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Abstract 
 

Brain functional connectivity (FC) changes have been measured across seconds 
using fMRI. This is true for both rest and task scenarios. Moreover, it is well 
accepted that task engagement alters FC, and that dynamic estimates of FC during 
and before task events can help predict their nature and performance. Yet, when 
it comes to dynamic FC (dFC) during rest, there is no consensus about its origin or 
significance. Some argue that rest dFC reflects fluctuations in on-going cognition, 
or is a manifestation of intrinsic brain maintenance mechanisms, which could have 
predictive clinical value. Conversely, others have concluded that rest dFC is mostly 
the result of sampling variability, head motion or fluctuating sleep states. Here, 
we present novel analyses suggesting that rest dFC is influenced by short periods 
of spontaneous cognitive-task-like processes, and that the cognitive nature of 
such mental processes can be inferred blindly from the data. As such, several 
different behaviorally relevant whole-brain FC configurations may occur during a 
single rest scan even when subjects were continuously awake and displayed 
minimal motion. In addition, using low dimensional embeddings as visualization 
aids, we show how FC states—commonly used to summarize and interpret resting 
dFC—can accurately and robustly reveal periods of externally imposed tasks; 
however, they may be less effective in capturing periods of distinct cognition 
during rest. 
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INTRODUCTION 
 
As the field of functional Magnetic Resonance Imaging (fMRI) moves away from group-level 
reports and becomes increasingly interested in the types of single-subject evaluations that are 
necessary for clinical diagnosis and prognosis; there is an increasing focus on examining how 
brain states change over time rather than treating each scan as a static snapshot of a person’s 
brain function (Hutchison et al., 2013a; Preti et al., 2017; Saggar et al., 2018). For example, 
individual scans today are often described in terms of a limited set of recurring, short-duration 
(tens of seconds), whole-brain FC configurations named FC states (Allen et al., 2014; Damaraju 
et al., 2014; Gonzalez-Castillo et al., 2015). Metrics describing their dwell times, ordering and 
frequency of transitions can then be used to quantify different aspects of empirically observed 
dFC (Calhoun et al., 2014). Many questions remain both about the etiology of empirically 
observed systems-level FC dynamics; as well as regarding the ability of current models to 
accurately capture behavioral, cognitive and clinically relevant dynamic phenomena. 
 
One well accepted principle is that task performance can modulate dFC across the brain 
(Gonzalez-Castillo and Bandettini, 2018), even if the brain never abandons an overall small-world 
configuration (Di et al., 2013). As humans perceive external stimuli and engage with cognitive 
tasks, patterns of communication across brain networks reshape (Cole et al., 2014), modularity 
decreases (Kitzbichler et al., 2011), communication hubs relocate (Leske et al., 2015), and overall 
variability of FC estimates drops (Elton and Gao, 2015). FC modulations induced by tasks are 
sufficiently profound as to allow prediction of subsequent perceptual outcomes such as response 
time (Thompson et al., 2013) and pain levels (Ploner et al., 2010). Furthermore, FC estimates 
computed from only seconds long portions of data can be used to classify scans according to 
tasks (Shirer et al., 2012) and to segment multi-task scans into task-homogenous periods 
(Gonzalez-Castillo et al., 2015). 
  
Nonetheless, despite empirical reports of dFC in resting humans (Allen et al., 2014), macaques 
(Hutchison et al., 2013b) and rodents (Keilholz et al., 2013), a similar level of consensus does not 
exist regarding the significance of dFC phenomena while at rest—with rest referring to a subject’s 
state when instructed to stay awake and not required to perform any given task or pay attention 
to any specific external stimuli. Those who hypothesize rest dFC to be neuronally relevant have 
explored the phenomenon in the context of consciousness (Barttfeld et al., 2015), development 
(Qin et al., 2015) and clinical disorders (Damaraju et al., 2014; Falahpour et al., 2016; Wee et al., 
2016). These studies have shown how the complexity of dFC decreases as consciousness levels 
decline (Barttfeld et al., 2015), how dynamic inter-regional interactions can be used to predict 
brain maturity (Qin et al., 2015),  and how dFC derivatives (e.g., dwell times) can be diagnostically 
informative for conditions such as schizophrenia (Damaraju et al., 2014), mild cognitive 
impairment (Wee et al., 2016), and autism (Falahpour et al., 2016). Yet, many others have raised 
valid concerns regarding the ability of current dFC estimation methods to capture neuronally 
relevant dFC at rest (Handwerker et al., 2012; Hindriks et al., 2016; Leonardi and Van De Ville, 
2015; Shakil et al., 2016). These concerns include a lack of appropriate null models to discern real 
dynamics from sampling variability (Hindriks et al., 2016), improper pre-processing leading to 
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spurious dynamics (Leonardi and Van De Ville, 2015), and excessive temporal smoothing  that 
hinder our ability to capture sharp and rapid transitions of interest (a real concern for sliding 
window techniques used to estimate FC states; (Keilholz et al., 2017; Shakil et al., 2016)). Finally, 
some have stated that resting dFC is primarily a manifestation of sampling variability, residual 
head motion artifacts, and fluctuations in sleep state; and that as such, it lacks clear cognitive or 
psychological significance (Laumann et al., 2017). 
 
One cause of such discrepant views is that it is challenging to demonstrate the potential cognitive 
correlates of resting dFC; especially given the unconstrained cognitive nature of rest and scarcity 
of methods to reliably infer the cognitive correlates of whole-brain FC patterns. When subjects 
are instructed to quietly rest, retrospective reports demonstrate that subjects often engage in a 
succession of self-paced cognitive processes including inner speech, musical experience, visual 
imagery, episodic memory recall, future planning, mental manipulation of numbers, and periods 
of heightened somatosensory sensations (Delamillieure et al., 2010). Reconfigurations of FC 
patterns during rest could, to some extent, be a manifestation of this flow of covert self-paced 
conscious cognition (Barttfeld et al., 2015); even if other factors such as  random exploration of 
cognitive architectures (Deco et al., 2013), fluctuations in autonomic system activity (Chang et 
al., 2013), intrinsic unconscious processes (Kucyi, 2018), self-initiated body motion (Tan et al., 
2017) and arousal levels (Laumann et al., 2017), also contribute. Here we present a series of 
experiments aimed at exploring this hypothesis, namely that distinct periods of covert cognition 
are significant contributors to observable resting dFC. We use the term “covert cognition” in the 
previous sentence as an umbrella term to refer to all different mental states a subject undertakes 
while lying still inside the MRI scanner. These will differ in nature, order, timing and length across 
subjects; and may include both ongoing subjective experiences as well as spontaneous memory 
replays or fluctuations in attention, among many others. In other words, we use the term 
“cognition during rest” as an equivalent concept to William James “flights” and “perchings” of 
the mind; and as such, it encompasses the different types of spontaneous thoughts—namely 
daydreaming, mind-wandering, and creative thinking—described by Christoff et al. (2016) when 
describing a neuroscientific framework for the study of mind-wandering. In parallel, we also 
evaluate the ability of FC states—one of the most prominent approaches to summarize rest 
dFC—to capture those hypothesized periods of distinct cognition during rest. 
 
To explain these diverse and sometimes contradictory observations regarding dFC, we extend 
current FC state methodology in two ways. First, we combine hemodynamic deconvolution 
(Caballero Gaudes et al., 2013) and activity-based reverse-inference (Yarkoni et al., 2011) to map 
FC states onto cognitive states. An FC state is commonly defined in terms of a representative FC 
matrix and a timeline (when it occurs). The deconvolution step allows us to also generate a 
representative “activity” map per FC state. Those FC state “activity” maps are subsequently input 
to a pre-existing decoding framework (Neurosynth;  (Yarkoni et al., 2011)) able to map whole-
brain activity patterns into ranked lists of cognitive processes likely associated with the input 
map. A direct mapping from representative FC matrices to cognitive processes might be 
preferable but, unfortunately as of today, such systems do not exist. In the past, hemodynamic 
deconvolution and reverse-inference have proven successful at decoding the nature of self-
driven body motion during rest scans (Tan et al., 2017). Here, we extend that approach for the 
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purpose of attaining open-ended cognitive decoding of FC states. The second way in which we 
extend current FC state methodology is the use of manifold learning techniques to generate low 
dimensional representations of time-varying FC that help visualize how connectivity evolves and 
identify periods of distinct cognition during rest. Projection of dynamic FC patterns into low 
dimensional spaces to ease interpretation has also been proposed by Dodero et al. (2016), as 
well as by Shine et al. (2019) to explore system-wide brain dynamics as a function of cognition. 
The proposed methods are first evaluated on a multi-task1 fMRI dataset (Gonzalez-Castillo et al., 
2015) for which precise information about the timing and nature of cognitive states (as dictated 
by task demands) is available. Next, we apply the same methods to 15 mins long resting state 
scans with low head motion and infrequent eye closures from the human connectome project 
(HCP, (Van Essen et al., 2013)). This way, we examine the possible presence of periods of distinct 
cognition during rest, and the ability of FC states to uncover such periods. Comparative analyses 
across both scenarios (multi-task and rest) are important as substantial differences in the timing 
and nature of externally driven versus self-paced cognitive processes, and their manifestations 
in terms of dFC phenomena, may modulate the ability of models to capture cognitively relevant 
information across both scenarios.  
 
Our results confirm both that FC states can accurately capture periods of distinct cognition driven 
by external task demands, as previously shown (Gonzalez-Castillo et al., 2015), and also that the 
proposed extension for the FC state framework permits accurate inference of the cognitive 
processes underlying each task FC state. Next, we show that although periods of distinct task-like 
cognition are present during pure rest, and their cognitive correlates can be inferred in a similar 
manner, FC state modeling—at least in the specific form examined here—does not identify 
discrete cognitive states as consistently as with the task data. Overall, our work suggests that 
resting dFC is influenced by periods of task-like cognition, and therefore more than a single 
correlation structure may be necessary to entirely describe rest scans. At the same time, our 
results suggest that FC states do not consistently capture periods of distinct cognition during rest, 
and that their estimation and interpretation as a model for rest dFC should be updated 
accordingly. 

METHODS 
 
Multi-Task Dataset 
The multi-task dataset used here has been previously described in detail in (Gonzalez-Castillo et 
al., 2015). In summary, it contains data from 22 subjects (13 females; age 27 +/- 5 y.o.) who gave 
informed consent in compliance with a protocol approved by the Institutional Review Board of 
the National Institute of Mental Health in Bethesda, MD. The data from two subjects were 
discarded from the analysis due to excessive spatial distortions in the functional time series. 
 

                                                        
1 This multi-task dataset consists of 25 mins long scans acquired as subjects engage and transition between four 
different tasks—namely rest, math, 2-back (MEMO) and visual attention (VIDEO)—distributed in 3 mins long periods 
(two such periods per task). 
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The MRI data have been deposited in Xnat Central, https://central.xnat.org (project ID: 
FCStateClassif). 
  
Multi-Task Experimental Paradigm 
Subjects were scanned continuously for 25 min and 24 s while performing four different tasks: 
rest with eyes open (REST), simple mathematical computations (MATH), 2-back working memory 
(MEMO), and visual attention/recognition (VIDEO). Each task occupied two separate 180-s 
blocks, preceded by a 12-s instruction period. Task blocks were arranged so that each task was 
always preceded and followed by a different task. Additional details can be found on the 
supplementary materials accompanying Gonzalez-Castillo et al. (2015). 
 
Multi-Task Data Acquisition 
Imaging was performed on a Siemens 7 Tesla MRI scanner equipped with a 32-element receive 
coil (Nova Medical). Functional runs were obtained using a gradient recalled, single shot, echo 
planar imaging (gre-EPI) sequence: (TR=1.5 s; TE=25 ms; FA=50°; 36 interleaved slices; slice 
thickness = 2 mm; in-plane resolution = 2×2 mm; GRAPPA=2). Each multi-task scan consists of 
1,017 volumes acquired continuously as subjects engage and transition between the different 
tasks. In   addition, high resolution (1mm3) T1-weighted magnetization-prepared rapid gradient-
echo and proton density (PD) sequences were acquired for presentation and alignment purposes. 
 
Multi-Task Data Preprocessing 
Data preprocessing was conducted with AFNI (Cox, 1996). Preprocessing steps match those 
described in Gonzalez-Castillo et al. (2015), and include: (i) despiking;  (ii) physiological noise 
correction (in all but four subjects, due to the insufficient quality of physiological recordings for 
these subjects); (iii) slice time correction; and (iv) head motion correction. In addition, mean, slow 
signal trends modeled with Legendre polynomials up to seventh order, signal from eroded local 
white matter, signal from the lateral ventricles (cerebrospinal fluid), motion estimates, and the 
first derivatives of motion were regressed out in a single regression step to account for potential 
hardware instabilities and remaining physiological noise [ANATICOR model] (Jo et al., 2010). 
Finally, time series were converted to signal percent change, bandpass filtered [0.03 – 0.18Hz], 
and spatially smoothed (FWHM = 4mm). The cutoff frequency of the high pass filter was chosen 
to match the inverse of window length (WL = 30s); following recommendations from Leonardi 
and Van De Ville (2015). 
 
In addition, spatial transformation matrices to go from EPI native space to Montreal Neurological 
Institute (MNI) space were computed for all subjects following procedures previously described 
in (Gonzalez-Castillo et al., 2013). These matrices were then used to bring publicly available 
regions of interest (ROI) definitions from MNI space into each subject’s EPI native space. 
 
Resting-State Dataset 
In addition to the previously described multi-task scan dataset, we also conducted analyses on a 
set of 20 resting-state scans part of Human Connectome Project (Van Essen et al., 2013). In 
particular, we used the first resting-state scan [TR=1s; TE=22.2ms; FA=45°; Voxel Resolution = 
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1.6x1.6x1.6mm3; Multiband Factor = 5;  GRAPPA = 2] from 20 subjects part of the 1200 Release 
(March 2018) for which FIX (Salimi-Khorshidi et al., 2014) pre-processed resting-state scans 
acquired on a 7T MR system were available. Subject selection proceeded as follows. First, out of 
the 175 subjects available, we selected the 144 subjects that completed both the NIH and non-
NIH toolbox behavioral batteries, as well as alcohol and smoking questionnaire, and the family 
history of psychiatric and neurological disorders. Of these remaining 144 subjects, we further 
restricted our sample to the subset of 106 subjects for which eye tracking data was available for 
the first resting scan. Next, based on windowed estimates of percent time of eye closure per 
window, we selected the 37 subject subjects that never had their eyes closed for more than 40% 
of the duration of any sliding window utilized in our analyses (Suppl. Fig. 6). Finally, we restricted 
our study to the 20 subjects with the least amount of maximum absolute motion among those 
37 subjects (Suppl. Fig. 7). 
 
In addition to the pre-processing performed via the HCP FIX-ICA denoising pipeline, we also 
applied band-pass filtering (0.03 – 0.18Hz]), and spatial smoothing (FWHM = 4mm) to match 
equivalent filtering and spatial smoothing steps performed on the multi-task dataset. Following 
these steps, scan segmentation analyses proceeded as described below for both datasets (e.g., 
multi-task and rest). 
	
Scan Segmentation into Cognitively Homogenous Segments 
Segmentation of multi-task scans into cognitively homogenous segments was performed on the 
basis of short-term 30 s long functional connectivity patterns (snapshots) following procedures 
previously described in Gonzalez-Castillo et al. ((2015); Supp. Fig. 1.B). First, representative time-
series ROIs from the Craddock (2012) 200-ROI atlas were obtained and input to a PCA (keep 
97.5% of the variance) to reduce the dimensionality of the data. This resulted, on average, in 
connectivity matrices of size 72 x 72 instead of the original 200 x 200. Remaining PCA time series 
were subsequently segmented in time using overlapping windows of duration 30s. Sliding step 
was set to 1.5 s (one TR). For each window, we computed all pairwise correlations between PCA 
time series, transform them into Z-scores using the Fisher transform, and put them in vector 
form. For each multi-task scan this procedure resulted in 988 vectors (one per-window). We often 
refer to these vectors of windowed connectivity as connectivity snapshots or simply snapshots 
throughout the manuscript. 
 
Lastly, these connectivity vectors were inputted into the k-means (k=4 given the number of tasks; 
distance metric=correlation) clustering algorithm in MATLAB 2017b, which groups connectivity 
vectors into four groups by maximizing within-group similarity and between-group dissimilarity, 
using correlation as a distance metric between snapshots. The algorithm ran 10,000 times with 
different random initializations so that the clustering results do not depend on the initialization 
of the algorithm. Then, the algorithm selects as optimal partition the one with the lowest within-
cluster sums of point-to-centroid distances.  
 
We hypothesize that each group will contain primarily vectors from the same task based on the 
original results from Gonzalez-Castillo et al. (2015). If so, the time spanned by all windows in a 
given group define a segment from the original scan during which the subject was engaged with 
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primarily one type of cognitive activity (e.g., one task). As an unsupervised clustering algorithm, 
k-means only informs us about groupings in the data, not about the meaning (e.g., the task or 
main cognitive process) associated with each group.  
 
Computation of Activity Map per Segment 
For the computation of representative “activity” maps we relied on hemodynamic deconvolution 
because it does not require any information about the timing or nature of what subjects are doing 
in order to estimate activity. This is key to ensure the applicability of the procedure to rest data.  
 
Pre-processed voxel-wise time series—excluding the low pass filtering step—were input to AFNI 
program 3dPFM, which implements the fMRI deconvolution algorithm named Sparse Free 
Paradigm Mapping (SPFM; (Caballero Gaudes et al., 2013)). This program takes as input voxel-
wise fMRI time series and a canonical hemodynamic response model—here we used the SPFM 
canonical response (SPGM1 function on AFNI program 3dDeconvolve). The output consists on 
voxel-wise time series of sparse activity-inducing events (Suppl. Fig. 1.C) that best explain the 
input fMRI time series. The deconvolution algorithm enforces sparsity in time via an L1 norm 
regularized estimator using the LASSO. Here, the Akaike’s Information Criterion (AIC) was used 
to select the regularization parameters per voxel.  
 
First, voxel-wise time-series of activity inducing events were computed with AFNI program 
3dPFM using entire scan time series. Subsequently, activity-like maps were computed for each 
cognitively homogenous scan segment as dictated by the k-means analysis described above. In 
these maps, the intensity of a given voxel corresponds to the average intensity of all activity-
inducing events detected by SPFM that fall within the temporal constrains of the given segment 
(see Suppl. Fig. 1.D). A such, this procedure resulted on one “activity” map per cognitively 
homogenous segment. These maps constitute the input to the decoding step described next. 
 
It is worth noting that activity and connectivity views associated with a given scan segment (e.g., 
an FC-state), although complementary in nature, should not be expected to be fully independent.  
They both constitute summary views of the same data. In addition, connectivity estimates based 
on Pearson’s correlation can be expected to be dominated by large synchronized hemodynamic 
signal fluctuations, which are the target of the deconvolution technique used in the generation 
of the activity summary views(Petridou et al., 2013).” 
 
Cognitive Decoding  
To minimize limitations in terms of the number of cognitive processes that could be decoded, we 
decided to rely on existing meta-analytical databases of brain activity for this last step of the 
analysis. More particularly, we decided to use the reverse inference capabilities of the 
Neurosynth system; which permits decoding at two different levels: that of individual terms 
(Yarkoni et al., 2011) or that of topics (Poldrack et al., 2012).  Because topics are collections of 
terms that frequently co-occur in the neuroscientific literature, they provide a more meaningful 
level of decoding; and were chosen as the decoding target here. Two different topic sets were 
used: the 50- and 400-cognitive state topic sets described in (Poldrack et al., 2012). In this 
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manner, we were able to evaluate the efficiency of the method under two different difficulty 
levels. 
 
Topic-level decoding with Neurosynth proceeds as follows. First, for each topic set, Neurosynth 
computes a reverse inference map (see Suppl. Figs. 3 & 4 for some examples) based on activity 
foci reported in large corpus of neuroscientific literature as described in (Poldrack, 2011; Poldrack 
et al., 2012). Next, when an instance for decoding (e.g., the maps generated in “Computation of 
Activity Map per Segment”) is available, Neurosynth computes the spatial correlation between 
this input and all available topic maps. This correlation informs about the likelihood of a given 
topic being associated with the input map. The output of Neurosynth usually consists on a sorted 
list of topics and their associated correlations with the input.  The higher the “correct” topic for 
a given input appears in this rank, the more accurate the decoding was. Below we describe how 
we evaluated the quality of the decoding.  
 
Evaluation of Scan Segmentation and Decoding 
Scan Segmentation Evaluation 
To quantitatively evaluate success at recovering the periods during which subjects were 
performing the same mental task, we used the adjusted rand index (ARI) (Hubert and Arabie, 
1985). The ARI measures the quality of data-driven clustering (k-means) against an existing gold-
standard (experimental tasks). It ranges from 1 to below 0, with 1 indicating perfect recovery of 
clusters. Ranges established in the literature describe an ARI > 0.9 as excellent, 0.9 > ARI > 0.8 as 
good, 0.8 > ARI > 0.65 as moderate, and ARI < 0.65 as poor recovery, respectively (Steinley, 2004). 
 
Clustering was attempted under two scenarios: (a) considering all available windows; and (b) 
after removal of all non-task homogenous windows (e.g., those spanning one or two tasks plus 
instruction periods). Independently of the scenario, the ARI was computed only considering task-
homogenous windows. In other words, no matter which windows entered the k-means analysis, 
the ARI was computed only based on the grouping of task-homogenous windows as those are 
the only ones for which an unambiguous correct answer clearly exists.  
 
Decoding Evaluation 
Decoding was performed using two different topic sets: 50 and 400 cognitive topic sets. These 
two sets contain one or more topics that strongly relate to the four tasks under scrutiny. For 
example, within the 50 topic-set, only one topic (TOPIC 022) contains the terms “memory”, 
“working memory”, “wm”. Accordingly, decoding success for the MEMO segments is quantified 
in terms of the decoding ranking for TOPIC 022. Similarly, within the 400 topic-set, two topics 
(TOPIC14 and TOPIC376) contains those terms. In this case, decoding success for MEMO 
segments will be quantified considering the average decoding ranking for these two terms. Suppl. 
Tables 1 and 2 list the “correct” topics for our four tasks in the 50 and 400 topic-set, respectively. 
Neurosynth reverse inference maps for all “correct” topics are displayed on Supplementary 
Figures 3 (50-topic set) and 4 (400-topic set). 
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Decoding accuracy was evaluated quantitatively using the ranking accuracy (RA) metric (Pereira 
et al., 2018), which has the desirable property of attributing partial credit proportional to how 
close the correct answer is to the top of the ranking; therefore providing a more nuanced picture 
than accuracy. Rank accuracy is defined as follows for a given subject (s) and task (t):  
 

𝑅𝐴#,% = 1 −
𝑅𝑎𝑛𝑘𝐶𝑜𝑟𝑟𝑒𝑐𝑡% − 1

𝑁𝑡𝑜𝑝𝑖𝑐𝑠 − 1  

 
where Ntopics is the number of topics in the set (e.g., 50 or 400), and RankCorrectt is the decoding 
rank for the correct topic. One limitation of the rank accuracy metric, derived from its reliance 
on rankings, is its inability to provide information regarding actual decoding strength values (i.e., 
is the correct topic ranked high even though the decoding strength is low). Therefore, we also 
report the mean and standard deviation of decoding strengths for correct topics across the multi-
task population. 
 
The p-value for each mean rank accuracy score across subjects was obtained using draws from 
the distribution under the null hypothesis of chance performance (uniform rank position). Given 
a sample of null results for each subject, we computed the mean across subjects, to yield a null 
distribution for the mean score. The p-value for the actual rank accuracy score was the probability 
mass in the tail for values greater than or equal to that score. When there is more than one 
correct topic, RankCorrectt refers to the average decoding rank across all those correct topics. 
 
Visualization of Windowed Connectivity 
Windowed connectivity matrices, following vectorization contain thousands of elements, and 
consequently are hard to visualize; even with high-dimensional visualization tools such as parallel 
coordinate plots (Inselberg and Dimsdale, 1990) or star glyphs (Chambers, 1983). In such high 
dimensional scenarios, an alternative for aiding with visualization is to use manifold learning to 
bring the data into a 2 or 3-dimensional spaces while preserving, as much as possible, the 
structure of the data in its native high-dimensional space. Here, we use one particular manifold 
learning technique, Laplacian Eigenmaps (LE; (Belkin and Niyogi, 2003)), to help interpret results 
and compare between rest and task conditions. Laplacian embeddings were chosen because of 
their computational tractability, their interpretational value from a clustering perspective, and 
because they place emphasis on the preservation of local geometry in the higher dimensional 
originating space. 
 
Laplacian eigenmaps were computed with the scikit-learn Python library (Abraham et al., 2014). 
The algorithm for the computation of the embeddings proceeds as follows. First, an affinity 
matrix for the data in the original high dimensional space was computed using the k-nearest 
neighbor algorithm (NN = 100) and correlation distance as the dissimilarity metric (to be 
consistent with the k-means portion of the study). This provides the algorithm with a network-
like representation of the data. Next, the algorithm computes the Graph Laplacian Matrix of the 
affinity matrix. Finally, an eigenvalue decomposition of the Graph Laplacian is done to estimate 
the embedding dimensions. 
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It is important to notice that the NN parameter can affect the resulting embeddings. Several NN 
values, ranging from NN=25 to NN=250, were evaluated in the multi-task dataset. For all NN 
values equal or greater than 75, the embeddings contained the structures discussed throughout 
the manuscript (i.e., clusters of task-homogenous windows at distal spokes, task inhomogeneous 
windows forming trajectories between sub-spaces occupied by the initial and ending task). All 
embeddings reproduced here are for NN=100. For NN below 75, the embeddings were able to 
solely capture temporal autocorrelation, resulting in “spaghetti-like” structures with windows 
ordered simply according to time; but not otherwise meaningful configurations. 
 
Operations on Low Dimensional Embeddings 
Community Detection 
To help evaluate the structure of the data in the low 3D space, we decided to estimate affinity 
matrices separately for each subject, once transformed to this low dimensional space. Each cell 
on those embedding affinity matrices represents the Euclidean similarity (1 / [1 + Euclidean 
distance]) between the location for two snapshots in 3D space. 
 
In addition, these affinity matrices were used as input to a community detection algorithm to 
estimate the number of communities—namely groups of tightly grouped snapshots, separated 
for the rest of the set—present in the data. For the community detection step, we relied on the 
“community detection for NetworkX” python library (https://github.com/taynaud/python-
louvain), which implements the Louvain method described in Blondel et al. (2008). Analyses were 
conducted using default parameters (resolution=1) for the best_partition function. 
 
Corner Detection 
Groups of elements at distal corners of Laplacian embeddings are known to signal the presence 
of meaningful clusters in the data (Belkin and Niyogi, 2003). Automatic detection of corners for 
the embeddings of the rest-only dataset proceeded as follows. For each subject, we found the x 
most distal windows in the embedding (in terms of Euclidean distance), with x being equal to the 
number of FC-states. Next, for each distal end, we selected all windows sitting within a given 
distance d from it (d = average inter-snapshot distance for all task-homogenous windows in the 
multi-task dataset). This procedure allowed us to automatically identify sets of spatially 
contiguous snapshots sitting near the distal ends of the embeddings. 

Data and Code Availability Statement 
The multi-task dataset is publicly available in the XNAT Central repository (Project ID: 
FCStateClasif). The rest data used in this work is part of the Human Connectome Project. Analyses 
were conducted with publicly available packages, including: AFNI, MATLAB, Python, scikit-learn 
and the NeuroSynth Python API. 

RESULTS 
 



 11 

FC States and Cognition in Multi-task Scenario 
After pre-processing, FC states were estimated for the multi-task dataset. We performed these 
analyses under two different scenarios: (a) using only task homogenous windows—namely those 
that fall completely within the temporal span of individual task blocks (as was previously 
published (Gonzalez-Castillo et al., 2015)); and (b) using all available windows, which also include 
windows spanning more than one task block. The goal of comparing these two scenarios is to 
evaluate to what extent having cognitively inhomogeneous windows may affect our ability to 
correctly segment the multi-task scans. On average (see Suppl. Fig. 2), FC states faithfully 
recovered task timing in both scenarios: ARI = 0.89 ± 0.18 for the case when all windows entered 
the analyses; and ARI = 0.97 ± 0.10 when only task homogenous windows are considered. Yet, 
there was a significant difference in ARI across scenarios (T=2.25; p=0.02). For the “all windows” 
scenario, which is the primary focus here, 5 subjects out of 20 had an ARI < 0.8 (moderate or 
poor).  
 

 
Figure 1: Figure 1. (A) FC state timeline, (B) 3D embedding, and (C) associated affinity matrix for one multi-task subject that 
showed good agreement (ARI = 1.0) between FC-states and mental states dictated by task. In (A), the X-axis signals time in 
terms of window units, and the Y-axis indicates FC-sate membership. Snapshots of windowed connectivity are represented as 
black dots. Underlay colors provide a visual reference for the task that subjects were performing during each window (grey = 
rest, blue = memo, yellow = video, green = math, white = more than one task). (D-F) show equivalent information for a second 
subject with poor agreement (ARI = 0.46) between FC-states and mental states. (G) Group-level average affinity matrix for all 
subjects with ARI > 0.8 (15 subjects out of 20). 

Figure 1.A & D show FC timelines, in the “all windows” scenario, for two representative subjects 
with different levels of success at reproducing task timing structure. In these timelines, windows 
are represented as dots, with their X-axis position indicating time, and their Y-axis position 
indicating FC state assignments. Underlay colors provide a visual reference for the task that 
subjects were performing during each window (grey = rest, blue = memo, yellow = video, green 
= math, white = more than one task). Fig. 1.A shows a case with perfect agreement (ARI=1) 
between FC states and mental states dictated by tasks. Fig 1.D shows a case where recovery was 
poor (ARI=0.46) and FC states extended across contiguous tasks independently of their distinct 
cognitive demands.  
 
Next, 3D visualizations of windowed connectivity for each subject (Fig. 1.B & E) were generated 
via Laplacian Embeddings (Belkin and Niyogi, 2003; Thirion and Faugeras, 2004). In these 
visualizations, each snapshot of windowed connectivity is represented as a color-coded point in 
3D space. The color of a snapshot informs us about the task, or tasks, occurring during its 
temporal span (grey = rest; green = math; blue = memo; yellow = visual attention; white = more 
than one task). The location of snapshots in these embeddings is solely a consequence of their 
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pair-wise similarity. Task information is only used for coloring purposes, to aid with visualization, 
but does not contribute to the computation of the embeddings. For subjects whose FC states 
faithfully reproduced task states (ARI > 0.8), we observe that task homogeneous snapshots 
cluster together into “spoke” formations (red arrows)—one “spoke” per task—that extent away 
from the center of the embedding; while transition-snapshots (white dots; those spanning across 
tasks) form links between those spokes that go through the center of the embedding. This type 
of structure is less well-defined in instances of poor agreement between FC states and tasks (Fig. 
1.E). Fig. 1.C & F show affinity matrices for the embeddings depicted in Fig. 1.B & E. In these 
matrices, a given cell represents the Euclidean similarity (1 / [1 + Euclidean distance]) between 
the location for two snapshots in 3D space. Fig 1.C shows a matrix with clear blocks of high affinity 
for task homogenous snapshots, in agreement with its originating embedding (Fig 1.B). This 
pattern becomes even more apparent when we average affinity matrices for all 15 subjects with 
ARI > 0.8 (Fig. 1.G).   
 
Data-driven estimation of number of FC States 
One limitation of FC states as a model for dFC stems from the use of unsupervised clustering 
(most commonly k-means (Lloyd, 1982)) for their estimation, which often requires the 
experimenter to provide an a-priori estimation for the number of FC states (e.g., how many 
clusters should k-means generate). Although data-driven techniques, such as the elbow criterion, 
can be used to estimate this hyper-parameter; their effectiveness is limited when applied to fMRI 
data (Shakil et al., 2016). Given how well the affinity matrices for the 3D embeddings presented 
in Fig. 1  represent the task structure of the multi-task scans, we decided to apply a Louvain 
community detection algorithm (Blondel et al., 2008) to each subject matrix to estimate the 
number of separate communities (e.g., tasks or FC states) present in the data. For 17 out of 20 
subjects, the algorithm predicted 4 communities (in agreement with the number of distinct 
tasks). For the remaining 3 subjects (one of them being the one depicted in Fig 1.D-F) the 
algorithm estimated the presence of 3 communities. 
 
Cognitive Correlates of FC States in the Multi-task Scenario 
Cognitive decoding of FC states proceeded in two steps: 1) computation of a representative 
“activity” map for each FC state and 2) mapping from “activity” map into ranked lists of cognitive 
processes. This two-steps process was necessary for circumventing the lack of systems able to 
directly map FC matrices into cognitive processes. 
 
Fig. 2 and Suppl. Fig. 5 show decoding results for two representative subjects using the 400-topics 
set (Fig. 2) and the 50-topics set (Supp. Figure 5). Both figures have the same structure. Panel A 
shows FC state timelines. Panels B-E shows “activity” maps for each FC state. Panels F-I show 
decoding results per FC state both as a table listing the top-five topics with the highest decoding 
strength and as cloud plots with the distribution of decoding strength across all available topics. 
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Figure 2: Figure 2. Individual subject task decoding results for the 400-topics set. (A) Scan segmentation results. Each dot 
represents a snapshot of windowed connectivity. The position of the dot in the y-axis indicates to which FC-state the snapshot of 
windowed connectivity was assigned. Tasks periods are depicted as colored bands for reference (REST: gray; MEMO: blue; 
MATH: green; VIDEO: yellow). (B-E) Activity maps for each FC-state obtained with SPFM. (F-I) Decoding results in the form of 
cloud plots and top-five lists. Cloud plots depict the probability distribution of decoding strength values across all 400 topics for 
each FC state in the form of kernel density estimates (colored curves), swarm plots (colored dots; one per topic) and boxplots 
(black). In these plots the location of “correct” topics per task are clearly marked by boxed text with arrows. Finally, the tables 
on the right of the figure lists the top 5 topics with the highest decoding strength for each FC state. Topic names are constructed 
using the top three terms associated with the topic. 

For qualitative evaluation purposes, the location of correct topics (i.e., those with the most direct 
relationship to the task; see Suppl. Tables 1 & 2) are clearly marked for all FC states in panels F-I. 
In particular, for Sbj17 (Fig. 2), we can observe how the FC state timeline faithfully follows the 
experimental task timing (ARI=1.0). For this subject, FC state 1 spanned periods of MATH and FC 
state 2 periods of the MEMO task. Activity maps for these two states contain prominent clusters 
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of activity in dorsolateral pre-frontal cortex and parietal regions (Fig. 2.B & C); consistent with 
tasks with a heavy working memory component. Similarly, FC state 3, which overlaps in time with 
the visual attention task (VIDEO), has prominent areas of activity around the MT/V5 region and 
other visual regions in ventral temporo-occipital cortex (Fig. 2.D). Finally, for FC state 4—which 
spans rest periods—we observe activity in regions of the default mode network (Fig. 2.E). As for 
the actual decoding, for FC states 1 and 2, we observe topics with terms such as “memory”, 
“working”, “arithmetic”, “calculation” and “numbers” among the top decoding topics (Fig 2.F & 
G). For FC state 3 (VIDEO), top topics include the terms “visual”, “motion”, “biological”, “moving” 
and “scenes” (Fig. 2.H). Finally, for FC state 4 (REST), the three topics that best describe rest (see 
Suppl. Table 2) appear as the top three decoding terms for this FC state (Fig 2.I). Similar results 
can be seen in Suppl. Fig. 5 when decoding was done using the 50-topics set on a different 
representative subject.  
 
Mean and standard deviation decoding strength values for correct topics across the multi-task 
population were 0.18 ± 0.08 (400-topics set) and 0.19 ± 0.10 (50-topics set). Fig. 3 shows group-
level task decoding results. Fig. 3.A-B show rank accuracy (Pereira et al., 2018)—a measure of 
how often the correct topics appeared at the top of the decoding rank—for all task segments and 
subjects as colored dots, and across-subject mean rank accuracy per task as grey bars for the 50-
topics set (Fig. 3.A) and the 400-topics set (Fig. 3.B). Mean rank accuracy was above 0.8 for all 
tasks for most subjects. Worse decoding results were obtained for the visual attention (VIDEO) 
task when using 50-topics. Overall, decoding was more successful when using the 400-topics set 
relative to the 50-topics set; this despite a large increase in the ratio of wrong-to-correct choices. 
In all instances, mean rank accuracy was significantly higher than chance (p<0.05; see SI for 
details). Figure 3.C-J show average cumulative distributions of decoding strength for the different 
tasks (black curves). In addition, individual decoding strength for correct topics are depicted as 
dashed colored lines. A colored continuous bold line marks the mean correct decoding strength 
across all subjects. In all instances, except for VIDEO using the 50-topics set (panel 3.E), the mean 
decoding strength for correct topics fell to the right of 95% of the cumulative distribution of 
decoding strengths (shaded region). 
 
Periods of Distinct Cognition during Rest 
Next, we applied the same methods to a subset of twenty 15 mins-long eyes-open resting scans 
acquired on a different 7T system part of the HCP (Van Essen et al., 2013). Subjects were selected 
to minimize motion and sleepiness confounds (detailed selection criteria in SI materials). Suppl. 
Fig. 6 show traces of windowed eye closure times per subject. It can be observed that all subjects 
remained awake for the whole scan duration. Supp. Fig 7 shows traces of absolute and relative 
motion for all 20 subjects. Average absolute motion was 0.27 ± 0.18 mm, and average relative 
volume-to-volume motion was 0.10 ± 0.07 mm. 
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Figure 3: Group Evaluation of Task Decoding. (A) Rank accuracy for all subjects and tasks when using the 50-topics set. (B) Same 
as (A) but when using the 400-topics set. (C-F) Cumulative distribution of decoding strength values for the 50-topics set. Each panel 
shows results for a different task. The mean cumulative distribution across all subjects is depicted in black. Individual decoding 
strengths for the correct term are shown as dashed lines and the mean decoding strength across all subjects as a continuous line. 
In all panels, we mark the region that corresponds to 95% of the cumulative distribution with grey. (G-J) Same as (C-F) but for the 
400-topics set. 

Figure 4 summarizes results of these analyses for one representative resting subject (sbj05). 
Panel A shows the 3D embedding for this subject, with connectivity snapshots colored by FC state 
(3D embeddings for all rest subjects in Suppl. Figure 8.A). Number of FC-states for the rest 
datasets varied between three and four. Large inter-subject variability in 3D embedding patterns 
can be observed in Suppl. Fig. 8.A for this second dataset. Although “spoke-like” structures are 
present for some subjects (e.g., the one in Fig. 4), this motif is not as prominent as in the multi-
task dataset (Supp. Fig. 8.B). Moreover, FC-states in rest scans do not necessarily align with 
distinct spokes in the same manner they did in the multi-task scans (e.g., in Fig. 4.A, FC1 extends 
into a second spoke that is shared between FC1 and FC4). Panel 4.B shows the affinity matrix for 
the 3D embedding shown in 4.A. Dashed lines identify the confines of estimated FC-states, which 
were very similar in size and contain only temporally contiguous windows. This behavior was 
common across the majority of rest scans, suggesting that FC-states did not fully capture the 
structure depicted by the corresponding 3D embeddings. 
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Panels 4.C-F show “activity” maps for all four FC-states detected in sbj05. Activity maps are very 
similar across states, particularly for FC-states one, two and three. Panels 4.G-J show 
corresponding distributions of decoding strength per FC-state for the 400-topics set. 
Distributions are often narrower than in the multi-task scenario, suggesting fewer topics show 
strong positive associations with activity maps. This is particularly clear for FC states one and two, 
whose top-ranking terms have decoding strengths below 0.1. This same narrowing effect can be 
observed at the group level by looking at group-averaged distributions of decoding strength (Fig. 
5.A). Average distributions are wider and have longer tails for the multi-task dataset (red) than 
for the rest dataset (black). We quantified this effect by looking at the number of topics that 
constitute positive outliers for each FC-state (i.e., those above the third quantile plus 1.5 times 
the interquartile range) in both scenarios. We found that there are significantly more outlier 
topics for the multi-task dataset than the rest dataset (T=2.74; p=0.007). 
 
Lastly, to explore if observable spoke-like structures in pure rest embeddings correspond to 
periods of distinct cognition—even if automatically estimated FC states were not able to 
effectively capture them—we decided to apply our cognitive state decoding method focusing 
only on windows sitting at the distal ends of rest 3D embeddings. For each subject, we found the 
x most distal windows in the embedding (in terms of Euclidean distance), with x being equal to 
the number of FC-states. Next, for each distal end, we selected all windows sitting within a given 
distance d from it (d = average inter-snapshot distance for all task-homogenous windows in the 
multi-task dataset). This procedure allowed us to automatically identify sets of spatially 
contiguous snapshots sitting near the distal ends of the embeddings. Fig 4.K shows the output of 
this procedure for sbj05. Both 3D plots in the panel show the same data viewed from different 
angles. Suppl. Fig. 9 shows the same information for all rest subjects. Next, we took these newly 
defined groups of windows and proceeded with the cognitive decoding step. Fig. 4.L-O show 
activity maps for the four groups of windows sitting at distal ends of the embedding for sbj05. 
Activity maps are now more clearly differentiable across clusters. The map for Spoke01 shows 
activity in lateral parietal and frontal regions. The map for Spoke02 has activity mostly focused 
on sensory motor regions. The map for Spoke03 presents strong activity in occipital, limbic and 
insular regions. And, finally, the map for Spoke04 shows activity primarily concentrated in the 
calcarine region. Fig 4.P-S shows corresponding decoding results. Distributions now have 
widened and have longer tails, suggesting activity maps are now more strongly associated with 
distinct topics. This effect is also appreciable at the group level (Fig 5.A – blue trace). 
Consequently, decoding strengths for top topics are larger; with all top 5-topics having R > 0.1. 
Moreover, top topics are now associated with distinct cognitive domains. For example. Spoke01 
contains topic associated with numeric mental activity (e.g., 
“arithmetic_calculation_mathematical” and “number_numerical_numbers”). Spoke02 seems to 
encompass periods of strong somatosensory activity, as indicated by the terms 
“motor_sensory_areas”, “motor_finger_movements”, “movement_movements_motor”, etc. 
Finally, Spoke03 and Spoke04 point to scan segments dominated by strong visual activation 
perhaps associated with visual imagery. 
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Figure 4: Cognitive decoding for one representative subject from the rest only dataset. (A) 3D embedding with connectivity 
snapshots colored according to automatically extracted FC states. (B) Affinity matrix for the embeddings in panel A. (C-F) Activity 
maps computed via SPFM for each of the FC states. (G-J) Distributions of decoding strengths for the 400-topics set and lists with 
the top-5 topics for each FC-state. (K) Same embedding as in (A), but this time colors signal the windows assigned to spoke-like 
structures following the procedures described in the SI materials. Two different views (different rotation angles) are presented to 
help better appreciate the structure of the embedding. (L-O) Activity maps computed using only the windows identified as 
members of spoke-like structures (e.g., non-white windows). (P-S) Distribution of decoding strengths for the maps shown in L-O. 

Across all subjects, out of the 400 available topics, only 78 topics became positive outliers for one 
or more spokes. Fig 5.B lists the top 15 topics most commonly marked as outliers. This includes 
topics clearly associated with pure rest (topics 13, 337, 233, 215), thinking about the past or 
future (topics 309 and 188), theory of mind (topic 269), language/inner speech (topic 214), self-
evaluation (topics 159 and 369), mental computations (topics 113 and 376), and visual activity 
(topic 110). Those all correspond to cognitive domains previously reported as describing the 
types of mental processes subjects commonly engage with during rest (Delamillieure et al., 2010; 
Diaz et al., 2013; Hurlburt et al., 2015). Finally, Fig 5.C provides a summary view of all topics 
marked as positive outliers for spoke-like structures in pure rest scans. Topics are grouped into 
the above-mentioned cognitive domains describing resting mental activities. Approximately 75% 
of topics fall within one of these categories: resting (17.87%), somatosensory (9.89%), 
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episodic/planning (9.51%), theory of mind (9.13%), language/speech (9.13%), visual/imagery 
(9.13%), self (8.37%), music (0.4%) and sleepiness (0.4%).  

DISCUSSION 
Resting dFC is an empirically observed phenomenon with promising translational value (Calhoun 
et al., 2014; Gonzalez-Castillo and Bandettini, 2018) for which several methodological and 
mechanistic questions remain unresolved (Keilholz et al., 2017). We address some of them here. 
First, we show evidence in support of the hypothesis that on-going self-paced cognition is a 
contributor to dFC phenomena during rest, although the degree of contribution may vary across 
subjects, as well as across cognitive domains. Second, we demonstrate that data-driven 
estimates of FC states based on fixed-sized sliding window approaches—one of the most 
prominent modeling approaches for dFC—do not always capture periods of distinct cognitive 
processing during rest, even though FC states robustly align with cognitive processes imposed by 
external task demands (i.e., multi-task scenario). Overall, our results highlight the cognitive 
relevance of resting dFC, how a single FC static structure may not be sufficient to capture the 
diversity of cognitive processes occurring during rest, and the need to update the definition, 
computation and thus interpretation of FC states, especially when it comes to how they may 
relate to cognitive processing during rest. 
 
Cognition contributes to observable dFC during Rest 
Snapshots of time-varying FC spanning task-homogenous periods in the multi-task scenario 
clustered together at the distal ends of spoke-like structures in the 3D embeddings (Fig. 1; Suppl. 
Fig. 8.B). This motif of similar elements sitting together at corners of Laplacian embeddings has 
been previously reported for different domains, including speech (Belkin and Niyogi, 2003) and 
neuronal spike sorting (Chah et al., 2011). For the HCP rest scans, similar structures could be 
observed in a subset of subjects, suggesting the presence of isolated periods of homogenous FC 
distinct from other portions of the scan. Moreover, reverse-inference results suggest that such 
periods are associated with different types of task-like cognition (Figs. 4 & 5), although definitive 
validation would require behaviorally annotated (e.g., via experience sampling (Kahneman et al., 
2004)) resting datasets (please see next paragraph and the limitations section below). Overall, 
these results support our working hypothesis that covert on-going cognition affects short term 
estimates of FC in a similar manner to how overt externally imposed cognition does (Gonzalez-
Castillo et al., 2015); and, subsequently, that cognitively meaningful dynamics can be a 
contributing factor to resting dFC. 
 
In the multi-task scenario, we were able to objectively validate cognitive inferences. 
Unfortunately, our ability to do so for rest scans is severely limited. Nonetheless, the cognitive 
processes inferred for spoke-like structures in rest embeddings agree with previous reports of 
the most common mental operations subjects undertake during rest (Delamillieure et al., 2010; 
Diaz et al., 2013; Hurlburt et al., 2015), and different spokes tend to be associated with a different 
set of mental processes (Fig. 4). Future work should better validate the neural accuracy of the 
cognitive mappings. For example, concurrent skin conductance, electromyography and video  
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Figure 5: (A) Average decoding strength distributions for the 400 topic-set under three different scenarios: (red) FC-states detected 
in the multi-task dataset; (black) FC-states detected in the pure rest scenario; (blue) windows in the vicinity of spoke-like structures 
in the pure rest scenario. (B) List of the top 15 topics marked as positive outliers (e.g., signaled to have a strong relationship with 
provided activity maps) during the decoding of spoke-like structures in pure rest 3D embeddings. Topic names were constructed 
concatenating the topic ID in NeuroSynth with the three top terms part of the topic. The percentage on the right indicate the 
number of times the topic became an outlier relative to the total number of outlier detection in the whole sample. (C) Depiction 
of the distribution of outlier topics for spoke-like structures in the pure rest scenario grouped by cognitive domains previously 
reported to describe most common cognitive processes subjects engage with during rest. 
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recordings of subjects in the scanner bore may help validate inferences regarding periods of 
somatosensory activity, self-generated body movements (Tan et al., 2017) or strong emotional 
content. Additional validation may be possible using rest scans accompanied by retrospective 
descriptions of subject’s mental processes during the scan. Delamillieure et al. (2010) suggested 
that subjects can be grouped according to the most prominent type of mental activity they 
conduct while resting. Future work should evaluate if similar groupings can be obtained on the 
basis of retrospective reports and data-driven decoding. Finally, dFC phenomena of limited 
complexity have been reported in the absence of consciousness (Amico et al., 2017; Barttfeld et 
al., 2015). Should spoke-like structures in dFC embeddings be the manifestation of covert 
cognitive processes, those structures should dissolve for rest scans conducted under deep 
anesthesia.  
 
The timing and nature of cognition occurring during rest is heterogenous across subjects 
(Delamillieure et al., 2010; Hurlburt et al., 2015). The same is true for other postulated 
contributing factors such as arousal, motion or sleep.  The embeddings presented here 
demonstrate that resting dFC is quite heterogenous across subjects even when both motion and 
sleep contributions were minimized via sample selection. Future work should help isolate all 
these factors and quantify their relative contributions at the individual subject level. For example, 
templates of regional activity correlated with pupil dilation may help isolate the contributions of 
arousal (Chang et al., 2016). Such quantification efforts are key for merging current discrepant 
views on the origin of rest dFC. As previously mentioned, Laumann et al. (2017) recently stated 
that rest dFC is primarily the result of sampling variability, arousal fluctuations, sleep and motion. 
One supporting argument made by the authors was the observation of limited changes in multi-
variate kurtosis for pure rest scans as compared to task/rest alternating scans (Fig. 6 in (Laumann 
et al., 2017)). Yet, reported histograms of multi-variate kurtosis for pure rest scans (blue) have a 
long right tail and bump that overlaps with the kurtosis distribution for alternating task/rest scans 
(green and red traces). Our results suggest that cognition may contribute to resting dFC 
differently across subjects, with potentially negligible contribution in some subjects (those with 
very diffuse spokes). It could be argued that the right tail of the distribution of multi-variate 
kurtosis values reported in (Laumann et al., 2017) for pure rest (Fig 6, blue trace) represents the 
presence of a limited group of subjects with strong contributing on-going cognition. Moreover, 
assessing the contribution of different factors will not only help settle this argument, but also 
understand the origin of previously reported systematic differences in dFC across normal and 
patient populations (Damaraju et al., 2014; Falahpour et al., 2016; Wee et al., 2016). For example, 
it may be the case that differences in both static or dynamic estimates of FC across populations 
are not solely indicative of differences in intrinsic patterns of connectivity but may be also 
contributed by subjects from different populations engaging systematically into different forms 
of cognitive processing as they lay inside the scanner. For example, depressed patients may 
engage more often in regurgitative thinking; while a different population may be more prone to 
perform mathematical computations as a form of distraction while being scanned.  
 
Open-ended Cognitive Inference for fMRI Scans 
Here we describe and test a pipeline for blindly inferring periods of distinct cognition occurring 
during fMRI scans. The primary components of the pipeline are: 1) dFC estimates are used to 
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temporally segment scans into FC homogenous periods; 2) hemodynamic deconvolution is used 
to generate activity-like maps for each period; and 3) activity-based reverse inference is used to 
deduce the cognitive processes occurring during those periods. All these steps can be performed 
on individual scans and require no training dataset. As such, decoding is not limited to group-
level inferences and the breadth of cognitive states to be inferred is ultimately set by the breadth 
of the neuroimaging literature mined by the NeuroSynth platform. 
 
Nonetheless, each of these steps set limitations regarding the specificity and sensitivity of 
resulting inferences. For example, the temporal segmentation step is designed to accommodate 
more than one cognitive state per scan. Unfortunately, the present results suggest its ability to 
effectively do so in a meaningful manner is limited to externally imposed cognition. Similarly, the 
correctness of the hemodynamic deconvolution step will depend on the degree of 
correspondence between canonical and actual hemodynamic response shapes (which will vary 
per location and subject). Errors in the estimation of activity levels may occur for regions where 
actual hemodynamic responses differ the most from the model provided to the SPFM 
algorithm—even though the SPFM algorithm shows certain robustness against mismatches in the 
shape of the HRF (Caballero Gaudes et al., 2013); which in turn will affect the efficacy of the 
decoding. Finally, limitations inherent to the NeuroSynth platform—such as limited specificity of 
topics, vocabulary biases and inability to incorporate priors that may help contextualize 
predictions (e.g., this scan corresponds to a subject under sedation) also apply here (Rubin et al., 
2017; Yarkoni et al., 2011) also apply. Moreover, the Neurosynth platform was chosen here 
because it provides an open-ended decoding engine; yet it must be kept in mind that its breadth 
is limited to the set of mental processes sampled by the literature in its database; which, to a 
large extent, is driven by task studies. One key assumption in our work is that manifestations of 
a given mental state (e.g., mental arithmetic) share the same neuronal code—as captured by 
fMRI—in both task-cued and task-free (rest) scenarios. Although, previous work on affective 
content suggests this is a valid first approximation (Tusche et al., 2014), one can expect subjects 
to engage on certain cognitive processes unique to rest (e.g., spontaneous initiation of thought), 
which Neurosynth may decode incorrectly. Similarly, perceptual decoupling (a signature of some 
mind-wandering processes (Smallwood and Schooler, 2015) and overlapping unconscious 
intrinsic brain activity (Kucyi, 2018) may also constitute significant confounds affecting the 
correctness of the decoding in some instances. In a recent review on the relationship between 
dFC and mind-wandering, Kucyi (2018) poses the following question: “to what degree do 
spontaneous changes in network states reflect intrinsic activity, and to what degree do such 
changes reflect an individual’s current behavioral state?”. The contributing ratio of these two 
components to dFC and how they fuse in fMRI recordings (e.g., linear vs. non-linear, mostly 
parallel vs. mostly sequential) will affect the quality of our inferences. Nonetheless, we expect 
that by focusing only on strongly distinct and homogenous periods of connectivity signaled by 
the spoke structures present on the low dimensional embeddings, we are capturing fluctuations 
in dFC mostly driven by the second component—namely individual current behavioral states—
and therefore Neurosynth inferences to be appropriate. 
 
Future developments should help address many of these limitations. For example, multi-echo 
fMRI can improve the accuracy of the deconvolution (Caballero-Gaudes et al., 2019); and 
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improved probabilistic decoding frameworks may increase the specificity of the inferences (Rubin 
et al., 2017) by providing researchers with the ability to generate context-sensitive 
interpretations of whole-brain activity maps. In addition, it will be valuable to develop systems 
able to directly map FC matrices into cognitive states in an open-ended fashion, erasing the need 
to generate representative “activity” maps for each FC state as an intermediate step. The 
development of such systems is intricate given the diversity of brain parcellations used to 
compute functional connectivity matrices and the fact that matrices tend to be reported only in 
graphic form—i.e., images—and not as numerical arrays. Developments in image recognition 
that could automatically mine and transform images of FC matrices into numerical arrays, and 
novel meta-analytic tools able to merge connectivity information from diverse parcellations may 
make those systems readily available in the near future. 
 
FC states as a Model for Resting dFC 
FC states currently constitute a mainstream approach to model, summarize, and report within-
scan dFC. Repeatedly, researchers have reported on the behavioral (Gonzalez-Castillo et al., 
2015; Sadaghiani et al., 2015) and clinical relevance (Damaraju et al., 2014; Li et al., 2014) of this 
model. Yet, FC states present important limitations resulting from the use of fixed-size sliding 
windows and k-means as key steps in their estimation. First, the FC-states framework commonly 
assumes that dFC is effectively characterized in terms of a limited set of distinct FC configurations 
(those detected by k-means). As the multi-task embeddings demonstrate (Fig 1), even if that were 
true, the limited temporal resolution of sliding windows will often result in adulterated FC 
estimates—spanning several unique cognitive configurations—that sit at interspaces between 
clusters (white dots) and diffuse true clustering structure in the data (task-colored dots). Because 
k-means enforces membership (all inputs must be assigned to a cluster) and tends to generate 
clusters of equal size when true cluster structure is diffused or missing, k-means is not effective 
at capturing periods of distinct FC in the rest scenario (Fig. 4.A). This is clearly exemplified by the 
fact that, for the multi-task scenario, the ARI significantly decreased when all overlapping 
windows enter the analysis relative to when only task-homogenous windows do (Suppl. Fig. 2). 
To avoid such issues, future FC state modeling should rely on variable size windows that align 
with FC transitions (Jia et al., 2014) or rely on non-windowed estimates of time-varying 
connectivity such as dynamic conditional correlation (Lindquist et al., 2014). In addition, 
modeling approaches than can accommodate for both multiple membership (e.g., one element 
can be part of two or more different clusters) and null membership (inputs may be assigned to 
no cluster at all) should also be adopted. Examples of such models include the use of principal 
component analysis (Leonardi et al., 2013; Leonardi et al., 2014), dictionary learning (Li et al., 
2014), and temporal independent component analysis (Miller et al., 2016). More importantly, 
future research should elucidate whether dFC should be conceptualized as a continuous or 
discrete phenomenon (Hansen et al., 2015). Ultimately, it may be that a hybrid framework able 
to accommodate both the presence of discrete, transient meaningful configurations (signaling 
distinct periods of cognition or sensory activity whenever present) and underlying meta-states 
(potentially capturing intrinsic maintenance and exploratory processes) may be the most 
appropriate conceptualization (Karahanoglu and Van De Ville, 2015; Petridou et al., 2013). In fact, 
Roberts et al. (2019) have demonstrated that metastable states and waves are compatible 
dynamical regimes for the human connectome and can be explained with a unified mechanism.  
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Finally, it is worth mentioning that ours is not the only approach one can use to generate 
meaningful “activity-like” summary views for portions of an fMRI scan when timing information 
about cognitive processes is missing. For example, Karahanoglu et al.  (2015) proposed the use 
of innovation co-activation patterns (iCAPs) to describe transient activity patterns in resting state 
scans. Moreover, groups of iCAPs—as generated by hierarchical clustering based on temporal 
overlap—showed a relationship with broad behavioral profiles (i.e., action, cognition, 
perception, interoception and emotion) obtained using the BrainMap database (Fox and 
Lancaster, 2002). Despite differences in the deconvolution operation (SPFM assumes isolated 
events, while Total Activation (Karahanoglu et al., 2013) looks for temporally contiguous blocks 
of activity), and in the decoding engine (NeuroSynth vs. BrainMap); our results, and those of 
Karahanoglu and colleagues (2015), suggest that multiple functional connectivity and activity 
maps are needed to describe the richness of resting state data, especially if one seeks to capture 
the multiple mental states subjects navigate through while they “rest” in the scanner. 
 
Extensions to Prior Work, Limitations, Future Directions 
Our original study conducted on this multi-task dataset demonstrated that FC states derived from 
non-overlapping task-homogenous windows robustly recovered temporally disjoint periods of 
homogenous cognition (Gonzalez-Castillo et al., 2015). Here we extend those results in several 
ways. First, we demonstrate a robust data-driven way to infer the number of states (i.e., tasks) 
using affinity matrices in the embedded 3D space. In our original work, the number of states was 
provided by the experimenters. Second, we not only describe a way to temporally segment multi-
task scans into task homogenous periods, but also how to deduce the cognitive processes 
underlying those periods in an open-ended fashion that requires zero timing information or 
training data. Third, we demonstrate that those results can be accomplished even if overlapping 
task-inhomogeneous windows enter the analyses. In the original study, the onset/offset times of 
task blocks were used to restrict analyses to only task-homogenous non-overlapping windows. 
 
Several limitations, in addition to those regarding imperfect ability for validation in the resting 
scenario, apply here. First, dFC phenomena most likely resides on a higher dimensional space 
beyond three dimensions. Three dimensions were selected for the current analyses because of 
their representational ease and because they were able to capture task structure much better 
than their 2D counterparts (Supp. Fig. 10). Yet, 3D embeddings were not able to explain all 
clustering errors. For example, Fig. 1.D&E shows an example of how 3D embeddings were able 
to capture the proximity of snapshots from the first MEMO, VIDEO and MATH blocks in the 
original higher dimensional space leading to their mistakenly joint membership to FC-State 1; but 
failed at capturing the same information regarding the mistaken joint assignment of windows 
from the second MATH and VIDEO blocks to FC-state 3. Higher dimensional spaces may better 
capture all relationships of interest as they will not distort original pair-wise relationships so 
abruptly. Yet, tools for visualizing such spaces are limited and may be difficult to interpret. Future 
work should evaluate the effectiveness of working with higher dimensional spaces, and the ability 
of visualization tools such as parallel coordinates (Inselberg and Dimsdale, 1990) and glyphs 
(Chernoff, 1973) to render meaningful representations of dFC in such higher dimensional spaces. 
In addition, future studies should evaluate the ability of other manifold learning methods, such 
as T-SNE (Van der Maaten and Hinton, 2008), to aid in the visualization and interpretation of dFC 
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phenomena during task and rest. A second limitation of the current study is that we only worked 
with one implementation of FC-states. We previously demonstrated that methodological 
decisions can significantly alter the strength of the relationship between FC-states and cognitive 
states dictated by tasks (Gonzalez-Castillo et al., 2015). As alternative methods to estimate FC-
states exist in the literature (Allen et al., 2014; Leonardi et al., 2014), future work should elucidate 
how well our conclusion of limited ability of FC-states to capture periods of distinct cognition 
during rest generalizes to these other variants of FC state modeling.  
 
Regarding the proposed procedure for data-driven estimation of the number of states, we note 
that community detection on the embedding’s affinity matrix—a key step in this procedure—was 
conducted with default parameters. Such defaults may not be optimal. For example, a random 
graph model may not be appropriate for matrices whose edges denote statistical relationships 
such as correlations or Euclidean distance (the case here). In its current configuration, the 
algorithm resulted in a number of communities that agrees, in the majority of the subjects, with 
the number of tasks present in the multi-task dataset. The ability of the algorithm to detect the 
correct number of mental states or tasks under other circumstances must be evaluated and 
compared to other methods commonly used to estimate the number of clusters in datasets, such 
as the elbow criteria or the gap statistic (Tibshirani et al., 2001). 
 
Despite the above-mentioned limitations, we believe that the current results advance our 
understating of dFC during both rest and task. They provide evidence in support of the hypothesis 
that resting dFC includes manifestations of covert cognition; suggesting that several different 
behaviorally relevant whole-brain FC configurations may occur during a single rest scan. In 
addition, we confirmed that data-driven estimates about the cognitive nature of most common 
mental processes occurring during rest agree with those inferred via retrospective questioning 
in other subject samples. Finally, our results also underscore how differences in effect size and 
temporal characteristics of externally-imposed and self-driven cognition may obstruct direct 
translation of methods and conclusions across both scenarios.  
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