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Abstract 

Three series of aliphatic random copolycarbonates, poly(heptane-co-dodecane carbonate) 

P7C-P12C, poly(butane-co-dodecane carbonate) P4C-P12C and poly(butane-co-heptane 

carbonate) P4C-P7C, were synthesized by two-step polycondensation process. The 

organocatalyst 4-(dimethylamino) pyridine (DMAP) was used for the first time to prepare 

copolycarbonates, as an alternative to metal catalysts, to avoid the toxicity of the remaining 

catalysts impurities that are difficult to remove after synthesis. Differential scanning calorimeter 

studies demonstrated the isodimorphic character of the copolycarbonates showing pseudo-

eutectic points and the crystallization in a wide composition range. Wide angle X-ray scattering 

(WAXS) results displayed changes in crystallographic plane spacings possibly due to the 

isodimorphic behavior of the systems. Two double crystalline copolymers were obtained, i.e., 

85/15 P4C-P12C and 80/20 P7C-P12C, as they correspond to pseudo-eutectic compositions. 

Remarkably, for the 80/20 P7C-P12C copolycarbonate, we found a novel behavior. This 

copolymer exhibits both coincident crystallization and coincident melting during non-isothermal 

DSC runs. However, WAXS revealed that the material is double crystalline as it contains crystals 

from P7C-rich and P12C-rich phases. This is the first example of a double crystalline polymeric 

material that exhibits a single crystallization and a single melting peak, in spite of being double 

crystalline. Comparing the results obtained for the 3 series of copolycarbonates, we can conclude 

that it is easier to incorporate a shorter repeating unit chain segment in a crystal formed by a larger 

repeating unit chain segment.  
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Introduction 

Aliphatic polycarbonates were first described by Carothers’ laboratory at Dupont in the 

1930s. Due to their low glass transition temperatures and high susceptibility to hydrolysis, their 

industrial implementation has not been highly extended. Nevertheless, in this century, studies on 

aliphatic polycarbonates have shown the importance of this class of materials as versatile 

biodegradable polymers in the biomedical field, not only due to their high susceptibility to 

hydrolysis but also because of their biocompatibility and lack of toxicity.1-5 

Historically, polycarbonates have been synthesized by three different methods: ring-opening 

polymerization (ROP),6-9 copolymerization between epoxy and CO2,10-12 and by polycondensation 

between diols and dimethyl or diphenyl carbonate.13 The polycondensation route is the most 

appropriate for large scale production and allows tuning the chemical nature of the aliphatic 

polycarbonates starting from a wide variety of commercially available diols.  

The synthesis of polycarbonates by polycondensation is usually catalyzed by metals. Typical 

examples are: poly(octamethylene carbonate) by TiO2/SiO2-poly(vinyl pyrrolidone) based 

catalyst, TSP-44,14 copolymers based on poly(butylene carbonate) and poly(hexamethylene 

carbonate) using the same catalyst,15 and copolymers of (poly(butylene carbonate) and 

poly(decamethylene carbonate)) by employing sodium acetylacetonate, NaAcas.16 Even though 

these catalysts provide high molar mass aliphatic polycarbonates (100 kg/mol),17 alternatives are 

desired in biomedical applications due to the potential toxicity of the remaining catalysts 

impurities.13 Thus, the use of organocatalysts is gaining significant interest in the last few years.13 

Among all investigated organocatalysts, 4-(dimethylamino)pyridine (DMAP) has shown so far 

the best performance in the synthesis of polycarbonates18,19 and its potential for the preparation of 

different aliphatic polycarbonates homopolymers.18,20,21 In spite of the benefits of this catalyst to 

favor homopolymerization reactions, the use of this catalyst to synthesize copolymers has not yet 

been exploited.  

Random copolymerization has been used widely as a method of combining the properties of 

two different homopolymers, and in the case of polycarbonates, it is also helpful for limiting 



3 
 

crystallinity degrees and tailoring biodegradation rates. While these aspects have been 

investigated in the case of polycarbonate copolymers, metal-based catalysts were always 

used.15,16,22  

In terms of crystallization, random copolymers can develop isomorphic or isodimorphic 

behaviors as long as repeating units are not completely excluded from the crystals of the main 

component. Isomorphism only occurs when repeating units are strictly similar in chemical 

structure, and therefore, a sigle crystalline phase which contains both repeating units is observed 

without large variations in their crystal structure over all compositions. In isodimorphic 

copolymers, depending on composition, two crystal structures which resemble those of the 

homopolymers are found, while they show a single phase melt. In each phase, repeating units of 

the minor component are included in the crystal lattice of the major component and vice versa. 

Upon increasing the concentration of the minor component within the major component rich 

crystalline phase, the copolymers melting point and crystallinity decrease.23  

In this work, the synthesis, structure and properties of three series of aliphatic random 

polycarbonates denoted poly(heptane-co-dodecane carbonate) P7C-P12C (odd-even), 

poly(butane-co-dodecane carbonate) P4C-P12C (even-even) and poly(butane-co-heptane 

carbonate) P4C-P7C (odd-even) have been studied. In all cases, different compositions were 

synthesized using DMAP as organocatalyst in a two-step polycondensation process. The thermal 

properties, structure, and morphology of all the copolymers were analyzed. A comparison 

between the three systems was made for the first time in order to identify the differences between 

copolymerizing even-odd or even-even polycarbonates. For this purpose, the synthesized 

copolymers have been characterized by Differential Scanning Calorimetry (DSC), Wide Angle 

X-ray Scattering (WAXS), Polarized Light Optical Microscopy (PLOM) and Small Angle X-ray 

Scattering (SAXS).  
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1. Experimental 

1.1. Materials 

Dry dimethyl carbonate (99+ %) and 4-dimethylaminopyridine (DMAP) (99%) were 

purchased from Across Organics. 1,4-butanediol (99+ %), 1,7-heptanediol (95%), 1,8-octanediol 

(99+ %), and 1,12-dodecanediol (98%) were supplied by Across Organics. All diols and DMAP 

were dried for 5 h before use. Dichloromethane (DCM) (Cerfified AR for Analysis) and methanol 

(MeOH) (Certified AR for Analysis) were purchased by Fisher Scientific, Tetrahydrofurane (SEC 

grade) was obtained from Scharlab, toluene (HPLC grace) from Sigma-Aldrich, and deuterated 

chloroform (99.8%) from Deutero GmbH. 

1.2. Synthesis of copolymers: P7C-P12C, P4C-P12C, P4C-P7C  

The copolymers were synthesized via melt polycondensation following our previous work.21 

In the first step, dried reagents were introduced in a 50 mL schlenk flask, which was placed in an 

oil bath at 130 °C, over 4 h. During the second step, the temperature was raised to 180 °C, and 

high vacuum was applied overnight. Using this methodology, three different polycarbonates 

families were synthesized, changing the structure of diols and the mol ratio of diols. For all 

polycarbonates, a molar ratio of DMC:diol:DMAP 2:1:0.01 was used. For instance, P4C-P7C 

60:40 mol% was synthesized using the following amounts of reactants: DMC (8 mL, 95 mmol, 2 

eq.), diols (1 eq.): 1,4-butanediol (2.57 g, 28.48 mmol, 0.60 eq.), 1,7-heptanediol (2.51 g, 18.99 

mmol, 0.4 eq), DMAP (57.9 mg, 0.475 mmol, 0.01 eq.). After the reaction was completed, the 

polymers were dissolved in dichloromethane and precipitated in cold methanol. 1H NMR was 

used to confirm the disappearance of the monomers. The final composition of the polymer was 

determined by 1H NMR (CDCl3, 400 MHz), as an example P4C:P7C, δ= 4.15 (t, OCOOCH2, 4H 

(P4C)), 4.11 (t, OCOOCH2, 4H (P7C)), 1.77 (t, OCOOCH2CH2, 4H (P4C)), 1.66 (t, 

OCOOCH2CH2, 4H (P7C)), 1.36 (t, OCOOCH2CH2CH2CH2CH2CH2CH2OCOO, 6H (P7C)). The 

polymerization yield was gravimetrically obtained (yield = 85 %). 
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1.3. Characterization methods 

1.3.1.  Magnetic Resonance (NMR) 

The 1H and 13C Nuclear Magnetic Resonance (NMR) spectra were registered on a Bruker 

Avance NEO 500 spectrometer, equipped with a BBOF probe with gradient in Z axis. The 13C 

spectrum was recorded using a decoupled sequence zgdc from Bruker library at 125.77 Mhz. A 

time domain of 64k, and a spectral width of 125000 Hz. Interpulse delay 2 s. Acquisition time 2 

s. Number of scans 512. 

1.3.2.  Size exclusion chromatography (SEC) 

Size exclusion chromatography (SEC) was employed to determine molar mass distributions. 

The synthesized materials were dissolved in THF (SEC grade) at a concentration of 5 mg mL−1 

and then filtered with a 0.45 mm nylon filter. The SEC components were three columns in series 

(Styragel HR2, HR4, and HR6 with pore sizes ranging from 102 to 106 Å), a precision pump 

(LC-20A, Shimadzu), an autosampler (Waters 717) and a differential refractometer (Waters 

2410). The SEC chromatograms were obtained at 35 °C with a 1 mL min−1flow rate of. Narrow 

polystyrene standards were employed for calibration, ranging from 595 to 3.95 · 10−6 g mol−1 (5th 

order universal calibration). 

1.3.3.  DSC Measurements 

The non-isothermal crystallization and melting properties of the homopolymer and 

copolymer samples were determined with a PerkinElmer 8500 Differential Scanning Calorimetry 

(DSC). An Intracooler III was used for cooling under ultrapure nitrogen flow and the DSC 

instrument was calibrated with indium, dodecane and tin standards. The sample mass was kept 

constant at approximately 5 mg and aluminium pans were used. DSC experiments were carried 

out in between −40 and +100 °C, and the cooling scans were recorded at 10 °C/min while the 

heating scans were measured at 20 ºC/min, except for specific experiments performed to 

determine the glass transitions temperatures. In this last case, the samples were quenched from 

the melt to −70 °C by employing ballistic cooling (an approximate rate of 250 ºC/min is generated 
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during ballistic cooling) to try to reduce as much as possible the crystallinity of the samples, then 

the Tg was determined from the subsequent DSC heating scans performed at 30 ºC/min. 

Self-nucleation experiments24-26 were also performed in two samples, 80/20 P7C-P12C and 

85/15 P4C-P12C, to separate the crystallization processes of the two components in the 

copolymers, as explained below in the text. These experiments were done using scanning rates of 

20 °C/min. 

1.3.4.  Simultaneous SAXS/WAXS Synchrotron measurements 

Simultaneous SAXS/WAXS data were obtained at beamline BL11-NCD of the ALBA 

Synchrotron facility near Barcelona in Spain. For non-isothermal measurements, samples were 

placed inside capillaries, and employing a Linkam THMS600 hot stage, which was coupled to a 

liquid nitrogen cooling system, cooling and heating scans were performed at a rate of 20ºC/min, 

while simultaneous SAXS/WAXS patterns were registered every 0.5 ºC. For the measurements 

at room temperature, 20 mg of each sample were placed in DSC pans, and SAXS/WAXS patterns 

were obtained at 25ºC after having cooled them from the melt in the DSC.  

For WAXS measurements the wavelength was λ=1.03 Å and a Rayonix LX255-HS detector 

with an active area of 85 x 255 mm2 (pixel size 40 µm2) was employed. The sample to detector 

distance was 154.69 mm with tilt angle of 29.23˚, and the intensity profile was reported as 

scattering intensity vs. scattering angle (2θ).  In the SAXS configuration, an ADSC Q315r 

detector, Poway, CA, USA, with a resolution of 3070 × 3070 pixels, pixel size of 102 µm2 was 

used. The sample-detector distance was 6495.0 mm with a tilt angle of 0º, and the intensity 

profiles were reported as scattering intensity versus scattering vector, q = 4πsinθλ−1. Silver 

behenate (SAXS) and chromium (III) oxide (WAXS) were employed to calibrate scattering 

vectors. 

1.3.5 Polarized Light Optical Microscopy (PLOM)  

The spherulitic morphology was observed with an Olympus BX51 polarized light optical 

microscope (PLOM), with a λ plate introduced in between the polarizers at 45°. An Olympus 
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SC50 digital camera was used to obtain the micrographs, and for a precise temperature control, a 

Linkam THMS600 hot stage connected to liquid nitrogen was employed. Film samples of 

copolycarbonates were prepared by casting from chloroform solutions (4 wt %). They were heated 

30 °C above their DSC melting peak and kept at this temperature for 3 min to erase thermal history 

and then they were cooled at 5 ºC/min to -10 ºC where micrographs were obtained. 

1.3.6 Dynamic mechanical analysis (DMTA) 

For Tg measurements, Dynamic Mechanical Analysis was performed using a TA Instruments 

DMA Q800 apparatus.  Scans were conducted from -100 to 170 ºC at a constant heating rate of 4 

ºC/min and a frequency of 1 Hz. 

 

1. Results and discussion 

1.1. Synthesis and chemical characterization of copolymers 

In this work, the synthesis of 3 different families of random aliphatic polycarbonates was 

carried out, as shown in Scheme 1. The monomers, 1,4-butanediol, 1,7-heptanediol and 1,12-

dodecanediol were co-reacted with dimethyl carbonate using a well-established two-step 

polycondensation process catalyzed by DMAP where high temperature and vacuum are important 

requirements to obtain high molar masses.21 Thus, in the first step, the reaction was maintained at 

130 °C during 4 h, whereas for the second step, the temperature was increased until 180 °C and 

the high vacuum was applied, leaving the reaction running overnight. With this method, a series 

of different copolymers poly(heptane-co-dodecane carbonate) P7C-P12C, poly(butane-co-

dodecane carbonate) P4C-P12C and poly(butane-co-heptane carbonate) P4C-P7C were 

synthesized (Scheme 1). 
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Scheme 1. Polycondensation of diols with dimethyl carbonate leading to random aliphatic polycarbonate 
copolymers investigated in this work. 

 

The chemical characterization of the copolymers was carried out by 1H NMR, 13C NMR, and 

SEC. The molar composition of the copolymers was determined 1H NMR technique. As an 

illustrative example, the obtained P4C-P7C random copolymer with an initial monomer feed of 

60:40 mol% is depicted in Figure 1a. The peak attributed to 3 CH2 methylene units in the middle 

of the repetitive unit corresponding to 1,7-heptanediol, integrates 6 protons. In this way, the value 

of the rest of the areas will be estimated with respect to that area, and thereby, the mol ratio of the 

repetitive units can be easily calculated. All the synthesized copolymers were analyzed using 

similar methodology, and further information is provided in Figure S1 and Figure S2 (see 

Supplementary Information). The compositions of the 24 copolymers synthesized are given in 

Table 1. Even if the initial monomer ratio and the final composition in the copolymer are not 

exactly the same, the final composition was similar to the feed. 
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Figure 1. a) 1H NMR of P4C-P7C 60:40 mol% in CDCl3, b) 13C NMR analysis of P4C-P7C 60:40 mol% 
in CDCl3. The signals of –OCOO- and -OCOOCH2-, 155.60 – 1555.20 ppm and 68.4 – 66.8 ppm zoomed 

respectively. 

Table 1. Chemical characterization of copolymers: P7C-P12C, P4C-P12C and P4C-P7C. 

Initial monomer 
feed % 

Copolymer 
composition 

SEC (PS standard) Randomnes 
(13C NMR) 

Heptane- 
diol 

Dodecane
-diol 

P7C P12C M
w
 Ð R 

95 05 95 5 27,000 1.8 0.64 
90 10 90 10 22,000 1. 7 0.65 
80 20 82 18 23,000 1.6 0.89 
70 30 67 33 19,000 1.9 1.13 
60 40 56 44 32,000 1,6 1.02 
50 50 43 57 23,000 1,7 0.98 
40 60 40 60 37,000 1,4 1.15 
20 80 16 84 31,000 1,6 0.79 

Butane- 
diol 

Dodecane
-diol 

     

95 05 94 6 18,000 1.6 0.77 
90 10 88 12 15,000 1.3 0.96 
85 15 82 18 9,500 1.7 1.09 
80 20 67 33 24,000 1.6 1.07 
60 40 55 45 16,000 1.5 1.09 
50 50 43 57 37,000 1.6 1.01 
40 60 34 66 24,000 1.6 1.06 
20 80 17 83 24,000 1.5 1.03 

Butane- 
diol 

Heptane- 
diol 

     

95 05 92 8 17,000 1.5 0.71 
90 10 85 15 24,000 1.4 0.72 
80 20 75 25 35,000 1.6 0.76 
60 40 66 44 16,000 1.4 1.02 
40 60 33 67 18,000 1.6 1.04 
20 80 21 79 9,000 1.6 0.99 
10 90 10 90 29,000 1.6 0.92 
05 95 6 94 24,000 1.6 0.62 
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The comonomer distribution in the copolymer (random, blocky, alternate) is a 

fundamental factor, which will significantly affect the final properties, such as crystallinity or 

biodegradation rate. The degree of randomness (R) of the copolymers is defined using equations 

(1), (2), and (3), and it is determined by 13C NMR analysis.16 Figure 1b shows the 13C NMR of 

P4C-P7C 60:40 mol% structure. The signals around 155 and 67 ppm, which are split in three and 

four peaks, are attributed to the carbonyl and –OCH2 carbon resonance, respectively. A correct 

assignment of the peaks is necessary to determine the different dyad sequences of the copolymers 

and consequently, the chemical structure of the copolymer. Additionally, the split of carbonyl 

resonance is evaluated to determine the microstructure of the copolymer (Figure S3-S5). The 

degree of the randomness can be obtained applying the following equations:  

R =  1
LnP4C

+  1
LnP7C

         (1) 

LnP4C  =  fP4C−P7C+2fP4C−P4C
fP4C−P7C

         (2) 

LnP7C  =  fP4C−P7C+2fP7C−P7C
fP4C−P7C

        (3) 

where fP4C-P4C, fP4C-P47, and fP7C-P7C describe the dyads fraction, whereas LnP4C and LnP4C determine 

the number-average sequence length of the repetitive units.  

The carbonyl resonance is split into three peaks at 155.50, 155.42, and 155.33 ppm, 

corresponding to the dyads P7C-P7C (fP7C-P7C), P4C-P7C (fP4C-P7C), and P4C-P4C (fP4C-P4C), 

respectively (Figure 1b). Based on the relative integrated areas (Figure S3-S5) and using 1-3 

equations, the microstructure of the copolymers is calculated. Considering that in block 

copolymers R equals 0, in random copolymers R equals 1, and in alternate copolymers R equals 

2, the microstructure of the copolymer is deduced (Table 1). The values are in most cases close 

to 1, a result that confirms the random nature of the aliphatic copolycarbonates, as expected from 

the chosen synthetic route. Additionally, the presence of the four dyads could be observed in the 

methylene –OCH2 resonances (dyads P7C-P4C, P7C-P7C, P4C,-P4C, P4C-P7, Figure 1b). The 

randomness character was also confirmed by the integration of the relative areas of the peaks 

which leads to a similar R value than that calculated with the carbonyl signals. 
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The molar mass has a direct effect on the thermal properties of the material. Therefore, 

the molar mass of the material was carefully determined by SEC in THF, using narrow 

polydispersities PS standards. A similar value for the weight average molecular weight for all 

copolymers is found, close to 20,000 g/mol (Table 1). The polydispersities obtained by the SEC 

measurements are common values in polycondensation based synthesis, values between 1.3 and 

2.0, (SEC traces can be observed in the Figure S6). These similar results facilitate the comparison 

of the different polycarbonates properties. 

 

1.2. Nonisothermal DSC Measurements 

Figure 2 shows the non-isothermal crystallization and melting behavior of P7C-P12C, 

P4C-P12C, and P4C-P7C co-polycarbonates. Tables 2, 3, and 4 report all transition temperatures 

and enthalpies.  

From a general view of the cooling and heating scans for the three copolymer families, it 

can be observed that most of the samples exhibit at least one crystallization and melting peak 

confirming that they crystallized in a wide composition range, even though they are truly random 

copolymers, as demonstrated by 13C NMR (Figure 1b). Furthermore, their crystallization and 

melting temperatures strongly depend on composition (Figure 2). The calorimetric results are 

consistent with isodimorphic behavior.23,27 Isodimorphism can explain how random copolymers 

can crystallize in a wide composition range (including 50/50 compositions) forming two 

crystalline phases that resemble those of the homopolymers. Each rich-phase crystals can 

incorporate (i.e., crystalline inclusion) some randomly distributed repeating units of the minor 

comonomer. 
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Table 2. Calorimetric quantities obtained by DSC for P7C-P12C copolymers. 

P7C/P12C  Tg (oC) 
DMTA  

Tg (oC) 
DSC Tm (oC)  ΔHm

  (J/g)  Tc (oC)  ΔHc
  (J/g)  

100/0  -12.3 -50 49.1 53 23.1 55 
95/05  -14.1 -50 45.2 39 16.1 45 
90/10  -18.4 -47 43.1 43 13.2 48 
80/20  -18.1 -45 40.4 55 9.2 52 
70/30  -19.2 -43 38.5 70 21.4 61 
60/40  -19.4 -44 38.4 60 23.2 59 
50/50  -19.7 -42 43.1 75 28.1 59 
40/60  -20.1 -39 47.7 64 33.2 62 
20/80  -21.9 -34 59.1 75 44.4 72 
0/100  -22.1 -35 70.1 64 51.1 99 

 

Table 3. Calorimetric quantities obtained by DSC for P4C-P12C copolymers. 

P4C/P12C  Tg (oC) 
DMTA  

Tg (oC) 
DSC Tm (oC)  ΔHm

  
(J/g)  

Tc 

(oC)  ΔHc
  (J/g)  Tcc (oC)  ΔHcc

  (J/g)  

100/0  -15.3 -36 62.1 55 4.5 10 24.9 25 
95/05  -13.2 -38 55.2 29   27.1 33 
90/10  -14.8 -36 47.6 36   5.3 28 
85/15   -39 40.3/14.1 34/2 -18.5 22   
80/20   -40 30.8 38 10.9 40   
60/40   -41 40.2 70 21.7 65   
50/50  -16.2 -37 42.7 53 26.9 53   
40/60  -15.3 -36 51.2 54 34.6 54   
20/80  -20.3 -37 59.4 73 43.7 71   
0/100  -22 -35 70.1 64 51.1 99   

 

Table 4. Calorimetric quantities obtained by DSC for P4C-P7C copolymers. 

P4C/P7C  Tg (oC) 
DSC Tm (oC)  ΔHm

  (J/g)  Tc (oC)  ΔHc
  (J/g)  Tcc (oC)  ΔHcc

  (J/g)  

100/0  -36 62.1 55 4.5 10 24.9 25 
95/05  -38 50.7 13     
90/10  -39 46.8 8     
80/20  -39 44.1 6     
60/40  -47       
40/60  -50       
20/80  -50 26.2 42 3.2 41   
10/90 -48 41.4 37 9.5 42   
05/95 -50 44.7 39 17.1 50   
0/100  -50 49.1 53 23.1 55   

 

When the results are analyzed in more detail, it is observed that all P7C-P12C 

compositions exhibit one crystallization peak (Figure 2a) and one melting peak (Figure 2b) except 

for neat P7C and the compositions rich in P7C (95/05 and 90/10). These three materials show two 



13 
 

melting peaks in Figure 2b. The origin of these two melting peaks could be due to a partial melting 

and recrystallization process or to polymorphic behavior. According to the WAXS results 

presented below, reorganization during the scan is the most likely reason, as no polymorphic 

behavior was detected. 

The P4C-P12C family has a similar behavior as compared with the previous system 

(Figure 2c and 2d). But in this case, the copolymers where P4C content is larger than 85% did not 

crystallize during cooling from the melt at 10 ºC/min (Figure 2c), and they undergo cold 

crystallization during the subsequent melting scan (Figure 2d). This behavior could be explained 

taking into account that the P4C homopolymer hardly crystallizes at this cooling rate (Figure 2c), 

and therefore it also shows a large cold crystallization exotherm in the subsequent heating scan 

(Figure 2d).  

    

   

0 20 40 60 80

 
  
  
  
  
  
  
  
  
 

He
at

 F
Lo

w 
En

do
 U

p 
(W

/g
)

Temperature (ºC)

a)
95/05 
90/10 
80/20 
70/30 
60/40 

40/60 
50/50 

20/80 
0/100 P12C

P7C 100/0

5 
W

/g

0 20 40 60 80 100

 
  
  
  
  
  
  
  
  
 

He
at

 F
Lo

w 
En

do
 U

p 
(W

/g
)

Temperature (ºC)

b)
95/05 
90/10 
80/20 
70/30 
60/40 

40/60 

50/50 

20/80 
0/100 P12C

P7C 100/0

5 
W

/g

-40 -20 0 20 40 60 80 100

 
  
  
  
  
  
  
  
  
  
 He

at
 F

Lo
w 

En
do

 U
p 

(W
/g

)

Temperature (ºC)

c)
95/05 
90/10 
85/15 
80/20 
60/40 

40/60 
50/50 

20/80 
0/100 P12C

P4C 100/0

2.
5 

W
/g

-40 -20 0 20 40 60 80 100

He
at

 F
Lo

w 
En

do
 U

p 
(W

/g
)

Temperature (ºC)

 
  
  
  
  
  
  
  
  
  
 

d)

95/05 
90/10 
85/15 
80/20 
60/40 

40/60 

50/50 

20/80 
0/100 P12C

P4C 100/0

2.
5 

W
/g



14 
 

   

Figure 2. (a), (c) and (e) cooling DSC scans from the melt at 10 ºC/min and (b), (d) and (f) subsequent 
heating scans at 20ºC/min for the indicated homopolymers and random copolymer samples.  
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WAXS in Figure 6a). During subsequent heating, Figure 3b, the P4C-rich phase can undergo 

cold-crystallization.  

However, when the P4C-rich phase is self-nucleated (Ts=46ºC in Domain II), Figure 3a, 

it can crystallize during cooling and a new crystallization exotherm develops at a higher 

temperature (14 ºC, indicated by an arrow in Figure 3a). Furthermore, at lower self-nucleation 

temperatures (i.e., 44 and 42 ºC), the P4C-rich phase can crystallize to saturation, while P12C-

rich phase`s crystallinity dramatically decreases, evidencing anti-nucleation. As it occurred in 

previous self-nucleation studies for double crystalline isodimorphic copolymers,28 this anti-

nucleation effect is probably caused by topological confinement produced in the interlamellar 

domains of P4C. During the subsequent cooling scan, after being self-nucleated, the P4C-rich 

phase crystallizes first, at higher temperatures, forming spherulites which act as a template for the 

P12C-rich phase. The P12C-rich phase crystallizes at lower temperatures within the interlamellar 

spaces of the P4C-rich phase spherulitic template. 

 

    

Figure 3. Self-nucleation of 85/15 P4C-P12C: (a) DSC cooling scans from the indicated self-nucleation 
(Ts) temperatures and (b) subsequent heating scans at 20 °C/min. 
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under the cooling and heating conditions employed. Therefore, not all the compositions show 

crystallization and melting peaks in the DSC scans (Figures 2e and 2f). Two possibilities could 

explain these results. Firstly, the inclusion of P4C comonomers within the P7C crystalline phase 

and vice versa may not be possible, and consequently, the copolymers are unable to crystallize in 

all the composition range, as it happens when total exclusion occurs. 

Total exclusion is the most frequently described case in random copolymers, and it occurs 

when the chemical structures of the two repeating units are very different from one another, which 

is not the case of these copolymers. Secondly, despite being isodimorphic copolymers, since the 

crystallization of both homopolymers is already slow and the exclusion of the minor comonomer 

units hinders the crystallization, only compositions with more than 80 % of P4C or less than 20 

% of P4C can crystallize with the thermal protocol applied. In any case, taking into account the 

similarities in their chemical structures, it may be possible that crystallization happens if 

extremely slow cooling is used. Additionally, WAXS results show that small but reproducible 

crystallographic plane spacings variation occurs as a function of comonomer composition. This 

evidence, together with the similarities in the chemical structure of the comonomers makes us 

conclude that this copolycarbonate family is also isodimorphic. 

Figures 4a and 4b show plots of peak crystallization and melting temperatures (obtained 

from Figure 2) for all the systems as a function of composition. All values are a strong function 

of composition, showing the characteristic pseudo-eutectic behavior of isodimorphic random 

copolymers. In the case of P7C-P12C and P4C-P12C systems, the eutectic point is found at high 

P7C and P4C percentages, 80/20 and 85/15, respectively (vertical lines have been drawn at those 

compositions in Figure 4). In the case of the P4C-P7C system, the pseudo-eutectic point would 

be at an intermediate composition, between 80 and 20% of P4C if it exists. As in most 

isodimorphic studies,23 in these systems the pseudo-eutectic point is found at compositions with 

higher comonomer content of the homopolymer with a lower melting point.  
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According to previous studies about isodimorphism,23 on each side of the pseudo-eutectic 

point, the copolymer can crystallize in the crystal lattice of one of the components, even if it is 

not the major component. This result is confirmed by the WAXS results presented below (Figure 

5).  

In the case of the P4C-P12C system, for compositions with 90% or more P4C content, 

only P4C-rich crystals are formed, and for compositions with 80% or more P12C content, only 

P12C-rich crystals are formed. Also, when the composition of the minor component increases, a 

decrease in the peak melting and crystallization temperature of the mayor component crystals is 

usually observed due to the frequent interruptions of its linear sequences by the minor comonomer 

repeating units. Therefore, by choosing carefully the copolymer composition, the 

copolycarbonates melting point (and therefore their applications) can be tailored from room 

temperature up to 100 °C. 
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Figure 4. Peak crystallization (a) and melting (b) temperatures as a function of copolymer composition 
for the indicated systems. 
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1.3. Wide Angle X-ray Scattering (WAXS) 

Figure 5 shows the WAXS patterns for the three synthesized copolymer families obtained at 

room temperature. 

   

Figure 5. WAXS diffractograms for samples cooled from the melt at 10 °C/min to 25 °C. Measurements 
were performed at 25 °C. (a) P7C-P12C, (b) P4C-P12C, and (c) P4C-P7C. 

 

The crystalline structures of P7C and P12C have not been reported in the literature as far 
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P12C, we have assigned the main reflections that appear at 14.18º and 16.00º 2θ values to (110) 

and (200) planes comparable to those reported for the orthorhombic polyethylene unit cell.30  

As explained before, although the 80/20 P7C-P12C composition, is close to the pseudo-

eutectic point, it only shows one crystallization peak (Figure 2a) and one melting peak (Figure 

2b) during the non-isothermal DSC scans. Unexpectedly, in WAXS, it clearly shows reflections 

that are characteristic of both homopolymers (Figure 5a). Therefore, in this case both 

crystallization and melting of the two types of crystal phases are coincident in temperature.  

For the cooling and heating rates employed (10 ºC/min), the 80/20 P7C-P12C and the 

85/15 P4C-P12C compositions (Figure 3) are the only copolymers that can develop double 

crystalline structures. Different experiments, such as self-nucleation (Figure S7a and S7b in 

Supporting Information) were performed to the 80/20 P7C-P12C composition, to try to separate 

the two phases that are present in the sample. WAXS patterns were also obtained every two 

degrees during cooling and heating scans, as shown in Figures S7c and S7d of the Supporting 

Information. Nevertheless, as the crystallization of both phases occurs at the same temperature, 

none of the experiments resulted in the separation of the two phases. Therefore, this copolymer, 

with composition 80/20 P7C-P12C, exhibits coincident crystallization and melting but it is a 

double crystalline material, as it contains two distinct crystalline phases (i.e., one P7C-rich crystal 

phase and one PC12-rich crystal phase). This is the first time we encounter an isodimorphic 

random copolymer with such peculiar characteristics. Previously, we have only studied 

isodimorphic copolyesters with coincident crystallization but with clearly separated melting 

points.28,31,32 

The other compositions of P7C-P12C copolymers have a typical behavior of 

isodimorphic random copolymers. The ones with more than 80% P7C only display WAXS 

patterns characteristic of neat P7C homopolymer and the compositions with more than 20% P12C 

display reflections that are consistent with a P12C homopolymer type unit cell. 
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WAXS results at 25 ºC of the P4C-P12C system (Figure 5b) show that all copolymers 

contain only one type of crystal lattice. The compositions with more than 85% of P4C only display 

WAXS patterns characteristic of neat P4C homopolymer crystals, whose main reflections appear 

at 14.04º and 14.33º corresponding to (103) and (113) planes consistent with a monoclinic unit 

cell.15,16,33,34 On the other hand, the compositions with more than 15% of P12C display reflections 

that are consistent with those of a P12C homopolymer which are similar to the orthorhombic 

polyethylene unit cell, as described above. Even though the DSC results showed two melting 

peaks for the composition 85/15 P4C-P12C, the WAXS pattern at 25 ºC only shows reflections 

corresponding to P4C-rich phase, because at this temperature the P12C-rich phase is in the melt 

state (see Figure 2d).  

To study the double crystalline behavior of the 85/15 P4C-P12C copolymer, the sample 

was first cooled from the melt, down to -20 ºC at 10 ºC/min. Then, WAXS patterns were measured 

every 2 degrees, while the sample was heated from -20ºC to the melt. Figure 6a shows how 

reflections of both phases are seen depending on the temperature. Furthermore, from the WAXS 

patterns obtained during the heating scan, the intensity values of the reflections of both phases 

(denoted with the numbers 1, 2 and 3, as indicated in the WAXS diffractogram of Figure 6b) were 

measured and plotted as a function of temperature in Figure 6b.  

When the sample was cooled from the melt at a rate of 10ºC/min, only the P12C-rich 

phase could crystallize, and therefore in Figure 6a at -20 ºC, only the two peaks corresponding to 

the P12C WAXS reflections (peaks 2 and 3) are observed. As the temperature increases the 

intensity of these two peaks decreases until they disappear at 10 ºC (Figure 6b). The same 

behavior occurs in the DSC results, where the first melting peak ends at this temperature (Figure 

2d). At 6 ºC, a new peak appears (peak 1), whose intensity increases, displaying a maximum at 

24 ºC (Figure 6b). This new reflection belongs to the P4C-rich crystalline phase that cold 

crystallizes during heating, like neat P4C. Hence, from 5 ºC to 10 ºC, both crystalline phases co-

exist.  
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It is worth noting that the WAXS results at 25ºC of the 85/15 P4C-P12C sample show 

two new reflections (see Figure 5b), to the left and to the right of the characteristic double-peak 

of the P4C-rich phase (identified on the WAXS spectrum for P4C as (103) and (113) reflections), 

which are not consistent with any reflection of P4C and P12C homopolymers. These new peaks 

also appear in some of the copolymers like 95/05 P4C-P12C and even in 95/05 P4C-P7C. A more 

detailed crystallographic study would be needed to ascertain the origin of these new reflections 

in these copolycarbonates, which could correspond to a new crystallographic phase.  

 

  

Figure 6. (a) 85/15 P4C-P12C WAXS patterns at the indicated temperatures, (b) Intensity values 
obtained from Figure 6a as a function of temperature. 
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of 10 ºC/min. In this case, results also display a pseudo-eutectic behavior, when they are plotted 

as a function of composition, as a consequence of comonomer exclusion during crystallization, 

which predominates over comonomer inclusion. 

Figure 7 reveals an interesting trend on how crystallinity decreases upon comonomer 

addition. If the copolymers were isomorphic and all chains could co-crystallize (i.e., 100% 

inclusion in the crystal lattice of both types of chains), the crystallinity would follow a linear trend 

with composition. In the case of isodimorphic random copolymers, there is a competition between 

inclusion and exclusion of the two comonomers inside the crystal lattice. Exclusion causes 

interruptions of linear crystallizable sequence lengths, and this is manifested in decreases in Tc, 

Tm, and crystallinity. 

Please note how in Figure 7, for the PC7-PC12 copolymers, the addition of PC7 to PC12 

(right-hand side of the pseudo-eutectic point), only causes very small decreases in crystallinity. 

However, on the left-hand side of the pseudo-eutectic point, incorporating PC12 to a PC7 chain 

causes a much larger decrease in crystallinity. These results indicate that it is easier to include 

PC7 comonomeric units into PC12 crystals than vice-versa. Similar behavior is displayed by the 

PC4-PC12 family. These results may be rationalized by the differences in repeating unit chain 

lengths within the crystal lattice. It is probably easier to incorporate a shorter repeating unit chain 

segment in a crystal formed by a larger repeating unit chain segment. 
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Figure 7. Crystallinity degree determined by WAXS as a function of composition for the indicated 
copolymers. 

 

Due to the difficulties to crystallize, P4C-P7C copolymers show the lowest crystallinity 
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dimensions tend to increase for compositions rich in the comonomer with a lower number of CH2 

units (i.e., P4C in P4C-P7C; P4C in P4C-P12C and P7C in P7C-P12C system), when longer chain 

comonomer units are included in the crystals. This enlargement in d values indicates that P4C and 

P7C crystal unit cells have to increase their volume to accommodate the extra bulkier repeating 

units.  

Inclusion of comonomer units with lower number of CH2 in the unit cell of crystals 

formed by comonomers with a higher number of CH2 units, leads to different situations, for 

instance:  

(a) in the case of P7C-rich compositions of the P4C-P7C system, d values reduce with 

P4C content as a result of a lower volume occupied by P4C units,  

(b) for P12C-rich compositions of the P4C-P12C system, d values increase with P4C 

content. This is an unexpected trend, that is probably a result of including multiple PC4 

comonomer units together with PC12 in the crystal, as they are even/even comonomers.  

(c) for compositions rich in P12C of the P7C-P12C system, d values remain constant 

(200) or decrease slightly (110), as in this case the comonomers exhibit the lowest difference in 

size of the 3 series and PC7 possibly fits well the PC12 unit cell with a slight unit cell 

contraction.35,36  

 

 

 

Figure 8. Diffraction spacings (d) of the indicated planes as a function of copolymer composition for the 
three systems. (a) P7C-P12C, (b) P4C-P12C and (c) P4C-P7C. 
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1.4. Small Angle X-ray Scattering (SAXS) 

SAXS results at 25 °C, after having cooled the samples from the melt (at 10 ºC/min) are 

shown in Figures 9a, 9b and 9c, where the intensity is plotted versus the scattering vector q.  

   

Figure 9. SAXS patterns for the indicated homopolymers and copolymers of the three copolycarbonate 
systems synthesized in this work. Measurements performed at 25 °C. (a) P7C-P12C, (b) P4C-P12C, and 

(c) P4C-P7C. 

 

For the three systems, all samples which were found to be semi-crystalline at these 
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Using equation (4), long period values were obtained for all crystalline samples and 

plotted in Figure 10a in which a vertical line has been drawn where the pseudo-eutectic point of 

each system is located.  
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d* = (2π)/qmax      (4) 

 

  

Figure 10. (a) Long periods (d*) measured by SAXS as a function of copolymer composition. (b) The 
calculated lamellar thickness for the d* values shown in (a). 

 

As explained above, the two systems, P4C-P12C and P7C-P12C, have similar behavior 
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with P12C and remains almost constant for compositions rich in P12C. On the other hand, in the 

case of P4C-P7C system, the addition of both comonomers increases the value of long period in 

comparison with each homopolymer. This increase in long period can correlate with changes in 

lamellar thickness and/or interlamellar regions. As it was observed in Figure 7, especially in this 

system, the crystallinity degree of copolymers largely decreases when compared with both 

homopolymers. A higher amount of amorphous phase could be contributing to an increase in the 

long period values since this does not occur for the P12C-rich compositions in the other systems 

where crystallinity degree remains almost constant.  

Using equation (5), lamellar thickness (l) values have also been calculated and plotted in 

Figure 10b.  

l = d* xv      (5)  
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xv is the crystalline volume fraction, which we have approximated to the mass fraction of crystals 

(xm), determined from WAXS patterns, because the density of the different copolymers has not 

been measured as a function of temperature. 

The calculated values exhibit, for the three systems, a decreasing trend in l with the 

addition of minor comomoner content, as a consequence of the incorporation of those 

comonomers into the chains that limit the length of crystallizable sequences. As it has been seen 

in previous results, the P4C-P7C system is the most affected in terms of crystallization, and this 

is reflected with the largest reduction in lamellar thickness. It is worth noticing that the behavior 

of the lamellar thickness as a function of composition (Figure 10b) exhibits a minimum value 

close to the pseudo-eutectic point, correlating qualitatively with Figures 4 and 7, especially for 

P4C-P12C and P7C-P12C copolycarbonates. Such a good correlation indicates the importance of 

the comonomeric inclusion/exclusion balance that occurs during crystallization in isodimorphic 

random copolymers. 

 

1.5. Polarized Light Optical Microscopy (PLOM) 

In order to study the effect of copolymer composition on the spherulitic morphologies, 

PLOM micrographs of some of the compositions were taken at -10ºC after cooling the samples 

from the melt at a rate of 5 °C/min. At this temperature spherulites were already impinged on one 

another. As seen in Figure 11, the three homopolymers show a relatively high nucleation density, 

which makes very difficult any study on spherulitic growth or nucleation kinetics. Also, as 

predicted by the results described above, copolymerization affects the structure of the samples, 

and in this case, the composition changes the morphology as the copolymers micrographs show 

an increase in nucleation density (in comparison with homopolymers) and consequently a 

reduction in spherulitic size.  

On the other hand, the study of morphology has also been used to analyze the double 

crystallization shown by some of the intermediate isodimorphic copolymers. Safari et al.37 and 
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Arandia et al.28 observed by PLOM double crystalline superstructures for PBS-ran-PCL and PBS-

ran-PBAz copolyesters. They reported a higher birefringence when PCL-rich or PBAz-rich 

phases crystallized inside the spherulitic semi-crystalline template previously formed (i.e., at 

higher temperatures during cooling from the melt) by PBS-rich phase spherulites. In this case, the 

high nuclei density also hinders the analysis of the double crystallinity showed by 80/20 P7C-

P12C and 85/15 P4C-P12C compositions, where similar results to those obtained in previous 

works would be expected. 

In semi-crystalline polymers, mechanical properties are usually related to the spherulitic size. 

For that reason, copolymerization has often been used as a way to tailor mechanical performance 

by modifying the composition.38,39 
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Figure 11. Polarized light optical micrographs for the indicated polycarbonates and copolycarbonates 
copolymers taken at -10 ºC.  

 

2. CONCLUSIONS 

Three series of random copolyesters were successfully synthesized by using a DMAP 

organocatalyst: P7C-P12C, P4C-P12C, and P4C-P7C, in a wide composition range. After 

analyzing the molar masses by SEC and the randomness of the materials through 13C NMR, results 

show that all copolymers have a similar molecular weight (20 kg mol-1) and are truly random. The 

isodimorphic character of the copolymers was demonstrated by DSC (presence of pseudo-eutectic 

points, crystallization of most compositions except for one of the systems) and by WAXS 

(changes in crystallographic plane spacings). For 80/20 P7C-P12C and 85/15 P4C-P12C (i.e., 

compositions at the pseudo-eutectic points), the copolycarbonates can develop double 

crystallinity. In the case of 85/15 P4C-P12C, the material exhibit coincident crystallization of 

both phases (which can be separated by self-nucleation) and separate melting. Such a behavior 

has been already reported in isodimorphic copolyesters and also in double crystalline diblock 

copolyesters, but never before in copolycarbonates. Remarkably, for the 80/20 P7C-P12C 

copolycarbonate, we found a novel behavior. This copolymer exhibits both coincident 

crystallization and coincident melting during non-isothermal DSC runs. However, WAXS 

revealed that the material is double crystalline as it contains crystals from P7C-rich and P12C-

rich phases. This is the first example of a double crystalline polymeric material that exhibits one 

crystallization and one melting peak, in spite of being double crystalline. 
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WAXS results revealed small reproducible variations in the crystalline unit cell of the 

dominant crystalline phase due to the inclusion of minor comonomer units. Moreover, these unit 

cell differences showed that the incorporation of shorter comonomer units into larger comonomer 

unit crystals is more probable, as well as when both comonomers are even (i.e., even/even 

copolycarbonates).  

 

Supporting Information 

1H NMR characterization of P7C-P12C 70/30 and P4C-P12C 50/50 copolymers, 13C NMR 

characterization of P7C-P12C, P4C-P12C and P4C-P7C copolymer systems with different mole 

ratios. Self-nucleation DSC and WAXS experiments of P4C-P12C 85/15 copolymer sample. 
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