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ABSTRACT: Logicians treat assertions as true, believed or merely hypothesized sentences.
The reasoner who uses them, however, is the sole referee who can validate their truth,
their aptness to describe an actual situation, their strength (as beliefs) or the relevance
of their use in the current logical context. Moreover, the reasoner actively counts on
these factors, as part of the reasoning process itself, and should normally be capable,
when asked to do so, to assign consistently relative strengths to the assertions used.
The paper assumes, first, that assertions have -each- an associated, measurable
strength, and that, second, this strength has significant -and measurable- effects on the
truth of the sentences, the validity of the conclusion and the soundness of the reasoning.
The concepts and formulas required for this are explored, and a semantics and proof
theory for a sentential calculus of assertions are proposed as a natural extension of
ordinary two-valued reasoning. The resulting theory, though reminiscent of Probability,
is autonomous, self-contained and of a purely logical nature.

Keywords: Proof Theory, sentential logic, boolean algebra, logical semantics, probabilistic
semantics, probability logic, many-valued logics, supervaluations, uncertainty, rational
belief.

Introduction

When we argue, we do not always fully assert what we say. We often make halif-
hearted assertions of sentences we are not sure about, or we even use as assertions
sentences we hardly believe to be the case. And yet we proceed by reasoning from such
weak premises. If we admit we do, and want to treat this inside Logic, we apparently
need to qualify assertions, or rather quantify their strength, and try to follow and
control what effects weak assertions may have in the reasoning process, whether and
how they affect its logical validity and how we can tell the strength of the conclusion.
All this seems to be indeed a proper logical subject. However, very few logicians have
ever attacked it. The ones who have (like Reichenbach (1935), Carnap (1950),
Popper (1959) -or David Lewis (1976), who notes that "the truthful speaker (...) is
willing to assert only what he takes to be very probably true") have tended to assign
probability values to logical sentences (or, more commonly, to sets) and so treat the
result as probability logic. This seems the reasonable thing to do. However, we are not
sure that "probability" is the right word or treatment. We contend that, even though
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probability or randomness had never been mathematically treated, the strength of
assertions would still be a fully /ogical subject, and Logic would have to treat it by its
own methods. To see why, we briefly give two examples.

As a first approximation, take a physical reasoning, in which one of the premises
is the positive result of an experiment. Suppose we may even quantify the error € of
the experiment -meaning that the truth of the assertion 'result is positive' is, say, "1
- €". We then perform the formal reasoning -assumed logically valid- and obtain the
conclusion. We now want to know what confidence we may have in it, given €. That, we
think, is a legitimate logician's concern. It is what we develop at some length in our
proof theory below.

For a second example, take the well-known sorites about bald men: "If a man with
i hairs is not bald then a man with i-1 hairs is still not bald. Suppose a man has n
hairs. Therefore, a man with 0 hairs is still not bald". Formally:

This is a paradox because the reasoning is formally correct (it consists of merely
n applications of the Modus Ponens rule), the n+1 premises are deemed flawless, but
the conclusion is outright false (or, more precisely, a contradictio in terminis).
Usually, it is the length of the argument that is put to blame. There is, however, a
more concrete and satisfactory answer we can offer. The n premises A;— A;.1 cannot
obviously be asserted with the same assurance whatever the index value. That's why
the argument fails: for low values of i the premises simply cannot be asserted, even if
the rest can, so we can never have all premises asserted, and the reasoning is formally
valid but vacuously so. As it will be later seen, we propose instead to provide every
premise A with a value v(A) in [0,1] -computed in an unspecified way (statistically,
by opinion survey, or whatever)- with the unique requirement that a zero value
means that the premise is to be taken as false, 1 means a true -and therefore fully
assertable- premise, and v(A)= 1 - € (¢ > 0) means that we can assert A but with
some apprehension or risk €. Obviously, the value v(A;— Aj.1) decreases with j, so
that when iis n (or even, say, around n/2 or n/3) it is 1 or very near 1, but when i
approaches, say, n/10 -and surely when it becomes zero- the value of Aj— A4 (= the
predisposition we have to assert it -or the willingness to assume the risk) comes down
to an exceedingly low number. According to our proof theory (developed at some length
beiow), the conclusion Ay has the same truth value, at best, as that lowest of numbers
(and, thus, the reasoner would be willing to assert the conclusion just no more than he
or she would willing to assert A;— Agp).

Going back to David Lewis's sentence about "truthful speakers" willing to assert
only what is "very probably true", in this paper we want to discuss how classical
sentential logic can be extended in such a way that this willingness not to assert
falsities and the resulting Lewis's weak assertions can be accomodated and formalized
-and classical logic generalized- in a very natural way.
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To begin with, suppose a valid argument, noted T — B (where T are the premises,
or a finite subset of them). Classical logic declares it valid if B is derivable from T in
an appropriate deduction calculus. By the completeness property, this amounts to
assert the truth of B whenever the premises in ' are true. Now, the ultimate judge of
the truth of the premises is the reasoner (Lewis's "speaker"). It is the reasoner who
decides that each premise used is true (or to be considered true). To justify such a
decision, the reasoner may apply a truth criterion like Tarski's well-known
definition: ‘

(T) 'A" is true if and only if A is true

So, the reasoner can verify the sentence and declare it true whenever the
translation A of the object-language sentence A is found true. lt is the reasoner who is
full command of the sentences and the only one who can validate their truth. In those
cases the reasoner declares A when assured that what A describes is precisely the case.
If the reasoner is not sure of the result of his/her validation or does not want to
commit him/herself to it, then the reasoner may choose not to make a full assertion by
claiming that A's verification does not yield an obvious result. In that case, the
reasoner may rather easily " qualify" the assertion by assigning numbers in [0,1]
such as v(A) or €(A) [= 1 - v(A)] meaning that the reasoner believes or is willing to
assert A to the degree v(A) or assume it with a risk or estimated error of g(A).

So the first thing to do (we do this in the next section) is to value sentences in
[0,1] with the usual caveats so familiar from Measure Theory. The plan of the paper is
this: the following sections 1-5 are a cursory review of notions that will be needed for
section 6, which is -with the present introduction- the core of the paper. This
reviewed material, developed in full in Sales (1994), has been reproduced here
almost verbatim -though somewhat adapted- to provide easy access to it for
philosophically-oriented readers as well as to facilitate a self-contained presentation.
The first sections 1-3 present old and well-known results in Probability Theory that
are mathematically elementary but whose translation into purely logical terms give
them a new meaning, and -we hope- interesting new insights and uses. (The interested
reader is referred to Sales (1994).) Once this technical and conceptual apparatus is
introduced, we get to the original core part of this paper which is section 6, where a
Proof Theory is introduced that in the most natural way extends standard logic so as to
treat imprecise statemenis or weak assertions, and measure and control whatever
effect they may have on reasoning, as well as to explain some results in approximate
reasoning methods from Artificial Intelligence.

1. Valuations in sentential logics

First, we assume the set £ of sentences is constructed by recursive application of
the A, v and — connectives to the (possibly infinite) set of sentential letters P, Q,...
Second, we assume sentences form a Boolean algebra (with respect to the three
connectives and two special sentences L and T). We will have then a complete Proof
Theory by identifying the "—" order defined by the Boolean algebra with the deductive
consequence relation. So the algebra of sentences we started with automatically
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becomes the Lindenbaum-Tarski algebra of all sentences modulo the interderivability
relation "-" given by the — order (i.e. A -t B iff A = B). Third, we assume that all
sentences are valued in [0,1]. This can be done in the standard way of a normalized
measure, by just requiring that the valuation is additive and that T gets a value of 1;
for instance, through the following slightly redundant characterization:

There is a valuation v: L—> [0,1] : A+ [A] such that:

a.[Ll] =0, and [T] =1. (1)
b. If A+ B then [A] < [B] (Monotonicity) (2)
.c. Forany A and B,[A A B]+[A v B] =[A] +[B] (Finite additivity) (3)

We will then have also the whole Model Theory of Sentential Logic. Notice that the
proposed valuation is no more nor less than a probability in all technical senses
(though we would like to avoid the usual probabilistic connotations so as not to be
carried away from pure Logic), and notice also that we do not require the valuations
-even when interpreted as "truth" valuations- to be "extensional" or "truth-
functional" as done in many-valued logics. As for the assumed Booleanity of the
sentences, either this is assumed (imposed) or it just arises naturally from a
"minimal algebra" of sentences with only two connectives (say,—~ and A) (Popper
(1959)).

From the Booleanity of £ and the above properties of the v valuation the formulas
below follow immediately:

[~A] =1-[A] (4)

[Ar Bl=[A]=[A v B] (5)

[A A Bl = min([AL[B)) (6)

[A v Bl = max([A][B]) (7)
i=k i=k

i=1Ai (8)

If we now define the conditional (or if then) and the biconditional (or equivalence)
connectives in the usual manner:

A— B#df -Av B
A B=g (A—> B)A A (B— A)

then the following formulas immediately obtain:

[A—> Bl=1-[A]l+ [A A B] (9)

[A—> B]-[B— A =[B]-[A] (10)

[Ae Bj=[A— B +[B— A] -1 (11)

[Ae Bj=1-[Av B+ [A A B] (12)
206 THEORIA - Segunda Epoca
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As is to be expected in a Boolean algebra,

A-B o -AvB=T.

If we denote A=T by "~ A", this can be written as:

A-B o +~A- B,
more in line with the usual formulation of the Deduction Theorem of elementary logic.

Now, we define the relation between A and B given by [A— B] = 1 -that we note by
"A =\ B" (notice it depends on the particular valuation v chosen)-:

[Definition:]  "A k=, B" if and only if [A— B] = 1.

Parallelly we define the relation between A and B given by [A<> B] = 1 and we
note it by "A =, B" (notice the dependence on the particular valuation v chosen):

[Definition:] "AE,B"ifandonly if [A¢& B]= 1. (13)
Now, the definition below follows the usual line:
[Definition:] "= A" if and only if [A] = 1 for all valuations (14)

(Remark: Here "[A]=1 for all valuations" means "v(A) = 1 for all [0,1]-valuations
v of A". From now on, "for all valuations" will be sometimes informally shortened to
ll(v V"_)

Naturally,

If A= B then [A] = [B] for all valuations (15)
This has a corollary:
If = Athen = A (Soundness) (16)

(because A=T yields [A] = T = for any valuation).
Conversely:

If [A] = [B] for all valuations, then A = B. (17)
As a corollary of (17) we get:

If = A then — A (Weak completeness) (18)
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The two relationships (15) and (17) shown above between propositions and
values can be combined to yield this (informally stated) semantical characterization of
propositional identity:

A = B if and only if (Vv) A =, B. (19)

Now, combining (19), (13), (14), (18) and (16) we get

A=Bifandonlyif — Ae B (20)
confirming that the Boolean algebra we assumed was just the Lindenbaum-Tarski
algebra of all sentences modulo the interderivability relation — A < B.

Also, the soundness and weak completeness conditions, taken together, yield this
equivalence:

[Weak completeness theorem) —Aifandonlyif = A
Now we put forward this (that we state informally):

[Definition:] "A = B"if and only if (VVv) {[A]=1= [B] = 1}.

It is easy to show that

AkE Bifandonlyif == A— B (21)

The last definition can also be written: "A = B-iff (VAv) Ak, B".

Now, again from the given semantical characterization of propositional identity
(19) we have:

A=A A Bifand only if [A] = [A A B] for all valuations.

Note the the left-hand side is equivalent to writing "A — B", while the right-hand
part amounts to saying "[A— B] = 1 for all valuations" (or else, by definition, "E= A
— B", that we have shown to be equivalent to "A = B"). So we are led to this new
characterization of the soundness and completeness condition:

[Strong completeness theorem:] A+ Bif and only if A= B. (22)

A could represent a list (or, better, a conjunction) of propositions Aq,..., Ap
-the premises. In that case, it would read thus, in its most general form:

[Completeness theorem:] Ajq,..., Ap+ Bif and only if Ay,..., A= B (23)
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where the left-hand A's are the conjuncts of A = A1 A...A Ap, while the right-hand term
is (demonstrably) equivalent to stating "{[A1]=...=[Ap]=1 = [B]=1} for all
valuations".

2. Sentences as set extensions

A widely-known result in Boolean Algebra Theory -and yet under-exploited in
Logic- is Stone's Representation Theorem (see Koppelberg (1989)). It has to do with
representations of Boolean algebras on set structures. It can be stated thus:

‘Every Boolean algebra is representable on -isomorphic to- a field of sets.'

In particular, the sentential algebra £ generated by countably many propositional
letters has a representation in -is isomorphic t- a field B of sets; more specifically: B
is a countable non-atomic Boolean subalgebra of the powerset P(©) of all ultrafilters 6
of L (or clopens of the P(®) Stone space of £).

By the Normal Form Theorem (Koppelberg (1989)), each sentence A in a free
algebra L is expressable in normal form as a finite disjunction of finite conjunctions
of literals. Also, by the above (equivalent) representations, A is the isomorphic image
of:

(a) The set of complete theories that include A (as a derivable sentence).
(b) A finitely axiomatizable theory that includes A.

All these properties are well-known (see e.g Koppelberg (1989)) and can be
considered elementary. What we are presently interested in is, simply, that, given the
Boolean sentence algebra £, there exist both a set ® (whatever the meaning we give to
its elements 0) and a 'representation' function that can be characterized as an
isomorphism of L into the Boolean subalgebra B of clopens in P(©), i.e.

p: L& B:A+A  (BcC PO),AC 0) (24)

(This is the Representation theorem)

So, every time we have a Sentential Logic we have also an inherent accompanying
structure or universe that we make here explicit and name ©; it is explicitly definable
from its sentences A e L. (This always happens, even in strictly two-valued logics.)

Though clearly there is no need to name or qualify the members of ®, we may
indulge in calling them possible worlds, or cases -as in Laplace or Boole (1854)- or,
metaphorically, even observers or states, observations, instants of time or stages of
development, elementary situations or contexts in which things happen, and so on. ® is
thus configured as the real universe of discourse or reference frame (the set of
possible worlds). It also coincides with the model space of Fenstad (1967).

We can establish a general, one-to-one correspondence between the two worlds
(the language world £ and the referential universe ©, both made up of "propositions")
and their constituent parts, thus:
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AAe L) o A(AC o)
ArAB o ANB
AvB o AUB

—|A¢=> AC

T & ©

l o o
A-rB o ACB

3. Truth as mesure

The valuation
v:L—[0,1]: A [A]
and the representation isomorphism
p: L B:A—A
clearly induce a [0,1]-valued measure p in B C P(0©).
[Definition:] w1 B— [0,1] is the valuation in P(®) induced by the isomorphism
p: L& BC PO) in such a way that u = vo p1, i.e. u(A) = [A]. (25)

Intuitively, the measure p({8}) of each individual 6 in a finite ® universe should
seemingly correspond to the.relative importance or the relevance this individual has
in that universe. Thus, in a reading of ©® where the 6 are interpreted as observers,
n({6}) would represent the importance a "superobserver" assigns to each particular 6.
In a tests or modal "possible worlds" reading, u({6}) would be the relevance attributed
to test © or the degree of realizability of the given possible world. And so on. The u
measure corresponds to the weighing function A in Fenstad's (1967) model space. As it
is known, u (or X) is not only additive but countably so; thus p is eligible as a standard
“probability" measure (in the technical sense).

Now suppose we want to express the conjunction value as a product:

[A A Bl =[A] -1 (or [A A B] =1 -[B))

We have (provided [A] = 0):

[A A B] V[A A B]

T = 1A] = VIA] = Va(B)

which yields on £ a new valuation va : L= [0,1] with the same properties as the
original valuation v (indeed vp satisfies equations (1) and (3), as is easy to prove).
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The [A] # O proviso may be unnecessary if the t function has been evaluated
directly (as Popper (1959) proposed many years ago).
With the current L/P(@) representation in mind, we have:

T (26)

Thus, the new valuation takes in account, out of a subset of ©, only the part
contained in A, and it gives it a value related only to that part. So we define 1 as the
relative truth [B |A] (i.e. the "truth of B relative to A"):

[Definition:] Relative truth of B with respect to A is the quotient

[A A B]

[B1A] = 7

([A]l = 0) (27)

It [B1A] = [B], then we say that A and B are independent (because the valuation

Va = v(B) remains unaffected by A). In that case, the conjunction can be expressed as
the product: :

[A A B =[A]-[B] (28)
In any other case we say that A and B are mutually dependent and speak of the

relative truth of one with respect to the other. Note the dependence goes both ways and
the two situations are symmetric. We have, for instance:

[Al-[BIA] =[B]-[AIB]=[A A B] (Bayes formula)
[A—> B] [A—> -B] 1-[A > B]
BT =" A ' A (29)

All the above are well-known concepts and results in Probability Theory. What
confers them a new meaning is the re-interpretation of conditioning and
(probabilistic) independence as "relative truth" and logical independence, as well as
their consequences and possible applications.

After (30), note that, in general,

[B1A] = [A— B]
Particularly, we have always

[BIAl < [A > B] (30)
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except when either [A] = 1 or [A— B] = 1, in which cases (and they are the only
ones) [BIA] =[A— B]. (This has been noticed by many people, notably by
Reichenbach (1935), Stalnaker (1970), Lewis (1976) and Popper (1959).)

The statement 'A— B' can have, among other readings, one logical ("A is sufficient
for B" or "B is necessary for A"), another (loosely) "causal" ("A occurs and B
follows"). Because A— B is valued in [0,1], its value [A— B] (and the values [B 1A]
and [A 1B]) now mean only degrees, and so B—> A may be -and usually is- read
"evidentially" ("B is evidence for A"). Within such a frame of mind,

- [B IA] (or "oa()" -or even "vp(a)", see next paragraph-) could be termed "degree
of sufficiency or causality" (given B)of A (or "causal support (given A) for B"), to
be read as "degree in which A is sufficient for A" or "degree in which A is a cause of
B". In view of (26), it is roughly a measure of how much of A is contained in B.

- [A1B] (or "va()" or "og(a)") could be termed "degree of necessity" or "evidence"
(given B) of A (or "evidential support (given B) for A"), to be read as "degree in
which A is necessary for B" or "degree in which B is evidence (= support of
hypothesis) for A (=the hypothesis)". With (26) in mind, it can be seen as how
much of B overlaps with A.

Such measures, given here in the usual -and confusing- ¢ and v notation, is
directly estimated by experts, normally by interpreting the 6s frequentially, in terms
of cases, like Boole(1854). ("Cases" may be statistically-based or simply imagined,
presumably on the basis of past experience or sheer plausibility.) Thus, ca) in a
causal reading of "A— B" would be determined by answering the question: "How many
times (proportionally) -experience shows- A occurs and B follows?" For va(p), the
question would be: "How many times effect B occurs and A has occurrred previously as
a cause?" (Similarly for the evidential reading of "A— B".) Once ¢ and v have been
guessed, they may be adjusted (via the

oaw) _[B]
VAB) [A] (81)

relation) and then lead -by straightforward computation- to [A—> B], [B— A] and the
aap compatibility value (see below), which allows one to compute all other values for
connectives and also to get a picture of the structural relations linking A and B.

4. Connectives and sentential structure

The goal here is to find the truth value of composite propositions in L. For the
negation connective this is easy: it is given by formula (4). For the rest we have the
three following formulas that are a direct spin-off of additivity (3) and the definitions
of>and &:
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[Av Bl =[A] +[B] -[A A B] (32)
[A—> Bl =1-[A]+[A & B] (33)
[Ae Bj=1-[A]l-[B]+2-[A A B) (34)

(formula (33) is (9) again, and (34) immediately derives from (11)).

So the problem now reduces to finding the numerical expression [A A B] of the
conjunction A A B as a function of the (numerical) "truth" values [A] and [B] of the
component propositions A and B.

For any A = p(A) and B = p(B) we have, obviously:

scANBCACAUBC © (35)
and, because of the induced monotonicity of p:

OSWANB)S(A)S (WA UB)<1
or, equivalently,

O0<[AA BJS[A]S][AvV B < 1.

In (35) there is a smooth, comprehensive gradation of possible cases. By tracking
what happens with measure u when A (as B) goes all the way -in smooth gradation-
from g to © (see (35)), it is easy to see that not one but many values are possible for
(A N B) and (u(A U B), and that those values are strictly bounded. This has a
straightforward translation into truth values and composite propositions. The first
thing we learn is that the binary connectives -as propositional functions- are not
functional, i.e. they yield different values for a proposition despite the fact that the
operands may have stable values. (We shall see below, however, that the binary
connectives are actually functional, but in three -not two- variables.) The second is
that the range of values of composite propositions has, nevertheless, strict and
prescribable bounds. We analyze that, and distinguish the two extreme cases we
mentioned (for details, see Sales (1994)):

A) Case @: This situation is what we call maximum compatibility between two
propositions A and B. The value of the connectives is given by:

[A A B] = min ([A], [B])
[A v B] = max ([A], [B])
[A— B] = min (1,1 - [A] + [B])
[Ae Bl =1 - I[A] - B]l

We shall often abbreviate the right-hand members as "[A A B]*", "[A v B]*", "[A
— B*" and "[A & BJ*", respectively.
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Case ® corresponds to any of those situations:

A C B (or, equivalently, A+ B)
B C A (or, equivalently, B+~ A)

which justifies our speaking of "maximum compatibility". We could have called this
case also simply compatibility or coherence (because of lack of incoherence, see case
©) or mutual implication (because here either A — B or B — A). The situation here is
one of [mutual] dependence, as [B |A] -or [A |B]- equals one. (We could speak of
correlation as well.)

B) Case ©: There is what we call minimum compatibility between two propositions A
and B. The value of the connectives is given by:

[A A B] = max (0, [A] +[B] -1)
[A v B] =min (1, [A] + [B])
[A— B] = max (1 - [A], [B])
[Ae B] = [A] + [B] -1l

We shall often abbreviate the right-hand members as "[A A B]™", "[A v B, "[A
— B and "[A & B]™",respectively.
Case © corresponds to any of the situations described next:

A N B =¢ (or, equivalently, AAn B=1)
A U B =0 (or, equivalently, — A v B)

which justifies our speaking of "minimum compatibility". We could have called this
case also simply incompatibility or incoherence (because either Arn B=1 or-A A - B
= 1), or mutual contradiction (because here either A~ -Bor ~A~ B).

So, in summary, the value of the connectives is always inside a slack interval,
with bounds © and @:

Connective Case Minimum value Actual value Maximum value Case
A © max(0,[A]+[B]-1) [A A Bl min([A][B]) ®
v ® max([AL[B]) [Av Bl min(1-[A]+[B]) ©
- © max(1-[AL,[B]) [A—= B min(1,1-[A]+[B]) ®
© © |[A]+[B]-1I [A< B] 1-1[A]-[B]I (]

A rather stunning fact is that the interval widths are the same for the three first
connectives (and exactly double that length for the biconditional). Indeed,

[AaBf-[An B =[Av Bl -[Av Bf=[A— B]* [A—- B =
=([Ae B*-[Ae B)2 = min ([A], [B], 1-[A], 1-[B]),
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a quadruple minimum that only depends on the values of [A] and [B] and is always
<1/2. We note this value by "Apg".

Another striking fact about connectives is that we can parameterize their values
through a unique parameter we name "o(A,B)" or "apg" and we call "degree of
compatibility between propositions A and B" or "relative position of propositions A and
B (inside ©)". Its value is:

[A A B]-[A A B 36
"854 A BI*-1A A BF (88)

Symmetrically we define a second parameter we name "B(A,B)" or "Bag" -that we
call "degree of incompatibility between propositions A and B"- through the formula

BaB=dt 1-o0aB

Naturally, 0 < aag < 1 and, simultaneously, 1 = Bag = 0 -where the leftmost and
rightmost bounds refer to cases © and ®, respectively, so that both cases are
completely determined by one parameter (or both of them):

Case ® (Maximum compatibility): oag = 1 (or Pag = 0).
(Note that then -and only then- [A A B]=[A A B]*.)

Case © (Minimum compatibility): aag = O (or Bag = 1).
(Note that then -and only then- [A A Bj=[A A BJ.)

Both cases coincide if -and only if- at least one of the propositions A or B is valued
binarily. In this situation -which is equally well described by both case profiles- aag
and Bag are undetermined, and the actual value of the connectives is given by any of the
formulas above.

In the general case, the parameter apg acts as an indicator or measure of "relative
position" of propositions A and B inside ©, and also as a cursor ranging inside the
(fixed) interval between bounds, pointing to the actual value of the connective. We
could formulate each connective as a linear function (a convex combination of case ®
and case © values) "interpolating” between bounds (=the extreme ® and © values), so
that its effective value is given by the values [A] and [B] and the parameter o. (Thus
each connective is functional in three variables, the third being c.)

Indeed we can, and get the following set of formulas (where (37) derives directly
from (36) while (38-40) are obtained from (37) via (3) and (33-34)):

[AA Bl=oag-[AA Bl* +Bag - [A A B (37)
[Av Bl=oap-[Av BI* +Bag - [A v BI (38)
[A— Bl =oag-[A— B* +Bag - [A— Bl (39)
[A© Bl=app-[A© B*+Bag-[A© B (40)
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So by knowing a single value (either of [A A B],[A v B],[A— B],[A¢© B, aasp
or Bag) we can compute the other five.
Alternatively, formulas (37-40) can be replaced by this set:

[A A B] =min ([A], [B]) - BaB - AaB ‘ (41)
[A v B] = max ([A], [B]) + BaB - AaB (42)
[A— B] = min (1,1 - [A] + [B]) - Bas - AAB (43)
[Ae Bl =1-1[A]-[B]l -2-Bag - AaB (44)

where it is prominent that the value of the connectives is ther value for case @ plus a
negative correction (except for v, whose correction is positive) of size proportional to
the incompatibility Bag and the (constant) interval length Aag (which is a function of
[A] and [B] only).

Incidentally, connectives for case @ coincide with values (functionally) assigned
by L ukasiewicz-Tarski to the connectives in their well-known L., logic. (This popular
many-valued logic has been extensively studied, see Sales (1994).) On the other hand,
connectives for case © coincide with values (functionally) assigned to them by
threshold logic. The difference here is that those connectives are no longer functional
in the truth values of the operands, but act as mere bounds for actual values. These
depend not only on the truth-values of the component propositions but also on a third
term indicating their relative position as well.

We said that two propositions A and B were independent when their conjunction
could be expressed -in value- as the product of [A] and [B]:

[A A B] =[A] - [B]
It is easily shown that the necessary and sufficient condition for that to happen is:

aap = max ([A], [B]) i

f
= max (AL [~ B]) if

IV IA

+ [B]
+ [B]
(the expression in the second row is equivalent to 1 - min [A], [B]). Analogously,

min ([(=A], [-B])  if]
min ({A], [B]) if [

Bas

IV IA

]+ (8]
A] +[B]

it

When two propositions are independent, the connectives can be expressed -in
value- in this way:

[A A B =[A]-[B]
[A v B =[A] +[B] - [A] - [B]
[A— B] = 1- [A] + [A] - [B]
[Ae B =1-[A] -[B] + 2 - [A] - [B]
[AIB] =[A] and [B |A] = [B]
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Two particular points about conditionals that we want to emphasize -and that will
be exploited in section 6- refer to the degree ("truth value") one can reasonably
ascribe to a conditional statement.

First, when a conditional A— B is asserted, it seems just natural to suppose that
the utterer is ipso facto stating implicitly that A— B is a stronger (“truer’, more
plausible) assertion than the associated conditional A— =B. So, in terms of the [0,1]-
valuations, any of the following equivalent conditions will be supposed to hold
whenever asserts 'if A then B' (A and B assumed not binary-valued):

[A— B]>[A— - B] (
[A A B]>[A)2>[A A B (
oA = [B 1A] > 1/2 (
u(Aﬂ B) > u(A - B) (

A~ A A bS
w N O O;

)
)
)
)

all of which add up to stating -after (48)- that "most A is B" or, more precisely, that
‘most possible worlds of A are in B". (That such assumption is in force, anyway, is
directly observable through the expert's elicited value for oa(B); If the given value is
under 1/2, then the assumption is not enforceable.)

Second, when we use a conditional A— B pretending there is some kind of logical or
intrinsic (not merely material relation between the operands A and B, it seems
reasonable to suppose that there is some dependence between them (i.e. they are not
independent, so [A A B] = [A] - [B]) and, moreover, that there is a positive
correlation. So (again A and B not binary): :

[A A B] >[A] - [BI. (49)

Such fact is a mere equivalent of stating that oa@) = [BIA] > [B] and va) = [A |B] >
[A]; if this were not the case, again we would know it immediately through the
expert's elicited values, and then we could hardly pretend that A and B are related in a
positive way: on the contrary, A and B would be, at best, independent; at worst, they
would be negatively correlated (an anomalous, rather perverse relatlon to be
predicated of an antecedent A and a consequent B).

Both conditions (45) and (49) are compactable into either one of those equivalent
two:

[A A Bl >[A]- max([B], 1/2) (50)

[A= B] > 1-[A] - minb([-B], 1/2) (51)

as is easy to check. Somewhere later, in our Proof Theory below (see section 6), such
requirements will be exploited to analyze the Modus Ponens rule.

In the general case of all connectives, the values of aag (or Bag) are usually not
known, but two considerations stand out: first, all computations can proceed if we know
[Al, [B] and -just- one of these nine values: [A A B, [Av B],[A— B],[B— A, [A
© B, [A1B], [B|A], aap or Bap -from which all others are derivable at once by the
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above formulas (36-44). Also, by being given [B IA] and [A IB] (i.e. the ca(g) and
va(B) easily elicited from experts) we can compute every value, e.g.:

oap = 1- BaB

Ba =5, [min((Al, [B]) - oas) - [All

[A A Bl =oca) - [Al =va() - [B]
[Av Bl >(1-oap) - [A] +[B] =[A] + (1- va(B)) - [B]
[A—= Bl >1-[A]- (oam)) =1-[A]l +va(p) - [B]

5. Distance, truth likelihood and informativeness in L

The fact that we have:

[Ae> Bl =1-(Av B]-[A A B]),
which is equivalent to stating that "A =, B iff (Vv) [A A B] =[A v B]", strongﬂ
suggests using 1 -[A< B]=[A A B]-[A v B] as a measure of the distance AB
(under a given valuation v). So we do. (We remark that all definitions we give from
now on of distance and related concepts are not only applicable to propositions but to

theories as well, because for a general lattice £ the lattice % of theories derived from
each sentence in L is isomorphic to L.)

[Definition:] Distance (or Boolean distance) between two propositions or theories A
and Bis:

d(A,B)=¢f 1-[A© BI=[A v BI-[A A Bl=l[A}-[B]I+2 - Bag - bag  (52)

(Naturally, if A+~ B then d(A,B) = [B] - [A].)

[Definition:] Compatible distance between two propositions or theories A and B is:
d+(A,B) = I[A] - [B]l =1-[Ae B (53)
This distance can also be expressed in this way:

d*(A,B) = [A] + [B] - 2 min- ([A], [B]) (54)
Note that:
- the distance between two propositions or theories is the samev as the distance between
their negations or antitheses (i.e. d(A,B) = d(—A,~ B), and the same holds for d*)

- the Boolean distance d(A,B) equals the value of the symmetric difference between A
and B [defined by AA B=y4; (A A =B) v (A A B)] so we have:
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dA,B)=[AAB] and  dAL) = [A]

(We don't claim to be original here: definitions of distances like these have been once
and again given in the literature.)

In view of the previous relations, we could define a truth likelihood value for A
-approximating Popper's (and Miller's) (1987) verisimilitude measure- by making
it to equal the distance between A and falsehood, i.e. d(A,L). We obtain, immediately:

d(AL) = d(TL) - d(T,A) = 1- d(A,T) = 1- d(A AT,L) = 1- d(=A,L) =
1- [=A] = [A]

So here we have a further interpretation of our "truth values" [A] in terms of
truth likelihood or Popper's verisimilitude. We remark that we might as well consider
[A] as a rough measure of partial truth or "truth content” of A. In a similar spirit, we
are reminded that Scott (1973) once suggested the "truth value" [A] of many-valued
logics could be interpreted as one (meaning truth) less the error of A (or rather of a
measure settling the truth of A) or the inexactness of A (as a theory); in this
framework, it comes out that, in our terms, [A] =1 - €(A) and g(A) = 1- [A] =
d(A,T).

We now observe that, for any propositional letters P and Q, any uniform truth
valuation yields [P] =[-P] = .50, [P A Q] = .25 and [P v Q] = .75, which is like
saying that, if all letters are equiprobable, the given values are the probability of the
given proposition being true (a number that Bar-Hillel and Hintikka once called,
appropriately, "truth-table probability"). So this value's complement to one should
seemingly correspond to the amount of information -in a loose sense- we have when
the proposition is true. This is precisely what Bar-Hillel and Hintikka define as
"degree of information", semantic information or informativeness I(A) of a
proposition A. (Viewed in our terms, /(A) equals 1- [A], or [=A]L)

6. Proof Atheory

The proof theory we now develop is a slightly extended version of the standard one.
Here we understand by proof theory the usual syntactical deduction procedures plus
the computation of numerical coefficients that we must perform alongside the standard
deductive process. We do that because a final value of zero for the conclusion would
invalidate the whole argument as thoroughly as though the reasoning were formally
-syntactically- invalid. As always, any formally valid argument will have, by
definition, the following sequent form:

r~~8B (55)

where B is the conclusion and T stands for a list of premises. Given an infinite £, the
list could be infinite too, but it would always be reducible by the compactness property
to a finite list Aq,..., A;,. Ambiguously, T will also -and most often- stand for the
conjunction A A; of the premises Aq,..., A,. We have, elementarily:
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I'~Bo =B (23)
r=Beo =ET-Be (YWI— Bl=1= > Bl=1= [[] = [B].

Summing it all up we have, for any arbitrary argument:
I'~B= [I'] £ [B] (56)

We henceforth assume that we have a valid argument (so T’ — B will always hold),
and that all premises are non-zero (i.e. ViA]> 0). We distinguish four possible
cases:

1) [T] = O (i.e. the premises are -materially- inconsistent). Here by (56) [B] can
be anywhere between 0 and 1; this value is in principle undetermined, and
uncontrollably so (though a limiting condition -an upper bound- will sometime
appear in the formulas). This is a case no logician would be interested in, since if
one has a formally valid argument but one is in no way risking to assert the
conjunction of its premises, it is only natural that the value of the conclusion turns
out to be anything. (Yet there are cases -when contradictions are involved- in
which logicians can and do get interested, see the QS rule below).

2) [B] = 0. This entails, by (56), [T'] = 0 and we are in a special instance of the
previous case. The reasoning is formally valid, no premise is asserted, and the
conclusion is false.

3) [I'l € (0,1) (i.e. the premises are consistent). Then, by (56), [B] > 0. We have a
formally valid argument, we risk assessing the premises (though with some
apprehension) and get a conclusion which can be effectively asserted though by
assuming a -bounded- risk. This will be the case we will set to explore below.

4) [I'] = 1. This condition means that [A{] =..= [Ap] = 1 and, by (56), [B] = 1. So
the premises are all asserted -with no risk incurred- and the conclusion holds
inconditionally (remember T+~ B is formally valid). This is the classical case
studied by ordinary two-valued Logic.

We are interested in examining case 3 above, i.e. formally valid reasoning plus
assertable premises (though not risk-free assertions) plus assertable conclusion (but
at some measurable cost). Cases 3 and 4 characterize in a most general way all sound
reasoning. We must first find out the conditions for case 2 -so as to exclude it- which
characterizes unsound arguments (since in this case having a formally valid argument
I' — B does not preclude getting an irrelevant conclusion ([B] = 0). Case 1 is
apparently the worst of the four, since a formally valid argument T' = B hides a
possibly uncontrollably-valued conclusion B. Nevertheless, for reasons that will later
become apparent (it is the case of the medioeval ab absurdo quodlibet sequitur rule),
we will consider it also under the sound reasoning case. So, as case 2 is the one to
avoid, we have:
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[Definition 1:] Unsoundness of a valid argument ' — B is having [B] = 0 though the
premises are themselves non-zero.

[Definition 2:] Soundness of a valid argument T — B is having [B] > 0 whenever the
premises are non-zero.

Before we examine two basic inference rules, we emphasize one further point
about the truth-value [B] of the conclusion. There are at least four kinds of reasons to
advocate for equating [B] to [T']. The first is that, in the absence of more particular
information, we place ourselves on the side of prudence and parsimony, since [I] is
the lowest possible value, and therefore our surest bet. The second is that, because [I]
< [B] holds for truth values, so /(I') = I(B) holds for informativeness; thus, if we
equate [B] with [I'] we lose the least possible amount of information. The third is that
if we choose [I'] as the value of [B] then -because /(B) equals the distance of B from
truth- we avoid the rather counterintuitive result that a conclusion B from a theory T
is nearer the truth than the theory itself is (an anomaly David Miller (1978) has
‘repeatedly noticed). A further kind of reasons have to do with our interpretation of
sentences in a referential universe P(©) of possible worlds: indeed, the [I'] value is
exactly the measure (or weighted mean) of the possible worlds (logical
interpretations, polled individuals, etc.) 6 making up the I conjunction that also make
up B. To understand what this may mean, assume the 6s are logical interpretations, in
the standard sense; then [B] = [T'] is just the "truth" of the argument, i.e. the
proportion of interpretations in which the argument T' — B has been effectively
performed and yielded true as value. Or assume the 8s are independent elementary
reasoners, each having full reasoning capabilities and completing his/her own line of
argument in view of the premises he or she has: [B] then equals [I'] and so p(N;A).
The 6s in N;A; are precisely the ones in B that have all As as premises, so that they
-and only they- have been able actually to complete the T' — B reasoning.
(Equivalently, if we executed a stochastic process tuning the frequency of each 0 to its
n(6) value and performing the T — B reasoning each time it were possible, the
proportion of cases in which the conclusion B would be reached in the long run would
just equal u(B), i.e. [B].)

We next examine two basic inference rules, modus ponens and the A-introduction
rule (with quodlibet sequitur as a special case).

a. Modus Ponens

We can now turn to the basic inference rule, the Modus Ponens (MP). From a
strictly logic point of view, this rule is

A m
A-> B n

____________ (57)
B p

where m, n and p stand for the strength or force (or "truth value") we are willing to
assign each assertion; so, in our terms, m, n and p are just our [A], [A—> B] and [B].
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They are numbers in [0,1] that take part in a (numerical) computation which
parallels and runs along the logical, purely syntactical deduction process. This is well
understood and currently used by reasoning systems in Artificial Intelligence that
must rely on numerical evaluations -given by users- that amount to credibility
assignments (or ‘"certainty factors"), belief coefficients, or even -rather
confusingly- probabilities (often just a priori probability estimates); this is the case
of successful expert systems such as Mycin or Prospector. The trouble with such
systems is that they tend to view Modus Ponens as a probability rule (this is made
explicit in systems of the Prospector type). They use it to present the MP rule in this
way:

A(m)
A— B(o)

(58)

where m and p are the 'probability’ (a rather loose term here) of A and B, and "A—
B(c)" means that "whenever A happens, B happens with probability ¢". Here ¢ turns
out to be just [B |A], the relative truth of B given A. (It is what we called "degree of
sufficiency” o of A -or of necessity of B- and assumed easily elicitable by experts.) So
it is just natural, and immediate, to compute the p value thus:

p=2c-m
or, in our notation,
[B] 2 [B IA] - [A]

which is just another version of formula (6).

The problem is that what we have, from our purely logical, probability-rid
standpoint, is (57), not (58), and in (57) n is not [B |A] but [A — B]. Recall that [B
[A] and [A— B] not only do not coincide (as we know from (30) already) but mean
different things. [A — B] is the value (“truth" we may call it, or "truth minus risk")
we assign to the (logical) assertion A— B. Instead, [B |IA] is a relative measure
linking materially, factually, A and B (or, better still, the A and B sets), with no
concer whether a true logical relation between them exists; we might even have [B |A]
< [B], thereby indicating there exists an anticorrelation (thus rather contradicting
any -logical or other- reasonable kind of relationship between A and B). So we turn
back to our (57) rule; note that m + n = 1 (this always holds), and that [B |A] can be
obtained from [A — B] through (29) or -more usefully (because [B |A] is directly
obtainable from experts- [A— B] from [B |A] through

[A— Bl =1-[A]-(1-[B IA]). (59)
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As an application of all considerations above we now have the following two easy
propositions (where, as can be noted, the soundness condition translates into foyr

equivalent conditions):

[Theorem 1:] The Modus Ponens rule

A m
A—B n

____________ (we assume m and n are both non-zero)
B p

is unsound (so [B]] = 0) only if one of these four equivalent conditions hold:

1Ym+n=1 (60)
2) [BIA] =0
3)[AAB]=0

4) A and B are incompatible (oag = 0) and [A] + [B] £ 1.
If any such condition holds, then [Bl<n=1-m (so [B] is either zero or
unpredictably somewhere between 0 and n.

The contrapositive theorem states the soundness condition for the MP rule.

[Theorem 2:] The Modus Ponens rule

A - m
A—->B n

____________ (we assume m and n are both non-zero)
B P

is sound (and thus [B] = 0) if one of these four equivalent conditions hold:

1)m+n>1 (61)
2)[BIA] >0
3)[AAB]>0

4) Either [A] +[B] > 1 (and thus [B] >1-m) or both A and B are
compatible aag > 0) and not binary-valued.

In both sound and unsound cases we have the following easily computable bounds
for the value [B] of the MP conclusion:

[A]]+[AAB]-1S[B]S[A—>B] (62)
or equivalently, in shorter notation:
m+n-1<p<n.
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(Such bounds have been discovered again and again by quite diverse authors; see
e.g. Genesereth & Nilsson (1987)). The lower bound -which equals [A A B] -is
reached when aag = 1 and [A] > [B], while the upper bound is reached when aag =0
and [A] + [B] = 1. Naturally we know neither [B] nor oap beforehand usually, so we
don't know whether the actual value [B] reaches either bound or not, nor which is it;
we can merely locate [B] inside the [m + n -1, n] interval. Admittedly, this result is
not very helpful in pinpointing [B] except when either m=1 (then [Bl=n=[A A B])
or n=1 (then [B] is undetermined, and merely 2 m).

Though we will later give an exact formula to compute the actual, precise value of
[B], we now recall the two conditions (45) and (49) we supposed a conditional A— B
should reasonably fulfill. Applying the second (i.e. A and B assumed non-independent
-and not binary-), we have:

[A] + [A—> B] -1 < [B] £[B |A] (63)

Here, if A and B are fully or strongly compatible, [B] will be nearer the lower
bound; if they are independent, [B] will have the highest value. (While this may seem
a paradox, it is not: given the -fixed- values n and m of [A = B] and [A], it is
considerably easier for a low-valued [B] to yield the given [A— B]if A and B are
compatible; conversely, if they are not fully compatible, or even independent, it will
take a high value [B] to match the given [A— B]. And we could get a still higher value,
but only by demanding that A and B are anticorrelated, a rather absurd proposition.)

Thus, we can only increase our [B] if we are assured that A and B are independent
(in the sense of (28)): we then obtain a higher value [B] = [B |A] (but we may
consider this one as a rather unwanted side case). Or, the more we confide in a strong
logical relation between A and B, the more we should lean towards the low value given

by
[Bl=[AABl=m+n-1. (64)

In absence of the relevant information, it seems we should reasonably stick to the
[A A B] value (= m + n - 1) as our safest bet. As we said, this value is exactly the
measure (or weighted mean) of the possible worlds (logical interpretations, polled
individuals, etc.) 8 making up A that also make up B. So, as before, assume the 6s are
logical interpretations, in the standard sense; then [B] = [A A B] is just the "truth" of
the argument, i.e. the proportion of interpretations in which the argument (the MP)
has been effectively performed and yielded true as value. Or assume the 0s are
independent elementary reasoners, each having full reasoning capabilities and
completing its own line of argument in view of the premises it has: [B] then equals [A
A B] and so u(A N B). A N B are precisely the 8s in B that have both A and A— B as
premises, so that they -and only they- have been able actually to complete the Modus
Ponens. (Equivalently, if we executed a stochastic process tuning the frequency of each
0 to its u(8) value and performing the MP reasoning each time it were possible, the
proportion of cases in which the conclusion B would be reached in the long run would
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just equal p(B), i.e. [B].) Under the (64), (45) and (49) hypotheses, we easily get
these bounds for[B]J:

[Al/2 < [B] £ [A]

There are other reasons for the [B] =[A A B]=m + n - 1 choice for the MP rule
in absence of more relevant information. They have been mentioned above and deal with
parsimony, informativeness and distance to the truth. So, we will stick in general to
the value for [B] given by (64) or, in any case, by the bounded interval defined in
(62) or, much better, by the narrower interval of (63).

Now imagine we want not merely a pair of bounds for the conclusion B of an MP
but the exact value [B]. Two obvious candidate formulas for this follow immediately
from (9-12):

[¢2]
—

[Bl=[Av Bl +[A— B]- 1 (65
[B] =1

Bl =[A] +[A— B]-[B— A]

To get something useful out of it, let us suppose we are given not only oA(B) = (B
|A] but also va(g) = [A |B] that we shorten to 6 and v and assume estimated by experts
(see above). We then formulate MP as

A(m)
A—> B(c, V)

(67)

which is exactly (58) except that the conditional has prompted evaluation of relative
truths of A and B in both directions. The value is computable at once from (27):

B 1A] - [A] o-m
Bl =415 or P="y

(68)

(Note this value is the one approximate reasoning systems (e.g. Prospector)
unqualifiedly assign to [B] on purely probabilistic grounds -and falsely assuming, as
we saw, that [B |A] is the same as [A— B]; see, for instance, Genesereth & Nilsson
(1987).) If we wanted the MP presented in the more traditional way (57), first we
would directly estimate the truth value [A — B] of the conditional, or compute it from
o through (59) -or both, and use each estimate as a cross-check on the other-, so we
would now have, along with the expert guess of v:

A m
A—B n(v)
____________ (69)
B p
(where n=1-m - (1-0)), and so
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[AABl m+n -1 ~
Bl =" gy = v (70)

that naturally fits the (63) bounds (when v runs along from 1 to [A]). Or else we can
use (66) directly, if we previously estimate [B— A], or compute it from v.

In Scott's (1973) € error terms, the Modus Ponens rule and the above formulas
(57) and (62) take the form, respectively, of:

A 1-¢
A—B 1-8
____________ (71)
B 1-n
and
d3<n<e+d
and so on.

b. A-Introduction, and the Quodlibet Sequitur (QS) rule

The A- Introduction rule is:

A m
A' n

____________ (72) (m and n are here not necessarily non-zero)
AAA p

In this case we have that that the argument is sound only when m and n are both
non-zero. If m =0 or n = 0 the rule is then unsound. For the general case (i.e. [A],
[A'] € (0,1)), the a-introduction rule is unsound if and only if [A A A] = 0, which
amounts to [AT7+[A'] <1 and apa = 0.

A particularly interesting special case of the argument is where A'is =A. Then the
argument can be stated in this way:

A m
A 1-m

____________ (73) (m is not necessarily non-zero)
1 0

which is a valid and sound argument provided A is binary (since in that case the
antecedent "VJi[ A]# 0" of the soundness definition trivially fails). Insiead, (73) is
unsound when A is not binary (since then the antecedent holds but [B] = 0 does not).

A related type of argument is the QS rule (the medieval quodlibet sequitur or,
equivalently, the weak intuitionistic —-elimination), a very important element in
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Logic, since it allows detection of contradictions, and subsequent action after that. We
have:

A m
-A 1-m

____________ (74) (m is not necessarily non-zero here)
B P

This argument is always sound, because either the antecedent "Vi[ A]# 0" also
trivially fails (when A is binary) or else it holds, but then [B] # 0. In this case, there
is a net increase in information (or, equivalently, a net shortening of distance to the
truth) precisely equal to [B]. Whether this is to be accepted unqualifiedly or else we
are required to justify the reason and origin of such net increase is a matter for
philosophical discussion related to the relevance of the conclusion given the premises
(into which we will not delve). If we admit the QS as a valid inference rule, and thus
we accept inconditionally -without further explanation- the (uncontrollably)
arbitrary, non-zero [B] value, then the fact that an argument has logically
inconsistent premises (a null conjunction) is sufficient for inferring an arbitrary
conclusion B (through the QS rule or directly through the general (56) property).
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