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A B S T R A C T

A new non-retarded hydrodynamic approach to the interaction between a fast electron and a diffuse metal-
vacuum interface is presented. The metal is characterized by the parameters of a dispersive bulk dielectric
function which slowly fade at the interface. The response of the medium is described by the induced charge
density, which is self-consistently calculated. This formalism is applied to the study of the energy loss spectrum
(EELS) experienced by a fast electron passing by a metal-vacuum interface. In the case of a sharp interface
analytical expressions for the loss probability, fully equivalent to that of the Specular Reflection Model (SRM),
are found. In an Al interface the effects of the electron density spill-out (modeled according to Lang-Kohn
density) on both the longitudinal (EELS) and transverse components of the momentum transfer are studied. The
influence of the interface profile on the surface plasmon dispersion in EELS is also discussed, showing that in
agreement with previous theoretical and experimental works the dispersion of surface plasmon turns out to be
much weaker than the one calculated in the SRM. A possible extension of the theory to study interfaces between
transition metals and insulators is also discussed.

1. Introduction

Following Ritchie’s seminal paper [1], the local dielectric formalism
has been widely used to study the excitation of plasmons in bounded
targets by fast electron-probes. In this approach the excitations of the
target are given by the local dielectric function ϵ(ω), which only de-
pends on frequency ω. In the non-retarded limit the energy loss ex-
perienced by a probe interacting with a target is calculated from the
induced potential, that in the case of sharp interfaces can be obtained
by solving the Poisson equation with the customary boundary condi-
tions at the surface. In the case of targets of simple geometry, such as
planes, films, small particles or wires, the energy loss probability ex-
perienced by the probe admits simple analytical solutions (see for in-
stance Ref.[2]). For targets of more complicated shapes the induced
potential must be numerically computed by using the so called
Boundary Element Method (BEM) [3]. The main advantage of the local
formalism lies in the possibility of using experimental dielectric func-
tions, a procedure which leads to good qualitative and quantitative
agreement in EELS in Scanning Transmission Electron Microscope (STEM)
for a wide range of media [4–7]. The local approach has been also
applied to study the plasmon excitations in metallic interfaces with a
smoothly varying electron density profile [8,9]. The dielectric approach
has been also extended to the study of retardation effects in planes
[10–13], cylinders [14,15], spheres [16], dimers [17,18], flakes [19],

tapers [20] and in arbitrarily shaped interfaces [21].
Nevertheless, when the probe penetrates the target or travels very

close to its surface the local response is not longer appropriate because
it fails to describe the decreasing ability of the valence electrons to
respond collectively to large wave vector components of the exciting
field, a fact which leads to a logarithmic divergence in the induced
potential at the probe position. This unphysical divergence is usually
avoided by imposing a cutoff to the momentum contribution [22].
Besides, the local theory fails to reproduce the quadratic dispersion of
the bulk plasmon energy experimentally found, = +ω ω αk k( ) ,p p

2

where k is the plasmon wave vector [23–25]. A proper treatment of this
effect requires account to be taken of the k dependence of the medium
response. The recent experiment carried out by Batson and coworkers
[26], showing that the attractive or repulsive character of the trans-
verse force experienced by a nanoparticle under the action of a STEM
beam depends on the impact parameter, also implies that a proper
description of the momentum carried by the interface excitations is
needed to soundly study this problem.

The most extended way to implement the dispersion is to use a k
dependent dielectric function ϵ(k, ω), which describes the polarization
created by a probe in an isotropic unbounded medium. The first dis-
persive response function of a homogeneous electron gas calculated by
Lindhard [27] was modified by Mermin to account for the damping
[28]. These dielectric functions describe the full range of excitation of
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the electron gas, and are rather complicated. In the case of fast electron-
probes only small k values give significant contribution to the plasmon
excitation probability, so that simpler approximate expressions for ϵ(k,
ω) are generally used. The simplest approximation is the so called
Hydrodynamic Dielectric Function (HDF) [29]:

= −
+ −

k ω
ω

ω ω iγ β k
ϵ( , ) 1

( )
,p

2

2 2 (1)

where ωp is the frequency of the undispersed bulk plasmon, γ the
damping constant, which represents the inverse of the plasmon lifetime,
and β a constant, which accounts for the finite compressibility of the
electron gas. For a homogeneous electron gas the electron density n
determines the values of both parameters:

=

=

ω πn

β π n

4 ,
3
5

[3 ] .

p
2

2 2 2
3

(2)

This dielectric function is valid in the range of plasmon excitations
< −k ω v ,p F

1 where vF is the Fermi velocity of the medium, a limit which
corresponds to the threshold of electron-hole excitations. In the range of
collective excitations in a typical STEM experiments, where the beam
energy is of the order of 100 keV, almost all the electrons are scattered
with momentum transfer smaller than this limit, so that this dielectric
function can be safely used.

Ritchie pointed out the difficulty of applying the nonocal dielectric
formalism to metallic interfaces [1]. The fact that even in a sharp in-
terface the induced charge density is not constrained to the surface or to
the probe position [30] forces to restate the problem of the boundary
conditions, which can not be simply written in terms of the continuity
of the fields at the interface, as in the local approach. To overcome this
problem in sharp planar metallic interfaces Ritchie and Marusak [31]
and Wagner [32] proposed a method based on the Semiclassical Infinite
Barrier, generally known as Specular Reflection Model (SRM), where one
assumes that the electrons of the target are specularly reflected at the
interface. In this approach all the surface effects are given by an in-
duced charge density that spreads out inside the interface according to
the bulk dielectric function ϵ(k, ω). This model leads to a linear dis-
persion relation of the surface plasmon. In the case of fast electron-
probes, this method allows calculation of the induced potential in a
relatively simple way in terms of a new function ∥ ωkϵ̃( , ), where k‖
stands for the components of the momentum parallel to the surface
[33,34]. This model has been extended to deal with targets of different
geometries: spheres [35,36], dimers [37], cylinders [38] and films [39].

The main drawback of the SRM is that it is not extendable to in-
terfaces where the unperturbed charge density presents a smooth pro-
file. In the case of metallic surfaces the spill-out of the electron density
is of the order of few atomic units (a0), so that short wave length fields
are needed to probe it [40]. In optical experiments, where the large
wave length of the probe makes the response insensitive to the shape of
the density profile, the sharp interface model has been recently applied
to study nonlocal effects in the optical response of nanoparticles
[41–44]. Nevertheless the sharp surface approach is not longer justified
when the interface is probed by fast charges, because the high mo-
mentum components of the evanescent field created by the probe can
effectively probe the interface region. To account for nonlocal effects on
the energy of the surface modes of diffuse interfaces the hydrodynamic
model has been widely applied [45–49].

A theoretical approach to EELS in diffuse interfaces is also needed to
thoroughly interpret plasmon mapping in interfaces between alloys or
composite materials [50], where the loss peak energy at a given posi-
tion is usually interpreted as an indicator of the local charge density at
the spot. The local dielectric approach presented by Howie and cow-
orkers showed that in broad interfaces corrections to the local peak
energy are small [9]. The soundness of this approach is compromised by
the fact that it just considers the interface plasmon shift associated to

the spatial profile of the background density, without taking into ac-
count the effects derived from the nonlocality of the response of the
medium.

The aim of this paper is to present a formalism able to be applied to
the study of the polarization of spatially spread interfaces by a STEM
probe. As a first step we study the effect of the electron spill-out on the
energy loss spectra of fast electrons moving near metallic interfaces. We
present an alternative non-retarded formulation of the dynamics of the
electron gas, where a k dependent term accounting for the kinetic
pressure of the electron gas is heuristically introduced into the plasma
motion equation, in such a way that in two well known limiting cases
(homogeneous medium and sharp planar interface) one recovers the
results of the dielectric theory for the HDF (Eq. (1)). Then this form-
alism is applied to calculate the probability of exciting plasmons in an
Al interface modeled according to the electron density profile calcu-
lated by Lang and Kohn [51]. The extension of this theory to more
complex interfaces is discussed in the last section of this paper.

Atomic units are used in the theoretical developmment, while in the
discussion of the results and in the plots the units nm, eV and −Å 1

commonly used by experimentalist have been favored. The definition of
some functions has been made clear by adding a tilde over them: so for
instance,

∼
ω r( )p

2 and
∼
ω k( )p

2 stand respectively, for the function defined as
the square of the local plasmon frequency at r and its Fourier transform,
while ωp is just the value of the bulk plasmon frequency in the homo-
geneous medium. Out of simplicity the induced charge density will be
referred as just ρ(k, ω), using the notation ρ0(k, ω) for the probe charge
density.

Finally, in this work the following convention for the Fourier
transform has been used:

∫= − −f ω d dt f t ek r r( , ) ( , ) .i ωtkr( )
(3)

2. The hydrodynamic model

Let us consider the excitation of an inhomogeneous electron gas
where in the absence of external field the charge density is a function of
the position n r( ). Under the effect of an external field E0(r, t), the
displacement ξ(r, t) of the charge in a given volume dV is given by:

∫∂
∂

= − ∇ ′
′

− ′
ξdm

t
t dq t d

ρ t
r E r r

r
r r

( , ) [ ( , )
( , )

| |
],

2

2 0 (4)

where dm and dq are respectively, the mass and charge contained in the
volume dV and ρ(r, t) stands for the induced charge density. The in-
tegral in the right hand term accounts for the electric potential created
by the induced charge. For the sake of simplicity, we have not in-
troduced the damping term, which will be added later. In the ω space
this equation can be recast as

∫= − + ∇ ′
′

− ′
ξω ω ω d

ρ ω
r E r r

r
r r

( , ) ( , )
( , )
| |

,2
0 (5)

where we have made use of the fact that =dq dm/ 1. The continuity
equation, ∇ =ω iωρ ωJ r r· ( , ) ( , ), provides a relation between the two
fields ρ(r, ω) and ξ(r, ω):

= −∇ ξρ ω n ωr r r( , ) ·[ ( ) ( , )], (6)

which can be used to remove ξ(r, ω) from Eq. (5). After some simple
algebra the following scalar equation is obtained:

∫+ − + ∇ ∇ ′
′

′−

= + ∇

∼ ∼

∼ ∼

ω ω γ ω ρ ω
π

ω d
ρ ω

ω ρ ω
π

ω ω

r r r r
r

r r

r r r E r

[ ( ı ) ( )] ( , ) 1
4

( ).
( , )

| |
]

( ) ( , ) 1
4

( ). ( , ),

p p

p p

2 2

2
0

2
0 (7)

where = ∇ρ E·π0
1

4 0 is the probe charge density and the function

=
∼
ω πnr r( ) 4 ( )p

2 stands for the frequency of the local plasmon at r. Here a
constant damping γ has been introduced in a straightforward way.
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Eq. (7) is an integral equation, which in the case of a metal de-
scribed by a Drude dielectric function is strictly equivalent to Poisson
equation. In particular, it is straightforward to prove this last statement
in the case of a homogeneous medium. For an arbitrarily shaped sharp
interface Eq. (7) can be recast in terms of a surface density, leading to
the same equation used in the BEM method [3]. In the case of a planar
interface where the local plasmon frequency varies continuously along
the normal direction x, [see Fig. 1a)], so that =

∼ ∼
ω ω xr( ) ( ),p p

2 2 Eq. (7) can
be recast as a differential equation, which is also fully equivalent to the
Poisson equation in a medium with a local Drude dielectric response

= − +
∼

x ω ω x ω ω γϵ( , ) 1 ( )/[ ( ı )]p
2 [9].

Given that dispersive effects emerge in a simple way in the k-space,
we Fourier transform Eq. (7),

∫

∫

+ −
+

−

=
+

−

∼

∼

ω ω iγ ρ ω
π

dq
q k Q

q
ω k q ρ ω

π
dq

q k Q
q

ω k q ρ ω

k q

q

( ) ( , ) 1
2

( ) ( , )

1
2

( ) ( , ),

x
x x

p x x

x
x x

p x x

2

2
2

2

2
2

0 (8)

where Q≡ (qy, qz) stands for the parallel components of the momentum
= qq Q( , ),x = kk Q( , )x and

∼
ω k( )p x

2 is the Fourier transform of
∼
ω x( )p

2 .
In order to introduce the dispersion we assume that its effects are

also ruled by a local parameter
∼
β x( ),2 and that they can be described

through an extra force in Eq. (8). The linearized pressure term of the
hydrodynamic theory [52] provides a hint about the form of this cor-
rection, but it is not enough to determine its expression. Here this term
has been taken in such a way that in both limiting cases, the homo-
geneous medium and the sharp interface, the known results of the di-
electric theory are recovered. Under these conditions the simplest
generalization of Eq. (8) is

∫

∫

+ − − + −

= −

∼∼

∼

ω ω γ ρ ω
π

dq
q

ω k q β k q q ρ

ω

π
dq

q
ω k q ρ ω

k
q k

q
q k

q

( ı ) ( , ) 1
2

.
[ ( ) ( ) ]

( , )
1

2
.

( ) ( , ).

x p x x x x

x p x x

2
2 2 2

2
2

0 (9)

Note that the solution of this equation trivially verifies

= − −ρ ω ρ ωk k( , ) ( , )*, (10)

where z* stands for the complex conjugate of z, a condition that ensures
that the induced charge density ρ(r, t) is a real function.

Eq. (9) is a Fredholm integral equation of the second kind [53], which
states the linearity of the response of the medium in a general form:
both the free and the induced densities are linearly related through the
convolution with a boundary-dependent kernel.

In the case of a homogeneous medium, [ =
∼
ω x ω( ) ,p p

2 2 =
∼
β x β( )2 2], the

solution of this equation,

=
+ − −

ρ ω
ω

ω ω iγ ω β k
ρ ωk k( , )

( )
( , ),p

p

2

2 2 2 0
(11)

matches the one obtained in the dielectric formalism with the HDF.
Assuming the continuity of the function

∼
β x( ),2 this equation can be

written back in the x space as:

∫

+ − −

− ′ − ′ ′

+ ∂
∂

∂
∂

= +

∼

∼

∼

∼

∼
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− ∣ − ′∣
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x
ρ x Q ω
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π
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4
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2
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2
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where sgn(x) stands for the sign function. Finally this equation can be
fully recast in the real space as

∫

∫

∇ + + −

+ ∇ ∇ ′
′

∣ ′ − ∣
+ ∇ ∇

= − ∇ ∇ ′
′

∣ ′ − ∣

∼

∼
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β ρ ω ω γ ω ω ρ ω
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ω d

ρ ω
β ρ ω
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π
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r
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r
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4
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4
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,

͠

͠

p

p

p p

2

2

2 2

2

2
0

2 0

(13)

which manifestly exhibits the independence of the response on the
coordinate system used in its derivation. Therefore it is reasonable to
think that this equation is valid for arbitrary shaped interfaces.

Eqs. (12) and (13) are integro-differential equations, and in a gen-
eral case they look as cumbersome to solve as their counterpart in k
space. Nevertheless, an interesting application of these equations is that
of a sharp interface, where, although both functions∼ωp

2 and β͠ 2 are not
continuous at the interface, can be considered as the limiting case of a
extremely thin interface. Then, inside the medium, Eq. (13) turns out to
be a Helmholtz equation, which for simple shaped targets admits an
analytical solution in terms of the natural coordinates associated to the
geometry of the surface. The interface terms in ∇

∼
β2 and ∇∼ωp

2 just pro-
vide the requested boundary condition. This procedure will be devel-
oped in the next section, where Eq. (12) will be used to check this
approach, by comparing its results to these obtained in the SRM ap-
proximation.

The induced charge density provides full information about the
probe-target interaction. For the particular case of a probe moving
parallel to the surface with velocity = vv (0, 0, ) and impact parameter
b, (Fig. 1a) where the probe charge density is

= −−ρ ω πe δ ω k vk( , ) 2 ( ),k b
z0

ı x one can remove the explicit kz depen-
dence of the induced charge density by writing

= −ρ ω ρ k Q ω δ ω k vk( , ) ^ ( , , ) ( )x z where = +Q k ω v( / )y
2 2 2. Then the in-

duced potential is

∫= +ϕ ω
π v

dk dk
ρ k Q ω

k
e er( , ) 1

2

^ ( , , )
.ind x y

x i k x k y i ωz
v

2 2
( )x y

(14)

Making use of Eq. (10) one can calculate the momentum transfer per
unit path length,

∫ ∫ ∫= −
∂

∂
= −

∞ ∞

−∞

∞p
z v

ϕ
x

dω dk dk k k k ω
Δ
Δ

1 | Σ( , , )x ind
traj y x x x y0 0 (15)

∫ ∫ ∫= −
∂

∂
= −

∞ ∞

−∞

∞p
z v

ϕ
z

dω dk dk ω
v

k k ω
Δ
Δ

1 | Σ( , , ),z ind
traj y x x y0 0 (16)

where the derivatives of the induced potential are evaluated at the
probe position [ = b vtr ( , 0, )],

= − ⎡
⎣⎢

⎤
⎦⎥

k k ω
π v

m
ρ k Q ω e

k
Σ( , , ) 1 ( , , )

x y
x

ik b

3 2 2

x
�

(17)

and m R[ ]� stands for the imaginary part of R. The set of Eqs. (15) and
(16) states that the scattering of the probe is the sum of the

Fig. 1. (a) Sketch of the probe interacting with a diffuse interface. (b) Profile of
the unperturbed charge density near the interface. Red circles (∘) correspond to
the Table I ( =r a2s 0) of Ref. [51], while the black line is the analytical ap-
proximation used in the present work. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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contributions of excitations of energy ω and momentum
= −k k k ωv( , ,x y z

1), with excitation probability (per unit length) given
by the function Σ(kx, Q, ω). From Eq. (16) the energy loss probability
per unit length is obtained as:

∫ ∫=
∞

−∞

∞dP ω
dω dz

dk dk k k ω( ) Σ( , , ).y x x y0 (18)

3. Analytical solution for a sharp interface

Let us consider a semi-infinite medium bounded by a flat interface
at =x 0. The medium is confined in the left half-space, so that

= −
∼
ω x ω H x( ) ( )p p

2 2 and = −
∼
β x β H x( ) ( ),2 2 where H(x) is the Heaviside

function and ωp
2 and β2 are the bulk values of these parameters in the

medium.

3.1. External trajectory

When the probe moves outside the metal (b>0) Eq. (12) admits a
simple piecewise solution that only depends on an arbitrary function
A(Q, ω):

= <

= >

ρ x Q ω A Q ω e x

x

^ ( , , ) ( , ) 0

0 0,

μx

(19)

where μ is the root of the equation = + − +−μ Q β ω ω ω iγ[ ( )]p
2 2 2 2 with

positive real part. To calculate A(Q, ω), one can formally integrate
Eq. (12) in an infinitesimal interval around =x 0. Then the surface
terms of this equation lead to the following boundary condition at the
interface:

∫ − ∂
∂

∣ =
−∞ =

−−ω dxe ρ x Q ω β
x

ρ x Q ω πω e^ ( , , ) 2 ^ ( , , ) 2 ,p
Qx

x p
Qb2 0 2

0
2

(20)

where the derivative of the charge density has been evaluated in the
limit → −x 0 . The coefficient A(Q, ω) can be straightforwardly obtained
from Eq. (20), so that the induced charge density is

=
+

− +
<

=
>

−

ρ x Q ω
πω Q μ e

ω β μ Q μ
e x

x

^ ( , , )
2 ( )

2 ( )
0,

0,
0.

p
Qb

p

μx
2

2 2

(21)

By writting this solution back in k space,

=
+

− + +

−

ρ k Q ω
πiω Q μ e

ω β μ Q μ k iμ
^ ( , , )

2 ( )
2 ( )

1 ,x
p

Qb

p x

2

2 2 (22)

we find that the kx dependence of the induced density is not quadratic,
reflecting the anisotropy of the medium response in the direction
normal to the interface. In the limit of very weak dispersion (β→ 0)
expression (22) reduces to

=
− +

−ρ k Q ω
πω

ω ω ω iγ
e^ ( , , )

2
2 ( )

.x
p

p

Qb
2

2 (23)

The independence of this expression on kx implies that in the local
approach the induced charge is on the surface. It can be easily shown
that the corresponding surface charge density is the same obtained in
the local dielectric approach for a Drude dielectric function [2].

Once the induced charge density is known, the induced potential
outside the metal (x>0) is easily calculated:

∫=
− +

− +
ϕ ω

ω
v

dk
Q

e e e
ω β μ Q μ

r( , )
[ 2 ( )]

.ind
p y Q x b ik y i

p

2 ( )

2 2

y
ωz
v

(24)

The dispersion relation of the surface plasmon is then given by the poles
of integral function, i.e., + =β μ Q μ ω2 ( ) p

2 2. Neglecting the damping,
and for small values of Q, the following dispersion relation is obtained:

= +ω Q ω
βQ
ω

( ) (1
2

),s
s (25)

where =ω ω / 2s p is the frequency of the undispersed surface plasmon.
This dispersion relation is a well known expression, first derived by
Ritchie using Bloch’s equation [30], and by Ritchie and Marusak using
the SRM [31]. Actually, following ref. [34] it is easy to prove that the
induced potential (24) is the same as the one derived in the SRM for the
HDF. This potential is also the solution of the hydrodynamic model used
by García-Lekue and Pitarke [54].

The energy loss probability per unit length is calculated from
Eq. (18). After integration on kx, it reduces to the following expression:

∫=
− +

∞ −dP
dz dω

ω
πv

dk e
Q

Im
ω β μ Q μ

2
[ 1

2 ( )
].p

y
Qb

p

2

2 0

2

2 2 (26)

This result also matches the one obtained with the SRM [34] or with the
hydrodynamic model of ref. [54]. In the limit β→ 0, Eq. (26) reduces to
the well known local expression [55].

3.2. Inner trajectories

When the probe is traveling parallel to the interface through the
medium (b<0), the regular solution of Eq. (12) can be splitted as:

= + <

= >

− ∣ − ∣ρ x Q ω A Q ω e B Q ω e x

x

^ ( , , ) ( , ) ( , ) 0

0 0,

μ x b μx

(27)

where μ is defined as in Eq. (19). The coefficients A and B can be cal-
culated from the discontinuity of the derivative of ρ(x, Q, ω) at the
probe position ( =x b) and from the boundary condition (Eq. 20) at the
interface. After some trivial algebra one finds they are given by:

= −

=
+

− +

+
+

− +
+

− +
+

−

A Q ω
πω
μβ

B Q ω
πω Q μ e
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πω Q μ
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( ) 2 ( )
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p

p
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p
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p
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2

2

2 2

2

2 2 2

2

2

(28)

The physical meaning of Eq. (27) is more clear when written in the k
space:

=
+ − −

+
−

+
+

−

ρ k Q ω
πω e

ω ω iγ ω β k
iA Q ω e

k iμ
iB Q ω
k iμ

^ ( , , )
2

( )
( , ) ( , ) .x

p
ik b

p

μb

x x

2

2 2 2

x

(29)

The contribution of the first term of Eq. (29) to the momentum
transfer (Eq. (15)–(17)) has no dependence on the impact parameter b;
this term just represents the screening charge density due to bulk ex-
citations in a unbounded medium (Eq. (11)). The energy loss derived
from this term consists of the sum of contributions of bulk plasmons
ω(k) with dispersion relation = +ω k ω β k( ) p

2 2 2 . The exponential de-
pendence on b of the remaining two terms of Eq. (29) identifies them as
the surface contribution to the induced charge density. The frequencies
at which these contributions occur are centered at the poles of the
coefficients A and B. The coefficient A presents a single pole at =μ 0,
which also corresponds to bulk plasmons, but now the dispersion only
depends on the parallel momentum Q: = +ω ω β Qk( ) ,p

2 2 2 reflecting
the anisotropy of the response introduced by the interface. The first
term of B in Eq. (28) is the same found for external trajectories
(Eq. (21)), and its pole ( − + =ω β μ Q μ2 ( ) 0p

2 2 ) represents excitations of
surface plasmons with dispersion relation given by (25). The poles of
the second term of B correspond to surface plasmon excitations as well
as to bulk modes =μ 0, and =ω ωp). These surface corrections to the
bulk plasmon excitation constitute the well known Begrenzung (or
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Boundary) effect [1].
It can be demonstrated that the potential induced by the charge

density (29) is also the same obtained in the SRM for the HDF.
Note that the piecewise solutions (21) and (27) are not strictly

consistent with the initial Eq. (12), which implicitly requires the con-
tinuity of ρ x Q ω^ ( , , ) along the interface. A simple inspection proves that
the solution (22) does not satisfy exactly the Fredholm Eq. (9); it is just
an approximate solution, suitable for small kx values. The explanation
of this apparently contradictory result is that the current theory implies
a smooth variation of the density profile along the interface, and
therefore the use of this model in sharp surfaces is not fully consistent.
In Fig. 2 we compare the induced charge density obtained by solving
numerically the Fredholm equation for a sharp interface (continuous
red line) to that of the approximate solution (Eq. (22)) (dotted red line);
the overall shape of these plots is rather similar near the kx origin; the
real part being an odd function, while the imaginary part is an even
one. The difference of the imaginary part occurs for large kx values
(kx>0.3 Å−1), with a negligible contribution to the stopping power.
Actually an arguably better -but still approximate- solution of Eq. (12)
could have been obtained by taking in Eq. (20) the average value of the
derivative ∂ β͠x at both sides of the interface. As the main aim of this
section is to show the soundness of the theoretical approach, we have
not studied this solution. From now on, results derived from the ap-
proximate solutions (22) and (27) will be referred as SRM.

In the same way the response of a film can be straightforwardly
calculated, recovering the results found by de Andres and coworkers
[39].

The fact that the present model recovers the known results in two
limiting cases; the unbounded medium (Eq. (11)), as well as that of a
semi-infinite medium bounded by a sharp interface (Eqs. (22) and (29))
means that this model provides a solid approach to the study of non-
local effects in more realistically modeled interfaces.

4. EELS In diffuse interfaces

The former formalism is now applied to the study of the excitations
induced by a fast electron moving parallel to a diffuse Al-vacuum in-
terface, where the unperturbed electron density n(x) varies con-
tinuously along the interface as shown in Fig. 1 a). The density profile
has been modeled by fitting the tabulated values of Ref. [51] for

=r a2s 0 by a simple function, so that the local plasmon frequency writes

= − ⟶ = +
∼ ∼ −ω x

ω
erf x

λ
ω k ω πδ k i

k
e( )

2
[1 ( )] ( ) [ ( ) ],p

p
p x p x

x

λ k2
2

2 2 1
4 x

2 2

(30)

where erf(x) stands for the error function [56]. The best fit corresponds

to =λ a1.56 0. Although this parametrization irons out the Friedel os-
cillations present in the tabulated profile, the function (30) represents a
reliable approximation to these data. In our calculation we have taken

=ω 15.3p eV ( =r 2.12s a0) and =γ 1 eV.

One reasonable ansatz for the function
∼
β x( )2 is to assume the same

spatial profile of
∼
ω x( )p

2 (Eq. (30)); for such a sharp interface the result
does not differ significantly from the local function extrapolated from
the unbounded medium relation given by Eq. (2) and it greatly sim-
plifies the computation. Then Eq. (9) writes as:
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

(31)

where  stands for the Cauchy principal value of the integral.
A computational procedure to solve this equation is briefly dis-

cussed in Appendix A.
Fig. 2 shows the kx dependence of the real and imaginary parts of

the charge density, (at =ω ω / 2s p and =k 0y ), induced by a 100 keV
electron traveling with impact parameter =b 1 nm for different inter-
face models. To visualize the combined effect of the density profile and
dispersion three plots corresponding to the sharp interface have been
added: SRM =λ 0 (Eq. (22)), nonlocal =λ 0 (Eq. (31)), and local =λ 0
(Eq. (23)), as well as the local =λ a1.56 ,0 obtained from Eq. (31) with

=β 02 . The close similarity of the two nonlocal plots for a sharp in-
terface has been already discussed in the previous section. One re-
markable feature of these plots is that all them take the same value at
the kx origin. Given that ∫= =ρ k Q ω dxρ x Q ω^ ( 0, , ) ^ ( , , ),x i.e., the total
charge induced along the direction normal to the interface, this coin-
cidence just states that the total charge required to screen the external
field inside the metal is roughly the same, irrespectively of the sharp-
ness of the interface or of the k dependence of the response of the
medium. The most relevant effect of the surface diffuseness in the
scattering probability derives from the change of parity of the ima-
ginary part around =k 0x : the three plots corresponding to the sharp
interface behave locally as even functions, while those corresponding to
the diffuse interface have a non-negligible slope. This fact is relevant
given that at the surface plasmon resonance the real part of the charge
density is negligible, and therefore it is its imaginary part the one that
defines the scattering function Σ(kx, ky, ω).

In Fig. 3 a) it is shown the k contribution to the loss probability per
unit length, i.e.; the function vΣ(kx, ky, ω) at the surface plasmon energy
ωs, for a 100 keV electron with impact parameter =b nm1 . It represents

Fig. 2. Real and imaginary parts of the induced charge density ρ k Q ω^ ( , , )x at =ω ω / 2s p and =k 0y . The probe energy is 100 keV ( =v 76 a.u.) and the impact
parameter =b 1 nm. Plots corresponding to different models of the interface, local/nonlocal, diffuse ( =λ a1.56 0) / sharp ( =λ 0) are labelled as shown in a).
Parameters of the metal response: =ωℏ 15.3p eV, =γℏ 1 eV and =β 0.492 a.u.
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the probability of collecting an electron scattered at ωs with momentum
= −k k k ω v( , , Δ )x y z s

1 . Here we see that most of the electrons are scat-
tered with very low momentum transfer, so that for standard STEM
acceptance angles almost all the scattered electrons are collected in the
detector. In Fig. 3b) we display the difference of the probability of
exciting plasmons with − kx and kx transverse momentum. This aniso-
tropy is a direct consequence of the diffuseness of the interface; ne-
glecting the damping, in sharp interfaces (Eqs. (22) and (23)),

− = ★k k ω k k ωΣ( , , ) Σ( , , ) ,x y x y and consequently the contribution to the
transverse momentum transfer, Δpx, arises from the real part of the
induced density, whereas the longitudinal component Δpz arises from
its imaginary part. In particular around ωs, where the real part of the
induced density is very small, the contribution to the transverse mo-
mentum is negligible. The fact that for a sharp interface Δpx∼ 0 is a
physical consequence of sharpness of the interface; in the local case the
induce charge density lies on the interface, so that actually there is not
transverse momentum transfer associated to the surface excitations,
whereas the specular reflection assumed in the nonlocal approach
makes both ± kx excitations rougly equiprobable. Although the kx
anisotropy shown in Fig. 3b) is hardly resolvable with the current STEM
set-up, this effect could be relevant to understand the anomalous mo-
mentum transfer reported by Batson and coworkers [26]. Note that
although the positive correction shown in Fig. 3b) tends to reinforce the
attractive character of the transverse force at ωs, this contribution is
relevant in the overall excitation range, so that the contribution of the
full −ω ky space, as well as its impact parameter dependence, should
be more carefully studied.

In Fig. 4 we study the effect of the density spill-out on the loss
spectrum by comparing the loss probability per unit length experienced
by an electron moving near an Al diffuse interface to the SRM result. In
the case of external trajectories, spectra corresponding to the local di-
electric approaches are also plotted; sharp (local =λ 0) and diffuse
interface (local =λ a1.56 0). For distant probe trajectories (Fig. 4a) the
loss spectra are rather similar; this fact is a consequence of the simi-
larity of the induced density in the reduced k interval contributing to
the inelastic scattering (Fig. 2). For beam trajectories closer to the
surface [ Fig. 4 b)] however, the energy of loss peak presents a larger
dispersion, and the intensity of the local =λ 0 plot is significantly
higher, a consequence of the unphysical extension of the dielectric re-
sponse to high k values. In Fig. 4b) the spectra have been extended
above the bulk plasmon energy, confirming that probes with external
trajectories are not able to excite bulk plasmons, even when traveling at
grazing incidence. A recent theoretical work in the frame of the hy-
drodynamic model [43] has shown that bulk modes can be excited in

nanoparticles by external probes. Preliminary results for nanoparticles
obtained from Eq. (13) also confirm this last observation. The fact that
in planar interfaces bulk modes are not present in the spectra suggests
that the excitation of bulk modes by external probes is restricted to the
case of small targets where the charge density penetration depth around
ωp is comparable to the size of the target.

For trajectories inside the metal (Fig. 4c) and d)) the spectra feature
the Begrenzung effect found in Section 3: for probe positions very close
to the interface (Fig. 4c)) the spectra consist basically of a large surface
peak around 11 eV; the bulk plasmon excitation is almost completely
inhibited in the sharp interface, whereas the diffuse interface plot
shows a small shoulder around the bulk plasmon energy ωp. Note that
the total integrated probability is roughly the same in both models,
suggesting that the probability fulfills a Bethe-like sum rule [57]. In the
case of a beam well inside the metal (Fig. 4d) the loss spectra feature
both bulk and surface peaks. Comparison with the loss spectrum in an
unbounded medium (dotted blue line in Fig. 4d) indicates that in ad-
dition to the reduction of the bulk loss peak intensity, it is now blue
shifted with respect to the energy corresponding to the unbounded case
( =ω 15.35 eV) to the values 15.40 eV (present theory) and 15.57 eV
(SRM). This surface induced dispersion of the bulk plasmon reflects the
different contribution of high kx components of the induced charge
density: in a sharp interface the fact that the induced density should
vanish at the interface poses a constraint on the possible values of kx;
the allowed momenta should be of the form: = −k πnb ,x

1 n being an odd
integer. For small values of b this quantification severely cancels the
low kx contributions to the loss spectrum; so that on the one hand it
implies a lowering of the intensity of the plasmon peak, and on the
other hand the energy of the allowed excitations, = +ω ω βk k( ) ,p p

2 2 is
then larger than that corresponding to an unbounded medium. The
effect of the electron spill-out in the bulk excitation probability is
twofold; on the one hand the shift of the bulk peak is marginally
smaller, and on the other hand near the interface (Fig. 4 c)) the in-
hibition of the bulk excitations is not total. Both effects are most likely
to be a consequence of the fact that in this case the former kx quanti-
fication condition is to some extent relaxed and the cancelation of the
low kx components is not total.

A remarkable feature of these plots is the close resemblance of the
spectra corresponding to = ±b nm.1 , a result which reflects the con-
tinuity of the induced potential as a function of b along the interface.

In Fig. 5 we study the combined effects of the dispersion and the
spill-out in the characteristic features of the loss spectra for non-pene-
trating trajectories as a function of the impact parameter. In Fig. 5a) the
impact parameter dependence of the peak intensity is analyzed. At large

Fig. 3. a) Momentum contribution to the loss peak at ωs. b) Transverse anisotropy of the loss function: = − −k k ω k k ω k ky ωΔΣ( , , ) Σ( , , ) Σ( , , )x y x y x . Parameters of the
simulation as in Fig. (2).

A. Rivacoba Ultramicroscopy 207 (2019) 112835

6



impact parameters all the models lead to a similar plasmon excitation
probability. It is an obvious consequence of the smallness of the mo-
mentum values of the components involved in the scattering, a fact
that, on the one hand, makes negligible dispersive corrections and that,
on the other hand, given that their large wave length is much larger
than the interfacial thickness (∼ λ) entails that these components are
insensitive to the interface profile. At grazing incidence, laying aside
the local theory for a sharp interface, which presents a logarithmic
divergence as b→ 0, it is mainly the interface profile, λ, what de-
termines the impact parameter dependence of the loss peak intensity;
diffuse profile plots are almost overlapping functions, as well as those
corresponding to the sharp dispersive interface. The inset of this figure
shows that this agreement between the plots corresponding to the dif-
fuse interface occurs even for beam trajectories well inside the tail of
the charge profile.

In Fig. 5b), we analyze the impact parameter dependence of the loss
peak energy. The plot corresponding to the local approach in a diffuse
interface (blue circles) shows that the effect of the spill-out is just to
reduce the surface excitation energy; this red-shift becomes more re-
levant as the beam is closer to (and outside) the interface. The brisk
increase of the energy near the interface occurs for beam trajectories
very close to the interface (b≤ λ∼ 0.1nm), i.e., when the probe is
actually passing through a dilute electron gas. Both nonlocal spectra
corresponding to sharp interfaces exhibit a significant blue-shift relative
to ωs, a consequence of the surface plasmon dispersion which is larger
for the SRM. The plot corresponding to the non sharp dispersive in-
terface (nonlocal =λ a1.56 0) shows that the effect of the spill-out

compensates to a large extent the blue shift induced by the dispersion.
The shift is noticeable only at grazing incidence, when the probe travels
through the tail of the unperturbed gas density. The smallness of this
correction (Δω∼ 9 meV at =b 1 nm) confirms the suitability of the
local dielectric approach for primary spectroscopy. The thickness of the
interface λ proves to be critical to determine the energy of the interface
plasmon; so for instance, for =λ a2 0 the plot ω(b) turns out to be very
flat, lying about 2 meV below the local one (local =λ 0).

These plots are directly connected with the surface plasmon dis-
persion relation; the field created by the probe at the interface goes as

− ∣ ∣e ,Q b so that ∣ ∣−b 1 poses an effective cutoff to the range of Q components
contributing to the loss spectrum. For a sharp interface the local theory
(continuous green line) predicts no b dependence of the surface
plasmon energy (poles of ρ k Q ω^ ( , , )x in Eq. (23)), thereby its plot is
quite flat; the small variation of the loss peak energy in this figure
(about 12 meV along the full range of the plot) derives from the
damping of the dielectric function. For diffuse interfaces Feibelman
found that the local theory predicted negative dispersion of the surface
plasmon: = − ⊥ω Q ω QReal d( ) (0)[1 ( )],s s

1
2 where d⊥ is the centroid of

the induced density [8]. The corresponding plot (local =λ a1.56 0) in
Fig. 5 b) shows a qualitative agreement with this result. In the dis-
persive diffuse interface the almost flat plot suggests a weak positive
dispersion relation of the interface plasmon. This result is in reasonable
quantitative agreement with the surface plasmon dispersion relation
calculated by Ahlqvist and Apell, = +ω Q ω Q( ) (0)(1 Γ ),s s

1
2 where

=Γ 0.08 Å for the Lang-Kohn profile [48]. For ∼ −Q ωvmin
1 it leads to a

shift of about 4 meV, a value close to the one found in the

Fig. 4. EEL spectra for a 100 keV electron traveling parallel to an Al interface, for four different impact parameters: =b 1 nm (a), =b 0.1 nm (b), = −b 0.1 nm (c) and
= −b 1 nm (d). Solid black lines (labeled as nonlocal =λ 1.56 a0) correspond to the current theory. The SRM spectra (as well those of the local theory for diffuse

( =λ 1.56 a0) and sharp ( =λ 0) interfaces for external probe trajectories) have been added for comparison. In (d) the dash-dotted blue plot corresponds to the case of
an unbounded medium with the HDF (Eq. (1)). Parameters of the interface as in Fig. (2). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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corresponding plot of Fig. 5 b) at large impact parameters. This positive
weak dispersion could also be inferred from Ref. [45] for an interface of
similar thickness.

Although negative slopes in the surface plasmon dispersion have
been experimentally observed in simple metals [58–61], the dispersion
relation of the Al surface plasmon has been a matter of controversy over
the years. Although inelastic low energy electron diffraction experi-
ments by Duke and coworkers [62], indicated a negative slope of the
plot ωs(Q) at =Q 0, this result was not confirmed by EELS experiments
[63,64]. More recently angle-resolved energy loss experiments of slow
electrons (50 eV) in Al reported by Chiarello and coworkers confirmed
the negative slope of the dispersion relation [65]. Note that usually the
term of Surface Plasmon Dispersion assumes that the plasmon frequency
depends just on the parallel momentum; i.e., ω(Q), neglecting the de-
pendence of the excitation energy on the normal component. This as-
sumption is consistent with the SRM where the loss probability can be
written as an integral on Q (Eq. (26)), but it is not suitable in a more
general case. In Fig. 6 we study the dependence of the dispersion of the
loss peak energy on the impact parameter for different probe velocities.
In order to remove the influence of the damping, the shifts have been
calculated relative to the plasmon energy calculated in the local ap-
proach to the sharp interface [55]. Away from the interface (b≳ 4λ) the

plots can be described as a linear base line with negative slope plus
some weak oscillatory corrections. The slope of the base lines roughly
scale as −v ,1 suggesting that for distant trajectories (or small values of Q)
the dispersion presents the expected linear dependence on ∼ −Q ωv ,1

i.e., a positive dispersion relation ωs(Q). Nevertheless, for closer -but
still outside the density tail- trajectories, λ≲ b≲ 4λ all the plots exhibit
a marked red-shift suggesting that the of large k contribution presents a
noticeable negative dispersion.

The range of k involved in the Chiarello’s experiment is at least an
order of magnitude larger than the one probed in STEM, so both
techniques actually probe different regions of the excitation spectrum.
The results displayed in Figs. 5b and 6, shows that for Al the dispersion
relation is quite flat in the low k range involved in the inelastic scat-
tering of fast electrons, and that it critically depends on the parameter
λ. Nevertheless, the negative change in the slope shown in these plots at
grazing incidence implies that the contribution of large k components
tends to lower the excitation energy, reflecting a negative dispersion in
a momentum region out of the significant Q range involved in STEM
experiments. Note that also the small differences in the response along
different crystallographic directions could be responsible for the dis-
persion of the experimental data, as suggested by Krane and Raether
[64].

In Figs. 5b and 6 the loss peak energy presents a weak enhancement
at some equispaced values of b. The position of these oscillations does
not depend on the probe velocity, i.e., on Q, therefore they are asso-
ciated to transverse excitations, an assumption supported by their
equispaced positions and by the fact that these excitations are also
present at the same position in the local plot. They likely correspond to
the so-called Multipole Surface Plasmons [45], which have been experi-
mentally observed in reflexion experiments with low energy electrons
[65]. These small structures in the ω(b) plot can hardly be detected by
EELS experiments; in addition to the required meV resolution, these
excitations occur at large kx values, and therefore the scattered elec-
trons would be out of the collector aperture, but they could be relevant
in order to correctly estimate the transverse momentum transfer at
small impact parameters.

5. Conclusions

We have presented a new nonretarded approach to the nonlocal
interaction between a fast electron-probe and a metallic interface
whose unperturbed charge density varies smoothly in the normal di-
rection. The response of the medium is given by the induced charge
density, which in its turn is calculated in terms of the parameters of a

Fig. 5. Intensity (a) and energy (b) of the loss peak as a function of the impact
parameter b for an Al-vacuum interface. Both nonlocal plots (labeled as nonlocal

=λ a1.56 0 and nonlocal =λ 0), as well the local =λ a1.56 0 have been calculated
from Eq. (31). The SRM plot and the one labeled as local =λ 0 from Eq. (26)
and reference [55] respectively. The inset in (a) shows the detail of the plots for
small values of b. Plot colour code as shown in Fig. b). Electron energy =E 100
keV and the parameters of the metal as in Fig. (2).

Fig. 6. Shift of the energy of the loss peak as a function of the impact parameter
b for four energies of the probe. The the local plot (∘) has been shifted upwards
by 30 meV to fit in the figure (see Fig. 5b). In all the plots =λ a1.56 0.
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nonlocal bulk dielectric function containing the information about the
interface profile. In this way one avoids the problems posed by the
standard (SRM) application of the nonlocal dielectric theory.

This theory has been applied to a realistically shaped Al-vacuum
interface, finding that the effect of the density profile compensates to a
high extent the blue shift of the loss peak energy predicted by SRM, in
good agreement with previous theoretical and experimental results. The
balance between nonlocal and spill-out effects implies that the energy
of interface excitations is well given by the local approach for sharp
interfaces. The dispersion relation of the interface excitations also
provides a reasonable explanation to the spread of the experimental
results.

The results reinforce the idea that a sound dispersive approach to
interface excitations in EELS requires account to be taken of the density
profile along the interface, because the high momentum components
required to model the induced charge density in sharp interfaces lead to
a severe overestimation of the blue shift of the loss peak.

We have also shown that in the case of diffuse interfaces there is a
non-negligible transverse momentum transfer associated to the inter-
face plasmon excitation.

We have presented a generalization of this theory to study plasmon
excitations in targets of simple geometry, susceptible to be described by
separable coordinates (films, spheres, cylinders, dimmers etc). In par-
ticular it allows the study of the size effects in the plasmon excitation in
nanoparticles, where nonlocality introduces a new and relevant length
scale.

As presented in this paper, the main limitation of the theory is that it
is only applicable to simple metal-vacuum interface, where the medium
response can be expressed by a couple of local parameters:

∼
ωp

2 and
∼
β2.

The extension of this approach to an interface between two free elec-
tron metals, as the one studied in ref. [9], is trivial; it just requires the
change in the profile density (Eq. (30)). This theory can also be ex-
tended to deal with interfaces involving transition metals or insulators,
described by bulk nonlocal Drude-Lorentz dielectric functions, as re-
ported by Werner and coworkers [66]. In this case the medium would
be modeled as a set of n different electron bands, each of them char-
acterized by its unperturbed density ω ,p k( )

2 the dispersive parameter β k( )
2

and the frequency of a binding oscillator ω0(k) (here the index k labels
diferent bands), and the response of the medium would be given by a set
of n coupled Fredholm equations (one for each band). In this way this
approach would allow to extract detailed information on the local
composition of the sample from the interface plasmon maps.

A retarded formulation of this model is not straightforward, because
then the response of the medium involves a vector field, the current,
defined in the bulk. The extension of the retarded boundary element
method to take into account the spatial dispersion of the response in
abrupt interfaces proposed by Trügler and coworkers [44] could be of
guidance for the retarded generalization of the current theory.
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Appendix A. Computing the induced charge density

The simplest method of solving a Fredholm equation of the second order is to consider a numerical integration rule (see for instance Ref. [67]).
Let us consider the equation

∫=g x K x y f y dy( ) ( , ) ( )
a

b

(A.1)

where the function g(x) and the integral kernel K(x, y) are known and f(y) is the unknown function. One can approximate this equation by a linear
system of algebraic equations:

∑= ≤ ≤
=

g x w K x y f y a y b( ) ( , ) ( ) ,i
k

N

k i k k k
1 (A.2)

where = …i k N, 1, 2, and the points yk and their corresponding weighting factors, wk, are given by the particular integration method used. Then the
values of the function f(y) at the N points of the grid can be calculated, just by solving the linear system (A.2).

The contribution of the singularity to the principal part of the integral in Eq. (31) is accurately calculated from the odd derivatives of the integral
function, which can be obtained by a simple interpolation of the function.

The accuracy of this method depends on two computational parameters; one is the cut-off Qx posed to the qx integration interval in Eq. (31), the
other being the number N of points in the grid. In this work we have taken =N 1999 and = −Q a3 ,x 0

1 a value which assures that the contribution of
higher momenta to Eq. (31) is strongly damped by the gaussian factor associated to the interface thickness.

The simplest check of this numerical procedure is provided by the analytical result for a sharp interface metal-vacuum in the local approach [55],
a result which should be recovered as the solution of Eq. (31) for =λ 0, =β 02 . Note that this case is also the most unfavorable one, because the cut-
off associated to λ in the integral is missing. For the values of these parameters used in this work the error in the plot of the energy (Fig. 5b)) is
smaller than 4 meV for b≥ 1 nm, reaching 6 meV at =b 0.1 nm, while the relative error in the loss peak intensity (Fig. 5a)) is below 6% in the full b
range. The accuracy of this calculation is improved by extending Qx; so for instance for = −Q a5 ,x 0

1 these figures are reduced by half.
This procedure works much better for diffuse interfaces, where the gaussian factor in the integral of Eq. (31) assures a fast convergence of the

solution of the Fredholm equation. In this case, the errors in Fig. 5 have been estimated by comparing the solution to that corresponding to =N 999
and = −Q a2x 0

1; then the error in energy peak is less than 2 meV, while the error of its height is about 1% in the full b range investigated in this work.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ultramic.2019.112835
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