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Abstract
A decrease in adult hippocampal neurogenesis has been linked to age-related cognitive impairment. However, the
mechanisms involved in this age-related reduction remain elusive. Glucocorticoid hormones (GC) are important regulators
of neural stem/precursor cells (NSPC) proliferation. GC are released from the adrenal glands in ultradian secretory pulses
that generate characteristic circadian oscillations. Here, we investigated the hypothesis that GC oscillations prevent NSPC
activation and preserve a quiescent NSPC pool in the aging hippocampus. We found that hippocampal NSPC populations
lacking expression of the glucocorticoid receptor (GR) decayed exponentially with age, while GR-positive populations
decayed linearly and predominated in the hippocampus from middle age onwards. Importantly, GC oscillations controlled
NSPC activation and GR knockdown reactivated NSPC proliferation in aged mice. When modeled in primary hippocampal
NSPC cultures, GC oscillations control cell cycle progression and induce specific genome-wide DNA methylation profiles.
GC oscillations induced lasting changes in the methylation state of a group of gene promoters associated with cell cycle
regulation and the canonical Wnt signaling pathway. Finally, in a mouse model of accelerated aging, we show that disruption
of GC oscillations induces lasting changes in dendritic complexity, spine numbers and morphology of newborn granule
neurons. Together, these results indicate that GC oscillations preserve a population of GR-expressing NSPC during aging,
preventing their activation possibly by epigenetic programming through methylation of specific gene promoters. Our
observations suggest a novel mechanism mediated by GC that controls NSPC proliferation and preserves a dormant NSPC
pool, possibly contributing to a neuroplasticity reserve in the aging brain.

Introduction

Aging imposes an increasing disease burden and the
neurological consequences of aging, such as cognitive
decline, are particularly deleterious to quality of life [1].
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There is substantial heterogeneity in the various changes
in brain function associated with aging, suggesting that
aging proceeds at different rates due to genetic, environ-
mental, emotional and/or physiopathological factors [2].
Among the latter, alterations in circadian glucocorticoid
hormones (GC) rhythms are associated with increased
allostatic load and may affect normal aging [3–5]. GC are
rhythmically released from the adrenal glands in ultradian
near-hourly pulses. These ultradian pulses generate char-
acteristic circadian oscillations in circulating GC levels
[6, 7]. GC oscillations develop after the third week of life
in mice [8] and induce cyclic glucocorticoid receptor
(GR)‐mediated transcriptional regulation, or gene pulsing,
in vitro [9] and also in vivo in the hippocampus [10].
Alterations in GC oscillations are observed in aged
mammals, including mice [11] and humans [6]. GC
oscillations have been implicated in the regulation of
cortical plasticity [12], anxiety-like behavior [13], and the
diurnal rhythm of neural stem/precursor cells (NSPC)
proliferation in the dentate gyrus (DG) [14].

NSPC in the sub-GZ (SGZ) of the DG proliferate and
generate new neurons in the adult hippocampus across the
lifespan of most mammals [15–21]. Several studies have
documented an age-associated decline in NSPC pro-
liferation, suggesting an age-dependent exhaustion of the
NSPC pool [19, 22–29]. As adult NSPC proliferation may
be limited to a finite number of divisions [27], NSPC
quiescence could preserve a NSPC pool that contributes to
neuroplasticity reserve and preservation of hippocampus-
dependent cognitive functions during aging [19, 30–33].
However, this hypothesis remains controversial and sub-
ject to debate [34–37]. In particular, the underlying
molecular mechanisms involved are still unknown and
require detailed characterization.

NSPC dynamically and selectively respond to GC,
which strongly inhibit NSPC proliferation [23, 38–40].
In mice, GC acting through the GR have direct effects on
NSPC differentiation and functional integration within
hippocampal circuits [41]. In old rats, adrenalectomy
(ADX) increases NSPC proliferation in the hippo-
campus, whereas lifelong GC reduction increases AHN
and prevents age-related memory disorders [23, 39, 42].
Interestingly, ADX induces a cellular phenotype in the
DG that is very similar to the one induced by GR
knockdown, i.e., a significant increase in the number of
DCX+ cells and immature neurons with an ectopic
location and multiple primary dendrites, indicating that
the GR is of critical importance in the regulation of
newborn neuron maturation [41]. However, ADX is a
surgical strategy that will affect all GC-responsive cell
types and remove several other adrenal hormones
as well, making the identification of a direct link to

cell-type specific effects impossible. The effects of GC
on adult hippocampal neurogenesis (AHN) are age-
dependent, as life-long GC suppression from early life
onwards does not enhance AHN [43]. Therefore, the
relationship between GC, NSPC proliferation and AHN
is complex and remains incompletely characterized.
Importantly, in young adult mice, NSPC populations
exhibit differences in GR expression and response to GC
stimulation [41, 44, 45].

Here, we show for the first time that GC oscillations are
associated with the preservation of GR-expressing NSPC
populations in the aging DG, suggesting a novel mechanism
that controls the maintenance of NSPC in the aging brain
and presenting a possible source of neuroplasticity reserve
that could be exploited to sustain hippocampus-dependent
cognitive functions throughout life.

Results

GR+ NSPC populations persist into old age and
decay with different kinetics in vivo

NSPC were classified based on the expression of Nestin-
GFP and GFAP [16, 46, 47]. Specifically, Nestin-GFP
+/GFAP+ with characteristic radial glia-like morphology
were classified as Type-1 cells. Type-2a cells were
Nestin-GFP+/GFAP+, with horizontal morphology and
Type-2b cells were Nestin-GFP+/GFAP−, also with
horizontal morphology. Type-1, -2a and -2b cells
were observed in animals of all ages (Fig. S1C–I). The
numbers of proliferative NSPC decreased with age in
Nestin-GFP mice [27] (Fig. S1 A, B). Furthermore,
extra-sum-of-squares F-testing for best-fit decay curves
showed that the total Nestin-GFP+ NSPC population
decayed exponentially during aging (Fig. S1J). Impor-
tantly Nestin-GFP expression was consistent with native
Nestin expression over time and was unaffected by aging
in individual Type 1 NSPC [27] (Fig. S2A–C). Inter-
estingly, Type-1, -2a, and -2b cells decayed following
different patterns. Type-1 and -2a cells decayed linearly,
while Type-2b cells followed exponential decay kinetics
(Fig. S1K). The volume of the granule zone (SGZ plus
granule cell layer (GCL)) did not change significantly
with age (Fig. S1J). These data demonstrate that Type-1
and -2a NSPC persist into old age, while Type-2b cells
are depleted earlier following an exponential decay.

We next characterized GR expression in Type-1, -2a,
and -2b cells in 3- to 18- month-old Nestin-GFP mice
(Fig. 1a–q, Fig. S1L, Fig. S2D). The relative abundances
of GR+ and GR− populations of Type-1, -2a, and -2b cells
changed with age (Fig. S1L), in agreement with previous
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Fig. 1 The preservation of NSPC populations is associated with GR expression and age-related changes in the amplitude of circadian CORT
oscillations. a Representative example of Nestin-GFP+/GFAP+/GR+ NSPC with characteristic vertical process and triangular cell-body in the SGZ of
the DG. a’ The boxed area in A is magnified and channels split and Z-stacked, showing the expression of individual markers. Arrowhead: cell soma. a”
The dashed black line shows a transversal cell section. b Histogram of the transversal section in (a”), showing fluorescent intensity signals for DNA
(blue), GFP (green), GFAP (black) and GR (red). Representative examples of c–d Type-2a/GR+, e–f Type-2b/GR+, g–h Type-1/GR−, i–j Type-2a/GR
−, and k–l Type-2b/GR− NSPC. In all cases cells with intensity value ≥1500 across the nucleus were considered GR+ (Fig. S2D). NSPC in the DG of
m 3, n 6, o 10, p 14, or q 18-month-old mice. The boxed areas are shown magnified in the panels below each image. Arrows: Nestin-GFP+/GR− Type-
1 NSPC; arrowheads: Nestin-GFP+/GR+ Type-1 NSPC. Scale bars represent 40 μm (m–q”); 20 μm (a, c, e, g, i, and k); 15 μm (a’, c’, e’, g’, i’, and k’)
and 10 μm (a”, c”, e”, g”, i”, and k”). r Best-fit curves and 95% confidence intervals of Type-1 GR+ (solid circles) GR− (open circles); s Type-2a GR+

(solid triangles) and GR− (open triangles) or (t) Type-2b GR+ (solid diamonds) and GR− (open diamonds) cell numbers. Data points indicated by the
different shapes are mean ± SEM (n= 5 mice, *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA) and NSPC population half-lives (t1/2) are
indicated in the figures. GR− populations fitted exponential decay curves (p < 0.05, F-test, calculated t1/2= 1.02 (Type-1), 3.0 (Type-2a), and
0.9 months (Type-2b) NSPC, respectively). GR+ populations fitted linear decay curves (p < 0.05, F-test, calculated t1/2= 28 (Type-1), 36 (Type-2a) and
27 months (Type-2b) NSPC, respectively). Best curve fit comparisons are shown in Figure S2F-K. u Time-windows of blood collection. v AM and PM
plasma [CORT] at different ages in mice. Bars are mean ± SEM and red circles individual data points (animals) (n= 5 mice, *p < 0.05, **p < 0.01,
***p < 0.001, vs. 3-month-old, one-way ANOVA). Calculated circadian CORT amplitude (black line) vs. w GR+ or x GR− Type-1 (red lines), -2a
(green lines) and -2b (blue lines) NSPC numbers at different ages in mice

Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in. . .



studies showing heterogeneous GR expression in NSPC
populations in young animals [41, 44, 48]. At 3 months of
age, most Type-1 and -2a cells were GR+, whereas the
majority of Type-2b cells were GR- at this age. However,
from 6 months of age on, GR+ cells predominated in all
NSPC populations. This predominance of GR+ NSPC
populations persisted throughout middle and into old age
(Fig. S1L). Thus, a marked depletion of GR− NSPC takes
place in DG earlier than anticipated from previous studies
[44]. Interestingly the decay of GR− NSPC populations
fitted best to an exponential decay, while the decay of GR
+ populations fitted best to a linear model (Fig. 1r–t,
Fig. S2F–K).

The predominance of GR+ NSPC populations
correlates with an age-associated increase in the
amplitude of circadian GC oscillations in vivo

Corticosterone (CORT) concentrations were measured in
plasma samples collected at AM (08:00, lights on) and PM
(20:00, lights off), representing the nadir and the peak of
circadian GC oscillations, respectively (Fig. 1u). CORT AM
levels remained stable with age, while PM peak levels were
increased in all age groups compared to 3-month-old mice
(Fig. 1v), indicating an age-associated increase in the ampli-
tude of circadian GC oscillations that correlated negatively
with the numbers of GR− NSPC (Fig. 1w, x and Fig. S3).

Disruption of circadian GC oscillations in young mice
induces NSPC to enter a reversible non-proliferative
cellular state in vivo

One-week-long subcutaneous implantation of CORT pellets
suppressed GC oscillations and proliferation in the mouse
DG (Fig. 2 and Fig. S4A), in agreement with previous
reports [49]. We observed that low-dose CORT pellets
(12.5 mg/kg/day) were able to fix blood [CORT] to PM
peak levels, while high-dose pellets (25 mg/kg/day) induced
supra-physiological blood [CORT] (Fig. 2i). Ki67+ Type-1,
-2a, and -2b NSPC populations were detected in 3-month-
old mice with oscillating GC levels, but were not observed
in mice of the same age implanted with CORT pellets (12.5
and 25 mg/kg/day) (Fig. 2j). Cell proliferation was rein-
stated in all NSPC populations 2 days after removal (2-day
recovery, Fig. 2j) of the CORT implant and was sig-
nificantly increased in Type-1 cells as compared to vehicle
control groups (Fig. 2j). As the implantation of high-dose
CORT pellets (25 mg/kg/day) did not result in stronger
inhibition of NSPC proliferation as compared to low-dose
ones (12.5 mg/kg/day) (Fig. 2j), low-dose pellets (12.5 mg/
kg/day) were used in the rest of the experiments. These data
indicate a dynamic proliferative response of Type-1 NSPC
to the disruption of GC oscillations.

GR reduction in old mice reactivates proliferation of
Type-1 NSPC in vivo

To characterize the role of the GR on Type-1 cell pro-
liferation in old mice, we used two separate experimental
approaches to reduce GR expression. The first approach
consisted of a partial genetic inactivation of the GR using a
split-Cre system designed for in vivo targeting of Type-1
cells specifically [50] in heterozygous floxed Nr3c1 (GRfl/wt)
mice [51], (Fig. S4B and “Experimental Procedures”).
Secondly, we used a siRNA-mediated reduction of GR
expression with previously described siRNAs [41] injected
into the DG as described in ref. [52] (Fig. S4C–L). Cells
expressing the full Cre-recombinase were visualized using a
lentiviral vector expressing a Cre-reporter construct con-
taining a floxed STOP cassette upstream of the enhanced
green fluorescent protein (EGFP) gene [53]. Cre-induced
recombination in homozygous floxed Nr3c1 (GRfl/fl) mice
completely abolishes GR expression, while GR expression
is only partially reduced in GRfl/wt mice [54], allowing for a
better comparison with a siRNA-mediated GR knockdown.
Using the split-Cre system (Fig. S4B) we targeted pro-
liferative (Ki67+) and nonproliferative (Ki67−) Type-1
NSPC in 12-month-old mice (Fig. 3a–c). We found a
fourfold increase in proliferative EGFP+ Type-1 NSPC in
GRfl/wt mice compared to GRwt/wt controls (Fig. 3d). In
control experiments using Nestin-GFP mice, we found that
GFP+ Type-1 cells readily took up Cy3-labeled siRNAs
(Fig. S4I–L) and downregulated GFP expression after
injection with siRNAs against GFP (Fig. S4C–H). We
subsequently used siRNA injections to reduce GR expres-
sion in 20-month-old Nestin-GFP mice. siRNA-mediated
GR knockdown resulted in a significant increase in the
number of Ki67+ Type-1 NSPC, as compared to con-
tralateral control hemispheres injected with negative control
non-targeting siRNA (Fig. 3e–h). Type-1 cells present
morphological heterogeneity and can be sub-classified into
Type-1α cells, that display a long radial process extending
into the inner molecular layer, and Type-1β cells, with a
short radial process that does not reach the molecular layer
(Fig. 3i), which predominate in 8-month-old and older mice
[55]. Starting at 10 months of age the vast majority of Type-
1 cells we found in the DG were GR+ (Fig. 1r, s; Fig. 3j).
In 14-month-old and older mice Type-1α cells were
practically nonexistent, as described before [27, 55],
resulting in a marked predominance of Type-1β cells
(Fig. 3j), which were all GR+. Reduction of GR expres-
sion using genetic (Fig. 3a, c) or siRNA-mediated approa-
ches (Fig. 3e, g) in 12 or 20-month-old mice, respectively,
had no apparent effect on Type-1β cell morphology.
Overall, these results show that GR reduction in middle-
aged and old mice results in Type-1β NSPC reactivation
in vivo.
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Primary hippocampal NSPC express the GR and
enter a reversible quiescent cellular state after GC
treatment in vitro

Primary hippocampal NSPC cultures have been previously
used to model and examine the direct effects of GC on
NSPC [41, 56]. In these cultures, as in vivo in 3-month-old
Nestin-GFP mice, we found mixed GR+ and GR− NSPC
populations, with GR+ NSPC numerically predominating
(Fig. 4a, b). CORT and the specific GR agonist dex-
amethasone (DEX) reduced the rate of NSPC proliferation
as assessed by expression of Ki67 in NSPC cultures, in a
dose-dependent manner (Fig. 4c, d). In agreement with their
relative affinities for the GR [57], DEX was ~10 times more
potent than CORT in its effect on proliferation (IC50=
5.8 × 10−9 M, maximum effect reached at 1 × 10−7 M vs.
8.3 × 10−8 M, maximum effect reached at 1 × 10−6 M, DEX
and CORT, respectively). Incubation with both GR agonists
resulted in a significant reduction in the number of Ki67+

NSPC, leaving ~20% NSPC unaffected (Fig. 4d, e), in
agreement with the relative abundance of GR− populations
in our NSPC cultures (Fig. 4a, b). The inhibitory effect of

CORT was maximal after 72 h of incubation and was
reverted 24 h after CORT washout (Fig. 4e). These results
indicate that exposure of NSPC to CORT induces a rever-
sible inhibition of NSPC proliferation compatible with
cellular quiescence, supporting our observations in vivo
(Figs 1–3).

GC oscillations regulate NSPC cell cycle progression
in vitro

We applied a previously described method to model GC
oscillations in vitro [9, 58] in which NSPC were treated
with pulses (30 min each) of 1 × 10−6 M CORT, mimicking
the daily CORT peak levels observed in 3-month-old mice
(Fig. 1v) or vehicle. To study in more detail the respon-
siveness of the cell cycle to GC oscillations modeled in
NSPC cultures, we applied this pulsatile treatment for
intervals of 12 h interspaced with 12 h-long hormone free
periods (Fig. S4N, O) for a total of 72 h, a time when the
inhibitory effect of CORT on cell proliferation was maximal
(Fig. 4e). Cell cycle was analyzed in fixed NSPC using flow
cytometry with propidium iodide DNA staining. Oscillatory
CORT treatment was compared to continuous stimulation
with 1 × 10−6 M CORT (Fig. 4f–h, Fig. S4N, O, Fig. S5 and
“Experimental Procedures”), as described [9]. Incubation
with oscillatory CORT resulted in a significantly smaller
percentage of NSPC in the G0/G1 phase of the cell cycle
(Fig. 4f), suggesting that CORT oscillations maintain cell
cycle entry and progression in NSPC in vitro. Interestingly,
the inhibitory effect of continuous CORT incubation on the
cell cycle was largely reversed 24 h after CORT washout
(recovery, Fig. 4g), in agreement with the transient inhibi-
tion of cell proliferation presented in Fig. 4e. Continuous
treatment had no significant effects on Hes5 expression,
neither after 72 h of treatment nor after 24 h CORT washout
(recovery) (Fig. 4i, j). Oscillatory treatment resulted in a
transient upregulation of Hes5 72 h after treatment, which
disappeared after recovery (Fig. 4i, j), suggesting that the
GC treatments did not permanently affect NSPC multi-
potency, as measured by the expression of Hes5, a marker
of multipotent adult NSPC [59]. Overall, these observations
in vitro, support the hypothesis that exposure of NSPC to
GC oscillations maintain cell cycle entry and proliferation.

Next, we modeled the differences in the amplitude of GC
oscillations observed in vivo in young vs. old mice (Fig. 1v) by
comparing the effects of oscillatory treatment with 1 × 10−6 M
CORT (young mice) with oscillatory treatment with 2 × 10−6

M CORT (old mice) in vitro. We found that the effects of
oscillatory treatment with 2 × 10−6M CORT on the cell cycle
in NSPC was indistinguishable from that of oscillatory treat-
ment with 1 × 10−6M CORT (Fig. S5C, D), indicating that GC
amplitudes that fully activate the GR result in similar effects on
the cell cycle in NSPC. These results suggest that the increased

Fig. 2 Disruption of GC oscillations in 3-month-old Nestin-GFP mice
induces reversible NSPC quiescence. a Representative example of
Nestin-GFP (green), GFAP (white) and Ki67 (red) immunoreactivity
in the DG of 3-month-old Nestin-GFP mice. The boxed area shows a
cluster of Nestin-GFP+/GFAP+/Ki67+ NSPC. b Magnification of area
boxed in (a). b’ Same area further magnified with channels split and Z-
stacked, showing the expression of individual markers. Arrow: cell
soma. b” The dashed white line shows a transversal cell section. c
Histogram of the transversal section in (a”), showing fluorescent
intensity signals for DNA (blue), GFP (green), GFAP (black), and
Ki67 (red). Representative Z-stacked confocal images of NSPC in the
DG of mice treated for 7 days with d 0, e 12.5, f 25 mg/kg/day
[CORT] pellets or allowed to recover for 2 days after removal of a g
12.5 and h 25 mg/kg/day [CORT] pellet. Arrows: Type-1 cells;
arrowheads: Type-2a/2b cells. Scale bars represent 20 μm (a, b and d,
h), 15 μm (b’) and 10 μm (b”). i AM and PM plasma CORT levels
after the treatments indicated in the graph legends. Bars are mean ±
SEM [CORT] and red circles individual data-points (animals). Sta-
tistical comparisons were done using one-way analysis of variance test
with Tukey’s post hoc test for multiple comparisons (n= 4 mice,
***p < 0.001, AM vs. PM in 0 mg/kg/day, ns p > 0.05, AM vs. PM in
both 12.5 and 25 mg/kg/day and after 2 day recovery; #p < 0.001, 25
mg/kg/day AM and PM vs. 0 mg/kg/day AM and PM, respectively;
$p < 0.05, 25 mg/kg/day AM and PM vs. 12.5 mg/kg/day AM and PM,
respectively; §p < 0.001, both AM and PM in 12.5 and 25 mg/kg/day
vs. 2-day recovery). j Percentages of Ki67+ (full bars and full circles)
or Ki67− (dashed bars and open circles) of Type-1 (red), −2a (green)
and −2b (blue) NSPC, 7 days postimplantation with 0, 12.5, 25 mg/
kg/day [CORT] pellets and 25 mg/kg/day [CORT] +2-day recovery.
Ki67+ NSPC were not observed in animals treated with [CORT] 12.5
and 25 mg/kg/day. Bars are mean ± SEM and circles individual data
points (animals) (n= 4 mice, *p < 0.05, ***p < 0.001, vs. 0 mg/kg/
day, one-way ANOVA or ###p < 0.001, 7-day treatment vs. 7-day
treatment +2-day recovery with the same [CORT], one-way
ANOVA). Further information in Fig. S4A. ML molecular layer,
SGZ subgranular zone, GCL granule cell layer
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Fig. 3 GR knockdown in 12 and 20-month-old
mice recovers Type-1 NSPC proliferation.
a Representative confocal images of GFP+

radial glial-like Type-1 NSPC (arrowheads) in
12-month-old (top) GRwt/wt and (bottom) GRfl/

wt mice 6 dpi with split-Cre lentiviruses (fur-
ther details in Fig. S4B). b Numbers of GFP+

cells per hippocampus in GRwt/wt and GRfl/wt

animals. Bars are mean ± SEM GFP+ cells per
hippocampus of individual mice (red circles)
(n= 4 mice, ns p > 0.05, GRwt/wt vs. GRfl/wt,
Student’s t test). c Representative confocal Z-
stacked image and orthogonal projection of
GFP+/Ki67+ cells with a radial glial-like
morphology (arrowheads) in GRfl/wt mice.
d Relative numbers of Ki67+ (full bars and full
circles) or Ki67− (dashed bars and open cir-
cles) Type-1 cells 6dpi with lentiviruses in
GRwt/wt and GRfl/wt animals. Bars are mean) ±
SEM and circles individual mice (n= 4 mice,
*p < 0.05, GRwt/wt vs. GRfl/wt, one-way
ANOVA). e Representative confocal Z-
stacked image and orthogonal projections of
Nestin-GFP+/GFAP+/GR+ Type-1 NSPC 3
dpi with GR (siGR) or negative control (siNC)
siRNAs (further details in Fig. S4C–H). f GR
expression in Type-1 cells 3 dpi with siNC
(full bar and open circles) or siGR (dashed bar
and open circles). Bars are mean ± SEM GR
intensity (gray value) and circles individual
mice (n= 6 mice, ***p < 0.001, siNC vs.
siGR, Student’s t test). g Top: Nestin-GFP
(green), Ki67 (red) and GFAP (white) immu-
noreactivity in Type-1 cells 3 dpi with siNC or
siGR. Bottom: higher magnifications and
orthogonal projections of the areas boxed in
the top panels. h Relative numbers of Type-1
Ki67+ (full bars and full circles) or Ki67−

(dashed bars and open circles) cells 3 dpi of
siNC or siGR. Bars are mean ± SD and circles
individual mouse hemispheres (n= 6 mice,
**p < 0.01, siNC vs. siGR, one-way ANOVA).
i Representative examples of Nestin-GFP+

Type-1α and Type-1β radial glia-like cells
found in 3-month-old mice. j Best-fit curves
and 95% confidence intervals of Type-1α
(squares) and Type-1β (circles) numbers vs.
age in mice. Data points are mean ± SEM of
five mice (n= 5, **p < 0.01, ***p < 0.001, vs.
3-month-old, one-way ANOVA). Type-1α and
-1β cells fitted best to exponential or linear
decay curves, respectively (p < 0.05, F-test,
calculated t1/2= 3.4 and 27.8 months, Type-1α
and -1β, respectively). Scale bars= 15 μm
(a, f, h, j). ML molecular layer, SGZ sub-
granular zone, GCL granule cell layer
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GC amplitude associated with aging in mice after 3 months of
age would not result in stronger effects on the cell cycle
in NSPC.

We next questioned whether the total daily CORT expo-
sure (TDC), which differed between oscillatory and con-
tinuous treatments (Fig. S5A, B), could partially explain the
effect of GC oscillations on the cell cycle in NSPC. To
approach this question experimentally we incorporated two
new GC treatments to our experimental design: non-
oscillatory incubation with 0.25 × 10−6 M CORT and
circadian-only oscillations (12 h on, 12 h off, no ultradian

pulses) with 1 × 10−6 M CORT. We found that continuous
incubation with 0.25 × 10−6 M CORT and oscillatory incu-
bation with 1 × 10−6 M, which deliver the same TDC calcu-
lated as the area under the curve [60, 61], but differ in their
oscillatory pattern (Fig. S5B), resulted in different effects on
the cell cycle of NSPC in vitro (Fig. S5C). Continuous
incubation with 0.25 × 10−6 M CORT induced a significant
increase in the percentage of cells in the G0/G1 phase, and a
concomitant decrease in the percentage of cells in the S
phase, compared to oscillatory 1 × 10−6 M CORT (Fig. S5D).
Similarly, circadian-only oscillations with 1 × 10−6 M CORT
and oscillatory incubation with 2 × 10−6 M CORT, which
deliver the same TDC, had significantly different effects on
the cell cycle in NSPC (Fig. S5B–D). Interestingly, circadian-
only oscillations with 1 × 10−6 M CORT had different effects
on the cell cycle than oscillatory incubation with 1 × 10−6 M
CORT (Fig. S5C, D). Of note, oscillatory treatment with
1 × 10−6 M CORT or 2 × 10−6 M CORT had similar effects
on the cell cycle in NSPC, even when their TDCs were
significantly different (Fig. S5D). Finally, the effects of
vehicle treatment and continuous incubation with 1 × 10−6 M
CORT were significantly different from all the other treat-
ments and the latter had the most profound effects on the cell
cycle in NSPC (Fig. S5C, D). Together, these results indicate
that circadian and ultradian oscillation have different effects
on the cell cycle in NSPC and that the oscillatory CORT
pattern, not the TDC, is responsible for these effects.

To further address the relevance of GC oscillations on
NSPC proliferation, we compared the effects of oscillatory
incubation with 1 × 10−7 M and 1 × 10−6 M CORT, which
represent ~50 and 100% of the maximal effect of CORT on
NSPC proliferation (Fig. 4d, f), on the expression of Sgk-1,
a serine/threonine kinase involved in the inhibition of NSPC
proliferation by GC [56]. As described by Anacker et al.
[56], continuous incubation with 1 × 10−6 M CORT induced
a significant upregulation of Sgk-1 (Fig. S5E), in agreement
with its strong effects on the cell cycle (Fig. 4f). In contrast,
we found that oscillatory 1 × 10−6 M CORT induced a
significant downregulation of Sgk-1 in agreement with its
weaker effects on the cell cycle (Fig. 4f), while oscillatory
1 × 10−7 M CORT failed to downregulate Sgk-1 (Fig. S5E).
Overall, these results indicate that full GR activation during
ultradian GC oscillations delivers a biological signal to
NSPCs that is independent of the TDC.

Next, we asked whether continuous or oscillating CORT
incubations have lasting effects on NSPC responsiveness to
CORT. To evaluate this possibility, we exposed NSPC
cultures to continuous or oscillating CORT for 72 h,
removed CORT from the culture medium for 18 h and then
reinitiated CORT treatment (Fig. S4N). This design was
based on a population doubling time of 17.8 ± 0.1 h in our
NSPC cultures, similar to previous observations in vivo
[62], indicating that 18 h after CORT removal NSPC

Fig. 4 CORT oscillations induce a reversible inhibition of cell pro-
liferation and conserve the responsiveness of NSPC proliferation to
CORT exposure in vitro. a Nuclear GR+/Ki67+ (arrowhead) and
nuclear GR−/Ki67− (arrow) in primary hippocampal NSPC cultures.
Nuclei are indicated by the presence of DNA. b Relative abundances
of GR+ (full bars and full circles) and GR− (dashed bars and open
circles) NSPC in vivo in 3-month-old Nestin-GFP mice and in vitro
NSPC cultures. Bars are relative mean of individual data-points (cir-
cles) (% of total NSPC in vivo or in vitro) ± SEM, (n= 5 or 3 bio-
logical replicates respectively, p > 0.05, GR+/GR− NSPC in vivo vs.
in vitro, one-way ANOVA with Tukey’s post hoc test). c Dose-
dependent reduction in Ki67+ cells (green) in NSPC cultures exposed
to CORT or vehicle for 72 h. Cell nuclei (DNA) are shown in blue.
Scale bars= 50 μm (a, c). d CORT (black circles) or dexamethasone
(DEX; black triangles) dose–response curves. Data are mean nor-
malized proliferative Ki67+ cells (% of vehicle) ± SEM, (n= 3 bio-
logical replicates, **p < 0.01 on logIC50 of best-fitted curves, F-test).
e Time-dependent effect of 1 × 10−6 M CORT on NSPC proliferation
(Ki67+ cells), and the effect of a 24 h washout period, (n= 3, *p <
0.05 and **p < 0.01 unpaired two-tailed Student’s t test). Bars are
mean of individual data-points (red circles) ± SEM. Effect on cell
proliferation of (f) 72 h vehicle, oscillating or continuous 1 × 10−6 M
CORT; g 72 h vehicle, oscillating or continuous 1 × 10−6 M CORT
followed by a 24 h washout period (recovery) or h 72 h vehicle,
oscillating or continuous 1 × 10−6 M CORT, a 24 h recovery followed
by incubation with 1 × 10−6 M CORT (pulse). All data are average
percentages of total cell populations per cell cycle phase compared
with their corresponding vehicle treatment (n= 3, *p < 0.05, **p <
0.01 and ***p < 0.001, one-way ANOVA) or continuous vs. oscil-
lating CORT #p < 0.05, ##p < 0.01, and ###p < 0.001 one-way
ANOVA). Changes in multipotency marker Hes5 expression
induced by oscillating (gray bars) or continuous CORT (black bars)
i 72 h or j 72 h followed by a 24 h washout period (recovery). Data are
mean normalized fold change expression (relative to vehicle) of
individual data points (red circles) ± SEM (n= 4 biological replicates,
*p < 0.05 relative to vehicle, one-way ANOVA with Tukey’s post hoc
test). h Heatmap showing 4767 vehicle normalized differentially
methylated gene promoters (72 h of oscillating vs. continuous CORT,
MBD2 read density difference ≥ 3). Bars to the right of the heatmap
are, green: hypermethylated; red: hypomethylated; pink: stably
hypermethylated; blue: stably hypomethylated gene promoter clusters
(oscillating vs. continuous CORT, MBD2 read density difference ≥ 3).
Changes in DKK3, GSK3β, CCND1, and β-catenin expression
induced by oscillating (gray bars) or continuous CORT (black bars) l
72 h or m 72 h followed by a 24 h washout period (recovery). Data are
mean normalized fold change expression (relative to vehicle) of
individual data points (red circles) ± SEM (n= 4 biological replicates,
*p < 0.05, **p < 0.01, and ***p < 0.001 relative to vehicle; #p < 0.05,
##p < 0.01, and ###p < 0.001 relative to oscillating CORT, one-way
ANOVA with Tukey’s post hoc test). All in vitro experiments were
run in triplicates and were repeated three times (n), unless indicated
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cultures are largely composed of daughter cells that have
not been directly exposed to CORT. NSPC cultures exposed
to oscillating or continuous CORT treatment showed com-
parable levels of cells in GO/G1, S and G2/M phase 18 h
after CORT removal (Fig. 4g). Importantly, we did not
detect significant levels of cells with single-cell DNA con-
tent <2N, thus excluding a potential contribution of apop-
tosis in the conditions tested (Fig. 5f–h). However, daughter
cells reacted differentially to incubation with 1 × 10−6 M
CORT (Fig. 4h). Cells derived from NSPC initially exposed
to oscillatory CORT showed a significantly larger propor-
tion of cells in the G0/G1 phase, in comparison to cells
derived from NSPC exposed to continuous CORT. This
change was compensated by a decrease in the proportion of
cells in the S phase (Fig. 4h). These results indicate that
cells derived from NSPC initially exposed to oscillating
CORT remained sensitive to CORT-induced cell cycle exit,
supporting the hypothesis that GC oscillations control
NSPC proliferation.

GC oscillations regulate the expression of DNA
methyltransferases (DNMT) in NSPC cultures

DNA methylation at cytosines (5-mC) plays an important
role in the regulation of hippocampal NSPC proliferation
and survival, potentially providing a basis for long-lasting
epigenetic modulation of cellular functions [63, 64]. Inter-
estingly, increased diurnal GC levels are associated with
changes in 5-mC and reduced hippocampal volume, indi-
cating that alterations in 5-mC may link
hypothalamic–pituitary–adrenal axis dysregulation with
structural changes in the hippocampus [65]. Using immu-
nohistochemistry, we found a reduction in 5-mC expression
levels in Type-1 cells in 18-month-old mice (Figs S6A and
S2E), in which the amplitude of GC oscillations is maximal
(Fig. 1v). This observation suggested that GC oscillations
may control DNA methylation in NSPC. Previous obser-
vations indicate that continuous incubation with DEX
downregulates the expression of DNMT-1, -3a and -3,
which catalyze and maintain 5-mC, in cultured cortical
embryonic NSPC [66, 67]. We exposed NSPC cultures to
oscillatory CORT treatment for 72 h in vitro and investi-
gated its effects on DNMTs expression using quantitative
polymerase chain reaction (qPCR). Expression of the three
DNMTs was downregulated by both oscillatory and con-
tinuous CORT treatments (Fig. S6B). However, 24 h after
CORT removal, DNMT expression levels remained down-
regulated in daughter cells derived from NSPC exposed to
oscillating CORT, while they were upregulated in daughter
cells derived from NSPC exposed to continuous CORT
(Fig. S6C). Furthermore, 24 h after washout (recovery)
only cells derived from NSPC exposed to continuous
CORT reacted to CORT exposure with a significant

downregulation of DNMTs (Fig. S6D). These results indi-
cate that GC oscillations maintain a stable DNMT expres-
sion profile in daughter NSPC.

GC oscillations induce global and promoter-specific
changes in DNA methylation in NSPC in vitro

Both oscillating and continuous CORT treatments induced
significant reductions in global 5-mC as well as in 5-mC
levels in specific protein-coding gene promoters, as mea-
sured by MBD-isolated Genome Sequencing [68]
(Fig. S6E, F). These levels remained significantly reduced
24 h after CORT removal only in cells derived from NSPC
exposed to oscillating CORT (Fig. S6E, F). Specifically,
unsupervised hierarchical clustering (UHC) analysis of all
differentially methylated protein-coding gene promoters
between the two CORT regimens (Fig. 4k) revealed that
73% of them were differentially hypermethylated by oscil-
latory CORT. To identify biological processes that may be
regulated by the changes in DNA methylation induced by
GC oscillations in NSPC cultures, we performed gene
ontology enrichment (GO) analysis of gene sets whose
promoters were differentially hypermethylated after expo-
sure to oscillatory CORT (Fig. S6G and Table S1). We
found that the most significantly overrepresented biological
processes (BPs) were regulation of transcription (6 BPs),
metabolic processes, development, differentiation, and
phosphorylation. In striking similarity with the BPs over-
represented within hypermethylated gene promoters, GO
analysis of the hypomethylated promoters after oscillating
CORT (Fig. S6H) identified five BPs linked to regulation of
transcription among the most significantly overrepresented.
We further identified BPs linked to transport (two BPs),
development, phosphorylation, and cell adhesion (Fig. S6H
and Table S1). Underscoring the biological relevance of this
convergence on BPs, oscillating CORT was associated with
hypermethylation of 55 and hypomethylation of 15 gene
promoters involved in cell cycle regulation (Table S1).
These results indicate a convergence on BP regulating the
cell cycle in NSPC. Overall, results in this section indicate
that GC oscillations are involved in the control of methy-
lation states in gene promoters associated, among other
functions, with cell cycle regulation in NSPC in vitro.

GC oscillations induce lasting changes in promoter
methylation in NSPC

Next, we characterized lasting DNA methylation changes in
NSPC derived from cells exposed to oscillating or con-
tinuous CORT (Fig. 4k). UHC analysis of promoters dif-
ferentially methylated in NSPC derived from cells initially
exposed to oscillating or continuous CORT, revealed 845
differentially methylated promoters (oscillating vs.
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continuous treatment) that remained in the same methyla-
tion state 24 h after CORT removal (Fig. 4k, pink and blue
bars). Further analysis of these stably methylated promoters
revealed clusters of stably hypermethylated (214 promoters;
Fig. 4k, pink bars) and hypomethylated promoters (631
promoters; Fig. 4k, blue bars). GO analysis of the 214 sta-
bly hypermethylated promoters revealed that the most sig-
nificantly overrepresented BPs were regulation of

transcription, cell differentiation and organismal develop-
ment (Fig. S7A and Table S2). GeneMANIA pathway
analysis of the highest overrepresented BPs among the
stable hypermethylated promoters revealed a gene network
involved in stem cell differentiation (network node: Tbx3;
Fig. S7B). Further analysis of overrepresented BPs identi-
fied gene networks involved in regulation of glial cell dif-
ferentiation (network node: Gsx2; Fig. S8A) and regulation
of stem cell activation (network node: Ptpn6; Fig. S8B). GO
analysis of the 631 stably hypomethylated promoters
revealed that the most significantly overrepresented BPs
were organismal development, transport, regulation of
transcription, and carbohydrate metabolism (Fig. S7C and
Table S2). GeneMANIA pathway analysis of the highest
overrepresented BPs identified a gene network involved in
Wnt signaling (network node: DKK3; Fig. S7D). Further
analysis of overrepresented BPs showed gene networks
involved in metal-ion transmembrane transport (network
node: Slc24a4; Figure S8C) and organic anion transport
(network node: Slc7a5; Figure S8D). In agreement with a
modulation of Wnt signaling suggested by the lasting pro-
moter hypomethylation and pathway analysis (Fig. S7C, D),
we found that the expression of four genes related to the
canonical Wnt signaling were differentially affected by
CORT treatments (Fig. 4l, m). DKK3 mRNA was upregu-
lated by oscillating CORT, and was unaffected by con-
tinuous CORT 72 h after treatment (Fig. 4l), as suggested
by its treatment-specific promoter hypomethylation. The
expression of GSK3β and β-catenin were downregulated by
oscillating CORT and were unaffected by continuous
CORT, while CCND1 was downregulated by both treat-
ments in the same time frame (Fig. 4l). Regarding lasting
changes, 24 h after washout (recovery), DKK3 remained
upregulated (Fig. 4m), whereas GSK3β, CCND1 and β-
catenin stayed downregulated in cells derived from NSPC
initially exposed to oscillating CORT (Fig. 4m). In contrast,
these four genes were upregulated in cells that originated
from NSPC treated with continuous CORT (Fig. 4m),
suggesting that GC oscillations maintain a stable gene-
expression profile of some members of the Wnt signaling
pathway in daughter NSPC. Overall, the results in this
section imply that GC oscillations, and alterations in them,
induce long-lasting changes in NSPC in vitro, which we
proceeded to assess in vivo.

Disruption of GC oscillations in accelerated
senescence-prone (SAMP8) mice induces lasting
morphological changes in newborn granule neurons
in vivo

To assess long-lasting effects of the disruption of GC
oscillations on NSPC in vivo in a senescent environment,
we used the SAMP8 mouse strain, a senescence-accelerated

Fig. 5 Disruption of GC oscillations in 4-month-old SAMP8 mice
induces morphological alterations in NSPC progeny. a Representative
images of Ki67+ cells in the GZ of control senescence-accelerated
mouse-resistant 1 (SAMR1) and senescence-accelerated mouse-prone
8 (SAMP8) mice treated for 7 days with 12.5 mg/kg/day CORT pellets
and 12.5 mg/kg/day+ 2 days recovery (further information in
Fig. S4M). b Numbers of Ki67+ cells in SAMR1 and SAMP8 mice
treated with 12.5 mg/kg/day CORT pellets (white bars) or 12.5 mg/kg/
day+ 2 days recovery (black bars). Bars are mean ± SEM and circles
individual mice (n= 4 mice, *p < 0.05, 12.5 mg/kg/day vs. 12.5 mg/
kg/day+ 2 days recovery, two-way ANOVA). c Representative
Z-stacked confocal images of GFP+ newborn cells 28 dpi with
RV-GFP in the DG of SAMR1 and SAMP8 mice treated for 7 days
with 0 or 12.5 mg/kg/day CORT pellets (further information in
Fig. S4M). Representative confocal Z-stacked images and orthogonal
projections (insets) of d RV-GFP+/NeuN+/GFAP− and e RV-GFP
+/Iba1−/NG2− cells with neuronal morphology (arrows) or d’
RV-GFP+/NeuN−/GFAP− and e’ RV-GFP+/Iba1−/NG2+ cells with
glial morphology (arrowheads). f Relative numbers of RV-GFP
+/NeuN+/GFAP−/Iba1−/NG2− cells with neuronal morphology (red
bars and open circles) or GFP+/NeuN−/GFAP−/Iba1−/NG2+ (blue
bars and full circles) cells with glial morphology 28 dpi with RV-GFP
in SAMR1 and SAMP8 mice treated with 0 or 12.5 mg/kg/day CORT
pellets. Bars are mean ± SEM and circles individual mice (n= 4 mice,
ns p > 0.05, two-way ANOVA). g AM (white bars) and PM (black
bars) plasma [CORT] in untreated SAMR1 and SAMP8 mice. Bars are
mean ± SEM and red circles individual data points (n= 5 mice, *p <
0.05, **p < 0.01, two-way ANOVA). h Example traces of RV-GFP
+/NeuN+ cells with neuronal morphology (newborn neurons) in
SAMR1 and SAMP8 mice treated with 0 or 12.5 mg/kg/day CORT
pellets. i Sholl analysis of dendritic complexity of GFP+/NeuN+ cells
in SAMR1 and SAMP8 mice treated with 0 mg/kg/day (blue and green
line, respectively) or 12.5 mg/kg/day (red and magenta line, respec-
tively) CORT pellets. Data are mean ± SEM (n= 4 mice, ***p < 0.001
vs. 12.5 mg/kg/day SAMR1; ###p < 0.001 vs. 0 mg/kg/day SAMP8;
§§§p < 0.001 vs. 0 mg/kg/day SAMR1; †††p < 0.001 vs. 12.5 mg/kg/day
SAMP8 using two-way ANOVA). j Number of branching points and
k average total dendritic length of GFP+/NeuN+ cells in SAMR1 and
SAMP8 animals treated with 0 and 12.5 mg/kg/day CORT pellets.
Bars are mean ± SEM and red circles individual mice (n= 4 mice,
*p < 0.05, **p < 0.01, ***p < 0.001, two-way ANOVA). l Repre-
sentative confocal Z-stacked images of GFP+ (secondary/tertiary)
dendritic segments showing dendritic spines (arrowheads) in SAMR1
and SAMP8 animals treated with 0 or 12.5 mg/kg/day CORT pellets.
m Spine density per 10 μm dendritic segment in GFP+ secondary or
tertiary dendrites in SAMR1 and SAMP8 animals treated with 0 mg/
kg/day (blue bars and open circles and green bars and open circles,
respectively) and 12.5 mg/kg/day (red bars and open circles and
magenta bars and open circles, respectively) CORT pellets. Spines
were classified in three morphological types: thin, stubby and mush-
room. Bars are mean ± SEM and circles individual mice (n= 4 mice,
*p < 0.05, ***p < 0.001, two-way ANOVA). Scale bars= 100 (a), 15
(c, d, e’, h) and 8 (l) μm. ML molecular layer, SGZ subgranular zone,
GCL granule cell layer
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mouse model with age-related brain dysfunction, in which
NSPC proliferation and neurogenesis fall below control
levels over time [69–72]. SAMP8 mice present behavioral
impairments in object recognition and fear conditioning,
compatible with hippocampal dysfunction, and disrupted
circadian rhythm as young as 4 months of age, supporting
their use as a model of circadian rhythm disturbances
associated with pathological aging [73, 74]. Indeed, we
found that AM and PM CORT levels were significantly
elevated in untreated SAMP8 compared to the genetically
related but senescence-resistant SAMR1 mice [75] of the
same age (Fig. 5g). We disrupted GC oscillations in 4-
month-old SAMP8 and SAMR1 mice using CORT pellet
implantation. One week after implantation pellets were
removed and after a recovery period of 2 days newborn
hippocampal cells were birth-dated using a single injection
of a retroviral vector expressing GFP (RV-GFP) [76], and
the morphology of newborn neurons was analyzed 28 days
after (Fig. S4M). These experimental conditions were
consistent with those shown in Fig. 2. SAMP8 and SAMR1
mice were implanted with 12.5 mg/kg/day CORT pellets
and let to recover for 2 days, a period of time enough to
reinstate proliferation in Nestin-GFP mice (Fig. 2j). As
shown in Fig. 5a, b, proliferation measured by the number
of Ki67+ cells in the GZ, was significantly higher 2 days
after pellet removal in SAMP8 and SAMR1 mice, demon-
strating active proliferation at the moment of retrovirus
injection. 28 days postinjection (dpi) we found that the
majority of the GFP+ cells within the GZ were neurons
(GFP+/NeuN+/GFAP−/Iba1−/NG2− cells with neuronal
morphology) (Fig. 5c–f). A small percentage of the GFP+
cells were weakly positive for the proteoglycan NG2 (GFP
+/NeuN−/GFAP−/Iba1−/NG2+ cells) and presented a glial
morphology (Fig. 5d–f). Similar cells have been observed
before and may represent a distinct class of proliferating
glial cells in the DG [77]. The low numbers of these weak
NG2+ cells were not affected by genotype or treatment
(Fig. 5f). GFP+ neurons birth-dated with RV-GFP in
SAMP8 mice 2 days after CORT pellet removal showed
increased dendritic complexity and spine density, with
immature spines (thin, stubby) specifically increased, which
were seemingly opposite in SAMR1 mice of the same age
(Fig. 5h–m). These results indicate lasting changes in den-
dritic complexity, spine numbers and morphology of new-
born granule neurons derived from NSPC exposed to
disrupted GC oscillations in SAMP8 mice.

Discussion

Depletion of NSPC populations and/or the loss of their
proliferative capacity have been proposed as causative
factors contributing to the age-associated decline in AHN,

but the underlying cellular mechanisms remain poorly
characterized [27]. Our results indicate that GR− NSPC
subpopulations rapidly deplete and GR+ subpopulations
lose their proliferative capacity with advancing age. GC
oscillations, acting through the GR, play a key role in
controlling the activation of quiescent NSPC, and thereby
may determine the extent of AHN throughout aging.

Our key observations, shown schematically in Fig. S9,
are as follows: (1) NSPC populations expressing the GR
predominate in the DG starting at middle age and are still
present in significant numbers in old mice. (2) The pre-
ponderance of GR+ NSPC populations is first observed in
6-month-old mice. (3) In older mice, in which the amplitude
of GC oscillations is maximal, GR knockdown results in a
strong activation of Type-1 cells, which is scarce in control
animals of the same age. (4) In vitro, GC oscillations con-
trol cell cycle progression, DNMT expression and DNA
methylation in specific gene promoters in NSPC. (5)
Although some of the changes in promoter methylation
were transient, a large number were preserved in daughter
NSPC, and affected genes involved in cell processes such as
cell cycle control and the canonical Wnt signaling pathway.
(6) In a mouse model of accelerated aging, disruption of
circadian GC oscillations results in lasting morphological
changes in newborn granule neuron morphology, indicating
alterations in their connectivity.

Mathematical modeling suggests that the age-associated
decrease in AHN is best fit to an exponential decay [24].
Here, we show that GR− Type-1, -2a and -2b NSPC
populations had shorter calculated half-lives and decayed
exponentially with age, however, their GR+ counterparts
had significantly longer calculated half-lives and decayed
following linear kinetics. These differences in decay
kinetics suggest that a population of GR+ NSPC is pre-
served in the aging DG. Previous studies have shown that
GR knockdown preferentially in Type-3 (late progenitor)
cells had no significant effect on total proliferation in the
GCL of young (1.5-month old) mice, although these cells
contribute to the pool of proliferative precursor cells
[41, 78]. Here, we show that CORT pellet implantation
suppresses virtually all proliferation in Type-1 and -2 cells
in the GCL of 3-month-old mice where both GR+ and GR
− NSPC coexist, in agreement with several previous studies
indicating that GC control NSPC proliferation both by
direct and indirect mechanisms [56, 79, 80]. In NSPC cul-
tures, where the direct effects of GC can be more easily
interpreted [56], CORT and the specific GR agonist DEX
inhibited NSPC proliferation, leaving a 20% of cells unaf-
fected, in agreement with the relative abundance of GR-
NSPC in the cultures.

Previous studies have indicated that the amplitude of GC
oscillations is a key determinant of GC’s biological actions
and that these oscillations cyclically activate the GR in the
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hippocampus [7, 10, 58]. We found that the amplitude of
GC oscillations increased with age in mice, reaching a
plateau before middle age. This finding is in agreement
with previous observations in rats and mice, in which
changes in circadian GC oscillations were interpreted as
age-associated adaptations of HPA-activity and adrenal
sensitivity to ACTH [11, 81]. Albeit CORT levels were not
measured in 6-month-old mice, Dalm et al. [11] found an
increased circadian amplitude in 9-month-old mice com-
pared to 3-month-old mice. Here, we report that the
increase in the amplitude of GC oscillations correlated with
a rapid disappearance of GR- NSPC populations. Con-
sistent with these observations, disruption of GC oscilla-
tions in vivo in young mice induced a strong inhibition of
NSPC proliferation, which was reinstated after CORT
pellet removal. In particular, Type-1 cells emerged from
this CORT-induced transient inhibition of cell proliferation
with a significantly increased proliferation rate. Our find-
ings are consistent with previous studies in young rats, in
which treatment with DEX inhibited proliferation in the
DG and systemic treatment with a GR antagonist reverted
the inhibition of AHN induced by stress [82, 83]. However,
our experiments in vitro demonstrate that differences in
peak amplitudes beyond levels of full GR activation, as
observed for 3-month old mice versus older ages, do not
result in stronger effects on the cell cycle in NSPC.
Moreover, we also show that the TDC exposure has little
predictive power on the effect of CORT on the cell cycle in
NSPC. These results indicate that the oscillatory CORT
pattern itself is responsible for the effects on the cell cycle
in NSPC. We propose that the hormone-free periods
intrinsic of the ultradian GC oscillatory pattern are
responsible for the effects on the cell cycle and possibly
contribute to the preservation of GR+NSPC, which in
contrast to their GR- counterparts, are able to sense these
oscillatory patterns.

GC bind to the mineralocorticoid receptor (MR) with
high affinity and to the GR with lower affinity [84, 85].
Previous work has indicated that adult hippocampal NSPC,
do not express the MR [41, 44]. More recent single cell
RNA-seq studies in hippocampal NSPC have confirmed GR
(NR3C1) expression in hippocampal NSPC but failed to
detect MR (NR3C2) expression [48]. Other studies have
found that systemic treatment with the MR agonist aldos-
terone protects from ADX-induced cell death at low dose
and partially inhibits ADX-induced cell proliferation at
higher doses, indicating an intriguing and complex role for
the MR in regulating progenitor cells in the GCL of the DG
[86]. Importantly, due to its high affinity for CORT the MR
is fully occupied at all diurnal levels, whereas the GR is
fully activated only during the circadian peak phase, and
thereby may be more relevant for GC oscillations [86, 87].
Between PND 1–14 in rodents a period of reduced adrenal

and pituitary hormone release in response to specific
stressors has been characterized (stress hyporesponsive
period; SHRP) [88]. As such, it may be an interesting period
to study a possible transition between developmental neu-
rogenesis and AHN, which may take place between PND
7–14 in mice [89]. Regarding GR expression, the vast
majority of NSPC present in organotypic cultures from
PND 6 are GR+ (~80%) [90], in agreement with the relative
abundance of GR+NSPC in the hippocampus of 3-month-
old mice and in primary hippocampal NSPC cultures,
as reported herein. Overall, these observations suggest
a lack of developmental switch between the GR+ and GR−

NSPC populations in the neonatal period. However, as the
focus of our current study was the regulation of AHN, we
did not investigate this point further.

The use of high-CORT pellets may model pathological
disruptions of GC oscillations, since these are frequently
associated with increased nadir levels rather than decreased
peak levels [6], and are consistent with increased neuronal
survival, incorporation, and morphological rearrangements
observed in DG neurons after chronic stress [91]. Others
have compared the effect of high and low-CORT pellets
[60, 61]. Specifically, these authors used pellets containing
daily average CORT concentrations, which did not result in
full GR activation [61]. Importantly, our results in vitro
indicate that a maximal inhibition of NSPC proliferation is
only achieved at GC concentrations that are compatible with
full GR activation, suggesting that a complete induction of
NSPC nonproliferative states may not be achieved using
lower steady CORT levels. Supporting this hypothesis,
constant incubation with submaximal [CORT] failed to
induce the upregulation of Sgk-1 associated with GC-
induced inhibition of NSPC proliferation [56]. Previous
observations indicate that circadian peak levels in vivo in
rats may be lower that the CORT concentrations we used to
modeled them in vitro, and in the range of 5 × 10−7 M
[6, 92]. This CORT concentration is expected to induce
approximately 80% of the maximal effect on proliferation
and cell cycle, based on dose–response curves presented
in Fig. 4d. Therefore, we assume that the CORT con-
ditions used in vitro reflect to a large extent those described
in vivo before.

GC have direct effects on hippocampal NSPC in vivo,
mediated by the GR. In particular, GR knockdown in
neuroblasts accelerated their neuronal differentiation and
migration [41]. Extending from these observations, genetic
GR knockdown in 12-month-old GRfl/wt mice using a split-
Cre system that targets Type-1 NSPC specifically [50]
resulted in increased Type-1 cell proliferation. Similarly,
GR knockdown in 20-month-old wild-type mice using
siRNAs also increased Type-1 cell proliferation. These two
experimental approaches resulted in different levels of
Type-1 cell activation. siRNA-mediated knockdown in 20-
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month-old wild-type mice was more efficacious than partial
genetic disruption of the GR using the split-Cre system in
12-month-old GRfl/wt mice. In these experiments, we did not
directly address the fate of new cells generated from Type
1 cells. However, at the time of siRNAs injections, all Type-
1 cells were GR+ and of the preferentially astrogenic Type-
1β morphophenotype [55]. Although our data show a sig-
nificant decrease in total Nestin-GFP+ cells with age, a
general depletion of NSPC remains a controversial
hypothesis. Previous work has indicated that Type-1 NSPC
have a finite number of division cycles before they differ-
entiate into astrocytes, thereby depleting the NSPC pool
[27]. According to these findings, any factor that controls
NSPC proliferation, i.e., GR expression, will also control
NSPC depletion. In contrast, other authors have provided
findings, that contradict this “disposable NSC” theory
[34, 35, 93]. However, it has been proposed that these
seemingly contradictory observations may be reconciled
considering technical differences [36].

GC oscillations have been studied in vivo using auto-
mated intravenous blood sampling in rats [7], but this
approach induces a stress reaction that disrupts circadian
GC oscillations in mice [94]. Furthermore, it is difficult to
eliminate indirect effects coming from other cell types
present in the local environment [95]. In view of these
limitations, we modeled GC oscillations in vitro using
mouse hippocampal NSPC cultures, in which the direct
effects of GC on NSPC can be readily characterized
[41, 56]. Postnatal mouse hippocampal NSPC cultures are
most commonly obtained from young animals, up to
8 weeks of age, due to optimal NSC numbers and pro-
liferation capacities [96, 97]. Similarly, we used hippo-
campal NSPC obtained from young mice, which reflect the
proportions of GR+ and GR− cells observed in 3-month-
old mice in vivo. However, the relevance of this in vitro
system for hippocampal NSPC present in older mice has to
be interpreted with caution. Using this system, we com-
pared the effects of oscillatory GC stimulation versus a
continuous one [58], which may also reflect the situation
observed in some hypercortisolaemic states in human [6].
We found that GC oscillations exert lasting effects on
NSPC proliferation in vitro. GC oscillations maintained the
sensitivity to inhibition of cell proliferation induced by GC
in daughter cells, suggesting an epigenetic mechanism that
may program NSPC proliferation. In contrast, daughter cells
derived from NSPC exposed to continuous GC were
desensitized to GC-induced inhibition of cell proliferation.
These observations suggest that periods of prolonged
exposure to continuous GC may result in lasting dis-
inhibition of NSPC proliferation and in a decay of the
NSPC pool, which may have negative consequences for
long-term hippocampal plasticity [27]. Indeed, we could
show an enhanced proliferation of Type-1 cells in vivo,

2 days after CORT pellet removal. Importantly, at this time
point, endogenous GC oscillations remain inhibited, indi-
cating that GC peaks originating by daily oscillations
effectively suppress NSPC proliferation. This is compatible
with the low NSPC proliferation rates observed in older
mice, in which GR+ populations strongly predominate.
Therefore, the preservation of a GR+ NSPC population is
associated with the conservation of a nonproliferative NSPC
pool in the aged DG.

In old mice, we observed an apparent reduction in 5-mC
levels in Type-1 cells. In vitro, using NSPC cultures, we
show that GC oscillations maintain DNMT expression
levels within a controlled range in NSPC. These results are
consistent with the concept that GC oscillations function to
optimize steady-state gene expression, stabilizing respon-
sive genes [9, 58]. In adolescent girls, alterations in GC
oscillations are associated with changes in DNA methyla-
tion and reduced hippocampal volume [65]. We show here
that GC oscillations induce strong hypermethylation effects
in vitro on hippocampal NSPC, with 73% of the differen-
tially methylated promoters being hypermethylated, which
suggests that GC oscillations maintain specific DNA
methylation states in NSPC. In total, 70 cell cycle-related
gene promoters were differentially methylated by GC
oscillations, indicating that their genome-wide promoter
methylation effects may converge on the regulation of cell
cycle in NSPC. The effects on methylation and gene
expression were stronger in cells exposed to GC oscilla-
tions, likely reflecting an intrinsic effect of pulsatility. This
latter conclusion is also supported by our results indicating
that, at least when modeled in vitro, ultradian and circadian
GC oscillations deliver different biological signals to the
cell cycle in NSPC that may depend on periods of full GR
activation [58]. Interestingly, some of the genome-wide
changes on DNA methylation were lasting and persisted
across NSPC generations. In agreement with our observa-
tions, exposure of the hippocampus to GC during
embryonic development induced changes in DNA methy-
lation in specific gene promoters, 24 h after the treatment.
Similar to the results we describe here, the majority of these
changes in promoter methylation were transient and only
some promoters remained in their hypomethylated or
hypermethylated state [98]. Within the lasting hypomethy-
lated gene promoters, we identified a network of genes
involved in Wnt signaling, a principal regulatory pathway in
AHN [99]. Importantly, loss of the Wnt antagonist
Dickkopf-1 (DKK1) in adult mice restores AHN, increases
dendritic complexity of newborn granule neurons and
counteracts age-associated cognitive decline [100]. Indeed,
GC oscillations induced a stable expression profile, as
compared to continuous GC, on four components of the
Wnt signaling pathway (DKK3, GSK3β, CCND1, and β-
catenin) when modeled in vitro on NSPC cultures. Our
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observations regarding the lasting effects on DNA methy-
lation in NSPC in vitro suggest that GC oscillations may
preserve certain components of the Wnt signaling pathway
within a controlled expression range. Therefore, an
exhaustive functional characterization of the regulation of
Wnt signaling by GC oscillations and its possible con-
sequences for other cellular processes such as cellular dif-
ferentiation in NSPC warrants further investigation.

The use of accelerated senescence models, such as the
SAMP8 mouse strain, provides an experimental alternative
to the use of aged wild-type mice [101]. We found that AM
and PM CORT levels were significantly elevated in
untreated SAMP8 mice, supporting their use as model of
circadian rhythm disturbances associated with pathological
aging [74]. Disruption of circadian GC oscillations in
SAMP8 mice induced by CORT pellet implantation was
associated with lasting morphological changes in newborn
neurons generated from NSPC at the time of pellet removal,
as indicated by retroviral birth-dating. These morphological
changes included increased dendritic complexity, spine
numbers and relative numbers of immature spines, with
seemingly opposite effects in control SAMR1 mice. The
reduced complexity of newborn granule neurons we
observed in SAMP8 is compatible with a delayed devel-
opment of newborn neurons observed in the aging hippo-
campus [102] and with a GR-mediated regulation of
newborn neuron development in the adult hippocampus
[41]. The differences observed between SAM strains after
disruption of GC oscillations may suggest the presence of
alterations in endogenous GC levels in SAMP8 mice that
affect the structural plasticity of newborn neurons in the
adult hippocampus [95].

Recently, the concept of stress-induced stem cells has
been introduced. This conceptualization proposes that the
effects of stress on stem/progenitor cells in young indivi-
duals may predispose to disease later in life, affecting the
renewal and regenerative potential of several tissues,
thereby contributing to the development of metabolic and
mental diseases [103]. In agreement with this idea, altera-
tions in GC oscillations induced by severe physiological or
psychological stress during aging may contribute to the
effect of GC on NSPC and AHN [79, 104–107]. Moreover,
recent data indicate that AHN confers resilience to chronic
stress by inhibiting the activity of mature granule cells in the
ventral DG112. Although the sustained presence of AHN in
the aging human brain remains challenged by contrasting
observations, most reports indicate a substantial decrease
with age, albeit at different rates [17–20, 108]. Indeed, an
age-associated exhaustion of the NSPC pool may explain
some of the interindividual variations in cognitive and
emotional states and resilience to stress-associated diseases
related to aging [27, 109–112]. Importantly, recent obser-
vations have provided new and compelling evidence for the

presence of AHN in the aged human hippocampus [33],
suggesting that our observations could have implications for
the understanding of human brain aging. In conclusion, our
results indicate that GR expression and GC oscillations
contribute to the preservation of distinct quiescent NSPC
subpopulations during aging in vivo, providing a suitable
mechanism for the aging-associated decline in AHN and
highlight that a GC-controlled structural plasticity reserve
remains available in the senescent brain.

Methods

Animal cohorts, CORT measurements,
immunohistochemistry, and confocal microscopy

All animal procedures were approved by the Commission
for Animal Welfare, at University of Amsterdam, Diputa-
ción Foral de Bizkaia and CSIC Madrid and were
performed following EU regulations. Male 3, 6, 10, 14, and
18-month-old Nestin-GFP transgenic mice [113] (n= 5 per
group) were used for experiments. These time points were
selected based on start- and end-points of previously
defined life-phases (mature adult, middle age, and old) in
mice [114]. Mice were housed under standard laboratory
cage conditions and kept under 12 h light/dark cycles
(lights on at 08:00, lights off at 20:00) with ad libitum
access to food and water. At weaning, all animals used
were randomly allocated to the different experimental
groups once their genotype/phenotype was established. At
the indicated ages, tail blood was collected in a stress-free
manner in ice-cold EDTA-coated tubes (Sarstedt, Etten-
leur, The Netherlands) at 20:00 (PM) the night before and
at 08:00 (PM) on the morning of perfusion, as described
before [115]. Samples were kept on ice and subsequently
centrifuged at 13,000 rpm for 15 min, blood plasma was
stored at −20 °C. AM and PM plasma CORT levels were
measured using a commercial radioimmunoassay kit (MP
Biomedicals, Eindhoven, The Netherlands) as described
before [115]. Animals were transcardially perfused at the
indicated ages at 08:00 ± 0.3 h (Fig. 1u) with 4% paraf-
ormaldehyde in phosphate buffered saline (PBS) and brains
were extracted, sectioned in 8 series of 40 μm-thick slices,
ensuring a 280 nm separation between series used for
individual inmunostainings as described before [41], using
the following antibodies: polyclonal chicken anti-GFP
(Abcam, 1:500), monoclonal mouse anti-GFAP (Chemi-
con, 1:1000) and polyclonal rabbit anti-GR (H300 Santa
Cruz, 1:100) or polyclonal rabbit anti-Ki67 (Abcam, 1:
1000) in combination with goat anti-chicken Alexa488
(Invitrogen, 1:500), goat anti-mouse Alexa647 (Invitrogen,
1:500), and goat anti-rabbit Alexa568 (Invitrogen, 1:500),
respectively. Proliferating cell nuclear antigen (PCNA) and
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5-mC stainings required antigen retrieval, which was per-
formed by heating brain sections in 0.1 M citrate buffer (pH
6.0) in a standard microwave (Samsung M6235) to a
temperature of approximately 95 °C for 15 minutes (5 min
at 800W, 5 min at 400W and 5 min at 200W). Antibodies
used were monoclonal mouse anti-PCNA (DAKO, 1:400)
and monoclonal mouse anti-5-mC (Eurogentec, 1:500) in
combination with goat anti-mouse Alexa647 (Invitrogen,
1:500) and if applicable combined with rabbit anti-GFAP
(DAKO, 1:500) in combination goat anti-rabbit Alexa568.
For the retroviral experiment stainings the following anti-
bodies were used: polyclonal chicken anti-GFP (Abcam,
1:500), monoclonal mouse anti-NeuN (Chemicon, 1:1000)
and polyclonal rabbit anti-GFAP (DAKO, 1:500) or poly-
clonal chicken anti-GFP (Abcam, 1:500), monoclonal
mouse anti-NG2 (Millipore, 1:100) and polyclonal rabbit
anti-Iba1 (Wako, 1:1000) in combination with goat anti-
chicken Alexa488 (Invitrogen, 1:500), goat anti-mouse
Alexa647 (Invitrogen, 1:500), and goat anti-rabbit
Alexa568 (Invitrogen, 1:500), respectively. Sections were
counterstained for DNA using Hoechst (Invitrogen.
1:20,000) to detect cell nuclei. Confocal microscopy was
performed as described before using a Zeiss LSM510 laser
scanning microscope [41]. Z-plane optical sectioning ran-
ged from 150–500 nm. Hippocampal NSPC populations
were quantified in the SGZ and GCL hereafter referred to
as granular zone (GZ) and were either expressed in abso-
lute numbers per mm3 GZ or in relative percentages of
the total NSPC subpopulation. Staining intensity histo-
grams were obtained from single confocal Z-planes using
ImageJ, using the same imaging conditions for young and
old animals.

Generation of best-fit curves, population half-life
calculations, correlations, and statistical analysis

Nonlinear (exponential decay) best-fit curves (N(t)= N0e
−κt

+ N0 with N as number of cells in cells/mm3 GZ, t as time in
months and κ as the decay rate constant as a decimal) or
linear (first order polynomial) decay curves (N(t)=N0− λt
with N as number of cells in cells/mm3 GZ, t as time in
months and λ as the slope in cells/mm3 month−1), including
their 95% confidence intervals were plotted on the numbers
of (GR+ and GR-) Type-1 and Type-2 NSPC using
Graphpad Prism 5.0 software. Non-linear (exponential)
decay curves were tested for a significantly better fit than
linear (first order polynomial) decay curves using an extra-
sum-of-squares F-test and were considered significantly
different if the F-test reached a p < 0.05. Subsequently,
depending on the aforementioned extra-sum-of-squares
F-test results, half-lives (or t1/2) were calculated for the
either exponential (t1/2= ln(1/2)/κ) or linear (t1/2= N3/2/λ)
curves from GR+ and GR− Type-1 and Type-2 NSPC. For

CORT concentrations versus NSPC population correlations
a Pearson correlation analysis was used and were subse-
quently tested for significant deviation from a slope of 0 and
were considered significantly different if p < 0.05. Graph-
pad Prism 5 software was used for the generation of best-fit
curves and Pearson correlation analysis.

Subcutaneous pellet implantation experiments

CORT levels were manipulated using slow release biode-
gradable carrier-binder pellets to various daily concentra-
tions (vehicle, 12.5 mg/kg/day and 25 mg/kg/day, n= 4 per
experimental group; Innovative Research of America), as
described by others [60], albeit with some modifications.
Pellets were implanted subcutaneously between the
shoulder blades of Nestin-GFP animals under isoflurane
anesthesia at 08:00 h on experimental day 1. When indi-
cated, pellets were removed under isoflurane anesthesia at
08:00 h on experimental day8. PM and AM plasma CORT
concentrations were determined on day 7/8 or 3 days after
pellet removal (recovery group) on day 9/10 (Figure S4A).
Immunohistochemical analysis was performed on 4 animals
per experimental group, as described in the corresponding
section.

Stereotactic split-Cre lentiviral injections in 12-
month-old GR floxed animals

Heterozygous transgenic mice with loxp sites flanking
NR3C1 (GR) exon2 [51] (here named GRfl/wt), where
purchased from The Jackson Laboratory (strain
B6.129S6-Nr3c1tm2.1Ljm/J) and where compared to
their wild-type littermates (here named GRwt/wt).
Lentiviral-mediated GR knockout experiments were
performed on 12-month-old male GRfl/wt or GRwt/wt mice.
Animals were genotyped as described before [51], (Fig-
ure S4B). To induce recombination, a split-Cre lentiviral
approach with the N-terminus of Cre under the expres-
sion of the GFAP promoter and the C-terminus of Cre
under the Prominin1 promoter was used as previously
described [50]. Linker structures on both termini enabled
a functional Cre-recombinase and NSPC recombination
was detected with a lentivirus expressing a floxed dsRED
+ STOP codon which upon recombination expresses
eGFP [53] for which a specific anti-GFP staining was
performed. 1.5 µl of a 1:1:1 ratio of these three lenti-
viruses were stereotactically delivered into the DG
(anterior-posterior: −2.0, medial-lateral: ±1.5, dorsal-
ventral: −2.0). 6 dpi 4 GRfl/wt and GRwt/wt animals were
sacrificed. Native RFP and GFP signal was undetectable
and we thus stained specifically for GFP to visualize cells
with a radial glial-like Type-1 NSPC morphology
expressing both Cre termini in combination with Ki67 to
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assess levels of proliferation, as described in the corre-
sponding sections.

Stereotactic siRNA injections in Nestin-GFP mice

For siRNA-mediated GR knockdown experiments, 20-month-
old male Nestin-GFP mice underwent stereotaxic surgery,
delivering 1 µl of a 40 µM mixture of 4 previously validated
[41] siRNAs (FlexiTube GeneSolution, Qiagen, CAGACTCA
GCATGGAGAATTA, AAGCGTGATGGACTTGTATAA,
CAGTGGTGCGATAGCAACAAA, AAGGAAGGTCTGA
AGAGCCAA) against the mouse GR (Nr3c1, Entrez gene ID:
14815) into the left DG or negative control siRNA (target
sequence: AATTCTCCGAACGTGTCACGT; Qiagen) into
the contralateral DG (anterior-posterior: −2.0, medial-lateral:
±1.5, dorsal-ventral: −2.0). Seventy-two hours after siRNA
infusion, 6 animals were sacrificed by transcardial perfusion-
fixation, brains were extracted and processed for immunohis-
tochemistry as described in the corresponding section. Simi-
larly, for naked siRNA uptake verification, male Nestin-GFP
mice (n= 3) underwent the same procedure in which negative
control Cy3-labeled siRNA (siNCCy3; Allstars negative control
siRNA; Cat. No. SI03650318, Qiagen) was delivered. These
animals were sacrificed 24 h after (1 dpi) siRNA infusion as
described above. For naked siRNA knockdown validation,
male Nestin-GFP mice (n= 3) were injected with siNC (All-
stars negative control siRNA; Cat. No. SI03650318, Qiagen)
and siRNA directed against GFP (positive silencing control
GFP-22 siRNA, Cat. No. 0001022064, Qiagen). Naked
siRNA knockdown validation animals were sacrificed 3 dpi.
After brain slices were obtained, they were stained for DNA
using Hoechst and native GFP and Cy3 colocalization
or native GFP intensity levels were measured using the
Zeiss LSM510 confocal as described in the corresponding
section.

Retrovirus production

RV-GFP was done as described before [116].
HEK293T cells were co-transfected with pCAG-GFP,
pCMV-GP, and pCMV-VSV-G (3:2:1) plasmids by
calcium-phosphate precipitation. The media containing
retrovirus was collected 48 h after transfection. Cell debris
was removed from the supernatant by centrifugation at
3200×g for 10 min and filtration through a 0.22 μm filter.
The retrovirus was concentrated by ultra-centrifugation at
160,000×g for 2 h (Sorvall WX Ultracentrifuge and Sur-
eSpin 630 swinging bucket rotor; Thermo Fisher Scientific,
Waltham, MA, USA). The retroviral pellet was resuspended
in 200 μl phosphate buffered saline (PBS; Sigma-Aldrich,
St. Louis, MO, USA), aliquoted and stored at −80 °C. The
titer was at 105 colony forming units.

CORT pellet implantation and retrovirus-GFP
labeling of newborn cells in SAMP8 and SAMR1 mice

4-month-old male senescence-accelerated mouse-prone
8 (SAMP8) and control senescence-accelerated mouse-
resistant 1 (SAMR1) mice received subcutaneous
12.5 mg/kg/day CORT and control pellets as described
above for 7 days. Subsequently pellets were removed and
the animals were allowed to recover for 2 days before they
underwent stereotaxic injection of 1.5 μl of a retrovirus
suspension prepared as described in the previous section.
28 dpi of the retrovirus mice (n= 4 per group) were
sacrificed by transcardial perfusion-fixation, brains were
extracted and processed for immunohistochemistry as
described in the corresponding section. Another cohort of
SAMR1 and SAMP8 animals was sacrificed either at day 7
after pellet implantation, or at day 9, 2 days after pellet
removal without receiving retroviral injections to assess
hippocampal Ki67 expression. The GFP signal from RV-
GFP+/NeuN+/Iba1−/NG2− cells was traced using ImageJ
and Sholl analyses were performed as described before [41].
Furthermore, from RV-GFP+/NeuN+/Iba1−/NG2- newborn
cells the spine density and morphology analyses were
performed in using the software package Neuron Studio
on secondary/tertiary dendritic segments, as described
before [41].

Cell culture, CORT treatments, and CORT
measurements

Primary hippocampal NSPC cultures were prepared and
maintained in culture flasks in DMEM/F-12 medium sup-
plemented with 5% charcoal-stripped fetal bovine serum
(FBS, Atlanta Biologicals), N2 supplement, (Invitrogen),
bovine pituitary extract (BPE, Invitrogen), recombinant-
human-EGF (20 ng/mL, Sigma) and recombinant-human-
FGF (10 ng/mL, Sigma), as described before [41]. NSPC
were seeded the day before the start of the treatments.
CORT (corticosterone, Sigma-Alrdich) was dissolved in
(vehicle) and added freshly to NSPC medium to a final
concentration of 1 × 10−6M (except stated otherwise) prior
to incubation. CORT oscillations were modeled in vitro as
previously described [58]. Briefly, pulsatile treatment con-
sisted of 30-min long incubation with either vehicle or
CORT, interspaced with 30 min-long incubations with
hormone-free medium, mimicking CORT ultradian pulses.
NSPC were exposed to this pulsatile treatment for 12 h,
followed by a 12-h long incubation with hormone-free
medium, to model circadian oscillations. The continuous
CORT condition consisted of 30 min-long cycles of incu-
bation with CORT for 24 h, without interspaced hormone-
free periods (Fig. S4N, O). Additional groups consisted of
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pulsatile treatment with 2 μM CORT, continuous 0.25 μM
CORT, and 1 μM CORT for 12 h followed by 12 h
hormone-free periods to mimic circadian rhythmicity (see
also Fig. S5A, B). Starting after a 72 h initial treatment, the
washout period (recovery) consisted of a 24 h-long incu-
bation with hormone-free medium. When indicated, NSPC
were treated during the last 6 h of the washout period with
10−6 M CORT or vehicle, to model the effects on further
exposure to CORT. Treatment schemes are depicted in
Fig. S4N. Efficient washout and stability of CORT during
the experiment (Fig. S4O) was analyzed by collecting
samples every 30 min during both oscillating and con-
tinuous CORT treatment and CORT concentrations were
determined using a commercial radioimmunoassay kit (MP
Biomedicals, Eindhoven, The Netherlands) as
described above.

Immunocytochemistry

Immunocytochemistry was carried out as described before
[41]. Briefly, cells were rinsed three times with PBS and
fixed in 4% PFA in PBS for 30 min. The fixative was then
removed and cells were rinsed three times for 5 min with
PBS. For detection of proliferation, cells were blocked in
blocking buffer (1× TBS/1% skimmed milk powder) for 60
min and incubated for 1 h at room temperature and then
overnight at 4 °C with polyclonal rabbit anti-Ki67 (Abcam,
1:1000) diluted in 0.25% gelatin/0.5% Triton X-100
(Supermix). The day after, cells were rinsed three times
for 5 min in PBS, incubated with donkey anti-rabbit
Alexa488 (Invitrogen, 1:1000) for 1 h at room tempera-
ture, rinsed three times for 5 min in PBS and mounted in
Vectashield Mounting Medium with DAPI (Vector
Laboratories).

To assess GR immunoreactivity in Ki67-expressing
NSPC, blocking buffer was applied for 60 min before
cells were incubated for 1 h at room temperature and then
overnight at 4 °C with a polyclonal mouse anti-Ki67
(Novocastra, 1:200) and polyclonal rabbit anti-GR (H300
Santa Cruz, 1:200) antibody diluted in Supermix. The day
after, cells were rinsed three times for 5 min in PBS, incu-
bated with goat anti-mouse Alexa568 (Invitrogen, 1:1000)
and donkey anti-rabbit Alexa488 (Invitrogen, 1:1000) for 1
h at room temperature, rinsed three times for 5 min in PBS
and mounted in Vectashield Mounting Medium with DAPI
(Vector Laboratories). Images were acquired using a Leica
CTR5500 microscope with the Leica MM AF program
(MetaMorph, version 1.6.0).

Quantitative real time PCR

RNA was isolated using TRIzol reagent (Life Technologies)
according to the manufacturers’ protocol. For mRNA

qPCRs, cDNA was synthetized using a superscript II
reverse transcriptase (Life Technologies) according to the
manufacturers’ protocol. Quantitative real time PCR were
performed, as described before [41], using SYBR green
(Applied Biosystems) and the following primer sequences:
α-tubulin (for normalization) forward: CCCTCGCCTTCT
AACGCGTTGC, reverse: TGGTCTTGTCACTTGGCATC
TGGC; DNMT1 forward: AGGCGCGTCATGGGTGCT
AC, reverse: GGCGGCGCTTCATGGCATTC; DNMT3a
forward: GCCAAGAAACCCAGAAAGAGC, reverse:
GTGACATTGAGGCTCCCACA; DNMT3b forward:
GCGTCAGTACCCCATCAGTT, reverse: ATCTTTCCCC
ACACGAGGTC; DKK3 forward: CACAATGAGACC
AGCACGGA, reverse: GGCTCCTCTTGCCTTCTTCAT;
GSK3β forward: CCCTCAAATCAAGGCACATCC,
reverse: TTGGGTCCCGCAATTCATCG; CCND1 for-
ward: GCCATGACTCCCCACGATTT, reverse: CTACCA
TGGAGGGTGGGTTG; and β-catenin forward: GAACAG
GGTGCTATTCCACGA, reverse: TGGAGAGCTCCAGT
ACACCC; Hes5 forward: AGCAAAGCCTTCGCCGC,
reverse: CCGCTGGAAGTGGTAAAGCA; SGK1 forward:
TGGTGTCTTGGGGCTGTCCTGT, reverse: GCCTTCCA
GGAGTGTCCTTGC.

Flow cytometry analysis of cell cycle using
propidium iodide

NSPC were trypsinized (Trypzean, Lonza) for 5 min and
fixed by slowly adding cold 70% ethanol (−20 °C) and
were then left overnight at 4 °C. Subsequently, cells were
washed twice with PBS for 5 min and treated for 20 min
with RNAse (100 μg/ml; Sigma-Aldrich) and incubated for
20 min at room temperature with a mix containing propi-
dium iodide (5 µg/ml; Sigma-Alrdich), 0.1% sodium citrate
and Triton-X100 (0.1%) in PBS. Cells were sorted using a
FACSAria™ III system (BD) with 488 nm excitation laser.
Propidium iodide was detected within the PE/Texas Red
channel with a 610/10 bandpass filter. At least 9000 cells
were analyzed per sample and only single cells were
included in the analysis. The fluorescence intensity of each
single cell indicating total DNA content was used to classify
cells in the G0/G1 (2N), S (>2N), M (4N) phase or apop-
totic cells (<2N). FACS histograms were plot-fitted using
the G2/G1 fixed method using Multicycle AV and FCS
express (De Novo Software).

Global cytosine methylation analysis

Global DNA methylation was measured using MBD-
isolated Genome Sequencing, essentially as described
[68]. Briefly, NSPC were trypsinized (Trypzean, Lonza) for
5 min, spun down for 3 min at 300×g and total DNA was
extracted using a GenElute™ Mammalian Genomic DNA
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Miniprep Kit (Sigma-Aldrich) following the manufacturer’s
protocol. Global levels of DNA methylation were measured
using a Methylamp™ Global DNA Methylation Quantifi-
cation Ultra Kit (Epigentek) according to the manufacturer’s
protocol. Data were normalized to global DNA methylation
levels of vehicle treated NSPC, as indicated.

Methylated DNA sample preparation and quality
control

DNA was isolated from NSPC as described above. DNA
concentration was determined on a Fluostar Optima plate
reader (BMG Labtech) with the Quant-iTTM Picogreen®

dsDNA assay kit (Invitrogen) at 480/520 nm. Concentra-
tion was determined using smear analysis on an Agilent
2100 Bioanalyzer (Agilent Technologies) and checked for
degradation. Samples (n= 3) for each experimental
condition were pooled into a single sample for further
processing.

Methylated DNA fragmentation and MBD2-capture

DNA fragmentation was performed on a Covaris S2
Focused ultrasonicator with the following settings: duty
cycle 10%, intensity 5, 200 cycles per burst during 190 s to
obtain fragments with an average length of 200 bp. The
power mode was set to frequency sweeping, temperature
6–8 °C and water level 12. A maximum of 3 μg DNA was
dissolved in 130 μl TE and loaded in a microtube with AFA
intensifier (Covaris). DNA was then analyzed on the Agi-
lent 2100 Bioanalyzer (Agilent Technologies) and fragment
distribution was analyzed on a high sensitivity DNA chip.
Methylated DNA was captured using the MethylCap kit
(Diagenode). The concentrations of the fragmented and
captured DNA was determined on a Fluostar Optima plate
reader (BMG Labtech) with the Quant-iTTM Picogreen®

dsDNA assay kit (Invitrogen) at 480/520 nm. A second
quality control was performed after fragmentation on an
Agilent 2100 HS DNA chip.

Methylated DNA library preparation, amplification
and sequencing

A methylated DNA library was prepared, amplified and
sequenced using a modified version of the “multiplexed
paired end ChIP protocol” (Illumina) [68], using the DNA
Sample Prep Master Mix Set 1 (NEB) in combination with
the Multiplexing Sample Preparation Oligo Kit (Illumina).
The library was prepared from 250 ng of fragmented DNA
on an Apollo 324 NGS Library Prep System (IntegenX)
with a PrepXDNA Library Kit (Wafergen Biosystems)
according to the kit’s protocol. Library amplification was
done according to the multiplexed paired end ChIP protocol

including the indexes from Multiplexing Sample Prepara-
tion Oligo Kit (Illumina). Smaller fragments were removed
when necessary using a 2% agarose gel (Low Range Ultra
agarose; Biorad) in combination with a 1 kb Plus ladder
(Invitrogen). 300 bp+ /−50 bp fragments were excised and
eluted on a Qiagen Gel Extraction Kit column (Qiagen),
then eluted in 23 μl EB and 1 μl from there was run on an
Agilent 2100 HS DNA chip. DNA concentration was
determined using smear analysis on an Agilent 2100
Bioanalyzer and samples were diluted to 10 nM. DNA
fragments were sequenced using the Hi-Seq 2000 Massive
Parallel Sequencer system (Illumina) with 2 × 51+ 7(index)
sequencing cycles. Initial quality assessment was based on
data passing the Illumina Chastity filter control. Subse-
quently, the reads containing adapters and/or Phix control
signal were removed. A second quality assessment was
based on the remaining reads using the FASTQC quality
control tool version 0.10.0.

DNA methylation base scaling and mapping

FASTQ sequence reads were generated using the Illumina
Casava pipeline version 1.8.0. The paired end 51 bp
sequence reads were mapped using Bowtie software
v0.12.7, as described [117]. The Bowtie parameters were
set to 0 mismatches in the seed (first 28 nucleotides). Only
unique paired reads were retained and both fragments must
be located within 400 bp of each other on the mouse
reference genome build NCBI37/mm9. Regions within
−2000 and +500 bp from a TSS were considered as gene
promoters.

Bio-informatics and statistics

Dose–response curves were created using Graphpad Prism
5.0 and statistically compared with an F-test. Heatmaps
were generated using the UHC option in MultiExperiment
Viewer v4.9 (TM4). GO analysis was performed using the
Genecodis GO algorithm hypergeometrically testing for
significantly overrepresented processes (FDR corrected p <
0.05) as described [118], and functional network predictions
were produced using the GeneMANIA algorithm [119]. The
H2G2 genome browser (NXT-Dx) was used to explore the
mapped MBD2 read density. All other comparisons were
statistically tested using an unpaired two-tailed Student’s t
test, one-way analysis of variance (ANOVA) test with
Tukey’s post-test when more than two groups were com-
pared, or two-way ANOVA test with a Bonferroni post-test
when more than two groups with two independent variables
were compared. The sample sizes were chosen based on
previously observed effect sizes and calculated with a sigma
of 0.2, alpha of 0.05 to obtain a power of at least 0.8 using
the G Power software [120]. No samples or animals were
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excluded from our analyses. Statistical analyses were per-
formed using GraphPad Prism 5.0.
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