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ABSTRACT: Dynamic interaction is said to occur when two significantly different fields
A and B come into relation, and their interaction is dynamic in the sense that at first
the flow of ideas is principally from A to B, but later ideas from B come to influence
A. Two examples are given of dynamic interactions with the philosophy of mathemat-
ics. The first is with philosophy of science, and the second with computer science. The

analysis enables Lakatos to be characterised as the first to develop the philosophy of
mathematics using ideas taken from the philosophy of science.
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1. Introduction

Imre Lakatos' work in philosophy focused on the study of the growth of
knowledge -particularly in mathematics and science. He suggested new
ways of analysing this growth, namely the pattern of 'proofs and refutations'
in mathematics, and the concept of 'research programme’ for science. The
present paper is very much in this tradition, and tries to formulate a con-
cept, that of dynamic interaction, which we believe is a commonly occur-
ring pattern in the development of ideas and the growth of knowledge.
This concept could be used for the study of many examples of the growth
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of mathematics and science. However in this paper we propose to apply it
to the development of philosophy of mathematics, which, we will claim,
has involved significant interactions in the twentieth century with two other
fields: philosophy of science and computer science. The first of these inter-
actions establishes another link with Imre Lakatos whom we characterise as
being the first significant thinker to apply ideas from the philosophy of
science to the philosophy of mathematics. :

2. The Concept ofD)/n/lmic Interaction

Let us start then with our characterisation of the concept of dynamic inter-
action. It has the following four features.

(1) A connection is established between two different fields or subjects
(A and B say).

(2) Both sides may then benefit from this connection, or, more specifi-
cally, from the resulting interaction.

(3) The relationship berween the two sides is not static but dynamic.
Suppose, for example, the flow of ideas is at first principally from A to B.
It will then characteristically happen that, after a while, the direction of
the flow of ideas is reversed and ideas from B start to influence A. Typi-
cally the interaction between A and B has two phases separated by a turning
point, although, as is to be expected, the turning point is not precisely de-
fined.

(4) Although the two sides interact, it is important that each one should
at the same time preserve some degree of autonomy. As our above analysis
of the dynamic nature of their relationship in (3) shows, this is a necessary
condition for further development.

This concept of dynamic interaction has been developed from the work
of Emily Grosholz. In a series of publications (1981, 1985, 1991, 1992),
Grosholz has studied a number of cases in which knowledge (particularly
mathematical knowledge) has advanced through the interaction of separate
domains. In 1981, she considers Logic and Arithmetic, in 1985 Logic and
Topology, while in her 1992 she argues that Leibniz invented and devel-
oped the calculus by bringing together geometry, algebra, number theory,
and mechanics. Her 1991 book shows that to a remarkable extent all Des-
cartes' intellectual work can be seen as bringing together different domains.

As she says (1991, pp. 2-3):
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(...) Cartesian domains (...) can be understood as a novel amalgamation of formerly
distinct or at least very incompletely unified domains: the Geometry brings to-
gether geometry and algebra, the Principles geometry and physics, the Treatise of
Man physics and medical physiology, and the Meditations mechanical philosophy
and scholastic theology.

Although Grosholz approves of the method of bringing together sepa-
rate domains, she nonetheless criticizes the way in which Descartes carries
out this process. In her view the interaction of different domains is most
fruitful, if, while interacting, they nonetheless retain some degree of auton-
omy. An attempt to reduce one domain to the other will generally inhibit
fruitful developments. As she says (1991, p. 3):

(...) the unification of domains contributes to the growth of knowledge when and
because it exploits partially shared structure between domains that none the less re-
tain their autonomy and distinctness. Revelation is impaired when domains are
held too far apart, or assimilated too closely. But Descartes's way of constructing
knowledge can produce both these unfortunate outcomes (...).

Grosholz's stress on the need for interacting domains to retain some de-
gree of autonomy seems to us correct, and we have incorporated this idea
into our concept of dynamic interaction.

Having thus introduced the concept of dynamic interaction, let us now
examine how it applies to philosophy of mathematics in the twentieth cen-

tury.

3. First Example: Interactions between Philosophy of Mathematics and Phi-
losophy of Science

We will begin by arguing that the philosophy of science of the Vienna Cir-
cle was strongly influenced by philosophy of mathematics. The Vienna
Circle put forward a new conception about the essence of philosophy and
laid particular emphasis on the great importance of the method of logical
analysis for philosophy, thus developing a new tradition in philosophy, i.e.
analytic philosophy which had been introduced by Frege, Russell and
Wittgenstein, and which has now dominated philosophy in the English-
speaking world for a long time. The famous pamphlet of the Vienna Cir-
cle (Scientific Conception of the World) said clearly on this point (Hahn
etal. 1929, p. 8):

The task of philosophical work lies in this clarification of problems and asser-
tions, not in the propounding of special "philosophical” pronouncements. The
method of this clarification is that of logical analysis; (...).
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The Vienna Circle were strongly influenced by philosophy of mathe-
matics -particularly logicism. Carnap had studied under Frege (cf. his
1963), while Hahn conducted a seminar on Russell and Whitehead's Prin-
cipia Mathematica in the academic year 1924-25 during which the partici-
pants went through that work chapter by chapter. This is not to say of
course that philosophy of mathematics was the only influence on the Vienna
Circle. Their study of Einstein's work on relativity was most important as
well, and there were other significant influences. Moreover, it should be
emphasized that the Vienna Circle's work in the field of the philosophy of
science was inseparably connected with their general basic philosophical
position, so that only by taking the latter as a background for analysis, can
we understand properly the nature of their work in this special field, and
especially the great influence of the philosophy of mathematics.

For example, only from such a perspective, can we understand clearly
the target which the Vienna Circle set for themselves in the field of the
philosophy of science, because the latter was in fact a concrete manifesta-
tion of their basic philosophical position in this field. The two main fea-
tures of the Vienna Circle (or of logical positivism in general) are no
doubt their opposition to so-called metaphysics (or, which is the same,
their insistence on the basic principle of empiricism) and the emphasis on
the method of logical analysis. Thus, their basic philosophical position di-
rectly determined their target in the field of the philosophy of science,
that is, to make clear the real meaning of every scientific proposition and
concept by reducing them step by step to those propositions or concepts
which are about or relate directly to what is given in experience (otherwise,
if it appears impossible to construct a term out of the given, all the propo-
sitions including this term must be regarded as senseless, i.c., as pseudo-
propositions of a metaphysical nature), and thus, as a whole, to construct or
reconstruct the whole system of science on the basis of the given.

In this programme, we can see clearly the great influence of the philoso-
phy of mathematics: it was precisely the foundational work of logicism in
the philosophy of mathematics, i.e. how to build or rebuild the whole of
mathematics on the basis of logic, which had provided the necessary ex-
ample for the Vienna Circle.

However, just as the logicists' work of reducing the whole of mathemat-
ics to logic had encountered serious difficulties, the Vienna Circle's efforts
at constructing a whole 'reducing system' for science did not proceed in
calm water either, and this led to further theoretical thinking in this field.
In particular, people began to become aware of the great importance of the
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following questions. What is the real empirical basis of science? Is it per-
sonal experience or the records of public observation? And what is the rela-
tionship between the so-called 'theoretical propositions’ and 'observation
propositions’, and in what sense can observation propositions confirm re-
lated theoretical propositions?

In comparison with concrete constructions or reconstructions of scien-
tific theories, the above thinking obviously reached a deeper level, because
its subject was no longer the concrete logical structure of any particular sci-
entific theory but rather scientific theories in general. Thus, it in fact repre-
sented a great change in the Vienna Circle's conception of philosophy of
science. That is, the philosophy of science is nothing but meta-science.

Obviously, we can see here once again the influence of the philosophy of
mathematics, because the concept of 'meta’ was borrowed from the phi-
losophy of mathematics. It is in fact a concept originating from Hilbert's
foundational studies, i.e., the concept 'meta-mathematics'.

So, on the whole, it is justifiable to say that the Vienna Circle used in
their studies of the philosophy of science ideas and concepts originating
from the philosophy of mathematics. Moreover, in the first decades of the
twentieth century, the flow of ideas and influence in the interaction rela-
tionship was mainly from the philosophy of mathematics to the philosophy
of science.

About the 40's of this century, the philosophy of mathematics entered a
stagnant and pessimistic period; but the philosophy of science was at the
same time just on the eve of stepping out of the epoch of logical positiv-
ism, and entering a new era of growth. From the perspective of this paper,
one of the most important reasons for the latter development of the phi-
losophy of science is that, while under the deep influence of the philosophy
of mathematics, it retained some degree of autonomy. In particular, the
philosophy of science has from its very beginning had some special prob-
lems which are quite different from the foundational problems of the phi-
losophy of mathematics and it was specifically around these problems that
the philosophy of science began its own development. For example, there
was firstly the debate between the logical positivists and Popper on the
question of what was the main feature of scientific propositions: confirma-
tion or refutation; then, covering a wider area, we see the opposition be-
tween logical empiricism and historicism! on the essence of science; and
finally there was the emergence of the new historicism which made severe
criticisms of all the older traditions in the field. Thus, on the whole, the
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philosophy of science has, since it broke away from the older tradition of
logical positivism, made great progress.

As there are so many new concepts, problems and ideas appearing in
modern studies of the philosophy of science, it has attracted many scholars
working in the field of the philosophy of mathematics. For example, it is
quite natural for people in the latter field to think: Should we in the study
of the philosophy of mathematics consider the same (or similar) questions
which have proved so important for the understanding of the essence of sci-
ence? And, could those concepts or ideas which have taken a key position in
modern studies of the philosophy of science also be transplanted or ex-
tended into the field of the philosophy of mathematics?

For example, it was exactly in such a mood that Crowe (1975), Me-
hrtens (1976) and Dauben (1984) made consecutively contributions to the
problem of the applicability of Kuhn's theory of scientific revolutions to
mathematics. And furthermore, the following words of Tymoczko (1985,
p. 127) seem to represent the general attitude of those working in this new
direction: "Indeed the philosophy of science seems to be making progress
(...) Why not the philosophy of mathematics?".

As far as the relationship between the philosophy of mathematics and
the philosophy of science is concerned, the above situation clearly repre-
sents a radical change: it is now the philosophy of science which is begin-
ning to acquire the more important position and to influence the study of
the philosophy of mathematics.

Lakatos" work can be regarded as the turning point in the above transi-
tion. As we observed earlier, the turning point is never precisely defined,
and this is shown in the present case by the fact that Lakatos' work pro-
ceeded in two different directions. Firstly it went from the philosophy of
science to the philosophy of mathematics. That is, by extending Popper's
fallibilist philosophy of science into the field of mathematics, Lakatos
developed his quasi-empirical view of mathematics. Secondly, using his
logic of mathematical discovery as the basic conceptual framework, Laka-
tos developed his philosophy of science, i.e. the methodology of scientific
research programmes (cf. Zheng 1990), and therefore moved in the oppo-
site direction, i.e. from the philosophy of mathematics to the philosophy
of science. (Lakatos had also planned to use his new philosophy of science
to improve his philosophy of mathematics; but unfortunately, his early
death precluded this possible line of development). Thus, Lakatos can in
fact not only be regarded as the person who brought about the turning point
of the radical change of the dominating relationship between the philoso-
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phy of mathematics and the philosophy of science, that is, he is probably
the first who used an idea originating in the philosophy of science to de-
velop some new ideas in the field of philosophy of mathematics, but also
as a person who successfully made a good balance between these two fields
and thus made substantial progress in both fields through interdisciplinary
studies.

Table 1 (cf. Zheng 1990) is a brief summary of the whole development
of Lakatos' philosophy, which also shows clearly the dynamic interaction
between these two subjects. -

Others Lakatos
Philosophy Philosophy Philosophy Philosophy
of Science of Mathematics of Mathematics of Science

Popper's Lakatos Philosophy
Fallibilism of Mathematics

P

A 1

Polya's The Logic of | | The Quasi-Empirical
Heuristic Mathematical| | View of Mathematics
Discovery

b
»

The Methodology
of Scientific
Research Programmes

Kuhn's Theory
of Paradigm

A 4

Table 1

Although the initial work in the direction from the philosophy of sci-
ence to the philosophy of mathematics consisted mainly of extending and
transplanting, the new influence of the philosophy of science on the further
development of the philosophy of mathematics is profound. In our view
this influence, in combination with self-conscious reflections on previous
work in the field, especially the critique of the foundationalist philosophy
of mathematics, has in fact led to a revolution in the philosophy of
mathematics, because the modern development in this field compared to
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the older foundationalist philosophy of mathematics represents not only a
radical change in the basic views of mathematics, but also big changes in
what are taken to be the field's central problems, methodology, and basic
nature.

In further work in the field of the philosophy of mathematics, we should
keep a look-out for instructive concepts, ideas and problems from the phi-
losophy of science which could be absorbed and assimilated. But, while
confirming the positive influence of the philosophy of science, we at the
same time should also maintain some autonomy for the philosophy of
mathematics, especially by paying more attention to the peculiarity of
mathematics.

In this connection, Echeverria, Ibarra and Mormann really focused on
the major point when they said in their Introductory Afterthought (1992, p.

XV):

What has modern philosophy of science to tell us about mathematics? Philosophy
of science has been philosophy of the empirical sciences. Hence, any answer to this
question is driving at the similarities and analogies between mathematical and
empirical knowledge.

That is to say, the basic reason why the philosophy of science could ex-
ert direct influence on the philosophy of mathematics is exactly that there
are some common points between mathematics and science in general. And
it is also for this reason that people working in this new direction of the
philosophy of mathematics, such as Lakatos, and, at one stage of his devel-
opment, Putnam, always pay great attention to the analysis of and argu-
ments for the above-mentioned similarities and analogies. However, as was
emphasized above, we should at the same time also take note of the peculi-
arity of mathematics. For example, it is just in this sense that we should
affirm clearly not only the empirical but also the quasi-empirical nature of
mathematics, because the latter is in fact a direct confirmation of the pecu-
liarity of mathematics.

As a matter of fact, the peculiarity of mathematics can be seen clearly
even if we limit ourselves to the discussion about revolutions in mathemat-
ics (cf. Gillies 1992). While the corresponding discussion in the philoso-
phy of science chiefly focused on the question of whether 'ordinary periods'
of 'normal science' existed during the historical development of science,
what concerned the philosophers of mathematics was precisely the opposite
question, i.e. whether there have actually ever been revolutions in mathe-
matics.
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To sum up, we can now see clearly that the development of both the phi-
losophy of mathematics and the philosophy of science in this century has
been to a great extent realised through their dynamic interaction.

4. Second Example: Interactions between Philosophy of Mathematics and

Computer Science

We will begin the account of our second example of a dynamic interaction
with the philosophy of mathematics by giving a brief survey of the relevant
parts of both the philosophy of mathematics and computer science. The
sixty years between 1879 and the outbreak of the second world war was the
foundational period in the philosophy of mathematics. The subject was
dominated by attempts to create a secure foundation for mathematics. The
three rival schools: logicism, formalism, and intuitionism, all shared this
aim, even though they differed in how it was to be achieved. This period
opens with the publication of Frege's Begriffsschrift in 1879. It is some-
times thought of as closing with the publication of Gédel's incompleteness
theorems in 1931. However, it is probably better to consider the period as
continuing until the late 1930's in order to include the development of re-
cursive function theory which arose from Hilbert's programme and Godel's
theorems.

Leaving aside precursors such as Babbage, computer science may be said
to begin with the construction of the first electronic computer in the mod-
ern sense. Of course it is a matter of argument what exactly an 'electronic
computer in the modern sense' is. However, Pratt considers that the best
candidates for the first such thing are MADM (Manchester Automatic
Digital Machine) which began running in 1948, or the EDSAC at Cam-
bridge (UK), which ran its first stored program in 1949 (Pratt 1987, p.
169). Roughly then the computer and computer science may be said to have
begun around 1948 -about a decade after the foundational period in the
philosophy of mathematics came to an end.

We will here take computer science in a broad sense to include the de-
sign and building of computers, the development of programming and
programming languages, and also the development of artificial intelli-
gence, that is the attempt to program computers to simulate behaviour
which in humans would be regarded as intelligent. Now the striking fact is
that during the first three decades of computer science, those working in
the field drew extensively on ideas and theories which had been developed
by philosophers of mathematics during the foundational period. Indeed
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three of the most important computer pioneers: Max Newman (who
headed the Manchester team), Alan Turing, and John von Neumann in the
United States had all worked on the foundations of mathematics before
the war. What makes this situation surprising, and indeed not a little mys-
terious, is that the philosophers of mathematics of the foundational period
were, with one or two exceptions which we will note later, not involved,
even in a marginal degree, with questions relating to computing. For
purely philosophical reasons they invented theories and techniques which
later turned out to be applicable in the new field of computer science. We
will now give a brief survey of these ideas from the philosophy of mathe-
matics, and show how they were used in computer science2. For reasons of
space, we will deal only with ideas drawn from the logicist and formalist
programmes in the philosophy of mathematics. Our account could there-
fore be supplemented by examining the influence of ideas drawn from in-
tuitionism on computer science. The influence of intuitionism has been par-
ticularly noteworthy in the work of Per Martin-Lsf and his followers (cf.
Martin-Lof 1982, and Nordstrém, Petersson, and Smith 1990).

We will deal with the ideas from the philosophy of mathematics in the
reverse order of their invention, and so start with the concept of Turing
machine, which was introduced in Turing's famous paper of 1937. A Tur-
ing machine is a theoretical computer, and so one of the exceptions to our
general rule that the concepts imported from the philosophy of mathemat-
ics had been developed with no consideration of computing. Obviously in
formulating the idea of a theoretical computer Turing must have had con-
siderations of computing in mind. Yet, as the title of the paper suggests,
the concept does appear to have been introduced to solve Hilbert's Ent-
scheidungsproblem (problem of decidability) -a problem which had arisen
naturally from Hilbert's programme in the foundations of mathematics. It
is possible that Turing was already thinking of constructing a real com-
puter in 1937, but there is no direct evidence for this. Hodges who looks
into the matter in detail (1983, note 2.38, pp. 545-546) is unable to reach a
conclusion, and concludes that 'the question must be left to tantalise the
imagination.’

We can however say that, while the concept of Turing machine did arise
at least partly from problems within the foundations of mathematics, it
subsequently exerted a very great influence on computer science. This in-
fluence began right at the beginning, for the theory of Turing machines had
an important role in the design of the first electronic computers. In this
context, the most relevant point in Turing's original 1937 paper was his
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formulation of the concept of a wuniversal machine. His idea was roughly
this. Given any particular machine T say, its table could be coded and
placed on the tape of the universal machine U. With this coding in place, U
would then exactly simulate the behaviour of T. If T for input i gave out-
put o, so would U.

With this concept of universal machine in mind, let us turn to the related
question of what constituted the first computer in the modern sense. I have
already given one of the standard answers, namely Manchester's MADM of
1948 or Cambridge's EDSAC of 1949. But is this correct? Much bigger
calculating machines had become operational at an earlier date. For exam-
ple the ENIAC with about 18,000 valves was built by the Moore School
of Engineering in Pennsylvania, and became operational in 1946. It was
used to perform ballistics calculations for the U.S. military. How, if at
all, does the modern computer differ from giant calculating machines of
this type? The crucial point is perhaps the following.

If the ENIAC was set up to perform a particular calculation, it could
do that calculation very quickly and efficiently, but the process of setting
it up for the calculation took a long time. As Pratt says of the ENIAC
(1987, 165-166):

Once a problem had been set up on it, it calculated more quickly than any other
contemporary machine. But the process of setting up was complicated and time-
consuming. Each of the sub-units that was to play a part in a given calculation had
to be configured using banks of switches dispersed throughout the machine; con-
nections between the different sub-units had to be organize%\(*usi\ng plug and adap-
tors); the master programmer unit had to be set, and the necessary constants entered
using either switches or a card-reading unit.

One could say that the ENIAC had to be adjusted physically until it
became the particular Turing machine needed to perform the calculation
required. Rather than going through these complications, would it not be
easier to build a universal machine for which one could then write a pro-
gram to perform any particular calculation? Arguably it is this approach
which characterises the modern computer as opposed to the earlier digital
calculating machines.

After the war, Turing began working at the National Physical Labora-
tory on the design of a computer called the Automatic Computing Engine
(ACE), though later he transferred to Max Newman's team in Manchester.
There is no doubt that Turing's basic idea was to design a machine which
would be a kind of practical implementation of the universal machine he

had described in his 1937 paper. This is shown clearly in the following
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passage from a lecture he gave to the London Mathematical Society in

February 1947 (quoted from Hodges 1983, pp. 319-320):

Let us now return to the analogy of the theoretical computing machines with an
infinite tape. It can be shown that a single special machine of that type can be made
to do the work of all. It could in fact be made to work as a model of any other ma-
chine. The special machine may be called the universal machine; it works in the
following quite simple manner. When we have decided what machine we wish to
imitate, we punch a description of it on the tape of the universal machine. This de-
scription explains what the machine would do in every configuration in which it
might find itself. The universal machine has only to keep looking at this descrip-
tion in order to find out what it should do at cach stage. Thus the complexity of
the machine to be imitated is concentrated in the tape and does not appear in the
universal machine proper in any way.

If we take the properties of the universal machine in combination with the fact
that machine processes and rule of thumb processes are synonymous, we may say that
the universal machine is one which, when supplied with the appropriate instruc-
tions, can be made to do any rule of thumb process. This feature is parallelled in
digital computing machines such as the ACE. They are in fact practical versions of
the universal machine. There is a certain central pool of electronic equipment,
and a large memory. When any particular problem has to be handled the appropri-
ate instructions for the computing process involved are stored in the memory of the
ACE and it is then 'set up' for carrying out that process.

This suggests that we can define a computer in the modern sense as an
automatic electronic digital machine with internal program storage3. It is
this definition which justifies the claim of Manchester's MADM of 1948
to be the first computer. Now the Manchester team were certainly influ-
enced by Turing's ideas, and thus it seems reasonable to claim that the con-
cept of the Turing machine (particularly the idea of a Universal Turing
Machine) played a crucial role in the creation of the modern computer.

In the period immediately after the war, attempts to build an elec-
tronic computer were being carried out in the United States as well as
Britain, and there was in fact collaboration and exchange of ideas between
the British and Americans. In the American effort, a key figure was John
von Neumann. Before the ENIAC had been completed, some of its defi-
ciencies had become obvious, and in 1944 von Neumann joined the Moore
School team as a consultant to consider how these problems could be over-
come. The next year the team prepared a proposal for a Successor to
ENIAC to be called EDVAC (Electronic Discrete Variable Calculator).
The Draft Report on the EDVAC (30 June 1945) was signed by von Neu-
mann, and had a considerable influence on the British as well as the Ameri-
can efforts. It is of great importance in having formulated the concept of
stored program. So the question naturally arises as to whether von Neu-
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mann was influenced by the concept of the universal Turing machine. The
answer is that he almost certainly was, since he knew Turing personally,
and was familiar with his work. Indeed, one of von Neumann's colleagues

Dr. S. Frankel wrote in 1972 (quoted in Randell 1972, p. 10):

I know that in or about 1943 or '44 von Neumann was well aware of the fundamen-
tal importance of Turmgs Paper of 1936 "On computable numbers (...)" which
describes in principle the "Universal Computer” of which every modern computer
(perhqps not ENIAC as first completed but certainly all later ones) is a realiza-
tion. Von Neumann introduced me to that paper and at his urging I stidied it with
care (...) he ﬁrmly emphasized to me, and to others T am sure, that the fundamental
conception is owing to Turing -insofar as not anticipated by Babbage, Lovelace,
and others.

On the other hand, there were very practical reasons for introducing
stored programs, and von Neumann may have learnt these from other
members of the Moore School team -particularly Eckert and Mauchly4.
The difficulty with the ENIAC was the slowness involved in setting up the
machine, as opposed to the speed with which the electronic calculations
could be done. Even the fastest method of instructing the machine what to
do, viz. feeding in the information on cards, was much slower that the
processes carried out electronically. A natural solution was to build a ma-
chine with a memory and store the instructions in this memory where they
could be consulted at electronic speed. This was the stored program con-
cept which Turing had reached by considering his universal machine. Thus
we can say that this crucial concept arose partly from theoretical considera-
tions and partly from practical engineering considerations.

The influence of the concept of Turing machine on computer science is
by no means confined to its role in the design of the first computers. On
the contrary it has remained a general tool for the analysis of computers>.
An example of this is complexity theory which was developed in the
1960's and 1970's. This makes essential use of the theory of Turing ma-
chines, and is itself of the very greatest importance for the study of the dif-
ficulty of computational problems. Turing's original proof of the equiva-
lence of his notion of Turing computability with Church's notion of A-
deﬁnab111ty may also have exercised considerable influence on computer
science. Part of the proof consists in the translation of Church's functions
into a form in which they can be computed by Turing machines. This is
exactly the idea of a compiler which translates a higher level programming
language into machine code, and so Turing's proof may have had an influ-
ence on the development of compilers.
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The preceding example naturally brings us to the contribution of Church
whose invention of the A-calculus arose out of his attempts to develop the
logicist position of Russell and Whitehead (1910-13). Russell and White-
head had written the class of all x's such that f(x) as % f(x). Church wished
to develop a calculus which focused on functions rather than classes, and he
referred to the function by moving the symbol A down to the left of x to
produce ax f(x). For typographic reasons it was easier to write this as Ax
f(x), and so the standard notation of the A-calculus came into being (cf.
Rosser 1984, p. 338).

Church had intended his first version of the A-calculus (1932) to provide
a new foundation for logic in the style of Russell and Whitehead. However
it turned out to be inconsistent. This was first proved by Kleene and Rosser
in 1935 using a variation of the Richard paradox, while Curry in 1942 pro-
vided a simpler proof based on Russell's paradox. Despite this set-back the
A-calculus could be modified to make it consistent, and turned out to be
very useful in computer science. It became the basis of programming lan-
guages such as LISP, Miranda, and ML, and indeed is used as a basic tool
for the analysis of other programming languages.

Let us now move back to an earlier stage in the development of the phi-
losophy of mathematics. Bertrand Russell devised the theory of types in
order to produce a new version of the logicist programme (the programme
for reducing mathematics to logic) when Frege's eatlier version of the pro-
gramme had been shown to be inconsistent by Russell's discovery of his
paradox. Thus Russell's motivation was to establish a particular position in
the philosophy of mathematics (logicism), and there is no evidence that he
even considered the possibility of his new theory being applied in comput-
ing. Indeed Russell's autobiographical writings show that he was worried
about devoting his time to logicism rather than to useful applied mathe-
matics. This in his 1959 My Philosophical Development, he writes of the
years immediately following the completion of his first degree (p. 39):

I was, however, persuaded that appliecd mathematics is a worthier study than pure
mathematics, because applied mathematics -so, in my Victorian optimism, I sup-
posed- was more likely to further human welfare. 1 read Clerk Maxwell's  Electric-
ity and Magnetism carefully, I studied Hertz's Principles of Mechanics, and 1 was
delighted when Hertz succeeded in manufacturing electro-magnetic waves.

Moreover in his autobiography, Russell gives a letter which he wrote to
Gilbert Murray in 1902 which contains the following passage (1967, p.
163):
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Although I denied it when Leonard Hobhouse said so, philosophy seems to me on
the whole a rather hopeless business. I do not know how to state the value that at
moments | am inclined to give it. If only one had lived in the days of Spinoza,
when systems were still possible (...)

In view of Russell's doubts and guilt feelings, it is quite ironical that his
work has turned out to be so useful in computer science.

Russell's theory of types failed in its original purpose of providing a
foundation for mathematics. The mathematical community preferred to
use the axiomatic set theory developed by Zermelo and others. Indeed
type theory is not taught at all in most mathematics departments. The
situation is quite different in computer science departments where courses
on type theory are a standard part of the syllabus. This is because the the-
ory of types is now a standard tool of computer science. Functional pro-
gramming languages such as Miranda and ML are usually typed, and in-
deed some form of typing is incorporated into most programming lan-
guages. It is desirable when specifying a function e.g. f(x,y) to specify also
the types of its variables x, y, otherwise errors can be produced by substi-
tuting something of the wrong type for one of the variables which will of-
ten produce a nonsensical answer. Of course the type theories used in con-
temporary computer science are not the same as Russell's original type the-
ory, but they are descendants nonetheless of Russell's original system. An
important link in the chain was Church's 1940 version of the theory of types
which was developed from Russell's theory, and which influenced workers
in computer science. Davis sums up the situation very well as follows

(1988b, p. 322):

Although the role of a hicrarchy of types has remained important in the founda-
tions of set theory, strong typing has not. It has turned out that one can function
quite well with variables that range over sets of whatever type. So, Russell's ulti-
mate contribution was to programming languages!

Lastly we come to the predicate calculus introduced by Frege in his Be-
griffsschrift of 1879 which opened the foundational period in the philosophy
of mathematics. This has become one of the most commonly used theo-
retical tools of computer science. It is fundamental to program or hard-
ware verification. In his 1965 paper, Alan Robinson developed a form of
the predicate calculus (the clausal form) which is particularly suitable for
use on the computer. This is used both in automated theorem proving, and
in some machine learning programs (for some further details about the lat-
ter area see Gillies 1996, 2.4, pp. 41-44). Predicate logic is also funda-
mental to logic programming and the logic programming language
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PROLOG (for an account of the development of the latter see Gillies
1996, 4.1, pp. 72-75). At an even more fundamental level, the Begriff-
sschrift is the first example of a fully formalised language, and so, in a
sense, the precursor of all programming languageso.

Frege like Russell was motivated to establish a particular position in
the philosophy of mathematics, namely that arithmetic could be reduced
to logic. Curiously enough, however, Frege does make one reference to
questions of computation. His predecessor Boole had also introduced a
system of formal logic, and Jevons, influenced by Babbage, had actually
constructed a machine to carry out logical inferences in his own version of
Boolean logic. Jevons had the machine constructed by a clockmaker in
1869, and describes it in his paper of 1870. Frege made a number of
comments on these developments in a paper written in 1880-1, although

only published after his death. He wrote (1880-1, pp. 34-35):

I believe almost all errors made in inference to have their roots in the imperfec-
tion of concepts. Boole presupposes logically perfect concepts as ready to hand, and
hence the most difficult part of the task as having been already discharged; he can
then draw his inferences from the given assumptions by a mechanical process of
computation. Stanley Jevons has in fact invented a machine to do this.

Frege, however, made clear in a passage occurring a little later that he
did not greatly approve of these developments. He wrote (1880-1):

Boolean formula-language only represents a part of our thinking; our thinking as
a whole can never be coped with by a machine or replaced by purely mechanical ac-
flVlty.

On the whole it seems that Jevons' attempts to mechanise logical infer-
ence had only a slight influence on Frege's thinking. So we can say that con-
siderations of computing had almost no influence on Frege's development
of the predicate calculus, and yet the predicate calculus has proved a very
useful tool for computer science. v

So far in this section we have discussed the striking influence which re-
sults developed during the foundational period of the philosophy of
mathematics exerted on the development of computer science. Our model
of dynamic interaction suggests that after a period of time the reverse in-
fluence might show itself, and computer science begin in its turn to have an
effect on the development of philosophy of mathematics. In fact we have
begun to see signs of this reverse influence occurring in the last two dec-
ades.

The part of computer science which has most noticeably begun to influ-
ence philosophy of mathematics is the development of automated theorem
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roving. An excellent survey of this development is to be found in MacK-
enzie (1995). The first result which provoked discussion among philoso-
phers of mathematics was the proof of the four colour theorem in 1977.
The point here was that a computer was used to check through a number of
special cases, the calculations involved being simply too long to have been
carried out by hand. Indeed it would have been impossible for these calcu-
Jations to have been checked by a human mathematician. This naturally
gave rise to some philosophical discussions since it had been widely as-
sumed before this that a mathematical proof should be hurri::mly survey-
able. Indeed Wittgenstein had explicitly formulated this view in the fol-
lowing passage, written in 1939-40 (1956, Part III, p. 143):

1. 'A mathematical proof must be perspicuous.” Only a structure whose repro-
duction is an easy task is called a "proof™. (...)

2.1 want to say: if you have a proof-pattern that cannot be taken in, and by a
change in notation you turn it into one that can, then you are producing a proof,
where there was none before.

On the basis of such arguments, some thinkers have denied that the com-
puter-assisted proof of the four colour theorem was a genuine mathematical
proof.

However further developments of automated theorem proving have
made the situation more problematic. In the case of the four colour theo-
rem, the computer was used to fill in some details of a proof which had
been devised by human mathematicians. Now however some automated
theorem provers -particularly those of Larry Wos- can devise proofs with-
out any help from humans, and have even been able to prove some impor-
tant open conjectures for which human mathematicians had not been able to
provide proofs. Moreover some of these computer proofs are not only not
surveyable, but need not even be based on any humanly comprehensible
general strategy. Clearly these new results require a rethink of the notion of
mathematical proof, and have thus given rise to a major problem in current
philosophy of mathematics.

So far we have illustrated the way in which philosophy of mathematics
has dynamically interacted with computer science. However the influence
on computer science of philosophy of mathematics of the foundational pe-
riod has been not only remarkably extensive but also surprilsi\ng. It seems
worth concluding this section by asking how this influence came about.

The problem as we have already indicated is the following. Those who
worked on philosophy of mathematics during the foundational period, such
as Frege, Russell, Hilbert, Church, etc. were influenced either not at all or
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to a negligible extent by considerations to do with computing. Why then
did their work later on prove so useful in computer science?

Before the work of Frege, Peano, Russell and Hilbert, mathematics
might be described as semi-formal. Of course symbolism was used, but
the symbols were embedded in ordinary language. In a typical proof, one
line would not in general follow from the previous ones using some simple
logical rule of inference. On the contrary, it would often require a skilled
mathematician to 'see' that a line followed from the previous ones. Moreo-
ver even skilled mathematicians would sometimes 'see' that a line in a
proof followed from earlier lines when it did not in fact follow. As a re-
sult mistaken proofs were often published, even by eminent mathemati-
cians. Moreover the use of informal language often resulted in ambiguities
in the concepts employed, which could create confusions and errors.

Of course mathematics is still done today in this semi-formal style,
but Frege, in his quest for certainty, thought that he could improve things
by a process of formalisation. Concepts would have to be precisely de-
fined to avoid ambiguities and confusions. The steps in a proof would have
to be broken down, so that each individual step involved the application of
a simple and obviously correct logical rule. By this process, which Frege
thought of as the elimination of anything intuitive, he hoped to eliminate
the possibility of error creeping in. As he put it (1884, p. 2): "The aim of
proofis (...) to place the truth of a proposition beyond all doubt (...)". His
approach led him to develop a formal system of logic, his Begriffsschrift
(or concept writing) which is equivalent to present day predicate calculus.
He explains how this happened very clearly in the following passage (1884,
pp- 102-103):

(...) the mathematician rests content if every transition to a fresh judgement is self-
evidently correct, without enquiring into the nature of this self-evidence, whether
it is logical or intuitive. A single such step is often really a whole compendium,
equivalent to several simple inferences, and into it there can still creep along with
these some element from intuition. In proofs as we know them, progress is by
jumps, which is why the variety of types of inference in mathematics appears to be
so excessively rich; for the bigger the jump, the more diverse are the combinations
it can represent of simple inferences with axioms derived from intuition. Often,
nevertheless, the correctness of such a transition is immediately self-evident to us,
without our ever becoming conscious of the subordinate steps condensed within it;
whereupon, since it does not obviously conform to any of the recognized types of
logical inference, we are prepared to accept its self-evidence forthwith as intuitive

(...)

The demand is not to be denied: every jump must be barred from our
deductions. That it is so hard to satisfy must be set down to the tedious-
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ness of proceeding step by step. Every proof which is even a little compli-
cated threatens to become inordinately long. And moreover, the excessive
variety of logical forms that has gone into the shaping of our language
makes it difficult to isolate a set of modes of inference which is both suf-
ficient to cope with all cases and easy to take in at a glance.

To minimize these drawbacks, I invented my concept writing. It is de-
signed to produce expressions which are shorter and easier to take in, and
to be operated like a calculus by means of a small number of standard
moves, so that no step is permitted which does not conform to the rules
which are laid down once and for all. It is impossible, therefore, for any
premiss to creep into a proof without being noticed.

It is now easier to see how the methods which Frege used in his search
for certainty in mathematics created a system suitable for use in computer
science. What Frege is doing is in effect mechanising the process of check-
ing the validity of a proof. If a proof is written out in the characteristic
human semi-formal style, then its validity cannot be checked mechani-
cally. One needs a skilled human mathematician to apply his or her intui-
tion to 'see' whether a particular line follows from the previous ones. Once
a proof has been formalised, however, it is a purely mechanically matter to
check whether the proof is valid using the prescribed set of rules of infer-
ence. Thus Frege's work can be seen as replacing the craft skills of a human
mathematician with a mechanical process’.

In effect if a computer is to be able to handle mathematical proofs at
all, these proofs must first be formalised, and this explains why the logi-
cist and formalist programmes with their common interest in formalisa-
tion created tools which were useful for computer science.

The process of mechanisation in general takes place in som&h\lﬁg like
the following manner. The starting point is handicraft production by
skilled artisans. The next step is the division of labour in the workshop in
which the production process is broken down into smaller and simpler
steps, and an individual worker carries out only one such step instead of the
process as a whole. Since the individual steps are now quite simple and
straightforward, it becomes possible to get them carried out by machine,
and so production is mechanised.

Frege and his successors in the logicist and formalist traditions were
carrying our an analogous process for mathematics. Mathematical proofs
were broken down into simple steps which at a later stage could be carried
out by a machine. From a general philosophical point of view, Frege, Pe-
ano, Russell, Hilbert, etc. were engaged in the project of mechanising
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thought. Since they lived in a society in which material production had
been so successful mechanised and in which there was an ever increasing
amount of mental (white collar) labour, this project for mechanising
thought was a natural one. Moreover it was equally natural that mathemat-
ics should be the area chosen to begin the mechanisation process, since
mathematics was already partially formalised, unlike other areas of
thought.

These considerations perhaps explain why the philosophy of mathemat-
ics has assumed such importance within the philosophy of our time. Natu-
rally as well as the thinkers who have pressed forward with the mechanisa-
tion of mathematics, there have been those who have objected to this
mechanisation, and stressed the human and intuitive aspects of mathemat-
ics. Poincaré, Brouwer, Godel, the later Wittgenstein, and, more recently,
Penrose all belong to this trend. Although this line of thought is in many
ways reactionary and of course has not halted the advances of mechanisa-
tion, there is nonetheless some truth in it, for, as long as mathematics con-
tinues to be done by humans art all, it will evidently retain some intuitive
characteristics. This is another reason why the logicists and formalists, al-
though they thought they were building a secure foundation for mathemat-
ics and rendering its results certain, were in fact creating a form of mathe-
matics suitable for computer science.

Notes

T The authors would like to thank Carlo Cellucci, Joseph Dauben, Pieranna Garavaso,
Mark Gillies, Emily Grosholz, and Samin Ishtiaq for reading earlier versions of
this paper and making useful comments, many of which were incorporated into the
final version. The research which led to the paper was begun during a visit by Yuxin
Zheng to King's College London from April to September 1997. This visic was made
possible by Yuxin Zheng's receipt of a British Academy K. C. Wong Fellowship, and a
travel grant from the Open Society Institute. Both authors would like to thank the
British Academy and the Open Society Institute for the support which made this col-
laborative research possible.

Earlier versions of the paper were read at the Annual Conference of the British So-
ciety for the Philosophy of Science in September 1998, to the Logic Club, Depart-
ment of Philosophy, University of California, Berkeley in November 1998, at a con-
ference on Philosophy and Computing ac King's College London in February 1999,
and to the Applied Logic Colloquium at Queen Mary College London in November
1999. The authors are very grateful for the comments received on these occasions, and
particularly for some points made by Martin Davis at Berkeley, one of which is men-
tioned in footnote 6 below.
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1 Here and subsequently we will use 'historicism' for the view that the study of the his-
torical development of science and mathematics is of great importance for the phi-
losophy of these subjects.

2 The author responsible for this section of the paper (Donald Gillies) would like to
thank a number of computer scientists with whom he discussed this problem and who
made many helpful suggestions which have been incorporated in the following survey.
These include James Cussens, Mark Gillies, Stephen Muggleton, David Page, and
Ashwin Srinivasan. He has also benefited from reading some as yet unpublished writ-
ings on Alan Turing by Teresa Numerico, who also supplied the useful reference:
Stern, 1985. A similar account in Martin Davis' papers 1988a and 1988b proved most
helpful, and a great deal of use was made of Hodges' admirable life of Turing (1983).

3 This definition is given by Hodges (1983, p. 295). We regard Hodges analysis on this
point as fundamentally sound, and have followed him.

4 Eckert and Mauchly wanted to claim patents for their contributions to ENIAC and
EDVAC. They thought that von Neumann's publication of the EDVAC report had
damaged their chances of so doing. A good account of the resulting dispute is to be
found in Stern (1985).

5 This point and the subsequent examples T owe to conversations with Mark Gillies and
David Page.

6 I owe this point to Martin Davis. See his (1988b, p. 310).

7 It should be stressed that this is our way of viewing Frege's work, and that Frege himself
would not have seen things in this light. (We owe this point to Carlo Cellucci.)
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