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Abstract

Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy
controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA
or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage.
We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse
status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different
expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression
of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to
obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two
miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be
involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling
and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular
mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis
opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS.
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Introduction

Multiple sclerosis (MS) is a demyelinating disease of the central

nervous system (CNS). It begins most commonly during late

adolescence, young adulthood, or mid-life, and it is one of the most

incapacitating diseases in this age range.

MS causes attacks of neurological dysfunction (loss of vision,

difficulty in walking or moving a limb, vertigo, loss of sensation) or

progressive dysfunction in these same areas. These ‘‘attacks’’, also

known as relapses, typically last for a few days, and resolve

spontaneously. However, patients may not always completely recover

from an attack and are sometimes left with a disability. Although most

patients experience attacks with little or no progressive disability,

called recurrent remittent (RR) forms, approximately 10–15% have

progressive symptoms from onset, called primary progressive forms.

Furthermore, more than 80% of patients that debut with RR will

ultimately develop progressive symptoms after a prolonged period of

exacerbations, usually after 10–20 years.

Etiologically, MS is a complex disease in which both genetic and

environmental factors play a role. The genetics of MS are also

complex without a clear inheritance pattern. The most relevant

candidate genomic region is the HLA system [1–3], although several

other genes are currently being described as important risk factors

involved in MS, as for example IL2RA [4] or IL7R genes [5].

Gene expression profiling has been a useful tool to provide

information about the molecular pathways involved in MS

pathogenesis [6–8]. Several new studies have identified different

expression patterns between relapses and remission [9,10]

suggesting that this clinical distinction of two states of the disease

also has a molecular correlation.

Small non-coding RNA molecules (microRNA or miRNA) are a

gene expression and protein synthesis modulating mechanism that

has been recently identified in several species ranking from worms

to humans. These miRNA are single-stranded RNA molecules of

about 20–25 nucleotides (nt) encoded by nuclear genes (70–150 nt)

and highly conserved among species. These genes are not

translated into proteins but are processed from primary transcripts

(called pri-miRNA) to short stem-loop structures called pre-

miRNA and finally to functional miRNA. The expression pattern

of miRNA varies over time and between tissues. These mature
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miRNA molecules are partially complementary to one or more

mRNA sequences and they function through sequence-specific

down-regulation of their target mRNA via mRNA degradation or

inhibition of translation [11]. Initial computational analysis

suggested there were more than 500 validated human miRNA

[12,13], although in the public database (mirbase) around 700

were proposed in October 2008.

It has been predicted that miRNAs may regulate around 30% of

all cellular mRNA suggesting that these molecules play a critical

role in virtually all cellular functions [14].

Although dysregulation of miRNA expression has been

characterized mostly in cancer, it has recently been studied in

many other diseases. Specifically, miRNAs have been proposed as

a regulator of immune cell development [15], playing a role in the

inflammatory response [16], and as a key player in the

pathogenesis of neurodegenerative diseases [17].

We are reporting our study of the expression of 364 miRNA in

samples from MS patients during a relapse and during remission,

along with healthy controls, with the aim of understanding the

regulatory mechanisms of these stages.

Materials and Methods

Recruitment of individuals
All patients were recruited in the Neurology Department of

Hospital Donostia, located in the region of Gipuzkoa (Basque

Country, Spain). The study was approved by the local institutional

review board and all the samples were obtained with the written

informed consent of the subjects. The patients were diagnosed as

having MS according to the Mc Donald Criteria [18,19].

In a first group (Group A), 21 blood samples were obtained: 9

from patients in remission, 4 from patients during a relapse before

the administration of steroids and 8 from healthy volunteers. Total

RNA, including miRNA, was extracted from these samples to

carry out the study. Demographic data of the individuals studied

can be found in Table S1.

Samples were collected from two other non-related groups to

validate independently some of the results obtained. Figure 1

summarizes the groups and the methods used:

– Group B: mRNA was obtained from 27 patients (14 during

remission and 13 during relapse) and from 15 controls.

– Group C: miRNA was extracted from 7 patients (4 during

relapse and 3 during remission) and from 7 healthy controls.

Blood extraction was always performed in the early morning and

RNA extraction was carried out no more than 2 hours after the blood

was collected and during this time was kept at 4uC. In all the cases,

10 ml of blood were collected in EDTA tubes by venipuncture.

RNA extraction, reverse transcription (RT) and
quantitative PCR (qPCR)

In groups A and C, total RNA was extracted from blood using

the Ambion Leucolock kit (AM1923) working with the alternative

protocol so as to keep the small RNA fraction.

The RNA obtained was quantified in triplicate using a

NanoDrop spectrophotometer (NanoDrop Technologies, USA).

A common bias in the interpretation of the miRNA profiles from

whole blood may be introduced by the high concentration of

miRNA from erythrocytes [20]. In our study we avoided such a

bias by isolating PBMC in a filter prior to RNA purification (see

Ambion Leucolock kit protocol).

cDNA was synthesized from total RNA using a Multiplex RT

for Taqman array kit (Applied Biosystems, Foster City, CA).

Figure 1. Workflow of the different approaches used in the work. The samples groups are specified and the selected genes are listed.
doi:10.1371/journal.pone.0006309.g001

miRNA in MS
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Briefly, this kit consists of 8 pre-defined RT primer pools

containing up to 48 RT primers each. Each of these 8 pools

contains the same endogenous controls (RNU48). This technology

has been developed to detect only full length mature miRNA but

not their precursors or their partially-degraded products.

We performed qPCR using the TaqmanH Low Density Array

(TLDA) Human MicroRNA Panel v1.0 from Applied Biosystems

(see table S2 for a map of this array). This TLDA included 365

miRNA assays plus two selected endogenous controls. The qPCR

was performed using an Applied Biosystems 7900 Sequence

Detection System. Ct values were determined using the automatic

threshold in RQ manager v1.1 analysis software.

Two normalization steps were used: the first normalization

consisted in loading the same quantity of template RNA in each

well and the second in normalizing the data against an

endogenous gene. This endogenous control (RNU48) was chosen

for this study as the least variable of all endogenous genes included

in the TLDA assays. Consequently, data was normalized to

RNU48, using the values of each of the 8 pools, i.e. each gene pool

was normalized against the endogenous gene that was converted

to cDNA in the same pool, to avoid introducing bias in the results.

Relative quantification of miRNA expression was calculated

with the 2-ddCT method (Applied Biosystems User Bulletin Nu 2

(P/N 4303859)). Quality of the data and quantification was

computed using Real-Time Statminer� software (www.integro-

mics.com). This software performs a moderate t-test between the

groups (relapse, remitting and control) and corrects them using the

Benjamini-Hochberg algorithm [21] with the False Discovery

Rate (FDR) set at a value of 5%.

Samples from group B belong to an ongoing cohort collected by

our group. These samples were extracted using the Versagene TM

Kit (Gentra, Minneapolis, USA). This method entails the loss of

the small molecules of RNA, i.e. miRNA.

Statistical data analysis
A non-parametric analysis that complements the classical t-test

analysis was performed trying to reveal alternative results over the

low number of available samples. We compared the expression

patterns of our three groups by pairs: relapse vs remitting, relapse

vs control and remitting vs control. To accomplish this task, a non-

parametric ranking method called Symmetrical Uncertainty (SU)

sorts all the miRNA according to their statistical relevance over

each of the three comparisons using the following coefficient,

SU Y ,Cð Þ~ 2 H Yð Þð Þ{H Y jCð Þ)
H Yð ÞzH Cð Þ

where Y is the predictive variable (in our case, each miRNA), C is

the class label to be predicted (depending on the comparison

carried out, it takes two of the following three values: remitting,

relapse and control), H(Y ) is the entropy of Y and H(Y|C ) is the

conditional entropy of Y given C [22].

The SU ranking is based on the mutual information between

each miRNA expression level and the phenotype label. Being a

univariate coefficient, it measures the uncertainty reduction of the

class variable C when the expression value of a miRNA (denoted as

Y in the above formulation) is known. As the SU metric only takes

discrete/categorical variables, the DCT expression of each

miRNA was first discretized into three intervals by using an equal

width discretization method.

In order to get a multivariate view of the experimental data, we

built co-expression networks to investigate the possible regulations

within two out of our three comparisons (relapse vs remitting and

remitting vs control). For this purpose we borrowed a technique for

building gene interaction networks [23] and applied it to our DCT

expression data. We used an algorithm that makes use of three

main components to find reliable dependences from data: a

bootstrap re-sampling algorithm, a supervised Bayesian network

classifier and a dimensionality reduction technique. The algo-

rithm’s construction scheme is focused on finding highly reliable

dependences from raw data. The bootstrap step re-samples the

original data B times, obtaining B similar datasets. For each

sampled dataset a dimensionality reduction step is made using the

correlation-based filter selection approach (CFS) [24]. The CFS

returns sets of relevant features that show a high degree of

correlation with the class label while the redundancy degree

among them is kept as low as possible. Each sampled dataset is

projected to contain only the selected features and afterwards a k-

dependence Bayesian [25] network classifier is induced from that

data. All the identified probabilistic dependencies between pairs of

nodes in the B final classifiers are stored. Note that the

dependencies with respect to the supervised variable are not taken

into account.

The algorithm’s output is a hierarchy of probabilistic depen-

dencies found during the whole process. When a cut-off threshold

T is set, it is possible to retrieve a graphical structure in which only

those probabilistic conditional dependencies that have been

configured at least T times are displayed. Each arc in the final

structure is associated with a robustness value which reflects the

number of times the arc is configured in the different bootstrap re-

samplings.

We perform a total of 10,000 re-samplings with their

corresponding CFS and k-DB data mining techniques. The value

of k in k-DB was set to four, keeping to the value suggested in the

original work.

Sequence of the miRNA genes
The miRNA genes were amplified by PCR (primers sequences

available on request) and the PCR product was sequenced in an

ABI3130 automatic sequencer (Applied Biosystems) using Bigdye

v3.1. The used primers were designed based on the mirbase

[13,26,27] sequence information and using the Generunner

software (www.generunner.com). Group A samples (n = 21) were

analyzed as well as 40 healthy controls. These healthy controls

came from a cohort recruited in our group to test sequencing

results, all the samples comes from healthy volunteer donors

without neurological symptoms.

Validation of the target genes
We studied an independent set of 42 samples (group B). The

expression of predicted targets of the identified miRNAs was

analyzed by qPCR using SYBRgreen as fluorescent and pre-

designed primers from geneglobe (www.geneglobe.com). The

assay codes can be found in Table 1. The data were analyzed

using the same software and the same methodology described

above, using as the endogenous gene GAPDH.

Individual validation of the miRNA expression
Validation of the expression of the selected miRNA genes was

performed in an independent set of 14 samples (Group C). The

qPCR was performed in a 7900 sequence detection system using

pre-designed Taqman probes (Applied Biosystems).

Results

We used qPCR to study the expression of 364 miRNAs in

samples from 4 MS patients during a relapse and from 9 patients

during remission. We also analyzed 8 healthy controls.

miRNA in MS
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On average, 45% of the miRNAs analyzed were expressed in

any given sample. Differences in the expression of the miRNAs

was tested between the different groups; relapse vs remitting,

remitting vs controls, MS vs controls and relapse versus controls.

Although several miRNAs reached nominal significance in the

t-test, only three remained significant after correction for multiple

testing (with an FDR threshold of 5%) in all three pairwise

comparison sets.

The transcript hsa-miR-18b showed increasing expression in

the relapsing group when compared to controls (RQ: 52.1). The

transcripts hsa-miR-493 and hsa-miR-599 showed reliable

expression in the relapsing group whereas they were not detected

in controls. These two miRNA were also expressed in the

remission group but did not reach any statistical significance in the

comparisons. (See fig. 2, DDCT and p values of all the

comparisons are provided in table S3)

In order to complement the information of the classical

statistical analysis, we calculated the symmetrical uncertainty

(SU) correlation degree of each miRNA with respect to the class

phenotype, providing a ranked list of all miRNAs. The top ten

miRNA emerging from these rankings are shown in Table 1.

Rankings were made for three different comparisons; relapse

versus remitting, remitting versus controls and relapse versus controls.

Highlighted in red are the significant miRNA found in the previous

analysis (Complete data analysis could be found as table S4).

A coexpression network analysis was performed to obtain

information about the relationships between the different miRNA

(as explained in material and methods). Two interaction networks

were built according to the studied groups;

– relapse versus remitting, in order to obtain information

about the relapse phenomena in the patients

– remission versus controls, in order to obtain information

about the Remission stage. (Fig. 3A-B)

From these analyses of the expression data (t-test, SU and

coexpression networks), we selected 7 miRNA in which we

performed further analysis (see Table 2);

– We chose three miRNA, hsa-miR-18b, hsa-miR-493 and
hsa-miR-599, because they reach the significance level in the

corrected t-test used to compare relapse status with control

samples.

– We selected four miRNA, hsa-miR-148a, hsa-miR-184,

hsa-miR-193a and hsa-miR-96, coming from the network

analysis that differentiates between remission and control

groups. From this network we chose the miRNA with the

higher degree (hsa-miR-96), the two with arcs showing the

highest robustness values (hsa-miR184 with 1557 robustness

scores and hsa-miR-193a with 1358 robustness scores) and the

other parent of hsa-miR96, the hsa-miR-148a.

Validation of the miRNA expression
To validate these results we studied the following three miRNA:

miR-18b, miR-96 and miR-599, in an independent set of samples

(group C). We choose two miRNA coming from the T-test

analysis, and another one coming from the coexpression network.

miR-18b and miR-599 were up-regulated four and five times

more in the relapse group than in the controls. For miR-96 we

obtained no differences in the expression between the groups.

Sequencing of the miRNA genes
To discard a DNA conformation effect in the expression of the

miRNA, we sequence three genes (hsa-miR-18b, hsa-miR-493 and

hsa-miR-96) in the 21 studied samples and in an additional group

of 40 samples. We choose randomly two genes characteristic of the

relapse group (hsa-miR-18b and hsa-miR-493) and another from

the remitting group (hsa-miR-96). No polymorphisms had been

found in the sequenced samples.

miRNA targets
In order to provide a biological interpretation of our findings,

we searched the predicted targets of each relevant miRNA in three

different databases; mirbase targets v5, Targetsan v4.2 [28–

30] and Pictar [31]. Table 3 lists the number of predicted targets

for these miRNA according to each database (two searches with

different confidence thresholds were performed in mirbase). A

complete list of the targets could be found in table S5)

Theoretically, these miRNA should inhibit the expression of a

certain number of target genes. The databases offer predicted

information about the targets, but there are few experimental

results to support it. In our analysis we took a conservative

approach, taking as target genes only the common results from the

three different prediction algorithms (in the mirbase case we

selected the p,0.005 column).

To validate these results, we tested the expression of four

selected targets of the miRNA more representative of each group

in blood from an independent sample set (GroupB), but we saw no

statistical differences in these expression pattern. Table S6 presents

the miRNA that target these genes and the group in which it is

expected to be down-regulated.

Since miRNA are highly conserved across species [32,33], we

used the murine EAE model to validate our findings. To this end,

we mined a large multi-tissue, longitudinal gene expression

profiling dataset in mouse EAE Lymph Node [9] and Spinal cord

[34], focusing on targets of those miRNA differentially expressed

in our cohort of MS patients. Briefly, EAE was induced in 84

female NOD mice by s.c. injection into their lower flanks with

MOG35–55 peptide emulsified in CFA containing 4 mg/ml

Mycobacterium tuberculosis (Difco). Immediately thereafter and 48 h

later, an i.v. injection of 350 ng of Bordetella pertussis toxin was

administered to the animals. The control group consisted of

another 26 female mice treated with the same protocol except

MOG peptide. Samples were extracted at different time points

Table 1. Top 10 genes from the SU analysis for each of the
three comparisons.

Relevance as Symmetrical Uncertainty

Relap vs. Rem Rem vs. CON Relap vs. CON

gene SU gene SU gene SU

1 hsa-miR-542-5p 0.5277 has-miR-96 0.4832 hsa-miR-599 0.8651

2 hsa-miR-376a 0.4921 hsa-miR-30a-5p 0.2989 hsa-miR-18b 0.6416

3 hsa-miR-18b 0.4048 hsa-miR-30e-5p 0.2959 hsa-miR-423 0.6367

4 hsa-miR-34c 0.4039 hsa-miR-599 0.2959 hsa-miR-125b 0.5738

5 hsa-miR-489 0.4039 hsa-miR-193a 0.2959 hsa-miR-383 0.5392

6 hsa-miR-554 0.4039 hsa-miR-337 0.2959 hsa-miR-509 0.5392

7 hsa-miR-600 0.4039 hsa-miR-449b 0.2591 hsa-miR-30e-5p 0.5392

8 hsa-miR-652 0.4039 hsa-miR-184 0.2477 hsa-miR-487b 0.5167

9 hsa-miR-214 0.3863 hsa-miR-328 0.2283 hsa-miR-222 0.4970

10 hsa-miR-328 0.3729 hsa-miR-146b 0.2238 hsa-miR-127 0.4965

Genes in red were also significant in the corrected t-test.
doi:10.1371/journal.pone.0006309.t001

miRNA in MS
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obtaining a longitudinal model of the disease. In each extraction

RNA from Spinal cord and lymph node were obtained. The

animals were clinically scored every days during the experiment

and were classified in four groups: without clinical symptoms,

Starting with the symptoms, in the peak of the disease and

recovering from the peak.

In order to check whether our target selected genes were really

related with the disease, we created a group of 11 randomly

selected miRNA from those that were not differentially expressed

in our first analysis.

We compared the expression of the target genes (see table 3) for

the two groups (7 miRNA from our data and 11 miRNA randomly

choose) at the peak of the disease and at the recovering stages

between the control and the EAE group.

The target genes were classified the target genes in four groups:

not found in the dataset, up-regulated, down-regulated and

equally-expressed.

The results are summarized as percentages in Fig. 4. A chi-square

analysis was performed between the groups. The figure shows the

results of the analysis for the selected genes (in blue) and for the

Figure 2. The charts show the log10 expression relative quantification values of 365 miRNA genes between Relapse (target) and
control (calibrator) groups. A: this chart shows the values from the 361 genes that not passed the False discovery rate threshold (p = 0.05). B:
Shows the values from the three genes that pass the false discovery rate threshold. Yellow: Calibrator not detected. Black: No detection. Red: Target
not detected. Blue both (target and calibrator) detected.
doi:10.1371/journal.pone.0006309.g002

miRNA in MS
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randomly selected group (in pink). The analyzed target-genes were

differentially distributed (p,0.001) between experimental and

random group in the up-regulated and down-regulated class.

A pathway analysis was conducted in Panther [35] database for

all miRNA (experimental and random). A resume of the methods

used for panther are available in Supplementary data as Text S1.

Out of the seven miRNA targets (miR-18b, miR-599, miR-493,

miR-184, miR-148a, mir-96 and miR-193a) only targets of miR-

96 appeared significantly enriched in 8 pathways (see table 4 for

miR96 results. All the data could be found at table S7).

Discussion

We identified three miRNA (hsa-mir-18b, hsa-mir-493 and hsa-

mir-599) showing differential expression between MS patients

experiencing a relapse and controls. Classic parametric tests did not

detect differentially expressed miRNA between samples from

patients in remission vs controls, from MS vs controls or from

relapse vs remission. However, a network-based approach identified

4 miRNA (hsa-mir-96, hsa-mir-148a, hsa-mir-184 and hsa-mir-193)

that could be interesting candidates related with the remission stage.

According to the miRNA function, we hypothesized that if a

given miRNA was over-expressed in a particular group of samples,

the predicted targets of this miRNA should be down-regulated. To

check this hypothesis, although this is an indirect approach, we

analyze the expression data coming from a longitudinal dataset in

mouse EAE model. Interestingly, in this model the target genes of

all 7 differentially expressed miRNA appeared significantly down-

regulated more times in the targets selected by our experiment

than in a random target list. However, we observed a similar effect

for the up-regulated genes. These genes may be being downreg-

ulated in a translational form and the upregulation of the mRNA

could be a retroactive mechanism to valance that.

A biological interpretation of miRNA function in MS is

complicated by the fact that most of the miRNA targets are

predicted from bioinformatics analysis and are not yet validated in

biological studies. To enhance our confidence, we only worked

with consensus targets from the three public miRNA databases.

Patients in relapse status
A t-test identified three differentially expressed genes between

relapse and control samples. We would expect the same

differences between relapse and remitting groups, however mir-

18b and mir-599, but not mir-493, were up-regulated during a

relapse, showing a trend that did not reach significance after FDR

correction. Moreover in the relapse versus remitting network, two

of these genes, miR-18b and miR-599 appear to be correlated with

a direct probabilistic relationship (with a 733 robustness score).

The expression of these two genes have been validated in an

independent set of samples. Taken all together, these results

suggest that miR-18b and miR-599 are related in some way to the

Figure 3. Gene interaction networks from the qPCR data. A: Relapse versus remission status. B: Remission versus control status. Numbers
represents robustness score (see material and methods for details). The genes that had at least one parent had been noted with a shaded blue oval.
doi:10.1371/journal.pone.0006309.g003

Table 2. Selected microRNA based in qPCR experimental
data.

Relapse Remitting Selected by Gene ID chromosome

hsa-mir-18b FDR corrected T-test 547033 Xq26.2

hsa-miR-493 574450 14q32.31

hsa-mir-599 693184 8q22.2

hsa-miR-96 co-expression
networks

407053 7q32.2

hsa-miR-184 406960 15q25.1

hsa-miR-148a 406940 7p15.2

hsa-miR-193a 406968 17q11.2

doi:10.1371/journal.pone.0006309.t002

miRNA in MS
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Table 3. Predicted number of genes targets for each miRNA in three databases.

mirbase Pictar Targetscan Common

p,0.05 p,0.005

18 775 327 151 149 14

599 783 185 X 173 11 Relapse vs Control

493 866 244 X 496 3

96 909 361 698 592 57

184 819 289 22 17 3 Non relapse vs Control

193 918 353 429 434 46

819 362 134 208 14

The column labeled as ‘‘common’’ represents the common predicted targets in the three databases. The Gene symbol of these target genes could be found in
supplementary methods, table 3.
doi:10.1371/journal.pone.0006309.t003

Figure 4. Percentage of the targets founded in the EAE experiment. The founded targets were grouped in up-regulated, down-regulated
and equally regulated between the EAE group and the control. The data from the 7 selected miRNA are presented in blue and the data from the
randomly selected 11 miRNA in pink
doi:10.1371/journal.pone.0006309.g004

miRNA in MS
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mechanisms of the relapse. Their role remains unclear, but should

be related with the regulation of the proposed target genes.

In the analyses of the pathways in which the target genes of

these two miRNA are implicated, neither the target genes of each

miRNA individually nor the target genes in common between

both miRNA give significant results.

The study of the target genes in patients showed no clear

inhibition, as it might be expected, perhaps because regulation of

the miRNA is occurring at the translational level rather than at the

expression level.

These results support the idea that the expression of the miRNA

could be useful as a biomarker of the relapse status.

Patients in remitting status
The proposed network obtained in the comparison between

samples from patients in remission and control samples identified

four miRNAs likely to be implicated in the relapses (hsa-miR-148a,

hsa-miR-184, hsa-miR-193a and hsa-miR-96). The results suggest

that hsa-miR-96 could be an important candidate for further

studies. hsa-miR-96 is first in the SU ranking when remitting and

control groups are compared. Although the classic qPCR analysis of

the expression of this gene gave no significant differences, we note

that this gene is more highly expressed in remitting samples than in

controls, and less in relapse samples than in remitting. The data

from the SU analysis, the network relations and the trend in the

qPCR data suggests that has-miR-96 might be characteristic of the

remitting phase of the disease. In the validation with an independent

set the results of the qPCR data are the same: no differences

between the groups but a similar trend in the data.

A Gene Ontology analysis with the target-genes of miR-96 gave a

list of 8 categories that reached significant level. As could be

expected, within this list we found a classic immune-associated

pathways such as Interleukin signaling pathways. Two other pathways,

the Metabotropic glutamate receptor group I pathway and the Muscarinic

acetylcholine receptor 1 and 3 signaling pathway, related with Glutamate,

are also present. Glutamate has been widely related with

pathological mechanisms of the MS such as exocitotoxicity

[36,37]. Although these pathways have been more extensively

described in the CNS, they may well play a role in activated T-cells.

Another significant GO category pointed toward the Wnt

signaling pathway. Wnt has been proposed as an important player in

the development of effector T-cells and in the activation of the

regulatory T-cell [38].

These miRNA and these pathways could be good candidates in

further studies about biomarkers and to understand the etiology of

the MS

MS and miRNA
A relationship between miRNA expression and MS is not

unexpected as some of the functions attributed to the miRNA

include stress response, immunomodulation [39,40] and neuropro-

tection [17]. Moreover, bioinformatics-based predictions have

suggested that 30% of the human genes are regulated by miRNA

[41]. We therefore hypothesize that a sizeable proportion of the

mRNA differentially expressed between samples from patients during

a relapse and during remission could be regulated by miRNAs.

Our results support the role of miRNA expression patterns in

MS. The reliability of the data is sustained by the different

statistical approaches, by validation in an independent cohort of

samples and by the congruent results, both in the gene ontology

analysis and in the animal model analysis.

Although these studies should be replicated in a larger cohort of

samples, here we describe a list of miRNAs that could be good

candidates in future biomarker studies in MS and at least two

more with potential to be good markers to characterize the relapse

status.

Supporting Information

Table S1 Clinical description of the patients. Tev: Time of

evolution (years). EDSS: Expanded Disability Status Score. Te:

Time from the relapse onset and the blood extraction (in days)

Found at: doi:10.1371/journal.pone.0006309.s001 (0.03 MB

DOC)

Table S2 Taqman probes distribution in the Taqman Low

density array (www.appliedbiosystem.com)

Found at: doi:10.1371/journal.pone.0006309.s002 (0.05 MB

XLS)

Table S3 DCT data from the TLDA analysis. The data comes

from the different comparisons: MS (relapse and remitting) vs

Controls; Relapse (Relap) vs controls; remitting(Remitt) vs controls

and relapse vs remitting

Found at: doi:10.1371/journal.pone.0006309.s003 (0.32 MB

DOC)

Table S4 Complete data from the non-parametrical statistical

analysis

Found at: doi:10.1371/journal.pone.0006309.s004 (0.15 MB

XLS)

Table S5 Complete list of the miRNA predicted targets

Found at: doi:10.1371/journal.pone.0006309.s005 (0.05 MB

XLS)

Table 4. Pathway analysis of the hsa-miR-96 targets.

Pathway_hsa-miR-96 targets NCBI 96 expected ratio P-value

Muscarinic acetylcholine receptor 1 and 3 signaling pathway 62 5 0.14 35.7 5.39E-05

Alpha adrenergic receptor signaling pathway 29 3 0.06 50.0 6.88E-03

Unclassified 22436 39 50.29 0.8 1.01E-02

Endothelin signaling pathway 98 4 0.22 18.2 1.23E-02

Interleukin signaling pathway 194 5 0.43 11.6 1.29E-02

Wnt signaling pathway 348 6 0.78 7.7 2.18E-02

Histamine H1 receptor mediated signaling pathway 43 3 0.1 30.0 2.19E-02

Metabotropic glutamate receptor group I pathway 44 3 0.1 30.0 2.35E-02

Angiotensin II-stimulated signaling through G proteins and beta-arrestin 53 3 0.12 25.0 4.04E-02

doi:10.1371/journal.pone.0006309.t004
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Table S6 Target genes studied with their gene ID, the miRNA

that binds to the gene, the group in which these genes are expected

to be down-regulated and the Geneglobe Assay code.

Found at: doi:10.1371/journal.pone.0006309.s006 (0.03 MB

DOC)

Table S7 Data from the pathway analysis conducted by panther

with the predicted gene target lists from each miRNA. Two

different groups of miRNA were studied; coming from the

experiment and coming from the chance group

Found at: doi:10.1371/journal.pone.0006309.s007 (0.05 MB

DOC)

Text S1 Resume of the panther software methods

Found at: doi:10.1371/journal.pone.0006309.s008 (0.03 MB

DOC)
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