2). We consider the suspension of this
action, that is, the R-action on S

4 = �S
3, given by �(t, [(z1, z2), s]) = [�(t, (z1, z2)), s].

Its orbits define an SRF FS4 whose singular part consists of two fixed points: the North and
South poles of S4. By Corollary 6.7,FS4 is a cohomologically taut singular Riemannian flow.

The closures of the generic leaves of FS4 are tori of dimensions 1 and 2. Take two leaves
L1 and L2 whose disjoint closures are foliated diffeomorphic to (T2,Fv), and consider
K1, K2 disjoint compact saturated neighbourhoods of L1 and L2. Then (Ki ,FS4) is foliated
diffeomorphic to (T2 × D

2,Fv × {points}) for i = 1, 2 (see [4, Proposition 3]). Notice that
(∂Ki ,FS4)

∼= (T3,Fv × {points}), and denote by (Ki )
◦ the interior of Ki for i = 1, 2. We

construct the manifold X = (S4\((K1)
◦ ∪ (K2)

◦))/ ∼, where we have identified ∂K1 and
∂K2 by (x1,−) ∼ (A · x2,−) for x1, x2 ∈ T

2. Equivalently, we can glue the boundaries
of a handle T3 × [0, 1] to ∂Ki using the identification ∼ and the identity, respectively, for
i = 1, 2 (see Fig. 2).

Notice that the described surgery is compatible with FS4 and denote by K the singular
Riemannian flow induced in X . By construction,K has two singular strata, both of them fixed
points, and thus, trivially endowed with taut foliations. None of them are boundary strata,
and then H3(X/K, ∂(X/K)) = H3(X/K). A straightforward Mayer-Vietoris computation
gives H3(X/K) = 0, and by (b) of Proposition 6.10 we have that K is not cohomologically
taut.

The described surgery can be easily generalized to generate cohomologically non-taut
singular Riemannian flows from cohomologically taut singular Riemannian flows.
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Appendix

This appendix is devoted to proving Lemma 2.3.

Some geometrical facts

The following two lemmas will be useful to describe the local foliated structure of the charts
of a tubular neighbourhood of a stratum.

Lemma 7.1 Let M and M ′ be two manifolds, respectively endowed with the SRFs F and F ′.
Consider an embedding F : M × [0, 1) → M ′ × [0, 1). If the restriction

F : (M × (0, 1),F × I) → (M ′ × (0, 1),F ′ × I) (7.1)

is foliated then

F : (M × [0, 1),F × I) → (M ′ × [0, 1),F ′ × I)

is also foliated.

Proof Notice, on one hand, that when F and F ′ are regular, the result follows directly from
the local description of F .

Consider, on the other hand, S ∈ SF a minimal stratum. From (7.1) there exists S′ ∈ SF ′
with F(S × (0, 1)) ⊂ S′ × (0, 1) and therefore F(S × [0, 1)) ⊂ S′ × [0, 1). We claim that

F(S × [0, 1)) ⊂ S′ × [0, 1).
For that purpose, let us suppose that there exists S′

0 ∈ SF ′ with S′
0 ≺ S′ and F(S × {0}) ∩

(S′
0 × {0}) 
= ∅. Since F(M × [0, 1)) is an open subset of M ′ × [0, 1) then F(M × (0, 1)) ∩

(S′
0 × (0, 1)) 
= ∅. But this is not possible since the map F : (M × (0, 1),F × I) →

(F(M × (0, 1)),F ′ × I) is a foliated diffeomorphism and S × (0, 1) a minimal stratum of
SF×I .

We proceed now by induction on depth SF . If depth SF = 0, then F is a regular foliation
and the above considerations yield F(M ×[0, 1)) ⊂ R′×[0, 1), where R′ is a regular stratum
of SF ′ . We get the result since the two foliations are regular.

Now, if depth SF > 0, denote Smin the union of closed strata of F . By induction hypoth-
esis, the restriction

F : ((M − Smin) × [0, 1),F × I) −→ (M ′ × [0, 1),F ′ × I)

is a foliated map. Consider now S ∈ SF a singular stratum. We have seen that there exists
S′ ∈ SF ′ with F(S × [0, 1)) ⊂ S′ × [0, 1). It remains to prove that

F : (S × [0, 1),F × I) −→ (S′ × [0, 1),F ′ × I)

is a foliated map. It follows, since F and F ′ are regular. ��

Lemma 7.2 Let M and M ′ be two manifolds, respectively endowed with the SRFs F and F ′.
Consider an embedding f : M × R

n+1 → M ′ × R
n+1 with f (M × {0}) ⊂ M ′ × {0}. Then

there exists a unique embedding

F : M × S
n × [0, 1) −→ M ′ × S

n × [0, 1)
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making the following diagram commutative

M × S
n × [0, 1) F

Q

M ′ × S
n × [0, 1)

Q

M × R
n+1 f

M ′ × R
n+1

where the smooth map Q is defined by Q(u, θ, t) = (u, t · θ). Moreover, consider SRFs E
and G on R

n+1 and S
n, respectively, such that P : (Sn × (0, 1),G × I) → (

R
n+1\{0}, E)

,

defined by P(θ, t) = t · θ , is a foliated diffeomorphism and I denotes the foliation by points.
Suppose that the embedding f : (M × R

n+1,F × E) → (M ′ × R
n+1,F ′ × E) is foliated.

Then

F : (M × S
n × [0, 1),F × G × I) → (M ′ × S

n × [0, 1),F ′ × G × I)

is a foliated embedding.

Proof We proceed in several steps.

• Uniqueness. It follows from the density of M × S
n × (0, 1) in M × S

n × [0, 1) and from
the fact that the restriction Q : M ×S

n × (0, 1) → M × (Rn+1\{0}) is a diffemorphism.
• Existence. Write f = ( f0, f1) : M × R

n+1 → M ′ × R
n+1. The components f0 and f1

are smooth with f1(−, 0) = 0. So the map h : M × S
n × [0, 1) → R

nS+1 defined by
h(u, θ, t) = f1(u, t · θ)/t is smooth and without zeroes. Finally, we define

F(u, θ, t) =
(

f0(u, t · θ),
h(u, θ, t)

||h(u, θ, t)|| , t · ||h(u, θ, t)||
)

.

• Embedding. Since f = ( f0, f1) is an embeddingwith f1(−, 0) = 0, then each restriction
f1(u,−) : Rn+1 → R

n+1 is an embedding. Put Gu = f1(u,−)∗0 its differential at 0,
which is an isomorphism. By construction we have h(u, θ, 0) = Gu(θ)/||Gu(θ)||. So
each restriction F : {u} × S

n × {0} → { f0(u, 0)} × S
n × {0} is a diffeomorphism.

Now, consider (ui , θi ) ∈ M × S
n for i = 1, 2 such that F(u1, θ1, 0) = F(u2, θ2, 0).

Since f is an embedding both (ui , θi , 0) live on the same fibre {u} × S
n × {0}. Since Gu

is an isomorphism, we get that F is an embedding.
• Foliated. The restriction F : (M×S

n×(0, 1),F×G×I) → (M ′×S
n×(0, 1),F ′×G×I)

is a foliated embedding since the restriction Q : (M × S
n × (0, 1),F × G × I) →

(M × R
n+1\{0},F × E) is a foliated diffeomorphism. Now, it suffices to apply Lemma

7.1 to F . ��

Lifting of charts

Assume the notation of Sects. 2.3–2.5, some of which we recall now. As the foliation ES of
R

nS+1 is invariant by homotheties, there exists a foliation GS on the sphere SnS such that the
map P : (SnS × (0, 1),GS × I) → (

R
nS+1\{0}, ES

)
, where I denotes the 0-dimensional

foliation, is a foliated diffeomorphism. The foliation GS is an SRF (see [15]).
We put A and B two atlases of the tubular neighbourhood τS : TS → S whose structure

groups are, respectively, O(nS + 1) and Diff(DnS+1, ES). Recall the foliated smooth map
LS : (DS ×[0, 1),K×I) → (TS,K) defined byLS(z, t) = 2t ·z. The restrictionLS : (DS ×
(0, 1),K×I) → (TS\S,K) is a foliated diffeomorphism. Notice that any chart (U , ψ) ∈ A
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satisfies ψ(v, t · θ) = t · ψ(v, θ) and induces a lifted diffeomorphism ψ that makes the
following diagram commute:

U × S
nS × [0, 1) ψ

Q

DS × [0, 1)
L S

U × D
nS+1 ψ

TS,

(7.2)

where ψ(u, θ, t) = (ψ(u, 1/2 · θ), t). The following lemma proves that the same lifting
property holds for the charts of B.

Lemma 7.3 Let (U , ϕ) be a chart of B. Then there exists a foliated embedding ϕ : (U ×S
nS ×

[0, 1),K × GS × I) → (DS × [0, 1),K × I) making the following diagram commute:

U × S
nS × [0, 1) ϕ

Q

DS × [0, 1)
L S

U × D
nS+1 ϕ

TS .

Proof Take a chart (U , ψ) ∈ A. Notice that the lifted map ψ (see (7.2)) is an embedding
and the composition h = ψ−1 ◦ ϕ is a diffeomorphism. By the first part of Lemma 7.2, h
can be lifted to the diffeomorphism H : U × S

nS × [0, 1) → U × S
nS × [0, 1) and defining

ϕ = ψ◦H we get the following commutative diagram:

U × S
nS × [0, 1)
Q

H

ϕ

U × S
nS × [0, 1)

ψ

Q

DS × [0, 1)
L S

U × D
nS+1 h

ϕ

U × D
nS+1 ψ

TS .

The restriction ϕ : (U × S
nS × (0, 1),K × GS × I) → (DS × (0, 1),K × I) is a foliated

embedding since the restrictions Q : (U ×S
nS ×(0, 1),K×GS ×I) → (U ×R

nS+1\{0},K×
ES) and LS : (DS × (0, 1)) → (TS\S,K) are foliated diffeomorphisms (cf. 6.1). Now, it
suffices to apply the Lemma 7.1 to ϕ. The uniqueness of ϕ follows by density. ��

Proof of Proposition 2.3

For each (U , ϕ) ∈ B we define

ϕ : (U × S
nS ,K × GS) → (DS,K)

by ϕ(u, θ) = prϕ(u, θ, 0), where pr : DS × [0, 1) → DS is the canonical projection and ϕ

comes from Lemma 7.3. Notice that ϕ is a foliated embedding. Since LS(z, 0) = τS(z) for
each z ∈ DS , we have
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τSϕ(u, θ) = τSprϕ(u, θ, 0) = LS(prϕ(u, θ, 0), 0)

= LSϕ(u, θ, 0) = ϕQ(u, θ, 0) = ϕ(u) = u.

We conclude that C = {(U , ϕ) | (U , ϕ) ∈ B)} is an atlas of the sphere bundle τs : DS → S.
By construction, the structure group preserves GS . It remains to prove that it also belongs to
the orthogonal group O(nS + 1).

Consider (Ui , ϕi ), (U j , ϕ j ) ∈ C. In the commutative diagram

Ui ∩ U j × S
nS × [0, 1)

ϕ
i
−1◦ϕ j

Q

Ui ∩ U j × S
nS × [0, 1)

Q

Ui ∩ U j × D
nS+1

ϕ−1
i ◦ϕ j

Ui ∩ U j × D
nS+1,

(cf. Lemma 7.3) the two horizontal rows are foliated diffeomorphisms. The top map is
determined by the bottommap as described in the proof of Lemma 7.2. So for each (u, θ, 0) ∈
Ui ∩ U j × S

nS × [0, 1) we get
ϕi

−1◦ϕ j (u, θ, 0) = (u, Gu(θ)/||Gu(θ)||, 0).
This equality yields

ϕi
−1◦ϕ j (u, θ) = (u, Gu(θ)/||Gu(θ)||).

The linear map Gu is the differential of the smooth map fi, j (u,−−) : DnS+1 → D
nS+1,

where ϕ−1
i ◦ϕ j (u, θ) = (u, fi, j (u, θ)). Since (Ui , ϕi ) ∈ B then |ϕi (u, v)| = |v| for each

(u, v) ∈ U × D
nS+1. So we get that Gu ∈ O(nS + 1). We have finished, since

ϕi
−1◦ϕ j (u, θ) = (u, Gu(θ)).

��
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