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The mathematician will have to take account not only of those theories that
come near to reality but also, as in geometry, of all logically possible theories,
and he must always be careful to obtain a complete survey of the consequences
implied by the system of axioms laid down.

David Hilbert: 1901, 'Mathematical Problems’.
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Introduction

Within the contemporary philosophical landscape, it is now generally ac-
knowledged the crucial role that logic has performed. Several philosophical
domains, ranging from the theory of knowledge and the philosophy of science,
to metaphysics and ethics, have been drastically changed by the introduction
of the conceptual machinery supplied by logical theories.

A more delicate question, however, is raised when one considers the ques-
tion: what to say about our philosophical understanding of logic itself, and in
particular of non-classical ones? One of the main purposes of the present paper
is to defend a particular view about this issue; one that fares well (or so we
hope) with other interpretative questions about logic (such-as the nature of
logic and its application to science). Our main strategy to do so will be to
consider in some detail a specific case: that resulting from paraconsistent
logic, the logic of inconsistent but non-trivial systems (for some information
on the history of this logic, see Arruda (1980), D'Ottaviano (1990), and da
Costa, Béziau and Bueno (199564); see also da Costa, Béziau and Bueno
(19954), and da Costa and Bueno (1996)). Among the various non-classical
logics this is perhaps one of the most unusual, at least if we consider the classi-
cal Aristotelian setting: as is well known, within paraconsistent logic the prin-
ciple of non-contradiction is not always valid. Formally, there is no difficulty
in characterising this possibility; things however change dramatically when we
have to make sense of what is happening. So this is a case calling for interpreta-
tion. But the question naturally arises: what, at this level, is an interpretation?

After briefly answering this question, we shall provide a particular interpre-
tation of paraconsistent logic, and indicate how it comes to grips with some
philosophical perplexities that emerge along the way. We shall discuss some
motivations for paraconsistent logic, the use of the latter in set theory, the role
of the distinction between pure and applied logics in the understanding of
paraconsistency, and the application of paraconsistent logic in the study of
Russell's set, of paraconsistent Boolean algebras and the theory of syllogism.

A last word of warning. We conceive the present work as examining in out-
line several (philosophical and technical) issues related to paraconsistency. We
do not intend to develop their analysis here, being simply concerned with the
presentation of a rather general sctting. After the formulation of this setting,
each of these issues shall be considered in detail in future papers.

1. Logic, mathematics, paraconsistency
If one wishes to understand the meaning and nature of logic, it is important to
make plain, from the outset, that nowadays it is a field of knowledge at the
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same level as mathematics. It is divided thus (as will be examined in section
3) into two domains: a pure one and an applied one. From the pure viewpoint,
it studies certain abstract structures, such as formal languages, models and
Turing machines. Let us present some remarks on these three kinds of structures
(of course, there are many others as well, but we shall not be concerned with
them here).

A formal language is an abstract structure that codifies certain aspects of
common languages. From a logical-algebraic viewpoint, it is a kind of free
algebra. In fact, a theory of formal languages can be developed algebraically:
algebraic techniques can then be applied, and the standard logical concepts
have an algebraic version. For instance, within classical logic, a theory becomes
a filter, a consistent theory turns into a proper filter, a complete theory into a
ultra-filter, Gédel's incompleteness theorem into the existence of certain filters
that are not wltra-filters etc. From the point of view of pure logic, the algebraic
method is both more general and convenient than the one based on formal lan-
guages. It is usually claimed that, with Frege, logic was removed from the
algebraic framework that Boole had given to it, and that this was a progress.
Presently, it is known that this is false, and algebraic logic shows this quite
clearly. Based on algebra, it is possible to classify and to study not only clas-
sical logic, but also non-classical ones, that are currently proliferating at a
considerable rate: intuitionistic logic, many-valued logic, fuzzy logic, para-
consistent logic, non-alethic logic, non-linear logic, substructural logic, prob-
abilistic logic, quantum logic etc.

General model theory is concerned not only with models of classical for-
mal languages, such as the classical first-order predicate calculus, which is the
most well known, but also with models of heterodox languages: non-classical,
Boolean-valued, models of classical languages; classical models of intuitionis-
tic theories (Kripke models, for instance); quantum models of languages re-
lated to quantum mechanics (see Takeuti 19814 and 19816); classical models
of paraconsistent theories and paraconsistent models of such theories and so on.
Thus, it is possible to prove that Brouwer-Heyting first-order intuitionistic
logic is complete according to the classical Kripke semantics, though it is
incomplete, and not completable, in connection to an intuitionistic one
(Godel).

Nowadays, there are several distinct semantics constructed, just as the clas-
sical one, within standard set theory, such as, to mention just a few of them,
paraconsistent, quantum or Boolean semantics. These semantics can be general-
ised to a general valuation theory, which combines algebraic, topological and

set theoretical ideas. The models obtained through forcing (Cohen) and
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Gédel's theory of constructive sets fall within the general theory of models,
and those who are not acquainted with such themes do not have a notion of the
current state of the evolution of logic. If we recall that classical model theory
has already given us several topics that one cannot disregard (prime models,
saturated models, categoricity in potency and Morley's theorem, omission of
types, climination of quantifiers, real closed fields, classification theory
(Shellah) etc.), one immediately notices the enormous richness of general
model theory or mathematical semantics. (For further comments on seman-
tics, see da Costa, Bueno and Béziau 1995.)

The theory of machines, or recursion theory, has been so developed in the
last years that it is no longer possible to follow its literature in all of its de-
tails. To the traditional themes -such as, recursive functions, Rice's theorem,
arithmetical hierarchy, analytical hierarchy, Post languages etc.-, many others
have been added, making this area of logic still richer. Some have tried, for
instance, to extend the notion of calculability through Turing machines or re-
cursive functions, as is the case of Smale and his collaborators.

Everything that was just recollected supplies evidence for the fact that the
development of pure logic is the same as that of pure mathematics. Under-
standing its nature and meaning is equivalent to understanding, in general, the
meaning and nature of pure mathematics. It is enough to notice here that its
progress, at least in principle, is made on an a priori and abstract level; experi-
ence (thought of in a comprechensive sense), both related to common life as
well as to science, has only a heuristic value.

Regarding applied logic, just as with applied mathematics, things are quite
distinct. Logic, for instance, thought of as the science of the valid forms of
inference, is placed within this domain, that is, within applied logic. The
problem, in this case, consists in discovering abstract structures that reflect the
real mechanisms of deductive inferences in a certain domain. Thus, one can be
concerned with inferences found in ordinary life, in both traditional and con-
structive mathematics, as well as in quantum mechanics and natural sciences.

As opposed to its pure counterpart, applied logic is not articulated in an
abstract and « priori level. On the contrary, it somechow depends on experience
(in a comprehensive sense) and on pragmatic factors as well (theoretical sim-
plicity, intuitiveness, capacity of systematisation and so on). For this reason,
the constructive study of constructive mathematical thought does not fit with
classical logic schemes; in other words, the categories and processes of classi-
cal logic (principle of excluded middle, classical method of reductio ad ab-
surdum etc.) cannot reflect the mechanisms underlying constructive thinking,
Hence the existence of various constructive logics (Brouwer-Heyting, Griss,...).
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Analogously, standard quantum mechanics (as it will be argued in section 3.2)
seems to lead to non-classical logics, provided that one wishes to account ade-
quately for what happens at the quantum domain (modular logics, orthomodu-
lar logics, Kochen-Specker structures (see Kochen and Specker 1967 etc.).

The numerous, but interconnected, topics presented in this paper were cho-
sen in order to clarify some aspects of the nature of paraconsistent logic, its
meamng and 51gn1ﬁcance It should be clear from the outset that everythmg
that is said concerning logic in general obviously also holds for paraconsistent
logic. In particular, the latter can be viewed both as a pure subject as well as an
applied one. In the first case, just as the rest of mathematics itself, it is con-
cerned with conceptual structures defined and investigated in an a priors way.
In the second case, thought of as an applied discipline, it depends on experi-
ence and is dependent on pragmatic constraints.

The division between pure and applied logic within a paraconsistent do-
main is extremely important, allowing in particular the better examination of
some problems. As we shall see in section 3.1, some specialists criticise cer-
tain paraconsistent systems for the fact that in these systems the law of substi-
tution of equivalents does not hold; but they would prefer to have this as a
valid law. However, from the perspective of pure logic, such a critique would
be similar to that made by an algebraist who wishes that only commurative
groups be studied... From the applied standpoint, nevertheless, such a discus-
sion might be relevant, provided that one is taking into account certain appli-
cations, for instance, to the domain of computer science. Unfortunately,
though, this is frequently not what happens, being just as if one has access to a
platonic, true logic, adopted as a standard of comparison between all the al-
ternative logical systems under consideration. On the contrary, when one is
concerned with an issue of applied paraconsistent logic (for instance, to expert
systems), it makes sense to determine whether a certain property, such as the
one just mentioned, is or is not to be met by the logical system being out-
lined. Furthermore, it is possible to ask whether in some expert systems, in
order to handle contradictory bits of information, it is appropriate that the
underlying logic, of a paraconsistent kind, has a second negation, which be-
haves classically.

Having presented these general remarks concerning logic, mathematics and
paraconsistency, before considering, in section 3, some aspects of the theoreti-
cal status of the latter, we shall briefly examine some of the main motivations
for its introduction.
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2. Motivation: paraconsistency and set t/Jeory

Talking about the axiomatisation of physical theories, Hilbert wrote the
words above, that we have taken as our motto; words that indeed guide any
axiomatic research. To some extent, it is possible to say that paraconsistent
logic has appeared as the result of applying this Hilbertian norm to the ax-
iomatisation of set theory.

Indeed, Cantor's naive theory was based mainly on two fundamental prin-
ciples: the postulate of extensionality (if the sets x and y have the same ele-
ments, then they are equal), and the postulate of separation or comprehension
(every property determines a set, composed of the objects that have this prop-
erty). The latter postulate, in the standard (first-order) language of set theory,
becomes the following formula (or scheme of formulas):

(1) Fyvx(xe yo Hx)

Now, it is enough that one replaces the formula Ax), in (1), for x ¢ x in order
to derive Russell's paradox. That is, the principle of separation (1) is inconsis-
tent. Thus, if one adds (1) to first-order logic, conceived as the logic of set
theoretic language, a trivial theory is obtained.

There are also other paradoxes, such as Curry's and Moh Schaw-Kwei's, that
indicate that (1) is trivial or, more precisely, trivialises the language of set
theory, if the underlying logic is classical, even ignoring negation. In other
words, classical positive logic is incompatible with (1); the same holds also
for several other logics, such as the intuitionistic one.

Classical set theories are distinguished by the restrictions that are imposed
on (1), to the effect of avoiding paradoxes. In order that the theory thus ob-
tained does not become too weak, some further axioms, besides extensionality
and separation (with due restrictions), are added, depending on the particular
case in question. :

Thus, for instance, in Zermelo-Fraenkel (ZF), separation is formulated in
the following way:

(2) FyYx(xe yo (Hx) Axe 2),

where the variables are subject to obvious conditions. In ZF, then, Ax) deter-
mines the subset of the elements of the set z that have the property F (or satisfy
the formula Ax)). In the Kelly-Morse system, on the other hand, separation is
as follows:

(3) FyVx(xe yo (Ax) rdz(xe 2)).
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And, finally, in Quine's NF the notion of stratification is employed, and the
scheme of separation has the form:

(4) FyVx(xe yo Kx),

provided that the formula A(x) be stratifiable (besides the standard conditions
regarding the variables).

However, adopting Hilbert's motto, we can ask whether it would be possi-

ble to examine the problem from a distinct viewpoint: what is needed in or-
der to maintain the scheme (1) without restrictions (with no regard to the con-
ditions on the variables)? The answer is immediate: one should change the
underlying logic, so that (1) does not inevitably lead to trivialisation. The
separation scheme, without 'big' restrictions, leads to contradictions. Hence,
such a logic has to be a paraconsistent one.
It was slowly verified that there are infinitely many ways to make the classi-
cal restrictions to the separation scheme weaker, each of them corresponding to
distinct categories of paraconsistent logics. Furthermore, extremely feeble
logics have been formulated, and based on them it is possible to employ,
without trivialisation, the scheme (1). Some set theories, in which the forms
(2), (3) and (4) of separation are either combined or adopted in isolation, have
also been constructed.

An important point is that several paraconsistent set theories contain the
classical one, in Zermelo-Fraenkel's, Kelly-Morse's or Quine's formulations.
Hence, paraconsistency goes beyond the classical domain, and allows, among
other things, the reconstruction of traditional mathematics (see da Costa, Bé-
ziau and Bueno (1998), da Costa (1986), da Costa (1999), da Costa, Bueno
and Volkov (1999), and Mortensen (1995)). It is quite fair then to claim that
paraconsistent theories extend the classical ones, just as Poncelet's imaginary
geometry comprises the standard 'actual’ geometry.

Moreover, we should stress a difficulty found in the very foundations of
logic. Classical elementary logic (it would, in fact, be enough to consider
only part of its positive part) and the separation postulate are both evident; we
are even bound to claim ‘that they are equally evident or intuitive. However,
they are mutually incompatible, and constitute thus a case of incompatible
evidences -this generates a difficulty from the viewpoint of classical logic.

Without presenting detailed philosophical analyses, we shall just note that
classical theories adopt a particular line of approach, and paraconsistent theo-
ries, another one. All this is in perfect agreement with our quotation of Hil-
bert: one should explore all the possibilities. And we stress, such an explora-
tion contributes to a better comprehension of the classical position itself: a
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clearer understanding of negation; the possibility of the discourse, even if one
partially rejects the principle of non-contradiction; a proof that this principle
is at least partially true, and so on.

It would be natural to think that, being based on somewhat different moti-
vations and presenting distinct features, paraconsistent logic and the classical
one might somehow dissent as far as their theoretical status are concerned.
Things however may not be this way -an issue to which we now turn.

3. Paraconsistency: remarks on its theoretical status
3.1. Pure logic, applied logic and paraconsistency

Logic is usually considered as an a priori and analytic domain; it is taken to be
independent of experience, and its laws are thought of as compatible with any
contingent state of affairs that might happen. This view, however dissemi-
nated, is by no means undisputed; indeed, as Heisenberg stressed a long time
ago:
(...) if one wishes to speak about the atomic particles themselves, one must either use the
mathematical scheme as the only supplement to natural language or one must combine

it with a language that makes use of a modified logic or of no well-defined logic at

all (Heisenberg 1958, p. 46).
And Schrsdinger has also noticed:

As our mental eye penctrates into smaller and smaller distances and shorter and shorter
times, we find nature behaving so entirely differently from what we observe in visible
and palpable bodies of our surrounding that 7o model shaped after our large-scale ex-
periences can ever be true (Schrédinger 1952).

Both remarks are symptomatic of a striking fact: quantum mechanics un-
avoidably leads to logical settings distinct from the classical ones. As far as
we know, and as we shall argue for in the next section, it seems that there is a
quantum logic considerably diverse to that found in our traditional logical
framework. Nevertheless, as is well known, all the argumentation concerning
the logical foundations of quantum physics is not developed in « priori lines;
instead, experiments, such as Gerlach's and Stern's on the spin of particles, as
well as quantum laws, such as Heisenberg's principle, should be taken into ac-
count -and these are the experiences and laws that made us reconsider the basis
of the underlying logic of physics.

Intuitionistic logic, for its part, is one of the possible adequate ways em-
ployed in order to systematise constructive thinking in mathematics. Classical
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logic by no means reflects the constructive activity of the mathematicians, for
it depends on the implicit assumption that they work in domains composed
by objects already given, whose existence their constructive work is not con-
cerned with.

Thus, quantum and intuitionistic logics supply evidence for the thesis that

logic, in its applications, is dependent on the particular features of the domain
that it organises. It is plain that we are referring here to applied logical sys-
tems, and not to pure logic. The pure logician, of course, can elaborate and
scrutinise any system, independently from the experience. However, regarding
their applications, there is the inter-connection between the logical dimension
and the domain of application, which is based specially on pragmatic consid-
erations, though further aspects are also relevant for the individualisation of the
appropriate logic within this context, such as heuristic reasoning and the nature
of the domain studied.
* Concerning the analyticity of logic, this seems doubtful even within the
boundaries of classical logic. This leads us to themes such as the independence
of the axiom of choice and of the continuum hypothesis, which do not casily
fit in the category of the analytic statements (nor is the formulation of Zer-
melo's axiom analytic, nor even further questions linked to the controversies
and problems that it has given rise to). Higher-order logic itself -logic of
higher-order and set theory- commits us to axioms of an existential trait;
elementary logic, furthermore, has what we could call synthetic features, re-
lated to its semantics, which involves topics on sct theory of a non-analytic
nature.

Something similar also holds for the semantics of quantum physics, which
cannot be based on the standard semantic, set theoretic notions. As Manin
claims:

New quantum physics has shown us models of entities with quite different behavior.
Even 'sets' of photons in a looking-glass box, or of electrons in a nickel piece are much
less Cantorian than the 'set’ of grains of sand. In general, a highly probabilistic "physi-
cal infinity' looks considerably more complicated and interesting than a plain infin-

ity of 'things' (Manin 1974, p. 36).

On the other hand, realist conceptions & /z Frege and Gédel, according to
which logic supplies the most general features of the universe, only seem to be
defensible on largely speculative grounds (Tarski, for instance, considered
them as kinds of superstition or of mysticism). Nowadays, given the prolif-
eration of heterodox logical theories, especially the existence of infinite para-
consistent logics containing a considerable part of traditional logic, the de-
fence of an extreme realist view becomes a difficult task.
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These remarks have an important motivation: to justify, though indirectly,
some theses about paraconsistent logic. In fact, when a paraconsistent system is
built as a pure theory, its main features, in general, are not obviously open in
principle to criticism, unless to show that it is trivial. For instance, it is usual
to criticise certain paraconsistent propositional logics for not having relations
of congruence involving all the connectives (in particular, it is not the case that
— o o P entdils that — — o & = B). Instead of these logics, some specialists
propose distinct ones, which present natural relations of congruence, but which
satisfy the law of non-contradiction — (o A = @), a law that, of course, does not
hold in the former ones. Now, strictly speaking, such a discussion seems to be
cither meaningless, or purely speculative, for logics without congruence rela-
tions were formulated as pure logics, and within this domain (as well as in
pure mathematics), freedom is enormous -all the alternatives should be, in
principle, liable to exploration. These kinds of criticism, however, do not
miss the mark in the domain of applied logic, where it is possible to employ
pragmatic arguments and concrete motives (which depend on the experience,
in a comprehensive sense).

In summary, we think that an exclusively philosophical argumentation,
taken for itself, does not solve technical questions either in pure logic, or in
applied. However, considerations grounded on other reasons, related to the
domains under investigation, are the ones that matter in applied logic.

Incidentally, to some extent, one of the most important applications of a
logic consists in the construction of mathematics; thus, a logic which is not
strong enough for us to obtain considerable parts of classical mathematics
faces a cumbersome difficulty. This point was already noticed by Hilbert
himself, when he claimed (though pethaps being a bit hasty in his generalisa-
tion regarding the role of Aristotelian laws of logic in the construction of
mathematics):

But we cannot relinquish the use either of the principle of excluded middle or of any
other law of Aristotelian logic expressed in our axioms, since the construction
of analysis is impossible without them (Hilbert 1927, p. 471).

All that we have been arguing for thus far fits the case of paraconsistent sys-
tems, which, we note en passant, have found immense applications in artificial
intelligence, computer science and the foundations of empirical sciences (see,
e.g., in a huge literature, Subrahmanian (1987), Blair and Subrahmanian (1987)
and (1988), and Kifer and Subrahmanian (1992)).
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3.2. Logz'c, quantum mechanics and paraconsistency

A striking feature of twentieth century research on logic consists in the fact that
several logics, different from the classical one, have been created (consider, for
instance, intuitionistic logic, many-valued logic, quantum logic etc.). Hence a
new problem has emerged: how to justify, in each particular case, the legiti-
macy of the employment of one of these logics? A typical example of this
issue can be found in quantum mechanics, in which the use of traditional logic
is by no means unproblematic.

This circumstance is one that leads to a split of logic into the two parts
mentioned above. To insist once again on this point, we have on the one hand,
pure logic, which is developed analogously to pure mathematics, in principle
in an a priori and abstract way, and on the other hand, applied logic, employed
for instance in ordinary inferences, in constructive thinking and in quantum
mechanics. In pure logic, one finds topics such as, analytical hierarchy, arith-
metical hierarchy, saturated models, polyadic algebra, cylindrical algebra,
Martin's axiom and topology, forcing, Boolean-valued models etc.

In applied logic, a central theme is the one related to the logic of quantum
mechanics: what is the natural underlying logic for the pre-formal theory about
this physical domain? In order to answer to this question, it is necessary to
circumvent two basic difficulties. (1) As an overwhelming cluster of evidence
seems to indicate, quantum logic, according to von Neumann's and Birkhoff's
pioneering work, violates the distributive law of classical logic:

anBvy o (@ap)v@ay

(2) Elementary particles break the usual theory of identity or, properly speak-
ing, the notion of identity (or of equality) does not secem to be suitably appli-
cable to them: as Schrodinger, Heisenberg, Weyl (cf. Weyl 1963) and other
physicists have pointed out, it is simply meaningless to talk about particles
being equal or different.

It is possible to have an idea, though in outline and rather schematic, of the
first difficulty by considering a (quite simplified) example.

In standard quantum mechanics, every electron e has an angular momentum,
or spin, in the x direction, whose value is always +1/2 or -1/2; that is, if the
momentum of ¢in the x direction is denoted by e, then ¢, = +12 v ¢, = -1/2.
On the other hand, given the so-called Heinsenberg's principle, it is not possi-
ble to measure the angular momeéntum of e in two (distinct) directions simul-
taneously.
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Let then x and y be two distinct directions, and let us suppose that one
has measured the momentum of ¢ in the direction x and that ¢, = +1/2; hence,
¢, = +1/2 is true. However, as has been said, e, = +1/2 v ¢, = -1/2 is always true
(in any instant). Accordingly, one can deduce that the conjunction

() e=+12A(g=+112v e =-1/2)

is also true. From (I), given the distributivity of the conjunction in relation to
the disjunction, it follows:

(I) e.=+1/2n(g=+112Vv e =-12) & (e, =+1/2 A e, =+1/2) Vv
Ve =+1/2 A e =-1/2)

As was seen, the left component of the biconditional is true; however, given
that it is not possible to measure simultaneously the moment of e in distinct
directions x and y, the right component either is false or simply meaningless.
Thus, the application of classical logic leads to difficulties.

There are several possible ways to try to maintain traditional logic and
to overcome the problem presented by (II). Nevertheless, thus far none of
them has received unanimous acceptance. (It simply does not work if one pro-
poses to change standard quantum mechanics for another theory, for it is of the
former that we are talking aboug; it is also not enough to note that it is the
measurement that 'creates’ the spin's value, and thus the proposition "¢, = +1/2 v
Vv ¢, = -1/2" is not true nor false, for such a remark is against classical logic etc.)

The issue concerning the possibility of applying the category of equality to
elementary particles is really delicate, and its solution does not seem to be
simple. Both traditional set theory and the mathematics constructed within it
presuppose the theory of equality. It follows, therefore, that a collection of
electrons, for instance, does not constitute a set in the classical sense.

To sum up, there are considerable hindrances facing the possibility of ap-
plying classical logic to quantum mechanics.

Even the semantics of this theory gives rise to difficulties, given that the
standard semantic methods are elaborated within traditional set theory. Such
a situation is already considered even in good logic textbooks, such as
Manin's:

Analyzing quantum mechanical phenomena reveals a profound divergence between the
internal logical structures of the macroworld and the microworld. Although explana-
tions of these differences by means of natural language and natural logic are agoniz-
ingly difficult and, in the last analysis, always leave one feeling unsatisfied, these at-

tempts to explain continue. The development of these foundations of physics in the
twentieth century has taught us a serious lesson. Creating and understanding these foun-
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dations turned out to have very little to do with epistemological abstractions which
were of such importance to the twentieth century critics of the foundations of mathe-
matics: finiteness, consistency, constructibility, and, in general, the Cartesian notion o f
intuitive clarity. Instead, completely unforeseen principles moved into the spotlight:
complementarity, and nonclassical, probabilistic truth function. The electron is infi-
nite, capricious, and free, and does not at all share our love for algorithm (Manin

1977, pp. 82-83).

All this discussion supplies evidence for the thesis that logic, at least con-
cerning its applications, is not bounded to entirely @ priori constraints. Indeed,
the criteria guiding its applications are the same that direct the applications of
any mathematical theory, for instance, they are similar to those corresponding
to pure gcometry.

Finally, we would like to point out that a new kind of quantum logic has
been proposed by Dalla Chiara and Giuntini: paraconsistent quantum logics
(cf. Dalla Chiara and Giuntini 1989). These are weak forms of quantum logic,
in which the non-contradiction and the excluded middle principles do not
hold. As the authors argue, these logics can be seen as a 'logical abstraction'
from the class of all effects in the operational approach to quantum mechanics,
having also some interesting applications to this domain.

4. Paraconsistency: some technical applications

Having briefly examined some theoretical traits of paraconsistent logic, in
what follows we shall consider some technical developments within the para-
consistent framework. QOur main point now, is to indicate some striking fea-
tures that one finds when such a logic is employed as the underlying logic of
mathematical reasoning. On the one hand, though this might not be #har sur-
prising, given its main traits as a particular non classical logic in which the
principle of non-contradiction is somehow restricted, some fairly unusual re-
sults (at least regarding our classical intuition) are obrained -but of a remark-
able interest. On the other hand, and in straight connection to this point, de-
spite the nature of such results, the pattern and the kind of reasoning involved in
order to reach them are quite standard, indeed fully similar to current
mathematical practice. Though one may study within a paraconsistent frame-
work the properties of ‘contradictory’ objects, it is simply not the case that
‘anything goes'. One just cannot prove anything one wishes about them. In spite
of being contradictory, such objects, as it were, are nor trivial. Just as in the
case if the standard ones studied within the classical branches of mathematics,
this kind of object has the same independence from our thoughts and desires:
some properties hold of them, and some absolutely not.
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So, on the methodological side, a paraconsistent mathematics is by no
means threatening, or at least it is as frightening as classical mathematics can
be; and on the heuristic edge, some interesting new results are obtained. What
more can we expect of a mathematical framework? (This is obviously a rhe-
torical question; but for those who have taken it seriously, we remark once
again that even regarding the application issue such a framework fares rather
well, particularly within artificial intelligence and, more generally, in order
to consider inconsistent bits of information.)

Moreover, with a paraconsistent logic we can formulate definitions and
reason in the presence of contradictions, without ruling them out (as is the case
with the use of classical logics to systematise sets of consistent beliefs about a
domain). It is possible to present here an analogy with geometry: the introduc-
tion of improper elements (Desargues, Poncelet,...), or of imaginary or ideal
elements (Poncelet, Plicker, Klein,...) in geometry gives rise to no intrinsic
difficulty for its development; and this happens even though ordinary space
intuition does not hold any longer.

However, instead of arguing in rather « priors lines for these points, and in
order to present some further details about them, we shall consider a particu-
lar, concrete case, relevant for our purposes, formulating and proving then some
results on a celebrated 'contradictory object’: Russell's set. In section 4.2, a
paraconsistent Boolean algebra shall be constructed, and finally, in section 4.3,
we will briefly present a semantic analysis of a paraconsistent logic.

4.1. Russell’s set and paraconsistency

We shall be working within a paraconsistent set theory, whose details will be
suppressed (some of these derails, such as those concerning the restrictions to
be included in the separation scheme, can be found in da Costa (1964), and da
Costa (1986); see also da Costa, Béziau and Bueno 1998). It suffices to note
that, within this paraconsistent set theory, there are sets such as Russell's, the
power set (the set of all subsets of a given set), and the union set of another set;
furthermore, the rules of intuitionistic or classical positive logic as well as the
principle of the excluded middle hold. Just as in the classical case, there are
infinitely many paraconsistent set theories; in some of them, e.g., two sets
cannot be simultaneously equal and different, but in others they can. Moreover,
in some such theories we can derive Burali-Forti's and Cantor's paradoxes (see
da Costa, Béziau and Bueno (1998); for details concerning paraconsistent
mathematics, sec, e.g., da Costa (1999), Mortensen (1995), and da Costa,
Bueno and Velkov (1999)).
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Definition 1. (Russell’s set) R = {x: x ¢ x}.
Theorem 1. Re RA Re R

Proof. Given the definition of R, x € R & x ¢ x. Hence, replacing x for
R:Re Re Re¢ R However, if R e R, it follows that R ¢ R, and if R ¢ R,
then R¢ R. Therefore, by the excluded middle, R ¢ R. Similarly, one may
prove that Re R.

Theorem 2. ye {x} & y=x.
Proof It is an immediate consequence of the definition of {x}.
Theorem 3. xe R— {x} e R

Proof Tt is the case that cither {«} ¢ {4, or {x} € {x}. In the first case, {x} € R,
by the definition of R. In the second, {x} = x, and, given the hypothesis,
{x} e R

Theorem 4. x, ye R— {x, )} € R.

Proof We have that either {x, 3} ¢ {x, j} or {x, 3} € {x 3}. In the first hypothesis,
{x, 3} € R In the second, it follows that either {x, 3} = x, or {x, 3} = y, and once
again, given the hypothesis, we have that {x, 3} € R

Theorem 5. {{x, R}} € R.

Proof. Indeed, cither {{x, R}} € {{x, R}}, or {{x, R}} ¢ {{x, R}}. In the second
case, it is obvious that {{x, R}} € R. In the first, by theorem 2, it follows
that {{x, R} = {x, B}, and thus, x = R = {x, R}; thercfore, x = R, and given that
Re R, by theorem 4, {x, B € R. Consequently, by theorem 3, {{x, R}} € R.

Theorem 6. (Arruda and Batens 1982) UR = V, where V= {x x = x}.

Proof It is enough to prove that, for every x x € UR. Let us suppose that
(1) {x, &} ¢ {x R}; hence, {x, R} € R and, by the definition of union, xe UR.
On the other hand, if (2) {x, R} € {x, &}, then either {x, R} = x, or {x, R} = R.
If {x, R} = R, it follows that x € UR. If {x, R} = x, one has that {{x, R} = {x},
and given that {{x, R}} € R (theorem 5), it follows that {x} € R; accordingly,

xe UR.

Remark. So, a set theory with Russell's set has in general a universal class. (A
classical set theory of the ZF kind with universal class was developed in
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Church (1974); in da Costa (1986) this was extended to a paraconsistent set
theory.)

Definition 2. p(x) denotes the power set of x.
Theorem 7. (Arruda) ... c p(p(R) c p(R) c R

Proof. If xe p(R), x< R Now, cither x¢ x, orxe x. If x¢ x, xe R if xe x
given that x < R, it follows that xe R. Therefore, p(R) c R.

Furthermore, if x € @ (0 (R)), then x ¢ @(K), and by the preceding result,
x < R; hence, x e p(R). Thus, p(p(R) c (K < R. One can now easily com-
plete this proof.

Additional results concerning R are the following ones:
Theorem 8. D e R {0} e R {{O}} e R,...
Theorem 9. 3x (x ¢ R).
Theorem 10. x, ye R— <x, y> € R.
Theorem 11. xc R— xe R.
Theorem 12. Rx Rc R.

Given theorem 5, it is possible to demonstrate that R is, as it were, a 'inter-
nal model’ of the set theory in which we work. Moreover, given that UR= V] it
follows that the existence of R implies the existence of infinite sets.

The properties of R are by no means arbitrary. Thus, it is not possible to
prove everything with regard to R, without also proving, at the same time, that
some of the classical, standard set theories are inconsistent (see da Costa 1986,

and also da Costa 1964).

Besides R, it is not difficult to introduce and to study Russell's relations:
<Xy Kpyeews X> € Ry <x), X0y X> & X
It is easy to prove that:

Theorem 13.R,;e R,;AR,; & R,;.

Theorem 14. Vx Vx ...x V=UR,;, where the product on the left has # terms.

It is plain that Ry, is R, when we make <x> = x.
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4.2. A paraconsistent Boolean algebra

Within various paraconsistent set theories of a certain kind, it is possible to
consider intuitively a set as an ordered pair, in the classical sense, of sets that
are part of a universe-set V. Thus, a set Xis the pair <X, X>, where:

(1) xe Xif, and only if, xe X;
(2) xe Xif, and only if, xe X;;
(3) xe Xand x¢ Xis equivalent to xe X, and xe X,.

Given that the principle of the excluded middle is maintained in certain para-
consistent set theories, it should be the case that X, u X, = V.If X n X =D, a
classical set is obtained.

Let us consider then the collection of the sets just constructed on V, which
shall be denoted by %. An element of Vis called a paraconsistent set, or a p-
set. In what follows we shall outline an algebra of p-sets ¥. We will suppose
that the p-sets are embedded in a classical set theory, for instance, ZF.

Definition 1. (Union) If X= <X, X;> and Y=<1;, I}>, then XU Y= <X v ¥},
XN Vo>,

Definition 2. We shall denote by I the pair <V, &>, and by 0, <@, V5.

Theorem 1. All the following identities hold:

Xu X=X

XuY=YulkX
XuYuZ=Xu(Yu2Z;
luX=1;

ouX=X

Definition 3. (Intersection) If X = <X, X%> and Y = <V}, V>, then X n ¥V =
<XnY,Xu >

Theorem 2. The following are some of the properties of the intersection:

XnX=X

XnY=YnX
XnY)nZ=Xn(Yn 2);
InX=X

0nX=0.
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Definition 4. (Complement) If X = <X, X;>, then X'= <X;, X;>.

Definition 5. (Inclusion) If X = <X, X;> and ¥ = <V;, ¥,>, then X © ¥ means
that X, ¢ ¥/ and ¥, c X,.

Theorem 3. The following identities hold:

X'=X
1'= 0,
0'= I
XuXcI
OcXn X

Theorem 4. These are some of the properties of the inclusion:

XcX

if Xc Yand Yc X, then X= ¥,
if Xc Yand Y Z, then X Z
O0c X

XcXulX;

XnXckX

Xc I

Definition 6. The structure P=<¥. n,u, ', 0, I> is called a paraconsistent Boo-
lean algebra.

Through the employment of this structure it is possible to formalise several
paraconsistent patterns of reasoning, just as with classical Boolean algebras one
can put in algebraic terms various classical inferences. Moreover, one can verify
that the paraconsistent logical mechanism considered here does not exclude
classical logic, but extends it in some sense; though under another viewpoint, it
can be embedded into traditional logical structures. Of course, such remarks
are valid for particular categories of paraconsistent structures; however, they
are of extreme relevance in order to corroborate the fact that both paraconsis-
tent logic as well as paraconsistent mathematics, as far as we understand them,
do not destroy either the traditional logic, or standard mathematics, but only
complement them and, in certain cases, extend them.

The structure of the paraconsistent Boolean algebra clearly is richer than the
classical one. Thus, for instance, one can introduce two operators, o, and oy,
such that, given a p-set X, o,,(X) = X and a,(X) = X, where X; and X, are in an-
other Boolean algebra, the classical algebra of the subsets of Vetc.
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When the structure P, in definition 6, is such that, for every X = <X, X5, it
is the case that X;nX, = @, one obtains a Boolean algebra that essentially is the
usual algebra of the subsets of V.

In this way, it is possible to construct a general theory of paraconsistent
structures (algebraic, topological, of order etc), obtaining thus a generalisa-
tion of the traditional theory of structures, such as Bourbaki's (cf. Bourbaki
1968). Moreover, paraconsistent structures, such as those described in this sec-
tion, have been applied to several areas, such as computer science, artificial
intelligence and logic programming (see, ¢.g., Subrahmanian (1987), Blair
and Subrahmanian (1987) and (1988), and Kifer and Subrahmanian (1992)).
This provides a significant motivation for their study.

4.3. Semantic analysis of a paraconsistent logic

It is not difficult to elaborate a monadic quantificational paraconsistent logic
(the extension to the polyadic case does not present a considerable challenge)
with a semantics based on Zermelo-Fraenkel set theory (ZF). The construc-
tion is analogous to the case of fuzzy sct theory, which is usually built within
ZF.

We shall call M the logic to be constructed here. Its language is that of the
uniform monadic classical quantificational calculus (there is only one individ-
ual variable x), with individual constants, but without identity. The predicate
symbols are denoted by Latin capital letters and the individual constants by
Latin small ones.

A structure for M is a semanrtic construction of the following kind:

S=<V,P,Q R,...;a, b} c..>

where V, the universe of the structure, is a non-empty set, P'= <P, P>, P, c V|
PcViand RLuPl=V:Q'=<Q, Q> QcV,QcV,and Qu Q= Vetc,
and 2’ b} ¢'... are clements of V. P’ for instance, is a (paraconsistent) predi-
cate; if an element ke Vis such that ke P, ksatisfy P if k£ e P, then % does
not satisfy P. It is obvious that if £ belongs simultancously to P, and to P, £
satisfies and does not satisty 2.

An interpretation of M in Sassigns to cach predicate symbol of M a para-
consistent predicate of S, and to each individual constant one of the elements
a’, b c)..., as is usual. One defines diagram language M(S) in the standard
way, and any interpretation can be extended to all the introduced names (in

Shoenfield's sense; see Shoenfield 1967).
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Let us now define a valuation associated with an interpretation. In order to
do so, we shall present some notations:

Given a formula F we shall denote by F* the formula obtained from Fin
the following way: (1) one eliminates — and « through the usual definitions,
in terms either of = and v, or of = and A; (2) every negation is transported to
the 'inner part' of the formula, so that it affects only atomic subformulas or
negations of such subformulas of £

If I'is an interpretation of M in S, vy, or, simply, v, is the associated valua-
tion. It can be defined thus, where Fis a sentence of M(S):

(1) U F) = F;

R UGvH=1=uvG) =1orvH=1;

B) UGAH) =1 AG)=u(H) =1;

(4) o=2+1 P(R) = v(= P(A));

(5) v(=*" P(k)) = AP(R);

6) UP(k) =1 ke P

7) (PE) =0 ke P

B) v=Ph)=1=ke P;

9 v=Ph)=0c ke P;

(10) (vx G(x)) = 1 & v (G(k) = 1, for every name or constant 4
(11) vx G(x)) = 0 & v (G(k)) = 1, for some name or constant 4;
(12) "v(3x G(x)) = 1" is defined in the usual way;

(13) 'v(3x G(x)) = 0" is also defined in the usual way.

As is plain, in this definition, one supposes that £ denotes a name or an indi-
vidual constant, that /assigns P to P’etc.

Thus, one defines in M: =, Fif, for every interpretation / and valuation v,
v(F) = 1.

Given a formula F*% one denotes by F*0 the following formula: one re-
places, in F¥ every occurrence of P for P, (new predicate symbol) and of — P
for P, (new predicate symbol, other than P) etc. Hence for every predicate
symbol P of M, we associate two new predicates, P, and Py for Q, we associ-

ate @ and Q, etc.

Let us add to M a new implication symbol, 5, semantically characterised
by the classical condition: G> H) = 1 if, and only if, ¥(G) = 0 or v(H) = 1.
Moreover, let us also add to M the new predicate symbols P, and P,, @, and
@5,..., admitting that in no formula are there occurrences of > within the scope
of negations. Then, an axiomatic for M is the following:

(1) A system of postulates for classical positive uniform calculus, relative

to D, A, v, ¥, and 3.
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2)Pv P, QvQ,.

(3) £*° | F, for every formula in which there is no occurrence of =.
It follows that: -, Fe =4, F
We briefly state some theorems of AM:

I—-MF/\——1F—> G
= (FA—F)
FuFv(Fo G)

- Vx— (Px A — Px)

I—-M(Fv—ﬂf‘)
—y Vx (Pxv — Px)

However, the rule and the sentences below do #oz hold in M:

EF- GG
Pan-Pao G
Pan— Pa

The predicates R such that R £ A R,k are satisfied by no £ in V are called
classical. In this case, (Ra A — Ra) = 0, for every ain V, and R has a classical
behavior.

As just presented, M consists in a starting point in order to develop, for
instance, a paraconsistent syllogistic -just as the one that shall be described in
the next section. Furthermore, it can also be employed as the foundations for a
syllogistic whose nature was outlined by N.A. Vasil'év, one of the forerunners
of paraconsistent logic. (For an exposition of his views and references to his

works, see Arruda (1984).)

5. A case study: syllogism and paraconsistency

In this section, an application of the general framework supplied by paracon-
sistent logic will be made to that which is perhaps one of the most ancestral
domains of traditional logic: the theory of syllogism. The main point consists
in addressing the issue regarding the employment of a paraconsistent logic in
order to articulate such a theory, and examining which of the traditional infer-
ences still hold.

After briefly reviewing, in section 5.1, some aspects of classical syllogis-
tic, in section 5.2, we shall concisely present some possible answers to this
issue.
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5.1. Classical syllogistic

Within traditional logic, which arose from various sources through a process of
modification and adaptation of Aristotelian ideas, categorical syllogism has
a relevant role. It turned out that the traditional system of doctrines is not
coherent, and here we shall interpret it in one of its possible ways.

There are four types of categorical propositions which constitute the core of
traditional logic: (1) universal affirmative ones: (A) every a is b (every man is
mortal); (2) particular affirmative ones: () some a is b (some man is mortal);
(3) universal negative ones: (E) no 4is b (no man is mortal); and (4) particular
negative ones: (0) some 4 is not b (some man is not mortal). In propositions
A, I E O, aand bare terms, linked by the copula (verb); « is the subject and
b, the predicate. Following Lukasiewicz's proposal, we may symbolise such
propositions thus: Aab, Iab, Eaband Oab. (For Lukasiewicz's interpretation of
Aristotle, see his 1971.) We shall suppose that the terms that appear in them
are not empty, that s, the classes related to them have elements (this seems to
be Aristotle's position), and also that such classes are not singular, i.e., that
they do not have just one member (therefore, no term is a proper name).

Following the standard account, we shall interpret categorical propositions
within classical monadic first-order predicate calculus, in the following way:

Aab VY (a(x) = b(x))
lab Ax (a(x) A b(x))
Eab Vx (a(x) = = b6(x))
Oab Ax (a(x) A= b(x))

Given this interpretation, it is possible to examine several parts of traditional
logic, determining the validity of both formulas as well as inferences.

Regarding categorical propositions, traditional logic is concerned with
four main themes: (1) the square of oppositions; (2) the theory of conversion;
(3) immediate inferences; and (4) the theory of categorical syllogism. We
shall briefly consider cach of them.

Opposition. As it is known, though this figure is not to be found in Aristotle's
works, the propositions 4, I, E and O are arranged in the vertices of a square,
where A and O, and E and I are called contradictories, 4 and E, contraries etc.
One can show, for instance, that two contradictory propositions are not both
truth, nor both false (one is the negation of the other) etc.

Conversion. The conversion consists in changing either the position of the terms
in a categorical proposition, or its quantity (the fact of being universal or par-
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ticular), or its quality (affirmative or negative), or the nature of its terms
(from positive ones, for instance, animal, to negative ones, non-animal, and
vice-versa). There are three basic kinds of conversion: the simple one, the one
based on accident, and obversion; through their combination, new types of
conversion are obtained. The logician is mainly concerned with the determina-
tion of the validity of such operations: when they lead from true propositions
to true ones. For instance, with recourse to conversion by accident, one may
conclude that ‘Some animals are human' from the proposition 'Every human is
an animal’. In order to express obversion within monadic predicate calculus,
we assume that to every predicate p(x) there is an associated one, p'(x), such

that Vx (= p(x) & §'(x)).

Immediate inferences. These kinds of inferences have only one premise. The
theories of opposition and of conversion supply criteria to test the validity of
them. Thus, based on conversion theory, from Aab it is possible to conclude
Iba, as may be shown within the monadic predicate calculus. A further exam-
ple is the following one: from Azb one may conclude lab, by subordination, a
relation examined in the theory of opposition, and a valid inference within
monadic calculus.

Categorical syllogism. A categorical syllogism or, for shorr, simply syllogism,
consists in an inference with two premises and one conclusion, both of them
being categorical propositions. It is known that there are 256 possible syllo-
gisms, distributed in four figures, each of them having certain valid modes. In
our case, there are six valid modes to each figure, adding up to twenty-four
valid syllogisms. Traditionally such syllogisms have special names. For the
first figure: Barbara, Celarent, Darii, Ferio, Barbari and Celaront; for the sec-
ond figure: Cesare, Camestres, Festino, Baroco, Cesaro and Camestros: third
figure: Darapti, Disamis, Datisi, Felapton, Bocardo and Ferison; and fourth
figure: Bramantip, Camenes, Dimaris, Fesapo, Fresison and Camenos. The
vowel and the consonants in these names have certain meanings which are not
relevant for our present purposes. (For further historical details on traditional
syllogistic, cf. Kneale and Kneale 1988, pp. 23-112.)

5.2. Paraconsistent syllogistic

Similarly to the case of traditional syllogistic, which was interpreted within
classical monadic predicate calculus, it is possible to develop a paraconsistent
syllogistic. It is based on, for instance, the monadic calculus corresponding to
the paraconsistent predicate logic C*. In order to reach that, it suffices that
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one translate the propositions 4, I, £ and O into C%: the translations are for-
mally the same as the ones just presented in the last section, which were based
on the classical setting.

There are two brief remarks to be made within this context. (1) The valid
positive deductions in C%, the classical predicate calculus, are also valid in

*; that is, when no explicit negation is involved, the positive deductions of
C* and C¥ are the same. (2) In C* one can find 'paraconsistent’ predicates,
such that, for instance, there are elements that satisfy the predicate and, at the
same time, do not satisfy it; i.c., for some predicate p the following holds:

3x (p(x) A= p(x)).

Thus, based on arguments rather similar to the ones found in the classical
case, it is possible to verify the validity of inferences, and one changes accord-
ingly the theories of opposition, conversion, immediate inferences and syllo-
gism. (Each predicate within the universe of discourse has three parts: of the
elements that satisfy it, of those that do not satisfy it, and of those that simul-
tancously satisfy it and do not satisfy it. Simple graphics supply then evidence
for the validity, or for the invalidity, of certain inferences and conversions.)

Based on this approach, one can prove the following result. In the paracon-
sistent logic C*, all modes of the first and of the third figures of the syllo-
gism are valid; none of the second is valid; and of the fourth, just Bramantip
and Dimaris modes are valid.

It is worth mentioning that C* has a strong negation, of a classical trend,
and if such negation is adopted in the interpretation of syllogistic reasoning,
the classical theory is obtained.

As is known, Lukasiewicz has axiomatised the theory of categorical syllo-
gism, based on the classical propositional calculus and admitting as specific
axioms certain categorical propositions, as well as some appropriate defini-
tions. Based on the paraconsistent propositional calculus, for instance, the cal-
culus C, (cf. da Costa 1974), it is also possible to formulate an axiomatics for
paraconsistent syllogistic, articulated in parallel lines to the theory just out-
lined. Moreover, we should note that there are further extensions or modifica-
tions of the Aristotelian syllogistic that also admit paraconsistent versions,
such as Hamilton's, De Morgan's and Gergone's.

6. Concluding remarks

From the previous remarks, several conclusions that outline a particular view of
paraconsistent logic and, in general, of contemporary logic might be drawn.
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We shall just briefly point out some of them here, leaving their development
for further works.

(1) Paraconsistent logic, as opposed to the classical one, despite being a
logic which allows us to examine the properties of 'contradictory objects', such
as Russell's set, does not lead us to trivialisation, and moreover it is simply
not the case that these objects have every imaginable feature. To some extent,
they behave just as normally as other standard classical objects.

(2) The tentative points suggested here shall indicate that paraconsistent
logic is philosophically neutral, in the same sense that, for instance, mathemat-
ics is. The latter, just as the former, cannot justify by itself any metaphysical
or, in general, 'speculative’ position. (It goes without saying, however, that
logic and mathematics as well as the activity of logicians and mathematicians
are subject to philosophical interpretations.)

(3) In this regard, we would like to stress however that one cannot prove
that 'speculative’ philosophical interpretations of paraconsistent logic cannor be
true (though it might be also difficult to show that they are). Our interpreta-
tion, nevertheless, not being committed to such 'speculative’ approaches, seems
to be philosophically more acceprable.

(4) Once the distinction between pure and applied logic is made, it seems
natural to claim that the latter is not restricted exclusively to a priori consid-
erations, but depends on the particular features of the domain to which it is
applied (or on the propositional way of representing the latter). As von Neu-
mann claimed:

The basic idea is that the system of logics which one uses should be derived from ag-
gregate experiences relative to the main application which one wishes to make -logics
should be inspired by experience. (von Neumann [1937], p. 2)
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