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ABSTRACT: It is often said that the best system account of laws (BSA) needs supplementing with a theory of perfectly 
natural properties. The ‘strength’ and ‘simplicity’ of a system is language-relative and without a fixed vocabu-
lary it is impossible to compare rival systems. Recently a number of philosophers have attempted to reformulate 
the BSA in an effort to avoid commitment to natural properties. I assess these proposals and argue that they 
are problematic as they stand. Nonetheless, I agree with their aim, and show that if simplicity is interpreted as 
‘compression’, algorithmic information theory provides a framework for system comparison without the need 
for natural properties.
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RESUMEN: A menudo se dice que la explicación de las leyes del mejor sistema (BSA) requiere ser completada con una 
teoría de las propiedades perfectamente naturales. La ‘fuerza’ y la ‘simplicidad’ de un sistema son relativas a un 
lenguaje y sin un vocabulario fijo es imposible comparar sistemas rivales. Recientemente, varios filósofos han in-
tentado reformular la BSA en un esfuerzo por evitar el compromiso con las propiedades naturales. Aquí valoro 
estas propuestas y argumento que son problemáticas en su forma actual. Sin embargo, comparto su objetivo y 
muestro que si la simplicidad es interpretada como ‘compresión’, la teoría algorítmica de la información pro-
porciona un marco para la comparación sin necesidad de apelar a propiedades naturales.

Palabras clave: Leyes de la naturaleza, explicación del mejor sistema, propiedades naturales, teoría algorítmica de la infor-
mación, teorema de invariancia.

1. Introduction

The best system account (BSA) is one of the most widely adopted theories of laws. It has 
been appealing for philosophers with broadly empiricist or Humean sympathies as it analy-
ses the concept of a law of nature without needing to appeal to necessary connections, pow-
ers, essences—or any other irreducibly modal concept. The BSA defines the laws as the 
axioms (and theorems) in a deductive system of all the actual and future empirical truths 
in our world. As David Lewis (1973, 1983, 1986, 1994), one of the BSA’s main defenders 
noted, deductive systems can be more or less simple and more or less informative: it is rea-
sonable to assume that we value these in equal measure, so that the ideal or ‘best system’ is 

* Part of the research for this paper was funded by the UK Arts and Humanities Research Council (133769). 
I am indebted to Tim Lewens, Alex Broadbent, Mark Sprevak, Helen Beebee and Anna A lexandrova for 
discussion and advice on earlier drafts of this text. I am also grateful to two anonymous referees.
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the one which best balances as much of each as possible. One of the BSA’s selling points is 
that it seems to offer a more-or-less objective account of lawhood. Although we have not 
yet discovered all the empirical truths for our world, we can imagine an ideal systematiza-
tion of them, and identify the laws of nature as the axioms in that system.

Despite this apparent benefit, it was soon realized that the simplicity measure on sys-
tems is language-dependent so that one cannot say that one system is simpler than a rival 
without first agreeing on the predicate terms the system should be couched it (Lewis 1983; 
Armstrong, 1983). But who is to decide?

Lewis (1983) solved this problem by making a distinction between the kinds of prop-
erties that exist. Not all properties are equal, some—the natural properties—form a priv-
ileged set. According to Lewis natural properties provide a simple solution to the lan-
guage-dependency of simplicity: place as a restriction on all candidate systems that they are 
formulated only in predicates that refer to perfectly natural properties.

In the time since Lewis offered this solution there has been a growing dissatisfaction 
among contemporary Humeans. After all, although not strictly modal in character, natural 
properties seem mysterious and sit uncomfortably with the traditional Humean standpoint 
of eschewing unobservable metaphysical primitives. To this end a number of reformula-
tions of the BSA have recently been proposed that claim to solve the language-dependency 
problem whilst simultaneously avoiding the need to postulate natural properties.

This paper will discuss in detail one class of natural-property-free solutions that we 
might call ‘adaptivist’. I take Barry Loewer’s (2007) ‘package deal account’ and Jonathan 
Cohen and Craig Callender’s (2009) ‘better best system account’ as prime examples of this 
approach, although others could have been given as well.12The core idea behind adaptiv-
ist versions of the BSA is that lawhood is language-relative; however, science will eventu-
ally converge upon the ‘right language’ under internal pressure on theory design from prag-
matic and explanatory considerations. It is assumed that these standards on a good theory 
are more-or-less universal permitting system comparison regardless of the language used.

My criticism of current adaptivist approaches is that they fail to do two things: (i) iden-
tify clearly which pragmatic and explanatory considerations are important to science, and 
(ii) demonstrate how the sharing of these standards can be used to decide among empiri-
cally equivalent theories composed of alternative languages.

I agree that adaptivism is the right response to the language-dependency problem and 
so to overcome the concerns raised in section 3 will propose one theoretical virtue that can 
fulfill these two aims. I shall argue that one dimension to ‘simplicity’ that scientists clearly 
care about is that of compression: good theories compress their empirical data sets. In sec-
tion 4 I give evidence for thinking why compressibility is an important factor in theory 
design and evaluation and in section 5 give an account of how it could be used to decide 
among competing theories.

First I will start by looking in more detail at how the language-dependency problem 
gets generated and the reasons why some Humeans have become dissatisfied with Lewis’ 
original solution.

1 Similar approaches have also been taken by John Halpin (2003), Brian Taylor (1993), John Rob-
erts (1998) and Markus Schrenk (2008). However, see Eddon and Meacham (2015) for a more fine-
grained classification of solutions.
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2. The Language-Dependency Problem

The realization that the simplicity of a system is dependent on the terms used to construct 
it was highlighted early in its current form (Lewis 1983; Armstrong 1983). Lewis doesn’t 
say much about what the simplicity or strength of a system consists in. One intuitive in-
terpretation (that Lewis tacitly appeals to on a number of occasions) is to equate the sim-
plicity of a system with the length and number of the axioms, and the strength of a system, 
with the number of possible worlds it excludes. Defined like this, it is easy to appreciate 
why the same system could be made simpler just by a change of language. Lewis gives a very 
simple argument to demonstrate this point:

In fact, the content of any system whatever may be formulated very simply indeed. Given sys-
tem S, let F be a predicate that applies to all and only things at the world where S holds. Take F 
as primitive, and axiomatise S (or an equivalent thereof) by the single axiom (x)(Fx). If utter sim-
plicity is so easily attained, the ideal theory may as well be as strong as possible. Simplicity and 
strength needn’t be traded off. Then the ideal theory will include (its simple axiom will strictly 
imply) all truths, and a fortiori all regularities. Then, after all, every regularity will be a law. That 
must be wrong. (1983, 367)

Since a ‘best system’ can be so easily had it runs the risking of conflating the law/accident 
distinction therefore making the BSA useless as a theory of laws.

One might want to argue that no serious scientist would consider (x)(Fx) a genuine 
law, because although it may be simple, it isn’t very strong. The original system S tells us 
more about our world than ‘F’ and so gives us ‘more information’. The problem with this 
type of response, as Armstrong has noted (1983, 68), is that what counts as a strong system 
also depends on how one ‘carves nature’. On Lewis’ formal definition, (x)(Fx) is as strong 
as it can be, since it picks out the actual world and only the actual world. However, if by 
‘strength’ we instead mean the sorts of physical systems scientists are actually interested in 
—such as atoms, quarks, strings and their properties— then we are already assuming a met-
aphysical partitioning of the world, one which the advocate of ‘F’ could simply deny as ir-
relevant.

Lewis’ own solution is to place a restriction on the language for candidate systems and 
his preferred way of doing this is to posit the existence of perfectly natural properties:

The remedy, of course, is not to tolerate such a perverse choice of primitive vocabulary. We 
should ask how candidate systems compare in simplicity when each is formulated in the simplest 
eligible way; or, if we count different formulations as different systems, we should dismiss the ineli-
gible ones from candidacy. An appropriate standard of eligibility is not far to seek: let the primitive 
vocabulary that appears in the axioms refer only to perfectly natural properties. (1983, 216)

Lewis is a nominalist concerning the nature of properties. More specifically, he is a class-
nominalist equating properties with sets of actual and possible individuals (1983, 1986). 
This view stands in opposition to universals and tropes, which unlike properties on Lewis’ 
view, provide the ground for their own existence. Another difference between class-nomi-
nalism and universal or trope theories is their size. Whereas there is only a finite number of 
universals and tropes, class-nominalism implies an infinite number of properties—one for 
every grouping imaginable.
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The abundance of properties implied by class-nominalism makes the sharing of proper-
ties unsuitable for use in metaphysical analysis (trivially all individuals both share and lack 
an infinite number of properties). Because of this, Lewis justifies the addition of a sparse/
abundant distinction to his view on largely pragmatic grounds: he says natural properties 
can ‘earn their living’ by doing ‘much needed work’. In particular they can provide a sys-
tematic and unified treatment of topics as diverse as duplication; supervenience; divergent 
worlds; a minimal form of materialism; laws; causation; counterfactuals and reference, add-
ing ‘perhaps this list could be extended’ (1983, 188-189).

With concerns to the current problem, the appeal is of immediate benefit since it sim-
ply rules out the system (x)(Fx) on the grounds that F does not refer to a natural property.

Despite the ease with which natural properties could solve the problem of language-
dependency, many contemporary Humeans remain unsatisfied. Brain Taylor complains ‘I 
confess to finding the joints utterly mysterious, the manner of the carving entirely arcane. 
Systematic theorists do better, I suggest, to eschew such esoteria’ (1993, 88). Barry Loewer 
is equally scathing: ‘Lewis’ metaphysical notion of natural property is not needed by the 
BSA and, in fact, undermines what seems to me the most attractive feature of the BSA’ 
(2007, 316).

Why are contemporary Humeans so unhappy with Lewis’ appeal to natural proper-
ties? On the one hand the distinction Lewis makes seems sensible. We all mostly agree that 
we should describe the world in terms of ‘green’ and ‘blue’ and not Goodman’s ‘grue’ or 
‘bleen’. Surely the best explanation for this is that ‘blue’ and ‘green’ refer to genuine distinc-
tions in kinds whereas ‘grue’ and ‘bleen’ do not. One worry concerns what it is that grounds 
this distinction in the world. We have seen that Lewis’ class-nominalism alone cannot ac-
commodate such a distinction. Lewis remains non-committed to what makes a property 
‘natural’, i.e. whether it is taken as an irreducible aspect of classes or is supplied by univer-
sals or tropes (1983, 194). What does seem necessary for Lewis is that it is taken as a meta-
physical primitive.

The main reason why some are unhappy with Lewis’ appeal here is not down to meta-
physical reasons but mostly epistemological ones. Those who follow Hume in thinking ob-
servation should guide one’s metaphysics question whether we could ever be in a position 
to know whether a given property F is natural or not. Natural properties seem to fail what 
John Earman (1984) has called ‘the empiricist loyalty test’. This can be illustrated with 
Armstrong’s non-Humean theory of laws. According to Armstrong (1983), ‘Fs are Gs’ is a 
law of nature when there exists a second-order relation of necessitation between two first-
order universals: represented as N(F, G). Earman complains that a world in which N(F, G) 
obtains would be no different observationally than a world in which only (x)(Fx ⊃ Gx) ob-
tains. Therefore, there are no good epistemological reasons for postulating the existence 
of N.23

Bas van Fraassen (1989) gives a convincing story for thinking that the empiricist loy-
alty test also fails for natural properties. Imagine scientists discover a deductive system for 
our world which by all parties concerned scores highest on the simplicity/strength bal-

2 Armstrong would disagree: according to him there are good epistemological grounds for positing N 
such as inference to the best explanation (1983, 104). Cohen and Callender (2009, 13) consider and 
reject whether such an appeal could be made for natural properties as well.
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ance and is also formulated in terms that refer to natural properties. Now suppose a new 
scientist enters the field with a new system. This system scores better than the old: it is 
simpler and it contains more information. However it uses a different basic set of kinds 
and so does not refer only to natural properties. As van Fraassen questions ‘how could we 
designate this an evil day for science?’ (1983, 53) The point is that scientists would con-
sider the new system the ‘best system’ showing that on the criteria given by the BSA there 
would be no way for a scientist to know whether the best system laws really are indeed the 
laws of nature.

It appears therefore that there is a good motivation for Humeans to seek a version of 
the BSA without natural properties. Naturally, if one is happy to accept natural properties 
and/or reject Humeanism, then it is possible to sign up to the BSA and consider the lan-
guage-dependency problem solved. The remainder of this discussion will be aimed squarely 
at those philosophers who, for broadly Humean reasons find the BSA attractive, but are 
not yet ready to admit the existence of natural properties.

3. Adaptivist Solutions: The Package Deal Account and the Better Best System Account

Once we have rejected natural properties, what other options remain? We need to have an 
agreed background of kind-distinctions from which to judge the simplicity and strength of 
candidate systems, but it needn’t be natural properties that provide that background. One 
option, which Cohen and Callender call ‘stipulationism’ (2009, 15-20), would be to allow 
science to permit a once-and-for-all stipulation of acceptable terms.34Science could then 
progress under the contract that all future theories and systems be couched only in terms 
from this ‘stipulated base’. Possible suggestions for this base taxonomy could include a re-
striction to physical magnitudes, macroscopic properties, microscopic properties or observable 
properties.

Whilst acknowledging that such a stipulated base could solve the language-dependency 
problem, Cohen and Callender give good reasons for thinking that this is not an ideal solu-
tion (2009, 17-20). Perhaps the most important criticism Cohen and Callender give is that 
a lot hangs on the decision of the base and yet the decision itself seems somewhat arbitrary. 
When making a once-and-for-all stipulation the theoretical options available for scientific 
inquiry are forever restricted. Scientists cannot create new taxonomies but must constantly 
rework the base in light of new empirical evidence. It seems intellectually irresponsible to 
shut down potential pathways of inquiry from the get-go and does not seem to fit with the 
way science has progressed. To be sure at times scientists do object to the introduction of 
new kinds (for example the hostility shown towards Newton’s gravitational ‘action at a dis-
tance’); but that objection is always given as part of a theoretical alternative (even if that al-
ternative system does not score very highly).

The insight here is that the selection of appropriate kinds for system comparison 
should be part-and-parcel of scientific inquiry and so should not be exempt from revision 
and evaluation. Cohen and Callender call this alternative ‘flexible stipulationism’; but I 

3 Cohen and Callender (2009, 16) cite John Earman (1986) in addition to an earlier Loewer (1996) as 
advocates of this kind of solution to the language-dependency problem.
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will call it ‘adaptivism’ as the central idea is that the language of science is allowed to adapt 
in light of pragmatic and explanatory pressures coming from theory selection:

With respect to the problem of arbitrariness, the proponent of stipulative [BSA] can treat her 
stipulated fixed background (of kinds, observable, etc.) as a pro tanto, a posteriori, and defeasible 
assumption that is not insulated from empirical inquiry. The thought would be that, while some 
or other stipulated background is needed to carry out comparisons needed to fix [BSA] laws, the 
background can itself be subject to rational revision on other occasions. (2009, 20)

They make an analogy to Neurath’s ship: each plank in the ship is vulnerable to replace-
ment, but we need some planks in place from which to stand to replace the others.

Loewer advocates a similar solution in his ‘package deal account’ (PDA). According 
to Loewer we should let science make the decision about the right language. When science 
reaches the ‘final theory’ —which is judged to be the best by the scientific community—  
then we can identify the language and laws together:

Here is a way of thinking of the BSA in which Lewisian natural properties play no role. Con-
sider the world W of all pairs <L,T> of possible languages L and candidates for best systems of 
W T such that

iii) T is formulated in L
iii) T is true of W
iii) T is a final theory for W (i.e., T is true and best satisfies the criteria of simplicity, inform-

ativeness, comprehensives, and whatever other conditions the scientific tradition places on 
a final theory for W.

For all such pairs <L,T> select the one (ones) <FL, FT> that includes the best theory [where FL 
refers to the language of the final theory]. <FL,FT> is the ‘best of the best’ and determines the 
laws of W. (Loewer 2007, 324)

Notice that there are two rounds of theory appraisal that occur in Loewer’s PDA. First, 
theories from within a particular background of kind distinctions are compared for their 
theoretical merits to determine the best system for that language. This gives a class <L, T>. 
Then from all such possible languages and best systems <L1, T1>, <L2, T2>,..., <Ln, Tn>, se-
lect the class which is the ‘best of the best’ with respect to the virtues the scientific commu-
nity finds desirable in a final theory. We can then define the laws of nature as the axioms in 
this final class <FL,FT> as well as a language suitable for the uses that Lewis puts natural 
properties to.

Loewer’s PDA has good theoretical economy in that in the process of selecting the fi-
nal theory we get both the laws and the language together. Lewis’ trivial system (x)(Fx) is 
also dismissed in that although this does well in the first round, it fails in the second round 
of comparisons, since it lacks explanatory appeal from the stand-point of the scientific com-
munity.

Despite this, Loewer’s PDA raises a problematic question: although it is clear how 
theory comparisons are made in the first round (since there is an agreement on language 
terms), how is this possible in the second round, when we are comparing theories in differ-
ent languages? Loewer admits that in the practice of science comparisons will need to be 
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relative to a linguistic base, but he thinks this can be achieved by considering the ‘rational 
development’ of a language:

A candidate for a final theory is evaluated with respect to, among other virtues, the extent to 
which it is formulated in SL [the language of current science] or any language SL+ that may suc-
ceed SL in the rational development of the sciences. By ‘rational development’ I mean develop-
ments that are considered within the scientific community to increase the simplicity, coherence, 
informativeness, explanatoriness, and other scientific virtues of a theory. (2007, 325)

I find it difficult to see how this guarantees the selection of a final theory <FL, FT>. It as-
sumes that there will be a consensus over which <L1, T1>, <L2, T2>,..., <Ln, Tn> scores 
highest concerning the virtues—but surely this is the very point in question. Because each 
scientist would be advocating a different final language (FL) then each would recommend a 
different development of SL in the direction of their final language and their rational con-
siderations for doing this would be relative to their background of kinds.

We have seen how simplicity and strength considerations are relative to a theory’s 
kind distinctions, but Loewer also cites comprehensivess, informativeness and explanatori-
ness as additional theoretical virtues. Can these be used to help explain how scientists de-
cide among competing systems? It is not clear how these virtues are any less dependent 
on language than simplicity. ‘Informativeness’, as we have already seen above, depends 
upon how one carves the world, and so would be measured differently from each linguis-
tic stand-point. ‘Comprehensivess’ seems to amount to the same as ‘balance’ in the BSA. A 
good theory is one which tells us a lot about a natural phenomenon in a simple way. Hence 
this will also be language-dependent if simplicity and strength are. ‘Explanatoriness’ looks 
more promising; however the nature of scientific explanation is controversial and two of 
its most popular interpretations cannot be appealed to here. Carl Hempel’s (1965) ‘deduc-
tive-nomological’ approach uses the concept of a law of nature in its analysis and so using 
this runs the risk of giving a circular analysis. Philip Kitcher’s (1981) ‘unificationist model’ 
is also problematic. According to Kitcher ‘a theory unifies our beliefs when it provides one 
(more generally, a few) pattern(s) of argument which can be used in the derivation of a 
large number of facts’ (1981, 333). But clearly this idea is too close to comprehensiveness 
(and so also simplicity) to guarantee we have escaped the worry of language-dependency.

Cohen and Callender call their adaptivist version of the BSA the ‘better best system 
account’. Their definition of a law differs slightly from Loewer’s: whereas Loewer defines 
lawhood relative to the terms in the ‘final theory’, Cohen and Callender are more liberal. 
For them every best system in every language has laws and the concept of lawhood is rela-
tive to a particular background of kinds. Their view is therefore consistent with a more ag-
nostic stance about the direction of science i.e. concerning whether it will culminate in a 
‘final theory’ or will continue to change and develop forever.

They rule out Lewis’ system (x)(Fx) by saying that whilst this is a law from the per-
spective of the background ‘F’ ‘it is not a best system relative to the kinds we [i.e. the sci-
entific community] care about. If we care about mass, charge, spin, etc., then relative 
to these kinds, Schrodinger’s equation (for example) might result, not ‘all events are F’’ 
(2009, 23).

We are still left with a question concerning how the scientific community arrives at a 
consensus of kinds, given that different groups of scientists advocate theories with radically 
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different ontologies. Cohen and Callender disagree that this leads to a radical interpreta-
tion of Kuhn’s incommensurability thesis. Their response is that in reality scientists rarely 
work in entirely different worlds. Although they may advocate different theories and dif-
ferent kind-structures, there is always some overlap in their taxonomies that makes mean-
ingful comparison possible.

Take the example of scientist A who advocates the Ptolemaic view of celestial mechan-
ics and scientist B who advocates the Copernican view.

Scientists A and B disagree, but they might agree that getting (say) the observables, suitably 
characterised, is important. They could then formulate the best system relative to the observables 
of interest, which would be a third preferred X, XC. At this point they can ask: is the on balance 
strongest system really one requiring the system of concentric spheres? (2009, 31)

What Cohen and Callender say here seems convincing. Ptolemaic and Copernican scien-
tists knew they were disagreeing about something, i.e. they understood they had different 
theories about how the heavenly bodies move. So there must have been some part of their 
vocabulary that they agreed upon. And the history of science suggests that different groups 
working under different theoretical assumptions do eventually decide a winner and convert 
the losers (at least in the natural sciences). It is not as if there still exists a community of 
Ptolemaic researchers engaged in trying to convince everyone else they were right all along.

The problem once again is that no clear story is given as to how this decision is sup-
posed to be reached in practice. Cohen and Callender say they can appeal to overlapping 
interests; but it is not obvious how this is supposed to work. True, scientists A and B may 
agree in one sense that they are both describing the heavenly bodies, but each also offers a 
new taxonomy for describing them. If scientist-A claims their theory is the best for system-
atising their re-description, how will they rationally convince scientist-B, when B is not 
interested in systematising A’s re-description but their own? Cohen and Callender have 
given us no clear mechanism explaining how the overlapping virtues and taxonomies can 
be of any use when each scientist is aiming to re-describe and re-carve nature. It seems there 
would be an inevitable deadlock here in trying to convince the other.

One of the motivations for seeking an alternative to Lewis’ natural properties was 
that his view risks making the laws epistemically inaccessible to science. Yet adaptivism is 
equally at risk of making the laws inaccessible. If we cannot give a clear story of how rival 
theories and their languages can compete and a winner be selected, then science will for-
ever remain in deadlock concerning which is the best system. We have not yet been given a 
plausible account of how the virtues of a good theory (e.g. simplicity, informativeness, com-
prehensiveness, etc.) can be used to select rival theories when those theories make different 
kind distinctions in the world. Clearly scientists do make a choice, and so if adaptivism is to 
work, we need a more plausible story as to how this happens in practice.

4. Interpreting Simplicity as Compression

In the last section we saw that the main problem for current adaptivist solutions is a failure 
to describe any clear mechanism by which the virtues of a good theory shared by scientists, 
e.g. strength, simplicity, comprehensiveness, explanatoriness etc, could be made to work 
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to decide among competing theories in different languages. Nevertheless, I do believe that 
adaptivism is the right way to tackle the language-dependency problem. The reason why 
current efforts struggle to make clear this mechanism is because they rely on a vague and 
imprecise notion of ‘simplicity’. In a recent article James Woodward claims this is part of 
a broader problem for best system accounts. He criticises current advocates of the BSA for 
not drawing a closer connection between their use of simplicity and its actual role in scien-
tific practice:

Defences of the BSA tend to treat the preference for simplicity as well as the notion of sim-
plicity itself as a kind of primitive, and build these into the characterization of laws (laws just are 
generalizations that figure in systematizations best combining simplicity and strength) so that 
questions about the relationship between simplicity and lawfulness, and why we should value 
simplicity are not given non-trivial answers. (2014, 109)

As remarked already, Lewis does not provide a definite analysis of what simplicity consists 
in, although he does at times seem to equate it to the number and length of the axioms. 
Let us call this the ‘standard interpretation’ of simplicity. There are many reasons to doubt 
whether this concept of simplicity plays the role in scientific practice that the BSA as-
sumes it does4, not least because it leads to the problem that simplicity can be too easily had 
through an appropriate choice of predicates.

In this section I will argue for a different interpretation of simplicity, namely, ‘simplic-
ity as compression’, and then in section 5 show how —by interpreting simplicity in this 
way— we can begin to get a sense of how theories can be compared and selected despite be-
ing in different languages.

The suggestion that the BSA could be improved by thinking of simplicity in terms of 
compression was first given by David Braddon-Mitchell (2001)5, but the idea that an im-
portant part of scientific inquiry is the search for short, compressed descriptions of nature, 
goes back much further.

The concept of compression is easy to grasp. Consider the following string of digits:

010101010101010101010101010101010101010101

Intuitively this string of data contains a certain fixed amount of information. This string 
can, however, be written in a shorter way whilst retaining the same amount of information:

“01”(*21)

Uncontroversially, nature provides us with a source of information. Scientists are therefore 
in a position to decide how best to encode that information. The basic idea is that scien-

4 Woodward (2014) raises a number of important objections to the standard interpretation, finding lit-
tle endorsement for it by practicing scientists and questioning whether it always needs to be traded-off 
against strength.

5 Braddon-Mitchell’s concern was not with the language-dependency problem. For him the BSA is best 
thought about in terms of compression because it helps solve problems with exception-ridden laws, 
counterfactuals and Hume’s arguments about miracles.
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tists choose to encode it in the most economic way possible, which involves looking for com-
pressed descriptions. This is the inspiration behind Ernst Mach’s (1883, 1894) instrumen-
talist view. Mach likens science to a kind of business ‘consisting of the completest possible 
presentment of the facts with the least possible expenditure of thought’ (1883, 586). Laws 
play a crucial role in this ‘economic description of the world’ by reducing the number of in-
dividual data points that need to be recorded or memorized:

The communication of scientific knowledge always involves description, that is, a mimetic 
reproduction of facts in thought, the object of which is to replace and save the trouble of new ex-
perience. Again, to save the labor [sic] of instruction and of acquisition, concise, abridged descrip-
tion is sought. This is really all the natural laws are. Knowing the value of the acceleration of grav-
ity, and Galileo’s laws of descent, we possess simple and compendious directions for reproducing 
in thought all possible motions of falling bodies. (1894, 193)

For a given set of data, compression is usually made possible because the string itself contains 
a pattern or regularity. This allows us to construct an algorithm (a kind of rule) which signif-
icantly reduces the size of our encoding of the data. The discovery of such rules is one reason 
that has allowed computing technology to advance so rapidly in recent years since it permits 
ever larger amounts of information to be stored on smaller, more manageable devices.

This gives us an alternative way of thinking about the role of simplicity in the BSA. In-
stead of measuring simplicity as the number and length of the axioms, we can think of the 
best system as the one which contains the best rules for compressing empirical data.6 By ‘best 
rules’ we mean the ones that provide the shortest description of the data compared to all 
other alternatives. As a solution to the language-dependency problem this won’t quite do, 
since it should be obvious that once again the length of the compression will depend on 
which language I choose to encode the world in the first place.

The reader at this stage might then wonder what benefit can be had from switching to 
compression? In section 5 I will show how a result from algorithmic information theory 
known as the ‘invariance theorem’ can be put to use to mitigate some of these concerns. 
In particular, whilst it won’t remove the possibility of alternatively good systems in alter-
native languages, it does make possible comparison and choice between scientific theories 
in practice, therefore avoiding the potential deadlock faced by Loewer’s and Cohen and 
C allender’s theories.

Woodward said that the problem with extant versions of the BSA is that they pre-
suppose the value of simplicity to science and fail to give evidence for its connection to 
the formulation of laws. By thinking of simplicity as compression we have an answer to 
Woodward’s first complaint: simplicity is important for descriptive economy. Presumably 
scientists cannot create a list of the positions and properties of every individual in the uni-
verse, even if they wanted to. This would vastly outstrip our capacity and resources. Algo-
rithmic compression therefore makes description more manageable given that we are finite 
creatures working with finite resources.

What about Woodward’s other concern? Even if it turns out compressibility consid-
erations can be used to decide between competing theories, this still might not help scien-

6 Terence Tomkow (2014) also offers a theory of laws as programs for compressing data; however he 
sees his as an alternative to the BSA. Like Lewis though he accepts natural properties.
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tists discover the laws because scientists themselves might not actually be interested in com-
pressing empirical data. To alleviate this worry I will now discuss two pieces of evidence 
that indicate compressibility is an important element in scientific practice.

The first piece of evidence is that scientists themselves seem to think about the desire 
for simple theories in terms of the compression of empirical data. Albert Einstein (1933) 
writes:

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic el-
ements as simple and as few as possible without having to surrender the adequate representation 
of a single datum of experience.

Richard Feynman gives a similar sentiment: ‘It is possible to condense the enormous mass 
of results to a large extent – that is to find laws which summarize’ (1963, 1). Using the ter-
minology of algorithmic information theory, the astronomer Paul Davies is even more 
explicit: ‘The existence of regularities may be expressed by saying that the world is algo-
rithmically compressible. Given some data set, the job of the scientist is to find a suitable 
compression...’ (1995, 249).

The view that science is the search for algorithmic compressions of nature is most of-
ten associated with the scientist Murray Gell-Mann:

The best way to compress an account of large numbers of facts in nature is to find a correct 
scientific theory, which we may regard as a way of writing down in a concise form a rule that de-
scribes all the cases of a phenomena that can be observed in nature. (1987)

Interestingly, Gell-Mann does not identify scientific laws with the algorithms in the short-
est description of nature. His reason is that he does not think the concepts of simplicity 
and complexity afforded by algorithmic information theory connect well with our ordinary 
uses of these terms (1994, 43-50). To see why, compare the works of Shakespeare with an 
output of equal length from a room of typing monkeys. The work of the monkeys will be 
mostly incompressible: it will not contain any repeating passages that can be summarised 
by a rule. Shakespeare’s work will be more compressible however, as it is known that Eng-
lish words and sentences contain patterns. In accordance with algorithmic information 
theory this makes the shortest description of the typing monkeys longer than the short-
est description of Shakespeare and as a result, this makes the monkeys’ work more complex. 
Conversely, it implies that Shakespeare’s work is simpler than the monkeys’—but this does 
not square well with our ordinary intuitions.

Gell-Mann’s solution is to limit the compression only to the regularities in the data we 
are interested in. He calls this the ‘effective complexity’:

A measure that corresponds much better to what is usually meant by complexity in ordinary 
conversation, as well as in scientific discourse, refers not to the length of the most concise descrip-
tion...but to the length of a concise description of a set of the entity’s regularities. Thus something 
almost entirely random, with practically no regularities, would have effective complexity near 
zero. (1995, 2)

Since data sets contain numerous patterns—he thinks it is largely down to human interests 
which ones we compress and therefore which algorithms become the laws.
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This then raises a question about the use of compression being suggested here. Should 
we identify the laws with the algorithms in the shortest description of nature (that also pro-
duces the random incompressible parts)? Or should we identify them only (as Gell-Mann 
does) with the shortest description of the regularities? I don’t think the decision we make 
here will make much difference to the overall view. This is because we can let the ‘strength’ 
desiderata already implicit in the best system account select only the algorithms for the reg-
ularities we care about. For ease of description then, I suggest sticking to the original for-
mulation of simplicity, i.e. the shortest total description. The resulting best system will not 
contain all regularities—only the ones scientists care about after the strength desiderata 
have been applied.

The second piece of evidence is that examples of scientific laws do seem to look like 
they compress empirical data. Take as an example Kepler’s laws of planetary motion. We 
could record a table of singular data for all the positions of the sun, moon and earth over a 
thousand years. Yet clearly we could write this more simply by just noting the position of 
each on day one and then work out the rest of the data using Kepler’s laws. The laws here 
are aiding a more concise description of the data and so effectively are working as the algo-
rithmic component in a data compression. We can extend the point further and explain 
the difference in the fundamentalness of laws with respect to how much compression they 
achieve: Newton’s laws are more fundamental than Kepler’s because they compress data 
about the motion of both celestial and terrestrial bodies.

James McAllister (2003) disagrees that scientific laws compress empirical data. Accord-
ing to him all known ‘empirical data sets consist of random strings of digits’ (2003, 634). 
Given our definition above this would make empirical data maximally complex and incom-
pressible. This seems like an extraordinary claim as we are used to thinking of nature as be-
ing orderly and regular. He gives a number of arguments that aim to show laws do not com-
press empirical data. As many of these have been critically discussed at length in Twardy et 
al. (2005) I won’t repeat them here. One of his arguments is worth looking at in more de-
tail, however, as it potentially impacts the possibility of using compression considerations 
for theory comparison.

McAllister gives an argument in the form of an induction on past scientific laws: he 
says all previous attempts at compression have failed. This is because all scientific laws we 
know of cannot be used to reproduce the data with perfect accuracy. There will always be 
a discrepancy of some size, no matter how small, between the output of the algorithm and 
the empirical data. The explanation he gives is familiar. All actual physical systems are sub-
ject to a variety of impediments and interfering factors—the effects of which are often cha-
otic and unpredictable (2003, 637). This means that any rule created by the compression 
of some collected finite data set cannot be expected to get good results when applied to an-
other data set for a physical system of a similar type.

There are a number of replies the advocate of compression could give here. It might be 
that the problem stems from the fact that we are only using finite samples of data from sys-
tems that are not ‘closed-off’ from the effects of interfering phenomena. But we can ideal-
ize a little, as Lewis does, and imagine that when we have all the data (for the entire uni-
verse), then a suitable combination of the best algorithms will result in the correct output. 
Currently our efforts are limited only because of the access we have to data and our lack of 
knowledge of additional algorithms that would be needed in the best system to cover these 
additional impediments.
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Another response one could give is to recognise a distinction commonplace in compu-
ter science between lossless and lossy forms of data compression (Braddon-Mitchell, 2001). 
A lossless algorithm is one which produces all the original data intact after decompression: 
a lossy algorithm is one which acquires greater gains in compression but at the cost of ac-
curacy in the output. For example JPEG is a lossy compressor; after the picture has been 
taken and recorded noticeable ‘blocking artefacts’ are present in the decompression recon-
struction of the image. We could argue that scientific laws are lossy compressions of the em-
pirical data—they make deliberate simplifications in order to provide greater gains in com-
pression. This gives a new way of thinking about the simplicity/strength trade-off in the 
BSA: truth or accuracy in the description could also be sacrificed if the simplicity gains are 
good enough.

This response to McAllister does unfortunately come at a cost for it would imply the 
existence of more laws than many would be comfortable with. To illustrate the point, con-
sider the following two sets of data7:

a) 01010101
b) 10101010

Suppose we wanted to compress (a) and (b) using a lossy compression. It is clear that a 
number of algorithms would do the job: “01”(*4) would repeat the data correct for (a) but 
not for (b); “10”(*4) would repeat the data correct for (b) but for (a). Which one should 
we choose? It appears we would have no choice but to accept them both. Hence even be-
fore we consider the possibility of alternative encodings we are faced with equally good al-
ternatives if allowing for lossy laws.

I don’t think this is a problem specific to the BSA. If inexact laws (such as ceteris pari-
bus laws or idealized laws) are genuine laws of nature then all accounts of lawhood would 
need to accommodate this. Far from being a problem for this interpretation, compression 
considerations give us a way to explain the lawhood of inexact scientific laws. It is true this 
may lead to more than we might like, but the same point could be levelled against others, 
such as Armstrong’s theory of ‘oaken laws’ (Armstrong 1983, 147-150). In what follows, 
since my concern is with the language-dependency problem, I will limit the discussion only 
to ‘strict laws’, that is, algorithms which compress the data in a lossless way.

5. Comparing Compression in Different Languages

It is now time to show how, by taking compression or compressibility to be key a virtue of 
scientific theories, it is possible to compare the simplicity of theories against one another 
despite being composed of different languages.

In order to do this it will be useful to first define some important concepts from algo-
rithmic information theory (AIT) that will provide the framework for the explanation. 
Let us use the symbol ‘S’ to refer to an arbitrary string of binary digits. The length of S 
can then be given a numerical value; for example, if S = ‘01010101’ then the length of S is 

7 I am grateful to an anonymous reviewer for raising this issue with lossy compression and supplying the 
example.
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8 bits. Of course we are also interested in compressing S and comparing the new compres-
sion to the old so as to work out how much compression has been achieved. We can meas-
ure this by using the idea of a universal computing device U which is programmable—in 
other words, we can feed into its storage banks a program which it can apply to additional 
data in order to produce a desired output. In the case of compression our desired output 
is S and the input into the universal machine will be our compressed description T which 
is made up of two parts: S’ (the compressed unstructured data) and A (an algorithm for 
turning S’ into S). If the size of T is less than S for some particular U, then we say T is a 
compression of S.

The compression ratio is given simply by dividing the length of T by S: the lower the 
ratio, the greater the compression. We can also ask the question: what is the best possible 
compression of S? For any string S the Kolmogorov Complexity8 K(S) is defined as the short-
est input on U that will output S and halt. Each universal machine will require an operat-
ing language for T which implies that K is relative to the language used. However a foun-
dational result in AIT known as the ‘invariance theorem’ shows that this dependency is 
limited to a constant value ‘c’:

Invariance Theorem: (∀S) ⎥ KU1(S) — KU2 (S)⎥ ≤ c

What is interesting about the value ‘c’ is that it cannot go on indefinitely as long as the al-
phabets for U1 and U2 are themselves finite. This is because we can always create a new pro-
gram P1-to-2 which translates between the languages of U1 and U2.

Translation Program: c = ⎥ P1-to-2 U1(S) ↔ U2(S) ⎥

As ‘c’ is constant its effect on the value for K for U1 and U2 will diminish as the length of S 
increases. Provided we are dealing with very long strings to compress, c becomes negligible. 
Many believe that this shows K represents something intrinsic about the complexity of an 
object, which does not depend on the way we choose to describe it.

At this point it might be tempting then to rely on the invariance theorem alone to 
solve our problem: scientists A and B are both aiming to best compress S, but the invari-
ance theorem tells us the best compression of S is independent of language choice. Provided 
the length of S is large in comparison to c (which is a reasonable assumption given the size 
of the natural world) then any language will do. If scientist-A finds out T1 is the best de-
scription of S using the language of U1 and scientist-B finds out T2 is the best description 
of S using the language of U2, then it will provide little difference to each scientist whether 
they choose to use T1 or T2, since to do so requires adding only the translation program P1-

to-2 which is typically a very small addition overall.
Unfortunately, as desirable as this sounds, we cannot depend on the invariance theo-

rem in this way to solve the language-dependency problem. One issue confronts us when 
applying this to Lewis’ case (x)(Fx). By the intuitions of all concerned (x)(Fx) does not 

8 AIT was developed independently by Ray Solomonoff (1964a, 1964b), Andrei Kolmogorov (1965) 
and Gregory Chaitin (1966). Following standard practice I will continue to refer to the algorithmic 
complexity of a string with the symbol ‘K’ after Kolmogorov.
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represent a law of nature, but by the eyes of the invariance theorem it has done nothing 
wrong. If our universal device U runs in the language of ‘F’, then (x)(Fx) could well be the 
best compression of S.9 The reason is that ‘c’ can be as large as we want it to be. In a finite 
universe we can always artificially make our description of S as simple as we want by a suit-
able choice of U and its operating language. A way to avoid this might be to reason that the 
universe is infinite and so provided our language itself does not have an infinite number of 
characters (again a reasonable assumption) then we can safely ignore ‘c’. The trouble with 
this line of response is it requires the universe to be infinite yet the current empirical evi-
dence on this question is inconclusive. Additionally, even if it were shown the universe is 
infinite in size, the resulting version of the BSA would make it conceptually necessary that 
laws only exist in infinite universes—yet there seems to be no a priori limitation on there 
being laws in a finite universe.

Another issue with relying on the invariance theorem alone is that it misrepresents the 
situation that gave rise to the language-dependency problem. It assumes scientists are inter-
ested in compressing one-and-the-same string of data S. But this isn’t the case. As we saw 
above, scientists may very well want to re-describe the data using a new choice of terms. 
Hence from the standpoint of scientist-A they will be interested in compressing SA whereas 
scientist-B will be interested in compressing SB. Now, given that A and B will have their 
own theories TA and TB, how should we compare their efforts given that they are interested 
in entirely different strings of data?

The first step towards answering this question is to take on board one of the assump-
tions of Cohen and Callender that although scientists with different theories use different 
taxonomies in describing the world, there is normally always agreement among scientists 
that they are providing alternative, competing accounts. Copernican and Ptolemaic astron-
omers had different perspectives concerning how to carve the world, but in broad terms, 
they understood that each had a different theory to explain the motions of the heavenly 
bodies. From this we can then say that although scientists A and B are aiming to compress 
different strings (SA and SB respectively) their theories TA and TB are alternatives and there-
fore rival explanations of the world.

The next step is a reminder that in accordance with adaptivism language choice is part-
and-parcel of the attempt to provide the best system. It denies stipulationism which says 
there is a privileged language. Language is in a sense only a tool to reach the main aim of 
strong and simple theories: if it can be shown that using one language helps us achieve this 
goal better than another then that language should be preferred. The trouble has been with 
the process of showing how one language can be better than another —vis-a-vis simplicity 
and strength— given that these virtues are relative to each language.

Here is a proposal for how this can be achieved. It works by assuming along with AIT 
that we can assign a value to the length of a translation program P between two languages.

Suppose scientist-A believes that TA is the best compression of SA. Scientist-B likewise 
believes that TB is the best compression of the string they are interested in SB. Now both A 
and B are adaptivists and they also value compressed description of the strings they are in-

9 Strictly-speaking the algorithm here would not contain any variables, but instead would be a single 
command to print ‘F’ n times where the value for n (the cardinality of the universe) is given in the un-
structured (non-algorithmic) data.
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terested in. Scientist-A is now in a position to compare their best theory TA against TB as a 
compression of SA. Remember, TB was never meant to describe SA and so as it stands could 
not return SA on a universal machine operating in the language of A. But as we know there 
is a way to make this machine UA read TB: we just need to add an additional program PB-to-A 
which translates between the languages of A and B. Scientist A can then compare the sizes of 
two alternative inputs on UA that will return their data of interest SA:

1. TA
2. TB + PB-to-A

If the size of ‘TA’ is greater than the size ‘TB + PB-to-A’ as inputs on UA returning SA, then 
scientist-A has no choice but to accept that TB is a better theory.

Notice that in this explanation the standards of strength and simplicity used by scien-
tist-A are still made from the perspective of their choice of language. The length of the best 
compression is measured with respect to the input in their operating system UA and the in-
formation to be compressed is the information they are interested in—namely SA. Hence 
here is a way for scientist-A to be rationally compelled to accept another scientist’s the-
ory using a different language without begging the question against their own standards of 
strength and simplicity.

This also gives us an explanation for why in practice Lewis’ system (x)(Fx) is not con-
sidered viable. For all we know (x)(Fx) may be the best compression of the world with re-
spect to UF, but we have no way of knowing this because we cannot construct a translation 
program between our current theories and (x)(Fx). As we cannot construct such a transla-
tion program it is impossible for us to assess whether (x)(Fx) is strong and simple with re-
spect to the empirical data we care about in our current scientific vocabulary.

What if it turns out there is no difference in size between our two rival compressions? 
This is where the true utility of the invariance theorem comes in. It provides us with an up-
per bound on language choice. If the difference between TA and TB is equal to or roughly 
equal to the size of the translation program PA-to-B then we know that TA and TB are both 
equally good compressors and that simplicity considerations alone cannot be appealed to 
decide the difference. This doesn’t mean that scientists-A and -B will be in a deadlock: 
there might be other considerations that could be brought to bear on the issue, such as how 
well TA and TB and their attending languages fit with other known theories that both A 
and B accept.

Even if in practice such equivalence is rare, it might be objected that the mere possibil-
ity of it occurring renders the BSA problematic as an account of laws. For example, let lan-
guage-A encode ‘o’ = {1} and ‘k’ = {0} and language-B encode‘o’ = {0} and ‘k’ = {1}. Both 
languages need the same number of bits (two) to encode ‘OK’ yet they do so in different 
ways. Which encoding is correct? It could be argued that this then gives us many best sys-
tems, one for each language possible, if the systems cover the facts we are interested in but 
are equal in length.

I don’t believe this possibility takes anything away from the explanation being of-
fered here. The challenge this presents is the problem of ties among equally good best systems 
whereas we set out to solve the problem of language-dependency of strength and simplicity in 
theory comparison. The problem of ties is one that Lewis himself grappled with and indeed 
all versions of the BSA will have to answer at some point. Lewis considered two possible so-
lutions to this problem. Firstly, we could hope that the best system is so much better than 
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all alternatives that there just are no ties (1994, 479). Alternatively, if there are ties, then we 
can take the axioms common to each tied system and call these the laws (1973, 73).

The only additional level of complication I can foresee compressibility considerations 
adding to this is that Lewis’ second solution may no longer be available to us. The best sys-
tems will be tied but they will also be composed of different languages hence there will be 
no common axioms. In this scenario the advocate of adaptivist BSA will just have to accept 
that there will be equally good laws in equally good languages, but the ones that matter are 
the ones that scientists have selected. After all, adaptivism rejects the possibility of there be-
ing a privileged language so this result is not surprising. It remains an interesting and im-
portant question why scientists choose the taxonomies that they do for their theories in the 
first place. Nonetheless, that is a distinct problem from the one we set out to solve which is 
once scientists have selected a language how is it possible to compare rival theories in alterna-
tive languages? Hopefully this paper has made some progress in showing how this is achiev-
able.
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