ON ELECTRONS AND REFERENCE

W. BALZER and G. ZOUBEK

INTRODUCTION

The reference of individual terms like "electron” provides a stum-
bling block for any theory of reference in science -not to speak of
reference in general. In addition, the particular term "electron" is of
special interest because it "lived through" at least four clearly differen-
tiable theories (up to now), and it's denotations accordingly show a
great deal of variation. The philosophical question of why one and
the same term is used with such different denotations, or, more simply,
what constitutes the "real" referents of the term, or what "really are
electrons”, will only serve here as an overall problem in order to direct
more specific investigations. The more mundane problem we takle here
is simply to get clear about how to characterize the referents of indivi-
dual terms in scientific theories. More recently, this problem was discus-
sed mainly by Kripke and Putnam? in connection with the causal "theo-
ry" of reference, the two main examples being "H,O" and “electron".
In our project® both examples were studied in detail.

‘In this paper we will first describe the physical meaning of "elec-
tron" (Sec. 1), then provide some theoretical background (Sec. II) relative
to which the term can be defined (Sec. IlI), After that, we will offer
a general account of the reference of definable terms in scientific
theories (Sec. IV) which on the one hand is exemplified by our case
studies of "electron" and "H,O"? and on the other hand generalizes
previous structuralist attempts at reference*. Finally, we will address
the question of the impact of determination on reference (Sec. V).

As a background theory to which the reference of "electron”
is relativized we take wave mechanics, i.e. Schrodinger's theory® which
preceded '"classical" quantum mechanics in the forms introduced by

von Neumann. By not sticking to the most modern theory (which would
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be theory of elementary particles in our case) we admit for an explicit
relativitazion, namely to one or more historically given theories, We
do not believe, however, that this éommits us to take party in the
philosophical controversy on realism  versus idealism. On the contrary,
we think that we provide some (admittedly very small) preliminary
step to substantiate his controversy. Our particular choice of a theory
is mainly motivated by our aim of studying some substantial predecessor
of quantum mechanics so that the transition to the latter may be inves-

tigated in the next step.

I ELECTRONS IN PHYSICS
In physical literature electrons are characterized in various ways,

and usually it is the conjunction of all or most of these characteriza-
tions which is hold to provide a complete "definition". A first feature
is that electrons are "parts" of atoms: particle-or wave-like, and with
different models of the atom. Second, electrons have certain properties:
they are endowed with masses and electrical charges of particular
magnitudes, and they also have spin (=h/4r). Third, electrons are charac-
terized by their "behaviour" in certain well-specified situations like
experiments with cathode rays in external fields (J.H. Thomson), scatte-
ring on material atoms (P. Lenard, Franck-Hertz), diffraction of waves
of electrons (Davidsson, Germer, G.P. Thomson) and Stern-Gerlach-expe-
riments. Often classical experiments (that is, experiments which provide
intented applications of a classical theory, like mechanics or classical
electrodynamics) like the determination of the ratio "electrical charge/-
mass” provide prototypes for the situations in which electrons show
their distinctive behaviour,

Her is a typical citation®: "Electron: An elementary particle which
is the negatively charged constituent of ordinary matter. The electron
is the lightest known particle which possesses an electric charge. I
rest mass is m_ =91 x 10728g, about 1/1836 of the mass of the
proton or neutron, which are, respectivelly, the positively charged and
neutral constituents of ordinary matter. Discovered in 1895 by Sir J.J.
Thomson in the form of cathode rays, the electron was the first elemen-
tary particle to be identified".

Another ingredient of the meaning of “electron" consists of the

historical developments in which electrons were found or had some
essential role to play.
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As is well known, electrons were first observed in cathode rays
by J. Pliicker (1857), but discovered and identified by J.J. Thomson
(1897) 40 years later! It was a long run from the first observation
of cathode phenomena until the identification of these phenomena as
particle like cathode rays, caused by the "smallest™ atoms of electricity
which posses a certain fixed electrical charge and fixed mass. The
name "electron" was introduced for electricity atoms by George J.
Stoney in the 1870th, After his discovery of the electron J.J. Thomson
postulated his famous model of the atom which consisted of electrons
" distributed over a homogeneous positively charged sphere such that
the whole system was electrically neutral.

Later on Thomson's model was replaced by that of E. Rutherford
(1911), stimulated by the a-ray experiments of H. Geiger and E, Marsden
(1913). Instead of a homogeneous sphere one has a small positive nucleus
and a hull of pointlike negative electrons.

This model of an atom was the starting point for N. Bohr's model
as well as for E. Schrodinger's atom. In order to make Rutherford's
atom stable, N. Bohr (1913) introduced his famous quantum postulates
{among others, the quantisation of angular momentum and the postulate
for frequencies) whereas E. Schrodinger (1926) (stimulated by the work
of L. de Broglie (1924/25)) could derive all that in a "natural way"
from his wave-view of electrons, as a consequence of his wave equation
for the H-electron. Schrodinger's treatment of the H-atom was a para-
digm for subsequent guantum-mechanical frame-theories of atoms and
electrons’,

Fron these brief remarks it is quite clear that theoretical pictures
play an important role in the characterization of electrons: Bohr's
and Rutherford's models of the atom, and later on Schrodinger's account
of quantum mechanics. Also, electrodynamics and mechanics are essen-
tial for they provide the background for the understanding of diffraction
and scattering experiments,

We will concentrate on one such theoretical picture, that is, on
one theory in the following, and see how far the referents of the te:rm

"electron" can be specified with respect to this theory.
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I WAVE MECHANICS

We adopts the structuralist view of theories, according to which

an empirical theory has the form of a net of theony-elements all  of
which are specializations of one common fLasic element®. Roughly, the
basic element represents the basic laws valid in all applications while
each specialization represents some special law which only holds in
some restricted, "special” domain of applications. We will not present
the full theory-net of wave mechanics here® but concentrate on the
basic element which - is essentially given by Schrodinger's equation,
plus one specialization to cover what we call Coulomb-Lorentz systems,
Wave mechanics (WM) provides a theoretical picture for systems
like Rutherford-atoms, free particles, phenomena of electrical resistance and
flow in metals and semi-conductors, phenomena in cristals and of capaci-
ty of heat. These systems in a first step are conceived of as systems
of small moving particles which are endowed with mass and charge.
In a second step this picture is refined in the following way: Each
state of the Hamiltonian phase-space is replaced by a wave in the
configuration space of coordinates, the coordinates of the particles
systems by a density function o (in Schrﬁdinger's view a weight function
for classical states) while mass a electrical charge are kept in their
original form. Intuitively, at each instant t and for each particle a,
if we integrate the "part" of p in configuration space concerning all
particles a' = a we obtain the "part" of P which corresponds to parti-
cle a. The form and the development over time of these waves is
theoretically governed by Schrodinger's equation which uses two "theore-
tical" concepts. One is the so-called state-vecton ( T.) which describes
the state of the wave at a certain fixed instant. The second theoretical
term is the wave-operatorn (W) which has a role analogous to the force
function in classical mechanics!®,
Dl a) xis a model of wave mechanics (x € M) iff there exist n,
P, T, x, p, m, K, ¥ W such that

x =<P; T, R, R, IN; &, p, m, K, ¥, W>
and 1) P is a finite non-empty set, || P|| = n,
2} T<=Risa real interval,

3) K INn-> P is bijective,
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4y p: R®*™ x T~ IR

5 m: P R,

6) K e R",

7 v=R" xT —Ht is such that certain requirements- of continuity
and differentiability are satisfied'! and for all t T
b, € L2R", €) and |y (q) [* dq=0

8) W is a function assigning to each t € T a symmetric operator
W(t) in the Hilbert space L2 ( R3", C)!2

9) o =[v|?
10) for all t € T: W(t) is defined for wt

for all t € gf
V/=TK(D

11

N

3n+1q} )t =

- - 2 . 2 2. 2
= jgnK /2m{k (j)) (Daj P + Daj-l + D3j,‘) ‘“f W(t)wt

b) x in a potential model of wave mechanics (x € Mp) iff x is
like in a) and requirements al) - a8) are satisfied

Here, P denotes the finite set of "particles” occurring in the

system. By the bijective map K each particle is denoted by a

natural number. This yields a natural ordering of the particles

needed in expressions of the form ¥(q ,..q ,t).
1 3n

The problem of whether elements of P denote .individual "particles" ( of
whatever nature) rather than fypes of particles leads us right into
the foundations of quantum mechanics and cannot be decided here.
In Sec. IV we will find an argument in favour of the "types of parti-
cles"-interpretation. But we do not feel convinced by this single argu-

ment 3

. Therefore, we simply leave the issue in its double-faced state
-typical for quantum mechanics. .T represents the time interval during
which the system is considered. The density o in Schrodinger's céussical

view is a weight function for the intensity of possible classical states,
In particular, for n=1, ep should be the charge density of the particle,
if e is its electrical charge'“, But in the final, commonly accepted
statistical interpretation due to M. Born (cf. e.g. M. Jammer (1966), p.
281 ff.) the normalised sensity p*: =p /fp (q,t} dq is a probability density
related to de particles' positions q = (g ,... q55). m is the mass function
and m(« (i)) the mass of particle i. K represents Planck's constant divi-
ded by 2n.t is the state vector. In thewave picture relevant for wave
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mechanics, at each instant t, T roughly represents.the spatial distribu--

tion of the "particles®. A bit more precisely: ¥y carries all possible.
information which can be obtained about the quantun system by measu-
rement at time t. The operator W is difficult to interpret directly: it
clearly is a theoretical term. In most cases W(t) is the operator expres-
sing multiplication by a coordinate dependent potential U (U: R" - R).
With these interpretations, axioms 7, 9 and 10 of Dl-a may be expressed
more verbally. The central axiom DI-all, Schrodinger's equation, roughly

expresses the following, D3n +1T is the derivation of T with respect to
"

time, i.e. the measure of change of 7. The expression "Dg. 2+D32}1+Daj
5= :

designates the Laplace operator with respect to the coordinates q(j) =
(qu-z’qaj-l’%
and are the "j-projections" out of the whole configuration q ¢ R3" of the

j) which in a certain "potential way" belog to particle k()

particle system. The three components 3j-2, 3j-i, 3j may be regarded
just as making up the "position function" of particle «{j). This operator
multiplied by (-K? /2m(k(j)) and summed over all particle numbers
jgives the "free part" of the whole wave operator (which is the sum
of the free part and the interaction part W.) Then Schrodinger's equation
says:

The application of the whole wave operator to the wave function equals
the time derivate of Y multiplied by Planck’s constant and the imaginary
unit v~1. For n = 1 in the usual scalar potential situation we have
{with " h " for "K")

27

2 2 2 2
V28 S S S h> 2m<a R '2>‘¥+U‘P

27 at 2T 3x2 3 x,2 3xg

It is easily seen that the right hand operator comes from a classical
Hamiltonian

H(ql’ 4,0 95 Py» :’2’ pa) = (2m)—1 (pf+P§+p§) M U(ql’ a4, (13) by
the correspondence P FeT Di’ U » M(U)
{where M(U) is multiplication by U, and q ,p are classical Cartesian
positions and momenta). For further explanations we refer to (Zoubek,
1986).
D1-b yields a model theoretic statement of the "vocabulary" of WM plus
its "grammar" and some further technical stipulations, Intuitevely, poten-

tial models are those systems for which it is meaningful to ask whether
they are models of WM or not.
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We introduce a set I of intented applications of WM, that is, real
systems to which WM is intended to apply by assuming that each inten-
ded application consists of a substructure of some potential model
which represents all the data know about the system. A substructure
of structure x is a structure all of whose components are subsets of
the components of x'%., We might consider the empirical claim of WM
as stanting that all intended applications of WM "are" (i.e. can be
extended to) models of WM. But a claim of this form would neglect
important features concerning relations or links between different models.
The most convenient form of stanting such links is in the form of
constraints'®, that is, by characterizing admissible combinations (=sets)

of potential models, Four constraints are of special importance in WM.
D2 Let X be a set of potential models of WM.

a) X satisfies the identity constrait '’ for K and m (X € C1)
iff for all x,y € X: k* = KY and (for all ae PN Py:mx(a)=my(a))

b) X is bounded (X € C,) iff there is some 1 € IN such that
HU{Px!xeX}H < 1

c¢) X satifies the full mass interpretation constraint (X e Cy
iff X € C, and each mass value occurring in members of

X also is realized in an intended application®®,
d) C:=C;N... N C, is called the global constrait of WM

e) WM:= <Mp,M,C,I> is the theory-element of wave mechanics
with [ as a set of substructures of potential models representing

the intented applications.

An empirical claim to the extent that the set of the intended applica-
tions can be extended to a set X of models of WM which also satisfies
the global constrait C comes much closer to what actually is claimed
with WM about reality., Such a claim comprises the additional statements
that. Planck's constant is the same in all applications (which is to be ex-
pected from a universal constant), that the same (type of) particle
has identical mass in different systems, that there are only finitely many
different (types of) particles, and that no reference to purely theoretical
particles is needed. In C,, a particle is treated as purely theoretical if it

has a mass value different from those of all "real" particles, i.e. those
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occurring in intended applications, Note that in X ¢ C, there always will
be particles with minimal mass values.

While Schrodinger's equation is intended to hold in all intended
applications of WM there are many other special laws obtained from
special laws of mechanics by means of the correspondence principle!?, We
need just the most important one of these in the following?°,

D3 a) xis a Coulomb-Lorentz model (x € MCV

n, P, T, ,...W, A ,A ,A ,b,e,c, such that
1 2 3
X =<P, ..., W,A ,Az,A ,%e,c> and
1 3

) iff there exist

1) <P, ... ,W> satisfies DI - a-1 through 11

2) for i {1, 2, 3} : ¢ A : R® x T+ |R are such that
1

all partial derivatives of second order exist
3) e: P+R
4) c eR
+

5) for all t ¢ T and all q for which the right-hand side is defi-

ned:

-FF/2m(di) (D, + DI, v D) g 4 Wit -

I5i<3 e

)

Lo 1/2me)) I (k1D relk()/e

—
A

[
i
pul

a7 s eCemmio i) ) g

1

/2 3 e(k(i)elk() R(G,1 g

154,150,521

b) x is a potential Coulomb-Lorenz system (xeMgL) iff x is
as in a) and x satisfies 2) - 4) of part a) and <Px’ ...,Wx> ¢ M

p

c) for x = <P,.W,A;, ...c> €MCL we write o{x):= <P,...W> and
for Xe Po(M>1, 0% (X): = {otx)/x €X)

d) for i =1, 2, 3 : Cf& is defined by X € cCL iff o'(x) e

e) fori=1,2,3: C,i[i' is defined by replacing "mass" by "charge",

"m" by "e" and "K" by "c" in the definition of Ci
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CL

f) C~:i= CiNC,N...NC is the global constraint of CL
g) CL:=<M§Ij MCL, CCL, ICL> is the theory element of Cou-
lomb-Lorentz systems with ICL as a set of substructures

of potential Coulomb-Lorentz systems representing intended

applications,

The potential models of CL are obtained from those of WM by adding
functions Ai’ ®, e and a constant ¢ which represents the vector-potential
A = <A, A, Assthe scalar-potential @, the electrical charge function e
(e(a) is particle a's charge) and the velocity of light. The models satisfy
and additional axiom D3 -a-5 which says that the whole wave operator
(the sum W0 + W) is constructed out of its constituents Ai,é,e,c in
the very special manner due to the correspondence to classical CL-
systems.

This axiom, together with D3 -a-1 and D1 -a-11, guarentees that e
is an efectrical charge as opposed, say, to a magnetic one. D3-c captu-
res the relation between CL and WM: by cutting off the additional

functions we pass over from CL to WM. Constraints CiCL(i=1,2,3) are

CL
T
to those of WM, but now required for charge instead mass and for the

just those of WM, and constraints C i=4, 5, 6) are the strict analoga
velocity of light c¢ instead of the constant of action K. Typical intended
applications of CL are particles created in cathode rays (electrons)
interacting with homogeneous electromagnetic fields or a lightening
atomgas in such fields (Stark-1 Zeeman effects). For further reference
we note the following theorem.

T1 if X e(l) is a shorthand for "for each z I there is x X such
that z is a substructure of "x" and if for each z ¢ ICL, o(z) e I
then, for some suitable subset = L if X € Po(MCL) n CCL
0 e(ICL) then o%X) e PoM)n C n e(l’)

CL) A CCL n e(ICL)

. by D3-a-1: oY(X) € Po{M), and by
CL}

Proof: Let X € Po(M
D3-d, o%X) € C. Let I:= {o(z) /z €1

s L If w " then there is some z ¢ ICL such that w=o(z), and

By assumption, I

from the premiss we obtain some x € X such that z = X. But

z = x implies ofz) = o{x). So there is some v, namely v:=g(x)€

o' (X) such that w = v, that is o%X) e e(I") %
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Il A THEORETICAL DEFINITION OF "ELECTRON"

Wé\ now can make precise some of the major items of Sec. I and

thereby obtain a theoretical definition of "electron". It is clear that
such .a definition cannot make explicit all the subleties of the meaning
of the term which are also not exhausted by what was said in Sec. I
It is not {Srery clear whether most of these subtleties nevertheless are
logically co}(ntained in the definition.

Certainly, the property of having spin is not expressable in the
vocabulary o% WM. This inadequacy is negleted here deliberately for
we focus on a given theory (WM) which existed long before spin effects
were discovered. For other properties, like that referring to scattering
experiments, the situation simply is not clear. We do not want to argue
for the physi{cal adequacy of our definition because this is a game
without end. Instead, our main purpose is to use this definition for
discussing questions of reference.

As a first step, one might try and define electrons relative to a
given model of WM as those particles of the models which have minimal
mass. However, it may be the case that a given model does not contain
any "real" electrons in this sense. So this, definition sometimes would
characterize the wrong things, It is cleat \\that we have to refer not
to not to single models but to whole arrays of models, that is, to
sets of models satisfying certain constraints.. It is certainly necessary
to require to validity of C; (identity of mass values ofidentical particles in
different systems), and also of C, because otherwise there might be
no minimal mass value. Suppose we define electrons relative to a given
set X €Po(M)f} C, N C. as those particles occurring in systems of
X which have minimal mass ("minimal"” now with respect to X). Still
this might produce unintended results for X might be some abstract
set of purely formally (say set theoretically) defined entities such that
the minimal "mass" value with respect to X still is different from the
real mass value of electrons. This shows that we cannot remain at
the purely formal level of definitions of models and constraints. In order
to characterize electrons as those real entities we are after, some
reference to real systems, i.e, to intended applications, is needed, It
is most convenient to presuppose that the given set X of systems satis-
fies constraint Cj3, that is, all, and in particular the minimal mass
values occurring in systems of X are values for real particles which
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occur in some intended application. Note that by assuming C, we impli-
citly refer to . Still, a further inadequacy might come about as follows,
Eventhought X satisfies C; and the therefore each mass value occurring
in X is associated with a real particle it might be the case that X
consists entirely of (extensions of) intended applications which do not con-
tain electrons, and the therefore the minimal mass value in X would
be larger than that for realelectrons. In this case X 'would be a
representation of some subset of intended applications orly. It is clear how
to exclude this possibility. We assume that X represents the whcle array
of intended applications in the sense that each intended application
z ¢ 1 has an extension in X. Let us write "X € e(I)" for "for each z «.I
there is x "e X such that x is an extension of z" (intuitively: "X is a set
of extension of I"), and assume that, for the set X considered, X¢e(l) holds.
The appropiate entity to which the definition of "electron" has to
be relativized therefore is a set X of models satisfying constraints C;,C,
and C3; and being an extension of I. Formally we may write X € Po(M){}
C Ne(l) and we define electrons with respect to such an X as those
particles which occur in some systems of X and have mass values mini—

mal in X,

D4 if X € PoM) N CMY e(l) then E is an electaon with respect to X
iff there is x € X such that

1) EepP*
2) for ally € X and all E' € P': m™(E) = mY(E")

Obviously, the set Z’—”(X) of all electrons with respect to X is a mass-type
(with respect to X), if we define a mass-type S with respect to X in
general by the following condition. there is some a € IR such that for
all a: a € S iff there is x € X such that a € P~ and mx(a)=0L. Though
trivial, the following theorem shows that we have a definition proper.
Moreover, the set of electrons with respect to X does not really depend
on "purely theoretical parts" of X which go beyond I. That isg(x) de-
pends on M and I but not on special features of X (besides those expres-

sed in C, of course).

T2 meach X Po(MIN C N ell) the set of all electrons with respect
to X is uniquely determined. Moreover, if X and X' are elements of

Po(M)} C N e(l) thenf (X) = 50 (X"
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Proof; Let E & f(X), ie. Ix eX(Ee PXAVy ¢ XVa e P (m™(E) =
m7(a)). We have to show that Ix' e X'(E'e P* A Vy' ¢ X' Va'
1 T
€ Py(mx (E) m” (a"). By D2-c is z € I such that E € P® and
X
{

m E):mZ(E)° But X' € e(l), so- there is x' € X' such that z C x'

which implies (1) mX'(E)=mZ(E)=mx(E), and in.particular E € Px.v
Now let y' e X' and a' ¢ Pyv. Since X' € C; there is z' € [ such
that a' € PZ' and my‘(a')=mz'(a'). But X e e(l), so there is y & X
such that z' € y which implies that a' e pY, By assumption this
yields mx(E)é my(a'), so by (1), mx'(E) émy(a')=my'(a')., The conver-

se implication is proved in the same way %

At this stage even the most modest physicist will protest and hold
that this definition of "electron” is "false" because no reference at
all is made té charge and to electric properties which after all are the
essential ones by which electrons were first identified. Well, we can
easily produce another definition which refers to minimal electric charge
instead minimal mass. The only problem here is to bring the notion
of electric charge into play, and we solve it by passing over from
WM to CL. In models of CL electrical charge (e) is a primitive. The de-
finition of "electron" in CL then proceeds strictly analogous to that in
WM. We have to assume analogous constraints C%‘L, CSCL, CSL which
guarentee that the same particle has the same charge in different sys-
tems (CEL) that there are only finitely many different values for charge
(C?L), and that all charge values are associated with real particles CE—,:L).
D5 1f X PoMEL) N Ot oY) then E is an efectron with respect
to X iff there is an x € X such that 1) E € P* and e*(E) <0 and
2) for all y e X and all E' e P it ey(E') <0 then ey(E‘) <ex(E)

We write €+(X) for the set of all electrons with respect o X.

T3 In each X ¢ Po(MCL) 4] CCL N e(ICL)€+(X) is uniquely determined,
and if X' is another element of Po(MCL)n CCLn e(ICL) then

£ = 2

Proof: Like the proof of T2 %

We now have two rather independent definitions of "electron", and
there is some need for comparison. Let us first look at the situation
very formally. For each X* ¢ PO(MCL) N CCL N e(ICL) the corresponding

set 01(X") € Po(M)N C, and under the assumption of T1 we proved
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even that oYX") € e(I') for some suitable subset I+g . We now might
formally ask whether, for given X' € Po(MCL)ﬂ cCln e(ICL),g (x
is identical with g(x*). The answer is a clear "no", Without proof it is
clear from looking at the places where "m" and "e" occur in the respec-
tive axioms that particles with minimal m values (in WM) need not
have minimal e values (in CL), and vice versa. That is, both definitions
are theoretically independent in the sense just indicated.

So let us look, secondly, at the empirical data. Here we find that
in most cases particles with minimal mass are also minimally charged,
There 1is, however, a class of exceptions (not to speak of exceptions
transcending the frame of WM and CL): ions. lons may have the charge
of- an electron but a much larger mass. Since ions fall in the domain
of applications of WM and CL we have to state that both definitions
differ also empirically. In the present frame the empirical relation
between both definitions may be expressed by saying that, for x*
€ PO(MCL)ﬂ CCLﬂ e(ICL):g(Ol(XJr)') o g*(xﬂ. That is, pérticies
with minimal mass (in oY(X")) form a proper subset of particles with
minimal charge. In fact the case of ions shows that a definition merely
in terms of charge would be too broad: it would cover unintended cases.

There are three possible reactions in situations like that before us.
The first is to dismiss the whole idea of defining empirical concepts: sci-
ence is so vague and ambiguo\us thay any definition will turn out inadequa-
te. The second alternative is to choose the most narrow definition and
take it as tAe corret one; the third amounts to admit for a multiplicity
of definitions, Each of these reactions faces difficulties. The first is
at odds with the idea of a theony about science (for "theory" implies a
certain amount of precision, idealization, and therefor definition). The
second is exposed to the objections against constructivism and conventio-
nalism. The third is in danger of inconsistency: if we have different
non-equivalent definitions we cannot say that they define the same thing.

As far as physics os concerned it seems to us that physicists 0s-
cillate between alternatives one and three, generally feeling uneasy
when pressed for definitions. In our view, alternative three is most
fruitful for developing theories about science and for establishing a
theory of scientific reference. We believe that it is the task of such
a theory of reference to incorporate multiple definitions ("multiple

reference", '"theoretical overdetermination") into a comprehensive,
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consistent picture, Of course, the Zzet that multiple reference occurs or
that scientific concepts are overdetermined has been observed by many
others,

The situation does not change when we pass over to reference,
If we ask to what entities the term "electron" in theory T refers to
a natural answer is "to those entities distinguished by the definition
available in T" In the case of WM and along the lines of D4 we find
that "electron" in WM refers to real particles with minimal mass values.

This can be made precise as follows,

D6 E is an electron in WM iff there is some X such that
) X €PoMNCAN ell)
2) E is an electron with respect to X

In others words, the set of electrons of WM, (WM), is defined as the
union of all electrons with respect to all sets X € Po(M) N C Ne(l), The
operation of taking the union here really is redundant for, by T2 all sets
f(X),{(x') with X,X' € PoM)1 C N e(l) are identical. If we define
"E is an electron in CL" (Ee€ £ (CL)) along the same lines then the
empirical fact that electrons in WM form a proper subset of those in CL
mentioned above means that the referents of the term '"electron" in
WM as a matter of fact also are referents of the term in CL but
not conversely,

We may summarize these findings by stating that the referents of
the term "electron" in WM and CL are given by elements of the different
sets g(WM) and f(CL), respectively. We reserve judgement as to
whether this might represent an objection against the general approach
towards reference pursued here, Certainly, this example and even the
general notions of the following section are still far away from a general
theory of reference, and only from the point of view if such a theory
the evaluation of situations where common terms have different referents
is in order. We believe that a good theory of reference will be able

to deal with such problems,

IV REFERENCE OF SPECIFIED TERMS IN EMPIRICAL THEORIES

The examples considered above are typical for a whole class of

cases, namely those where reference of an individual term (as contrasted
to a relational one) is at stake for which there is a theoretical defini-

tion relative to a given theory.
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From the present examples and the one of "H,O" in stoichiometry®
we may easily abstract a general schema of how to characterize the
referents of definable individual terms in empirical theories in general,

Such al general schema has been offered for relational terms?!, and
here is extended to definable terms in general. We start from the
most basic and simple structuralist notion a theow-element®? A theory-
element T=<Mp,M,C,I>consists of a class Mp of potentiald models, aclass
M of modeéds such that Mg Mp, a global constraint CC Po(Mp) and a set
of “intended applications which is a subset of the class of all substructu-
res of potential models. As before we write "X € e(I) for expressing
that set X(X ¢ Mp) is an extension of I, i.e. for each z € I there is
some x € X such that z is a substructure of x (and x an extension of z).
A simple empirical claim can be formulated with such a theory-element
T, namely, that there is an extension X of the set of intented applica-
tions (X € e(l)) which is a set of models (X € Po(M)) and in addition
satisfies the constraints (X € C):

there is X such that X € Po(M}N C N e(l).
The potential models {(and therefore also the models) are assumed to be

of the following general form:

<

<D 1000, D AjeeeyA R]_,...,Rn>

K’ P
where k, I, n, € N, k, nz 1, Dl,...,Dk

unspecified objects, A; ,...,A] are sets of mathematical objects, and

are sets of (non-mathematical)

Ry ,...,Rn are relations of given types T seess T OVET the sets Dl,...,Dk,Al,
...,Al

of higher order. We further assume that all the items Dl”"’Rn can

. The types T, are the same for all potential models, and may be

be construed as sets, and that potential models and models can be
characterized by means of set theoretic statements.

Next we have to clarify tha status of a new, non-primitive term
in a given theory T (like "electron" in WM). The most natural way of
looking at such new terms is to treat them as introduced by definition.
But the notion of definition has to be used with caution in the context
of empirical theories. Usually, such theories do mnot allow for a.natural
first-order formulation so that definability becomes a rather vague
and controversial concept. Also, the big discussion about "definability"
of theoretical terms in logical empiricism should be kept in mind. For

these reasons we do not restrict ourselves to strict cases of definable
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terms, and take a more general and -with respect. to scientific theories-
more realistic approach,

Still, the problem remains to say what we mean by a new, non-pri-
mitive "term" of T since we did not use any notions of a syntax or
a language of T. It is most convenient to stick to this usage and introdu-
ce the items needed by means if set theoretic definitions (which only
in the beginning look a bit unfamiliar), Let's say that for a theory
T with models of the form stated above, and for each ign:}?i:={R.’i(/x is a
potential model of T} is the i-¢A team of T. If T is a (k+1)-type, i.e., so-
me set theoretic construction scheme starting with k+1 given sets,
and forming successively cartesian products and power sets out of pre-
viously constructed sets, we say that t is a new feam of fype T.in T iff
= {y/ Ix(x ¢ Mp/\y € T(D’%,...,Dﬁ;Ai( ,...A}; A‘))} where T (D,...AX) denotes
the set constructed out of D%,...,Dﬁ,A’f,...Axl according to the construc-
tion scheme given by 1. We say that t is @ new Zeam of T iff there is
some (k+l)-type T such that t is a ne\'vviiterm of type T in T. In the
WAL-oA)=TRT, R, RY,
an)=P, that is, T is just the first projection, and the term "electron"

case of electrons in WM, for instance, T (D1,...,D

in the sense of our definition is just the set of all (types of) possibles
particles.

Now instead of requering a new term t to be definable we conside-
rer the case where t is simply characterized by some set theoretic for-
mula B which yields some (not necessarily unique) connection between
t and "the rest of" T. The development in Sec. III suggests that formula
B should talk about the new term and, at least, an admissible combination
X € Po(M) N CN eflll. For reasons not the be seen from the present
example we also want to permit that B talks about some single, fixed
model of T. A new term characterized by such a formula we call a
new, specified term of T. We say that t is a new term of T specitied
4y Biff 1) t is a new term of T and 2) B is a set theoretic formula
containing no free variables other than t, x and X such that

Ve, 5, X(B(t,x,X) > (t € TAX ¢ MPAX c Mp)).

In (Balzer, 1985) the referents of the i-th term ﬁi of T were
characterized as those relations R: which are obtained as the union
of all relations Fi occurring in the systems of a given set X of exten-
sions, That is, Ri is a neferent of Ri <n T iff there is some X such that
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1) X € PoM)N CN efn), 2) R;=U{R)i(/x e XJ.

We now generalizev this account to include new, specified terms
of T.
D8 If T is an empirical theory an T a new term of T specified by B
then t is « zeferent of T (in T) iff

x X(X e PoM) N C Nell)ax € XAB(t,x,X))

In other words, the referents ‘of a new specified term t are those correc-
tly typified entities t which occur in some model x in some admissible
set X of models, and which satisfy the characteristic formula B. Note
that D8 covers new, specified terms in general and not only individual
terms. In the latter case we may replace "entities" in the previous
sentence by "objects". Note also, that the referents are characterized
by- means of "all of" T. They depend on the axioms proper of T which
define the models, on the second order axioms which define the cons-
traints, and alsov on the real systems to which T applies, the intended
applications. Thus in concrete cases a whole lot of systems may go
into the determination of a referent. In this sense our definition is
clearly holistic. In the example of electrons (D6) formula B(t,x,X) would
just be the formula expressing that E is an electron with respect to
X, i.e. the definiens of D4. Note that in the case x is quantified so
that B only has the form B(t,X).

Concerning the relation of D8 and the account for relational
terms sketched above the situation is this. In the case of relational
terms we have the referents built up as unions of relations occurring
in an admissible set of models. Such unions do not occur in D8. Still,
we may say that D8 generalizes the relational case for this union comes
up with relational terms in general i.e. for defined relational terms
as well). The union just serves to construct an "overall" referent which
in ordinary language is often indicated by definite article. Besides this
difference, D8 clearly is more general because it contains the additional
characterization B which in general may define terms t of arbitrarily
complicated types.

In applying these notions to the example at hand we see at once
that "electron", in fact, is an individual term. What is not immediately
clear is whether the referents of this term are uniquely determined by
D8 and by the formula B given in D4. The reason for this brings us
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back to the question of interpretation of the sets P of "particles™
It is easily shown by counterexample that the axioms of WM -as stated
in D! and D2- are not sufficient to guarentee uniqueness id "electron"
in WM. Intuitively, in the "individual particles" interpretation a model of
WM may contain many different electrons (i.e. E's satisfying D6), and
the same is true for admissible sets X e Po(M) ) C N e{l). So D7-4
cannot be satisfied. It is only in the "type of particles” interpretation
that intuitevely we may have a situation in which type of electrons
in models and admissible sets are uniquely determined by the minimal-
mass requirement (i.e. by D6). This seems to yield an argument against
the "individual particles" interpretation (as mentioned in Sec. II).

These intuitive considerations, however, do not automatically follow
from our formulation of WM. In order to enforce uniqueness of "electron'
and simultaneously the "type of particles" interpretation we have to
add one further axiom to those of WM. We choose a formulation via
mass: each mass value belongs to only one particle, not only in single
models but also in admisible set of models, So the axiom is about
many models and therefore takes the fofm of a constraint, Note that
in an admissible set X € C; we can speak of mass function with respect
to X defined by U{mx/x e X}

D9 X satisfies the uniqueness constraint for particles (X € C,) iff

U{mx/x € X} is injective

If we pass over from WM to UWM=<M;J,MU,CU,IU>=<MP,M,C NCy,I >
by simply adding C, to the axioms of WM we obtain a theory in which

the referents of "electron" are unique.

T4  There is at most one referent of the new term "electron" specified

by formula B as given in D4 in UWM

Proof: Let E and E' be electrons in UWM, that is (1) there is
X € PoM) N CU N e{l) and x such that E € P* and for all ve X
and a ¢ P": mx(E) s mv(a) and (2) there is
Y ¢ Po(M) N CU N el and y € Y such that E' € PY and for all
we Y and a' € PV: my(E') émw(a'). By D2-¢c and (2) there
is u € I such that E' € P" and (3) my(E')=mu(E'). But by (i):
X e e(l) and so for u € I there is an extension x; of u in X, By

definition of extension this implies (4) m™ (E‘):mu(E'). Now take in
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(1) vi=x; and a:=E'. Then, by (1), m*(E) = m*!(E)=m"(E")=m”(E")
by (4) and (3), i.e. (5) mx(E) < my(E'). In the same way we infer
from (1) and (2): (6) m”(E") s m™(E). From (5) and (6) we obtain
m*(E)=m”(E"), from (3) and (4) mY(E")=m™ (e'), so m™(E)=m™! (E").
But x,x;, € X and x € C, then yield E=E' %

T4 shows that D6 -at least under the "type of particles” interpre-
tation- may be regarded as a definition of "electron" in WM.

Furthemore, by applying the general definition of referents in
D8 we see that the referents of the term "electron" are those objects
which occur in models x of admissible sets X € Po(M) N C Ne(l) of WM
and which are electrons in the sense of D6. We spent some effort
in vSec. Il to produce an adequate definition of "electron" in WM., The
specification of the referents of the term accoring to D8 will be as
adequate as the previous definition D6. We note again the holistic

features of this specification.

V DETERMINATION AND REFERENCE

The present account of reference naturally raises a question about

the role of measurement and determination in connection with reference.

The most natural idea about reference, after all, is that a term's denota-
tion is ‘given ("defined") by the methods of measurement available for
that term. So even if one does not subscribe to operationalism one
may feel uneasy about our account which does not even mention feature

of measurement.

We therefore want to finish by briefly considering where and
how measurement is incorporated in our notions. Three points are of
particular importance here, and we will discuss them in turn. Before
this, however, some general remarks about measurement may be helpful.
In structuralist terms measurement may be treated by means of the
notions of a measuring model and of a method of measurement. A
method os measurement for a fixed term simply may be represented
by a class of models, each model having the additional property of being
a méasuring model. That is, in each model the function (or relation)
which interprets the given term is uniquely determined (up to transforma-
tion of scale) by the other functions occurring in the model and by
the axioms which characterize the whole class of models?%. In a given

theory, methods of measurement may be obtained as subclasses of
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the class of models. Usually, the special laws associated with the theory -
yield methods of measurement if further and Aoc requirements are added
(restricting the numbers of objects, the geometrical or kinematical
configurations, or the impact of certain parameters or arguments),
Such methods usually serve to determine the theory's "theoretical”
terms (if a distinction can be drawn between theoretical and non-theore-
tical terms in the theory at all), The non-theoretical terms (if there
are any) usually are determined via other, presupposed theories, so
that corresponding methods of measurement are classes of models of
those other theories. Hooke's law which is a special law mechanics, for
instance, yields a method for measuring forces which are mechanics-
theoretical, whereas tha law of cosine (regarded as a physical law about
the relations among measuring rods and light rays) which is a special
law of physical geometry yields a method for measuring positions which

are mechanics-non-theoretical,

1} The Role of Measurement

On closer inspection of D8 above it should become clear now
that a term's referent is indeed essentially dependent on measurement.
For we may safely assume that among the measuring models for that
term there are many which represent (are extensions of) real systems
and which therefore are intended applications. In such measuring models
the values(s) of the function (which interprets the term under considera-
tion) is uniquely determined by values of other functions of the model,
Since the model represents a real system we may say that it serves
to determine the "real" value(s) of the function under consideration in
terms of other (presupposed or predetermined) "real” values. These
determined values then by means of the systems being represented by
a proper model enter into the theoretical Qberdan, namely, first, into
the class of models, and from there via constraints are spread to other,
connected models. So an admissible set X of models will be subject
to severe restrictions concerning the range of values for the function in
question: only those values will be admitted which occur in the measuring
models for that function. And by means of our definition these restric-
tions hold for the referent of the corresponding term, too,

To put it differently, a term's referent is restricted by (real or possi-

ble) measurements in the following way, In order to be "part" or "element"
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of referent, an entity has to occur in a system X which is an extension
of some real system, some intended application (because of the part
"y ¢ e(l) in D8. But x very likely is linked via constraints with some
measuring. rmodel v for the term under consideration which on the one
hand is an intended application, and on the other hand serves to determi-
ne just the original entity. So if a corresponding measurement was
made in systems y the precise values(s) of the original entity in x
would be obtained. In this way real or possible measurement serve

to fix at least essential part of the term's referent,

2 Underlying Theories

This does not hold however, for all the theory's terms, for not
every theory has measuring models for all of its terms. If a theory
T does not provide measuring models for term t then t's referent will
be fixed either in a purely theoretical way or it will be fixed .n practice
(contrary to the scheme underlying D8) with the help of measurements
involving theories different from T, that is, theories underlying T. This
situation is a familiar one in WM and in CL. Most of the classical
experiments, like Millikan's, can hardly be construed as models of WM
or CL. The most natural move rather is to see them as yielding (measu-
ring) models of theories underlying WM and CL, like electrodynamics,
classical mechanics or geometfical optics.

It would be desirable to have a concept of reference covering
such situations. We admit that our present account does not do this.
But we emphasize that this consequence was to be expected from our
relativizing all considerations to one single theory. It is rather obvious
how to proceed further: just substitute "theory T" in the present defini-
tions by "theory net underlying T" plus some formalism to carry measured
values form underlying theories to the one considered. This formalism
already is at hand in the form of the concept of intertheoretical links?2",
In particlar, it would be desirable to analyze concrete measurements
like the one mentioned before, or determinations of the ratio m/e in
such and extended conceptual frame and to work out the precise role
they play in fixing a term's referent ("referent" now in an extended

sense relative to a theory-net),

3) Multiple Determination

A final point in connection with determination is that, as < e,
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there is more than one method of measurement for each of a theory's

terms. These methods can be applied independently of each other, and

it is seen empirically that they yield (approximatively) identical results,

Usually, this is what makes us believe in having picked out "real" featu-

res of the world to which we refer by the theory's terms,

We certainly are not the first to emphasize that such a multiplicity

of possibilities of determinations for the same term is of central impor-

tance for saying that a term "really" refers.
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This paper was written under DFG project Ba 678/3-1.
For instance (Kripke, 1972) and (Putnam, 1975).

See note 1). The case of "H, O" was treated by B. Lauth, see (Lauth,\
1887).

See (Balzer, 1985), Sec. 23 and (Balzer, 13987).
See (Schrodinger, 1926).
(Ency.clopedia, 1860), p. 501-2.

See (Andersan, 1964), (Jammer, 1966), (Dwen, 1955) and (Teichmann,
1984) for historical accounts, as well as the original papers (Bohr,
1813), (Geiger and Marsden, 1913), Rutherford, 1911) and (Schrodinger,
18286),

See (Balzer, Moulines, Sneed, 1987), Chap. IV,
See {Zoubek, 1887).

Ny IN 5 IR, \R+, IRan, )f,‘ denote the sets of natural numbers, of numbers
{1,2,”3, coe n}, of real numbers,positivereal numbers,vectors of real num-
bers of lenght 3n, and of complex numbers, respectively, ”XH
denotes the cardinality of set X,

See (Zoubek, 1987) for a detailed statement of these conditions. We
denote by T_ the function defined by Tt(a)=1’(a,t). D.T denotes the i-th
partial derivative of T, ‘and Di’[. the second partial derivative. T is
the interior of T.

3
This Hilbert space consists of all functions ¥: R =+ t for which |¥]2

is integrable (modulo identity up to the Lebesgue integral), By means
of @¥ T>:= JY1* dA®" a scalar product is defined in L2(|R3n, ¢) where A%"
denotes the. Lebesque measure on IRan, and T the conjugate of T.
These notions as well as the general properties of Hilbert spaces
can be looked up, e.g., in (Achieser and Glasmann, 1968). A linear
operator W in the Hilbert space H is just a linear, partial function
W:H =+ H. Such a W is called sym metric iff, for all Y, Te Dom(l),
wY¥, D=Y,UTr We use modern mathematical terminology. In physics,
such operators are sometimes called hermitian or even self-adjoint,
Von Neumann uses the stronger notion of self-adjointess ("hyper-maxi-
mality") in the modern sense.

Note that Pauli's principle is not contained in the axioms of D1.
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14  see (Schrddinger, 1926), p. 109.
15 See (Balzer, 1983) for a precise definition.
16 See (Balzer, Moulines, Sneed, 1987) Chap. IL

X X X
17 ye writte m ,K ,P" etc. for the components m, K, P etc. cccurring
in structure x, provided it is clear from the context which structure
x is meant.

18 Fgormallys X € C3 iff é e Zar\cl zi(ll x € X and a € Px there
is z € I such that a € P~ and m (a)=m (a)e

19 gge (Zoubek, 1986).

20 sSee (Zoubek, 1987) for details.

21 gee (Balzer, 1985).

22 sge (Balzer, Moulines, Sneed, 1987) Chap. II for details.
23 sge (BAlzer, 1985) and (Balzer, 1887a) for details.

24  Ccompare (Balzer, Moulines, Sneed, 1987), Chap. IL
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