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Part I

Initial part: Synthesis





Chapter 1

Introduction

Mad Hatter: You are trying to
understand madness with logic. This is
not unlike searching for darkness with a
torch.

Brian K. Vaughan, Detective Comics

Anomalous diffusion is a diffusion process which Mean Square Displacement (MSD) is not
a linear funtion of time, what is known as normal diffusion. When the relation is faster than
linear, it is called superdiffusion and when it is slower, subdiffusion. Physically, the MSD is a
measure of the deviation of the position of the particles over time. It can be thought as the
amount of space the particles have explored in the system.

On the one hand, anomalous diffusion has been shown to appear extensively in nature
and, consecuently, scientists have developed several and different models that can effectively
reproduce it. However, the underlying physics of a plethora of experiments is still not well-
understood. This is the case of the motion of mRNA molecules inside living E. coli cells [31],
where stochastic processes as the continuous-time random walk can explain non-ergodicity [66]
but an alternative like the fractional Brownian motion is needed to reproduce p-variation [51].
We find that a family of stochastic processes known as generalised grey Brownian motion [71]
can fit correctly that observation. In addition, we also use an explicit time-dependent fac-
tor to model non-stationarity, usually referred to aging [96] in the specialized literature. In
agreement with our computational results, we were able to obtain analytical expressions for
a list of observables too, including temporal and ensemble-average MSD, Ergodicity Breaking
parameter, one-point one-time probability density function and p-variation.

On the other hand, many experiments show a characteristic crossover from anomalous
to normal diffusion. For example, it happens in viscoelastic systems such as the motion
of lipid molecules in lipid bilayer membranes [40, 95]. We studied the motion of particles
driven by tempered fractional Gaussian noise which power-law correlations present a cutoff at
some mesoscopic time scale. Deriving analytical expressions of the MSD for the overdamped
Langevin equation and the fractional Langevin equation, we find that when the truncation is
strongly done, the mentioned crossover appears. When the truncation is done by a weak power-
law truncation, we also got a different crossover behaviour from faster to slower superdiffusion
and from slower to faster subdiffusion.

We were also interested in another process defined through a tempering directly done in the
fractional Brownion motion definition. It is known as tempered fractional Brownian motion
[62] and, surprisingly, it does not arrive to the same behaviours than our models. Instead, at
long times it exhibits localization as Ornstein-Uhlenbeck. We compare both of them. When
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the derivative of this tempered fractional Brownian motion is used in the fractional Langevin
equation, it leads to ballistic diffusion at long times [18].

In the last part, we were interested in the state of the art in spatial neutral theory of
Ecology, which problems sound familiar to experts in Statistical Physics. In fact, ecosystems
display a complex spatial organization that ecologists have tried to characterize by observing
patterns of biodiversity at different spatial scales. Linking those measures with the causes
that originate them is arguably the central problem in Ecology [47]. Ecological neutral theory,
which underscores the role of stochastic demographic fluctuations and neglects deterministic
effects stemming from fitness differences, has predicted the empirical patterns in communities
of competing species. We study non-trivial scaling laws arising at the critical dimension (2D)
of spatial neutral models, which are poorly understood. We conclude by discussing models
that support non-neutral features.

This thesis by compendium of publications is structured in three parts. The initial part is
the Synthesis of the thesis. Chapters and sections of Part I will be described briefly. Chapter 1
is the Introduction where the thesis is presented. In Chapter 2, a Spanish translation of the
Introduction is provided. The hypothesis made for this thesis are specified in section 3.1 and
section 3.2 enumerates the objectives. Chapter 4 includes the background of the articles that
shape this manuscrit and the methodological tools. In more detail, in section 4.1 we highlight
some experiments that report anomalous diffusion. If the reader is not familiar with the MSD,
it could help read section 4.2.1 before to understand better the details of the applications in
this section. In section 4.2 we present the observables of interest for anomalous diffusion.
Section 4.3 describes the main stochastic processes for anomalous diffusion, in particular frac-
tional Brownian motion and subdiffusive continuous-time random walk. Section 4.4 shows
how the dependence on the Hurst parameter appears in the MSD of the fractional Brownian
motion. A little description of how the process generalised grey Brownian motion can be simu-
lated is found in section 4.5. This process will be the subject of interest of the first part of the
Results. Section 4.6 presents some models and observables of Community Ecology, the topic
of third part of the Results. Methodology is detailed in section 4.7. Results are explicated
in three chapters: Chapter 5 is dedicated to the paper “Fractional kinetics emerging from
ergodicity breaking in random media”, Chapter 6 to “Crossover from anomalous to normal
diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilay-
ers” and Chapter 7 to “Stochastic spatial models in ecology: a statistical physics approach”.
Chapter 8 is focused on the discussion of the Results. Next, the Biblography contains the
references of all the citations used in Parts I and II. Part II are the Conclusions. Part III is
the Appendix which includes the accepted version of the articles. Full references and links to
download the documents are available at the beginning of each article. Finally, at the end of
this document, the Acknowledgements section can be found.



Chapter 2

Introducción

La Afectividad es un estado evolutivo
superior que no va necesariamente unido
a la sensibilidad ni a la inteligencia.

Rolando Toro Araneda

Con difusión anómala se hace referencia a procesos de difusión X(t) en los cuales el de-
splazamiento cuadrático medio (MSD) 〈X2(t)〉 no es una función lineal de la variable tiempo
t (lo que se conoce como difusión normal). Cuando la relación es más rápida que lineal, se le
llama superdifusión, y cuando es más lenta, subdifusión. F́ısicamente, el MSD es una medida
de las desviación de la posición de las part́ıculas con el tiempo. Se puede imaginar como la
cantidad de espacio que las part́ıculas han explorado en el sistema.

La difusión anómala aparece constantemente en la naturaleza y por ello los cient́ıficos han
desarrollado diferentes modelos que pueden reproducirla efectivamente. Sin embargo, la f́ısica
subyacente de una gran cantidad de experimentos aun no se comprende correctamente. Este es
el caso del movimiento de las moléculas de ARN mensajero dentro de bacterias E. coli, donde
los más importantes procesos estocásticos fallan al intentar explicar todas sus caracteŕısticas
al mismo tiempo. Por ejemplo, el caminante aleatorio con tiempo continuo (CTRW) puede
explicar la falta de ergodicidad pero no la variación-p. Por otro lado, el movimiento Brow-
niano fraccionario (fBm) puede explicar su variación-p pero se trata de un proceso ergódico.
Hemos analizado una clase de procesos estocásticos conocida como movimiento Browniano
gris generalizado (ggBm) que además de reproducir difusión anómala, no es ergódico y tiene
una variación-p como la del fBm, siendo por tanto un buen candidato para explicar el experi-
mento citado anteriormente. Además, hemos inclúıdo un factor con una dependencia temporal
expĺıcita para que sea un proceso no estacionario, caracteŕıstica que se suele denominar enve-
jecimiento. De forma coincidente con los resultados computacionales, hemos podido encontrar
expresiones matemáticas para muchos observables incluyendo el MSD promediado colectiva-
mente y temporalmente, el parámetro de Rotura de la Ergodicidad, la función densidad de
probabilidad en un punto y en un tiempo y la variación-p.

Por otro lado, muchos experimentos muestran una transición caracteŕıstica de un régimen
de difusión anómala a otro de difusión normal. Por ejemplo, esto ocurre en sistemas vis-
coelásticos como el movimiento de moléculas de ĺıpidos en membranas bicapa de ĺıpidos. La
segunda parte de esta tesis está dedicada al estudio de procesos estocásticos que mediante una
truncamiento de la función de autocorrelación del ruido o fuerza estocástica en la ecuación
de Langevin sobredimensionada o la ecuación de Langevin fraccionaria sobredimensionada,
se puede conseguir este tipo de transición. Esto ocurre cuando el truncamiento se hace de
forma exponencial o mediante una ley de potencias suficientemente fuerte. Si la ley de po-
tencias es débil, se obtienen transiciones de un régimen de rápida superdifusión a otra más
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lenta, y de un régimen de subdifusión lenta a otra más rápida, respectivamente. En esta parte
también se consideran otros procesos en los que el truncamiento se realiza directamente sobre
la definición del fBm original de Mandelbrot y Van Ness. Se conoce como movimiento Brown-
iano fraccionario templado (tfBm) y, sorprendentemente, no tiene las mismas propiedades que
los anteriores modelos. En su lugar, a tiempos largos presenta localización como el proceso
de Ornstein-Uhlenbeck. Hemos comparado ambos procesos. Cuando la derivada del tfBm es
usada en ecuación de Langevin fraccionaria, se obtiene difusión baĺıstica para tiempos largos.

En la última parte estamos interesados en los últimos avances en teoŕıa neutral espacial del
campo de la Ecoloǵıa, cuyos problemas resultan familiares a los expertos en F́ısica Estad́ıstica.
De hecho, los ecosistemas reproducen una organización espacial compleja que los ecólogos han
intentando caracterizar observando los diferentes patrones de biodiversidad a distintas escalas
espaciales. Relacionar estas medidas con las causas que las originan es probablemente el
problema central de la Ecoloǵıa. La teoŕıa neutral de la Ecoloǵıa, que subraya el papel de
las fluctuaciones demográficas estocásticas y rechaza los efectos deterministas procedentes de
diferencias adaptativas, ha predicho los patrones emṕıricos en comunidades de especies que
compiten entre si. Hemos estudiado las leyes de escalado que surgen en la dimensión cŕıtica
(2D) de los modelos espaciales neutrales, los cuales no se comprenden del todo a d́ıa de hoy.
Acabamos discutiendo algunos modelos con caracteŕısticas no neutrales.



Chapter 3

Hypothesis and objectives

They are proud in humility, proud in
that they are not proud.

Robert Burton,
The Anatomy of Melancholy

3.1 Hypothesis

For the first article, the following stochastic model is considered

X(t) = lβXgen, (3.1)

where lβ is a random variable distributed according to a distribution depending on the pa-
rameter β and Xgen is some ergodic Gaussian process.

The interpretation of this model is fixed in that article, and it is the following one:
• The stochastic process is the consecuence of a specific interaction of a medium with the

particles.
• In a homogeneous medium, the process describing the particles would be the same for

all of them: Xgen.
• However, the considered medium is the cause that results in the position of each particle

being multiplied by a constant determined through the random variable lβ (the medium
associates a “length scale” to each particle).

– In that sense, it is said that the medium is heterogeneous.
– It must not be confused with other heterogeneous kind of media.
– In our case, the length scale associated to each particle does not change with time

nor position. The only exception will be the extension used to reproduce aging,
which will consider a prefactor dependent on time.

In the third article, some ecological models are stated to be neutral. Neutral Ecology
assumes that the differences between individuals of an ecological community of trophically
similar species are irrelevant to their success. This implies that biodiversity is originated
randomly, underscoring the role of stochastic demographic fluctuations. This hypothesis has
elicited heated controversies because classical ecological concepts, e.g. niches, might be irrel-
evant.

Spatial models are also focused. The main characteristic of these models is that they control
explicitly the distances between individuals. It is usually done by considering that they are
placed in a lattice structure.
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3.2 Objectives

This thesis is based on three scientific articles. The main objective of the thesis is to present
the scientific results that gave rise to the manuscripts. With respect to the first article, the
following objectives are addressed:
• Have knowledge about the main properties of the stochastic process known as generalised

grey Brownian motion (ggBm).
• Find candidate applications that could fit the properties of the ggBm.
• Calculate numerically (and analytically if possible) the known observables of the chosen

application for the ggBm.
• Determine if the ggBm properties fit well the data of the application (or even better

than other stochastic processes).
For the second article:
• Start by showing the dynamics of a stochastic particle driven by fractional Gaussian

noise and Langevin equation or generalised Langevin equation.
• Calculate what happens when the noise is tempered by:

– An exponential cutoff, or
– A power-law cutoff.

• Study the process tempered fractional Brownian motion to see the similitudes and dif-
ferences with the results of above.

For the third article:
• Discuss the state of the art in spatial neutral theory.
• Describe the ecological patterns that produce the voter model with speciation by pre-

senting mathematical and computational results.
• Consider also non-neutral models and highlight their differences with respect to neutral

models.



Chapter 4

Background

I believe, indeed, that overemphasis on
the purely intellectual attitude, often
directed solely to the practical and
factual, in our education, has led
directly to the impairment of ethical
values.

Albert Einstein,
The Need for Ethical Culture

4.1 Presentation of applications depicting anomalous diffusion

Next, we describe some experimental results that illustrate the presence of anomalous diffusion
in the real world. Sometimes, it is not easy to distinguish which kind of MSD is considered
when reading the original papers. Because of that, expressions and notations of the origi-
nal papers for the MSD will be preserved to avoid any risk of misinterpretation and, as a
consequence, the notation will not be consistent with the rest of this manuscript.

4.1.1 Motion of mRNA molecules in E. coli cells

The motion of individual molecules inside E. coli cells has been examined by tracking fluo-
rescently messenger RNA which was free to move in the cytoplasm [31]. During 30 minutes,
cells were tracked at 1 frame/sec and the mRNA moved spanning all the cell multiple times.
It was observed that the motion was discontinuous, alternating periods of almost localizated
motion with fast jumps to new positions. In addition, it was found the following law for the
motion of the mRNA [31]

〈
δ2(τ)

〉
∼ Γτα, α < 1, (4.1)

where

δ = |r(t+ τ)− r(t)| (4.2)

is the particle displacement between two time points elapsed by τ . While the generalised
diffusion coeffient Γ changed considerably between cells and experimental conditions, the
subsiffusion exponent α had almost no dependence on particle size, growth conditions and
genetic background (e.g. cytoskeletal mutants). Averaging over 21 trajectories, they found a
value of α = 0.70± 0.07.
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4.1.2 Infection pathway of Adeno-Associated virus

The tracking of single molecules in real time has allowed to visualize the infection pathway of
single viruses in living cells. In particular, it has been studied the motion of adeno-associated
viruses (AAV) into living HeLa cells [86]. After membrane penetration, endosome diffusion
was observed with only one virus per endosome. Direct motion and normal and anomalous
difussion of the endosome with the virus are reported in the cytoplasm and the nucleus. In
the cytoplasm, 51 of 113 viral particles showed anomalous diffusion, following a

〈
r2
〉

= 4Dtα (4.3)

law with D between 0.3 and 1.5 µm2/s and α in the range of 0.5 to 0.9. In the nucleus, 23
of the trajectories (total is said to be more than 100) again depicted anomalous diffusion, in
this case somewhat slower, with D ∈ [0.1, 0.5] µm2/s and 0.6 < α < 0.9.

4.1.3 Motion of lipid granules in yeast cells

The viscoelastic characteristics of the cytoplasm of fission yeast Schizosaccharomyces pombe
cells were studied by analysing the motion of lipid granules [93]. The granules are embedded in
a cytoskeleton made of a sparse microtubule network and actin filaments. Polymer networks
of the cytoskeleton may limit the fluctuation of a granule position. To clasify the motion,
time series of its position ~r(t) = (x(t), y(t)) were recorded and calculated the mean squared
displacement,

〈
|∆~r(t)|2

〉
, where t is the time lag. The average was taken within a single

trajectory over time. Authors fitted the results to
〈
|∆~r(t)|2

〉
∝ tα (4.4)

and they obtained α = 0.737 ± 0.003 for N = 266 granules inside living cells. They also
performed experiments in which actin filaments were previously disrupted. Before disruption,
they found α = 0.734±0.004 (N = 59, a subset of the previous granules) and, after treatment,
α = 0.755± 0.006 (N = 52).

4.1.4 Diffusion of telomeres in the nucleus of mammalian cells

Experiments performed in living human cells, study the diffusion properties of telomeres in
the nucleus from 10−2 to 104 seconds [10]. Typically, about 60 telomeres were observed in
each cell. The MSD was calculated for each telomere by finding the average displacement
between each two time points. Time interval was ∆ = nτ , being τ the measurement time
interval and n an integer. The averaging was done over all the measured time according to
the formula

〈r2(∆)〉 =
1

N − n
N−n∑

m=1

[r((m− 1)τ + ∆)− r((m− 1)τ)]2, (4.5)

being N the number of measured points and r the position vector of the particle. It was found
that diffusion was subdiffusive

〈r2(t)〉 = Atα, α < 1, (4.6)
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at short time scales of 10−2 to 102 seconds, then a transient and finally changed to normal
diffusion at the time range of 102 to 104 seconds. 419 telomeres ware analyzed in the range
10−2 to 1 second and the values found for the coefficient A varied considerably from one
telomere to another. In contrast, α changed much less, being α = 0.32 ± 0.12. In the range
100 to 2 · 102 seconds, it was found α = 0.51± 0.20 using 151 telomeres.

4.2 Presentation of the observables

Next, we present the main observables of interest in anomalous diffusion in this thesis. As it
is usually done, we will work in one dimension.

4.2.1 Mean Square Displacement

In this thesis we distinguish between two types of Mean Square Displacements (MSD). The
EAMSD and the TAMSD.

Let us consider the stochastic process X(t). If X(t) has a known one-point one-time prob-
ability density function P (x, t), the Ensemble-Average Mean Square Displacement (EAMSD)
is equal to the second moment, which can be calculated as

〈
X2(t)

〉
=

∫ ∞

−∞
x2P (x, t). (4.7)

As opposed to the EAMSD, it is possible to consider the Time-Average Mean Square Dis-
placement (TAMSD) of a single trajectory

δ2(∆) =
1

T −∆

∫ T−∆

0
[X(τ + ∆)−X(τ)]2 dτ, (4.8)

where T is known as the measurement time and ∆ the lag time. To obtain a unique result
also at finite measurement times, an additional ensamble average can be applied to the time
average, which is known as EATAMSD

〈
δ2(∆)

〉
=

1

T −∆

∫ T−∆

0

〈
[X(τ + ∆)−X(τ)]2

〉
dτ. (4.9)

In practice, when dealing with discrete trajectories, e.g. by doing simulations or managing
experimental trajectories, the quantity δ2(τ,∆) = [X(τ + ∆)−X(τ)]2 is used for the average.
To obtain the EAMSD, using τ = 0 and ∆ = t, δ2(0, t) is averaged over N trajectories Xi(t),

〈
X2(t)

〉
N

=
1

N

N∑

i=1

[Xi(t)−Xi(0)]2. (4.10)

To calculate the TAMSD of one trajectory defined in discrete times from 0 to T , it is enough
to fix ∆ and average δ2(τ,∆) over M values of τj from 0 to T −∆. It can be simply written
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as

δ2
M (∆) =

1

M

M∑

j=1

[X(τj + ∆)−X(τj)]
2. (4.11)

As it was said before, it is common to average TAMSD also between trajectories, what is
known as EATAMSD. It results

〈
δ2
M (∆)

〉
N

=
1

NM

N∑

i=1

M∑

j=1

[Xi(τj + ∆)−Xi(τj)]
2. (4.12)

4.2.2 p-variation

Let X(t) be a stochastic process observed on the time interval [0, T ]. Let us divide [0, T ] in 2n

identical subintervals. The 2n+1 limits of the subintervals are tk = T k/2n, k ∈ {0, 1, · · · , 2n}.
For these points it is posible to calculate the so called sample p-variation [52]

V (p)
n (tk) :=

k∑

i=1

|X(ti)−X(ti−1)|p. (4.13)

Sample p-variation can be calculated for every t ∈ [0, T ] using interpolation between tk, even
if it is not usually done in practice. When the process is defined for every t, the following
definition that takes care of all the details is frequently used

V (p)
n (t) =

2n−1∑

j=0

∣∣∣∣X
(

(j + 1)T

2n
∧ t
)
−X

(
jT

2n
∧ t
)∣∣∣∣

p

, (4.14)

where a ∧ b = min{a, b}. That is, it uses definition (4.13) for the biggest tk ≤ t and then it
adds |X(t)−X(tk)|p (the rest of the summands are equal to zero).

p-variation is defined as

V (p)(t) = lim
n→∞

V (p)
n (t). (4.15)

For large enough n, sample p-variation is a good approximation of p-variation.
p-variation is a generalization of the concept of total variation of a function (p = 1) or the

quadratic variation (p = 2). p-variation can be understood as a measure of the fluctuations
of the process and then, also of its fractal dimension and the Hurst parameter H [52].

There is an important lemma that establishes [51]: Let X(t) be continuous. If for some
p∗ > 0, V (p∗)(t) is positive and finite (let us call it f(t)), then p-variation satisfies

V (p)(t) =





∞, p < p∗,

f(t), p = p∗,

0, p > p∗.

(4.16)
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p-variation test

In article [53] it is presented a test based on the previous lemma to distinguish between stochas-
tic processes given sampled trajectories. Using previous notation to simplify the explanation,
the idea is to calculate the finite sums V (p∗)

n (t) for the p∗ of the considered stochastic pro-
cesses (in particular, they use the p∗ = 1/H of fractional Brownian motion and the p∗ = 2
of subdiffusive continuous-time random walk) and see what happens when increasing n. If
V

(p∗)
n (t) converges to 0 or diverges when increasing n, it will be evident that the trajectory

does not come from the stochastic process associated to p∗, so it can be discarded. If V (p∗)
n (t)

converges to a curve when increasing n, and it is the f(t) of the stochastic process associated
to p∗, there are evidences to assert that the trajectory was originated by that process.

You can find the graphs of the application of this test to fractional Brownian motion in
section 4.3.2 and to subdiffusive continuous-time random walk in section 4.3.3.

4.2.3 Ergodicity Breaking

In dynamical systems or Markov chains, the state space and dynamics are known and it
can be established whether the system is ergodic or not. In the afirmative case, any non-
pathological observable would be ergodic [63]. In previous reference it is indicated that for
stochastic processes, ergodicity has to be defined for a particular observable y by checking the
equivalence of its ensemble and time average:

〈y〉 ?
= lim

T→∞
1

T

∫ T

0
y(t′)dt′. (4.17)

There are different reasons such that the equivalence cannot be fulfilled. In particular, the
temporal-average limit may not exist. When the state space of the system is made of discon-
nected parts and the time-average differs depending on the starting point, it is called strong
ergodicity breaking [63]. When the state space is connected but a single trajectory cannot
sample it fully because the motion is “freezed”, it is termed weak ergodicity breaking [63].

Having said that, in practice, the more common observable for which ergodicity is checked
is the MSD and it is usually said that the stochastic process is ergodic when it is ergodic for
the MSD. We will consider the following definition for ergodicity:

If the EATAMSD 〈δ2(∆)〉 is equal to the EAMSD 〈X(∆)〉, and if the variance of
the TAMSD tends to zero when T is long, the process is ergodic (the distribution
of the TAMSD tends to a delta function centered on the EAMSD) [26].

A dimensionless measure of Ergodicity Breaking is the Ergodicity Breaking parameter

EB =
Var

{
δ2
}

〈
δ2
〉2 (4.18)

=

〈[
δ2
]2
〉

〈
δ2
〉2 − 1. (4.19)
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As a consequence of the previous condition for ergodicity, an ergodic process satisfies EB = 0
when T is long.

4.2.4 Aging

For a stationary process, the two-times correlation functions are only function of the time
difference

〈X(t)X(s)〉 = f(|t− s|). (4.20)

However, there are other systems (spin glasses, coloidal glasses, gels, turbulent systems, etc.)
in which stationary properties are violated. For example, they may be characterized by
correlation functions of the form

〈X(t)X(s)〉 = f(t/s), s ≥ t. (4.21)

The origin of times cannot be arbitrary in these cases. A generalization of the Wiener-Khinchin
theorem has been developed for this kind of aging systems [11] and, in particular, it has been
derived the condition for ergodicity in terms of the correlation function of a given observable.

Aging can be formally defined as the explicit dependence of observables on the time differ-
ence between the original preparation of the system and the start of the recording data [84].
This time difference is usually known as the aging time ta.

In some experiments, the aging time can be set deliberately. However, in other systems,
it cannot be precisely measured. In both cases it is important to know how it affects the
measures of the observables.

In the case of aging, the EAMSD of a process X is formulated in the form

〈
X2(t)

〉
a

=
〈

[X(t+ ta)−X(ta)]
2
〉
. (4.22)

On the other hand, the TAMSD is calculated as

δ2
a(∆) =

1

T −∆

∫ ta+T−∆

ta

[X(τ + ∆)−X(τ)]2dτ. (4.23)

4.2.5 Determining the correct model from different observables

As we saw in section 4.2.2, p-variation test can be a useful technique to distinguish be-
tween models given a single trajectory. Tests for ergodicity have been applied [42, 49, 91]
too. In reference [64], it is presented a flow-chart to decide the cause of subdiffusion. The
first step is to check if the process is ergodic: If it is not ergodic, the process is associated
to trapping (continuous-time random walk). Else, the second step is to distinguish between
percolation-like structures (random walk on a percolation cluster) or viscoelastic media (frac-
tional Brownian motion). To achieve this, they study (in two dimensions) the space-filling
properties of the trajectories, considering in particular the walk dimension and the fractal
dimension. Reference [63] is dedicated to review the main statistical tools available to re-
construct the underlying physics from the details of the dynamics. It considers tests for the
following characteristics:
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• Evaluation of the subdiffusive exponent
• Stationarity
• Ergodicity
• Fundamental moment and p-variation
• Gaussianity
• Correlations
• Geometry

4.3 Presentation of stochastic processes for anomalous diffusion

In the next sections, some important stochastic processes will be described. Main results that
are relevant for the understanding of the objectives of this thesis will be presented and plotted
with simulation results. An extensive overview over different popular anomalous diffusion
models is reference [66].

4.3.1 Classical diffusion

Robert Brown reported in 1828 how small granules made from pollen grains was moving
randomly when inmersed in water. Einstein, in 1906 published a paper in which it was
explained in detail how the motion of those grains was the result of the thermal movement of
individual water molecules. This explanation was an evidence that atoms and molecules exist,
which would be later verified by Jean Perrin in 1908. Einstein derived a diffusion equation
for the one-time one-point probability density function P (x, t) of the diffusing granules

∂

∂t
P (x, t) =

σ2

2

∂2

∂x2
P (x, t), (4.24)

which is equivalent to the Fick’s second law. The solution is the Gaussian probability density
function (pdf)

P (x, t) =
1√

2πσ2t
exp−

x2

2σ2t . (4.25)

This process is known, in particular, as Brownian motion (Bm) B(t). The EAMSD is
〈
B2(t)

〉
= σ2t, (4.26)

and the TAMSD [65]

δ2(∆) = σ2∆, ∆� T. (4.27)

Also, without the need of very large T , the EATAMSD is
〈
δ2(∆)

〉
= σ2∆. (4.28)

Bm is then ergodic. These properties (Gaussian pdf and EAMSD and TAMSD being linear
in time) are the classical properties of diffusion. In next sections, other models that does not
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fulfill these conditions will be introduced to answer the necessity of new types of diffusion.
They are known as anomalous diffusion. p-variation of Bm is

V (p)(t) =





+∞ if p < 2,

σ2 t if p = 2,

0 if p > 2.

(4.29)

Bm can be expressed as the Langevin equation

dB(t)

dt
= B′(t) (4.30)

where B′(t) is white Gaussian noise with zero mean and autocorrelation function
〈
B′(t)B′(s)

〉
= σ2δ(t− s). (4.31)

4.3.2 Fractional Brownian motion

In the original paper by Mandelbrot and Van Ness [58], the fractional Brownian motion (fBm)
BH(t) is defined. It is a real random function where 0 < H < 1 is the Hurst index. A similar
definition of fBm, more friendly for physicists, is the following

BH(t) :=
1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− t′)H−1/2 − (−t′)H−1/2

]
B′(t′)dt′

+

∫ t

0
(t− t′)H−1/2B′(t′)dt′

}
, t > 0, (4.32)

where B′(t) is white Gaussian noise. It can be simply written in the alternative way

BH(t) =
1

Γ(H + 1/2)

∫ ∞

−∞

[
(t− t′)H−1/2

+ − (−t′)H−1/2
+

]
B′(t′)dt′, (4.33)

by using operator (x)+ = max{0, x}. B1/2(t) is the Brownian motion B(t). BH(t) satisfies

〈BH(t)〉 = 0. (4.34)

The covariance function (see Figure 4.1) is

γH(t, s) =
σ2VH

2

(
t2H + s2H − |t− s|2H

)
, (4.35)

where

VH =
1

Γ(2H + 1) sin(πH)
. (4.36)

The variance or EAMSD of fBm is
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Figure 4.1: Covariance of fBm for different values of H and s = 19. Points are simulation data and black lines
the theoretical values (4.35).

〈B2
H(t)〉 = σ2VHt

2H . (4.37)

Note that in the literature it is common to consider a “normalized” fBm in which the term
VH does not appear. See section 4.4 for a derivation of the EAMSD and see how VH emerges
from Mandelbrot’s definition of fBm. In Figure 4.2 the EAMSD of fBm is shown. BH(t) is a
Gaussian process, so BH(t) ∼ N(0, σ2VHt

2H) and it has one-point one-time pdf

P (x, t) =
1√

2πσ2VHt2H
e
− x2

2σ2VHt
2H . (4.38)

Its pdf can be observed in the right plot of Figure 4.3. The diffusion equation of fBm is

∂

∂t
P (x, t) = σ2VHHt

2H−1 ∂
2

∂x2
P (x, t). (4.39)

The EATAMSD is [26]
〈
δ2(∆)

〉
= σ2VH∆2H . (4.40)

For long measurement times, TAMSD is self-averaging and it holds [66]

δ2(∆) = σ2VH∆2H , T � ∆. (4.41)
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Figure 4.2: Variance of fBm for different values of H. Points are simulation data and black lines are the
theoretical values (4.37).

In Figure 4.4 it can be seen how TAMSD of different trajectories surround the EATAMSD,
and how they are almost equal for small values of ∆. Notice that variance of TAMSD is large
when ∆ ≈ T . The Ergodicity Breaking parameter is 0 becasue of the process being ergodic.
The asymptotic behaviour of EB(T ) for fBm is [26]

EB(T ) ∼





k(H)∆
T , 0 < H < 3/4,

k(H)∆
T ln(T ), H = 3/4,

k(H)
(

∆
T

)4−4H
, 3/4 < H < 1,

(4.42)

where

k(H) =





∫∞
0 ((τ + 1)2H + |τ − 1|2H − 2τ2H)2dτ, 0 < H < 3/4,

9/16, H = 3/4,(
4

4H−3 − 4
4H−2

)
H2(2H − 1)2, 3/4 < H < 1.

(4.43)

In Figure 4.5, EB(T ) (4.42) is represented for some values of H along some simulation results.
p-variation of fBm has the form [53]

V (p)(t) =





+∞ if p < 1/H

k t if p = 1/H

0 if p > 1/H

, (4.44)
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theoretical p-variation (4.44).

where (not equivalently written in the previous references an others) [51]

k =
〈
|BH(1)|1/H

〉
=

(2σ2VH)
1

2H√
π

Γ

(
1

2H
+

1

2

)
. (4.45)

It means that V (p)
n (t) of fBm only converges to a function for p = 1/H. In Figure 4.6, it can

be observed how V
(1/H)
n (t) converges to the known straight line when increasing n. On the

contrary, in Figure 4.7 it is depicted how V
(2)
n (t) diverges when increasing n. fBm can be

expressed as a Langevin equation

dBH(t)

dt
= B′H(t) (4.46)

where B′H(t) is fractional Gaussian noise which has autocorrelation function [39]
〈
B′H(t)B′H(s)

〉
= σ2(2H − 1)HVH |t− s|2H−2 + 2σ2HVH |t− s|2H−1δ(t− s). (4.47)

B′1/2(t) is white Gaussian noise B′(t).

Aging

fBm does not present aging due to its stationary increments
〈
[BH(t+ ∆)−BH(t)]2

〉
= σ2VH∆2H . (4.48)
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4.3.3 Subdiffusive continuous-time random walk

The continuous-time random walk (CTRW) was originally introduced by Montroll, Weiss, and
Scher. Consider a particle that has to wait a random time τ before making a jump such that
the waiting times are distributed according to a distribution ψ(τ). The length of the jump δx
comes also from a distribution λ(δx). After the jump, a new waiting time occurs, then a new
jump, and so on. Jumps and waiting times are independent of the previous values. The key
factors that condition the model are the characteristic waiting time

〈τ〉 =

∫ ∞

0
τψ(τ) dτ (4.49)

and the variance of the lenght of the jumps

〈
(δx)2

〉
=

∫ ∞

−∞
(δx)2λ(δx) d(δx). (4.50)

If they both are finite, this process corresponds to Bm B(t) in the diffusion limit with σ2 =
〈(δx)2〉/〈τ〉, being the details of both pdf irrelevant. The case that leads to subdiffusion is
when 〈(δx)2〉 is finite but 〈τ〉 is divergent. It is achieved with a long-tailed pdf with asymptotic
behaviour [34,85] (again, the specific form of the pdf is not important)

ψ(τ) ∼ τα0
|Γ(−α)|τ1+α

, 0 < α < 1. (4.51)
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In Figure 4.8 different trajectories of subdiffusive CTRW are shown when the distribution of
waiting times has asymptotic behaviour ψ(τ) ∼ ατα0 /τ

1+α for long τ . Since the rest of the
figures in this section are based on simulations with the same pdf, a pre-factor correction will
be used when theoretical values that involve τ0 are shown. The EAMSD of this process Zα(t)
has the form

〈
Z2
α(t)

〉
∼ 2Kα

Γ(1 + α)
tα, (4.52)

where the generalised diffusion coefficient is

Kα =

〈
(δx)2

〉

2τα0
. (4.53)

In Figure 4.9 the EAMSD of some simulations results is contrasted with the asymptotic
expected values. In the diffusion limit, P (x, t) is governed by the fractional diffusion equation

∂

∂t
P (x, t) = 0D

1−α
t Kα

∂2

∂x2
P (x, t), (4.54)

where

0D
1−α
t P (x, t) =

1

Γ(α)

∂

∂t

∫ t

0

P (x, t′)
(t− t′)1−αdt

′ (4.55)

is the Riemann-Liouville fractional derivative operator. A closed form for P (x, t) can be
written in terms of the Fox function [67] or the M-Wright/Mainardi function (the equivalence
can be found in reference [57])

P (x, t) =
1√

4Kαtα
H1 0

1 1

[ |x|√
Kαtα

∣∣∣∣
(1− α/2, α/2)

(0, 1)

]
(4.56)

=
1√

4Kαtα
Mα/2

( |x|√
Kαtα

)
. (4.57)

In Figure 4.10, P (x, t) is plotted. The ausence of a characteristic waiting time scale makes each
trajectory no self-averaging even for very long measurement times T . It has as a consequence
a disparity between EAMSD and TAMSD, known as weak ergodictiy breaking. Knowing that
the mean value of the number of jumps between 0 and t behaves as [34]

〈n(t)〉 ∼ tα

τα Γ(1 + α)
, (4.58)

the EATAMSD can be calculated and is [12,34,49]

〈
δ2(∆)

〉
∼ 2Kα

Γ(1 + α)

∆

T 1−α . (4.59)

As you can see, EATAMSD is very different from EAMSD except in the limit α → 1,
indicating weak ergodicity breaking. In Figure 4.11, the TAMSD of several trajectories is
displayed along the EATAMSD. It can be seen how the general slope of TAMSD is the usually
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the same than the EATAMSD, but with desviations specially in some trajectories (an effect
that increases when α decreases). Also, the amplitudes of each TAMSD is different. Both
effects are due to the ausence of a characteristic time scale of waiting times. The Ergodicity
Breaking parameter is [34]

lim
T→∞

EB(T ) =
2Γ2(1 + α)

Γ(1 + 2α)
− 1

= α
Γ2(α)

Γ(2α)
− 1. (4.60)

The Ergodicity Breaking parameter has been plotted as a function of T in Figure 4.12. The
subdiffusive CTRW Zα(t) can be also written as a subordination process [51,53,54,61]

Zα(t) =
√

2KαB(Sα(t)) (4.61)

where B(t) is the Bm and Sα(t) is the inverse α-stable subordinator independent of B(t)
defined as

Sα(t) = inf{τ > 0 : Uα(τ) > τ}, (4.62)



10
-4

10
-3

10
-2

10
-1

-60 -40 -20  0  20  40  60

P
(x

, 
t=

1
e
+

0
6
)

x

10
-5

10
-4

10
-3

10
-2

-400 -200  0  200  400

P
(x

, 
t=

1
e
+

0
6
)

x

Figure 4.10: One-time one-point pdf of subdiffusive CTRW with a Gaussian distribution of jump sizes with
〈(δx)2〉 = 1 and Maneville-Pomeau distribution of waiting times ψ(τ) = α/(τ0(1 + τ/τ0)1+α) with τ0 = 1. Red
line is the histogram for N = 104 while black line is the theoretical value (4.56). Parameters: t = 106, α = 0.4
(top) and 0.8 (bottom).
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Figure 4.11: TAMSD (red lines) of 100 trajectories of subdiffusive CTRW with a Gaussian distribution of jump
sizes with 〈(δx)2〉 = 1 and Maneville-Pomeau distribution of waiting times ψ(τ) = α/(τ0(1 + τ/τ0)1+α) with
τ0 = 1. Black line is the asymptotic EATAMSD (4.59) for T � ∆. Parameters: ta = 0, T = 99998.7. α = 0.6
(top) and 0.2 (bottom).
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Figure 4.12: Ergodicity Breaking parameter as a function of the measurement time T of subdiffusive CTRW
with a Gaussian distribution of jump sizes with 〈(δx)2〉 = 1 and Maneville-Pomeau distribution of waiting
times ψ(τ) = α/(τ0(1 + τ/τ0)1+α) with τ0 = 1. Dashed lines show the obtained EB(T ) averaged over 104

trajectories for ∆ = 1.9. Solid lines show the theoretical limit for T →∞ (4.60).

being Uα(τ) a strictly increasing α-stable Lévy motion, i.e., an α-stable process which pdf
fulfills

u(t, τ) =
1

τ1/α
u

(
t

τ1/α

)
, u(t) = u(t, 1), (4.63)

satisfying
〈
e−kUα(τ)

〉
=

∫ ∞

0
e−ktu(t, τ) dt = e−τk

α
. (4.64)

p-variation has the form [51,53]

V (p)(t) =





+∞, p < 2,

2KαSα(t), p = 2,

0, p > 2.

(4.65)

It means that V (p)
n (t) converges to a function only for p = 2 (see Figure 4.13). On the

contrary, for p = 1/H by using 2H = α, α ∈ (0, 1) (doing an equivalence between the power-
law exponent of the EAMSD of fBm and this CTRW), V (p)

n (t) converges to zero when n→∞
(see Figure 4.14).
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Figure 4.13: Sample p-variation of a single trajectory of subdiffusive CTRW (α = 0.8) for p = 2.
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Aging

If measures are started at ta > 0, observables of CTRW differ. It is the case of the EAMSD.
If t, ta > τ0 [3],

〈
Z2
α(t)

〉
a
∼ 2Kα

Γ(1 + α)
[(t+ ta)

α − tαa ], (4.66)

that can be approximated to

〈
Z2
α(t)

〉
a
∼
{

2Kα
Γ(1+α) t

α, t� ta,
2αKα

Γ(1+α)
t

t1−αa
, ta � t.

(4.67)

The EATAMSD is also affected by aging [85]

〈
δ2
a(∆)

〉
∼ 2Kα

Γ(1 + α)
Λα(ta/T )

∆

T 1−α (4.68)

= Λα(ta/T )
〈
δ2(∆)

〉
, (4.69)

where

Λα(z) = (1 + z)α − zα. (4.70)

In the case ta � T , it is obtained the equivalence with
〈
Z2
α(∆)

〉
a
for ta � ∆

〈
δ2
a(∆)

〉
∼ 2αKα

Γ(1 + α)

∆

t1−αa
, ta � T. (4.71)

4.3.4 Fractional Langevin Equation

An alternative to Bm is the Langevin equation [46]

m
d2x

dt2
= −γ∗dx

dt
+B′(t), (4.72)

where B′(t) is white Gaussian noise, γ∗ is a friction coefficient, and m is the mass of test
particle. When the random noise is non-white, the motion is described by the generalized
Langevin equation (GLE) [39]

m
d2x

dt2
= −γ∗

∫ t

0
K(t− t′)dx(t′)

dt′
dt′ + ξ(t), (4.73)

where ξ(t) is the noise and K the memory kernel, satisfying the fluctuation-dissipation theorem

〈ξ(t)ξ(t′)〉 = kBTK(t− t′). (4.74)

where T here is the temperature (not to confuse with the measurement time, that in this
section we will call Tm). When the noise is fractional Gaussian noise B′H(t), K decays as a
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power-law and the GLE becomes the fractional Langevin equation (FLE)

m
d2x

dt2
= −γ∗

∫ t

0
(t− t′)2H−2dx(t′)

dt′
dt′ + η∗B′H(t), (4.75)

where 1/2 < H < 1 (to avoid that the memory integral diverge) and η∗ is the noise amplitude
that is

η∗ =

√
γ∗kBT

σ2VHH(2H − 1)
. (4.76)

Supposing that dx(t)
dt

∣∣∣
t=0

= v0 and x(0) = 0, it is found that the relaxation dynamics follows
the form

〈x(t)〉 = v0 t E2H,2

(
−γ
∗Γ(2H − 1)

m
t2H
)

(4.77)

∼ v0m

γ∗Γ(2H − 1)Γ(2− 2H)
t1−2H , (4.78)

being Eα,β(z) the generalized Mittag-Leffler function. The EAMSD is

〈
x2(t)

〉
=

2kBT

m
t2E2H,3

(
−γ
∗Γ(2H − 1)

m
t2H
)

(4.79)

∼ 2kBT

γ∗Γ(2H − 1)Γ(3− 2H)
t2−2H , (4.80)

where it is supposed that 〈v2
0〉 = kBT/m. For short times, 〈x2(t)〉 ∼ (kBT/m)t2. The process

is ergodic since the TAMSD behaves as [66]

δ2(∆) =
〈
x2(∆)

〉
, ∆� Tm, (4.81)

being Tm the measurement time as it was said before. In reference [26] it is demonstrated
how, except some changes like 2H → 2 − 2H, the Ergodicity Breaking parameter behaves
similarly to (4.42) when Tm →∞.

4.3.5 Superstatistics

Another way to obtain anomalous diffusion is called superstatistics [4, 5]. It is based on
the idea that the dynamics is a mixture of Gaussian processes (which probability density
function is Gaussian) with different diffusivities caused by an inhomogeneous media. This
way, studying a single trajectory only the properties of the Gaussian process are recovered,
but when considering the ensemble the characteristics are very different. In particular, the
probability density function is weighted by the distribution of local diffusivities. It also appears
ergodicity breaking.

In [89], ggBm (which characterization will be the main scope of Chapter 5) is compared
with superstatistics, which are apparently very similar. It is stated that the ggBm is defined
through the explicit construction of a probability space based on self-similar increments and
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in the case that the random variable of its representation is undestood as a diffusivity, it leads
to an interpretation complementary to superstatistics.

4.4 Derivation of MSD of fBm

Let us calculate the EAMSD of fBm starting with expresion (4.33) to simplify the initial
calculations. We are going to demonstrate it for t > 0 because it is our case of interest.
Defining

ft(t
′) :=

1

Γ(H + 1/2)

[
(t− t′)H−1/2

+ − (−t′)H−1/2
+

]
, (4.82)

we can write

〈
B2
H(t)

〉
=

〈∫ ∞

−∞
ft(t

′)B(t′)dt′
∫ ∞

−∞
ft(t

′′)B(t′′)dt′′
〉

(4.83)

=

〈∫ ∞

−∞

∫ ∞

−∞
ft(t

′)ft(t′′)B(t′)B(t′′)dt′dt′′
〉

(4.84)

=

∫ ∞

−∞

∫ ∞

−∞
ft(t

′)ft(t′′)
〈
B(t′)B(t′′)

〉
dt′dt′′ (4.85)

= σ2

∫ ∞

−∞

∫ ∞

−∞
ft(t

′)ft(t′′)δ(t′ − t′′)dt′dt′′ (4.86)

= σ2

∫ ∞

−∞
f2
t (t′)dt′ (4.87)

=
σ2

Γ2(H + 1/2)

∫ ∞

−∞

[
(t− t′)H−1/2

+ − (−t′)H−1/2
+

]2
dt′ (4.88)

Now, by applying definition of operator (·)+ we can separate the integral in the following way

〈
B2
H(t)

〉
=

σ2

Γ2(H + 1/2)

[∫ 0

−∞

[
(t− t′)H−1/2 − (−t′)H−1/2

]2
dt′ +

∫ t

0
(t− t′)2H−1dt′

]
(4.89)

Applying the change of variables x = −t′/t to the first integral and x = (t−t′)/t to the second
one, it results

〈
B2
H(t)

〉
=

σ2t2H

Γ2(H + 1/2)

[∫ 0

−∞

[
(1 + x)H−1/2 − xH−1/2

]2
dx+

∫ 1

0
x2H−1dx

]
(4.90)

= σ2VHt
2H (4.91)

where

VH :=
1

Γ2(H + 1/2)

[∫ 0

−∞

[
(1 + x)H−1/2 − xH−1/2

]2
dx+

∫ 1

0
x2H−1dx

]
. (4.92)

Both integrals have an explicit expression and after some manipulation using properties of the
gamma function it is arrived to (4.36).
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4.5 Simulation of ggBm

To simulate the fBm we followed the exact Hosking method described in [27]. This method
(also known as Durbin or Levinson) simulates a general stationary Gaussian process, in this
case fractional Gaussian noise, and then takes cumulatives sums to obtain fractional Brownian
motion trajectories.

For the obtention of ggBm, it is necessary to multiply each trajectory of a fractional Brow-
nian motion process by the square root of a constant extracted from a random variable Λβ
distributed according to the one-side M-Wright/Mainardi function (see Chapter 5 for more
details),

Xβ,H(t) =
√

Λβ BH(t). (4.93)

This random variable can be computed in terms of the extremal stable random variable of
order β, Lext

β [73]

Λβ = [Lext
β ]−β, (4.94)

that can be generated by the method of Chambers, Mallows and Stuck [15]

Lext
β =

sin[β(r1 + π/2)]

(cos r1)1/β

(
cos[r1 − β(r1 + π/2)]

− ln r2

)(1−β)/β

, 0 < β < 1, (4.95)

where r1 and r2 are uniformly distributed random variables in (−π/2, π/2) and (0, 1), respec-
tively.

4.6 Community ecology

4.6.1 Usual neutral models

Voter Model with speciation

The voter model [48] has been widely studied, from spreading of epidemic diseases [76] to
opinion dynamics [13], linguistics [23] and spatial conflicts [20]. The voter model with speci-
ation [29] (or multi-species voter model) is a generalization of the voter model. It is defined
on a lattice where each node has one individual that belongs to a specific species. At each
time step, one individual of the lattice is removed, what is known as a death event. Then,
a new individual replaces the removed one. The species associated to this new individual is
chosen according to the following rule: With probability ν, it is a new species not present
in the system. That is known as a speciation event. With probability 1 − ν, it becomes the
species of a neighbour, what is known as a reproduction event. The procedure is illustrated
in Figure 4.15. The parent individual is selected according to a dispersal kernel P (~r) (a prob-
ability distribution). Typically, the dispersal kernel is such that one the nearest-neighbours
(NN) is chosen with the same probability.
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X

death event

speciation event reproduction event 

P=(1-ν)P=ν

Figure 4.15: Different cases after a death event in voter model with speciation.

Stepping-Stone Model with speciation

This model [14,43] generalizes the voter model with speciation by considering that each node
of the lattice has M individuals. At each step, an individual is randomly removed. With
probability ν, it is replaced by an individual of a new species not present in the system.
With probability 1 − ν, a reproduction event happens. The parent of the individual is, with
probability 1−µ, one of the remaining individuals in the same node, and, with probability µ,
one individual belonging to a neighbour node (according to a dispersal kernel).

Contact Process with speciation

The contact process with speciation is the multi-species variant of the contact process [28,
32, 36, 37, 59]. Let us consider a lattice of individuals and a continuous time variable so each
individual dies at rate d and reproduces at rate b. In this model there are two key points.
Firstly, when a death event occurs, the associated node is left empty. Secondly, a reproduction
event is successful only if there is at least one vacant neighbour node. In the last case, one of
the empty nodes is chosen randomly. The new individual will have associated a new species
with probability ν or will belong to the same species than the parent with probability 1− ν.

4.6.2 Ecological patterns

β-diversity

β-diversity measures how species composition varies with distance. It is the probability F (~r)
that two random individuals separated by ~r belong to the same species. It can be written in
terms of the two-point correlation function

Gsi,sj (~r) = 〈nsi(~x)nsj (~x+ ~r)〉, (4.96)
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being nsi(~x) the number of individuals of species si at position ~x. It holds

F (~r) =

∑
iGsi,si(~r)∑
i,j Gsi,sj (~r)

(4.97)

where the sum includes all the species in the ecosystem.

Species-Area Relationship

The Species-Area Relationship (SAR) is defined as the average number of species of a given
taxonomic level occupying a given area. It quantifies how habitats of different sizes support
different number of species and is considered a measure of spatial biodiversity.

Species-Abundance Distributions

Species Abundance distributions (SADs) measure the relative abundance (number of individ-
uals) of species in a given area. Let ni be the abundance of the species i present in area
A. SAD is the distribution P (n;A) such that P (n;A)dn represents the probability that a
randomly picked species has a abundance between n and n+ dn.

Species persistence-times

Survival or persistence time within a geographic region is the time occurring between the
appearance of a given species and its local extintion.

4.7 Methodology

For the first article, the methodology has been:
• Study of the main bibliography related with ggBm.
• Develop the main software for computation of the ggBm.
• Study of the main bibliography that deals with anomalous diffusion experiments.
• Calculate the observables of interest in the previous experiments for the ggBm. It will

require to:
– Develop the needed software tools to compute the observables.
– Calculate analytically (when possible) the quantities, which will be checked with

the numerical output.
• Determine if ggBm can explain the empirical data.

For the second article, the mathematical results have been obtained and checked by:
• Several repetitions of the calculations.
• Check known results by simplifying the findings to particular cases.
• Use of software tools to check the properties of the obtained functions.

For the third article, the methodology was:
• Research the state of the art in spatial neutral theory and near-neutral models.
• Extensive numerical computations of the models, specially for the voter model with

speciation.
• Repeat calculations of important observables and present them in a reader-friendly way.





Chapter 5

Results Part 1: Generalised gray Brownian motion

One cannot fight what one does not
know.

Rollo May, The Meaning of Anxiety

In this chapter, we will mainly deal with a particular process, the ggBm, that satisfies
the conditions established in the Hypothesis section 3.1. It will be only in the Ergodicity
section 5.3 where it will be obtained a property that is common for all the processes satisfying
the specified conditions in 3.1.

5.1 Definition

Let us consider in particular the process known as generalised grey Brownian motion [69–71]
(ggBm)

Xβ,H(t) =
√

ΛβBH(t), (5.1)

where the random variable Λβ is positive and distributed according to the one-side M-
Wright/Mainardi function [55,72]

Mβ(λ) =
∞∑

k=0

(−1)k

k!

λk

Γ[−βk + (1− β)]
, (5.2)

with λ ≥ 0 and 0 < β < 1. BH is the fBm described in 4.3.2. This process include as
particular cases the Brownian motion when H = 1/2 and β → 1, the fractional Brownian
motion when β → 1 and the grey Brownian motion when β = 2H.

5.2 Main properties

The probability density function is [71]

P(x; γH) =
1√

(2πλ)n det γH

∫ ∞

0
exp

{
− 1

2λ
xTγ−1

H x

}
Mβ(λ)dλ, (5.3)
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where x = (x1, · · · , xn) and γH = γH(ti, tj), i, j = 1, · · · , n, is the covariance matrix of the
fBm

γH(ti, tj) =
σ2VH

2

(
t2Hi + t2Hj − |ti − tj |2H

)
. (5.4)

The one-point one-time density function is

P(x; t) =
1√

2πλσ2VHt2H

∫ ∞

0
exp

{
− x2

2λσ2VHt2H

}
Mβ(λ)dλ

=
1√

2σ2VHtH
Mβ/2

(√
2

σ2VH

|x|
tH

)
. (5.5)

This can be observed in Figure 5.1 and 5.2 along some individual trajectories. P(x; t) can be
written in terms of the H-function [56,57]

P(x; t) =
1√

2σ2VHtH
H1 0

1 1

[√
2

σ2VH

|x|
tH

∣∣∣∣
(1− β/2, β/2)

(0, 1)

]
. (5.6)

The covariance matrix of the ggBm is [70,71]

γβ,H(t, s) =
σ2VH

2Γ(1 + β)

(
t2H + s2H − |t− s|2H

)
, (5.7)

and the variance or EAMSD reads

〈X2
β,H(t)〉 =

σ2VH
Γ(1 + β)

t2H . (5.8)

In addition, it satisfies

〈
[BH(t+ ∆)−BH(t)]2

〉
=

σ2VH
Γ(1 + β)

∆2H . (5.9)

The time-average MSD is

δ2(∆) = Λβσ
2VH∆2H , T � ∆, (5.10)

and the EATAMSD
〈
δ2(∆)

〉
=
σ2VH∆2H

Γ(1 + β)
. (5.11)

In Figure 5.3 it is shown the TAMSD of several simulated particles and the EATAMSD.
Note that all of them display the same power-law with the exception of a different prefactor
(different height in a log-log graph) due to the presence of the random variable Λβ .
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Figure 5.1: Left: eight individual trajectories of ggBm for H = 0.3. Right: The red line is the histogram of
the one-time one-point pdf of 104 simulated trajectories at t = 1024. Black line corresponds to the theoretical
curve (5.5). From top to bottom: β = 0.1, 0.5, and 0.9.



-400

-300

-200

-100

 0

 100

 200

 300

 400

 0  200  400  600  800  1000

X
(t

)

t
10

-4
10

-3
10

-2

P(x, t=1024)

histogram (N=10000)

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0  200  400  600  800  1000

X
(t

)

t
10

-4
10

-3
10

-2

P(x, t=1024)

histogram (N=10000)

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0  200  400  600  800  1000

X
(t

)

t
10

-4
10

-3
10

-2

P(x, t=1024)

histogram (N=10000)

Figure 5.2: Left: eight individual trajectories of ggBm for H = 0.7. Right: The red line is the histogram of
the one-time one-point pdf of 104 simulated trajectories at t = 1024. Black line corresponds to the theoretical
curve (5.5). From top to bottom: β = 0.1, 0.5, and 0.9.
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Figure 5.3: TAMSD as a function of the lag time ∆ for 100 single trajectories (red lines) and EATAMSD (black
line). Common parameters are H = 0.3, T = 1638 and ta = 0. From top to bottom: β = 0.3 and 0.7.
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5.3 Ergodicity

According to the general stochastic model considered in the Hypothesis section 3.1,

X(t) = lβXgen(t), (5.12)

it is arrived to the conclusion that the Ergodicity Breaking parameter [26, 34]

EB(T ) =

〈[
δ2(T )

]2
〉

〈
δ2(T )

〉2 − 1 (5.13)

tends to

lim
T→∞

EB(T ) =
〈l4β〉
〈l2β〉2

− 1. (5.14)

The condition 〈l4β〉 > 〈l2β〉2 is met for any distribution due to the inequality K ≥ S2 + 1 [41],
where K is the kurtosis and S the skewness. In particular, for the ggBm, it is

lim
T→∞

EB(T ) = β
Γ2(β)

Γ(2β)
− 1. (5.15)

Function (5.15) can be observed in Figure 5.4. Figure 5.5 shows how EB(T ) converges to a
constant for large T that is common for different ∆.

5.4 p-variation

p-variation is defined as [53]

V (p)(t) = lim
n→∞

V (p)
n (t) (5.16)

where t ∈ [0, T ] and

V (p)
n (t) =

2n−1∑

j=0

∣∣∣∣X
(

(j + 1)T

2n
∧ t
)
−X

(
jT

2n
∧ t
)∣∣∣∣

p

, (5.17)

with a ∧ b = min{a, b}. For the ggBm, we have

V
(p)
ggBm(t) = Λ

p/2
β V

(p)
fBm(t). (5.18)

V
(p)
n (t) of ggBm (as well as fBm) diverges as increasing n for p = 2 < 1/H ≈ 3.33 and

converges to a straight line for p = 1/H. Graphics are not shown because they are essentially
the same than Figure 4.6 and 4.7. For the CTRW, the value of convergence is p = 2.
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Figure 5.4: Ergodicity Breaking parameter of ggBm in the limit T →∞ (5.15) as a function of β.

5.5 Relation with experiments

The Ergodicity Breaking parameter and the p-variation are observables commonly used to
characterize a stochastic process given some experimental data. There is a famous experiment
describing the motion of mRNA molecules inside living E. Coli cells presented by Goldin and
Cox [31]. Some features of this experiment is that it has Ergodicity Breaking, which requires
models like CTRW, while presenting a p-variation fBm-like [53] (different than 0 and ∞ for
p = 1/H), which is an eregodic stochastic process. This is the case of the ggBm, which
matches both observables. More discussion on this point will be done in Chapter 8.

5.6 Aging

Sometimes, an interesting feature of a stochastic process is aging, the dependence of statistical
quantitites on the initiation of the measurement time [11]. We can easily introduce aging by
using a time-dependent prefactor in the formulation of our model

Xα,β,H(t) =
√
tαΛβBH(t), α > −1, (5.19)

so the covariance matrix is

γα,β,H(t, s) =
σ2VH

2Γ(1 + β)
tα/2sα/2

(
t2H + s2H − |t− s|2H

)
, (5.20)
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Figure 5.5: Ergodicity Breaking parameter of ggBm as a function of measurement time T , averaged over 103

trajectories, for ∆ = 40 and several values of H and β. The theoretical value of the EB (5.15) is represented
with solid lines.

and the EAMSD

〈
X2
α,β,H(t)

〉
=

σ2VH
Γ(1 + β)

tα+2H . (5.21)

It can be shown (see section 5.7) that

〈
X2
α,β,H(t)

〉
a
∼
{

σ2VH
Γ(1+β) t

α+2H , t� ta,
σ2VH

Γ(1+β) t
2Htαa , ta � t,

(5.22)

and the EATAMSD is (not exact in the paper)

〈
δ2
a(∆)

〉
∼
{

σ2VH
(1+α)Γ(1+β)∆2HTα, T � ∆, ta,
σ2VH

Γ(1+β)∆2Htαa , ta � T � ∆.
(5.23)

It can be seen that 〈X2
α,β,H(∆)〉a = 〈δ2

a(∆)〉 when ta � T � ∆. In Figures 5.6 and 5.7, both
behaviors of the EATAMSD (5.23) can be observed for different values of α.

In Table 5.1, main characteristics of fBm, subdiffusive CTRW and ggBm are compared.
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Figure 5.6: EATAMSD of the extended ggBm as a function of the measurement time T . Black lines represent
the theoretical asymptotic behaviour (5.23) for T � ∆, ta. Parameters: β = H = 0.3, ∆ = 50, ta = 0,
N = 103.

fBm, H ∈ (0, 1) Subdiff. CTRW, α ∈ (0, 1) ggBm, H ∈ (0, 1), β ∈ (0, 1)

P(x,t) e
− x2

2σ2VHt
2H√

2πσ2VH t2H
1√

4Kαtα
Mα/2

(
1√
Kαtα

|x|
)

1√
2σ2H t2H

Mβ/2

(√
2

σ2VH t2H
|x|
)

〈X2(t)〉 σ2VHt
2H 2Kα

Γ(1+α) t
α σ2VH

Γ(1+β) t
2H

〈
δ2(∆)

〉
σ2VH∆2H 2Kα

Γ(1+α)T 1−α∆ σ2VH
Γ(1+β)∆2H

Ergodic Yes No No
p∗ of p-variation 1/H 2 1/H

Aging No Yes No

Table 5.1: Comparison of the main characteristics of fBm, subdiffusive CTRW and ggBm.
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5.7 Derivation of asymptotic EAMSD and EATAMSD of ggBm
with aging

We can calculate the EAMSD of (5.19):
〈
X2
α,β,H(t)

〉
a

=
〈
[Xα,β,H(ta + t)−Xα,β,H(ta)]

2
〉

=
〈
X2
α,β,H(ta + t)

〉
+
〈
X2
α,β,H(ta)

〉
− 2 〈Xα,β,H(ta + t)Xα,β,H(ta)〉

=
σ2VH

Γ(1 + β)

[
(ta + t)α+2H + tα+2H

a − (ta + t)α/2tα/2a

(
(ta + t)2H + t2Ha − t2H

)]
.

(5.24)

Knowing that

(τ + ∆)a ∼ τa + a∆τa−1, τ � ∆, (5.25)
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it is possible to obtain the behaviour when t� ta,

〈
X2
α,β,H(t)

〉
a
∼ σ2VH

Γ(1 + β)

[
tα+2H + (α+ 2H)tat

α+2H−1 + tα+2H
a

−
(
tα/2 +

α

2
tat

α/2−1
)
tα/2a

(
t2H + 2Htat

2H−1 + t2Ha − t2H
) ]

∼ σ2VH
Γ(1 + β)

[
tα+2H + 2Htα/2+1

a tα/2+2H−1
]
. (5.26)

In our case, α > −1, H ∈ (0, 1), it results

〈
X2
α,β,H(t)

〉
a
∼ σ2VH

Γ(1 + β)
tα+2H , t� ta. (5.27)

For ta � t,

〈
X2
α,β,H(t)

〉
a
∼ σ2VH

Γ(1 + β)

[
tα+2H
a + (α+ 2H)t tα+2H−1

a + tα+2H
a

−
(
tα/2a +

α

2
t tα/2−1
a

)
tα/2a

(
t2Ha + 2Ht t2H−1

a + t2Ha − t2H
) ]

=
σ2VH

Γ(1 + β)

[
t2Htαa − αHt2tα+2H−2

a +
α

2
t2H+1tα−1

a

]
(5.28)

Using that H ∈ (0, 1), it completes the result (5.22)

〈
X2
α,β,H(t)

〉
a
∼ σ2VH

Γ(1 + β)
t2Htαa , ta � t. (5.29)

Using this last expression, it is also possible to calculate the asymptotic behaviour of the
EATAMSD for T � ∆. If ta � T � ∆,

〈
δ2
a(∆)

〉
=

1

T −∆

∫ ta+T−∆

ta

〈
[X(τ + ∆)−X(τ)]2

〉
dτ

∼ σ2VH∆2H

Γ(1 + β)T

∫ ta+T

ta

τα dτ

=
σ2VH∆2H

(α+ 1)Γ(1 + β)T

[
(ta + T )α+1 − tα+1

a

]

∼ σ2VH
Γ(1 + β)

∆2Htαa . (5.30)

If T � ∆, ta,

〈
δ2
a(∆)

〉
=

1

T −∆

∫ ta+T−∆

ta

〈
[X(τ + ∆)−X(τ)]2

〉
dτ

=
1

T −∆

[∫ C

ta

〈
[X(τ + ∆)−X(τ)]2

〉
dτ +

σ2VH
Γ(1 + β)

∆2H

∫ ta+T−∆

C
τα dτ

]
, (5.31)
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for a constant C that satisfies ∆� C < T + ta −∆. We can now write

〈
δ2
a(∆)

〉
∼ σ2VH∆2H

Γ(1 + β)T

(
AC +

∫ T

C
τα dτ

)
, (5.32)

for some constant AC with respect to T . If α > −1,

〈
δ2
a(∆)

〉
∼ σ2VH∆2H

(α+ 1)Γ(1 + β)T

(
BC + Tα+1

)

∼ σ2VH∆2H

(α+ 1)Γ(1 + β)
Tα. (5.33)



Chapter 6

Results Part 2: Crossover from anomalous to normal
diffusion

Madness and insanity are two terms
that are so vague and relative that you
can’t really apportion proper values to
them. The only thing I can think of
that has any use it functional and
dysfunctional. Are you working as well?
In which case, it doesn’t matter if you
are mad.

Alan Moore, V for Vendetta

6.1 Tempered superdiffusive fBm

Let us consider a regular overdamped Langevin equation of a particle in a viscous medium
under the influence of a force [80, 94]

dx(t)

dt
:= v(t) =

ξ(t)

mη
, x(0) = 0, (6.1)

where ξ(t) is a stochastic force that will be a stationary Gaussian noise with zero mean, x(t)
is the position of the particle, v(t) its velocity, m its mass and η is the friction coefficient.
Then, the velocity autocorrelation function satisfies

〈v(t)v(t+ τ)〉 = 〈v2〉τ , τ ≥ 0. (6.2)

It holds that

〈x2(t)〉 = 2

∫ t

0
dτ(t− τ)〈v2〉τ (6.3)

so we can infer that if
∫∞

0 dτ〈v2〉τ is finite, then

〈x2(t)〉 ∼ 2t

∫ ∞

0
dτ〈v2〉τ , as t→∞, (6.4)
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being diffusion asymptotically normal. On the other hand, if
∫∞

0 dτ〈v2〉τ is infinity or zero,
one should expect anomalous diffusion at long times. If we choose

〈v2〉τ =
DH

Γ(2H − 1)
τ2H−2, (6.5)

where 1/2 ≤ H < 1, it is the case of superdiffusive fractional Brownian motion (note that
here, different constants has been used with respect to (4.46)). In fact, the MSD is

〈x2(t)〉 =
2DH

Γ(2H + 1)
t2H . (6.6)

6.1.1 Exponentially truncated fractional Gaussian noise

Let us now consider the following exponential tempering for 〈v2〉τ (which is proportional to
〈ξ2〉τ )

〈v2〉τ =
DH

Γ(2H − 1)
τ2H−2e−τ/τ? , τ, τ? > 0, (6.7)

where τ? is a characteristic crossover time scale. Now
∫∞

0 dτ〈v2〉τ = DHτ
2H−1
? (finite) so we

have normal diffusion at long times. The exact MSD is

〈x2(t)〉 =
2DHτ

2H
?

Γ(2H − 1)

[
t

τ?
γ (2H − 1, t/τ?)− γ (2H, t/τ?)

]
(6.8)

where γ(a, z) =
∫ z

0 t
a−1e−tdt is the incomplete γ-function. It behaves as (6.6) at short times

〈x2(t)〉 ∼ 2DH

Γ(2H + 1)
t2H , t� τ?, (6.9)

and at long times

〈x2(t)〉 ∼ 2DHτ
2H−1
? t, t� τ?. (6.10)

This crossover behaviour is plotted in Figure 6.1.

6.1.2 Power-law truncated fractional Gaussian noise

Now we use a softer power-law trunctation

〈v2〉τ =
DH

Γ(2H − 1)
τ2H−2

(
1 +

τ

τ?

)−µ
, τ, µ > 0. (6.11)
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Figure 6.1: MSD (6.6) of overdamped Langevin equation with exponentially truncated fGn for H = 3/4,
DH = 1 and τ? = 1 (blue line). Short and long time asymptotics, (6.9) (red line) and (6.10) (green line),
respectively, are also plotted.

The MSD can be written as

〈x2(t)〉 =
2DHt

2H

Γ(2H − 1)

[
1

2H − 1
2F1(µ, 2H − 1; 2H;−t/τ?)

− 1

2H
2F1(µ, 2H; 2H + 1;−t/τ?)

]
, (6.12)

where 2F1 is a hypergeometric function. For t � τ? we recover the MSD of untruncated
fractional Brownian motion (6.6). At long times t� τ?, we can distinguish several cases:

Weak power-law truncation (0 < µ < 2H − 1 < 1)

In this case, the MSD behaves as

〈x2(t)〉 ∼ 2DHτ
µ
?

(2H − µ)(2H − 1− µ)Γ(2H − 1)
t2H−µ, t� τ?. (6.13)

Strong power-law truncation (µ > 2H − 1 > 0)

In this situation, it is obtained

〈x2(t)〉 ∼ 2DHΓ(µ− 2H + 1)τ2H−1
? t

Γ(µ)
, t� τ?. (6.14)

Borderline case (0 < µ = 2H − 1 < 1)

The MSD of this case is

〈x2(t)〉 ∼ 2DHτ
2H−1
?

Γ(2H − 1)
t ln(t/τ?), t� τ?. (6.15)
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Figure 6.2: MSD (6.12) of overdamped Langevin equation with power-law truncated fGn for H = 3/4, DH = 1
and τ? = 1. The red solid line represents the curve for µ = 0.3 (weak power-law truncation) and the blue line
for µ = 1 (strong power-law truncation). The dashed lines correspond to the long time asymptotics of both
curves. The green line depicts the untruncated case.

In Figure 6.2 the MSD of weak and strong power-law truncation cases are shown.

6.2 Tempered subdiffusive generalised Langevin equation
motion

Let us now consider the overdamped generalised Langevin equation [45,66,99]

m

∫ t

0
γH(t− t′)dx(t′)

dt′
dt′ = ξ(t), x(0) = 0, (6.16)

for a particle with mass m moving in a viscous medium that is characterized by a friction
kernel γH(t). ξ(t) is a Gaussian noise that we will modify as in previous section. Now, we
require in addition the Kubo-Zwanzig fluctuations dissipation relation [45,99]

〈ξ2〉τ = kBTmγH(τ). (6.17)

Using Laplace transformation procedures, it is obtained that

〈x2(t)〉 ∼ 2kBT

m
∫∞

0 γH(τ)dτ
t, as t→∞. (6.18)

Equivalently to previous section, anomalous diffusion is expected when
∫∞

0 γH(τ)dτ is either
zero or infinity. By choosing

γH(τ) =
ΓH

Γ(2H − 1)
τ2H−2, (6.19)
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with 1/2 ≤ H < 1, it is obtained that

〈x2(t)〉 =
1

Γ(3− 2H)

2kBT

mΓH
t2−2H , (6.20)

〈v2〉τ = −sin(π[2H − 1])Γ(2H)

π

kBT

mΓH
|τ |−2H . (6.21)

6.2.1 Exponentially truncated fractional Gaussian noise

Now we choose

γH(τ) =
ΓH

Γ(2H − 1)
τ2H−2e−τ/τ? (6.22)

that arrives to

〈x2(t)〉 =
2kBT

mΓH
t2−2HE1−2H

1,3−2H(−t/τ?) (6.23)

where Eδα,β(z) is the three-parameters Mittag-Leffler function. The asymptotic behaviour at
short times is the same than the one for the untruncated noise (6.20). At long times,

〈x2(t)〉 ∼ 2kBT

mΓHτ
2H−1
?

t, t� τ?. (6.24)

The MSD and the asymptotic behaviours can be seen in Figure 6.3. The velocity autocorre-
lation function is, for τ > 0,

〈v2〉τ = −sin(π[2H − 1])Γ(2H)

π

kBT

mΓH
τ−2He−τ/τ? . (6.25)

6.2.2 Power-law truncated fractional noise

Let us now use the following friction kernel

γH(τ) =
ΓH

Γ(2H − 1)
τ2H−2

(
1 +

τ

τ?

)−µ
, τ, µ > 0. (6.26)

In this case, the MSD and the velocity autocorrelation function must be expressed in terms
of the inverse Laplace transform L−1

s . In fact,

〈x2(t)〉 =
2kBT

mΓHτ
2H−1
?

g(t), (6.27)

〈v2〉τ =
kBT

mΓHτ
2H−1
?

d2

dτ2
g(τ), (6.28)
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Figure 6.3: MSD (6.23) for the overdamped generalised Langevin equation with exponentially tempered fGn
with parameters H = 3/4, kBT/[mΓH ] = 1, and τ? = 1 (blue line). The short and long time asymptotics are
shown too (read and green lines, respectively).

where

g(t) = L−1
s

{
1

s2U(2H − 1, 2H − µ; sτ?)

}
(t), (6.29)

being U(a, b; z) the Tricomi hypergeometric function. At short times t, τ � τ? the MSD and
the velocity autocorrelation function for the untruncated kernel are recovered. At long times,
we consider two possibilities:

Weak power-law truncation (0 < µ < 2H − 1 < 1)

In this case, the long time behavior is

〈x2(t)〉 ∼ Γ(2H − 1)

Γ(2H − µ− 1)Γ(µ+ 3− 2H)

2kBT

mΓHτ
µ
?
tµ+2−2H , t� τ?, (6.30)

〈v2〉τ ∼ −C
kBT

mΓHτ
µ
?

1

τ2H−µ , τ � τ?, (6.31)

where C = (2H − µ− 1)π−1 sin(π[2H − µ− 1])Γ(2H − 1) is a positive constant.

Strong power-law truncation (µ > 2H − 1 > 0)

In this case, MSD behaves as

〈x2(t)〉 ∼ Γ(µ)

Γ(µ+ 1− 2H)

2kBT

mΓHτ
2H−1
?

t, t� τ?. (6.32)
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Figure 6.4: MSD (6.27) for the overdamped generalised Langevin equation with power-law truncated fGn.
Common parameters are H = 3/4, kBT/[mΓH ] = 1, and τ? = 1. The red solid line shows the weak power-
law truncation (µ = 0.3) while the blue solid line displays the strong power-law truncation (µ = 1). The
asymptotics at long times are represented by dashed lines. The untruncted case is also plotted (solid green
line).

For simplicity, assuming that µ+ 1− 2H 6= n ∈ N, it is obtained

〈v2〉τ ∼ −C
kBT

mΓHτ
2H−1
?

1

τµ+2−2H
, τ � τ?, (6.33)

where C is a positive constant.

Borderline case (0 < µ = 2H − 1 < 1)

In the borderline case, at long times, MSD reads

〈x2(t)〉 ∼ Γ(2H − 1)
2kBT

mΓHτ
2H−1
?

t

ln(t/τ?)
, t� τ?. (6.34)

In Figure 6.4, the MSD for the weak and strong power-law truncation are shown.

6.3 Direct tempering of Mandelbrot’s fractional Brownian
motion

Meerschaert and Sabzikar considered [62] the following extension of fractional Brownian mo-
tion, the tempered fractional Brownian motion (tfBm)

BH,λ(t) =

∫ 0

−∞

[
e−λ(t−t′)(t− t′)H−1/2 − e−λ(−t′)(−t′)H−1/2

]
B′(t′)dt′

+

∫ t

0

[
e−λ(t−t′)(t− t′)H−1/2

]
B′(t′)dt′, H, λ, t > 0. (6.35)
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B′(t) is white Gaussian noise with zero mean and covariance

〈B′(t1)B′(t2)〉 = σ2δ(t1 − t2). (6.36)

In the limit λ→ 0 and H ∈ (0, 1) the fBm, as defined by Mandelbrot [58], is recovered except
by a prefactor 1/Γ(H + 1/2) that is not considered. This process was studied in [18] and
the following results can be found there. However, they were included in the article used to
recreate this Chapter for the convenience of the reader and present physical arguments for the
behaviour of this model. The MSD is

〈B2
H,λ〉 = σ2C2

t t
2H (6.37)

where

C2
t =

[
2Γ(2H)

(2λt)2H
− 2Γ(H + 1/2)√

π

KH(|λt|)
(2λt)H

]
(6.38)

and KH(z) is the modified Bessel function of second kind. At short times, MSD behaves as

〈B2
H,λ(t)〉 ∼ σ2Γ2(H + 1/2)VHt

2H +
σ2Γ(2H)

21+2H(H − 1)
λ2−2Ht2, t� λ−1, (6.39)

where

VH =
1

Γ(2H + 1) sin(πH)
. (6.40)

In the long time limit, the MSD converges exponentially to a constant value

〈B2
H,λ(t)〉 ∼ σ2

(
2Γ(2H)

(2λ)2H
− 21/2−HΓ(H + 1/2)

λH+1/2
tH−1/2e−λt

)
, t� λ−1. (6.41)

In Figure 6.7 the MSD and the constant value that it approaches at long times are displayed.
It is possible to define a derivative for this process using the procedure followed by Mandelbrot
and van Ness

B′λ,H(t; δ) ≡ B′λ,H(t) =
1

δ
[BH,λ(t+ δ)−BH,λ(t)] . (6.42)

which autocorrelation function results to be

〈B′H,λ(t)B′H,λ(t+ τ)〉 =
σ2Γ(H + 1/2)√

π(2λ)Hδ2

[
2τHKH(|λτ |)− (τ + δ)HKH(λ|τ + δ|)

− |τ − δ|HKH(λ|τ − δ|)
]
. (6.43)

It is antipersistent for the whole range 0 < H < 1 and for any finite λ,
∫ ∞

0

〈
B′H,λ(t)B′H,λ(t+ τ)

〉
dτ = 0. (6.44)
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Figure 6.5: Autocorrelation function (6.43) of tempered fractional Gaussian noise (solid lines). Dashed lines
show the autocorrelation function of fractional Gaussian noise. Parameters: λ = 103, δ = 10−5.

For small τ and δ → 0, it behaves as fractional Gaussian noise

〈B′H,λ(t)B′H,λ(t+ τ)〉 ∼ σ2(2H − 1)HΓ2(H + 1/2)VH |τ |2H−2

− σ2Γ(2H)λ2−2H

22H+1(1−H)
, τ � λ−1. (6.45)

and, for large τ ,

〈B′H,λ(t)B′H,λ(t+ τ)〉 ∼ σ2τH−1/2e−λτ

2H−1/2λH+1/2δ2

[
1− cosh(λδ) + sinh(λδ)

(H − 1/2)δ

τ

]
, τ � λ−1.

(6.46)

Figure 6.5 shows function (6.43) for several values of H > 1/2 and the corresponding curves
of fractional Gaussian noise (the limit λ→ 0) for the same values of H.

6.3.1 Fractional Langevin equation with directly tempered fractional Gaussian
noise

Let us consider the overdamped tempered fractional Langevin equation [18]
{∫ t

0 γH(t− τ)dxdτ dτ = ξ(t)

γH(τ) = 2〈B′H,λ(t)B′H,λ(t+ τ)〉
(6.47)



58 Chapter 6 Results Part 2: Crossover from anomalous to normal diffusion

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

<
x

2
(t

)>
 

t

H =  0.8
     0.7
     0.6
     0.4
     0.3
     0.2

Figure 6.6: MSD of generalised Langevin with tfGn (6.47) obtained numerically. Parameter: λ = 0.1.

where the noise ξ(t) is tempered fractional Gaussian noise B′H,λ(t). For the regime of short
observation times, the MSD is

〈x2(t)〉 ∼ sin(πH)

Γ2(H + 1/2)

t2−2H

Γ(3− 2H)
, δ � t� λ−1. (6.48)

For long observation times, it behaves as

〈x2(t)〉 ∼
√
πλ2H

Γ(H + 1/2)Γ(H)
t2, t� λ−1. (6.49)

In Figure 6.6 both behaviours (6.48) and (6.49) can be observed along the transition between
them.

6.3.2 Ornstein-Uhlenbeck with fractional Gaussian noise

Let us consider the Ornstein-Uhlenbeck process

dx(t)

dt
= −λx(t) +B′H(t), x(0) = 0, t > 0, (6.50)

where B′H(t) is fractional Gaussian noise. The MSD is

〈x2(t)〉 = σ2VHt
2He−λt

[
1 +

λt

4H + 2
(eλtfH(−λt)− e−λtfH(λt))

]
, (6.51)
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where

fH(x) = M(2H + 1; 2H + 2;x) (6.52)

is Kummer’s confluent hypergeometric function. For short times, MSD reads

〈x2(t)〉 ∼ σ2VHt
2H(1− λt), t� λ−1. (6.53)

In the long time limit, MSD converges exponentially to

〈x2(t)〉 ∼ σ2

2 sin(πH)λ2H
, t� λ−1. (6.54)

In Figure 6.7 the MSD and its long time limit are shown in comparison with the results known
for tfBm. It can be seen the unique value of H for which both MSD reach the same plateau
value.

6.4 Relation with experiments

In this section, it is shown an application to describe lipid molecule dynamics in lipid bilayer
membranes. The dataset comes from all-atom Molecular Dynamics simulations regarding
double layered leaves made up of short amphiphilic polymers (lipids). When they are inmersed
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Figure 6.8: MSD of the motion of lipid molecules in a lipid bilayer model membrane at room temperature. Black
solid lines are adjusted using the described generalised Langevin equation with exponentially and power-law
truncated noise. The article that details this Chapter describes the parameters used for the fit. Data from
Matti Javanainen, University of Helsinki.

in water, the hydrophilic head groups are in contact with the ambient (water) while the
hydrophobic tail groups are not. At room temperature, the membranes form a disordered
structure where membrane proteins may be embedded [95]. For such systems, simulations try
to show the diffusion driven by temperature of lipids and proteins. The dynamics influence
the biological properties of the membrane [95]. In Fig. 6.8, we can see the simulation results
of a liquid disordered and liquid ordered state of a lipid bilayer membrane. The system is
described in detail in [40]. It can be seen that diffusion changes from subdiffusion to normal
diffusion and the time scale of the crossover is around 10 ns. The lipids are well described by
a generalised Langevin equation featuring viscoelastic diffusion with power-law noise. It can
be seen that our models with exponentially and power-law truncated noise fit very well the
simulation data.
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6.5 Table of main results

System
〈
ξ2
〉
τ

〈
x2(t)

〉
,

t→ 0

〈
x2(t)

〉
, t→∞

v(t) ∝ ξ(t)

∝ τ2H−2

∝ t2H

∝ t2H
∝ τ2H−2e−τ/τ? ∝ t

∝ τ2H−2(1 + τ/τ?)
−µ

∝ t2H−µ (0 < µ < 2H − 1 < 1)
∝ t (0 < 2H − 1 < µ)

∝ t ln t (0 < 2H − 1 = µ < 1)

∫ t
0 γH(t− t′)v(t′)dt′ = ξ(t)〈

ξ2
〉
τ
∝ γH(τ)

}
∝ τ2H−2

∝ t2−2H

∝ t2−2H

∝ τ2H−2e−τ/τ? ∝ t

∝ τ2H−2(1 + τ/τ?)
−µ

∝ tµ+2−2H (0 < µ < 2H − 1 < 1)
∝ t (0 < 2H − 1 < µ)

∝ t/ ln t (0 < 2H − 1 = µ < 1)〈
B′H,λ(t)B′H,λ(t+ τ)

〉
∝ t2

x(t) = BH,λ(t) ∝ t2H const
v(t) = −λx(t) + ξ(t)

〈
B′2H
〉
τ
∝ τ2H−2 ∝ t2H const





Chapter 7

Results Part 3: Stochastic spatial models in Ecology

Desire, which has been the driving force
in man, has created a great many
pleasant and useful things; desire also,
in man’s relationships, has created a
great many problems and turmoil and
misery.

Jiddu Krishnamurti,
Krishnamurti to Himself

The article corresponding to this Chapter is a review. Because of that, original results come
from different sources as cited.

In contrast to previous results, we are interested mainly in 2D.

7.1 Results concerning the voter model

7.1.1 β-diversity

The β-diversity for the voter model with speciation and NN dispersal is [2].

F (r) = c
κD−2

(2π)D/2
(κr)(2−D)/2K(2−D)/2(κr), (7.1)

where D is the number of dimensions and κ2 = 2Dν/a2, being a the lattice spacing and Kz

is the modified Bessel function of second kind of order z. The constant c is given by the
condition

∫
r<a d

Dr F (~r) = 1.
Because of isotropy, β-diversity is only function of r = |~r|. It should be noticed that (7.1) is

continuous in r, while the voter model is defined in a lattice. The validity of that expression
is r � a [17]. Expression (7.1) is also valid for a general dispersal kernel when distances are
larger than the kernel range. In two dimensions, (7.1) displays a logarithmic decay followed
by an exponential falloff. The logarithmic decay appears as a consequence of setting D = 2,
the critical dimension of the model. On the other hand, the critical dimension allows a large
biodiversity when ν is very small. It is remarkable that β-diversity measured in forests in
Central and South America is compatible with the logarithmic decay for large distances [21].

7.1.2 SAR

Empirically, SAR often describes three different regimes [38, 77, 81]. At small areas A, the
number of species S(A) increases linearly with the sampled areas and a similar steep is shown
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ν (voter model with speciation in 2 dimensions). Simulations done in [74] by using a uniform square dispersal
kernel of side K = 7. A triphasic shape is displayed for larger ν.

at large scales. Instead, intermediate scales are described by a sublinear growth, well approx-
imated by a power law S(A) ∼ Az, z < 1. It has been proposed a logarithmic fit too for that
scale, S(A) = C lnA.

Simulations of the voter model with speciation yields quite similar SARs to the empirical
ones (see Figure 7.1). The initial regime is basically determined by the dispersal range K. It
is noticed that for areas larger than K2, a sublinear regime is obtained and for even larger
areas, according to a crossover depending on ν, curves are steeper again.

Some theoretical expressions obtained for the SAR in the case of the voter model with
speciation can be found in the article, along the intention to fit it to the power law form
S(A) ∼ Az. SAR’s complex dependence on A is a characteristic of the critical dimension
D = 2.

7.1.3 SAD

For spatially explicit models such as the voter model with speciation, computing the SAD is a
difficult problem. According to [2,98], the SAD can be assumed to have the following scaling
form based on standard finite-size scaling

P (n;A, ν) = n−βΨ(nνα, AνD/2), (7.2)
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where α and β remain unknown. It is considered the general case where A = LD, being L the
linear size of the sample. In models with long-range, non-diffusive dispersal [82] the scaling
can be different.

In (7.2), it is described a distribution which is a power-law on n up to a scale defined by the
function Ψ, depending on dimensionless products of n, ν and A. That is expected for D = 1
and D ≥ 3, but not at the critical dimension D = 2, where logarithmic corrections should
contribute to the power-law.

In order to include the logarithms, it has been developed [97] the following scaling relation

P (n;A) = g(A)Ψ(n/f(A)). (7.3)

The dependence on ν was ommited since the relation was applied to empirical data (where
ν is assumed to be unknown and fixed). The most important feature of this scaling relation
is that f and g are general functions, which can include logarithms. They can be obtained
by imposing P (n;A) to be normalized and that its average value is 〈n〉. It is also used that
Ψ(x) ∼ x−∆ with ∆ = 1− ε, ε� 1, so it is considered a power-law on n again, but including
a more general cut-off for large A. The result are the following functions (up to first order in
ε)

f(A) = 〈n〉 ln〈n〉
[
1 +

ε

2
ln〈n〉

]
, (7.4)

g(A) =
1

〈n〉 ln2〈n〉
[
1 + ε

2 ln〈n〉
]2 . (7.5)

As it can be seen, they include logarithmic corrections. Zillio et al. showed that this scaling
form is very good for data collected in Barro Colorado tropical forest, better than a power-law
relation such as (7.2). This fact supports the idea that ∆ ≈ 1 in tropical forests.

We tested with numerical simulations (7.3) with (7.4) and (7.5). Parameter ν was chosen in
such a way that Aν is constant. Results are plotted in Figure 7.2. The small value obtained
for ε (0.08) is consistent with the assumed small deviation from ∆ = 1. A similar collapse for
Aν = 20 reveals an even smaller value ε = 0.069. It was verified that using ε = 0 or removing
the logarithmic corrections, the collapses are not that good. However, with the presence of
statistical fluctuations, any collapse would be convincing.

This non-standard scaling form including logarithms provides an excellent collapse in em-
pirical data and simulations of the voter model with speciation in 2D. It is reasonable to
suppose that ν is kept constant between tropical forests, so the product Aν should not be
constant. Our simulations (not shown) with constant ν does present deviations from perfect
collapse.

Finally, a heuristic expression for the SAD of the model has been obtained following a
different approach [24, 87]. Let it be P (x, t) the distribution of the abundance of a given
species at time t. Approximating x as a continuous quantity, a Fokker-Planck equation can
be heuristically written for the evolution of P (x, t)

∂tP (x, t) = ν∂x[xP (x, t)] + ∂2
x[I(x)P (x, t)], (7.6)
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Figure 7.2: Top left: Species-Abundance Distributions (SAD) as a function of the abundance of the species
n for different areas A = L2 (voter model with speciation in 2 dimensions with NN dispersal kernel). The
speciation rate ν is chosen in such a way that the product Aν is kept constant and equal to 200. Top right:
Collapse using (7.3) and procedure described in the text with ε = 0.08. Bottom left: Collapse without
logarithmic corrections. Deviations from right collapse are noticeable. Bottom right: Collapse using (7.3) and
the procedure described in the text with ε = 0. It is also far from perfect.

where the first term in the RHS is the negative drift due to speciation, the second is the
fluctuation of the population size, and I(x) is the average number of interfaces of a species of
size x. The crucial approximation is to not consider fluctutations of I(x), which is adequate
when it is a peaked function. In that situation, the dependence on the spatial dimension of
the model is recap into I(x). The steady-state solution is

Pst(x) =
e
−ν

∫
dx x

I(x)

I(x)
. (7.7)

In 2D, the average number of interfaces must scale as

I(x) =
x

1 + c lnx
(7.8)

where c is a non-universal constant. It is noticeable to find logarithmic terms in I(x) and the
fact that c plays the role of ε in the scaling of above. A deeper comparison of the results of
the two formulations would be an interesting issue.
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Figure 7.3: Species persistence times for voter model with speciation in 2D with NN dispersal. Left: pdf
of species persistence times for different values of the speciation rate ν. Top right: pdf rescaled with the
logarithmic correction. Bottom right: pdf reescaled with an effective power-law.

7.1.4 Species persistence times

Empirical measures of North-American birds and herbaceous plants show that the proba-
bility of observing persistence times τ are power-laws (P (τ) ∼ τ−1.83 and P (τ) ∼ τ−1.78,
respectively), with exponential cut-offs that are area-dependent [6, 90].

The species persistence-times can be calculated for the model in the limit of vanishing ν
and it is (in 2D)

P (τ) ∼ ln τ

τ2
, (7.9)

while for 1D it is

P (τ) ∼ τ−1/2. (7.10)

When ν is not negligible, there are cut-offs which have the form exp(−ντ) in either dimension.
Species persistence times are shown in Figure 7.3, obtained with simulations in 2D of the

model. It is additionally shown a compensated plot to check the fitness to the predicted law.
It is also shown that using an effective power-law, a good approximation in a broad range of
scales is obtained. That is consistent with empirical results [6, 90].

7.2 Near-neutral models

In real ecosystems, neutral models are a raw approximation. In this section, it is considered a
minimal model where a single parameter determines if the model remains neutral or becomes
non-neutral. This model is the habitat-preference model [75] and it is a variant of the voter
model.
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7.2.1 Description of the system

Only two species are considered (A and B) with NA and NB individuals, respectively. The
total number of individuals is N = NA+NB and they are placed in a saturated square lattice,
where periodic boundary conditions apply. There is an additional infinite reservoir where
species A and B can migrate to the lattice. Now we impose the condition of non-neutrality
allowing each site of the lattice to have a fixed preference for individuals of the species A or
B, so we associate to each node a type a or b according to its preference for the individual of
species A and B, respectively, when the colonization from the reservoir takes place. Mortality
and dispersal are independent of the type of the site so the habitat-preference is related with
the seeds and not with the individuals themselves.

7.2.2 Dynamics

Each time step, the individual of a site of the lattice randomly chosen dies. Then, a new
individual is associated to that node, which comes from the reservoir with probability µ or
by reproduction of one of the four nearest neighbours with probability 1 − µ. In both cases,
the probability to colonize the empty site by those individuals which are prefered by the type
of the site is multiplied by a factor γ. The exact formulas are included in the paper, also
considering a global dispersal or mean-field version. Note that for γ = µ = 0, the standard
voter model is recovered (and, consequently, its neutrality).

7.2.3 Extinction times

When µ = 0 (abscence of inmigration) and there is a finite number of individuals N , persistent
coexistence of A and B is impossible. Instead, the system reaches eventually one of the two
absorving states (monodominance of one of the species). An observable of interest is the
average extintion time 〈Text〉.

The neutral case (voter model, γ = 0) has the following extintion time for large N and NN
dispersal kernel [44]

〈Text〉 ∼ N lnN, (7.11)

and the following for global dispersal [30]

〈Text〉 ∼ N. (7.12)

In general, γ > 0 leads to an increase of 〈Text〉 that takes the form

〈Text〉 ∼ exp(C(γ)N), (7.13)

where C(γ) is well-fitted by a power-law with exponent 1.63 (see Figure 7.4). The global
dispersal version has a qualitative similar behaviour, except in the limit γ = 0 (as indicated
in (7.12)) and the shape of C(γ) [75]. The exponential dependence indicates that the model
presents a stabilizing feature. For large enough N , both species coexist on realistic time scales.
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7.2.4 Coexistence

A extinct species can appear again in the case µ > 0 due to immigration from the reservoir.
When 1/µ � 〈Text〉, the recovery is unlikely, so the distribution of the population size is
peaked at 0 and N for any of the species (monodominance). When 1/µ � 〈Text〉, extintions
are rare and the distribution is peaked at N/2 (pure coexistence). For intermediate values,
three maximum values are found for the population size distribution (0, N/2 and N) (mixed
coexistence). These three cases are displayed in the top panels of Figure 7.5.

In the bottom panels of Figure 7.5 it can be seen the three regimes of coexistence in the
N -µ parameter space. In the global dispersal version, the same qualitative panels are found,
but there is no mixed coexistence regime between monodominance and pure coexistence in
the case γ = 0 [75]. It can be noticed that increasing γ (habitat preference), the region of
mixed coexistence expands.

7.2.5 Generalizations of the habitat-preference model

To obtain physical understanding of the different regimes in Figure 7.5, a variant of the
habitat-preference model was considered in [8]. Another study analyzed the case in which
only some nodes have preference for a specific species [9]. In particular, it was studied the
case in which only the left column of sites of a square lattice has preference for one of the
species while the right column of sites has preference for the other species, remaining the rest of
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Figure 7.5: Regimes of coexistence for the habitat-preference model with NN dispersal. Top panels show the
stationary distribution of the population of one of the species P (NA) for γ = 0.3 and, from left to right:
N = 50, µ = 10−3; N = 300, µ = 2 · 10−3; N = 100, µ = 10−3. Bottom panels show how the N -µ parameter
space is partitioned in three regimes for different values of γ (from left to right: γ=0, 0.3 and 1). The three
points are associated with the graphs in the top panel.

the nodes neutral. Results show that even mild preferences in a small fraction of nodes has as
a consequence a durable coexistence. It applys also to regions very far from the biased nodes.
These results have several applications since it shows that “sanctuaries” for different species
can result in an improvement of coexistence of all the species, protecting biodiversity [9].

7.2.6 Temporally-dependent habitat preferences

There is a long tradition in Ecology to understand what happens when preference of the sites
changes over time. Studies have looked at the consequences of changes on population growth
and stability of the ecosystem [19,79]. Enviromental fluctuations can increase extinction rates,
but also can foster stability by reducing interspecific competition.

Several works have studied models in which habitat-preferences are dependent on time.
They predict ecological observables better than other available neutral models [25,35,87,88].
It is claimed [1] that this approach estimates more realisticaly dynamical quantities, e.g.,
average species persistence times, when compared with neutral models.

7.2.7 Models with density dependence

Variants of the voter model with negative density-dependence have been considered [68]. It
means that individuals belonging to more abundant species have lower fitness. These models of
density-dependence are symmetric, although not neutral, since all species are treated equally.
Phenomena like spontaneous breakdown of that symmetry, leading to species coexistence, has
been considered at mean field [7].
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Discussion

There is nothing wrong with wanting
pay for work, or seeking to maximize
one’s income, as long as one does not
use means that are destructive.

Richard Matthew Stallman,
GNU Manifesto

8.1 First part

There exists a lot of anomalous diffusion models and the choice of a specific model depends
on the physical situation. In addition, to determine the type of motion is usually necessary to
check also additional measures, not only the MSD. In the first part we started by obtaining
the observables of interest of the process known as ggBm to be able to discern whether this
model can explain some experiments or not. Comparing the characteristics of ggBm with the
two most popular models that reproduce anomalous diffusion, fBm and subdiffusive CTRW,
we see that it has properties similar to each one. A very important remark is that, whilst the
observables related with single trajectories (p-variation and TAMSD) are very similar to fBm,
measures related with ensemble-averages (pdf and Ergodicity Breaking parameter) are close
to CTRW. There are differences however with respect to CTRW. For example, the parameter
regulating the Ergodicity Breaking parameter (and the non-ergodicity) and the order of the
M-Wright/Mainardi function describing its pdf is not related with the anomalous diffusion
exponent in the case of the ggBm, while it is in the case of CTRW. Also, for CTRW, non-
ergodicity is a consequence of the ausence of a waiting-time scale which directly affects the
TAMSD. On the contrary, ggBm is similar to fBm in the sense that it does not experience
trapping and each trajectory has a self-averaging TAMSD. However, the fact that each particle
experiments the media in a different way sets a non-vanishing variance for this observable and,
as a consequence, non-ergodicity. This property was demonstrated for any process composed of
identical ergodic processes in an heterogeneous media and the Ergodicity Breaking parameter
was calculated. It would be very interesting to know how these results are related with
environments displaying other kind of heterogeneity and see their relation with ergodicity.

Characteristics of ggBm has been proved to be very useful because ggBm can explain
scenarios that cannot be reproduced by some of the more important models like fBm or
subdiffusive CTRW. It is the case of the motion of mRNA in E. coli cells studied by Goldin
and Cox where ggBm can explain all the measured observables: anomalous diffusion, fBm-like
p-variation, and non-ergodicity. This way, we showed that a fractional Brownian motion in a
heterogeneous media may describe this process. A very similar result was obtained recently
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in [50] where data of Goldin and Cox was statistically compared with a process almost similar
to ggBm, a superstatistical fBm, Y (t) = XBH(t), which random variable X is distributed
as a Weibull distribution instead of the M-Wright/Mainardi distribution used in the ggBm.
Despite our comparison for p-variation is exclusively qualitative, authors of that reference
developed two statistical methods (one of them based on p-variation and the other on the
second moment of the increments of the process) to confirm whether the motion of mRNA
could be explained by the model and an afirmative answer was obtained.

Another recent paper that deals with a different ggBm is [89]. In that reference, the Gaussian
process of formula (3.1) is chosen to be Brownian motion instead of fBm, and the random
variable is understood as a diffusivity instead of a length scale. It can be written as X(t) =√

2DB(t), where random diffusivity D is distributed according to the generalised Gamma
distribution. A non-equilibrium generalization is also proposed in which they introduce a
time-dependency in the diffusivity D = D(t). It is suggested to be understood as fluctuations
of their disjointed regions, or also changes in the particle size, e.g., due to agglomeration and
separation dynamics.

8.2 Second part

In the second part, firstly, we analysed the overdamped Langevin equation and overdamped
generalised Langevin equation with different truncations for the autocorrelation function of
the fractional Gaussian noise. While at short times, the MSD was the same than the case
without truncation, we showed that at long times the situation changes. When exponentially
truncated or strongly truncated by a power-law, normal diffusion appears at long times. These
results are very important because there are experiments in which after a given correlation
time, anomalous diffusion crosses over to normal diffusion. When possible, it is better to have
a model that reproduces both the initial and the terminal regimes instead of two disconnected
power-laws. The mentioned results are explicit and they allow to extract the crossover time.
We applied one of these models to simulation results from lipid bilayer membranes where the
correspondence was very good and data perfectly fitted. Many other experiments can benefit
from these results since a quantitative description of the crossover was found.

In the case of the overdamped Langevin equation which correlation function of the noise
has weak power-law truncation, a crossover from faster superdiffusion to slower superdiffusion
was found. On the other hand, in the case of the overdamped generalised Langevin equation
with the same noise that in the previous case, a crossover from slower to faster subdiffusion
was obtained. Again, experiments can benefit from these models since explicit expression for
the results was derived.

Secondly, we went into the process known as tempered fractional Brownian motion where an
exponential tempering is done directly in the definition of the fBm. As commented in Chap-
ter 6, these results were previously obtained by other authors but we considered important to
present them for comparison and discussion. At short times, the behaviour of the MSD is like
fBm except by a prefactor not considered in the definition. Surprisingly at first, the long time
behaviour of the MSD is not linear as it was in the previous cases for exponential truncations,
but it approaches to a constant value. As a consequence, we can think than this process is
physically more suitable for a velocity than the position of a particle. We compared it with
the fractional Ornstein-Uhlenbeck and both saturates at long times, so we can say that this
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tempered fBm describes also a confined motion. The plateau values are dependent on H and
we found the single value for which both MSD arrive to the same limit.

Another surprising result is the MSD of the fractional Langevin equation with tempered
fractional Gaussian noise (the defined derivative of the tempered fBm). This model shows
a crossover from subdiffusion (in agreement with previous studied equations) to a ballistic
regime. We arrived to the conclussion that this last behaviour is a consequence of two facts:
(i) the integral of the autocorrelation function of the noise over the entire domain is zero, and
(ii) at long times this autocorrelation function exhibits an exponential decay. To show this,
in the original reference of this part of the thesis, a toy model satisfying both conditions is
presented and, again, it is reproduced the ballistic long time behaviour. We consider that this
fact increases the understanding of the process and will help choose when this process can be
useful.

8.3 Third part

With respect to community ecology, we discussed the state of the art in spatial neutral Ecol-
ogy. We also considered near-neutral models and we commented them. The list of discussed
points was not complete, and there are a lot of interesting issues that still need to be studied
deeply. One of them is the considered speciation mechanisms. In all the models discussed in
the article, the speciation process requires a single individual. However, while it is practical
for modeling, it leads to speciation rates that are not equivalent to independent estimates [78].
This assumption increases the number of rare species. A process called protracted speciation
has been considered for neutral models to address this problem [83]. In protracted speciation,
a single generation is not enough for speciation. Instead, it becomes a gradual event that lasts
several generations. In addition, there are more speciation modes [22]. It is the case of para-
patric speciation, where two distant populations of the same species can give rise to different
species. Different speciation mechanisms can have implications in maintaining biodiversity
and ecological patterns. Computational results of models featuring these mechanisms can be
useful to clarify it.

Ecological neutrality has elicited controversies because classical ecological features like
niches might be not that important in structuring communities. On the other hand, neu-
tral and non-neutral models based on niches have similar results, so it is difficult to deter-
mine [16,60,92]. Niche and neutral models are not exclusive, but it is not easy to distinguish
the relative importance of each of them, in particular because of the big number of param-
eters of non-neutral models. Some progress has been done in [33], where the main aspects
of neutral theory are added to the classical competition model Lotka-Volterra. To study a
similar approach in a spatial model could be an interesting direction of research.

Some observables in ecology are commonly used in Statistical Physics, like β-diversity/two-
point correlation function. However, other observables are not so common like SAR and SAD.
Considering well-known quantities like multi-point correlation functions and measuring it in
real ecosystems could be an interesting direction too.

Finally, it can be remarked that ecosystems are usually 2-dimensional, which due to the
underlying diffusive behavior, is the critical dimension. It has been shown that it leads to
logarithmic corrections of the scaling laws. This fact usually makes difficult the mathematical
and computational analysis, even if some advances have been made in last years.
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[46] Paul Langevin. Sur la théorie du mouvement brownien. Compt. Rendus, 146:530–533,
1908.

[47] Simon A Levin. The problem of pattern and scale in ecology: the robert h. macarthur
award lecture. Ecology, 73(6):1943–1967, 1992.

[48] T.M. Liggett. Interacting particle systems. Springer Verlag, 1985.

[49] Ariel Lubelski, Igor M Sokolov, and Joseph Klafter. Nonergodicity mimics inhomogeneity
in single particle tracking. Physical review letters, 100(25):250602, 2008.



78 Bibliography
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Second part: Conclusions





Chapter 9

Conclusions

Avoid doing what you would blame
others for doing.

Thales, as quoted in The Lives and
Opinions of Eminent Philosophers

by Diogenes Laërtius

9.1 First part

For the first part, our first purpose on research was to characterize the process known as ggBm.
Firstly, we developed the necessary software to simulate ggBm trajectories and we computed
and plotted observables that were important. We were able to obtain also analytical results
for all the observables. The first expected result is that it displays anomalous diffusion for
its EAMSD as many other stochastic processes and experiments. Then, we calculated the
TAMSD and we found two important facts: (i) TAMSD depicts also anomalous diffusion very
precisely, and (ii) results from different trajectories were very scattered even for long mea-
surement times. The first fact is an heritage from fBm and the second is due to the random
variable in the definition of the ggBm that also appears in the TAMSD. As a consequence of
that scattering, the variance of the TAMSD never goes to zero even in the limit of infinite
measurement time, and the process is then non-ergodic. We were able to calculate the specific
form of the Ergodicity Breaking parameter for any general process that can be written as the
product of a random variable distributed according to some distribution multiplied by any er-
godic process. According to the Hypothesis section 3.1, we can reformulate the previous result
stating that an heterogeneus media that associates a random length scale to each particle can
change individual ergodic processes into a non-ergodic one without altering the processes. In
particular, we found that for any non-trivial distribution of length scales, there is a continuous
transition from ergodicity to non-ergodicity. Nextly, we found that p-variation of ggBm was
almost equivalent to that of fBm, except multiplication by a power of the random variable. We
obtained that ggBm does not have aging as a consequence of its stationary increments. Then,
we decided to study a modified version of the ggBm that featured aging. We characterized the
stocastic process and in particular calculated its EAMSD and EATAMSD when some aging
time passed between the initiation of the experiment and the start of the measurement. An
interesting work would be to find a suitable application for this process now that its main
characteristics are known.
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9.2 Second part

For the second part, the intention was to study the MSD of several processes mainly by use
of the Laplace transforms. Firstly, it was presented the regular overdamped Langevin equa-
tion which stochastic force was a power-law correlated fractional Gaussian noise. The result is
known to be the fBm. Then, we studied the MSD when this noise was exponentially truncated
and, next, power-law truncated as (1+τ/τ?)

−µ. Different behaviours were analyzed depending
on the value of µ. At short times, all the models had a MSD that behaves as fBm, (∼ t2H).
Notably, at long times, the exponentially truncated noise and the strong power-law truncation
resulted in normal diffusion. Secondly, we presented the overdamped generalized Langevin
equation with fractional Gaussian noise and the Kubo-Zwanzig fluctuations-dissipation rela-
tion. After that, we modified the original fractional Gaussian noise with previous exponential
truncation and power-law truncation for the autocorrelation function and derived its MSD
and velocity autocorrelation function. The short and long time behaviour of the obtained
expressions were also calculated. At short times, all models behaved as ∼ t2−2H . Again, at
long times, we obtained normal diffusion for the exponential and strong power-law truncation.

Nextly, instead of tempering the fractional Gaussian noise in the Langevin equation as we
previously did, we analysed the model proposed by Meerschaert and Sabzikar in which the
tempering is done directly in Mandelbrot’s definition of fBm, the so-called tempered fractional
Brownian motion. The results presented for this model were published previously by other
authors as indicated in the text. At short times, the MSD behaves as fBm. At long times, it
converges exponentially to a plateau value. We defined a derivative following the procedure
used by Mandelbrot for fractional Gaussian noise that was called tempered fractional Gaussian
noise. Then, the autocorrelation function was calculated and we showed that at short times
it behaves as fractional Gaussian noise and at long times it decreases exponentially. We also
presented the overdamped fractional Langevin equation in which the noise was the tempered
fractional Gaussian noise and studied its behaviours. In particular, this motion converges
to ballistic diffusion at long times. At the end of this section, we compared the tempered
fractional Brownian motion with the Ornstein-Uhlenbeck with fractional Gaussian noise. We
showed that they have a similar plateau behaviour at long times and we found the unique
value of the Hurst exponent that equals both MSD in the long time limit.

9.3 Third part

Ecosystems have a complex spatial organization that ecologists have tried to describe by
observing different patterns of biodiversity across spatial scales. While neutral theory of
Ecology can predict some measures in communities of competing species, spatial models still
have several problems that limit the quantitative understanding of biodiversity. The purpose
on research of this article was to offer the state of the art in spatial models of neutral theory
of Ecology. We discussed the main ecological observables and the mathematical predictions of
the voter model with speciation. We also performed extensive computational simulations. In
particular, we presented a continuous analytical form of the β-diversity inD dimensions, which
is the equivalent observable in Ecology to the two-point correlation function in Statistical
Physics. We introduced the conditions under which the expression is valid, according to the
distances involved and the dispersal kernel of the model. We also discussed the important
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case 2D which has special properties not appearing in other dimensions. For the Species-
Area Relationships we showed that simulations of the model agree with empirical results.
The Species-Abundance Distributions is a hard problem. We presented a standard scaling
form valid for any dimension D 6= 2 which does not include logarithms and a specific one for
the critical dimension D = 2 that allows them. The second one was tested with numerical
simulations, confirming the need of the use of logarithms to have a better collapse. However,
with statistical fluctuations, trivial collapses could be convincing too. Another approach
for the Species-Abundance Distributions was presented by introducing a heuristical Fokker-
Planck equation for the evolution of the pdf. Logarithmic terms appears and it is suggested
that it would be very interesting to compare this approach with the general scaling previously
explained. The species persistence times is also discussed and the theoretical behaviours are
indicated. In the critical dimension, again, logarithmic terms correct the power-laws. Also,
exponential cut-offs appears when the speciation rate is not negligible. These results are
corroborated by simulations.

The last part of the article is dedicated to near-neutral models. It is presented a general-
ization of the voter model, the habitat-preference model which non-neutrality depends on a
single parameter. Each node of the lattice have a preference for one type of the species when
colonization takes places. It is seen that the non-neutrality leads to an exponentional increase
of the average extinction times. This is a stabilizing feature such that species can coexist
on realistic time scales. Some generalizations of this model are presented. In particular, it is
explained a model in which giving a mild non-neutral preference in only a small fraction of the
nodes has as a consequence a durable coexistence. It is discussed how temporally-dependent
habitats have a long tradition in Ecology and they have impact on the population growth.
Studies show that these models predict better dynamical quantites than neutral models. Fi-
nally, models with density dependence are commented.
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(Received 23 July 2015; revised manuscript received 20 October 2016; published 28 November 2016)

We present a modeling approach for diffusion in a complex medium characterized by a random length scale.
The resulting stochastic process shows subdiffusion with a behavior in qualitative agreement with single-particle
tracking experiments in living cells, such as ergodicity breaking, p variation, and aging. In particular, this
approach recapitulates characteristic features previously described in part by the fractional Brownian motion and
in part by the continuous-time random walk. Moreover, for a proper distribution of the length scale, a single
parameter controls the ergodic-to-nonergodic transition and, remarkably, also drives the transition of the diffusion
equation of the process from nonfractional to fractional, thus demonstrating that fractional kinetics emerges from
ergodicity breaking.

DOI: 10.1103/PhysRevE.94.052147

I. INTRODUCTION

Many processes in life sciences, soft condensed matter,
geology, and ecology show a diffusive behavior that cannot
be modeled by classical methods. These phenomena are
generally labeled with the term anomalous diffusion in order
to distinguish them from the normal diffusion, where the
adjective normal has the double aim of highlighting that (i)
a Gaussian-based process is considered, and (ii) that it is a
usual diffusion process with a linear growth in time of the
particle displacement variance. The observation in nature of
anomalous diffusion has been definitively established exper-
imentally and several theoretical models have been proposed
for the interpretation of such phenomenon [1–3]. Among
these theoretical efforts, the fractional calculus has emerged
to be a successful tool for modeling a class of anomalous
diffusion processes [4,5]. For this reason, anomalous diffusion
governed by equations built on fractional derivatives is often
also referred to as fractional diffusion. Several stochastic
approaches have been proposed in the literature to reproduce
fractional kinetics [6–10].

In the last decades, advances in fluorescence-based tech-
niques such as single-particle tracking (SPT) have allowed
to precise characterization of the diffusion of molecules in
biological systems [11]. In particular, the recording of long
single-molecule trajectories has revealed that the occurrence
of anomalous diffusion of some cellular components in living
cells is associated with ergodicity breaking (EB) [12–16], i.e.,
the nonequivalence of time and ensemble averages [2,3]. Often
EB and anomalous diffusion are concomitant with aging, i.e.,
the dependence of statistical quantities on the measurement
time [17].

Besides the fundamental interest of nonergodic processes
in statistical mechanics and its still unclear implications in cell
biology, the occurrence of EB further embodies a valuable cri-

*carlo.manzo@icfo.es
†gpagnini@bcamath.org

terium for the selection of the underlying diffusive stochastic
process. In this respect, comparative studies involving the frac-
tional Brownian motion (fBm) [18,19], the fractional Langevin
equation [18], and the continuous-time random walk (CTRW)
[19–21] have been conducted in order to determine which
type of motion could possibly cause nonergodic anomalous
diffusion. Among the mentioned theoretical frameworks, the
fBm and the fractional Langevin motion are ergodic, with
fBm displaying EB only in the ballistic limit [18]. On the
other hand, the CTRW is nonergodic [20,21], with the EB
stemming from the nonstationary nature of the process when
the distribution of waiting times has a power-law tail [20].
For this reason, the CTRW has been extensively used to
model the occurrence of nonergodic diffusion and the waiting
times have been associated to immobilization events caused
by biochemical interactions [2,3].

However, due to the lack of nonergodic model alternatives
to the CTRW, the use of EB as a criterion to select the
dynamic process has shown some limitations. An example
is provided by the seminal work of Golding and Cox [12].
In this case, although the presence of EB favors CTRW
as the model underlying the dynamics of RNA in cellular
cytoplasm, a moments-based criterion called p variation
[19] seems to indicate a diffusion compatible with fBm.
Similarly, other experiments also showed the simultaneous
occurrence of EB and nonlinear scaling of the time-averaged
mean-square displacement, making necessary to hypothesize
the coexistence of CTRW with other processes in order to
theoretically model the observed features [13–15].

In this paper, we provide a general framework in which
EB emerges as a consequence of the heterogeneity (or
randomness) of the system. The heterogeneity is described by
the random nature of a characteristic property of the medium,
such as a length scale �β , depending on a single parameter β.
Simple examples of this behavior are provided by a population
of particles, each of them diffusing in a Brownian fashion but
with a broad distribution of diffusion coefficients �β . However,
our conclusions do not depend on the type of motion performed
by the particles. We also show that for any nontrivial choice
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of the distribution �β , the parameter β continuously drives
the transition from ergodic to a nonergodic process. Notably, a
fractional kinetics straightforwardly emerges from EB and thus
allows us to associate nonergodicity to a fractional equation.

For its generality, our approach constitutes a flexible tool
to interpret the occurrence of EB in random media and
in living cells without involving CTRW and subordination.
From the biophysical point of view, it implies that EB can
be generated by heterogeneity in the diffusion, without the
need of particle trapping. In particular, we discuss how our
model can resolve the controversy on the interpretation of
Golding and Cox experiments [12,19,21,22] by considering
the fBm in a heterogeneous medium. Such a model allows
one to simultaneously obtain the apparently contradictory
features observed in Golding and Cox experiments, i.e., the
monotonically increasing p-variation test typical of the fBm
together with the EB parameter of the CTRW.

Finally, we show that our formulation can be further
generalized by considering a nonstationary length scale �β =
�β(t) and thus including the occurrence of aging.

II. ERGODICITY BREAKING FROM DIFFUSION
IN A RANDOM MEDIUM

In our model, we consider a stochastic process defined as

X(t) = �β Xgen(t) ,

describing a population of particles diffusing according to
a generic ergodic Gaussian process Xgen(t) in a complex
random medium. The medium properties are independent
of the diffusing particles, and its randomness is described
by a random characteristic quantity—such as a length scale
�β—with distribution depending on the parameter β. The role
of β thus consists in tuning the degree of randomness of the
medium by modulating the distribution of the length scale.
For the case in which Xgen(t) represents a random walk, �β

corresponds to a distribution of diffusion coefficients.
Although the following conclusions hold for every ergodic

Gaussian stochastic process, for the sake of simplicity, from
now on we will consider the fBm XH (t), an ergodic non-
Markovian Gaussian process characterized by the covariance
matrix:

γH (t,s) = t2H + s2H − |t − s|2H , (1)

where 0 < H < 1 is the Hurst exponent, and the variance
results to be 〈X2

H 〉 = 2 t2H .
Therefore, we investigate the following diffusion process

X(t) in a random medium:

X(t) = �β XH (t) . (2)

In order to study the dynamics of the process, we first con-
sider the time-averaged mean-square displacement [18,20,21]

δ2(T ) =
∫ T −�

0 [X(ξ + �) − X(ξ )]2 dξ

T − �
, (3)

where � is the time lag and T the measurement time. The
time-averaged mean-square displacement describes the time
dependence of the second moment of the particle’s position
and it is often used to classify the diffusion mode. For the pure
Brownian motion (2H = 1), δ2(T ) shows a linear growth with
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FIG. 1. Time-averaged mean-square displacement δ2 as a func-
tion of the time lag � calculated for several trajectories (thin red lines)
performing the fBm in a random medium, according to the ggBm
(7) with β = H = 0.3 and T = 104. The dashed line corresponds
to the time- and ensemble-averaged mean-square displacement. The
continuous thick line is a guide to the eye.

�, whereas the fBm shows a power-law behavior ∼ �2H , i.e.,
anomalous diffusion. The effect of the random length scale is
preserved in the calculation of δ2(T ). For the particular case
2H = 1 in which the process XH (t) in (2) corresponds to the
pure Brownian motion, the random length scale is proportional
to the diffusion coefficient. Consequently, as shown in Fig. 1,
time averages such as δ2(T ) remain random variables and
is thus irreproducible [23], causing ergodicity breaking. This
effect can be estimated through the calculation of the EB
parameter EB(T ) [18,21]. Let 〈·〉 represent the ensemble
averaging, then

EB(T ) = 〈[δ2(T )]2〉
〈δ2(T )〉2

− 1 (4)

is calculated in the large T limit and tends to 0 when the
process is ergodic [18].

With a fixed and nonrandom length scale, e.g., �β = 1, for
the stochastic process X(t) defined in (2), we obtain [18]

E
(�β=1)
B (T ) = E

(fBm)
B (T )

T →∞−−−→ 0 . (5)

In contrast, if �β is a random variable, for X(t) it holds that

E
(�β )
B (T ) =

〈
�4

β

〉
〈
�2

β

〉2 [
E

(fBm)
B (T ) + 1

] − 1
T →∞−−−→

〈
�4

β

〉
〈
�2

β

〉2 − 1 .

(6)

The condition 〈�4
β〉 > 〈�2

β〉2 is met in general for any distri-
bution as a consequence of the inequality K � S2 + 1 [24],
where K and S are the kurtosis and the skewness, respectively,
and in particular for any unilateral nonincreasing density
it holds K � 9/5 from the Gauss-Winckler inequality [24].
The limiting case 〈�4

β〉 = 〈�2
β〉2 is met when the distribution

of the length scale is the Bernoulli distribution with equal
success probability for values 0 and 1 or it is the Dirac-delta
distribution δ(�β − 1); therefore the process is nonergodic for
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every nontrivial choice of �β . Although these conclusions
might look somehow trivial, they show how a complex
medium, through a random distribution of the length scale,
might produce nonergodic behavior into an ergodic Gaussian
stochastic process, including the pure Brownian motion, only
by introducing heterogeneity [20].

III. ERGODICITY BREAKING AND THE
FRACTIONAL KINETICS

In the previous section we have shown that, since �β is
an independent random variable, EB can occur as the sole
consequence of the randomness of the medium in which
diffusion takes place (6) and independently of the chosen
ergodic Gaussian stochastic process.

In the following, we will focus our attention on the
stochastic process X(t) as defined in (2). This process has
already been studied in a specific characterization named
generalized gray Brownian motion (ggBm) [8,25,26]. As a
matter of fact, the ggBm trajectory Xβ,H (t) is obtained by
setting �β = √

�β , i.e.,

Xβ,H (t) = √
�β XH (t) , (7)

where the positive random variable �β is distributed according
to the one-side M-Wright–Mainardi function Mβ(λ), with λ �
0 and 0 < β < 1, defined as [27,28]

Mβ(λ) =
∞∑

k=0

(−1)k

k!

λk


[−βk + (1 − β)]
. (8)

The case of a nonrandom length scale, i.e., �β = 1, is
straightforwardly recovered in the limit β → 1 since it holds
M1(λ) = δ(λ − 1). The ggBm is a rather general model and
includes as special cases the Brownian motion (β = 2H = 1),
the fBm (β = 1), and the gray Brownian motion (β = 2H ).

It is well known that the probability density function of
Xβ,H (t) is [8]

P(x; γH ) = 1√
(2πλ)n det γH

×
∫ ∞

0
exp

{
− 1

2λ
xT γ −1

H x
}

Mβ(λ) dλ , (9)

where x = (x1, . . . ,xn) and γH = γH (ti ,tj ), i,j = 1, . . . ,n, is
the covariance matrix of the fBm defined in (1). Therefore, by
the Mellin transform of Mβ(λ) [29], i.e.,

∫ ∞
0 λs−1Mβ(λ) dλ =


[1 + (s − 1)]/
[1 + β(s − 1)], with s > 0, the covariance
matrix of the ggBm can be obtained as [8,26]

γβ,H (t,s) = 1


(1 + β)
(t2H + s2H − |t − s|2H ) . (10)

The one-point one-time density function can be derived from
(9) and becomes

P(x; t) = 1√
4πλ t2H

∫ ∞

0
exp

{
− x2

4λ t2H

}
Mβ(λ) dλ (11)

= 1

2 tH
Mβ/2

( |x|
tH

)
, (12)

where it emerges that the shape of probability density function
of displacements is affected by the medium, here represented

by Mβ(λ). In terms of the H function the density function
P(x; t) reads [30,31]

P(x; t) = 1

2 tH
H 10

01

[ |x|
tH

∣∣∣∣ − ; (1 − β/2,β/2)
(0,1) ; −

]
,

(13)

and the asymptotic decay is Mβ/2(|x| → ∞) ∼
|x| c

2 (β−1) e−b|x|c , with b = 21−c

c
ββc/2 and c = 2

2−β
[31,32].

From (10) the variance turns out to be

〈
X2

β,H

〉 = 2


(1 + β)
t2H , (14)

showing that the presence of the medium does not affect the
power-law growth of the particle displacement variance over
time. It is noteworthy to observe that the ggBm shows both
subdiffusion, 0 < H < 1/2, and superdiffusion, 1/2 < H <

1. Moreover, a remarkable case is represented by H = 1/2 in
which the particle displacement variance results to be linear
in time, see (14), but the density function is not Gaussian
according to (12). The Gaussian density is obtained from (12)
as a special case when β = 1.

The evolution equation for P(x; t) is given by

∂P
∂t

= 2H

β
t2H−1 Dβ−1,1−β

2H/β

∂2P
∂x2

, (15)

where Dξ,μ
η is the Erdélyi-Kober fractional derivative with

respect to t and then the process is also referred to as Erdélyi–
Kober fractional diffusion [33]. Special cases of Eq. (15) are
the classical diffusion (β = 2H = 1), the fBm master equation
(β = 1), and the time-fractional diffusion equation (β = 2H ).
A similar approach can be developed in the framework of the
space-time–fractional diffusion equation, which includes all
its special cases [34].

We would like to remark that the fractional kinetics, i.e.,
β �= 1, emerges directly from the EB due to the randomness
of �β = √

�β since Mβ �=1(λ) �= δ(λ − 1). Moreover, the frac-
tional order related to β can be experimentally computed by
means of the long-time limit of the EB parameter. In fact, for
large T , from (6) and �β = √

�β the EB parameter E
(ggBm)
B (T )

then becomes

E
(ggBm)
B (T )

T →∞−−−→
〈
�2

β

〉
〈
�β

〉2 − 1 = β

(β)
(β)


(2β)
− 1 , (16)

where again the Mellin transform of Mβ(λ) [29] has been used
to compute 〈�2

β〉 and 〈�β〉.
In summary, the existence of a random length scale turns

an ergodic process into a nonergodic one without the need
to introduce an alternative stochastic process. When this
transition occurs continuously with respect to a parameter
β, the distribution of the length scale can be related to
the M-Wright–Mainardi function and the resulting stochastic
process is driven by a fractional diffusion equation.

Therefore, the present formulation provides a foundation of
fractional kinetics on the basis of the appearance of the EB. In
other words, fractional kinetics can be considered as stemming
from the EB due to the heterogeneity of the medium in which
the diffusion takes place. In order to support this physical
foundation argument, we remark that from the proposed ggBm
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(7) the evolution of the particle density function is governed
by a fractional diffusion equation also in the special case H =
1/2, see (15), with XH (t) performing the classical Brownian
motion and the particles displaying a variance with a linear
growth in time (14).

IV. RELATION WITH EXPERIMENTS

Advances in biophysical techniques, such as SPT, have
allowed researchers to detail the motion of single molecules
and have revealed very complex diffusion patterns in living
cells [11]. In particular, the analysis of these experiments
has shown that several biological systems display nonergodic
behavior as a consequence of interactions occurring in het-
erogeneous cellular environments [12–16]. Such nonergodic
behavior has often been connected with the occurrence of
anomalous (sub)diffusion. The occurrence of EB has been
mainly identified through the nonequivalence of time and
ensemble averages and by the calculation of the EB parameter
(4) [18,21]. Owing to the importance of molecular transport
for the cellular function, theoretical efforts have been devoted
to understand the physical mechanism behind EB in biology.
Several stochastic models presenting nonstationary (and thus
nonergodic) (sub)diffusion have been proposed [3]. Among
these models, the most popular has definitively been the CTRW
[19–21,35,36], which has been extensively used to model
nonergodic subdiffusion in living cells [13–15]. The CTRW
has allowed association of the nonergodic behavior with the
occurrence of particle immobilization with a heavy-tailed
distribution of trapping times [37].

However, among the experimental evidences of EB in
biological systems, not all the observed features could be
directly addressed within the framework of CTRW alone.
For example, Refs. [12,14,15] showed subdiffusive scaling
of the time-averaged mean-square displacement obtained for
single trajectories, making necessary the postulation of the
coexistence of CTRW with other sources of subdiffusion, i.e.,
the fBm [15] or a fractal processes [14], in order to properly
interpret the results. In addition, some experiments did not
show the occurrence of inherent features of CTRW, such as
aging [38] or immobilization [16].

In order to determine the physical scenario behind the
subdiffusive EB, a number of diagnostic tools have been
proposed [39]. Among these, a valid criterion for selection of
stochastic processes is represented by the so-called p-variation
test [19]. The test is based on the calculation of the quantity

V (p)(t) = lim
n→∞ V (p)

n (t) , (17)

where for t ∈ [0,T ],

V (p)
n (t) =

2n−1∑
j=0

∣∣∣∣X
(

(j + 1)T

2n
∧ t

)
− X

(
jT

2n
∧ t

)∣∣∣∣
p

, (18)

with a ∧ b = min{a,b}, and allows the CTRW-like models and
the fBm to be distinguished, even on the single-trajectory level
[39].

In spite of the efforts in developing tests and methods to
distinguish between different stochastic models, contradictory
indications still prevent the unambiguous determination of the
physical mechanism behind EB in biological samples. An

example is provided by what is probably the first evidence
of EB in living cells, i.e., the experiments describing the
motion of individual mRNA molecules inside living E. coli
cells presented in the seminal paper by Golding and Cox
[12]. In this case, in order to explain the occurrence of EB
as evidenced by the large scattering of single-trajectory δ2

curves and a nonzero EB parameter, the CTRW was proposed
in Refs. [21] and [22] to model this dataset. However, in
order to account for the subdiffusive behavior of the time-
averaged mean-square displacement, the authors of both works
proposed the coexistence of CTRW with some degree of spatial
confinement, producing the power-law behavior of δ2 [21,22].
But the application of the p-variation test to the same dataset
[12] showed that the subdiffusion is unlikely to originate from
the CTRW, whereas the data are compatible with fBm [19].

In this scenario, the general stochastic process presented in
this work in (2) provides a plausible framework to describe
the subdiffusive nonergodic behavior observed in Ref. [12].
The introduction of a random length scale associate to a
random medium allows one to describe the complexity of the
cytoskeletal environment and reproduce the scatter of time-
average mean-square displacement observed at the single-
trajectory level. This observation is quantitatively translated
by the calculation of the EB parameter. As a matter of
fact, Eq. (16) shows that the EB parameter of the specific
process described in (7) is identical to that obtained for a
CTRW with a power-law distribution of waiting times, i.e.,
ψ(τ ) ∝ τ−(1+β), and an infinite average sojourn time [21,22],
independently of the ergodic Gaussian process used to model
diffusion. In addition, the flexibility of our method allows us
to choose the fBm to model single-particle diffusion (7) and
thus reproduce the subdiffusion in δ2 and maintain the same p-
variation behavior of the fBm V

(p)
ggBm(t) = �

p/2
β V

(p)
fBm(t), while

preserving the same degree of EB observed for CTRW-like
models (Fig. 2).
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FIG. 2. Plot of EB (T ) for the stochastic process (7) with β = 0.5
and H = 0.3 at various time lags � as a function of the measurement
time T . Larger � produces an increase of EB (T ) at short time T .
The EB (T ) values at large time T shown are in agreement with the
theoretical expectation (16) (dashed line). (Inset) Results of the the
p-variation test with p = 2 for the stochastic process (7) with β = 0.5
and H = 0.3, showing the same trend as the pure fBm.
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V. AGING

An interesting feature emerging from some single-particle
tracking experiments of cellular components [14–16] is
the occurrence of aging, i.e., the dependence of statistical
quantities—such as the time- and ensemble-averaged mean-
square displacement 〈δ2(T )〉—on the measurement time, as a
consequence of the presence of nonstationarity in the diffusive
mechanism [17]. Besides living cells, aging has been observed
for many complex systems such as blinking nanocrystals
[40–42], spin glasses [43], and colloidal suspension [44]. Since
aging can characterize long-term memory [45], it can be used
as a statistical indicator of complexity and thus exploited to
discriminate among different modeling approaches [46,47].
Furthermore, aging has been shown to be associated with
weak ergodicity breaking [48,49], i.e., a situation in which
the time needed to explore a system phase space is infinite, but
the phase space cannot be divided into mutually inaccessible
regions [48].

Our theoretical formulation allows reproduction of aging by
the extension to the case of a nonstationary random medium
�β = �β(t) [50]. The stochastic process results in the following
definition:

Xα,β,H (t) = √
tα�β XH (t) , (19)

where �β and XH (t), with 0 < H < 1, have the same meaning
as in Eq. (7). In this case, the increments of Xα,β,H (t) are
nonstationary, in contrast to the process defined in (7), which
is recovered as a particular case for α = 0. The parameter α

is constrained by the physical requirement that the process
is diffusive, meaning that the particle displacement variance
must grow in time. Since the variance of the process is given
by 〈

X2
α,β,H

〉 = 〈�β〉 tα+2H , (20)

the latter condition can be expressed as α > −2H . It can be
shown [50] that the time- and ensemble-averaged mean-square
displacement then is 〈δ2(T )〉 � �2H T α (Fig. 3).
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FIG. 3. Plot of the time- and ensemble-averaged mean-square
displacement 〈δ2(T )〉 at various time lags � and as a function of
the measurement time T for the process (19) with β = H = 0.3 and
α = −0.3. The curves asymptotically show a power-law decay T α

(dashed lines), demonstrating the presence of aging in the process.
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FIG. 4. Contour plot of the aging exponent α as a function of
the exponents controlling the power-law growth of the time- (2H )
and ensemble-averaged (α + 2H ) mean-square displacement for the
process (19). The continuous black line corresponds to the absence of
aging (α = 0). Dashed green lines separate sub- and superdiffusive
regions, characterized by exponent values < 1 and > 1, respectively.

It is interesting to note that our formulation shows properties
that were not recapitulated by any of the models for nonergodic
diffusion previously presented in literature [3]. First, the
exponents controlling the power-law behavior of δ2, 〈X2

α,β,H 〉
and 〈δ2(T )〉, depend on two parameters, α and H . As such they
can thus be independently tuned to reproduce any different
scaling of the two curves, in contrast to the other models [3].
In particular, our model show that the time- and ensemble-
averaged mean-square displacements can have marked differ-
ent behavior, for example, with one showing subdiffusivity
with the other showing superdiffusivity. In addition, the aging
can show a positive or negative exponent depending on the
relative magnitude of the exponents controlling the growth of
the time- and ensemble-averaged mean-square displacement
(Fig. 4).

Moreover, we highlight that the aging can be obtained even
in the case in which the time-averaged mean-square displace-
ment δ2 or the ensemble-averaged mean-square displacement
〈X2

α,β,H 〉 show Brownian behavior, i.e., when 2H = 1 or
α = 1, respectively. It is interesting to note that in the
case 2H = 1 we recover the same relationship between the
exponent of the ensemble-averaged mean-square displacement
(α + 1) and the time- and ensemble-averaged mean-square
displacement obtained for other models, such as the CTRW
[20], the scaled Brownian motion [51], the quenched trap [52],
and the patch model [53]. Moreover, the calculation of the
EB parameter (4) for the process (19) shows that even in the
presence of aging (α �= 0) the value of the EB parameter is
identical to the one obtained for a CTRW with infinite average
sojourn time and power-law distribution of waiting times [50].

VI. CONCLUSIONS

We have demonstrated that an ergodic Gaussian process
occurring in a heterogeneous medium characterized by a
random length scale can be turned into nonergodic without
altering the properties of the Gaussian process itself. We
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showed that for any nontrivial choice of the distribution of the
length scale, the transition from ergodicity to nonergodicity
can be continuously tuned by means of a parameter β. In these
cases, the distribution of the length scale can be related to
the M-Wright–Mainardi function and the resulting stochastic
process is controlled by a fractional diffusion equation.

These conclusions are valid for any ergodic Gaussian
process. Therefore, the generality of our formulation posits it
as a flexible tool for the interpretation of heterogeneous and/or
nonergodic diffusion in disordered systems, such as the many
examples of subdiffusion recently observed in living cells
[12–16,38]. Notably, our formulation includes the possibility
to model the simultaneous occurrence of subdiffusion (as well
as any other types of motion) at the single-particle level (Fig. 1)
and EB (Fig. 2), a feature observed in many experimental
reports [12–15]. This is in contrast with other nonergodic
models, such as the CTRW, predicting a linear scaling of the
time-averaged mean-square displacement. Therefore, the data
could not be satisfactorily interpreted by the CTRW alone and
needed to include an additional source of subdiffusion together
with CTRW models [14,15].

In particular, we showed that our framework offers an
interpretation of the data of Golding and Cox [12] on the
basis of a fBm in a heterogeneous medium. The stochastic
process (7) allows us to capture both the subdiffusivity in
the time-averaged mean-square displacement, the monotonic
temporal growing of the p-variations test (as for the fBm),

as well as the EB parameter value of the CTRW. Therefore,
our model allows us to reproduce all the features observed
experimentally and thus solve the disagreement about the
underlying stochastic process.

Furthermore, we show that by introducing a nonstationary
random medium (19), our model can be extended to include
the occurrence of aging, a feature often associated to EB in
living systems [14,16]. As such, we consider that our general
approach could contribute to investigate the occurrence of EB
and anomalous diffusion in life sciences as well as many other
fields, and help to elucidate their effects and implications.
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Abstract. The emerging diffusive dynamics in many complex systems shows
a characteristic crossover behaviour from anomalous to normal diffusion which
is otherwise fitted by two independent power-laws. A prominent example for
a subdiffusive-diffusive crossover are viscoelastic systems such as lipid bilayer
membranes, while superdiffusive-diffusive crossovers occur in systems of actively
moving biological cells. We here consider the general dynamics of a stochastic particle
driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian
amplitude and power-law correlations, which are cut off at some mesoscopic time scale.
Concretely we consider such noise with built-in exponential or power-law tempering,
driving an overdamped Langevin equation (fractional Brownian motion) and fractional
Langevin equation motion. We derive explicit expressions for the mean squared
displacement and correlation functions, including different shapes of the crossover
behaviour depending on the concrete tempering, and discuss the physical meaning of
the tempering. In the case of power-law tempering we also find a crossover behaviour
from faster to slower superdiffusion and slower to faster subdiffusion. As a direct
application of our model we demonstrate that the obtained dynamics quantitatively
described the subdiffusion-diffusion and subdiffusion-subdiffusion crossover in lipid
bilayer systems. We also show that a model of tempered fractional Brownian motion
recently proposed by Sabzikar and Meerschaert leads to physically very different
behaviour with a seemingly paradoxical ballistic long time scaling.
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1. Introduction

Diffusion, the stochastic motion of a tracer particle, was beautifully described by Brown
in his study of pollen granules and a multitude of other molecules (microscopic particles)
[1]. Diffusion is typically described in terms of the mean squared displacement (MSD)

〈x2(t)〉 ≃ Dαt
α (1)

of the particle spreading. When α = 1 this is the well known law of normal (Brownian
or Fickian) diffusion observed in detailed quantitative studies by Perrin, Nordlund, and
Kappler [2, 3, 4], among others. In the case of a scaling with an exponent α different from
unity, the dynamics encoded by the MSD (1) can be classified in terms of the anomalous
diffusion exponent α as either subdiffusive for 0 < α < 1 or superdiffusive for α > 1

[5, 6]. In expression (1) the generalised diffusion coefficient has physical dimension
[Dα] = cm2/sα. Anomalous diffusion with α 6= 1 has been revealed in a multitude
of systems [5, 6, 7]. In particular, following the massive advances of microscopy
techniques anomalous diffusion was discovered in a surging number of biological systems
[8, 9]. Thus, subdiffusion was monitored for both endogenous and introduced submicron
tracers in biological cells [10, 11, 12, 13, 14, 15, 16, 17] or in inanimate, artificially
crowded systems [18, 19, 20]. Supercomputing studies of protein internal motion [21]
or of constituent molecules of dilute and protein-crowded lipid bilayer membranes
[22, 23, 24, 25, 26] also show subdiffusive behaviour. Due to active motion, also
superdiffusion has been reported from several cellular systems [10, 11, 27, 28, 29]. For
a more exhaustive list of systems see the recent reviews [8, 9, 30, 31, 32].

In most of these systems the observed anomalous diffusion was identified as
fractional Brownian motion or fractional Langevin equation motion type defined below.
Both are characterised by power-law correlations of the driving noise [7, 8, 33]. At
sufficiently long times, however, this anomalous diffusion will eventually cross over
to normal diffusion, when the system’s temporal evolution exceeds some relevant
correlation time. For instance, all atom molecular dynamics simulations of pure lipid
bilayer membranes exhibit a subdiffusive-diffusive crossover at around 10 nsec, the
time scale when two lipids mutually exchange their position [22]. The quantitative
description of this anomalous-to-normal crossover is the topic of this paper. For both
the subdiffusive and superdiffusive situations we include a maximum correlation time of
the driving noise and provide exact solutions for the MSD in the case of hard, exponential
and power-law truncation, so-called tempering, that can be easily applied in the analysis
of experimental or simulations data. The advantage of such a model, in comparison to
simply combining an anomalous and a normal diffusive law for the MSD is that the
crossover is built into a two-parameter exponential tempering model depending only on
the noise strength driving the motion and the crossover time. For the case of a power-
law tempering an additional scaling exponent enters. Depending on its magnitude, the
anomalous-normal crossover dynamics can be extended to a crossover from either faster
to slower superdiffusion or slower to faster subdiffusion. In this approach the crossover
between different diffusion regimes thus naturally emerges, and the type of tempering



Crossover from anomalous to normal diffusion 3

governs the exact crossover shape. As we will show the crossover shape encoded in this
approach nicely fits actual data.

The paper is structured as follows. In section 2 we consider the tempering
of superdiffusive fractional Brownian motion and derive the crossover to normal
diffusion. In section 3 we perform the same tasks for the subdiffusive generalised
Langevin equation. Section 3.5 compares our subdiffusive to normal diffusive model
of the tempered generalised Langevin equation to supercomputing data from lipid
bilayer membranes exhibiting characteristic crossover dynamics. The data analysis
demonstrates excellent agreement with the built-in crossover behaviour of our model.
Section 4 addresses direct tempering suggested by Meerschaert and Sabzikar as well as
its physicality. Indeed, we show that this type of tempering leads to ballistic motion. We
conclude in section 5. Several short appendices provide some additional mathematical
details.

2. Tempered superdiffusive fractional Brownian motion

We start from the overdamped stochastic equation of motion of a physical test particle
in a viscous medium under the influence of a stochastic force ξ(t) [34, 35]

dx(t)

dt
=

ξ(t)

mη
= v(t), (2)

where x(t) is the particle position and v(t) its velocity. Without loss of generality we
assume the initial condition x(0) = 0. Furthermore, m is the particle mass, and η,
of physical dimension [η] = s−1 is the friction coefficient. The stochastic force ξ(t)

is assumed to be a stationary and Gaussian noise of zero mean. Then the velocity
autocorrelation function fulfils

〈v(t)v(t+ τ)〉 = 〈v2〉τ , (3)

for all τ ≥ 0. By formal integration of equation (2) the MSD yields in the form

〈x2(t)〉 =
∫ t

0

dt1

∫ t

0

dt2〈v(t1)v(t2)〉

= 2

∫ t

0

dt1

∫ t

t1

dt2〈v(t1)v(t2)〉 = 2

∫ t

0

dτ(t− τ)〈v2〉τ . (4)

From this result we infer that if the autocorrelation function 〈v2〉τ decays sufficiently
fast at long times, such that

∫∞
0

dτ〈v2〉τ is finite, then the MSD reads

〈x2(t)〉 ∼ 2t

∫ ∞

0

dτ〈v2〉τ , (5)

at t → ∞, and diffusion becomes asymptotically normal. Thus, one should expect
anomalous diffusion at long times whenever

∫∞
0

dτ〈v2〉τ is either infinity or zero. This
is exactly the case for the persistent and antipersistent fractional Gaussian motions
considered in what follows, respectively. In the case of superdiffusive fractional Brownian
motion we choose the autocorrelation function in the form

〈v2〉τ =
DH

Γ(2H − 1)
τ 2H−2, (6)
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where the constant noise strength DH has dimension [DH ] = cm2/s2H , Γ(z) is the
Gamma function, and the Hurst exponent H is in the interval 1/2 ≤ H < 1. We
note here that this approach leads to the correct power-law asymptotics of the classical
Mandelbrot-van Ness fractional Gaussian noise at long times [36] with

∫∞
0

dτ〈v2〉τ = ∞,
but at the same time leads to an infinite zero-point variance 〈v2〉τ=0 of the noise.‡
Keeping away from τ = 0 we are allowed to restrict ourselves to the power-law form
(6). Furthermore the coefficient Γ(2H − 1) in equation (6) is introduced to capture the
white noise limit. Indeed, due to the property of the δ-function [37]

lim
H→0.5+

τ 2H−2

Γ(2H − 1)
= δ(τ) (7)

at H = 0.5 and with
∫∞
0

dτδ(τ) = 1 equation (6) reduces to

〈v2〉τ = Dδ(τ) (8)

with D1/2 = D.§
Now, after plugging result (6) into expression (4) the MSD can be readily calculated,

yielding

〈x2(t)〉 = 2DH

Γ(2H + 1)
t2H , (9)

which yields sub-ballistic superdiffusion with the anomalous diffusion exponent α = 2H ,
and thus 1 < α < 2.

In what follows we consider both a hard exponential and a power-law truncation
(tempering) of the persistent fractional Gaussian noise with Hurst exponent 1/2 ≤ H <

1.

2.1. Exponentially truncated fractional Gaussian noise

Let us first consider an exponential tempering of the form

〈v2〉τ =
DH

Γ(2H − 1)
τ 2H−2e−τ/τ⋆ , (10)

for τ > 0, where τ⋆ > 0 is a characteristic crossover time scale. For instance, in the
case of moving cells the crossover time τ⋆ would correspond to the time scale when the
cell motion becomes uncorrelated, similar to the decorrelation of the lipid motion in the
example of the lipid bilayer system discussed below.

Here we note that one should keep in mind that the autocorrelation function 〈v2〉τ
can not be chosen arbitrary. Namely, its Fourier transform, the spectrum 〈ṽ2(ω)〉 of the

‡ A more consistent approach using the smoothening procedure of fractional Brownian motion over
infinitesimally small time intervals à la Mandelbrot and van Ness [36] shows that the weak divergence
of the autocorrelation function (6) at τ = 0 does not lead to a change of the MSD.
§ The power-law correlations in the autocorrelation function (6) contrast the sharp δ-correlation
of relation (8) [38, 39]. We note that in this combination of the Langevin equation (2) and the
autocorrelation function (6) the fluctuation dissipation theorem is not satisfied, and the noise ξ(t)

can be considered as an external noise [40], see also the discussion of the generalised Langevin equation
below.
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Figure 1. Mean squared displacement (11) for superdiffusive fractional Brownian
motion with H = 3/4, DH = 1, and τ⋆ = 1 (blue line). The short and long
time asymptotics given by expression (12) are depicted by the red and green lines,
respectively.

random process v(t) must be non-negative [41]. The positivity of 〈ṽ2(ω)〉 for the case
of exponential tempering in equation (10) is shown in Appendix A. Note also that now∫∞
0

dτ〈v2〉τ = DHτ
2H−1
⋆ is finite, thus we expect normal diffusion at long times.

With the use of expression (4) the MSD for the exponentially truncated fractional
Gaussian noise takes on the exact form

〈x2(t)〉 = 2DHτ
2H
⋆

Γ(2H − 1)

[
t

τ⋆
γ

(
2H − 1,

t

τ⋆

)
− γ

(
2H,

t

τ⋆

)]
, (11)

where γ(a, z) =
∫ z

0
ta−1e−tdt is the incomplete γ-function. Using the asymptotic

γ(a, z) ∼ za/a for z ≪ 1, and γ(a, z) ∼ Γ(a) for z ≫ 1, we observe superdiffusive
behaviour at short times, and normal diffusion at long times, namely,

〈x2(t)〉 ∼





2DH

Γ(2H + 1)
t2H , t ≪ τ⋆

2DHτ
2H−1
⋆ t, t ≫ τ⋆.

(12)

The emerging normal diffusion thus has the effective diffusivity DHτ
2H−1
⋆ . Note that

the approximate formula at long times is in concordance with the simple estimate given
by expression (5).

Figure 1 shows the crossover behaviour from superdiffusion to normal diffusion
encoded in expression (11), along with the short and long time asymptotes given by
result (12). As can be discerned from the plot, the crossover region is fairly short,
spanning less than a decade in time for the chosen parameters.
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2.2. Power-law truncated fractional Gaussian noise

We now consider the softer power-law truncation of the form

〈v2〉τ =
DH

Γ(2H − 1)
τ 2H−2

(
1 +

τ

τ⋆

)−µ

, (13)

for τ > 0, µ > 0 and compare the resulting behaviour with the scenario of exponential
tempering. Here, apart from the crossover time τ⋆ the new power-law exponent µ is
introduced which effects the dynamics at long times, as we are going to show below. We
remark that the positivity of the spectrum for the power-law truncated form is discussed
in Appendix A. After plugging (13) into expression (4) we find for the MSD that

〈x2(t)〉 = 2DHτ
2H
⋆

Γ(2H − 1)

[
t

τ⋆
f

(
µ, 2H − 1;

t

τ⋆

)
− f

(
µ, 2H ;

t

τ⋆

)]
, (14)

where we introduced the notation

f(µ, α; a) =

∫ a

0

yα−1

(1 + y)µ
dy. (15)

Now, using the integral representation [42] of the hypergeometric function 2F1 [43] we
rewrite the integral in equation (15) as

f(µ, α; a) =
aα

α
2F1(µ, α, α+ 1;−a), (16)

and thus rewrite the MSD (14) in the final form

〈x2(t)〉 = 2DHt
2H

Γ(2H − 1)

[
1

2H − 1
2F1

(
µ, 2H − 1; 2H ;− t

τ⋆

)

− 1

2H
2F1

(
µ, 2H ; 2H + 1;− t

τ⋆

)]
, (17)

In this notation the MSD can be directly evaluated by Wolfram Mathematica [44].
Note that 2F1(0, b; c; z) = 1, and thus result (17) reduces exactly to the MSD (9) for the
untruncated case µ = 0. To obtain the limiting behaviours of the MSD (17) at short
times t ≪ τ⋆ we use the Gauss hypergeometric series for the function 2F1, see 15.1.1
in [42]. As result, to leading order we recover the MSD (9) of untruncated fractional
Brownian motion.

At long times t ≫ τ⋆ the situation for power-law tempering is actually richer than for
the case of exponential tempering. To see this, we first employ the linear transformation
formula 15.3.7 in [42] and write expression (17) in the form

〈x2(t)〉 = 2DHτ
2H−1
⋆ t

Γ(2H − 1)

[
Γ(2H − 1)Γ(µ+ 1− 2H)

Γ(µ)
− Γ(2H + 1)Γ(µ− 2H)

2HΓ(µ)

τ⋆
t

+
1

2H − µ− 1

(τ⋆
t

)µ+1−2H

2F1

(
µ, µ+ 1− 2H ;µ+ 2− 2H ;−τ⋆

t

)

− 1

2H − µ

(τ⋆
t

)µ+1−2H

2F1

(
µ, µ− 2H ;µ+ 1− 2H ;−τ⋆

t

)]
. (18)

We consider two possible cases:
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2.2.1. Weak power-law truncation, 0 < µ < 2H − 1 < 1. In this case the third and
fourth terms in the square brackets of expression (18) are dominating and we find

〈x2(t)〉 ∼ 2DHτ
µ
⋆

(2H − µ)(2H − 1− µ)Γ(2H − 1)
t2H−µ (19)

for t ≫ τ⋆. Note that in the limit µ → 0 result (19) reduces to the untruncated formula
(9). Thus, since we observe the inequality 2H − µ > 1 in the case of weak power-
law truncation the dynamics is still superdiffusive, however, with a reduced anomalous
diffusion exponent smaller than the value 2H in the short time limit.

2.2.2. Strong power-law truncation, µ > 2H−1 > 0. Note that in this case the integral
of the velocity autocorrelation function (13) over the whole time domain converges,∫∞
0

dτ〈v2〉τ = DHτ
2H−1
⋆ Γ(µ− 2H + 1)/Γ(µ), see 2.2.5.24 in [62]. Thus, with expression

(5) we expect a linear time behaviour in the long time limit, whereas the term to next
order in (4) gives

∫ t
dττ〈v2〉τ ≃

∫ t
dττ 2H−1−µ ≃ t2H−µ, a sublinear contribution since

2H − µ < 1. Alternatively, it follows from (18) that the main contribution comes from
the first term in the square brackets. Thus, in full accordance with expression (5) we
get

〈x2(t)〉 ∼ 2DHΓ(µ− 2H + 1)τ 2H−1
⋆ t

Γ(µ)
(20)

at t ≫ τ⋆.
Finally, for the borderline case 0 < µ = 2H − 1 < 1 it is in fact easier to consider

equation (17). Making use of formula 7.3.1.81 in [63] we see that the leading contribution
comes from the first hypergeometric function in the square brackets in expression (17),
as 2F1(2H − 1, 2H − 1; 2H ; z) ∼ Γ(2H)Γ−1(2H − 1)(−z)−2H+1 ln(−z). For the MSD we
then finally obtain

〈x2(t)〉 ∼ 2DHτ
2H−1
⋆

Γ(2H − 1)
t ln

(
t

τ⋆

)
. (21)

Thus, in this borderline limit between weak truncation (leading to reduced superdiffusion
at long times) and strong truncation (normal long time diffusion) we here obtain normal
diffusion with a logarithmic correction.

Figure 2 demonstrates that for the power-law tempering the crossover region is
significantly enhanced, spanning several orders of magnitude, as compared to the much
swifter crossover in the case of exponential tempering.

The MSDs for both cases of exponential and power-law truncation are directly
compared in figure 3, along with the time derivative of the MSD. As can be seen,
the crossover for the exponential tempering occurs much more rapidly. Thus also the
amplitude of the long time Brownian scaling is higher in the case of the power-law
tempering for the same value of the crossover time scale τ⋆.

A graphical representation of the correlation functions (6), (10) and (13) is given
in figure 4. The exponential cutoff appears more abrupt, as it should. However, this
difference will obviously be reduced for larger values of the cutoff exponent µ. To fit
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Figure 2. MSD (17) for power-law tempered fractional Brownian motion with
H = 3/4, DH = 1, and τ⋆ = 1. The red solid line is for µ = 0.3 (weak power law
truncation), whereas the blue solid line is for µ = 1 (strong power-law truncation). The
red and blue dashed lines correspond to the asymptotics (19) and (20), respectively.
The behaviour for the untruncated case given by expression (9) is depicted by the
green solid line.
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Figure 3. Comparison of the ratio 〈x2〉/t for different modes of truncation of the
power-law noise in equation (2). Parameters: H = 3/4, DH = 1, and τ⋆ = 1. From
bottom to top the blue line depicts the exponential truncation (11) while the red line
and green lines show expression (17) for strong (µ = 1) and weak (µ = 0.3) power-law
truncation, respectively.
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Figure 4. Main figure. Comparison of the velocity autocorrelation functions, from top
to bottom: untruncated motion, equation (6) (blue line), weak power-law truncation,
equation (13) with µ = 0.3 (green line), strong power-law truncation, equation
(13) with µ = 1 (yellow line), and exponential truncation, equation (10) (red line).
Parameters: H = 3/4, DH = 1, and τ⋆ = 50. Inset: double-logarithmic representation.

data, the crossover shape can thus be adjusted by the choice of µ for the case of power-
law tempering, thus having the possibility to effect a gradual adjustment from soft
power-law to hard exponential tempering.

3. Tempered subdiffusive generalised Langevin equation motion

We now consider the motion encoded in the overdamped generalised Langevin equation
for a particle with mass m moving in a viscous medium characterised by the friction
kernel γH(t) of dimension [γH(t)] = s−2 [7, 38, 45]

m

∫ t

0

γH(t− t′)
dx(t′)

dt′
dt′ = ξ(t), (22)

where x(0) = 0 without loss of generality. Similar to the model considered in section 2
ξ(t) is a Gaussian noise with power-law correlation of the form (6) with 1/2 ≤ H < 1.
However, in contrast to the fractional Brownian motion model considered above, we
require the system to be thermalised, such that the random force is coupled to the
friction kernel through the Kubo-Zwanzig fluctuations dissipation relation [38, 45]

〈ξ2〉τ = kBTmγH(τ). (23)

3.1. Mean squared displacement

Let us recall the derivation of the MSD from equations (22) and (23). With our choice
x(0) = 0 we obtain for the Laplace transform of x(t), x̃(s) =

∫∞
0

x(t) exp(−st)dt that

x̃(s) =
ξ̃(s)

msγ̃H(s)
. (24)
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Inverse Laplace transformation produces

x(t) =
1

m

∫ t

0

ξ(t′)H(t− t′)dt′, (25)

where the kernel H(t) is the inverse Laplace transform of H̃(s) = 1/[sγ̃H(s)]. After
some transformation we recover the MSD

〈x2(t)〉 = 2

m2

∫ t

0

dt1

∫ t

t1

dt2H(t− t1)H(t− t2)〈ξ2〉t2−t1

=
2kBT

m

∫ t

0

H(t′)M(t′)dt′, (26)

where we introduced M(t) =
∫ t

0
γH(t

′)H(t − t′)dt′. Its Laplace transform is M̃(s) =

γ̃H(s)H̃(s) = 1/s, and thus simply M(t) = 1. We therefore arrive at

〈x2(t)〉 = 2kBT

m

∫ t

0

H(t′)dt′. (27)

In Laplace space, this relation reads

〈x̃2(s)〉 = 2kBT

m

H̃(s)

s
=

2kBT

m

1

s2γ̃H(s)
. (28)

We stop to include a note on when exactly we expect asymptotically normal
diffusion in the generalised Langevin equation model. The reasoning is similar to that
presented at the beginning of section 2. Namely, from equation (28) it follows that
diffusion is normal at long times if γ̃H(s) tends to a constant in the limit s → 0. This is
equivalent to requiring that the average

∫∞
0

γH(τ)dτ is finite or, taking into account the
fluctuation-dissipation relation (23) that

∫∞
0
〈ξ2〉τdτ is finite (similar to the conclusion

in section 2). Then, from expression (28) we infer the following behaviour in the long
time limit (compare with equation (5))

〈x2(t)〉 = 2kBT

m
∫∞
0

γH(τ)dτ
t. (29)

According to this, anomalous diffusion is expected at long times whenever
∫∞
0

γH(τ)dτ

is either infinite (subdiffusion) or zero (superdiffusion).‖
In accordance with section 2 we choose the friction kernel in the power-law form

γH(τ) =
ΓH

Γ(2H − 1)
τ 2H−2, (30)

where the coefficient ΓH is of dimension [ΓH ] = s−2H . The normal Brownian case
is recovered from equation (22) for H = 1/2 since for H → 1/2+ we see that
γH(t) → Γ1/2δ(t) (note that in this Brownian limit, Γ1/2 = η) and equation (22)
assumes the form of the standard Langevin equation driven by white Gaussian noise
obeying the regular fluctuation dissipation theorem. We note that the memory kernel

‖ Note here the difference to the results in section 2 where the fluctuation-dissipation theorem is not
applied: in that case divergence of the integral over the correlator of the noise ξ(t) over the entire time
domain leads to superdiffusion, while subdiffusion emerges when the integral is identical to zero.
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for the power-law form (30) can be rewritten in terms of a fractional derivative, and the
resulting version of equation (22) is then often referred to as the fractional Langevin
equation [7, 46, 47, 48]. Power-law memory kernels of the form (30) are typical for many
viscoelastic systems [8, 9, 14, 15, 16, 17, 19, 20, 22, 48].

We now use the Laplace transform of equation (30), γ̃H(s) = ΓHs
1−2H , plug this

into the above expression, and take an inverse Laplace transformation. This procedure
leads to the final result

〈x2(t)〉 = 1

Γ(3− 2H)

2kBT

mΓH

t2−2H , (31)

which reduces to the classical result 〈x2(t)〉 = 2(kBT/[mη])t for normal Brownian
motion in the limit H = 1/2. Therefore, due to the requirement that the system
is thermalised and thus the Kubo-Zwanzig fluctuation theorem is fulfilled, the same
noise leads to subdiffusion in this case with anomalous diffusion exponent α = 2 − 2H

and 0 < 2 − 2H < 1. Indeed, due to the coupling in relation (23) large noise values
lead to large friction values, and therefore the persistence of the noise is turned into
antipersistent diffusion dynamics [7, 46, 48].

3.2. Autocorrelation functions of displacements and velocities

We now derive the autocorrelation function of the displacements, following the procedure
laid out by Pottier [49]. First, we note that the double Laplace transform of the
correlation function of the random force can be written as

〈ξ̃(s1)ξ̃(s2)〉 = kBTm

∫ ∞

0

dt1

∫ ∞

0

dt2e
−s1t1−s2t2γH(|t2 − t1|). (32)

Then we split the domain of integration over t2 into the two domains 0 ≤ t2 ≤ t1 and
t1 ≤ t2 < ∞. After introducing τ = t1− t2 and τ = t2 − t1 in each domain, respectively,
we arrive at

〈ξ̃(s1)ξ̃(s2)〉 = kBTm
γ̃H(s1) + γ̃H(s2)

s1 + s2
. (33)

This expression represents the Laplace domain formulation of the fluctuation dissipation
theorem (23). By help of equations (33) and (22) we then obtain the double Laplace
transform of the displacement correlation function,

〈x̃(s1)x̃(s2)〉 =
kBT

m

(
1/γ̃H(s1)

s1s2(s1 + s2)
+

1/γ̃H(s2)

s1s2(s1 + s2)

)
. (34)

In the first term in the parentheses we first take the inverse Laplace transformation over
s2, going from 1/[s2(s1+s2)] to [1−exp(−s1t2)]/s1. Exchanging s2 for s1 we perform the
same operation on the second term. Then we inverse Laplace transform the first term
with respect to s1 and make use of the translation formula L −1

s {exp(−bs)Ls {f(t)}} =

f(t− b)Θ(t− b), where b > 0 and Θ(t) is the Heaviside step function. As result yields

〈x(t1)x(t2)〉 =
1

Γ(3− 2H)

kBT

mΓH

(
t2−2H
1 + t2−2H

2 − |t2 − t1|2−2H
)
. (35)
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The velocity autocorrelation function is obtained by differentiation of this expression,

〈v(t1)v(t2)〉 = 〈v2〉τ = −sin(π[2H − 1])Γ(2H)

π

kBT

mΓH
|τ |−2H , (36)

where τ = t2 − t1. We see that in the relevant parameter range 1/2 < H < 1 the
velocity autocorrelation is negative, 〈v2〉τ < 0, reflecting the antipersistent character of
the resulting motion.

3.3. Exponentially truncated fractional Gaussian noise

For the exponentially truncated friction kernel and thus noise autocorrelation

γH(τ) =
〈ξ2〉τ
kBTm

=
ΓH

Γ(2H − 1)
τ 2H−2e−τ/τ⋆ (37)

we obtain the corresponding Laplace transform

γ̃H(s) = ΓH

(
s+ τ−1

⋆

)1−2H
. (38)

After plugging this expression into relation (28) and taking the inverse Laplace
transformation we obtain

〈x2(t)〉 = 2kBT

mΓH
t2−2HE1−2H

1,3−2H

(
− t

τ⋆

)
(39)

in terms of the three parameter Mittag-Leffler function Eδ
α,β(z) (see Appendix B for its

definition and some relevant properties). When the crossover time τ⋆ tends to infinity,
Eδ

α,β(0) = 1/Γ(β), and we arrive at result (31) for the untruncated noise. In the limit
H = 1/2 we have δ = 0 and E0

1,2(z) = 1/Γ(2) = 1, such that equation (39) reduces to
the MSD of normal Brownian motion.

At short times t ≪ τ⋆ the MSD (39) reduces to the subdiffusive expression (31),
whereas at long times t ≫ τ⋆ with the help of E1−2H

1,3−2H(−t/τ⋆) ∼ (t/τ⋆)
2H−1 (see

Appendix A), in accordance with relation (29) the MSD exhibits normal Brownian
behaviour,

〈x2(t)〉 ∼ 2kBT

mΓHτ
2H−1
⋆

t. (40)

We note that a similar crossover was observed in [50] where a modified three-parameter
Mittag-Leffler form for the kernel γH(τ) was considered.

The crossover from subdiffusion to normal diffusion in this exponentially tempered
generalised Langevin equation picture is shown in figure 5. The crossover behaviour
occurs over an interval of the order of a decade in time for the chosen parameters.

Let us now turn to the autocorrelation functions. Using expression (38) in equation
(34) we obtain

〈x̃(s1)x̃(s2)〉 =
kBT

mΓH

(
1

s1s2(s1 + s2)
(
s1 + τ−1

⋆

)1−2H

+
1

s1s2(s1 + s2)
(
s2 + τ−1

⋆

)1−2H

)
. (41)
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Figure 5. MSD (39) for exponentially tempered generalised Langevin equation motion
with H = 3/4, kBT/[mΓH ] = 1, and τ⋆ = 1 (blue line). The short and long time
asymptotics (31) and (40) are shown by the red and green lines, respectively.

As above, in the first term in the parentheses we take an inverse Laplace transformation
with respect to s2, and over s1 in the second term. Then, with the translation formula
and the Laplace transform (B.2) of the three parameter Mittag-Leffler function, we find

〈x(t1)x(t2)〉 =
kBT

mΓH

(
t2−2H
1 E1−2H

1,3−2H

(
− t1
τ⋆

)
+ t2−2H

2 E1−2H
1,3−2H

(
− t2
τ⋆

)

−|t2 − t1|2−2HE1−2H
1,3−2H

(
−|t2 − t1|

τ⋆

))
. (42)

Differentiation over t1 and t2 (with the help of equation (B.6)) then produces the velocity
autocorrelation function,

〈v(t1)v(t2)〉 = 〈v2〉τ =
kBT

mΓHτ 2H
E1−2H

1,1−2H

(
− τ

τ⋆

)
. (43)

with τ = t2 − t1 > 0. Using the definition (B.1) of the three parameter Mittag-
Leffler function it is easy to check that Eδ

1,δ(z) = exp(z)/Γ(δ). Thus, for the velocity
autocorrelation function we find the result

〈v2〉τ = −sin(π[2H − 1])Γ(2H)

π

kBT

mΓH

τ−2He−τ/τ⋆ , (44)

which is anticorrelated and reduces to the untruncated result (36) when the crossover
time τ⋆ tends to infinity.

3.4. Power-law truncated fractional noise

For the power-law truncated friction kernel and noise autocorrelator,

γH(τ) =
〈ξ2〉τ
kBTm

=
ΓH

Γ(2H − 1)
τ 2H−2

(
1 +

τ

τ⋆

)−µ

(45)
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with τ > 0, µ > 0 the Laplace transform of the memory kernel can be performed by
use of the integral representation of the Tricomi hypergeometric function U(a, b; z) (see
13.2.5 of [42]), leading to

γ̃H(s) = ΓHτ
2H−1
⋆ U(2H − 1, 2H − µ; sτ⋆). (46)

With the general relation (28) we thus have

〈x2(t)〉 = 2kBT

mΓHτ
2H−1
⋆

g(t) (47)

with the abbreviation

g(t) = L −1
s

{
1

s2U(2H − 1, 2H − µ; sτ⋆)

}
. (48)

The inverse Laplace transform of expression (47) cannot be performed analytically.
However, we make use of the Tauberian theorems¶ to find the MSD at short and long
times.

At short times with sτ⋆ ≫ 1 we use the large argument asymptotic of the Tricomi
function, U(2H−1, 2H−µ; sτ⋆) ∼ (sτ⋆)

1−2H (13.5.2 in [42]) and thus γ̃H(s) ∼ ΓHs
1−2H .

From equation (28) (or, equivalently, equations (47) and (48)) we then get to result (31)
by use of the Tauberian theorem.

Similar to the case considered in section 2 at long times corresponding to sτ⋆ ≪ 1

the situation is actually richer than for the case of exponential tempering. To see this
we first make use of (13.1.3) in [42] to express the Tricomi function via the Kummer
function M(a, b; z) through

U(2H − 1, 2H − µ; sτ⋆) =
π

sin(π[2H − µ])

[
M(2H − 1, 2H − µ; sτ⋆)

Γ(µ)Γ(2H − µ)

−(sτ⋆)
µ+1−2H M(µ, µ+ 2− 2H ; sτ⋆)

Γ(2H − 1)Γ(µ+ 2− 2H)

]
. (49)

Taking into account the series expansion of the Kummer function ((13.1.2) in [42]) we
consider the following two possibilities:

3.4.1. Weak power-law truncation, 0 < µ < 2H − 1 < 1. In this case the second term
in (49) is dominant at small s and thus

U(2H − 1, 2H − µ; sτ⋆) ∼
π(sτ⋆)

1+µ−2H

sin(π[2H − µ− 1])Γ(2H − 1)Γ(µ+ 2− 2H)
. (50)

Plugging this leading behaviour into expressions (47) and (48) and using the Tauberian
theorem, after few transformations we obtain the long time behaviour of the MSD,

〈x2(t)〉 ∼ Γ(2H − 1)

Γ(2H − µ− 1)Γ(µ+ 3− 2H)

2kBT

mΓHτ
µ
⋆
tµ+2−2H . (51)

¶ The Tauberian theorems state that for slowly varying function L(t) at infinity, i.e. limt→∞
L(at)
L(t) = 1,

a > 0, if r̂(s) ≃ s−ρL
(
1
s

)
, for s → 0, ρ ≥ 0, then r(t) = L−1 [r̂(s)] (t) ≃ 1

Γ(ρ) t
ρ−1L(t), t → ∞. A

similar statement holds for t → 0.
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Note that in the limit µ → 0 expression (51) reduces to the untruncated formula (31).
Thus, since we observe the inequality 0 < µ+ 2− 2H < 1 in the present case of a weak
power-law truncation, the dynamics is still subdiffusive, however, with an anomalous
diffusion exponent larger than the value 2− 2H in the short time limit.

3.4.2. Strong power-law truncation, µ > 2H − 1 > 0. In this case the first term in
the square brackets in equation (49) becomes dominant at small s and U(2H − 1, 2H −
µ; sτ⋆) ∼ Γ(µ+1−2H)/Γ(µ), where we made us of the reflection formula for the Gamma
function. From results (47) and (48) by use of the Tauberian theorem we obtain

〈x2(t)〉 ∼ Γ(µ)

Γ(µ+ 1− 2H)

2kBT

mΓHτ
2H−1
⋆

t, (52)

valid for t ≫ τ⋆. As expected, we find the desired crossover to the normal Brownian
scaling of the MSD. Note that this result is in full accordance with equation (29). Indeed,
from expression (45) we get (see 2.2.5.24 [62])

∫ ∞

0

γH(τ)dτ =
Γ(µ+ 1− 2H)

Γ(µ)
ΓHτ

2H−1
⋆ . (53)

After plugging expression (53) into (29) we arrive at result (52). Note also that the
condition of a strong power-law truncation is equivalent to the condition that integral
(53) converges.

In the borderline case with 0 < µ = 2H − 1 < 1 we use 13.5.9 in [42] and find
U(2H − 1, 1; sτ⋆) ∼ − ln(sτ⋆)/Γ(2H − 1). With the use of the Tauberian theorem
equations (47) and (48) yield

〈x2(t)〉 ∼ Γ(2H − 1)
2kBT

mΓHτ
2H−1
⋆

t

ln(t/τ⋆)
(54)

at t ≫ τ⋆. Thus, in this borderline situation between the cases of weak truncation
(leading to increased subdiffusion at long times) and strong truncation (normal long
time diffusion) we observe a logarithmic correlation to normal diffusion.

Figure 6 shows the crossover dynamics for power-law tempering for the two possible
cases: for weak power-law truncation with µ = 0.3 we observe the predicted crossover
from slower to faster subdiffusion, while in the case of strong power-law truncation the
subdiffusive dynamics crosses over to normal diffusion.

Figure 7 shows a direct comparison between the cases of exponential and power-law
truncation. As expected, the crossover is faster for the exponential tempering, and thus
the resulting amplitude in this case exceeds the amplitude for the power-law tempering.
Note that the latter observation contrasts the case of the truncated fractional Brownian
motion in figure 3, for which the amplitude of the power-law tempering is higher.

3.4.3. Velocity autocorrelation function. To gain some insight into the correlation
behaviour we use equation (34) with γ̃H(s) from equation (46). Taking the inverse
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Figure 6. MSD (47) for power-law truncation with H = 3/4, kBT/[mΓH ] = 1, and
τ⋆ = 1. The red solid line corresponds to weak power-law truncation with µ = 0.3,
the blue solid line to strong truncation with µ = 1. The asymptotics (51) and (52) are
shown by red and blue dashed lines, respectively. The thin green solid line corresponds
to the MSD (31) for the untruncated case.
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Figure 7. Comparison of the ratio 〈x2〉/t for different truncation modes of the
power-law noise in the generalised Langevin equation (22). Parameters: H = 3/4,
kBT/[mΓH ] = 1, and τ⋆ = 1. From top to bottom the blue line represents the
exponential truncation, equation (39), the red line the strong power-law truncation,
equation (47) with µ = 1, and the green line the weak power-law truncation, equation
(47) with µ = 0.3. The asymptotics (51) is shown by dashed green line.
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Laplace transformation over s1 and s2 in the same way as above we obtain the position
autocorrelation function

〈x(t1)x(t2)〉 =
kBT

mΓHτ
2H−1
⋆

(
g(t1) + g(t2)− g(|t2 − t1|)

)
, (55)

where g(t) is given by relation (48). From here the velocity autocorrelation function is
obtained as

〈v2〉τ =
kBT

mΓHτ
2H−1
⋆

d2

dτ 2
g(τ) (56)

with τ > 0. We first note that expression (56) along with (48) may suggest that the
Tauberian theorem may be directly applied to the expression U−1(2H − 1, 2H − µ; sτ⋆)

in order to calculate the asymptotic behaviour of the velocity autocorrelation function
〈v2〉τ . However, for short times corresponding to sτ⋆ ≫ 1 the function U−1 ∼ (sτ⋆)

2H−1,
and since 1/2 < H < 1, the Tauberian theorem does not apply as 2H − 1 is positive.
Instead, we should first obtain the asymptotic of g(τ) at short times τ ≪ τ⋆ by use of
the Tauberian theorem, and only then differentiate twice to get the asymptotic of the
velocity autocorrelation function. This way we arrive at expression (36). At long times
τ ≫ τ⋆ we again consider the cases of weak and strong power-law truncations separately.

For the weak power-law truncation with 0 < µ < 2H − 1 < 1 the situation is
similar to the short time limit above. Indeed, U−1 ∼ (sτ⋆)

2H−1−µ, see result (50), and
the Tauberian theorem does not apply. Instead we first plug relation (50) into expression
(48) and then apply the Tauberian theorem. Following relation (56) we then find

〈v2〉τ ∼ −C
kBT

mΓHτ
µ
⋆

1

τ 2H−µ
, (57)

where C = (2H − µ − 1)π−1 sin(π[2H − µ − 1])Γ(2H − 1) is a positive constant.
Note that for weak power-law truncation we have 1 < 2H − µ < 2, and in the limit
µ → 0 expression (57) reduces to the velocity autocorrelation function (36) in absence
of truncation. From comparison of result (57) with (36) we see that the autocorrelation
function in the truncated case decays slower than in the untruncated case. This may
appear counter-intuitive, however, it is in agreement with the antipersistent character
of the fractional Langevin equation model in which the MSD scales like ≃ t2−2H and the
velocity autocorrelation function at long times scales as ≃ −τ−2H for 1/2 < H < 1. This
means that a steeper decay of the velocity autocorrelation function corresponds to a more
subdiffusive regime. In other words, when H is closer to 1/2 (the subdiffusive regime is
closer to normal diffusion) then the decay of the autocorrelation function is slower. To
see this better consider the effective Hurst index Heff = H−µ/2. Then, for weak power-
law truncation the MSD scales like ≃ t2−2Heff with 1/2 < Heff < H < 1, and the velocity
autocorrelation function decays as ≃ −τ−2Heff . Thus, in the truncated case the diffusion
becomes closer to normal, as it should be, while the velocity autocorrelation function
decays slower than in the untruncated case, fully consistent with the antipersistent
fractional Langevin equation model.

Now let us turn to the case of strong power-law truncation with µ > 2H − 1 > 0

in which for simplicity we assume that µ + 1 − 2H 6= n where n ∈ N is a positive
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Figure 8. Comparison of the velocity autocorrelation functions for the untruncated
case, equation (36) (blue line), with exponential truncation, equation (44) (red line),
and with strong power-law truncation, equation (58) where µ = 1 (yellow line), as
well as with weak power-law truncation, equation (57) where µ = 0.3 (green line).
Parameters: H = 3/4, kBT/[mΓH ] = 1, and τ⋆ = 50.

integer. We are interested in the exponent of the power-law decay of the velocity
autocorrelation function. Then expression (49) yields U(2H − 1, 2H − µ; sτ⋆) ∼
a0 + a1s + a2s

2 + . . . aks
k + aµs

µ+1−2H + ak+1s
k+1 + . . ., where ai with i = 0, 1, 2, . . .

are constants that can be easily found from expansion 13.1.2 in [42] for the first
Kummer function in the square brackets of expression (49) and k = [µ + 1 − 2H ]

denotes the integer part of the corresponding argument in the Landau bracket [·]. Then
U−1(2H − 1, 2H − µ; sτ⋆) ∼ b0 + b1s + . . . + bks

k + bµs
µ+1−2H + . . . where the bi with

i = 0, 1, 2, . . . are again constant factors. From here and with equations (48) and (56) we
find after application of the Tauberian theorem and subsequent double differentiation

〈v2〉τ ∼ −C
kBT

mΓHτ
2H−1
⋆

1

τµ+2−2H
, (58)

where C is a positive constant. Note that in the borderline case 1 > µ = 2H−1 > 0 both
expressions (57) and (58) tend to the same limit resulting in the logarithmic correction
to normal diffusion in expression (54).

A graphical representation of the velocity autocorrelation function (36), (44) and
(58) is shown in figure 8.

3.5. Application to lipid molecule dynamics in lipid bilayer membranes

We here demonstrate the usefulness of our tempered fractional Gaussian noise approach
to a concrete physical system. The data we have in mind are from all-atom Molecular
Dynamics simulations of lipid bilayer membranes [30]. In their simplest form, these
are double layered leaves made up of relatively short amphiphilic polymers called
lipids. Immersed in water the double layer arrangement prevents the exposure of the
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Figure 9. MSD of the motion of lipid molecules in a lipid bilayer model membrane,
at room temperature in the liquid disordered and liquid ordered phases (symbols)
[22]. The crossover from subdiffusion to normal diffusion or increased subdiffusion at
around 10 nsec is distinct. Data courtesy Matti Javanainen, University of Helsinki.
The black solid lines provide a fit with equations (39) and (47) resulting from our
generalised Langevin equation model with exponentially and power-law truncated
noise, respectively. The parameters are presented in Table 1, see also discussion in
the text.

hydrophobic tail groups to the ambient water, while the hydrophilic head groups are in
contact with the water. At room temperature the lipid bilayer assumes a quite disordered
liquid structure [30]. In this lipid matrix, comparatively large membrane proteins
may be additionally embedded [30]. Natural biological membranes are composed of
lipids of many different chemistries, and they are crowded with membrane proteins.
Supercomputing studies have the task to reveal the dynamics of both proteins and
lipids in such protein-decorated bilayer systems. This thermally driven diffusion of
the constituents influence biological properties of the bilayer, such as diffusion limited
aggregation, domain formation, or the membrane penetration by nanoparticles [30].

Figure 9 depicts the simulations results in a chemically uniform, liquid disordered
lipid bilayer membrane as well as in the liquid ordered state in the presence of cholesterol
molecules—the system is specified in detail in [22]. The motion of the lipids is Gaussian
for all cases and best described as viscoelastic diffusion governed by the generalised
Langevin equation (22) fuelled by power-law noise [22, 24, 25].+ As can be seen in
figure 9 the MSD of the liquid disordered lipid systems exhibits a clear crossover from
subdiffusion to normal diffusion at roughly 10 nsec, the typical crossover time scale
+ Note that the Gaussian character is lost and intermittent diffusivity dynamics emerge in highly
crowded membranes [24], a phenomenon that can be understood in terms of a superstatistical approach
[52] or within a fluctuating diffusivity picture [53, 54].
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H µ τ⋆ kBT/[mΓH ] αshort Kαshort
αlong Kαlong

[nsec] [nm2/nsec2−2H ] [nm2/nsec2−2H ] [nm2/nsecαlong ]

DSPC (purple) 0.70 − 4.0 0.050 0.60 0.034 1.0 0.029
SOPC (pink) 0.67 − 2.5 0.88 0.66 0.064 1.0 0.064
DOPC (blue) 0.69 − 3.0 0.067 0.62 0.046 1.0 0.044
DSPC (grey) 0.76 0.41 0.60 0.019 0.48 0.010 0.89 0.0035
SOPC (green) 0.75 0.44 0.22 0.025 0.50 0.014 0.94 0.0026
DOPC (brown) 0.72 − 4.3 0.038 0.57 0.024 1.0 0.021

Table 1. Fit parameters for the model membrane simulations data shown in figure 9.
The colours mentioned in the first column correspond to the colour coding in figure 9.

discussed in literature, at which two nearest neighbour lipid molecules exchange their
mutual positions and thus decorrelate their motion [22, 30, 31]. For the liquid ordered
cases, one lipid chemistry also shows a subdiffusive-normal crossover, while the two
other lipid chemistries lead to a crossover from slower to faster subdiffusion [22]. From
fit of the parameters (see the summary in table 1) to the data we observe an excellent
agreement with the short and long time scaling regimes and, remarkably, the model fully
describes the crossover behaviours without further tuning for both liquid disordered and
ordered situations. We note that subdiffusive-diffusive crossovers are also observed for
protein-crowded membranes [24, 23, 55].

We note that from equation (31) and the effective diffusion coefficient

K∗
α(t) =

1

2

d

dt

〈
x2(t)

〉
. (59)

we find the short time limiting behaviour

K∗
α(t) = K∗

α,shortt
1−2H (60)

with

K∗
α,short =

kBT

mΓH

1

Γ(2− 2H)
. (61)

For the long time limit, from equation (40), it follows that

K∗
α,long =

kBT

mΓH

1

τ 2H−1
⋆

(62)

for the exponential tempering, whereas the cases of DSPC and SOPC lipid chemistries
the long time limit in the weak power-law truncation case is given by

K∗
α,long =

Γ(2H − 1)

Γ(2H − µ+ 1)Γ(µ+ 2− 2H)

kBT

mΓHτ
µ
⋆

(63)

The fit values given in table 1 are in very good agreement with those obtained in the
simulations study [22]. We note, however, that for the weak power-law tempering model
fit the crossover time is somewhat underestimated.
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4. Direct tempering of Mandelbrot’s fractional Brownian motion

So far we introduced the tempering on the level of the noise ξ(t), which drives the
position co-ordinate x(t). Another way to introduce the crossover from anomalous to
normal diffusion is to consider a truncation of the power-law correlations directly in the
original definition of fractional Brownian motion according to Mandelbrot and van Ness
[36]. Such a formulation was recently proposed by Meerschaert and Sabzikar [56]. Here
we analyse this model and demonstrate that it leads to a very different behaviour of the
MSD than the previous tempered fractional models. A formal mathematical analysis of
this model was provided very recently in [57]. We here recall some of their results for
the convenience of the reader and present clear physical arguments for the seemingly
paradoxical behaviour of this model. In particular we come up with a comparison to a
fractional Ornstein-Uhlenbeck scenario.

4.1. Meerschaert and Sabzikar direct tempering model

Meerschaert and Sabzikar defined this extension of fractional Brownian motion by
applying an exponential truncating in Mandelbrot’s definition [36, 56],∗

BH,λ(t) =

∫ 0

−∞

[
e−λ(t−t′)(t− t′)H− 1

2 − e−λ(−t′)(−t′)H− 1
2

]
B′(t′)dt′

+

∫ t

0

[
e−λ(t−t′)(t− t′)H− 1

2

]
B′(t′)dt′, (64)

where H, λ, t > 0. B′(t) is white Gaussian noise of δ-covariance 〈B′(t1)B
′(t2)〉 =

σ2δ(t1 − t2) and zero mean. The parameter λ stands for the truncation parameter,
and classical fractional Brownian motion is then obtained in the limiting case λ → 0

when H ∈ (0, 1). It should be noted that the prefactor 1/Γ(H + 1/2) in Mandelbrot’s
original definition is dropped here in line with the procedure of [56]. The MSD encoded
in equation (64) is (see Appendix C for the derivation)

〈
B2

H,λ(t)
〉
= σ2C2

t t
2H , (65)

where the prefactor is

C2
t =

[
2Γ(2H)

(2λt)2H
− 2Γ(H + 1/2)√

π

KH(|λt|)
(2λt)H

]
. (66)

KH(z) denotes the modified Bessel function of the second kind, which for small argument
z behaves as [42]

KH(z) ∼
Γ(H)

21−H
z−H +

Γ(−H)

21+H
zH +

Γ(H)

23−H(1−H)
z2−H (67)

while for large z we have KH(z) ∼
√

π/(2z)e−z. The fact that the prefactor C2
t is an

explicit function of time contrasts the result of standard fractional Brownian motion,
and we will readily see the ensuing consequences.
∗ Note that in this section we use dimensionless units in order not to obfuscate the discussion.
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In the short time limit t ≪ λ−1 expression (65) has the compound power-law form
〈
B2

H,λ(t)
〉
∼ σ2Γ2(H + 1/2)VHt

2H +
σ2Γ(2H)

21+2H(H − 1)
λ2−2Ht2 (68)

with VH = 1/[Γ(2H + 1) sin(πH)]. Thus, the limit λ → 0 indeed reduces to the
expression for standard fractional Brownian motion. In the long time limit t ≫ λ−1 the
MSD of this tempered fractional Brownian motion, remarkably, converges exponentially
towards a constant value,

〈
B2

H,λ(t)
〉
∼ σ2

(
2Γ(2H)

(2λ)2H
− 21/2−HΓ(H + 1/2)

λH+1/2
tH−1/2e−λt

)
, (69)

a result which is at first surprising. This point will be discussed and compared to
the fractional Ornstein-Uhlenbeck process below. The functional behaviour of result
(69) is shown in figure 14. We note that if we consider the Langevin equation (2) in
combination with the directly tempered noise B′

Hλ(t), expression (65) and its limiting
behaviours (68) and (69) exactly correspond to the dynamics of the MSD 〈x2(t)〉.

As shown in [57] it is possible to define a tempered fractional Gaussian noise
following Mandelbrot and van Ness’ smoothening procedure involving a short time lag δ

(see Appendix C.2). The autocorrelation function of this tempered fractional Gaussian
noise is given through
〈
B′

H,λ(t)B
′
H,λ(t+ τ)

〉
=

Γ(H + 1
2
)σ2

√
π(2λ)Hδ2

[
2τHKH(|λτ |)− (τ + δ)HKH(λ|τ + δ|)

− |τ − δ|HKH(λ|τ − δ|)
]
. (70)

An important feature of the autocorrelation function (70) for tempered fractional
Gaussian noise is its antipersistent behaviour over the whole range 0 < H < 1 for
any finite λ, that is, the integral of expression (70) over the entire domain of τ vanishes:

∫ ∞

0

〈
B′

H,λ(t)B
′
H,λ(t + τ)

〉
dτ = 0. (71)

This is in sharp contrast to (conventional) fractional Gaussian noise. Indeed, in the
limit λ → 0 the noise autocorrelation function (70) approaches the one of fractional
Gaussian noise [36, 56], as can be derived by using the small argument expansion (67)
of the Bessel function. In this limit λ → 0 for any finite τ the autocorrelation function
(70) converges to

lim
λ→0

〈
B′

H,λ(t)B
′
H,λ(t+ τ)

〉
∼ Γ2(H + 1

2
)σ2VH

2δ2
[
(τ + δ)2H + |τ − δ|2H − 2τ 2H

]
(72)

and shows negative correlations for 0 < H < 1/2 and positive correlations for
1/2 < H < 1, see Appendix C.3.

The autocorrelation function (70) and its limit for λ → 0 are shown in figures 10
and 11 for different values of the Hurst parameter. While for the tempered process it is
antipersistent for the whole range of H , in the limit λ → 0 we clearly see the difference
between the antipersistent case with the overshoot to negative values and a slow recovery
back to zero. The autocorrelation function for the persistent case is always positive.
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Figure 10. Theoretical results for autocorrelation function, equations (70) and (72),
for three different H > 1

2 values. The solid lines show the antipersistent behaviour of
autocorrelation function of tempered fractional Gaussian noise, which approaches zero
exponentially; while dashed lines represent the power-law decay of the autocorrelation
function of the fractional Gaussian noise. Parameters used: λ = 103, δ = 10−5.
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Figure 11. Theoretical results for autocorrelation function, equations (70) and
(72), for three different H < 1

2 values. The solid lines show the autocorrelation
function of tempered fractional Gaussian noise and dashed lines are representation of
autocorrelation function for fractional Gaussian noise. There is no significant difference
between the two functions, except around the truncation time, λ−1, which is magnified
in Fig. (12). Parameters used: λ = 10, δ = 10−3.
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Figure 12. Comparison between the exponentially fast decay of the autocorrelation
function of tempered fractional Gaussian noise (solid lines), equation (74), and the
slower power-law decay of its (λ → 0) regime, which equivalents to fractional
Gaussian noise (dashed lines), equation (73), around the truncation time. Parameters
used:λ = 10, δ = 10−3.

It is easy to show that for τ ≪ 1/λ and δ → 0 the autocorrelation function (70)
decays as a power law, consistent with the behaviour of fractional Gaussian noise,

〈
B′

H,λ(t)B
′
H,λ(t + τ)

〉
∼ σ2(2H − 1)HΓ2(H + 1/2)VH |τ |2H−2

− σ2Γ(2H)λ2−2H

22H+1(1−H)
, (73)

while the asymptotic behaviour at long observation times, τ ≫ λ−1,
〈
B′

H,λ(t)B
′
H,λ(t+ τ)

〉
∼ τH− 1

2 e−λτσ2

2H− 1
2λH+ 1

2 δ2

[
1− cosh(λδ) + sinh(λδ)

(H − 1
2
)δ

τ

]
(74)

decays exponentially, in contrast to the non-tempered limit in equation (73). This
different asymptotic behaviour of tempered versus non-tempered fractional Gaussian
noise around the truncation time, is shown in figure 12.

4.2. Fractional Langevin equation with directly tempered fractional Gaussian noise

Considering the internal noise ξ(t) of the system as the tempered fractional Gaussian
noise B′

H,λ(t) defined above, the overdamped tempered fractional Langevin equation
reads [57]

∫ t

0

γH(t− τ)
dx

dτ
dτ = ξ(t), (75)

in which γH(τ) = 2
〈
B′

H,λ(t)B
′
H,λ(t+ τ)

〉
. Similar to our derivation above, we obtain

the Laplace transform of the MSD (28) in dimensionless units,

〈x̃2(s)〉 = 2

s2γ̃H(s)
, (76)
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in which we have to find the Laplace transformation of the autocorrelation function
(70). We assume that σ2 = 1 for simplicity from now on. To proceed, in the second and
third terms we change the variables and split the resulting integrals,

γ̃H(s) =
2Γ(H + 1

2
)√

π(2λ)Hδ2

{
2[1− cosh(δs)]

∫ ∞

0

dte−sttHKH(λt) (77)

+ 2

∫ δ

0

dt sinh(s(δ − t))tHKH(λt)

}
. (78)

First, we expand the above functions up to second order in δ. Since in the second
integral δ ≪ λ−1 and t < δ the relevant regimes are δs ≪ 1 and λt ≪ 1. Therefore, to
second order in δ, γ̃H(s) is

γ̃H(s) ∼
2Γ(H + 1

2
)√

π(2λ)Hδ2

{
2
−(δs)2

2

∫ ∞

0

dte−sttHKH(λt)

+2

∫ δ

0

dt(s(δ − t))tHKH(λt)

}
. (79)

Using expansion (67) and keeping terms up to the second order of δ we find

2

∫ δ

0

dt(s(δ − t))tHKH(λt) ∼
2Hsπ

sin(πH)Γ(1−H)λH

δ2

2
. (80)

Insertion of this result back to relation (79) yields

γ̃H(s) ∼
2Γ(H + 1

2
)√

π(2λ)Hδ2

{
π2H−1sδ2

sin(πH)Γ(1−H)λH
− (δs)2

∫ ∞

0

dte−sttHKH(λt)

}
. (81)

The integral in (81) is a Laplace transformation, for which we apply equation (2.16.6.3)
of [58]. Hence we find the expression for the autocorrelation function in Laplace space,

γ̃H(s) ∼
2Γ(H + 1

2
)√

π(2λ)Hδ2

{
π2H−1sδ2

sin(πH)Γ(1−H)λH

−(δs)2
s−1λ−H

2H+1

√
π
Γ(2H + 1)

Γ(H + 3/2)
2F1

(
1

2
, 1;H +

3

2
; 1− λ2

s2

)}
(82)

in terms of the hypergeometric function 2F1 [42].

4.2.1. Short time behaviour of the MSD For the regime of short observation times,
δ ≪ t ≪ 1/λ we apply the linear transformations for hypergeometric functions (for
more details see (Appendix C.4)). Then, with the general definition for hypergeometric
functions up to second order and some simplifications, we find the dominant term for
the autocorrelation function,

γ̃H(s) ∼
2Γ2(H + 1

2
)

2 sin(πH)
s1−2H . (83)

Substituting this into expression (76), we see that

〈x̃2(s)〉 ∼ 2 sin(πH)

2Γ2(H + 1
2
)
s2H−3. (84)
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By inverse Laplace transformation we find the asymptotic MSD behaviour in time,

〈x2(t)〉 ∼ sin(πH)

Γ2(H + 1
2
)

t2−2H

Γ(3− 2H)
. (85)

This result corresponds to subdiffusion for 1/2 < H < 1 in agreement with the findings
in section 3. For 0 < H < 1/2 the behaviour is superdiffusive.

4.2.2. Long time behaviour of the MSD For the long times regime t ≫ 1/λ or λ/s ≫ 1

we go back to expression (82) and use the same method as in the previous subsection
(see also (Appendix C.5)). It can be seen that the dominant term is a linear function
of s,

γ̃(s) ∼
√
π

2λ2H

2Γ(H + 1
2
)

sin(πH)Γ(1−H)
s. (86)

Getting back to equation (76) for the MSD, this yields

〈x̃2(s)〉 ∼ 2λ2H sin(πH)Γ(1−H)

2Γ(H + 1
2
)
√
π

s−3. (87)

After inverse Laplace transformation, we obtain

〈x2(t)〉 ∼ sin(πH)Γ(1−H)λ2H

Γ(H + 1
2
)
√
π

t2 =

√
πλ2H

Γ(H + 1
2
)Γ(H)

t2. (88)

Thus, at long times this process converges to ballistic diffusion, as already observed in
[57].

The general behaviour of the MSD and its crossover from short time power-
law behaviour to long time ballistic motion is shown in figure 13 for different Hurst
exponents.

4.3. Physical discussion of the direct tempering model and Ornstein-Uhlenbeck with
fractional Gaussian noise

To come back to the above observed finite limiting value at long times, encoded in
expression (69), of the MSD in the tempered fractional Brownian process we briefly study
the confined fractional Brownian motion in an harmonic potential. Experimentally,
such a situation arises, for instance, when particle tracking is performed with an optical
tweezers setup in a viscoelastic environment [9, 20]. We thus consider the Ornstein-
Uhlenbeck process

dx(t)

dt
= −λx(t) +B′

H(t), (89)

for t > 0 and with x(0) = 0, where the noise B′
H(t) is again fractional Gaussian noise.

The MSD reads (see Appendix D)

〈x2(t)〉 = σ2VHt
2He−λt

[
1 +

λt

4H + 2

(
eλtfH(−λt)− e−λtfH(λt)

)]
, (90)
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Figure 13. MSD for the tempered Langevin equation (75), from numerical Laplace
inversion based on result (82). We also show the transition from anomalous diffusion for
short time, equation (85), to the ballistic regime for long observation times, equation
(88), is shown for different Hurst exponents and λ = 0.1.

where fH(x) ≡ M(2H + 1; 2H + 2; x) is Kummer’s confluent hypergeometric function.
For t ≪ λ−1, the MSD of this fractional Ornstein-Uhlenbeck process assumes the form

〈x2(t)〉 ∼ σ2VHt
2H(1− λt), (91)

which corresponds to unconfined fractional Brownian motion with a correction
proportional to λt. In the long-time limit an exponentially fast convergence occurs
to the stationary limit

〈x2(t)〉 ∼ σ2

2 sin(πH)λ2H
. (92)

Figure 14 compares the MSDs of tempered fractional Brownian motion and of the
fractional Ornstein-Uhlenbeck process. Both of them saturate at long times, where the
plateau value depends on the value of H , compare also [59, 60]. Curiously, the plateau
values of both processes become identical for the Hurst exponent H = 0.768149.

From the comparison with this fractional Ornstein-Uhlenbeck process we see that
the direct tempering model of Meerschaert and Sabziker actually describes a confined
motion, in contrast to the simple intuition of the tempering in equation (64). In that
sense it is fundamentally different from the truncated models considered in the previous
sections which show a crossover between two regimes of steadily increasing MSD.

The effect of direct tempering for the fractional Langevin equation model, a priori
is even more surprising. Namely, as we saw from equations (85) and (88), this model
demonstrates a crossover from a short time subdiffusive to a ballistic regime at long
times. Such a behaviour appears counterintuitive. However, as we show not, it is
actually a simple consequence of the two basic features of the directly tempered internal
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Figure 14. MSD of the tempered fractional Brownian motion (equation (69), violet
line) and the fractional Ornstein-Uhlenbeck process (equation (90), green line) and
their long time plateaus (horizontal lines) for several values of the Hurst exponent H

and the same parameters σ2 = 1 and λ = 0.1. Top left: H = 0.3, top right: H = 0.5,
bottom left: H = 0.768149 (equivalence of the plateau values), bottom right: H = 0.8.

fractional Gaussian noise (75): (i) the integral of its autocorrelation function over the
entire time domain from zero to infinity is identical to zero, see relation (71); (ii) at long
times the autocorrelation function exhibits the exponential decay (74). To demonstrate
that these two conditions indeed effect the ballistic long time behaviour, consider a toy
model for the noise ξ(t) in the fractional Langevin equation (75), namely, we assume
the autocorrelation function

〈ξ(t)ξ(t+ τ)〉 = γH(τ) = δ(τ)− λe−λτ . (93)

Note that the spectral density of the noise is non-negative and the autocorrelation
function (93) obeys conditions (i) and (ii). Now, the Laplace transform of the
autocorrelation function (93) reads γ̃H(s) = s/(s + λ), and with relation (76) we thus
find the MSD

〈x̃2(s)〉 = 2

s2γ̃H(s)
=

2(s+ λ)

s3
, (94)

in Laplace space. As function of time, this indeed produced the ballistic long time
behaviour 〈x2(t)〉 ∼ λt2 for t ≫ 1/λ.
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As we see the direct tempering approach leads to unexpected behaviours. Because
of the stationary limit (69) the model by Meerschaert and Sabzikar may be more
appropriate for modelling the velocity process rather than the position of a diffusing
particle. Conversely, the emergence of the ballistic motion (88) at long times for the
directly tempered fractional Langevin equation may find useful applications for active
systems.

5. Conclusions

In finite systems anomalous diffusion is typically a transient phenomenon, albeit the
crossover time to normal diffusive behaviour may be beyond the observation window of
the experiment or simulations. In those analyses that explicitly monitor the anomalous-
to-normal diffusive crossover, it is desirable to have a complete quantitative model
combining the initial anomalous and the terminal normal diffusive regimes, instead
of a naive fitting of a non-linear (α 6= 1) and a linear (α = 1) power-law for the
mean squared displacement. The explicit analytical results obtained here provide a
two-parameter (exponential cutoff) or three-parameter (power-law cutoff) model for
such crossover dynamics and thus have the additional advantage of allowing one to
extract the crossover time τ⋆ in those cases when the crossover is rather prolonged and
τ⋆ otherwise difficult to extract. Considering systems driven by Gaussian yet power-
law correlated noise we introduced two types of tempering of these correlations, a hard
exponential and a softer power-law truncation. By plugging this persistent noise into the
regular Langevin equation, we produce a superdiffusive-normal diffusive crossover, as
would be observed for actively moving but eventually decorrelating particle or animals.
In contrast, when we fuel the generalised Langevin equation with this noise, due to
the fluctuation dissipation relation the resulting motion becomes antipersistent, and
the tempering leads to a subdiffusion-normal diffusion crossover. For the latter case
we explicitly showed that the tempered anomalous diffusion model is very useful for
the quantitative description of simulations data of lipid molecules in a lipid bilayer
membrane. Including the shape of the crossover regime excellent agreement between
data and model are observed.

Autocorrelation functions, as studied here, of time series can be directly related
to the distribution of first passage times, that is, the distribution of times between
consecutive zero crossings of the time series [64]. More recently, the first passage time
distribution was studied in the presence of crossovers in the autocorrelation function of
the series [65]. In that work the authors demonstrate that the presence of a crossover
in the autocorrelation function is related with a crossover in the first passage time
distribution which is in fact much more complicated to determine. It will be interesting
to explore such a connection for the crossover behaviour studied herein.

We also note here that there exist other classes of anomalous diffusion models
such as semi-Markovian continuous time random walks with scale-free waiting time
statistic [66], Markovian continuous time random walks with time scale populations
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[67], scaled Brownian motion [68], heterogeneous diffusion processes [69], generalised
grey Brownian motion [54, 70], or a recent approach using heterogeneous Brownian
particle ensembles [71]. The use of either model depends on the physical situation. The
motion fuelled by fractional Gaussian noise considered here is useful for a large range
of systems, in particular, the motion of submicron tracer particles in living biological
cells and artificially crowded environments, or the motion of membrane constituents in
pure and protein decorated lipid bilayer membranes. Similarly, applications to stochastic
transport in other fields such as sediment transport in earth science [72] are conceivable.
To identify such type of motion it is not always sufficient to only look at the MSD of
the particle motion, instead, a range of complementary quantitative measures should be
considered [7, 32]. To analyse the exact behaviour of these measures for the tempered
motion analysed here, including the statistics of time averaged observables [7, 61], will
be the focus of future work.

Appendix A. Spectral densities of truncated Gaussian noise

At first we check the positivity of the spectral density of the noise (6). Defining the
autocorrelation function 〈v2〉τ as symmetric function of the time τ on the infinite axis
with respect to τ = 0, the power spectrum becomes

〈ṽ2〉ω =

∫ ∞

−∞
dτ〈v2〉τeıωτ = 2

∫ ∞

0

dτ〈v2〉τ cos(ωτ)

=
2DH

ω2H−1
sin

([
H − 1

2

]
π

)
, (A.1)

which is positive since 1/2 < H < 1.
Let us check that for the exponential tempering (10) the spectral density is also

positive:

〈ṽ2〉ω =
2DH(

ω2 + τ−2
⋆

)H−1/2
cos ([2H − 1] arctan(ωτ⋆)) , (A.2)

where we made use of 2.5.31.4 [58]. This expression is non-negative since the argument
of the cosine function lies between −π/2 and +π/2.

Let us now go to the case of power-law tempering, given by expression (13). Using
2.5.7.6 of [62] we find that

〈ṽ2〉ω =
2DHτ

2H−1
⋆

Γ(2H − 1)



Γ(2H − 1)Γ(µ− 2H + 1) 2F3

(
2H−1

2
, H ; 1

2
, 2H−µ

2
, 2H−µ+1

2
;− (ωτ⋆)2

4

)

Γ(µ)

+
Γ(2H − µ− 1)

(ωτ⋆)2H−µ−1
cos

(
[2H − µ− 1]π

2

)

×2F3

(
µ

2
,
µ+ 1

2
;
1

2
,
µ− 2H + 3

2
,
µ− 2H + 2

2
;−(ωτ⋆)

2

4

)

+µΓ(2H − µ− 2) sin

(
[µ− 2H + 1]π

2

)
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×
2F3

(
µ+1
2
, µ+2

2
; 3
2
, µ−2H+4

2
, µ−2H+3

2
;− (ωτ⋆)2

4

)

(ωτ⋆)2H−µ−2


 . (A.3)

The positivity of this expression was checked numerically with Mathematica for various
values of the exponent µ.

We note that since pFq ((ap); (bq); 0) = 1 [43], we have

lim
ω→0

〈ṽ2〉ω = 2Γ(2− 2H)DHτ
2H−1
⋆ > 0 (A.4)

for all µ. Moreover, for µ = 1 result (A.3) can be simplified with the use of the following
property of the generalised hypergeometric function ([63] 7.2.3.7): if for r values of ap
there also exist equal them r values of bq, then

pFq ((ap−r), (cr); (bq−r), (cr); z) = p−rFq−r ((ap−r); (bq−r); z) . (A.5)

Appendix B. Mittag-Leffler functions and derivation of equation (39)

The three parameter Mittag-Leffler function is defined by [73]

Eδ
α,β(z) =

∞∑

k=0

(δ)k
Γ(αk + β)

zk

k!
, (B.1)

where (δ)k = Γ(δ + k)/Γ(δ) is the Pochhammer symbol. Its Laplace transform is given
by [73]

L
[
tβ−1Eδ

α,β(−νtα)
]
(s) =

sαδ−β

(sα + ν)δ
, (B.2)

where Re(s) > |ν|1/α.
From definition (B.1) we conclude that the behaviour of the three parameter Mittag-

Leffler function is the stretched exponential [74]

Eδ
α,β(−tα) ≃ 1

Γ(β)
− δ

tα

Γ(α + β)
≃ 1

Γ(β)
exp

(
−δ

Γ(β)

Γ(α + β)
tα
)
. (B.3)

Using the series expansion around z = ∞ [75] (for details see also [76])

Eδ
α,β(−z) =

z−δ

Γ(δ)

∞∑

k=0

Γ(δ + k)

Γ(β − α(δ + n))

(−z)−n

n!
, (B.4)

for 0 < α < 2 and z → ∞, we find that the asymptotic behaviour of the three parameter
Mittag-Leffler function is given by

Eδ
α,β(−tα) ≃ t−αδ

Γ(β − αδ)
, t → ∞. (B.5)

The following formula for the derivative of the Mittag-Leffler function follows
directly from definition (B.1) applying term-by-term differentiation,

d

dt

(
tβ−1Eδ

α,β (at
α)
)
= tβ−2Eδ

α,β−1 (at
α) . (B.6)
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From the generalised Langevin equation (22) and the exponentially truncated
friction kernel (37) via the Laplace transform method, we find for the MSD

〈
x2(t)

〉
=

2kBT

mΓH
L−1

[
s−2

(s+ τ−1
⋆ )1−2H

]
. (B.7)

Therefore, from the Laplace transform formula (B.2), where α → 1, δ → 1 − 2H ,
αδ − β → −2, that is, β → 3− 2H , and ν → τ−1

⋆ , we obtain the result (39).

Appendix C. Derivations for section 4

Appendix C.1. Derivation of MSD for tfBm

Due to the white Gaussian noise in equation (64) the MSD of tempered fractional
Brownian motion (64) can be written as

〈
B2

H,λ(t)
〉
= σ2

[ ∫ t

0

e−2λ(t−u)(t− u)2H−1du

+

∫ 0

−∞

(
e−λ(t−u)(t− u)H−1/2 − eλu(−u)H−1/2

)2
du

]
. (C.1)

After expanding the square of the second integral and using the appropriate changes of
variable, it becomes
〈
B2

H,λ(t)
〉
= σ2

[ ∫ ∞

0

e−2λtss2H−1ds− e−λt

∫ ∞

0

e−2λts(1 + s)H−1/2sH−1/2ds
]
. (C.2)

These integrals can be found, for instance, as equations (3.381 4) and (3.383 8) in [77].
This produces equation (65).

Appendix C.2. Derivation of autocorrelation function of tempered fractional Gaussian
noise

In the classical paper by Mandelbrot and van Ness [36] a smooth fractional Brownian
motion is defined in terms of the small and positive parameter δ, through

BH(t; δ) =
1

δ

∫ t+δ

t

BH(u)du. (C.3)

Its derivative is known as the fractional Gaussian noise

B′
H(t; δ) =

1

δ
[BH(t+ δ)− BH(t)] , (C.4)

where we omit the explicit dependence on δ in the main text. The autocorrelation
function of equation (C.4) is given in expression (72).

The same procedure can be applied to tempered fractional Brownian motion to
define the corresponding continuous fractional noise

B′
H,λ(t; δ) =

1

δ
[BH,λ(t+ δ)−BH,λ(t)] . (C.5)

With the identity

2(a− b)(c− d) = (a− d)2 + (b− c)2 − (a− c)2 − (b− d)2, (C.6)
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and the fact that tempered fractional Brownian motion has stationary increments, and
BH,λ(0) = 0, we obtain
〈
B′

H,λ(t; δ)B
′
H,λ(t+ τ ; δ)

〉
=

1

2δ2

[ 〈
B2

H,λ(τ − δ)
〉
+
〈
B2

H,λ(τ + δ)
〉
− 2

〈
B2

H,λ(τ)
〉 ]

. (C.7)

By virtue of relation (65) the autocorrelation function of tempered fractional Gaussian
noise becomes expression (70). The autocorrelation function of tempered fractional
Gaussian noise (70) has a well defined limit when δλ → 0,

〈
B′

H,λ(t)B
′
H,λ(t+ τ)

〉
=

σ2Γ(H + 1/2)λ2−2H

2H
√
π

[
(λ|τ |)H−1K1−H(λ|τ |)

− (λ|τ |)HK2−H(λ|τ |)
]
. (C.8)

Appendix C.3. Evaluating the integral over the autocorrelation function of fractional
Gaussian noise

Taking the integral over expression (72) and denoting

WH =
Γ2(H + 1

2
)

2Γ(2H + 1) sin(πH)
(C.9)

one gets

K =

∫ ∞

0

dτ lim
λ→0

〈
B′

H,λ(t)B
′
H,λ(t + τ)

〉

=
WH

δ2
× lim

A→∞

[∫ A

0

dτ(τ + δ)2H +

∫ A

0

dτ |τ − δ|2H − 2

∫ A

0

dττ 2H
]

=
WH

δ2
× lim

A→∞

[∫ A+δ

δ

dττ 2H +

∫ A−δ

−δ

dττ 2H − 2

∫ A

0

dττ 2H
]

=
WH

(2H + 1)δ2
× lim

A→∞

[
(A+ δ)2H+1 − δ2H+1 + (A− δ)2H+1 − δ2H+1 − 2A2H+1

]

=
WH

(2H + 1)δ2
× lim

A→∞

[
A2H+1

(
1 + (2H + 1)

δ

A
+ 2H(2H + 1)

δ2

2A2

)
− δ2H+1

+A2H+1

(
1− (2H + 1)

δ

A
+ 2H(2H + 1)

δ2

2A2

)
− δ2H+1 − 2A2H+1

]

=
WH

(2H + 1)δ2
× lim

A→∞

[
2H(2H + 1)δ2A2H−1

]

=
Γ2(H + 1

2
)

2Γ(2H) sin(πH)
× lim

A→∞

[
A2H−1

]

=

{
∞, H > 1

2

0, H < 1
2

. (C.10)

Appendix C.4. Tempered fractional Gaussian noise: MSD for short observation times

For the regime of short observation times, δ ≪ t ≪ λ−1, we apply the linear
transformation 15.3.6 from [42] for hypergeometric functions. In the resulted definition,
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the argument of the hypergeometric function is small,

γ̃H(s) =
2Γ(H + 1

2
)√

π(2λ)H

{
π2H−1s

sin(πH)Γ(1−H)λH
− s2

s−1λ−H

2H+1

√
πΓ

[
1, 2H + 1

H + 3
2

]

×
[

Γ(H + 3
2
)Γ(H)

Γ(H + 1)Γ(H + 1
2
)
2F1

(
1

2
, 1; 1−H ;

λ2

s2

)

+

(
λ2

s2

)H Γ(H + 3
2
)Γ(−H)

Γ(1
2
)Γ(1)

2F1

(
H + 1, H +

1

2
;H + 1;

λ2

s2

)]}
. (C.11)

For small arguments we use the general definition of hypergeometric functions, 15.1.1
in [42], up to the second order. Then

γ̃H(s) =
2Γ(H + 1

2
)√

π(2λ)H

{
π2H−1s

sin(πH)Γ(1−H)λH
−

√
πs

2H+1λH
Γ

[
1, 2H + 1

H + 3
2

]

×
[

Γ
(
H + 3

2

)
Γ(H)

Γ(H + 1)Γ
(
H + 1

2

) Γ(1−H)

Γ
(
1
2

)
(

Γ(1
2
)

Γ(1−H)
+

Γ(1 + 1
2
)Γ(2)

Γ(2−H)

λ2

s2

)

+

(
λ2

s2

)H Γ(H + 3
2
)Γ(−H)

Γ(1
2
)

Γ(H + 1)

Γ
(
H + 1

2

)
Γ(H + 1)

(
Γ

(
H +

1

2

)

+Γ

(
H +

3

2

)
λ2

s2

)]}
. (C.12)

Now, we simplify the Gamma functions using the duplication formula 6.1.18 in [42],

γ̃H(s) =
2Γ(H + 1

2
)√

π(2λ)H

{
π2H−1s

sin(πH)Γ(1−H)λH
− 2H−1Γ(H)s

λH
− 2H−1Γ(H)s

λH2(1−H)

λ2

s2

−2H−1s

λH

H

(H + 1
2
)

Γ(H)Γ(−H)Γ(H + 3
2
)

Γ(1
2
)

(
λ2

s2

)H

−2H−1s

λH

H

(H + 1
2
)

Γ(H)Γ(−H)Γ(H + 3
2
)

Γ(1
2
)

(H +
1

2
)

(
λ2

s2

)H+1
}

(C.13)

Using Euler’s reflection formula,

Γ(z)Γ(1− z) =
π

sin(πz)
(C.14)

the first two terms cancel each other and it can be seen that the dominant term in the
autocorrelation function scales as s1−2H ,

γ̃H(s) =
2Γ(H + 1

2
)√

π(2λ)H

{
2H−1

λH−1(H + 1
2
)

π

sin(πH)

Γ(H + 3
2
)√

π

(
λ

s

)2H−1

− 2H−2Γ(H)

λH−1(1−H)

(
λ

s

)
+

2H−1

λH−1

πΓ(H + 3
2
)

sin(πH)
√
π

(
λ

s

)2H+1
}
. (C.15)

Appendix C.5. Tempered fractional Gaussian noise: MSD for long observation time

For the regime of long observation time or λ
s
≫ 1, we go back to equation (82) and use

relation (15.3.8) from [42] for hypergeometric functions with small arguments. Then,
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by applying the expansion of hypergeometric functions up to the second order for small
argument, s/λ ≪ 1,
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π
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. (C.16)

As a result, the integral in expression (82) is approximated as
∫ ∞

0

dte−sttHKH(λt) ∼ s−12H−1λ−H

{√
πΓ(H +

1

2
)
s

λ

+
√
πΓ(H +

3

2
)
s3

λ3
− 2Γ(H + 1)

s2

λ2
− 4

3
(H + 1)Γ(H + 1)

s4

λ4

}
(C.17)

Applying these approximations, the resulting expression for the autocorrelation function
in the Laplace domain is

γ̃(s) =
2Γ(H + 1

2
)√

π(2λ)H

{
π2H−1s

sin(πH)Γ(1−H)λH
− s2s−12H−1λ−H

×
[√

πΓ(H +
1

2
)
s

λ
+
√
πΓ(H +

3

2
)
s3

λ3
− 2Γ(H + 1)

s2

λ2

−4

3
(H + 1)Γ(H + 1)

s4

λ4

]}
. (C.18)

It can be seen that the dominant term is a linear function of s,

γ̃(s) =
2Γ(H + 1

2
)√

π(2λ)H
π2H−1s

sin(πH)Γ(1−H)λH
(C.19)

Appendix D. Derivation of the MSD of the fractional Ornstein-Uhlenbeck
process

The solution of equation (89) for a general noise ξ(u) is

x(t) = e−λt

∫ t

0

eλuξ(u) du, (D.1)

so
〈
x2(t)

〉
= e−2λt

∫ t

0

∫ t

0

eλ(u1+u2)〈ξ(u1)ξ(u2)〉du1du2. (D.2)
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In general, for a noise such that 〈ξ(u1)ξ(u2)〉 = g(|u1 − u2|), equation (D.2) becomes
〈
x2(t)

〉
=

1

λ

[∫ t

0

e−λτg(τ)dτ − e−2λt

∫ t

0

eλτg(τ)dτ

]
. (D.3)

In our case, ξ(u) = B′
H(u). For H 6= 1/2, g(u) = σ2H(2H − 1)VHu

2H−2 and the MSD
can be expressed in terms of the Kummer function M(a; b; z),

〈
x2(t)

〉
=

σ2HVHt
2H−1

λ

[
M(2H − 1; 2H ;−λt)

− e−2λtM(2H − 1; 2H ;λt)
]
. (D.4)

If H = 1/2, using g(u) = σ2δ(u) in equation (D.2), we arrive at

〈x2(t)〉 = σ2

2λ

(
1− e2λt

)
. (D.5)

This result coincides with equation (D.4) for H = 1/2, such that equation (D.4) is valid
for all H ∈ (0, 1). Using the properties of the Kummer function (which in our case
reduces to the incomplete gamma function), relation (D.4) is shown to be equivalent to
equation (90).
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Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them
by looking at how different measures of biodiversity change across spatial scales. Ecological neutral
theory has provided simple predictions accounting for general empirical patterns in communities of
competing species. However, while neutral theory in well-mixed ecosystems is mathematically well
understood, spatial models still present several open problems, limiting the quantitative understand-
ing of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory.
We emphasize the connection between spatial ecological models and the physics of non-equilibrium
phase transitions and how concepts developed in statistical physics translate in population dynam-
ics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2
of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional
environments. We conclude by discussing models incorporating non-neutral effects in the form of
spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral
theories.

I. INTRODUCTION

Community ecology aims at shedding light on how
competing species assemble and coexist in their habi-
tats [1]. This has proven to be a formidable challenge.
A main reason is that ecological dynamics span a wide
range of spatial and temporal scales, from those typical
of individuals to those characterizing large populations
or communities. Ecologists have empirically character-
ized biodiversity at the different spatial scales; for exam-
ple, counting the average number of species hosted in a
given area – species area relationship (SAR) [2, 3]–, or
the distribution of their abundances – species abundance
distribution (SAD) [4, 5]. Often, the ecological forces de-
termining these patterns act at a given spatio-temporal
scale but can affect others as well. The inverse problem,
i.e. linking observed patterns with the causes originating
them at different scales, is arguably the central problem
in ecology [6].

This kind of problem sounds familiar to experts in sta-
tistical physics, where large-scale emergent behavior re-
sults from interactions among simple local units. Tools of
statistical physics are indeed very useful to make progress
on the aforementioned crucial issues in ecology. In par-
ticular, a natural approach to such complex problems
is to radically simplify them. To this aim, we consider
ecosystems made up of competing non-motile species,
such as trees, or having a motility range much smaller
than the typical linear size of the population, such as
communities of microorganisms. Further possible sim-
plifications are that all emergent phenomena originate
at the single-individual scale and, more drastically, that
differences among individuals, possibly belonging to dif-

ferent species, can be neglected. These assumptions con-
stitute the basis of the ecological neutral theory proposed
by Hubbell [7].

Ecological neutral theory [7] was built upon theoretical
ideas of Kimura’s neutral theory of population genetics
[8]. Both theories underscore the role of stochastic de-
mographic fluctuations in determining the fate of popula-
tions and completely neglect deterministic effects stem-
ming from fitness differences. The assumption of eco-
logical neutrality has elicited heated controversies, as it
hinted that classical ecological concepts, such as niches,
might play a marginal role in structuring communities
of competing species. Despite these contentions, neutral
theory had a considerable impact on ecological thinking,
owing to its ability to quantitatively predict non-trivial
patterns of biodiversity with simple models characterized
by very few adjustable parameters [9–11].

Spatially implicit neutral models describe well-mixed
communities of individuals subject to immigration from
a larger reservoir of species where diversity is maintained
via speciation. They can be solved analytically [12–16],
yielding analytical expressions for the SAD. Beside the
mathematical appeal, these exact solutions have been ex-
tremely helpful for fitting empirical data and therefore
testing neutral theory or, at least, promote it as a null-
model [17]. For more exhaustive surveys of ecological
neutral theory, we refer the reader to Hubbell’s book [7]
and the reviews [9–11].

The focus of this review is on spatially-explicit neutral
and near-neutral population models. Explicitly describ-
ing space is crucial to address the fundamental ecologi-
cal questions sketched at the beginning of the introduc-
tion. However, spatially-explicit models – that are often
variants of familiar models in non-equilibrium statistical
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physics [18] – are still poorly understood, especially if
compared with their well-mixed counterparts [19]. One
of the most studied neutral model is the voter model with
speciation, or multi-species voter model [20–22], which
generalizes the more common two-species voter model
[23]. The stepping-stone model [24–27] and the contact
process [23, 28, 29] are other examples of spatial models
that have been studied in both the physics and popula-
tion biology literature. We shall discuss how these analo-
gies can be used to advance our understanding of spatial
ecology and the main open problems. This review heav-
ily relies on extensive numerical computations of lattice
models based on previous works by the authors. This
might have biased the choice of some topics and we apol-
ogize if some relevant works are not properly discussed.

The review is organized as follows. In Sect. II we in-
troduce the multispecies voter model on a lattice and its
dual representation in terms of coalescing random walk-
ers. We then discuss its predictions of macroecological
patterns: the SAR, and the SAD. For the latter, we
compare two recent analytical approaches [30–32] with
novel computational results. We mainly discuss the two-
dimensional case due to its ecological relevance, but also
briefly present the one-dimensional case for comparison.
We conclude the section by presenting new results on
an important dynamical property: the distribution of
species persistence-times. In Sect. III we discuss other
neutral models, where, at variance with the voter model,
lattice sites are not necessarily occupied by exactly one
individual at all times. In particular, we consider the
stepping stone model, where each lattice site hosts a local
community of individuals. This generalization is relevant
for modeling microorganisms and their macroecological
patterns. We then consider a multispecies variant of the
contact process, where lattice sites can be either empty of
occupied by single individual. In Section IV we introduce
non-neutral effects on a simplified two-species competi-
tion model, where adjusting a single parameter one can
tune the departure from neutrality, here modeled as a
specific habitat preference. Physically, this habitat pref-
erence can be thought as a form of quenched disorder.
We discuss how this disorder generically favors species
coexistence using the language of statistical mechanics,
and also discuss other forms of disorder such as temporal
heterogeneity. Finally, Sect. V is devoted to perspectives
and conclusions.

II. VOTER MODEL WITH SPECIATION

A. Description of the model

A paradigmatic example of spatial neutral model is
the voter model with speciation, [20], which is is a multi-
species generalization of the voter model [23]. The latter
is a widely studied model that has been applied in di-
verse contexts, from population genetics to spatial con-
flicts [33], spreading of epidemic diseases [34], opinion

dynamics [35] and linguistics [36].
The voter model with speciation is defined on a lattice,

where each site hosts one individual belonging to some
species. At each discrete time step, a lattice site is chosen
at random and the residing individual is removed (death
event). Then, as illustrated Fig. 1, the dead individual
is replaced:

• With probability ν, by an individual of a new
species not present in the system (speciation event).
Notice that, because of speciation, the total number
of species is not fixed. In population genetics, this
type of event is interpreted as a mutation within
the same species [25, 37].

• With complementary probability (1 − ν), by a
new individual of an existing species (reproduction
event). In this case, the newborn belongs to the
same species of a parent individual chosen at ran-
dom in the neighborhood of the vacant site. In the
simplest case, the nearest-neighbors (NN) are cho-
sen with uniform probability. More generally, the
parent individual is selected according to a proba-
bility distribution P (~r) (the dispersal kernel) over
the neighbors within a distance ~r.

X

death event

speciation event reproduction event 

P=(1-ν)P=ν

FIG. 1: Examples of transitions in the 2D voter model with
speciation.

Most of this section will be devoted to the ecologically
relevant case where the system is a two-dimensional (2D)
square lattice, although we will briefly present some re-
sults in 1D for comparison.

B. Duality

The voter model with speciation is dual to a system
of coalescing random walkers with an annihilation rate
[20, 38, 39]. In this context, “duality” means that each
trajectory of one system can be mapped in one of the
other system having equal probability [38]. The dual
process is constructed as follows. We start by placing
on each lattice site a random walker. The dynamic of
the dual process proceeds backward in time. At each
discrete (backward) time step, with probability 1 − ν, a
randomly chosen walker is moved to a new site, where
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the dispersal kernel P (~r) here plays the role of the distri-
bution of possible displacements. If the site is occupied,
the two walkers coalesce, i.e. one of the two is removed
keeping trace of the coalescing partner. With comple-
mentary probability ν a randomly chosen random walker
is annihilated, i.e. removed from the system. This event
corresponds to a speciation event in the forward dynam-
ics. The whole tree of coalescing random walkers, before
annihilation, represents the entire genealogical tree of a
species up to the speciation event that originated it.

The standard forward in time evolution of the voter-
model with speciation and its dual dynamics are
sketched, for the one-dimensional case, in Fig. 2a and
2b, respectively.

X

1D voter model coalescing - annihilating walkers
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2D voter model, NN 2D voter model, K=7

a) b)

c) d)

FIG. 2: a) Example of space-time dynamics of the 1D voter
model with speciation. b) Corresponding dual dynamics: co-
alescing and annihilating random walkers. c) Snapshot of a
configuration of the 2D voter model simulated with the dual
dynamics, with ν = 5 10−7 and nearest-neighbor (NN) disper-
sal. d) Same as c) but with a longer dispersal range (uniformly
distributed in a square of side K) with K = 7. Each color
labels a different species.

Duality is a very useful property to understand the
physics of the voter model. For example, it immediately
stems from duality that the ν → 0 limit is fundamentally
different in D ≤ 2 and D > 2. As a matter of fact, in
D ≤ 2 the random walk is recurrent, meaning that the
probability of two randomly chosen individuals to belong
to the same species approaches one as ν → 0. In other
words, in the absence of speciation, one has monodomi-
nance of one species in the long term. The same property
does not hold in D > 2, where random walkers are not
recurrent and, in an infinite system, multiple species co-
exist on the long term even in the limit ν → 0. Interest-
ingly, the ecologically most relevant case, D = 2, is the
critical dimension of this model. We shall see that this
fact is a source of non-trivial behaviors of ecologically

relevant quantities.
Duality is also an extremely powerful tool for computa-

tional analyses [21, 22]. If one is interested in the static,
long-term, properties of the voter model with speciation,
it is numerically much more efficient to simulate the dual
dynamics than the forward one. In a dual simulation, af-
ter all walkers coalesced or were annihilated, species can
be assigned to the start site of each walker, obtaining a
stationary configuration of the voter model. Beside com-
putational speed, this approach has also the advantage
of eliminating finite-size effects induced by the bound-
ary conditions, as the coalescing random walkers can be
simulated in a virtually infinite system. For illustrative
purposes, in Fig. 2c and 2d we show two configurations
of the 2D voter model obtained with the dual dynamics
for two different dispersal kernels.

C. β−diversity

The first ecological pattern we consider is the β-
diversity, which is a measure of how the species com-
position in an ecosystem varies with the distance. We
define the β-diversity as the probability F (~r), that two
randomly chosen individuals at a distance ~r are con-
specific, i.e. belong to the same species. We remark
that, although this is the natural definition in this con-
text, other definitions have been used in the ecologi-
cal literature [40]. Mathematically, F (~r) can be ex-
pressed in terms of the two-point correlation function
Gsi,sj (~r) = 〈nsi(~x)nsj (~x+ ~r)〉, where nsi(~x) denotes the
number of individuals of species si at location ~x

F (~r) =

∑
iGsi,si(~r)∑
i,j Gsi,sj (~r)

, (1)

where the sums extend over all species in the ecosystem
[11]. Eq. (1) can be used to estimate the β-diversity as
the ratio between the couples of conspecific over the total
number of couples in a sample.

Let us now study the evolution equation of F (~r, t) for
the voter model with speciation and NN dispersal. Al-
though we shall focus on the 2D case, it is useful to
present the general calculation in D dimensions. Fol-
lowing [11, 41, 42] we write

F (~r, t+ 1) =

(
1− 2

N

)
F (~r, t) + (2)

+
1− ν
DN

D∑

k=1

[F (~r + ~ek, t) + F (~r − ~ek, t)] .

The first term in the r.h.s. of Eq. (3) represents the
fact that F does not change if two generic individuals at
distance ~r are not removed in a given time step and there-
fore survive. The second term represents the events in
which one of the two individuals dies (with prob. 2/N),
no speciation occurs (with prob. 1−ν) and the dead indi-
vidual is replaced by a conspecific from the 2D neighbor
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sites. Taking the continuous limit N → ∞ with the lat-
tice spacing a→ 0, the speciation probability ν → 0, and
a finite value of κ2 = 2Dν/a2, one obtains at stationarity
the differential equation

1

rD−1

d

dr
rD−1 dF

dr
− κ2F (r) + cδD(r) = 0 (3)

where δD is the D−dimensional Dirac delta, and because
of isotropy the β-diversity F (r) is now function of r = |~r|
only. The solution of Eq.(3) is [11]

F (r) = c
κD−2

(2π)D/2
(κr)(2−D)/2K(2−D)/2(κr) , (4)

where Kz is the modified Bessel function of the second
kind of order z and the constant c is fixed by the condi-
tion

∫
r<a

dDrF (~r) = 1. We recall that Eq. (4) is a con-
tinuous expression, valid for distances much larger than
the lattice spacing [41]. Although we derived Eq. (4) for
NN dispersal, the same results hold for a general dis-
persal kernel for distances larger than the kernel range,
provided that the kernel range is finite.

For D = 2, Eq. (4) implies that F (r) ∝ K0(κr), which
is characterized by a slow logarithmic decay, ∼ − ln(rκ),
up to distances of order 1/κ ∼ 1/

√
ν, followed by a faster,

exponential falloff. Remarkably, the β-diversity empiri-
cally measured in several tropical forests in Central and
South America is consistent with a logarithmic decay for
large distances [43]. We remark that this logarithmic de-
cay is the signature that D = 2 is the critical dimension
for the voter model. In contrast, in D = 1, Eq. (4) be-
comes F (r) ∝ √rκK1/2(κr) ∼ exp(−rκ). We mention
for later convenience that, in D = 1 with NN disper-
sal, Eq. (3) can be solved without using the continuous
approximation, giving [42]

F (r) = exp(−α(ν)r) , with α(ν) = ln
[

(1−ν)
(1−
√

(ν(2−ν))

]
,

(5)

where α(ν) ≈
√

(2ν) for ν → 0.
Although the β-diversity decays exponentially on

scales 1/κ ∼ 1/
√
ν both in 1D and 2D, there are impor-

tant differences. Because 2D is the critical dimension, a
large biodiversity (i.e. a large average number of species)
can be sustained by very low values of the speciation rate
ν. This implies that in 2D there are many species living
on scales much smaller than 1/κ, where the correlations
decay logarithmically. Conversely, in 1D to maintain bio-
diversity one needs a large value of ν, so that 1/κ is the
only characteristic scale and there is no additional struc-
ture on scales smaller than 1/κ. This crucial point will
be further elucidated in the rest of the section, where we
will discuss other observables in 2D (subsections II D and
II E) and compare them with their 1D counterparts.

D. Species-Area Relationships

We now focus on the SAR, defined as the average num-
ber of species, S of a given taxonomic level occupying a

given area of size A. SARs are widely studied as a mea-
sure of spatial biodiversity and quantify how larger habi-
tats support more species than smaller ones [3]. Empiri-
cal measures of SARs at multiple scales often reveal three
different regimes [2, 3, 7]. At small areas, the number of
species increases rather steeply, nearly linearly, with the
sampled areas. A similar steep increase is observed at
very large, continental scales. Instead, at intermediate
scales, a slower, sublinear growth is often found. Such
a growth is well approximated by a power law S ∼ Az,
z < 1, over a wide range of taxa [44], though a logarith-
mic behavior S ≈ C lnA has also been proposed. An
extensive meta-study by Drakare et al. [45] reconsidered
a large body of SAR studies from the literature, revealing
that the power law provides a better fit in about half of
the cases. This study also observed that the exponent z
correlates positively with the body size of the considered
group of species, so that small microorganisms typically
display very shallow SAR curves as compared with larger
organisms (see also [46] and Sect. III A).

Simulations of the (dual) voter model with speciation
yields SARs qualitatively similar to those obtained from
field data, see Fig. 3a. In the voter model, the steep ini-
tial regime is mostly determined by the dispersal range
K. For areas significantly larger than K2, a sublinear
growth is observed (see Fig. 3b. In this regime, the
growth becomes progressively more shallow as the speci-
ation rate ν is decreased. For larger scales, the logarith-
mic slope of the SAR curves become steeper again. The
area at which this final crossover occurs increases as ν is
decreased.

An interesting question is whether the sublinear
growth regime in the voter model can be characterized by
a power-law S ∼ Az and, in this case, what is the value of
the exponent z as a function of ν. To address this ques-
tion, we begin by reviewing a classic estimate of z by
Durrett and Levin [20] relying on duality (see Sect. II B).
The speciation rate ν sets a time scale 1/ν which also
corresponds to a characteristic length scale ξ = 1/

√
ν

because of the diffusive behavior of random walkers in
the dual model. Walkers with an initial separation much
larger than ξ are likely to be annihilated before coales-
cence occurs. This observation alone explains the linear
scaling of S(A) for areas A� ξ2 = ν−1. At these scales,
species are uncorrelated, as can also be inferred from the
analysis of the β-diversity in the previous section. For a
system of coalescing random walkers in 2D, the density
of occupied sites ρ(t) decays asymptotically as [47, 48]

ρ(t) ∼ ln t

πt
. (6)

The characteristic logarithmic coarsening of clusters ob-
served in the 2D voter model without speciation can be
related to the logarithm appearing in Eq. (6) [49]. As-
suming ν � 1, the annihilation rate at time t in an area
ξ × ξ can be approximated as the annihilation rate per
walker ν times the number of walkers in the absence of
annihilations ξ2ρ(t). Integrating over time, we find that
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FIG. 3: Species Area Relationships (SAR) and their scaling
behavior in the voter model with speciation. a) Number of
species S as a function of the sampled area A for different
speciation rates as in the caption. The triphasic shape is
evident for larger speciations rates. Simulations from [22]
were performed with a square dispersal kernel, i.e. P (~r) is a
uniform distribution on a square of side K centered on the
empty site, with K = 7. b) Local slopes, d lnS/d lnA for the
curves shown in panel a. c) Dependence of the exponent z on
ν as obtained from the local slopes for both the square kernel
with K = 7 and NN dispersal. The exponent is estimated
at the inflection point of the SADs, i.e. at the minimum of
the local slopes. Also shown is the prediction of Eq.(8) (black
solid line) where the black triangles correspond to the values
provided in [20]. d) Plot of 1/z vs ln(ν) of the same data of
panel c to highlight the logarithmic behavior of Eq. (9)

the total number of annihilations, i.e. the total number
of species, is [39]

S(ξ2) ≈ νξ2

∫ 1/ν=ξ2

t0

dt ρ(t) =
ln2(ξ2)− ln2(t0)

2π
≈

≈ 2

π
(ln ξ)

2
, (7)

where t0 is the time at which the asymptotic expression
(6) starts to be valid. The upper temporal cut-off is set to
1/ν (with 1/ν = ξ2) because the number of killing events
occurring after a time ∼ 1/ν is bounded by the number
of walkers in the system, which is ξ2ρ(1/ν) ∼ ln ξ [39].
Finally, combining Eq. (7), the fact that S(1) = 1 and
matching a power law behavior S = Az in the range of
scales from A = 1 to A = ξ2, one finds [20]

z =
ln [S (A)]

ln (A)
=

2 ln[ln(1/
√
ν)] + ln(2/π)

ln(1/ν)
. (8)

Also in this case, the logarithmic dependence of the ex-
ponent z on ν derives from the fact that D = 2 is the
critical dimension for the voter model.

More recent results disputed the validity of Eq. (8).
Scaling arguments hinted that z should approach a fi-
nite value z ≈ 0.2 in the limit of vanishing ν (see [42]
and Sec. II E 1), while numerical simulations suggested

a power law dependence, z ∼ ν0.15 [21]. Finally, further
numerical simulations, based on the dual representation
of the voter model with speciation (see Sect. II B) and
spanning a very wide range of speciation rates from 10−3

to 10−11 confirmed the logarithmic behavior predicted
by Eq. (8) [22]. The exponents measured in such simula-
tions, shown in Fig. 3c, are well fitted by a phenomeno-
logical expression of the form

z =
1

q +m ln(ν)
(9)

which is consistent with Eq. (8) up to order ln ln ν, see
also Fig. 3d. However, fitted values of the prefactors q
and m are not consistent with Eq. (8). This discrepancy
is probably due to pre-asymptotic effects as well as to the
approximation of assuming a power-law range between
A = 1 and A = ln(1/ν).

Let us briefly discuss the role of the dispersal ker-
nel. As illustrated in Figs. 3c and 3d, a comparison
between NN dispersal and a square dispersal kernel of
range K = 7 demonstrates that the exponent z depends
to some extent on the dispersal kernel. However, numer-
ical evidence [21, 22] suggests that when the dispersal
kernel range is large enough (approximately K ≥ 5) the
exponents are very weakly dependent on K. Moreover,
SARs obtained with different values of K can be rescaled
onto a universal function of A and ν via the transforma-
tion S = f(A, ν,K) = Kχφ(A/Kχ, ν) with a fitted value
of χ ≈ 1.97. To the best of our knowledge, a formal
derivation of this scaling law and of the exponent χ is
currently an open problem.

The non-trivial area dependence of the SAR results is a
special feature of the critical dimension D = 2. To high-
light this point, we now discuss the D = 1 case as com-
parison. This case is also relevant to describe quasi one-
dimensional ecosystems, such as river basins [50]. For
simplicity, we limit ourselves to the case of NN dispersal.

To the best of our knowledge, also in D = 1, an ex-
act expression for the average number of species, S(L),
in a segment of length L is unknown. Nevertheless,
it is possible to provide a lower and upper bound for
S(L). In D = 1, the density of walkers behaves as
ρ(t) ∼ 1/

√
t, to be contrasted with eq. (6) valid in the

2D case. Dimensional arguments then suggest that the
average number of species must a function of L

√
ν only,

i.e. S(L; ν) = Ψ(L
√
ν). Computational results (Fig. 4a

and inset) support well this simple argument. As shown
in the figure, the non-trivial power-law regime character-
istic of 2D SARs is absent in D = 1. Indeed, the function
Ψ is linear for large arguments, with a coefficient around
1.2 and it is nearly constant for L

√
ν � 1.

We can derive an upper bound to S(L) using that, in
D = 1, individuals are organized in Ns(L; ν) segments of
conspecific individuals, so that S ≤ Ns, with the equality
holding if no species is present in more than one segment.
We compute Ns from the probability Pi−1,i ≡ F (|i− j|),
with F (r) given by Eq. (5), that two sites i and j are
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FIG. 4: Species Area Relationshipt for the voter model inD =
1. a) Average number of species S versus the system size L
for different ν as labeled. Inset: same curves plotted vs L

√
ν,

notice the excellent collapse. b) SAR for ν = 10−5 compared
with the theoretical upper (10) and lower (11) bounds.

occupied by conspecific individuals [51]

S ≤ Ns = L−
L−1∑

i=1

Pi−1,i = L− (L− 1)F (1) =

= L− (L− 1)e−α(ν) , (10)

which for ν → 0 can be approximated as Ns ≈ 1 +√
2ν(L− 1).
The lower bound follows from Jensen’s inequality (see

also [51]) applied to the frequency of species represented
by the individual in site i ∈ [0, L−1], here denoted ni(L),
which yields

S =
∑

i

〈
1

ni(L)

〉
≥
∑

i

1

〈ni(L)〉 , (11)

where 〈ni〉 =
∑
j Pi,j and Pi,j = F (|i− j|) is again given

by Eq. (5) and can be easily summed numerically.
In Fig. 4b we compare the numerically obtained SAR

with the upper (10) and lower (11) bounds. Notice that
the upper bound is very close to the actual SAR, implying
that most species are organized in single segments.

E. Species-Abundance Distributions

We now discuss Species-Abundance Distributions
(SADs), P (n;A), that measure the relative abundance of
species in a given area A. More precisely, denoting S(A)
the total number of species sampled in an area A, each
composed by ni (i = 1, . . . , S(A)) individuals, P (n;A)dn
is the probability that a randomly picked species has an
abundance between n and n+ dn. While the expression
of P (n;A) for well-mixed neutral models is known [14],
computing it for spatially explicit models, such as the
voter model with speciation, has proven to be a rather
hard problem. We first discuss in section II E 1 an ap-
proach based on standard finite-size scaling, and under-
line its limitations. In Sec. II E 2, we discuss how this
approach can be generalized at the critical dimension,
present numerical results, and discuss a recent attempt

to compute P (n;A) exploiting duality. Although we fo-
cus ond comparing the scaling theory with results from
the voter model with speciation, we remark that the the-
oretical approach presented in this section is more general
and can be applied to a vast class of models at the critical
dimension.

1. Power-law scaling relation

In the voter model with speciation, the SAD is not
only a function of the system size A, but also of the
speciation rate ν. Although we are mainly interested
in 2D, it is instructive to consider the general case in
which A = LD, where L is the linear size of the sample.
Following [11, 42], we assume a standard scaling form for
the SAD

P (n;A, ν) = n−βΨ(nνα, AνD/2) (12)

where the exponents α and β remain unspecified for the
time being, whereas the exponent D/2 stems from the
diffusive nature of neutral models ν ∼ t−1 ∼ L−2 ∼
A−2/D. Note that in models with long-range, non-
diffusive dispersal [52] the scaling form might differ.
Equation (12) describes a power-law dependence of P
on n, holding up to a scale determined by the scaling
function Ψ, that depends on dimensionless combinations
of the population size n, the speciation rate ν, and the
system size A. To the best of our knowledge, there is no
available analytical prediction for the exponent β. The
exponent α can be estimated in the dual formulation of
the voter model with speciation, where the population
size n is the number of coalescences that occur before
an annihilation (see Sec. II B). This implies that α is
the same exponent characterizing the temporal decay of
the density of coalescing random walkers, ρ(t) ∼ t−α.
However, ρ(t) decays as ρ(t) ∼ t−min(1,D/2) for D 6= 2
and ρ(t) ∼ log(t)/t in D = 2, see eq. (6) and [48, 53].
Consequently, one should expect the power-law scaling
of Eq. (12) to hold in D = 1 and D ≥ 3, but not at the
critical dimension D = 2, where logarithmic corrections
should appear.

2. Generalized scaling relation

In order to allow for logarithmic corrections, Zillio et
al. [30] proposed the generalized scaling relation

P (n;A) = g(A)Ψ(n/f(A)) . (13)

The dependence on ν was omitted as the above scaling
law was applied to observational data for which the spe-
ciation rate is unknown and assumed to be fixed. The
key aspect of Eq. (13) is that f and g, are general func-
tions and not necessarily power-laws as in conventional
scaling, allowing for the possibility to include logarithms
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or other functional dependencies. The scaling function
Ψ(x) is still assumed to be a power law

Ψ(x) ∼ x−∆ (14)

for small values of x, where ∆ is an exponent to be de-
termined. Thus, also Eq. (13) postulates a power-law de-
pendence on n, but with a more general cut-off for large
areas. After specifying the functions f and g, Eq. 13 can
be tested by plotting P (n;A)/g(A) versus x = n/f(A)
for a set of different areas and assessing the quality of the
data collapse onto a single curve, Ψ(x).

To determine the functions f and g, we impose that
P (n;A) has to be normalized,

∫∞
n0
dn g(A) Ψ(n/f(A)) =

1, and that its average value has to be 〈n〉 =∫∞
1

dn n g(A) Ψ(n/f(A)). Substituting the scaling form
(14) into these two equations, it is possible to derive con-
ditions that the functions f and g must obey, depending
on the value of ∆. In particular, the case ∆ = 1 is
marginal and needs to be treated with care (other values
∆ 6= 1 are analyzed in the Appendix). Approaching such
a limit as ∆ = 1− ε with ε� 1, Eq.(14) becomes

Ψ(x) = x−1+ε ∼ 1

x

[
exp(ε) ln(x)

]
∼ 1

x
[1 + ε ln(x)] (15)

up to first order in ε. At the same order in ε, the two con-
ditions for P (n;A) become 1 ∼ g(A)f(A) ln(f(A))[1 +
ε
2 ln(f(A))] and 〈n〉 ∼ g(A)f(A)2, respectively, from
which we finally obtain

f(A) = 〈n〉 ln〈n〉
[
1 +

ε

2
ln〈n〉

]

g(A) =
1

〈n〉 ln2〈n〉
[
1 + ε

2 ln〈n〉
]2 (16)

up to first order in ε. Notice that both functions f and
g include logarithmic corrections. By means of a similar
calculation, one can estimate the k-th moment 〈nk〉, and
verify that all the moment ratios 〈nk〉/〈nk−1〉 scale in the
same way, up to a multiplicative constant

〈nk〉
〈nk−1〉 =

∫
dn nk P (n;A)∫
dn nk−1 P (n;A)

∝ f(A) k ≥ 1 . (17)

revealing a highly anomalous scaling.
Zillio et al. [30], showed that this scaling form provides

a much better collapse of empirical data from the Barro
Colorado tropical forest than a power-law scaling relation
such as Eq. (12). This supports the idea that ∆ is close
to its marginal value 1 in tropical forests.

We tested computationally whether Eqs. (13) and (16)
provide a good collapse of SADs obtained from the voter
model with speciation and whether the relationship be-
tween the moments, Eq.(17), holds. In simulations, an
additional parameter is the speciation rate ν. As dis-
cussed above, ν appears in scaling relationships via the
dimensionless combination AνD/2, that in 2D equals Aν.
Thus, although Eqs. (13) and (16) do not include speci-
ation explicitly, we expect these relationships to hold if

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

10
4

10
5

P
(n

;A
)

n

a)

L=400
L=600
L=800
L=1000
L=1500
L=2000
L=2500

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

P
(n

;A
)/

g
(A

)

n/f(A)

b)

10
-6

10
-4

10
-2

10
0

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
(n

;A
)<

n
>

n/<n>

c)

10
-6

10
-4

10
-2

10
0

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

P
(n

;A
)<

n
>

(l
o

g
<

n
>

)2

n/(<n>log<n>)

d)

FIG. 5: SAD and data collapse. Results are presented for
different linear system sizes and different speciation rates ν,
keeping the product Aν = 200 constant. a) SADs for different
linear sizes from L = 400 to L = 2500. b) Collapse of SADs
by means of Eqs.(13) and (16). The fitted parameter in the
functions f and g is ε = 0.08. c) Naive collapse without
logarithmic corrections, where deviation for perfect collapse
are evident. d) Collapse with the scaling form of Eqs.(13) and
(16), but setting ε = 0. Also in this case the discrepancy is
evident.

Aν is kept constant. We therefore performed computa-
tional analyses fixing Aν = 200, although the conclusions
are robust against this choice. Results are summarized
in Figure 5 which shows plots of the SAD, for systems
with different linear size, L and different speciation rates
ν (with L2ν = Aν = 200). Observe in Fig. 5a that
the smaller the size (or the larger the speciation rate)
the smaller the maximal abundance. Figure 5b show the
data collapse as given by Eqs. (13) and (16), where 〈n〉
is the average number of individuals measured in each
area A and ε is a free parameter that we fitted obtain-
ing ε = 0.08 and a remarkable collapse of the different
curves. The small value of ε, is consistent with the as-
sumed small deviation from ∆ = 1. A similar collapse
for Aν = 20 leads to an even smaller value ε ≈ 0.069 (not
shown). We verified that either removing all logarithmic
corrections (thus plotting results as a function of 〈n〉) or
simply fixing ε = 0 in Eq. (13) and (16) leads to less
convincing collapses, as shown in Fig. 5c and 5d, respec-
tively. Clearly, these deviations can pass unnoticed in
the presence of statistical fluctuations. Probably, this is
the reason why in [54] a simple scaling law was claimed
to hold for the 2D voter model with speciation. Finally,
we also verified that moment ratios scale as f(A), as pre-
dicted by Eq.(17) and illustrated in Fig.6.

In summary, a non-standard scaling form, including
logarithmic corrections, provides an excellent collapse
both for empirical data and for numerical simulations of
the 2D voter model. We remark that the scaling theory
is phenomenological, and the small parameter ε control-
ling the importance of logarithmic corrections is, at this
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level, a non-universal free parameter. These results are in
sharp contrast with the one-dimensional case, where log-
arithmic corrections are not expected. Indeed, Fig. (7)
shows that the naive scaling form P (n;A)〈n〉 vs. n/〈n〉
(derived in Appendix A for the case ∆ 6= 1) yields a
perfect collapse for SADs in one-dimensional systems.

It is interesting to remark that the data collapsed in
[30] were obtained from tropical forests of different areas
A. It is reasonable to assume that the speciation rate ν
do not vary much among these forests. Therefore, the
product Aν is not fixed, as in our computational analy-
ses. A possible explanation is that, although the collapse
achieved in this way is not perfect, the deviations from
perfect scaling are too small to be appreciated in obser-
vational data due to the limited sample size. We have
verified in simulations (not shown) that keeping ν con-
stant (rather than Aν constant) small deviations from
perfect collapse are observed.
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We conclude this section mentioning that a heuristic
expression for the SAD has been recently derived for the
voter model with speciation following a completely dif-

ferent approach [31, 32]. Let us define P (x, t) as the dis-
tribution of the number of individual of a given species
at time t. If we approximate x as a continuous quantity,
we can heuristically write a Fokker-Planck equation for
the evolution of P (x, t)

∂tP (x, t) = ν∂x[xP (x, t)] + ∂2
x[I(x)P (x, t)] (18)

where the first term in the right hand side is the negative
drift due to speciation, and the second is the fluctuation
in population size, where I(x) is the average number of
interfaces of a species of size x. The crucial underlying
approximation is to neglect fluctuations of I(x), which
is appropriate if the distribution of the number of inter-
faces at fixed value of x is a very peaked function. In
this simple framework, all the dependence on the spatial
dimension of the voter model is recap into the function
I(x). The steady-state solution of Eq. (18) is

Pst(x) =
e−ν

∫
dx x

I(x)

I(x)
. (19)

From duality considerations [31, 32], the average number
of interfaces must scale in 2D as I(x) = x/(1 + c lnx)
where c is a non-universal constant. Notice how the ex-
pression of I(x) includes familiar logarithmic terms and
that the constant c plays the role of the exponent ε
in the scaling theory. Substituting this expression into
Eq. (19) leads to an explicit expression for the SAD,
which obeys a scaling law with logarithmic corrections
similar to Eq. (16), though not identical. A more de-
tailed comparison between this result and the previous
scaling form is an interesting issue, but beyond the scope
of this review.

F. Species persistence-times

So far, we have considered neutral predictions of static
ecological observables. However, neutral theory can also
be used to predict time-dependent properties. A chief
example is the distribution of survival times. The sur-
vival time τ (also called ”persistence time”) within a ge-
ographic region is defined as the time occurring between
the speciation event originating a given species and its
local extinction [15]. Recent empirical work on north-
american birds and herbaceous plants revealed that the
probability of observing a persistence time τ decays as
as power laws P (τ) ∼ τ−1.83 and P (τ) ∼ τ−1.78 respec-
tively, with area-dependent exponential cut-offs [55, 56].

In the voter model with speciation, the survival prob-
ability as a function of time can be computed analyti-
cally. Also in this case, the calculation relies on duality
[47, 48, 57]. In 2D and in the limit of vanishing ν one
obtains

P (τ) ∼ ln τ

τ2
(20)
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while standard power-law scaling P (τ) ∼ τ−1/2 is ex-
pected in 1D. For non-negligible values of ν, these scal-
ing forms are cut-off by a ν-dependent exponential factor
exp(−ντ) in either dimension. Also in this case, diffu-
sive scaling relates the characteristic time scale 1/ν with
a length scale ξ via ξ ∼ √ν. This explains the afore-
mentioned area-dependent cut-offs observed in empirical
data [55].
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FIG. 8: Species persistence times. (a) Probability distribution
function of species persistence times for different values of
the speciation rate ν as in label. (b) and (c) show the pdf
rescaled with the logarithmic correction, P (τ)τ2/ ln τ , and
with a power law, P (τ)τ1.9, respectively.

Species persistence times in simulations of the 2D voter
model with speciation are shown in Fig. 8a. Panels (b)
and (c) show compensated plots of the simulation results.
The simulations support the prediction of eq. (20) (panel
b), and also illustrate that a power law with an exponent
close to 2 (1.9 in this case) provides a good approximation
of the scaling predicted by Eq. (20) in a broad range of
scales (panel c), consistently with the empirical findings
in [55, 56].

III. OTHER NEUTRAL MODELS

In the voter model with speciation, the habitat is sat-
urated and each site is always occupied by an individual.
In this section, we study neutral spatial models where the
number of individuals that can inhabit a site is varied.
We consider three variants: the stepping-stone model
with speciation, where each site can host many individ-
uals but the landscape remains saturated; the contact
process with speciation, where occupancy is limited to a
maximum of one individual per site, but sites can also be
empty; and the O’Dwyer-Green model, where occupancy
is unbounded.

A. Stepping-Stone Model with speciation

In the voter model, each lattice site hosts a single in-
dividual. This assumption is appropriate for big sessile
species, such as trees, where each individual occupies a
well-defined area and exploits its local resources. On the

other side of the spectrum, microorganisms, such as small
eukaryotes or bacteria, are often present in very large
numbers on tiny spatial scales, where all individuals share
the same resources. For these species, it is more appro-
priate to think of the habitat as subdivided into small
patches, connected by migration and each hosting a large
number of individuals directly competing with each other
[58]. To model such ecological cases, in this section we
consider the stepping-stone model [25, 26] with specia-
tion, which generalizes the voter model with speciation
to the case in which each site hosts a fixed number M of
individuals.

Similar to the voter model with speciation, at each
time step an individual is randomly chosen and killed.
With probability ν, it is replaced by an individual of a
novel species. With complementary probability (1 − ν),
a reproduction event occurs. The parent of the new in-
dividual is selected with probability (1 − µ) among the
surviving M−1 individuals present at the same site, and
with probability µ among the M individuals in a ran-
domly chosen neighboring patch (according to a proba-
bility distribution on the neighbors P (~r), similar to the
case of the voter model). The particular case of M = 1
reduces to the voter model with speciation up to a time
rescaling t → µt. Like the voter model, the stepping-
stone model admits a dual representation in terms of co-
alescing random walkers with annihilation, which can be
exploited for efficient numerical simulations. The main
difference with respect to the dual of the voter model is
that, in the dual stepping-stone model, at each step a
random walker can either move to another site or stay
in the site of origin. Coalescence can happen in both
circumstances, corresponding to reproduction of an indi-
vidual from neighboring sites or from the same site. For
full details on the implementation we refer to [27].

As revealed by numerical simulations of the stepping-
stone model based on the dual representation, SARs are
qualitatively similar to those of the voter model, although
the exponents z are, in general, smaller than in the voter
model [27]. In particular, the exponent depends not only
on ν, but also on the combination of parameters Mµ,
which determines the regimes of the model. For Mµ� 1,
each local site is likely to contain only one species. In this
limit, each site behaves as one individual up to a time
rescaling, so that one should expect the same exponents
as in the voter model with speciation. In the opposite
limit Mµ� 1, there is a large diversity of species at each
site. An analytical argument suggests that, in this latter
limit, the exponent should be a factor two smaller than
in the former limit [27]. Let us study the limit Mµ� 1
in the dual representation. Since random walkers in the
same site have a low probability of coalescence, they will
wander for a long time before coalescing. Therefore, we
can assume that, asymptotically, they will behave as in
the well-mixed case. This implies that their density in
an area smaller or equal than ξ2 approximately decays
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according to the mean-field formula

ρ(t) ∼ 1

t
. (21)

Observe that in this case the characteristic length is ξ =√
µ/ν, as random walks diffuse with probability µ at each

time step. Proceeding as in Eq. (7), the average number
of species in an area ξ2 can be estimated as

S(ξ2) ∼ νMξ2

∫ µ/ν=ξ2

t0

dt

t
= Mµ ln

[
ξ2

t0

]
. (22)

To compute z, we also need an estimate for S(1), that
in this case is not trivially equal to one. As the popula-
tion is assumed to be well-mixed in an area equal to ξ2 or
smaller, the composition of a single site can be thought
as a sample of M individuals from this well-mixed popu-
lation. The probability distribution of the abundance in
such a sample is given by Ewens’ sampling formula [59].
Substituting its expression yields

S(1) =
M−1∑

j=0

Mµ

Mµ+ j
≈Mµ ln(1 + µ−1) . (23)

Combining Eqs. (22) and (23) and assuming a power law
in the range from A = 1 to A = ξ2, we find an exponent

z ∼ ln(ξ2)

ln ln(ξ2)
=

ln ln(ν/µ)

ln(ν/µ)
(24)

which, to the leading order, is a factor 2 smaller than
the corresponding estimate for the voter model (8). The
decrease of the exponent z with the combination of pa-
rameters Mµ is confirmed in numerical simulation, see
Fig. 9, although the asymptotic reduction is less than
the factor two predicted by the approximate estimate of
eq. (24).

Summarizing, the stepping-stone model at large local
community size M yields smaller values of the species-
area exponent z than the voter model [27]. This fact
is consistent with the ecological observation that micro-
bial communities, characterized by very large local com-
munity sizes, typically display very shallow species-area
relations, and that in general there seems to be a pos-
itive correlation between the exponent z and the body
size of a taxonomic group [46]. In the stepping-stone
model, a decrease in the SAR exponent is observed in
the regime Mµ� 1 where each site hosts a large number
of species and therefore provides a buffer for biodiversity
[27]. This interpretation is also consistent with the “cos-
mopolitan” nature of many microbial species, i.e. the
fact that relatively small communities of microbes host a
biological diversity comparable with that observed in the
whole planet [58, 60]. This feature has sometimes been
explained invoking the fact that microbes have the pos-
sibility of long-range dispersal [60]. However, numerical
simulations show that, in the voter-model with specia-
tion, long-range dispersal leads to steeper, rather than
shallower SARs [52].
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persal rate µ, with NN dispersal. The numerical estimate of
the exponent z in the voter model for NN-dispersal and the
same value of the speciation rate is shown for comparison.

B. Contact Process with speciation

In the voter model, every dead individual is instantly
replaced by a newborn, leading to a constantly saturated
environment. The implicit underlying assumption is that
the birth rate is infinite, so that death events are the
rate-limiting steps. Such assumption constitutes a good
approximation in resource-rich ecosystems. In less rich
ecosystems, where the birth rate is finite, the environ-
ment is not always saturated and empty gaps can exist
[61].

To explore this latter case, we study here the contact
process with speciation, which is the multi-species vari-
ant of the well-known contact process [18, 28, 29, 38, 62].
As usual, we consider the model on a 2D square lattice.
Sites of the lattice can be occupied by individuals belong-
ing to different species or empty. The model is defined in
continuous time; each individual dies at a rate d and re-
produces at a rate b. In case of a death, the site is simply
left vacant. A reproduction event is considered successful
only if the individual has at least one vacant neighboring
site. In such a case, one of the vacant neighboring sites is
chosen at random. With probability ν, the site is occu-
pied by an individual of a new species (speciation event);
with complementary probability, (1− ν), the newborn is
of the same species as the parent.

As in the standard contact process [38, 62], the param-
eter determining the asymptotic density of occupied sites
ρ is the dimensionless birth-to-death ratio η = b/d. For
η < ηc ≈ 1.649 the absorbing state in which all sites are
empty is stable. A non-equilibrium phase transition at
η = ηc separates this region from a stable active phase
(η > ηc) characterized by a non-vanishing value of ρ that
depends on η [28, 29]. For η →∞ one has ρ→ 1 and the
model is equivalent to the voter model with speciation
[18].
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The CP is a self-dual model. Therefore, duality cannot
be exploited in numerical simulations as in the case of the
voter model. Forward simulations show that the SAR
and the corresponding exponents are remarkably similar
to the voter model with speciation even at small values of
η, corresponding to very fragmented ecosystems as shown
in Fig. 10. For values of η very close to ηc (but within
the active phase) and small values of ν, SAR exponents
tend to be smaller than in the voter model, see inset of
Fig. 10.

In principle, in a very fragmented ecosystem it would
not make sense to sample empty areas, or areas with very
few individuals. With this idea in mind, an alternative
to the standard definition of SAR used so far is to weigh
the sample of a given area with its number of individuals,
i.e. of occupied sites. Adopting this definition one finds
qualitatively different SARs for small values of η [27]. In
particular, these SARs do not seem to be characterized
by a clear power-law range. We refer the reader to Ref.
[27] for a broader discussion of this issue.

C. O’Dwyer-Green model

We have seen that finding exact results for neutral spa-
tial models constitutes a formidable problem, and even
in the simple case of the voter model only asymptotic
results are known.

To make progress in this direction, O’Dwyer and Green
proposed a spatial neutral model in which individuals do
not compete, i.e. the site occupancy is not bounded [63].
In their model, each individual can reproduce at a rate b,
giving rise to a newborn located according to a dispersal
distribution, die at a rate d, or speciate at a rate ν, giv-
ing rise to a newborn of a new species. The model was
studied at the critical point b+ν = d. The lack of interac-
tion considerably simplifies the mathematical treatment:
the model can be mapped into a field theory from which
the authors of [63] obtained an analytical expression for
the species-area law and the dependence of z on ν. In
particular, the solution was derived by writing an equa-
tion for the distribution of a generic species, which was
solved by imposing detailed balance. However, Grilli and
coworkers [64] pointed out a flaw in this procedure. In
this model all species are transient, as the birth rate of
each species is always smaller than the death rate because
of speciation. This implies that all species eventually go
extinct, so that the detailed balance (i.e. equilibrium)
assumption is not valid.

An often overlooked aspect of the O’Dwyer and Green
model is the lack of a carrying capacity. Although well-
mixed neutral models commonly do not have a carrying
capacity (beside that of the entire ecosystem), a local
carrying capacity, i.e. a maximum occupancy of each
lattice site, is a standard ingredient in spatial neutral
theory, shared by all models we discussed so far. In the
O’Dwyer and Green model, since the dynamics of the en-
tire ecosystem is a critical branching process, the popu-
lation at each site undergoes huge fluctuations. This fact
implies as a drawback that numerically simulating the
steady-state of the model and sampling its configurations
is extremely difficult. While the authors of [64] clearly
pointed out that the detailed balance solution leads to
several inconsistencies and is therefore not valid, to the
best of our knowledge there have been no attempt of com-
paring this solution with numerical simulations to see if
detailed balance can provide a reasonable approximation
of the dynamics in some particular regimes or limits.

Currently, the research of spatial neutral models that
can be solved analytically is still open [65]. In this di-
rection, although this review focuses on lattice models,
we mention a recent phenomenological attempt based on
a spatial Fokker-Planck equation where both space and
population sizes are continuous variables [66].

IV. NEAR-NEUTRAL MODELS

In the previous sections, we focused on neutral eco-
logical models. However, in real ecosystems the neutral
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assumption is (at best) a crude approximation. It is thus
interesting to examine some of the main effects of non-
neutral forces, also because many biodiversity patterns
that are well predicted by neutral models are also found
in richer, non-neutral models [67–69]. A main difficulty
in comparing neutral and non-neutral models is the large
number of possible ecological effects (and corresponding
parameters) that typically enter the latter. In this sec-
tion, with the aim of understanding basic non-neutral
effects in a simple setting, we present a minimal model
introduced in [70], where one can continuously move from
a neutral to a non-neutral scenario by varying a single pa-
rameter, tuning the amount of spatial disorder. We then
discuss generalizations to other types of spatio-temporal
disorder.

A. Habitat-preference model

We consider a variant of the voter model where differ-
ent sites are preferred habitats for each one of the com-
peting species. For the sake of simplicity, we limit our-
selves to the case of two species A and B with NA and
NB individuals, respectively. We assume habitat satura-
tion, so that the total population is N = NA +NB = L2

where the system is a square lattice of size L with pe-
riodic boundary conditions. Individuals of type A and
B can also migrate to the system from an infinite reser-
voir where they are equally represented. Each lattice site
can be of type a or b, i.e. being a preferred habitat for
colonization by species A or B, respectively. After colo-
nization, mortality and dispersal do not depend on being
on a preference site. Ecologically, this means that the
fitness advantage belongs to the seeds and not to the in-
dividuals themselves (see [71] for a different choice). The
a vs b character of each site is chosen randomly at the
beginning and it remains fixed over time – quenched dis-
order. To maintain the model globally symmetric, we
assume equal proportions of a and b sites and that in-
tensity of the two biases (a favoring A and b favoring
B) are identical. The dynamics proceeds as follows. At
each discrete time step, a lattice site is randomly chosen
with uniform probability and the residing individual is
killed. The individual is replaced either by an immigrant
from the reservoir (with probability µ) or by an offspring
of an individual residing in one of the four neighboring
sites (with probability (1 − µ)). In both cases, the col-
onization probability is biased by an additional factor γ
for the individuals that have preference for the empty
site. In formulas, the probability of colonization of a site
x = {a, b} by an individual X = {A,B} (Y = {B,A})
having (not having) preference for that site is

W x
X(nX , nY ) = (1− µ) (1+γ)nX

(1+γ)nX+nY
+ µ 1+γ

2+γ

W x
Y (nX , nY ) = (1− µ) nY

(1+γ)nX+nY
+ µ 1

2+γ ,

(25)

respectively, where nX (nY ) denotes the number of in-
dividuals of species X = {A,B} (Y = {B,A}) in the

neighborhood of the considered site. Similar models have
been proposed also in the context of heterogeneous catal-
ysis [72] and social dynamics [73]. For γ = 0 and µ = 0,
the standard (neutral) voter model with two species is
recovered. For γ = 0 but µ 6= 0, it corresponds to the
noisy voter model [74, 75].

Also in this model, the results can depend on the choice
of the dispersal kernel P (r). Here we focus on the NN
dispersal and global dispersal (GD), i.e. a mean-field ver-
sion of (25). The GD case can be thought as a variant of
the two islands model [76] of population genetics, where
each island host N/2 individuals and is favorable to one
of the two species. In the mean-field version, the state of
the system is univocally determined by the numbers of
individuals NAa and NBb residing on their island of pref-
erence. The numbers of individuals outside their island of
preference are NBa = N/2−NAa and NAb = N/2−NBb.
The dynamics is then fully specified by the probabilities
per elementary steps that NXx (with X = {A,B} and
x = {a, b}) increases or decreases by a unit:

WNXx→NXx+1 =

(
1

2
− NXx

N

)
W x
X(NA, NB)

WNXx→NXx−1 =
NXx
N

W x
Y (NA, NB) (26)

where W x
Y and W x

X are given by eqs. (25) with nX and
nY replaced by NX = NXx+NXy and NY = NY y+NY x,
respectively.

B. Extinction times

In the absence of immigration (µ = 0) and for finite
populations N < ∞, persistent coexistence of the two
species is not possible: demographic stochasticity even-
tually drives one of the species to extinction (the absorb-
ing state) with the fixation (in the jargon of population
genetics) of the other species. In this case, information
on the system can be obtained by studying the dynam-
ics toward extinction [71]. Of particular interest is the
average extinction time, 〈Text〉, and its dependence on
system properties, such as the deviation from neutrality
and the population size.

In the neutral case (γ = 0), as discussed, the system re-
covers the voter model with NN dispersal and the Moran
model [37] in the version with global dispersal. In this
limit, the extinction time is set by the population size. In
particular, for large N we have 〈Text〉 ∼ N lnN for NN-
dispersal [77] and 〈Text〉 ∼ N for global dispersal [37, 78].
To inquire the effect of habitat preferences we performed
simulations of the model (25) with an initial condition
NA = NB = N/2 until the extinction of one of the two
species.

Figure 11 shows the average extinction time, measured
in generations, i.e. N elementary steps of eqs. (25), as a
function of the population size N for different values of
γ. For γ = 0 we observe the N lnN behavior expected in
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FIG. 11: Extinction times for the model with NN dispersal
without immigration (ν = 0). Mean extinction time 〈Text〉
as a function of N for different values of γ as in label. The
blue curve approximating the neutral γ = 0 data points corre-
sponds to the neutral expectation 〈Text〉 ∝ N lnN , the black
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fits of the form 〈Text〉 ∝ exp(C(γ)N). The inset shows (sym-
bols) C(γ) vs γ, while the black solid line display the best
fit C(γ) = Aγβ with β ≈ 1.63. The average extinction time
is obtained by an annealed average, i.e. by randomizing the
preference sites at each realization. Each point represents an
average over 103 realizations.

the neutral case. Habitat preference (γ > 0) leads to a
dramatic increase of the average extinction time, which
becomes exponential in N

〈Text〉 ∝ exp(C(γ)N) , (27)

for large enough N . The dependence of the constant
C(γ) on γ, shown in the inset, is well-fitted by a power-
law with exponent ≈ 1.63. The mean-field version of
the model presents similar qualitative features with the
only difference that 〈Text〉 ∝ N for γ = 0 and with some
differences in the γ dependence of C(γ), as shown in [70].

The exponential dependence of the average extinction
times on N indicates that habitat preference has a stabi-
lizing impact on the population dynamics. Indeed, when
N is large enough, the two species coexist on any real-
istic time scale. The stabilizing effect of habitat prefer-
ence reflects also in the probability of fixation Pfix, i.e.
the probability that a species, say A, gets fixated when
initially present as a fraction x = NA/N of the popu-
lation. In the neutral case, standard computation [78]
shows that Pfix(x) = x. As shown in [70], when γ is
increased, Pfix(x) develops a much steeper dependence
on x and quickly reaches values ≈ 1/2 even for small x,
provided that γ is large enough. In other words, the sta-
bilization due to habitat preference tends to compensate
any initial disproportion between the population of the
two species.

C. Coexistence

In the presence of immigration (µ > 0), a locally ex-
tinct species can recolonize, leading to a dynamical coex-
istence between the two species. However, if the typical
recolonization time 1/µ is large compared to the average
extinction time 〈Text〉, such recovery from extinction is
slow and unlikely. Therefore, most of the time the ecosys-
tem is dominated by one of the two species. Therefore,
the distribution of the population size of any of the two
species, P (X) (X = A,B) is peaked at 0 and at the popu-
lation size N , corresponding to dominance of either of the
two species. We denote this regime as monodominance,
see Fig. 12a. In the opposite limit 〈Text〉 � 1/µ, tempo-
rary extinctions are very unlikely and the distribution is
peaked at NA = NB = N/2 leading to pure coexistence
of the two species (Fig. 12c). For intermediate values of
µ, temporary extinctions are still possible though the re-
plenishment due to immigration will tend to equilibrate
the two populations. In this case of mixed coexistence,
the distribution is characterized by three local maxima
at NX = 0, N/2, N (Fig. 12b).
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FIG. 12: Different regimes of coexistence for the case with NN
dispersal and immigration for the model with habitat prefer-
ence. Top panels show the stationary distribution P (NA) for
γ = 0.3 and (a) N = 50 with µ = 10−3, (b) N = 300 with
µ = 2 × 10−3, and (c) N = 100 with µ = 10−3, correspond-
ing to a typical distribution in the cases of monodominance,
mixed regime and pure coexistence, see text. Bottom pan-
els show how the three regimes partition the N,µ-parameter
space for different values of γ: (d) γ = 0 corresponding to the
neutral case, (e) γ = 0.3 and (f) γ = 1. The three points in (e)
correspond to the distributions displayed in the top panels, as
labelled by the color coding.

Figs. 12d,e,f show the three regimes of coexistence in
the N − µ parameter space for the model with NN-
dispersal for different habitat preference strength γ (in-
creasing from left to right). In the mean-field model, we
find the same qualitative features, except that for γ = 0
the mixed regime is absent, so that one has a direct tran-
sition from monodominance to pure coexistence [70].

The main emerging feature is that increasing habitat
preference expands the region of parameter space corre-
sponding to mixed coexistence at the expenses of mon-
odominance. Surprisingly, the pure coexistence regime
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seems to be insensitive to the degree of habitat prefer-
ence. In particular, the critical line µc(N) separating it
from the mixed regime seems to be the same that sep-
arates coexistence from monodominance in the neutral
model (γ = 0) with global dispersal, which is given by
the expression µc(N) = 2/(2 + N). This result can be
obtained in the following way. For γ = 0, the transition
rates (26) can be expressed in terms of the rates for NA
to increase/decrease by one

WNA→NA±1 =
N
2 ±

(
N
2 −NA

)

N
× (28)

×
[

(1− µ)
N
2 ∓

(
N
2 −NA

)

N
+
µ

2

]
.

Then, the equilibrium distribution P (NA) can be com-
puted imposing the detailed-balance condition

P (NA + 1)

P (NA)
=
WNA→NA+1

WNA→NA−1
, (29)

which must hold at stationarity since the process is one
dimensional [79]. To determine µc(N) for the transition
from monodominance to coexistence, it is sufficient to
determine whether, for small NA, P (NA) is an increas-
ing or a decreasing function. Using (29) with (28) and
imposing P (NA + 1) > P (NA) one obtains, after some
algebra, the inequality [(2 +N)µ− 2](N − 2NA− 1) > 0,
which is verified whenever µ > 2/(2 + N). Notice that,
in the case of global dispersal, the distribution is uniform
along this line, i.e. for µ = µc one finds P (NA) = 1/N .

D. Generalizations of the habitat-preference model

To gain physical insight into the different regimes
shown in Fig. 12, a variant of the habitat preference
model was introduced and analyzed for the global dis-
persal case in [80]. By considering the first two terms of
a system-size expansion of the master equation, results in
the infinite-size limit and finite-size corrections were de-
rived. In the infinite-size limit, i.e. neglecting the effect
of fluctuations, the introduction of a non-vanishing local
preference generates a deterministic force, which can be
described as an effective potential V (δ) for the relative
difference of densities δ = (NA −NB)/N . This potential
has a minimum at the coexistence state, δ = 0, corre-
sponding to a maximum in the probability distribution
at NA = NB = N/2. In other words, species coexistence
emerges for infinitely large sizes. On the other hand,
for finite systems, when fluctuations are considered, the
only possible true steady states are the absorbing states
δ = ±1, where the effective potential V (δ) is singular.
The minimum at δ is separated from the negative singu-
larities by two potential barriers. As strength of the local
preference and/or N increase, the basin of attraction of
the coexistence state becomes larger and deeper and the
two symmetric barriers become closer to the absorbing

states and higher. Consequently the time needed to es-
cape the coexistence state becomes much longer, there-
fore unaccessible in computer simulations. Thus, three
different regimes can thus be identified: the absorbing,
intermediate (quasi-active) and active phase (much as in
Fig. 12). In the absorbing phase, symmetry is broken
and one of the two species reaches extinction with cer-
tainty. This regime is equivalent to the monodominance
regime in Fig. 12. The active phase is characterized by
a coexistence of both species, and survives fluctuations
only in the infinite-size limit. This corresponds to the
coexistence phase of Fig. 12. Finally, the intermediate
state is a mixture of the two previous ones: the absorbing
states and the coexistence state are locally stable, thus,
the system is tri-stable, and the steady state depends on
the initial conditions. This is the mixed state of Fig. 12.
These results provide a nice analytical example of how
noise can effectively change the shape of a deterministic
potential. Still, the presence of absorbing states – with
the associated singularities in the steady state distribu-
tion – prevent true phase transitions from occurring: the
only possible steady state for any finite system is an ab-
sorbing one. Only in the infinite-size limit, noise vanishes
and the coexistence state becomes truly stable [80].

Another study scrutinized the case in which there are
local habitat preference only at some specific locations in
space, while all other sites are neutral [81]. An interest-
ing example which has been analyzed in details is that of
a square lattice where only the left (resp. right) bound-
ary has a preference for species A (resp. B), ([81], see
also [82, 83]). The conclusion is that even mild biases at
a small fraction of locations induce robust and durable
species coexistence, also in regions arbitrarily far apart
from the biased locations. As carefully discussed in [81]
this result stems from the long-range nature of the under-
lying critical bulk dynamics of the neutral voter model,
and is robust to the introduction of non-symmetrical bi-
ases –i.e. stronger for one of the species– except for the
fact that the state of coexistence is no longer symmetric.
These conclusions have a number of potentially impor-
tant consequences, for example, in conservation ecology
as it suggests that constructing local “sanctuaries” for
different competing species can result in global increase
of stability of their populations, and thus an enhance-
ment of biodiversity, even in regions arbitrarily distant
from the protected zones [81].

E. Temporally-dependent habitat preferences

We have seen that spatial quenched disorder gener-
ically fosters species coexistence. Another important
question is what happens when the preference for a
species are time-dependent, i.e. if neutrality is temporar-
ily broken in favor of one of the coexisting species, while
the ecosystem remains neutral on average. This ques-
tion has a long tradition in ecology. Several theoretical
studies have looked at the impact of environmental fluc-
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tuations on population growth and ecosystem stability
[71, 84]. On one hand, environmental stochasticity en-
hances fluctuations and extinction rates, that can have a
destabilizing effect on the ecological community. On the
other hand, it can also foster stability, as the temporal
alternance of species can effectively reduce the strength
of interspecific competition.

Similarly to the case of spatial disorder, one can de-
sign quasi-neutral models where habitat-preferences for
different species are time-dependent, i.e. where in each
time window there is a preference for a randomly chosen
species. Different works have recently analyzed this type
of models, showing that time-dependent habitat prefer-
ence greatly improves predictions of empirical ecological
patterns with respect to purely neutral theories [31, 85–
87]. In particular, it has been claimed that these models
provides more realistic estimates of dynamical quanti-
ties, such as average species persistence times and dis-
tributions of species turnover [88], compared with their
neutral counterparts.

F. Models with density dependence

In ecology, one speaks of density-dependence or Allee
effect when the fitness of an individual depends on the
abundance of the species it belongs to. The underly-
ing mechanisms can be very diverse, from cooperative
defense/feeding to spreading of parasites among conspe-
cific. An interesting scenario is that of negative density-
dependence, i.e. when individuals belonging to more
abundant species have lower fitness. It is established
that, in well mixed systems, negative density-dependence
significantly favors species coexistence [89]. Versions
of the voter model implementing a negative density-
dependence have been studied in the literature [90, 91].
In these models, the reproduction probability of an indi-
vidual depends on the number of conspecific individuals
in a given local neighborhood. Strictly speaking, these
models are not neutral: the neutral hypothesis is defined
at the level of individuals [7], and here individuals be-
longing to species of different abundance do not have the
same fitness. However, these models, as the other mod-
els considered in this Section, are still symmetric, since
all species are treated on equal footing. Interesting phe-
nomena like the possibility of spontaneous breakdown of
such a symmetry –thus leading to asymmetric species
coexistence– have been recently uncovered at the mean
field level [92].

V. PERSPECTIVES AND CONCLUSIONS

The range of ecological problems discussed in this re-
view is by no means exhaustive, and we believe there are
many directions that still need to be explored or fully
understood.

A prominent example is the role of different speciation
mechanisms on spatial biodiversity. In the models dis-
cussed in this review, speciation events involve a single
individual (point speciation mode, in the language of evo-
lutionary ecology). This assumption is convenient from
the modeling perspective, but leads to fitted values of
the speciation rate that are incompatible with indepen-
dent estimates [93]. This assumption also tends to gen-
erate too many young species which last for a short time
and overweights rare species. To address these issues,
recently, another mechanism called protracted speciation
has been proposed in the context of neutral models [94].
In protracted speciation, the speciation event does not
occur at a single generation, but is a gradual event lasting
for some generations. Introducing protracted speciation
partially solves some of the aforementioned problems [94].
In real ecosystems, even more speciation mechanisms are
at play [95]. For example, in parapatric speciation, two
spatially-separated population of the same species can
diverge and give rise to two different species. This would
correspond to a speciation event involving a group of in-
dividuals rather than a single one. The role of different
speciation modes in maintaining biodiversity and in pat-
terning the spatial organization of species is still under
discussion and modeling results can provide very useful
contributions to this debate.

As mentioned in the Introduction, ecological neutral
theory elicited a heated debate which is far from being
solved as, in many cases, non-neutral models based on the
concept of niche and neutral models yield similar fits of
biodiversity patterns [67, 68, 96]. In recent years a new
view on this debate has been emerging. In Chase and
Leibold’s words: “niche and neutral models are in reality
two ends of a continuum with the truth most likely in
the middle” [97]. Indeed, the ecological forces underly-
ing niche and neutral models are not mutually exclusive,
and demographic stochasticity plays an important role
also in non-neutral settings. However, it has been dif-
ficult to clarify the importance of different neutral and
non-neutral mechanisms, as most non-neutral model are
characterized by a large number of parameters. Some
progress in this direction has been obtained in simpli-
fied settings which, similarly to the model presented in
Sect. IV, allow for a controlled departure from neutral-
ity. For instance, Haegeman and Loreau [98] added the
main ingredients of neutral theory, demographic stochas-
ticity and immigration, to a Lotka-Volterra competition
model. Similar problems have been studied in Refs. [99–
101]. An interesting future direction would be to study
similar models in a spatial context.

In many ecological communities, in particular of mi-
crobial organisms, ecological and evolutionary timescales
are not separated. Eco-evolutionary models describing
both processes are becoming more and more important
[102]. Neutral theory has provided a simple framework
to describe patterns in these communities, for example in
gut microbiota [103]. These systems call for new theoret-
ical efforts and new observables, such as generalizations
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of the β-diversity taking into account genetic differences
among individuals [104].

We have seen throughout this review how some observ-
ables measured by ecologists corresponds to well known
quantities in statistical physics: for instance, the β-
diversity is closely related with a two-point correlation
function. Other observables, such as SARs and SADs, are
less common in statistical physics. A potentially fruitful
future direction is to consider other observables which
are common in statistical mechanics, such as multi-point
correlation functions, and measure them in ecosystems.
In this direction, it is very interesting the study of species
clustering in [105] based on the theory of continuum per-
colation.

In summary, we presented an overview of different
stochastic spatial models in population ecology. We have
seen that even very simple models are a source of chal-
lenging problems in statistical physics. In particular,
because of speciation, each species is bound to extinc-
tion and is therefore ultimately transient. This feature
is in contrast with traditional classical spin system de-
fined on a lattice where, even when in out-of-equilibrium
conditions, the number of spin components is fixed from
the beginning. Further, ecosystems are typically two-
dimensional and, due to the underlying diffusive behav-
ior, D = 2 is the critical dimension for these models.
We have shown that this fact often leads to logarithmic
corrections to scaling laws, which have been difficult to
analyze both analytically and numerically. Despite these
difficulties, remarkable progress has been made in recent
years. We believe that cross-fertilization between statisti-
cal physics and ecology will be more and more important
in the future to deepen our quantitative understanding
of how ecosystems are organized.

Appendix: General scaling relationships

In this brief Appendix, we discuss general condition
imposed on the functions f and g by the properties of the
function Ψ, depending on the exponent ∆, see eq.(13), eq.
(14) and [30]. Let us write the normalization condition

for P (n;A)

∑

n

P (n;A) ≈ g(A)f(A)

∫ Λ

n0/f(A)

dx x−∆ = 1. (30)

The infrared cutoff Λ is related to the fact that the func-
tion ψ(x) is a power-law for small x only and rapidly
decays for larger arguments, see e.g. Fig. 5. The inte-
gral is singular for small x and ∆ > 1 and thus

1 ∼ g(A)f(A)f(A)∆−1 = g(A)f(A)∆ . (31)

On the other hand, if ∆ < 1, the integral is weakly de-
pendent on f(A), so that

1 ∼ g(A)f(A) . (32)
Similarly, the first moment of Ψ is

〈n〉 ∼ g(A)f2(A)f(A)∆−1 = g(A)f(A)∆+1 (33)

if 1 < ∆ < 2 and

〈n〉 ∼ g(A)f2(A) (34)

for ∆ > 2. Combining the expressions above, different
regimes emerge as a function of ∆: if ∆ < 1, f(A) =
〈n〉, while for 1 < ∆ < 2, f(A) = 〈n〉1/(2−∆), while
no specific prediction for f(A) can be made in the case
∆ ≥ 2. In particular, for ∆ < 1 one has a simple scaling
form f(A) = 〈n〉 and g(A) = 1/〈n〉 which applies, for
example, to the 1D case as described in the main text.
The marginal case ∆ = 1 is treated in detail in Sec. II E.
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[49] I. Dornic, H. Chaté, J. Chave, and H. Hinrichsen, Phys.

Rev. Lett. 87, 045701 (2001).
[50] S. Suweis, E. Bertuzzo, L. Mari, I. Rodriguez-Iturbe,

A. Maritan, and A. Rinaldo, J. of Theor. Biol. 303, 15
(2012).

[51] B. Derrida and B. Jung-Muller, J. Stat. Phys. 94, 277
(1999).

[52] J. Rosindell and S. Cornell, Ecology 90, 1743 (2009),
ISSN 0012-9658.

[53] M. Bramson and J. Lebowitz, Phys. Rev. Lett. 61, 2397
(1988).

[54] J. Rosindell and S. J. Cornell, Oikos 122, 1101 (2013).
[55] E. Bertuzzo, S. Suweis, L. Mari, A. Maritan,
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