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Abstract: Herein we report on a straightforward access method for boron dipyrromethene dyes
(BODIPYs)-coumarin hybrids linked through their respective 8- and 6- positions, with wide functionalization
of the coumarin fragment, using salicylaldehyde as a versatile building block. The computationally-assisted
photophysical study unveils broadband absorption upon proper functionalization of the coumarin, as well as
the key role of the conformational freedom of the coumarin appended at the meso position of the BODIPY.
Such free motion almost suppresses the fluorescence signal, but enables us to apply these dyads as molecular
rotors to monitor the surrounding microviscosity.
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1. Introduction

The design of molecules featuring two or more chromophoric units is of great interest [1–4].
One can envisage new applications of such systems by taking advantage of the interactions that may
develop between the chromophoric units, i.e., energy transfer [5,6], or electron transfer pathways [7],
enabling the design of light harvesters with broadband absorption and high pseudo-Stokes shifts [8–11],
or photosensitizers for photovoltaic devices [12,13] mimicking the natural photosynthesis [14,15]. It is
crucial to the design of multichromophoric systems to have flexible functionalization methods at one’s
disposal that are able to tailor the targeted analogues. In this regard, both boron dipyrromethene dyes
(BODIPYs) [16] and coumarins [17] are in themselves two of the more widely used fluorophores (Figure 1),
and hence have optimal candidates to design multichromophore ongoing energy transfer processes.
Indeed, the former luminophores stand out due to their stability, chemical versatility and tunable
photophysical signatures [18,19], whereas the latter fluorophores can be also deeply functionalized
and display spectral bands at higher energies than the BODIPY core. Thus, both chromophores are
complementary from a spectral point of view, and hence are suitable building blocks to be combined in
a single molecular structure towards the promotion of intramolecular energy transfer hops.

Despite the fact that coumarin-BODIPY hybrids are known, and some examples of these dyads can
be found in the literature applied as chemosensors [20,21], energy transfer cassettes [22,23] or fluorescent
probes for bioimaging [24,25], the photonic performance, and hence the practical applicability of these
multifunctional molecular assemblies, can be still improved. Indeed, one of the main drawbacks of
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these multichromophores is the low absorbance of the coumarin core [26], which falls in the ultraviolet
(UV) region and it is usually masked (or at least overlapped) under the more energetic transitions of the
BODIPY unit. This feature hampers the application of these dyads, for instance as broadband energy
transfer cassettes since, while the energy transfer from the coumarin to the BODIPY is effective, the light
harvesting is not greatly improved by the presence of coumarin.Molecules 2020, 25, 781 2 of 13 
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From the synthetic point of view, the utilization of salicylaldehyde as a versatile building block
is well-documented [27]. Herein, we show that such an attractive starting material can be rendered
fluorescent by attaching it to a BODIPY fragment, thereby opening up new possibilities for the synthesis
of more complex products. In this first example, we used the BODIPY-containing salicylaldehyde
to prepare BODIPY-coumarin hybrids. Thanks to this methodology, we have been able to decorate
the chromene π-system of the coumarin with a battery of aromatic moieties (from functionalized aryl
groups with electron donors, i.e., methoxy, or acceptors, i.e., cyano, groups, to pyridine, naphthalene,
modified stilbenes, triphenylamine, or benzothiophene). The computationally-aided spectroscopic
analysis of this set of dyads allows the selection of the best structural modification at the coumarin
subunit to enhance the light harvesting ability along the UV-yellow spectral region towards applying
these dyads as energy transfer cassettes.

Furthermore, in view of the conformational flexibility of these dyads around the linking bond
between the 8-position of the BODIPY and the coumarin, we anticipated that they could behave as
molecular rotors [28–30]. Thus, we have conducted additional measurements at different temperatures
and controlled viscosities (increasing the amount of ethylene glycol in the medium) to test the viability
of these hybrids as fluorescent sensors to monitor the viscosity of the surrounding environment.

2. Results and Discussion

2.1. Synthesis

Salicyladehyde was attached to BODIPY via the Liebeskind-Srogl cross-coupling (LSCC)
reaction [31] between commercially available 8-methylthioBODIPY 1 and boronic acid 2 (Scheme 1).
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Key boronic acid 2 was prepared by treating commercially available bromide 4 with diboronic
acid in the presence of Pd (Scheme 2) [32].
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The yields of the reactions ranged from good to excellent. The Suzuki reaction works efficiently
regardless of whether electron-donating or electron-withdrawing boronic acids are used. Heteroarylboronic
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acids cross-coupled efficiently (entries 5, 7, and 10). Reaction with p-chlorophenylboronic acid (entry 11)
gave a complex mixture without a major compound. Presumably, once the initial product is formed,
the chlorine atom reacts further under the reaction conditions. An attempt to prepare a dimeric analogue
using p-phenyldiboronic acid failed as well. No evidence for the formation of the desired product was
observed by NMR of the crude material. Tetraphenylethene derivative 7i was prepared in the hope that it
would display aggregation-induced emission (AIE) [34–36], however, disappointingly, it did not.

2.2. Photophysical Properties

The spectroscopic properties of the BODIPY-coumarin hybrids in the visible spectral region are
ruled by the spectral bands owned to the BODIPY subunit. Indeed, sharp absorption and fluorescence
bands were registered at around 500 nm and 520 nm, respectively, regardless of the kind of coumarin
appended at the meso position (Figure 2). Therefore, the coumarin subunit is electronically decoupled
with the dipyrromethene backbone and the profile of the visible spectral bands of the dyads fully
remained to those of the BODIPY alone. However, the presence of such moieties at the sterically
unconstrained meso position has a deep impact on the fluorescence response. In fact, the fluorescence
efficiency and lifetime harshly decreased due to the presence of the coumarin at an 8-position, yielding
values lower than 5% and faster than 500 ps for all the tested compounds (Table S1 in Supplementary
Materials). Such sudden enhancement of the non-radiative rate constants was attributed at first sight to
the deactivation channels afforded by the free rotation of the 8-coumarin fragment directly linked to the
BODIPY. Indeed, low fluorescence efficiencies have been reported for BODIPYs bearing unconstrained
aryls at the said key meso position [37–39], as supported by the theoretically conducted potential energy
curves, which highlight the key role on the photophysics of the conformational freedom around the
linkage bond between the BODIPY and the 8-aryls [40–43].
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within 275–375 nm was clearly recorded (up to 2-fold regarding to 6, bearing the simplest coumarin 
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Figure 2. UV-Vis absorption and fluorescence (dashed line) of representative BODIPY-coumarin hybrids
in diluted solution of cyclohexane. The reference BODIPY not bearing 8-coumarin 3 is also included for
comparison. Note that the shape and position of the fluorescence spectra does not change nor with the
kind of tethered coumarin neither the excitation wavelength (UV or Vis) owing to the ongoing intra-EET.
The absorption spectra of the rest of the dyads are collected in Figure S1 in Supplementary Materials.

Whereas no change was detected in the visible absorption and fluorescence, the UV absorption
remarkably changed depending on the kind of coumarin placed at the meso position, in particular, on
the aromatic functionalization added to the chromene core at 3-position (Figure 2 and Figure S1 in
Supplementary Materials). The coumarin absorption band was detected at 325 nn, with its long-wavelength
tail overlapped with the more energetic transitions of the BODIPY (S0→S2 and S0→S3, energetically close,
and giving a broad and weak band placed at around 375 nm, see 3 in Figure 2). Nevertheless, in the
dyads where the coumarin is functionalized with electron-rich groups, like triphenylamine (7a), stilbene
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(7h and 7i) and benzothiophene (7j), a marked increase in the absorption within 275–375 nm was clearly
recorded (up to 2-fold regarding to 6, bearing the simplest coumarin unit, and up to 5 fold with respect to
the BODIPY in 3). Indeed, in these last dyads, the molar absorption of the band attributed to the modified
coumarin became almost equal to the Vis band of the BODIPY. It is likely that these functionalizations of
the chromene core with aromatic groups promote a more π-extended system of the coumarin. Strikingly,
such spanning of the conjugation was not reflected in the ensuing pronounced bathochromic shift, but led
to a marked enhancement of the absorption probability of the coumarin. It is noteworthy that the spectral
profiles of all the compounds remained the same after prolonged UV irradiation or long aging times,
evidencing their chemical stability and photostability.

The computationally predicted absorption profiles matched the experimentally recorded ones and
support the aforementioned assignment of the spectral bands and their trends with the functionalization
of the coumarin (Figure 3 and Figure S2 in Supplementary Materials). The theoretical simulation of the
energy gap for the band placed at the UV region was much accurate than for that located in the visible
region. This is a typical drawback of the Time Dependent (TD-DFT) method; as the spectral band
is shifted to lower energies, the method overestimates the energy gap [44,45]. The predicted visible
absorption owned exclusively to the molecular orbitals of the BODIPY (HOMO→LUMO), whose
position remained invariant with the type of appended 8-coumarin. Additionally, a UV band was
predicted in the spectral region where the highest electronic transition of the BODIPY were placed
(Figure 3), but with growing intensity when the coumarin is decorated with electron-rich groups
(Figure 3 and Figure S2 in Supplementary Materials). The analysis of the molecular orbitals involved
in such transition revealed that it was the consequence of many configurations. For instance, in dye 6,
the occupied orbitals were located preferentially at the coumarin moiety (HOMO-1 and -2), but with
the electronic density shifted to the pendant phenyl (Figure 3), and eventually reaching the appended
aromatic functionalization of such a ring in more complex coumarins. The overlapping with the
highest transitions of the BODIPY can be clearly visualized in HOMO-3 (Figure 3), which is delocalized
through the whole molecule, although the dipyrrin and the coumarin are electronically decoupled in
the ground state. It is noticeable that the virtual orbitals involved in this UV transition are preferentially
placed at the BODIPY (LUMO).

Strikingly, just in those dyads bearing electron-rich groups (like the aforementioned triphenylamine,
stilbene and benzothiophene), the predicted energetic ordering of the molecular orbitals suggests that
they are able to switch on a reductive photoinduced electron transfer (PET) [46,47] pathway. In these
dyes, the HOMO is located at the coumarin (7a, bearing a strong electron donor like triphenyalmine)
rather than in the dipyrrin as expected. In other words, the energy of the highest occupied orbital
of the coumarin falls between the energy gap of the frontier orbitals of the BODIPY. In the rest of
dyads with less electron rich coumarins (like 6), the frontier orbitals of the coumarin are placed up
and down the orbitals responsible of the visible absorption of BODIPY, hence not interfering with
them (Figure 4). As a matter of fact, the presence of electron donor triplenylamine 7a at the coumarin
raises the energy of the highest occupied orbital placed at the coumarin around 1.6 eV, being the dyad
where the PET is more feasible (Figure 4). Thus, in dyads like 7a, 7i or 7j, after selective excitation of
the BODIPY (HOMO-1→LUMO in this case), the electron-rich moieties can inject an electron into the
BODIPY (a thermodynamically feasible hop), hampering the fluorescence deactivation. Such PET can
be also anticipated from the analysis of the molecular orbitals involved in the UV absorption, since
excitation implies transfer of electronic density from the coumarin to the dipyrrin core, supporting
the electron donor nature of the 8-appended coumarins (Figure 3). This quenching pathway adds
another non-radiative channel to the aforementioned internal conversion enhancement prompted
by the 8-aryl free motion, explaining the recorded extremely low fluorescence efficiencies for these
BODIPY-coumarin hybrids (Table S1 in Supplementary Materials).
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Figure 4. Main calculated molecular orbitals from the optimized geometries (wb97xd/6-311+g*) of the
dyads with π-extended coumarins 7a, 7i and 7j, compared with those computed for the dyad bearing
the simplest coumarin 6, to illustrate the viability of the electron transfer upon selective excitation of
the BODIPY in the former dyads.

Therefore, these dyads bearing π-extended coumarins (mainly 7a, 7h, 7i and 7j) improve the light
harvesting efficiency of the BODIPY-coumarin hybrids, guaranteeing a better and broader collection
of the incoming light to promote the ulterior energy transfer. Indeed, in all the dyads regardless of the
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excitation wavelength and the selectively excited subunit, just the visible emission from the BODIPY
was recorded, without any sign of the emission from the coumarin (Figure 2). Thus, the intramolecular
excitation energy transfer (intra-EET) from the donor coumarin to the acceptor BODIPY is highly efficient,
although the fluorescence output is low owing to the said non-radiative pathways (conformational free
rotation around the 8-position of the BODIPY and eventually PET).

Non-fluorescent dyes owing to the said conformational freedom (including dyads, such as
coumarin-rhodamine) [48,49], are being currently applied as molecular rotors to monitor the microviscosity
of the surrounding environment, even in the cellular media [50,51]. Accordingly, we hypothesized that,
in the herein reported BODIPY-coumarin dyads, as the viscosity of the media increases, the free rotation
of the 8-aryl should be hampered, and consequently the fluorescence quantum yield should increase
and the lifetime lengthen, with this last property being very sensitive to such environmental property
in view of the reported results in the bibliography. Therefore, we have tested the performance of dyad
6, as a representative compound of the herein reported BODIPY-coumarin dyads not undergoing PET,
as a molecular rotor to monitor the viscosity of the surrounding media. To this aim, firstly we have
measured its photophysics in a viscous solvent like ethylene glycol. Successfully, the fluorescence quantum
yield and lifetime in this viscous solvent were clearly higher and longer, respectively, (up to around 0.15
and 1 ns, in comparison with the rest of solvents in Table S1 in Supplementary Materials, with values lower
than 0.05 and 450 ps, respectively). Such improvement of the fluorescence emission is nicely supported
by the recorded fluorescence spectra and decay curves in media with controlled viscosity by means of
ethanol/ethylene glycol mixtures (Figure 5). As the viscosity of the media progressively increases the
emission spectra becomes more intense and the decay curves slower, suggesting that the free motion of the
8-aryl group is hampered and consequently the associated non-radiative relaxation is also hindered.
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decay curves of dyad 6 with the content of ethylene glycol in diluted ethanolic solutions.

Such key influence of the viscosity in the fluorescence response can be also visualized following the
evolution of the emission intensity with the temperature in ethylene glycol. Indeed, as the temperature
increases, there is more energy available to rotate the 8-aryl and to overcome the impediment afforded
by the environmental viscosity. Thus, a heating of the solution progressively decreased the emission
efficiency owing to the discussed enhancement of the internal conversion processes (Figure 6). In fact,
an activation energy of around 5.3 kcal/mol has been calculated from the evolution of the non-radiative
rate, constant with the temperature in ethylene glycol (Figure 6).
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Figure 6. Evolution of the fluorescence spectra of dyad 6 with the temperature in ethylene glycol.
The corresponding Arrhenius plot for the non-radiative rate (knr) constant is also enclosed. The knr data
at each temperature was calculated after checking that the absorption spectra are the same regardless of
the temperature, and assuming that the radiative rate constant (kfl) does not change with the temperature.
In other words, the loss of fluorescence signal upon heating is due solely to an increase of the internal
conversion related to the 8-aryl motion.

3. Materials and Methods

3.1. Materials

Starting 8-methylthioBODIPY, CuTC, tri(2-furyl)phosphine, and boronic acids are commercially
available. Solvents were dried and distilled before use.

3.2. General Procedure for the Suzuki Reaction

In a reaction tube under N2, we dissolved 6 (1.0 equiv), the corresponding boronic acid (2.0 equiv),
Pd(OAc)2 (5 mol%), S-Phos (15 mol%), Na2CO3 (2.0 equiv) in a mixture toluene/H2O (4:1, 2.5 mL).
The reaction was heated at 90 ◦C until the starting material was consumed as indicated by thin-layer
chromatography (TLC), cooled to room temperature, and then water was added. Then it was extracted
with ethyl acetate (3 × 10 mL), washed with brine, dried over MgSO4, filtered and evaporated to
dryness. The crude was filtered through a short silica gel column, and eluted with dichloromethane
(DCM). The product was crystalized using DCM/petroleum ether.

3.3. Synthesis and Characterization

1.H and 13C Nuclear magnetic Resonance (NMR) spectra (collected in the Supplementary Materials)
were recorded on a Bruker (Billerica, MA, US) Avance III HD 400 (1H, 400MHz; 13C 100 MHz) or
Bruker Ultrashield 500 (1H, 500 Mhz; 13C 125 MHZ) in deuteriochloroform (CDCl3), with either
tetramethylsilane (TMS) (0.00 ppm 1H, 0.00 ppm 13C), chloroform (7.26 ppm 1H, 77.00 ppm 13C). Data
are reported in the following order: chemical shift in ppm, multiplicities (br (broadened), s (singlet),
d (doublet), t (triplet), q (quartet), m (multiplet), exch (exchangeable), app (apparent)), coupling
constants, J (Hz) and integration. Infrared spectra were recorded on a Perkin Elmer (Waltham, MA, US)
Spectrum 100 Fourier-transform infrared (FTIR) spectrophotometer. Peaks are reported (cm−1) with
the following relative intensities: s (strong, 67–100%), m (medium, 40–67%), and w (weak, 20–40%).
Melting points are not corrected. TLC was conducted in Silica gel on TLC Al foils. Detection was done
by UV light (254 or 365 nm). High-resolution mass spectrometry (HRMS) samples were determined on
a MaXis Impact ESI-QTOF-MS (Bruker Daltonics) by electrospray ionization in positive mode (ESI+)
and recorded via the time of fly (TOF) method.
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The corresponding reaction conditions for each compound as well as their characterization data
are detailed in the Supplementary Materials.

3.4. Spectroscopic Measurements

The photophysical properties were registered using quartz cuvettes with optical pathways of 1 cm
in diluted solutions (around 2 × 10−6 M), prepared by adding the corresponding solvent to the residue
from the adequate amount of a concentrated stock solution in acetone, after vacuum evaporation of this
solvent. Ultraviolet-visible (UV-vis) absorption and fluorescence spectra were recorded on a Varian
model CARY 4E spectrophotometer (Agilent Technologies, Santa Clara, CA, US), and an Edinburgh
Instruments (Livingston, England) spectrofluorimeter (model FLSP920), respectively. Fluorescence
quantum yields (φ) were obtained using PM546 as a reference (Exciton, φr = 0.85 in ethanol).
Radiative decay curves were registered with the time correlated single-photon counting technique,
as implemented in the aforementioned spectrofluorimeter. Fluorescence emission was monitored
at the maximum emission wavelength by using a microchannel plate detector (Hamamatsu C4878)
of picosecond time-resolution (20 ps), after excitation with a Fianium pulsed laser (time resolution
of around 150 picoseconds). The fluorescence lifetime (τ) was obtained after the deconvolution of
the instrumental response signal from the recorded decay curves by means of an iterative method.
The goodness of the exponential fit was controlled by statistical parameters (chi-square) and the analysis
of the residuals. Radiative (kfl) and non-radiative (knr) rate constants were calculated as follows:
kfl = φ/τ; knr = (1 − φ)/τ.

3.5. Computational Simulations

Ground state energy minimizations were performed using a functional range-separated hybrid
wb97xd within the Density Functional Theory (DFT), using the triple valence basis set with a polarization
and a diffuse function (6-311+g*). The optimized geometries were taken as a true energy minimum
using frequency calculations (no negative frequencies). The conformational search around the linkage
bond between the coumarin fragment and the BODIPY at 8-positions suggests that the aforementioned
geometry corresponds to the most stable conformer. The absorption profile was simulated with the
Time Dependent (TD-DFT) method using the same calculation level and basis set. The Polarizable
Continuum Model (PCM) was considered to have a solvent effect (cyclohexane) in all the calculations.
All the calculations were performed in Gaussian 16, using the “arina” computational resources provided
by the UPV-EHU.

4. Conclusions

Salicylaldehyde was efficiently functionalized with a BODIPY unit via a Liebeskind-Srogl
cross-coupling reaction. In a first example of the application of 3 as a building block, a meta-bromophenyl
BODIPY-coumarin was prepared from which 10 novel analogues were attained using the Suzuki
reaction. The addition of coumarins, functionalized with aromatic moieties, to the meso position
of BODIPYs is a suitable synthetically accessible strategy to ameliorate the light harvesting ability
of BODIPY-coumarin hybrids. The proper selection of the functional aromatic groups to extend the
π-system of the chromene core, enables the enhancement of the absorption probability at the UV-blue
region, providing a more efficient and broader light collection for the subsequent excitation energy
transfer to the BODIPY. The low fluorescence response of the herein reported dyads is attributed to the
conformational freedom of the coumarin around the key meso position and the activation of electron
transfer processes when electron-rich groups are tethered at the coumarin subunit.

However, the detrimental impact of the conformational flexibility on the fluorescence response of
the BODIPY-coumarin hybrids paves the way to apply them as molecular rotors for the monitorization
of the environmental microviscosity. In fact, in those dyads not undergoing PET, the fluorescence
efficiency and lifetime progressively increases and lengthens, respectively, with the viscosity of the
media. Therefore, these BODIPY-coumarin dyads behave as versatile molecular rotors to quantify the
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viscosity following the changes of the fluorescence signatures upon excitation almost along the whole
UV-yellow spectral region, owing to their broadband light harvesting and ensuing energy transfer.

Supplementary Materials: The following are available online; synthetic details and characterization data (IR,
NMR, HRMS) of each compound, 1H and 13C-NMR spectra, photophysical data (Table S1), absorption spectra
(Figure S1) and computed absorption spectra (Figure S2).
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