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Abstract
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Permanent magnets (PMs) are magnetic materials that do not require a continuous supply of

electrical energy to maintain an external magnetic field. Today they are particularly important

for clean energy applications such as electric car motors and wind turbines. To maximize the

energy and resource efficiency, they should be based on materials with high intrinsic magnetic

properties, i.e. saturation magnetization µ0Ms > 1.0 T , anisotropy constant K1 > 106 J/m3 and

Curie temperature T C > 250◦C as well as optimized microstructures. A wide range of magnets

with different performances are available today in the market for various applications, starting

from low performance alnico and ferrite magnets to more powerful magnets based on rare-earths

(R) elements. Nevertheless, researchers must now consider the criticality of the constituent

elements as a major factor in the development of permanent magnets, as the PMs industry

relies on critical R elements, such as Nd, Pr and Dy.

In response to the increasing limitations on critical rare-earth metals supplies [1, 2], a global

effort is being devoted to find rare-earth- lean/free magnetic materials suitable for PMs. Recently

there has been a renewed interest in the compounds with ThMn12-type structure as they contain

only a 7.7% of R, compared with 11.8% in Nd2Fe14B or 10.5% in Sm2Co17 compounds. The

need for a stabilizer of the phase also hints for a combination of Fe with some metals such as M

= V, Ti, Mo, Cr, W, Al, or Si, so the most general phase composition is R(Fe,M)12 (hereafter

1:12).

This thesis aims to the develop of Sm-based magnets with 1:12 structure with the magnetic

properties required for permanent magnets applications and a lean use of critical raw materials.

For this purpose, the thesis has been divided in three chapters of results (i) study of the intrinsic
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properties in Sm-Fe-V systems (ii) development of coercivity and (iii) fabrication of 1:12 Sm-

based the magnets.

The first part of the thesis was focused on the 1:12 phase stabilization and improvement of

the intrinsic magnetic properties of a series of Sm-based systems. The stability range of the

1:12 was investigated in a series of SmFe12−xVx by decreasing the stabilizer element V-content

from x = 2.0 to 0.5. in an effort to improve the magnetic properties. The alloys were prepared

by arc melting followed by long heat-treatments to obtain pure 1:12 phase. The systematic

study revealed that the 1:12 was stable for x = 2, 1.5 and 1. The decrease of x from 2.0 to 1.0,

increased the T C from 321 to 361◦C, M s from 83 to 115 Am2/kg and µ0H A from 9.8 to 11 T.

The stability of the 1:12 structure was also explored by replacing Sm with another less

expensive rare-earth element as Ce, and for a non rare-earth element as Zr. In the first case, a

series of Sm1−xCexFe9Co2Ti (x = 0.0, 0.25, 0.50, 0.75, 1.0) ribbons were studied by Mössbauer

spectroscopy. By using this technique the different chemical environments in the 1:12 crystal

lattice were resolved. Also the preference of Co occupation was analyzed when Sm was replaced

by Ce. In the second case, the substitution of Zr for Sm in Sm1−xZrxFe11V (x = 0,0.2,0.4,0.6)

bulk demonstrated to be positive. Although higher concentrations of Zr led to the formation of

secondary phases such as ZrFe2 and α-(Fe,V), for Zr = 0.6, the µ0HA = 8.8 T is still reasonably

high, M s = 138 Am2/kg and T C = 310◦C.

The second chapter of results deal with transferring the intrinsic properties into extrin-

sic properties, and the main task consisted in developing coercivity on stoichiometric and off-

stoichiometric SmFe10V2 alloys. Two approaches were used to achieve this goal (i) through

the refinement of the grains by using powder metallurgy and rapid solidification (ii) via bulk

hardening by the precipitation of the eutectic Sm-La phase. The best route to achieve this goal

involved a series of steps such as arc melting−→homogenization of the 1:12→amorphization of

the alloy by mechanical milling→ crystallization of the 1:12 phase using short heat treatments.

Following this route, nanocrystalline Sm12Fe73V15 powders demonstrated µ0H c values up to 1

T.

The last chapter of results is devoted to the consolidation of the high-coercivity powders

into a bulk magnet using hot compaction and hot deformation. During this process, the bulk

material developed the proper microstructure and thus the magnetic properties. The isotropic

Sm12Fe73V15 magnet exhibited a µ0Hc = 1.06 T, µ0M3T = 0.59 T, µ0Mr = 0.42 T and a

(BH )max = 28 kJm−3 at 3 T applied field. Magnets with similar composition Sm-Fe-(V,M) (M
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= Ti, Mo, Cu) were synthesized in order to investigate the effect on the magnetic properties

of Sm12Fe75V13 when V was reduced or partially substituted by another transition metal. All

the mechanically milled powders were successfully consolidated into fully-dense magnets. The

most striking result was that magnets with compositions Sm12Fe76.5V11.5 and Sm12Fe73V7.5Mo7.5

developed a texture perpendicular to the deformation direction. This kind of behavior is different

from that of die-upset Nd-Fe-B magnets, and suggest the use of hot extrusion rather than die-

upsetting for the development of bulk magnets.
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Chapter 1

Introduction

1.1 Permanent magnets

Permanent magnets (PMs) are magnetic materials that retain their magnetization and create an

external magnetic field in the absence of an inducing field or current. The use of PMs offer an

unbeatable option in producing a magnetic field over other devices (e.g. electromagnets, current

carrying conductors) as they do not require a continuous power supply to maintain the magnetic

field. If designed properly, once magnetized, the magnet retains its stored energy indefinitely.

Currently PMs are used in a wide variety of devices including electronic devices (e.g. mobile

phones, audio devices), motors and generators (e.g. hybrid and full electric car motors and wind

turbines), data processing (e.g. hard disk drives), medical devices (e.g. magnetic resonance

imaging) and even in general home appliances (e.g. washing machines).

The first reference of a magnet dates back to the 6th century B.C, when the natural mineral

lodestone, which is just naturally magnetized magnetite (Fe3O4), was described as a stone that

attracted iron and other lodestones. For many years and centuries, the lodestone magnetism

was just a curious natural phenomenon and it was not until 9th century A.D. that chinese

developed the first practical application of a magnet, the compass. Despite this early discovery,

the development of artificial magnets only started by the end of 1800s, when the foundations of

electromagnetism were laid by Maxwell, and it was possible to link the conversion of mechanical

energy to electric energy and vice versa. Since then, the efforts to improve the hard magnetic

properties has resulted in a nearly exponential increase in the maximum energy product,

1
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(BH )max (which is a measure of the working strength of a magnet), over the last one hundred

years. Fig. 1.1 shows the evolution of PMs.

Figure 1.1: Development of permanent magnets, data taken from [3, 4, 5, 6].

Through the first half of the 20th century, most PMs were Fe-based alloys, with the steels

being the only PM materials known. In an effort to achieve high remanence (M r), high (BH )max

(see definition on page 5) and greater resistance to demagnetization i.e., coercivity (H c), they

were replaced by intermetallic compounds and oxides. The first improvement in the (BH )max

was achieved with the Alnicos. The Alnico magnets were one of the first modern “fine-particle”

magnets discovered by Mishima [16] in 1931. The magnetic hardness originates from the shape

anisotropy of FeCo-rich magnetic rods which are embedded in a non-magnetic NiAl-rich ma-

trix [17]. This microstructure is obtained through spinodal decomposition after a special heat-

treatment. Until here, the permanence of the magnetism was conditional on the magnet’s shape.

The shape barrier was broken in the mid 20th century thanks to a different source of

anisotropy, the magnetocrystalline anisotropy. In 1950 Philips laboratories patented the first

commercial ceramic magnets based on hexagonal ferrites MFe12O19 (M = Sr, Ba) [18]. These

magnets are inexpensive, chemically inert, can be produced in any shape but exhibit a low

(BH )max value. The magnetocrystalline anisotropy in hard ferrites produces an easy magneti-

zation direction along the hexagonal c-axis of the unit cell. They exhibit an unusual increase

of H c with temperature, making them suitable for applications that require high operating

temperatures.
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The next breakthrough came with the rare-earth (R) based compounds. First, in the 1960s

with the discovery of the SmCo5 and later with the Nd2Fe14B compounds. In the late 1970s,

a global Co metal crisis occurred and triggered a search for a Fe-based intermetallic com-

pounds. During 1983 and 1984, Hadjipanayis et al. [19] investigated a variety of melt spun

R-Fe-metalloid systems and reported a (BH )max of 103 kJ/m3 (13 MGOe) in heat treated

Pr0.16Fe0.76Si0.03B0.05 ribbons. At the same time Croat et al. [20, 21] reported 111 kJ/m3 (14

MGOe) in Nd0.135(Fe0.945B0.055)0.865 ribbons. In 1984, Sagawa et al. [22] using powder metal-

lurgy developed a magnet based on the Nd0.15Fe0.77B0.08 obtainig a (BH )max of 286 kJ/m3 (36

MGOe). This new magnet presented superior magnetic properties and low cost compared with

the Sm-Co magnets. The Nd-Fe-B magnets replaced Sm-Co magnets, with the exception of

high-temperature applications. In the Nd-Fe-B compounds, the Fe contributes for most of the

magnetization and Curie temperature (T C), the Nd provides the magnetocrystalline anisotropy,

which aligns the magnetization with the tetragonal c-axis, and the B is necessary to stabilize

the tetragonal structure. Nd-Fe-B magnets with a (BH )max up to 440 kJ/m3 (55 MGOe) can

be found on the market today.

1.2 Basics of Magnetism

The field created by a permanent magnet is proportional to the magnets magnetization (M),

which is determined by the magnetization M of the magnetic material. The M is the density

of induced magnetic dipole moments defined as M= 1
V

∑
i mi, where V is the crystal volume per

atom and m is the atomic moment, often measured in the units of Bohr magneton (µB), which is

the magnitude of the elementary magnetic dipole moment of an orbiting electron with an orbital

angular momentum of h/2π. Mainly, the m depends on the spin angular momenta (S), which is

related to the number of unpaired electrons of the atom or the crystalline material. There are

two main series of magnetic elements. From transition metals Cr to Ni, the magnetic moment is

due to electrons on the 3d shell. From rare-earth metals Ce to Yb, the magnetic moment is due

to electrons on the 4f shell. Nevertheless, the orbital angular momentum (the magnetization

induced by the orbital motion) (L) is also important in some magnetic compounds.

Permanent magnets include ferromagnetic or ferrimagnetic materials. Fig. 1.2 shows a plot

of magnetization vs. temperature of pure Ni, which is the typical behavior of a ferromagnet.

These materials undergo a sharp transition in their magnetic properties at T C, in this case
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T C = 358◦C. Below T C, magnetic dipoles are aligned causing spontaneous magnetism. Above

T C, random thermal motions lead dipoles out of alignment resulting in zero net magnetization.

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

M/
M s

 

T  ( °C )
Figure 1.2: Typical plot of magnetization vs temperature of pure Nickel.

Ferromagnetic materials exhibit a substantial spontaneous magnetization at room temper-

ature and are characterized by their hysteresis loop. The hysteresis loop, often referred to as

the M-H loop (magnetization) or B-H loop (flux density) is a way to evaluate the magnetic

response of a material, and can be visualized by considering a thermally demagnetized sample

subjected to a magnetic field (H ). A typical hysteresis loop of a ferromagnetic material is shown

in Fig. 1.3. Under the influence of the magnetic field, the magnetization (M ) (starting from

point 0), increases along the dashed line. When the magnetic field is high enough (point a) all

domains are aligned along the field and then the sample reaches the saturation magnetization

(M s). When the field is removed, the magnetization does not decrease in the same way, since

the reorientation of the domains is not completely reversible, hence it reaches a residual or re-

manent magnetization (M r). At this state some of the magnetic domains remain aligned but

others are not (point b). The increase of a reverse field results in a continued decreased of the

magnetization, and it is reduced to zero when the applied field has flipped enough domains so

that the net magnetization is zero (point c). This field required to remove the residual magne-

tization is known as intrinsic coercive field (H c) (and for B-H curve is known as flux coercivity

(BH c)). This portion of this curve, between the remanence and the coercive field, is referred to

as the demagnetization curve. Further increase in reverse field results in an increase of reverse

magnetization until it reaches a negative saturation magnetization (point d). The rest of the



1.2. Basics of Magnetism 5

cycle is achieved by increasing the applied magnetic field again.

Figure 1.3: (a) The hysteresis loop (M vs H ) and characteristic parameters (b) Determination of the energy

product BH of a permanent magnet. The red rectangle corresponds to (BH )max.

In the SI system, both H and M are measured in A/m, albeit the quantities µ0H and

J =µ0M, both measured in T, are often used instead, here µ0 is the permeability of free space

(µ0 = 4π × 107 H/m). In the cgs system, these units are Oe = 79.6 A/m (H ), emu/cm3
= kA/m

(volume M ) or emu/g = Am2/kg (mass M ).

An important value which quantifies the work done by a permanent magnet is the maximum

energy product (BH )max. This parameter can be determined from the B(H) from the demag-

netization curve as shown in Fig. 1.3(b) and it corresponds to the magnitude of the maximum

of the product BH as H is varied, and equivalent to the area of the largest rectangle that can

be inscribed under the demagnetized curve (red rectangle). The units are given in kJ/m3 (in

SI units) or in MGOe (in cgs units) (kJ/m3
= 4π/100 MGOe ≈ 0.13 MGOe). The (BH )max is

the most convenient single figure of merit for a magnet. Since 1900, it has increased from 2 to

440 kJ/m3 today, doubling roughly every 12 years. Theoretically, the (BH )max is limited by the

M r according to Eq. (1.1), which cannot exceed the M s, for randomly oriented non-interacting

single domain particles M r = M s/2, or more generally for textured magnets, M r ≤ M s.

(BH)max ≤
1

4
µ0M2

s . (1.1)
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1.3 Rare earth and transition metals coupling

The rare-earth (R) and transition metal (T) compounds are attractive for magnetic materials

research as large number of R-T intermetallic compounds can be used as starting materials for

permanent magnets of exceptional performance. The magnetic properties of R-T intermetallic

compounds are attributed to their spin-spin exchange interactions and to crystalline electric

field interactions. The magnetic properties of rare-earth and transition metal elements are due

to the incomplete 4f and 3d electron shell, respectively [23].

In a R-T intermetallic compound, there are two sublattices, one formed from R atoms and

the other from T atoms. The exchange interactions between R and T moments can be indirect

R-R, indirect R-T, and direct T-T. A simple way to describe these interactions is by means of

the Heisenberg Hamiltonian,

H = −
1

2

∑
〈i, j 〉

Ji jSi • Sj, (1.2)

where J i j is the exchange parameter of the interaction between the atomic spins Si and Sj at ith

and j th lattice sites. The summation is over the nearest-neighbors. For J i, j > 0 the interaction

is ferromagnetic and for J i, j < 0 antiferromagnetic. The exhange interaction falls off rapidly

with increasing distance between atoms i and j.

The strong T-T interaction is a result of 3d wave function overlap and is sensitive to crystal

structure and cell volume. The interaction is usually ferromagnetic, but strongly depends on

the ratio of the interatomic distance to the atomic size. In the case of iron, according to Néel, a

distance of 2.86 Å (which is the typical Fe-Fe distance in iron alloys) for next nearest neighbors

in the bcc phase lies within the appropriate range for ferromagnetic coupling.

The R-T exchange between the 4f and 3d electrons is indirect and likely mediated by the

rare-earth 5d electrons. The 4f -5d interaction is ferromagnetic but the 5d -3d coupling is antifer-

romagnetic when the 5d band is less than half full and the 3d band is more than half full, as it is

the case in alloys of rare-earths and ferromagnetic transition metals. The transition metal spin,

S T, then couples antiparallel to the rare-earth spin, S R, if one assumes the rare-earth moment

is derived only from 4f electrons. By Hunds rules, the magnetization of the transition metal

and rare-earth are coupled parallel for the light rare-earths (less than half filled shell, J = L− S),

and antiparallel for heavy rare-earths (more than half filled 4f shell, J = L + S) [24].
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The interaction between the R ions can be explained through a RKKY interaction [25].

For this type of interaction, the conduction electrons s are polarized by 4f magnetic moment,

mediating the R-R interactions. The interaction can be seen by considering a single localized

magnetic moment surrounded by a gas of conduction electrons. The nature of the interaction

is oscillatory, yielding positive and negative values for J RR, depending on the distance between

the R ions, and on the electronic band structure. The R-R separations are large enough in

most R-T compounds that the 4f radial matrix elements, leading to negligible direct exchange

between R spins [26]. The R-R separation in most R-T compounds is of the order 0.3 nm while

the 4f radial matrix element is less than 0.1 nm. Thus, the R-R exchange can be considered

weaker than the T-T, and R-T interactions.

1.4 Intrinsic and extrinsic properties

In magnetism, the magnetic properties of a material are classified into intrinsic and extrinsic

properties. The former depend on the crystal structure and chemical composition of a mag-

netic phase and are independent of the sample form and microstructure. The latter depend on

sample microstructure and crystallite orientation. High performance permanent magnets are

formed from intermetallic compounds of R and 3d transition metals. The reason is natural,

simultaneously one can benefit from the intrinsic properties, from the high magnetic moment

per atom and the high magnetocrystalline anisotropy of the R metals.

Table 1.1: Intrinsic and extrinsic properties.

Properties Physical variable

Intrinsic Curie temperature T C (K)

atomic magnetic moment µ (µB/atom)

spontaneus magnetization M s (volume: A/m, mass: Am2/kg)

magnetocrystalline anisotropy K (J/m3)

anisotropy field H A (A/m)

Extrinsic remanence M r (volume: A/m, mass: Am2/kg)

coercivity H c (A/m)
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Both the intrinsic and extrinsic magnetic properties must be optimized in producing a prac-

tical magnet, but it is more convenient, dealing first with the intrinsic properties as they set

limits on the extrinsic properties; M r < M s, H c < H A.

An ideal material to be considered as a potential permanent magnet should meet the following

conditions:

1. A T C higher than the maximum operating temperature, T C ≥ 600 K.

2. Large M s. This implies that the material must be mainly (if not entirely) composed of

magnetic atoms, the individual atomic moments should be large and they should couple

parallel in a ferromagnetic structure.

3. Large H A. The crystal structure must have an appropriate symmetry, for instance, tetrag-

onal, hexagonal.

4. Little temperature dependence of the coercivity and remanance (which implies the same

for M and H A) in the working temperature range.

5. Possibility of obtaining a uniaxial grain-oriented microstructure, to maximize M r.

6. Low cost of raw materials.

1.4.1 Magnetocrystalline anisotropy

Magnetocrystalline anisotropy is the tendency of the magnetization to align itself along a pre-

ferred crystallographic direction (easy axis) and the energy associated inhibits the switching

of the magnetization from the easy axis to the hard axis. The magnetocrystalline anisotropy

consists of a contribution of the T sublattice and a contribution of the R sublattice, however it

is mainly dominated by contribution from the R sublattice. Phenomenologically, the uniaxial

anisotropy energy EA (also called MAE) of a tetragonal compound may be expressed as,

EA = K1 sin2θ + K2 sin4θ + K
′

2 sin4θ cos 4ϕ + K3 sin6 + K
′

3 sin6θ cos 4ϕ, (1.3)

where K 1, K 2, K
′

2, K 3 and K
′

3 are the anisotropy constants, and θ and ϕ are the polar angles for

the sublattice magnetization relative to the c- and a- crystallographic axes, respectively. In the
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case of strong uniaxial anisotropy, it is appropriate to utilize only the first term of the expansion,

E = K1 sin2θ , where K 1 is the first anisotropy constant. In this approximation, positive K 1

values imply that magnetization is be along the c-axis whereas negative values indicate in the

ab-plane (the basal plane of the crystal). Many models of magnetization ignore higher order

terms when dealing with uniaxial anisotropy. However, if K1 < 0, the lowest energy term

alone does not determine the direction of the easy axes in the ab-plane. For this, higher-order

terms are needed, and these depend on the particular crystal system (hexagonal, tetragonal or

rhombohedral) [27].

It is well known that the R sublattice anisotropy originates from the crystal field interactions

due to the asymmetric charge cloud (non-spherical potential) of the 4f electrons (from the

unpaired 4f electrons) and the electrostatic field of the charges surrounding the 4f electrons.

For the tetragonal RFe12−xMx (see section 1.6) compounds, the Hamiltonian for a R ion at the

2a site, can be given as

HCF = B0
2O0

2 + B0
4O0

4 + B4
4O4

4 + B0
6O0

6 + B4
6O4

6, (1.4)

where Om
n are the Stevens operators, which are functions of the angular momentum operators

and are known for a magnetic ion with a given J value and Bm
n the crystal field parameters.

The crystal field parameters are defined as

Bm
n = θm 〈r

m〉 Am
n , (1.5)

where θm are the Stevens factors αJ , βJ and γJ for m = 2, 4, and 6, respectively. The 〈rm〉 is

the expected value of the mth power of the radius of the R ion at the R site, and Am
n are the

crystal field coefficients which contain the interaction of the R charge density with the remaining

crystal charge density. The coefficients Bm
n are determined by the environment of the R site, as

well as by the ground state of the R3+ ion.

From the transformation properties of the Stevens operator equivalents (Eq. (1.5)) it is possible

to derive relations between the anisotropy constants K i and the crystal field parameters as,

K1 = −

[
3

2
αJ

〈
r2

〉
A0

2

〈
O0

2

〉
+ 5βJ

〈
r4

〉
A0

4

〈
O0

4

〉]
(1.6)
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and

K2 = −
35

8
βJ

〈
r4

〉
A0

4

〈
O0

4

〉
. (1.7)

A more detailed discussion of the effect of higher order terms on the magnetic properties of

RFe12−xMx compounds can be found in reference [28]. The thermal averages of the corresponding

Stevens operators vary with a high power to the reduced rare-earth sublattice magnetization mr

= M r(T )/Mr(0). If the temperature is high enough, it is enough to consider only the lowest

term of Eq. (1.6). From here, we can see the anisotropy field can be determined by the second

order term of the crystal field, A0
2. The magnetic anisotropy is parallel to the c-axis if K 1 > 0,

so if A0
2 < 0 then αJ > 0, and if A0

2 > 0 then αJ < 0.

Table 1.2: Second order Stevens factor, αJ > 0 for the trivalent rare-earth ions taken from [11].

Ce3+ Pr3+ Nd3+ Sm3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+

-5.714 -2.101 -0.643 4.127 -1.010 -0.635 -0.222 0.254 1.010 3.175

Stevens factor of trivalent rare-earth ions are shown in Table 1.2. αJ > 0 is only positive for

the rare-earth atoms Sm, Er, Tm and Yb. In particular, αJ describe the shape of the charge

distribution of the 4f electron distribution, the shapes are depicted for example in the book

of Coey [11]. For αJ > 0, the electron distribution is prolate i.e., elongated along the moment

direction, for αJ < 0, the electron distribution is oblate i.e., elongated perpendicular the moment

direction.

Related with the magnetocrystalline energy is the anisotropy field H A. The anisotropy field

is the necessary field to rotate the magnetization from the easy to the hard axis. The orientation

of the magnetization is determined by the condition dE/dθ = 0, and for θ = π/2 the anisotropy

field is

HA =
2K1 + 4K2 + 6K3

µ0Ms
(1.8)

and considering only the first order constant K 1,

HA =
2K1

µ0Ms
. (1.9)
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For an uniaxial magnet, when both K 1 and K 2 are taken into account; minimizing the

anisotropy energy from Eq. (1.3), an easy cone phase appears when K1 < 0 and K2 > K1/2. The

cone angle is sin−1
√
|K1 | /2K2. In practice, when K1 > 0, the two anisotropy constants K 1 and

K 2 can be determined by plotting the hard axis magnetization curve as H /M versus M 2. This

is the Sucksmith-Thomson method, which is based on the equilibrium condition

H
M
=

2K1

M2
s

+

(
4K2

M4
s

)
M2. (1.10)

Here K 1 can be obtained from the intersection of the straight line with the ordinate and K 2

from the slope.

1.4.2 Coercivity and magnetization reversal models

The coercivity in a permanent magnet can arise from different magnetization reversal mecha-

nisms, (i) by cohererent rotation in single domain particles (ii) domain wall pinning and (iii)

nucleation.

In the first case, if magnetic reversal of the material occurs only through coherent rotation of

the magnetic moments from the easy axis to another against the magnetocrystalline anisotropy

(Stoner-Wohlfarth reversal [29]), the upper limit of the H c is determined by the H A (Hc ≤ HA),

that in the case of strong uniaxial anisotropy is given by Eq. (1.10). However in practice magnets

barely reaches 20-30% of theoretical maximun. This is due to a number of factors, but mainly

to the formation of reverse domains that arise from crystal imperfections including defects such

as dislocations, interstitials, solute atoms and vacancies. Thus, the coercivity observed in a

particular material is limited by the intrinsic properties but strongly dependent on processing.

Magnetic particles are composed of magnetic domains separated by domain walls or Bloch

walls. Domains and domain walls are created in order to decrease the magnetostatic energy

of a uniformly magnetized sample. When magnetic domains are subjected to a magnetic field

in a opposite direction of their easy axis of magnetization, there is a gradual reorientation of

individual moments in the domain wall leading that magnetization in adjacent domains points in

opposite directions. The domain wall thickness (δ =
√

A/K, with A being the exchange stiffness

constant typically, A ≈ 10−6erg/cm) depends on the anisotropy of the material and the exchange

interaction between the magnetic moments, on average spans across around 100-150 atoms.
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The Bloch walls and the corresponding reversed domains are generated around all types

of defects where the local values of the exchange field and anisotropy field deviate sufficiently

from the values in the remaining material to make a local magnetization reversal possible. Such

nucleation of the Bloch walls at defects may take place spontaneously or under the influence of a

reversed magnetic field. The field necessary to create a region of reverse polarization, commonly

referred to as the nucleation field (H N), is often used to describe the iH c value. A first empirical

approximation of the intrinsic coercivity is derived from the Brown-Aharoni model, and is given

by Kronmüller [30] as

Hc = αHA − NeffMs, (1.11)

where α and Neff are microstructural parameters, the former describing the reduction of the crys-

tal field by defects and by misaligned grains and the latter is the effective demagnetization factor

due to the macroscopic sample or the microscopic grains. Both parameters can be estimated

by analyzing temperature dependence of iH c, H A, and M s assuming that the microstructure of

the material does not change with temperature.

The coercivity in a permanent magnet is based either on the nucleation, pinning mech-

anism or a mixture of the above mentioned reversal mechanisms. Which mechanism is

predominating depends on the magnetic properties and microstructure. An example of the

microstucture dependece is the grain size (D) dependence of coercivity of sintered magnets

shown in Fig. 1.4. The solid line corresponds to the theoretical calculation and the dashed line

describes qualitatively the effect of the microstructure on H c. According to this behavior, the

coercivity of sintered magnets increases with the reduction of grain size going through a maxi-

mum at the single domain size and then decreases for ultra small particles due to thermal effects.

In region I, the magnetization reversal occurs at very small grain sizes D ≈ 2 − 5 nm by

thermal effects. These grains correspond to superparamagnetic particles. In region II, reversal

occurs at grain sizes up to 10 nm by a homogenous rotation process. In region III the process

occurs by inhomogenous rotation (curling process) and coercivity decreases with increasing grain

sizes. In region IV, the magnetization reversal is via domain wall displacements in multidomain

grains. In the single domain range (region I, II and III) the crystal imperfections reduce the
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Figure 1.4: Representation of coercivity as a function of the grain size D taken from [7]. Solid line represent

perfect particle and dashed line the imperfect particle.

coercivity whereas in the multidomain regime imperfections increase coercivity due to pinning

of domain walls.

For strongly anisotropic materials with reasonably high magnetization, the single domain

particle size is a fraction of a micron (Dc ≈ 0.3 µm for Nd2Fe14B [31], and Dc = 0.7 − 2.2 µm for

SmCo5 [32, 33]) and therefore, when materials are made with microstructure of this size, their

coercivity is enhanced.

1.4.3 Other thermal properties

Besides the basic properties of permanent magnets, T C, M s, H A, M r, iH c and (BH )max, it is also

important to quantify the changes in magnetic properties with temperature. Two coefficients

commonly used for this purpose are the reversible temperature coefficients α and β. The α is

the reversible temperature coefficient of remanence, and β of coercivity. Both parameters are

a measure for the average change in M r (or H c) as a function of temperature, and they are

expressed as %K−1 (or %◦C−1).

If the variation of M r (or H c) is linear in a temperature range from T1 to T2, α and β are defined

as,

α ≡
Mr(T2) − Mr(T1)

Mr(T1)

1

∆T
× 100% (1.12)
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and

β ≡
µ0Hc(T2) − µ0Hc(T1)

µ0Hc(T1)

1

∆T
× 100% (1.13)

For non-linear variations one can calculate these coefficients with more accuracy using the ex-

pressions that can be found in the Appendix B.

1.5 Manufacturing of permanent magnets

There are several methods to produce permanent magnets, but the most common involves pow-

der metallurgy. In this process, the potential magnetic alloy is pulverized into fine particles,

compacted and heated to improve the densification. These type of magnets are called sintered

magnets. Alnicos, ferrites, and anisotropic Nd-Fe-B and Sm-Co are made by this method. An-

other route of processing involves the rapid solidification of thin metallic ribbons that can

be hardened either quenching directly from the melt or by annealing the overquenched ribbons.

The ribbons are usually blended with a polymer to make a bonded magnet. Table 1.3 shows the

performance of all types manufactured magnets.

Table 1.3: Performance of all types manufactured magnets taken from [12]. Values in brackets are in MGOe.

Magnet (BH )max T C Max. working Oxidation and Machining Price

(kJ/m3) (◦C) T (◦C) corrosion resistance property

Sintered AlNiCo 10-103 890 600 good outstanding medium

[1.2-13]

Hard ferrite 6-41 450 300 good normal cheap

[0.8-5.2]

Sintered SmCo5 119-191 740 250 good normal expensive

[15-24]

Sintered Sm2Co17 175-255 926 550 good normal expensive

[22-32]

Sintered NdFeB 239-414 310 230 poor normal medium

[30-52]

Bonded NdFeB 24-103 350 160 good good medium

[3-13]
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In sintered magnets, the rare earth magnet alloy is first strip cast to produce large-grained

material with a relatively fine-scale solidification microstructure. Hydrogen decripitation (HD)

and milling are used to get the desired particle size, at which each particle is a single crystal

grain. The particles are compacted at high pressure in an aligning magnetic field and then

vacuum sintered to fuse into a solid block. The aligning magnetic field for die pressed magnets

can be either parallel or perpendicular to the pressing direction. Also the pressure can be applied

in all directions (isostatically pressed magnets). After sintering, the magnet shape is rough so

it is machined to achieve close tolerances.

In rapid solidification techniques, metallic ribbons of ≈ 30-40 microns of thickness are ob-

tained directly from the molten alloy by rapid quenching. The ribbons are magnetically isotropic

powder particles of very small grains, about 30-50 nm in diameter. In the case of Nd-Fe-B, the

nanocrystalline isotropic flakes may exhibt (BH )max values of 10 to 16 MGOe. To transform

these flakes into a bonded magnet, the powder particles can be blended with a polymer binder

and then molded by injection or compression. However in this process the (BH )max is reduced

by approximately a 50% of the fully oriented (anisotropic)material. Rapidly quenched Nd-Fe-B

powder freezes in random domain orientation resulting in an isotropic material structure which

does not benefit from aligning and the finished magnet can be magnetized in any combination

of poles and in any direction relative to the magnet. In order to increase the (BH )max is neces-

sary to use more expensive techniques involving hydrogenation, disproportionation, desorption,

recombination process (HDDR), which uses Hydrogen at high temperatures to decompose the

Nd-Fe-B material, and reconstitute it in anisotropic form. To fully densify the magnets, vacuum

hot pressing and die upsetting are also needed.

1.6 Literature review: compounds with ThMn12-type crystal

structure

After the discovery of R2Fe14B compounds with excellent magnetic properties, research and

development in the field of permanent magnets has been focused almost exclusively on these

alloys. However, in the last decade, because of the exponentially increasing demand for these

magnets, increasing cost and supply risks involving the R-metals, there has been a renewed

interest in the study of RT12−xMx compounds with ThMn12-type structure (lso known as 1:12),

where T is a 3d transition metal (T = Fe, Co, Ni, Mn) and M is a stabilizing element (M = V,
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Ti, Mo,Cr, W, Al, or Si) [34, 35, 36]. The M is essential as the 1:12 structure is not stable in

bulk.

Figure 1.5: Rare-earth atomic percentage in different magnetically hard compounds: SmCo5 (1:5), Nd2Fe14B

(2:14:1), Sm2Co17 (2:17) and ThMn12-type (1:12) (taken from [8]).

The 1:12 compounds contain only a 7.7% of R and they have a tetragonal structure, which

is a requirement for uniaxial magnetocrystalline anisotropy. The nature of the MAE and the

corresponding easy moment direction in the various RFe12−xMx compounds is governed by the

competition of the Fe and R sublattices, as was comented in section 1.4.1. The corresponding

K 1 value have about the same magnitude as in R2Fe14B compounds. However, the crystal field

induced of the former differs both in sign and magnitude from that R2Fe14B compound. This

has as a consequence in the lowest order term of the R sublattice anisotropy (Eq. (1.6)), leading

to an easy magnetization direction parallel to the c-axis only in those RFe12−xMx compounds

in which the second order Stevens factor αj is positive (Sm, Er, Tm). Because the Er and Tm

sublattice couple antiparallel to the Fe sublattice, the Sm-compounds are potential candidates

to develop permanent magnets.

In addition to the magnetic potential, the Sm is comparatively cheaper than other rare-earth

elements such as Nd, Pr or Dy, and there is plentiful supply (see Fig. 1.6).
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Figure 1.6: Periodic table relative to the abundance or scarcity of 90 naturally occurring elements on Earth.

The size of the boxes shows the relative abundance of each element. Credit: European Chemical Society [9].

Table 1.4: Price (USD/kg) of rare-earth metals and oxides as of July 2019 according to [13].

Pr Nd Dy Y Ce La Sm

Metal 114 74 349 34 6 6 15

Oxide 59 55 296 3 2 2 2

The ThMn12 structure, shown in Fig. 1.7, is a body-centered tetragonal structure (space

group I4/mmm) with a unit cell of 26 atoms. The R atom, usually the largest, occupies the

single 2a thorium site, while the M and T elements are distributed over the three inequivalent

crystallographic manganese sites, 8f, 8i, and 8j. The atomic positions in the unit cell are for

2a:(0,0,0), for 8f : (1/4, 1/4, 1/4), for 8i : (xi, 0, 0) and for 8j : (xj , 1/2, 0). The values for xi
and xj are, as for the ThMn12 [37], close 0.36 and 0.28 [38, 39] respectively.

For the different stabilizing elements in RFe12−xMx, there are different stabilization ranges.

The x -values are generally small, between 1 and 2, and in a few cases up to ≈ 3.5. The occupation

criteria for the stabilizing metal depend on metallic radii and enthalpy values concerning the
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Figure 1.7: ThMn12 crystal structure. Large spheres represent the position 2a. The three different Wyckoff

positions 8i, 8j, and 8f are represented by medium spheres

R-M bond [40, 41, 28]. In most of the cases, the M component shows a preference for the 8i site

when M equals another transition metal (Ti, V, Mo) [42, 34, 43]. The situation changes, however,

when M represents an s, p element (Al, Si), in these cases the M atoms occupy preferentially the

8f and 8j sites. Most of these results have been confirmed by neutron diffraction studies [44,

45, 46, 47] with the exception of Sm-based compounds due to its extremely high absorption

cross-section, in this case Mössbauer spectroscopy have shown to be very powerful to analyze

the M occupancies [48, 49, 14].

Several RFe12−xMx compounds have been studied by various authors and the most explored

among them are the Sm-Fe-Ti based. The SmFe11Ti was first reported by Ohashi et al. [50, 51];

in his work, the new phase had been proved to be titanium-stabilized SmT12 (T = Fe, Co,

and Fe+Co) which was isomorphous to the ThMn12 structure. Nikitin et al. [52] reported the

Sm(Fe,Co)11Ti composition exhibiting best intrinsic properties of high M s of 130 Am2/kg, high

H A of around 8 MA/m (100 kOe), and a T C of 600 K (327◦C). Similar RET12 compounds were

reported by De Mooij and Buschow [53, 54], with RE = Gd or Y and with V, Ti, Si, Cr, Mo,
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and W as stabilizers. Singleton et al. [55] reported the magnetic and structural properties of

melt-spun ribbons of RFe11Ti (R = Nd, Sm, Dy, Gd), where 1:12 crystallization was achieved

with short annealing times (1-15min). The H c was found to be strongly dependent on the

microstructure. A H c of 159 kA/m (2 kOe) was obtained in the samples with a grain size about

50 nm, and the annealed samples showed the presence of α-Fe. Pinkerton et al. [56] employed

melt-spinning in NdFe11(Mo,Ti) alloys. They found that 1:12 structure was obtained only in

ribbons quenched at low speed (≤ 17.5 m/s). At higher speeds, the ribbons quenched instead

into the disordered TbCu7-type crystal structure. Several authors have observed the presence of

α-Fe in annealed ribbons based on Sm. Most of the authors have attributed these phenomena to

the evaporation of Sm from the melt-spun ribbons during annealing, because of the high vapor

pressure of Sm. Okada et al. [57] demonstrated the importance of Sm atmosphere during the

annealing to minimize the Sm evaporation from ribbons. The intrinsic magnetic properties of

the most studied RFe12−xMx compounds are given in Table 1.5.

Some works had been focused on reducing the content of the nonmagnetic element M in

RFe12−xMx compounds, with the aim to obtain higher values of M s and T C. For example,

Kou et al. [58] studied SmFe12−xMox compounds with a wide range of Mo content, and they

stabilized the 1:12 phase for Mo content as low concentrations as x = 0.5, although α-Fe was

detected as well. The H A for x = 0.5 was of 8 MA/m (100 kOe) and T C of 544 K (271◦C).
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Table 1.5: Intrinsic properties of some RFe12−xMx compounds. Easy magnetization direction (EMD), anisotropy

field, HA, saturation magnetization, M s, and Curie temperature TC.

Material EMD µ0H A M s T C Refs.

(T) (Am2/kg) (K)

SmFe11Ti c-axis 10.5 122 600 [59, 60, 61, 52]

SmFe10V2 c-axis 10.5 86 605 [46]

SmFe10Mo2 c-axis 3.7 65 483 [42]

SmFe10Cr2 c-axis 5.9 84 575 [42]

SmFe10Si2 c-axis 5.2 112 590 [42]

NdFe11Ti c-axis 2.4 133 570 [59, 60]

YFe11Ti 2.0 120 538 [62, 60, 63]

GdFe11Ti 3.6 81 610 [62, 60]

TbFe11Ti Planar 74 580 [60]

DyFe11Ti 2.8 75 560 [62, 60]

HoFe11Ti 2.8 82 540 [62, 60]

ErFe11Ti 2.6 84 530 [60]

CeFe11Ti c-axis 1.5 108 485 [64]

CeFe10V2 c-axis 1.0 76 425 [64]

CeFe10.5Mo1.5 c-axis 1.0 76 386 [64]

YFe10V2 c-axis 2.7 106 537 [44, 46]

NdFe10V2 c-axis 1.8 112 583 [46]

GdFe10V2 c-axis 61 610 [46]

DyFe10V2 c-axis 7.0 58 532 [46]

ErFe10V2 c-axis 3.3 86 507 [46]

PrFe10.5V1.5 121 625 [65]

NdFe10Mo2 Planar 0.1 75 410 [66, 67, 68]

Recently, there is an increasing interest on the studies of the stability of the RE(Fe,T)12

structure by replacing the R element by cheaper one, such as Ce [69, 70, 71] or Zr [72, 73, 74, 75].

The effect of Zr on the stability of 1:12 phases was reported by Sakurada et al. [76] in RFe12Si2

and very recently by Gabay and Hadjipanayis in Zr1−xCexFe10Si2 [75]. They found a pure or

nearly pure ThMn12 structure for 0 ≤ x ≤ 0.6. A more extended study was done by the same

author [73] in Zr1−xRxFe10Si2 alloys with R = Y, La, Ce, Pr, and Sm and they found that the

effect of Sm was by far the strongest with a H A value of 3.2 MA/m (40.7 kOe). They realized that

compared with the R-free parent compound, Y, Ce, and Sm reinforced the magnetocrystalline
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anisotropy whereas Pr weakened it. The effect of Sm was also demonstrated in melt-spun

ribbons. In other work, Goll et al. [69] studied the CeFe11−xCoxTi alloy and obtained best

intrinsic magnetic properties of µ0M s = 1.27 T and K 1 = 2.15 MJ/m3 for 15 at% of Co content.

Afterward, Gabay et al. [70] studied Ce1−xSmxFe9Co2Ti alloys prepared by melt-spinning and

mechanochemical syntesis. Values of H c up to 64 kA/m (0.8 kOe) and 167 kA/m (2.1 kOe)

were obtained. Submicron partially anisotropic particles collected after the mechanochemical

syntesis for x = 0.5 and x = 1 exhibited H c of 143 kA/m (1.8 kOe) and 462 kA/m (5.8 kOe)

and (BH )max of 43.2 kJ/m3 (5.4 MGOe) and 79.2 kJ/m3 (9.9 MGOe), respectively.

Another area of research has been focused on the nitrogenation of the RFe12−xMx compounds.

Yang et al. [60] showed that nitrides of the type RTiFe11Nx had a significant improvement

of magnetic properties. The nitrogen atoms not only had an effect of increasing both the

Curie temperature and iron moment, but also might change the magnetocrystalline anisotropy.

Although these compounds present intrinsic properties very promising, it is rather difficult to

convert them into magnets.

Despite the nonexistence of binary SmFe12 in bulk, the formation of this phase was successful

synthetized in thin films by Refs. [77, 78]. More recently, Hirayama et al. [79] prepared NdFe12Nx

film with µ0M s of 1.6 T (16 kG), H A of 6.4 MA/m (80 kOe), and T C of 550 K (277◦C), but the

H c barely reached 80 kA/m (1 kOe). Sato et al. [80] prepared the same film but thinner and they

obtained a H c of 342 kA/m (4.3 kOe). Hirayama et al. [79] also prepared the Sm(Fe1−xCox)12

compound in thin films and found excellent intrinsic hard magnetic properties with µ0M s of

1.78 T, H A of 9.6 MA/m (120 kOe) and Curie temperature of 859 K (586◦C), all of which are

superior to those for Nd2Fe14B. Despite, the binary 1:12 films have promising values to fabricate

PMs it is still necessary to produce 1:12 compounds in bulk by conventional methods, such as

melt spinning and mechanical alloying, to be suitable for industrial applications.

1.7 Objectives and scope

The aim of this thesis was to develop a Sm-based magnet with ThMn12 structure with the

magnetic properties required for permanent magnets applications and a lean use of critical raw

materials.

This aim translates into two specific objectives:



1. The search of elements (M) that guarantee the stability of the tetragonal 1:12 structure,

including the determination of the smallest amount of M needed in order to obtain the

largest saturation magnetization, anisotropy field and Curie temperature.

2. Manufacturing of a 1:12 Sm-based magnet, which includes the study of the effect of mi-

crostructure on coercivity, as well as the study of the processing parameters to develop

the bulk magnet.

In order to do this, several Sm-based compounds are studied over the course of this thesis, in-

cluding bulk materials of Sm-Fe-V-M (M= Cu, La, Ti, Mo). This thesis is divided in 6 chapters.

Chapter 2 deals with the experimental procedures and the description of the techniques used

throughout the study. Chapters 3 presents the structural and the intrinsic magnetic properties

of the systems studied. Chapter 4 presents different approaches to obtain the hard magnetic

properties, among them grain size reduction by mechanical milling, bulk hardening by intergrain

boundary phases and mechanical milling/rapidly solidify ribbons: amorphization and recrystal-

lization. Here is shown the importance of microstructure and processing. Chapter 5 is devoted

to the fabrication of the isotropic 1:12 Sm-based by hot-compaction, and the attempts to get an

anisotropic magnet by using hot-deformation. Finally Chapter 6 contains general conclusions

and summarizes the work contained in the thesis.



Chapter 2

Experimetal Procedures

This chapter presents the experimental methods used for the preparation and characterization

of Sm-based 1:12 magnets. The chapter is divided into two parts. The first part explains the

synthesis and processing of the alloys. Melting of the intermetallic alloys by arc-melting and heat

treatment procedures to obtain desired phases are explained. Processing routes like mechanical

milling and melt-spinning are discussed in detail, as well as consolidation techniques such as

hot-compaction and hot-deformation. The second part part describes the techniques used for

investigating the crystal structure, microstructure, thermal and magnetic properties.

2.1 Methodology

This section outlines the processing routes employed to prepare the samples starting from melt-

ing alloys from pure metals, ribbons, powders to bulk magnets. Fig. 2.1 shows a flow diagram

summarizing the different paths. For intrinsic property studies, alloys with stoichiometric 1:12

composition were prepared by arc melting (AM) followed by heat treatment (HT), the optimal

annealing conditions, for obtaining the 1:12 phase, was determined by trying different combi-

nations of heat treatment temperatures and time. After the heat treatment the ingots were

quenched in water, to avoid any possible phase transition during the cooling process.

Some of the alloys with best intrinsic properties were selected to develop coercivity, either

in ribbons or powder form. In the case of Sm-Fe-(Ti/V) alloys, highly disordered ribbons were

produced by melt-spinning and subsequently heat treated to get a fine microstructure with nano

23
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sized grains of 1:12 phase. For powder processing, Sm-Fe-V, Sm-Fe-(V,Mo), Sm-Fe-(V,Cu), Sm-

Fe-(V,Ti) based alloys were produced by arc-melting, followed by a long homogenization. The

heat-treated ingots were crushed and then high energy ball-milled (HEBM) to pulverize and

decrease the particle size of the resultant powders. The powders were consolidated by hot

compaction (HC) and hot deformation (HD). The Sm-losses were observed in every stage of the

processing which involved high temperatures, therefore every stage was optimized in order to

keep the initial composition.

Figure 2.1: Different paths followed to prepare the samples

A list of all the samples prepared in this thesis are shown in Table 2.1. The upper part of the

table shows different stoichiometric Sm-based alloys prepared to study the intrinsic properties

and the development of coercivity. The lower part, shows exclusively off-stoichiometric alloys,

prepared to study the development of coercivity, to produce isotropic and anisotropic bulk

magnets.
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2.2 Synthesis

2.2.1 Arc melting

Arc melting is a metallurgical technique used for melting and alloying. This process consists

of melting the pure elements of the alloy with a certain stoichiometry. Melting is achieved by

discharging an electric arc between a sharp tungsten electrode (cathode) and the elements placed

in a water-cooled copper crucible (anode). The low temperature (coming from the water flow)

of the crucible and tip prevents any reaction and contamination of the alloy, in spite of the very

high temperatures reached by the arc discharge. Controlling the current, electrode distance and

chamber pressure ensure the production of a well-homogenized alloy.

To produce the arc, a high voltage in a proper atmosphere is needed. Before melting, the arc

melter chamber was evacuated and purged with Ar at least two times. After the last purge, the

vacuum pump was switched off and the chamber pressure was kept at 500 mbar (50 kPa) above

the atmospheric pressure, with the Ar inlet and exhaust simultaneously open. This equilibrium

guaranteed a continuous flow of the residual gases. The alloy piece was flipped and remelted

typically four times to ensure homogeneity. The alloys were prepared from 99.9% pure elements

to form ingots of desired compositions with a mass of 3 to 7 grams. The mass loss after the

melting was kept under 0.5% of the desired sample mass. Sm-losses were compensated by extra

Sm addition. To avoid the spattering of the elements (due to the power of the arc) and to

minimize the Sm-losses, the Sm and lightest pieces were placed at the bottom, and heavier

pieces, covering the previous ones at the top.

2.2.2 Melt spinning

Melt spinning is a technique used for rapid solidification of molten metals. The alloy usually

solidifies in the same structure of a liquid, forming a metallic glass, or in a highly disordered

crystalline state. Usually glass transition temperature and crystallization or recrystallization

temperatures may be identified for the quenched alloys. For the crystalline materials, melt

spinning may eliminate the formation of unfavorable phases and/or produce metastable ones

which cannot be obtained by other means. Its use in permanent magnets technology represents

a different technique from conventional ones as powder metallurgy.
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A typical procedure for melt spinning is explained in Fig. 2.2. Solid pieces are melted by an

induction coil (i) in a crucible and pushed out of the crucible by gas pressure (P). A jet of molten

alloy (A) is then ejected on a water-cooled copper wheel, which is rotating at a high speed. The

liquid solidifies at a cooling rate of up to 106◦C/s and results in ribbons which are ejected off the

wheel. The wheel speed, ejection conditions, and melt temperature are fundamental parameters

that need to be properly chosen according to the nature of the alloy.

Figure 2.2: Diagram of melt-spinning process. The metal (A) is melted by the induction coil (i) and pushed by

gas pressure (P), in a jet through a small orifice in the crucible over the spinning roller where is rapidly cooled to

form amorphous or highly disordered ribbons.

In the production of hard magnetic materials, this technique is used to obtain ribbons with

a fine uniform nanocrystalline grains. To crystallize the ribbons and to develop coercivity, it is

necessary to anneal the melt-spun ribbons or to adjust the quenching rate by changing the wheel

speed. The ribbons are crushed into powders and afterward they can be shaped into isotropic

polymer-bonded magnets or hot compacted into dense magnets.

2.2.3 Heat treatment

During the heat treatment process, the alloys are heated to a specific temperature for a certain

time and then cooled down. Heat treatment temperatures, times and cooling rates are chosen

depending on the objective, such as homogenization, phase stabilization or recrystallization.

In this work, as-cast alloys were generally heat treated at high temperatures T≥ 800◦C

for a long time (12 to 24 h) in order to obtain the 1:12 phase. Melt-spun ribbons and milled
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powders were heat treated at temperatures T< 800◦C for short times (1 to 30 min) in order to

recrystallize and to induce the growth of the 1:12 phase grains from amorphous precursors.

Figure 2.3: (a) Constriction of the quartz tube to make easier the sealing (b) High temperatures tube furnaces

Lindberg/Blue M

Heat treatment was performed in quartz tubes sealed under Ar at 10 kPa (100 mbar) be-

low the atmospheric pressure, after evacuating the tube to 10−4 mbar to avoid oxidation (see

Fig. 2.3(a)). A Thermolyne 47900 furnace was used for heat treatments T < 900◦C, and a

Lindberg/Blue M STF54453C tube furnace for T > 900◦C (see Fig. 2.3(b)). The furnace tem-

perature on the display furnace was confirmed using a K-type thermocouple. Once heat treated,

the samples were quickly cooled to room temperature by quenching in water. Quenching is often

necessary in order to investigate compounds which are only stable in certain temperature ranges

and decompose at lower temperatures. By quenching, the decomposition is usually negligible

and the metastable phase is retained.

2.2.4 Mechanical milling

Mechanical milling is a processing technique where powder of pure elements or prealloyed com-

pounds are mixed and undergo grinding, cutting, pressing, or crushing to produce finer particles

with sizes in micrometer range. A ball mill is often used for mechanical milling. Here, the pow-

ders collides repeatedly with the balls. The kinetics of the ball milling depends on the energy

transferred to the powders from the balls, this energy in turn depends on many factors such as

the mill speed, ball to powders weight ratio, ball size distribution, milling media, milling temper-

ature, and milling time. Depending on the conditions, not only the size of the coarse particles are

reduced but different processes can occur during the milling. For example, mechanical alloying
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(MA) can take place by mixing different components to produce new alloys. In this process, the

particles are repeatedly flattened, cold welded, fractured and rewelded to produce a homoge-

neous material. Furthermore, with this method it is possible to synthesize non-equilibrium alloy

phases such as metastable crystalline and quasicrystalline phases, amorphous, nanostructured

and highly disordered alloys.

There are several types of ball mills, the planetary mill and the shaker mill are the most

often used for laboratory purposes, while the horizontal ball mills are for industry. In this work,

an SPEX 8000M Mixer/Mill was used.

In the SPEX high-energy mill (Fig. 2.4(a)), the vial partially filled with balls, is shaken in

a complex motion that combines back-and-forth swings with short lateral movements, each end

of the vial describing a figure-8. Because of the amplitude and velocity of the clamp’s swing,

each ball develops fairly high G-forces, enough to pulverize the sample. The Mill shakes the

containers back and forth approximately 1080 cycles per minute (60 Hz).

Figure 2.4: (a) SPEX 8000M mixer/mill (b) custom-made hardened steel vial and balls. The milling jar is

equipped with a vacuum valve.

The prealloyed powders and several steel balls of 12, 8, 5.5 and 4 mm were placed together

in a hardened steel vial (Fig. 2.4(b)) and in a suitable atmosphere; Ar (dry milling) or hexane

(wet milling). For the dry milling, the jar was evacuated to 3×10−5 mbar using a PFEIFFER

VACUUM turbomolecular pump and back-filled with Ar. The powder was milled for the desired

time and then, according with the milling atmosphere, the powder was washed and removed from

the vial.

During the milling, the temperature rises because of continuous collisions of the balls. To

minimize this effect, the milling was done for a predetermined time, paused until the vial cooled
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down and then it was resumed. To minimize the powder contamination, hardened steel milling

tools were used.

2.2.5 Consolidation Techniques

The production of powders with the required properties of microstructure and coercivity is only

the first step in achieving a bulk magnet. The milled powders must be consolidated and sintered

or heat treated to obtain a bulk piece. During heat treatment grain growth is inevitable but it

should be restricted to an optimum amount.

Die compaction

Metallic powders are usually compacted by using two techniques, cold and hot pressing. Cold

pressing is the most common technique used in shaping metallic powder. It consists of applying

uniaxial pressure to the powders placed in a die between two rigid punches. The compacted

piece must be strong enough to resist the ejection forces and handling prior sintering.

Hot pressing is one of the primary methods used to produce isotropic rare-earth permanent

magnets. In this technique, the powders are compacted and sintered simultaneously in a single

process, in which a combination of diffusion (induced by the sintering) and stress at high tem-

peratures causes a time dependent plastic deformation below the yield strength of the metal [81].

Hot pressing achieves higher densities (> 92%) and better mechanical properties than that of

cold pressing. The mold is usually made of graphite to facilitate the heating and the process

is carried out in vacuum to avoid the contamination of the compact. As a consequence of the

friction between the powders and die walls, a density gradient occurs inevitably in the compact,

with the highest density next to the moving punch face and the lowest near the fixed punch.

The main steps during the hot pressing were: (1) loading the powder into the die cavity

(2) chamber evacuation (P ∼ 10−4mbar) (3) heating the powder (4) compacting the powder by

applying pressure and high temperature (5) pressure release and cooling down (6) removing the

compacted from the die. The Fig. 2.5 shows the hot compacting setup.

In the hot pressing device, the powder was indirectly heated by an electrical resistance. A

graphite mold was placed into a tungsten carbide (WC) die cavity, and filled with the powders.

As the heating process was not direct, the heat transfer from the die cavity (acting like a
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Figure 2.5: (a) Hot compaction set up (b) inside of the device (c) WC die and resistence heater.

furnace) to the mold surface and subsequently throughout the cross-section of the mold takes

time (approx. 13 min). When the mold reached the desired temperature, the powders were

uniaxially pressed and sintered between two WC punches. Molybdenum foils were used to

prevent the compact from sticking to the WC punches.

After the compact piece was prepared, a very thin slice was cut using a a BUHLER ISOMET

low speed diamond saw and was used for characterization. The remaining compact was collected

to do the hot deformation.

Hot deformation

Hot deformation process is one of the main techniques to produce anisotropic R permanent mag-

nets. In this technique, the hot compacted piece is heated up to plastic stage and a compressive

force is applied. Thus, the height of the piece is decreased while allowing to expand freely in

the cross section area.

In the case of Nd-Fe-B magnets this technique is used to induce grain alignment by plastic

flow, and gives a strong crystallographic texture with the c-axes of the platelet like grains parallel

to the compression direction [82].
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The setup of the hot deformation is shown in Fig. 2.6. The main steps during the process

were: (1) loading the compacted piece between two alumina punches (2) chamber evacuation

(P ∼ 10−4 mbar) (3) heating and deformation of the compacted piece (4) pressure release and

cooling down (5) removing the deformed piece from the press. As a consequence of the hot

deformation process, internal cracks may appear, such situation can be minimized by optimizing

the processing parameters.

Figure 2.6: Hot deformation equipment

In this work, heating was produced by induction, therefore the heat transfer to the compacted

piece was very fast. Depending on the material, the deformation was done in less than 5 minutes.

As the heating process was induction, the involved tools were thermal insulators. Mica

sheets between the alumina punches and the compact were used to prevent the deformed sample

from sticking to the punches. Before starting the deformation, it was important to ensure the

alignment between the compacted and the two punches to prevent bending of the compact, the

base and lid (as the compact was cylindrical) should be completely parallel. Once the sample

was deformed the mica was removed from the top and bottom surfaces using a bench grinder

and polished it by 800 grit sandpaper. Ethanol was used to rinse the surfaces.
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Figure 2.7: Hot deformed magnet

2.3 Characterization techniques

The alloys were characterized for structure, microstructure, magnetic and thermal properties

by different techniques. Structural and morphological characterization was carried out by X-

ray diffraction (XRD) and Scanning (SEM) and Transmission (TEM) Electron Microscopy,

respectively. Thermal and magnetic properties were investigated by thermogravimetric (TGA)

and differential thermal analysis (DTA), vibrating sample magnetometry (VSM) and Mössbauer

spectroscopy.

2.3.1 X-ray diffraction (XRD)

Powder XRD is a powerful technique to determine the structure of crystalline solids. A typical

diffractometer consists of a X-ray source, a sample holder and a X-ray detector which collects

the diffracted X-rays.

XRD technique is based on constructive interference of monochromatic X-rays diffracted

from a crystalline sample. The X-rays are generated by a cathode ray tube, filtered to produce

monochromatic X-rays, collimated to narrow the beam, and directed toward the sample. A

spherical wave is radiated when X-rays are diffracted by atoms from internal crystal planes of

the sample. If there are different scattering centers, the spherical waves can interfere with each

other either constructively or destructively. The diffraction of X-rays takes place only at those

particular incident angles which satisfy Bragg’s law
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2d sinθ = nλ, (2.1)

where λ is the wavelength of the X-rays, d is the inter planar distance, n is the diffraction

order (n > 0) and θ is the incident angle of the X-ray. The diffracted X-rays are then detected,

processed and counted. By scanning the sample through a range of 2θ angles, all the possible

diffraction directions of the lattice should be gotten due to the random orientation of the powder

material.

Powder samples, obtained from bulk samples and ribbons, were examined using two different

diffractometers, a Philips X’pert PRO automatic at advanced research facilities (SGIker) of the

University of Basque Country and a Rigaku Ultima IV at University of Delaware. The Philips

X’pert PRO automatic is operated at 40 kV and 40 mA, in θ − θ configuration, and Cu-Kα

radiation (λ = 1.5418 Å). The Rigaku Ultima IV is also operated at 40 kV and 40 mA, with

Cu-Kα radiation, but θ − 2θ configuration.

From XRD patterns, the presence of one or more crystalline phases were observed. The

identification of the phases was performed with standard diffraction patterns downloaded from

ICSD database. The XRD patterns were refined using Maud software based on the Rietveld

method. From the refinement, the volume fractions and lattice parameters of the phases present

were obtained.

2.3.2 Electron microscopy

Electron microscopy is a technique that produces high magnification images by using electrons,

which have wavelengths of the order of nanometers, as the source of radiation. Two kinds of

microscopes SEM and TEM were used in this work.

Scanning electron microscope (SEM-EDX)

In SEM, electrons are generated by an electron gun situated at the top of the microscope,

accelerated down and passed through a combination of condenser lenses and apertures to produce

a focused beam of electrons which hits the surface of the sample. From the interaction of

the electrons and the sample, elastic collisions lead to backscattering and electron diffraction.

Inelastic collisions lead to the emission of secondary electrons, Auger electrons, or characteristic
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X-rays. Secondary electrons are primarily used for imaging and they provide good topological

contrast. Backscattered electrons are used for imaging as well but they are more sensitive to

atomic number differences and give better phase contrast. The X-rays can be used for the

compositional analysis by energy dispersive X-ray spectroscopy (EDX).

Two SEM were used in this work, a JEOL JSM-6335F model equipped with an IXRF

Systems microanalyzer at University of Delaware, and a Hitachi TM3000 Table Top Scanning

Electron Microscope at University of Basque country. The SEM is used in order to investigate

the microstructural features of samples (bulk and ribbons) and the presence of different phases

by using secondary electron (SEI) and backscattered electron (BSE) image modes.

Samples for SEM were prepared using different ways. Powder was sprinkled onto a double

side adhesive carbon tape. Bulk samples were embedded in a epoxy (Spurr Low-Viscosity

embedding Kit) and cured for 8 hours at 70◦C. In order to obtain a shiny and smooth surface,

the cured samples were successively polished with emery papers of grit sizes 120, 300, 600, 1200

and 4000. For hot deformed and hot compacted pieces, they were broken and then attached to

a sample holder by conductive tape, with the broken surface facing up.

The EDX studies were carried out to analyze the composition of the constituent elements of

the phases observed in the SEM images. The X-rays emitted from the specimen which is being

electron-bombarded are detected by a sensitive Si(Li) crystal detector. EDX spectrum peaks are

evaluated to determine the elemental composition of the sample in a particular volume. Features

or phases as small as 1 µm or less are analyzed. EDX analysis was performed using Quantax70,

an additional system which is housed within the Hitachi TM3000; this system is equipped with

a silicon drift detector (SDD), that operates without liquid nitrogen cooling.

Transmission electron microscope (TEM-EEELS)

The main difference between SEM and TEM, is that the former depends on the emission of

secondary electrons from the surface of the sample, while the TEM is used to view ultra thin

(electron transparent) samples through which electrons can pass generating a projection image.

The main parts of the microscope are: (1) an electron gun, which generates a stream of

electrons, and a system of condenser lenses which focus the electrons onto the sample, (2) the

image-producing system, consisting of the objective lens, movable sample holder, and intermedi-

ate and projector lenses, which focus the electrons passing through the specimen to form a real,
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highly magnified image, and (3) the image-recording system consisting of a fluorescent screen

for viewing and focusing the image and a digital camera for recording the images. In addition,

a vacuum system is required for the electrons to travel without any scattering from the source

to the sample.

The electron energy loss spectroscopy (EELS) is another technique to do compositional

analysis. Typically is integrated to the TEM microscope. This technique is based on the energy

loss process undergone by inelastic scattered electrons that pass through the sample. The main

difference with EDX is the energy resolution, being ∼1 eV or better for EELS while a few tens

of eV for EDX.

The TEM images were obtained using the a high resolution TEM Hitachi HF-3300(C) 300

kV (I2TEM) at CEMES laboratory in Toulouse, France by Dr. David Reyes. TEM lamella were

prepared on a dual-beam FIB-SEM (ThermoFisher Helios Nanolab 600i) with thickness ranging

approximately 100-130 nm.

2.3.3 Thermogravimetric and Differential Thermal Analysis

Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) combines the

measurement of a change in mass of a sample as a function of temperature with the temperature

difference between the sample and a reference during constant heating/cooling rate. This device

allows to determine whether an endothermic or exothermic transition is associated with mass

loss in contrast to a melting or crystallization process.

The technique takes advantage of the heat absorption when a sample undergoes a physical

transformation. When the sample undergoes a phase transition, more or less (depending on

whether the process is exothermic or endothermic) heat will need to flow to it than the reference

to maintain both at the same temperature. For example, in the case of a melting process, it

will require more heat flowing to the sample to increase its temperature at the same rate as

the reference. This is due to the absorption of latent heat by the sample as it undergoes the

endothermic phase transition from solid to liquid. Likewise, as the sample undergoes exothermic

processes (such as crystallization) less heat is required to raise the sample temperature.

The TG is also used to determine the TC. The magnetic sample is placed in a tared TG

pan located near a magnet which is placed over/under the pan. The magnet has to be strong

enough to produce an apparent mass loss/gain (depending on the position of the magnet) of
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approximately 2%. When the sample is heated over TC, it loses its ferromagnetic properties,

resulting in a apparent mass loss/gain that can be detected by the TG.

A Perkin Elmer Diamond TG/DTA was used in this work. Samples of approximately 30 mg

were weighed to a precision of 0.001 mg. Typical scans were recorded from room temperature

to 1000◦C at a heating rate of 10◦C/min under Ar gas at a flow rate of 200 ml/min.

2.3.4 Vibrating sample magnetometer (VSM)

A VSM was used to measure the magnetic and thermomagnetic properties of the samples. The

VSM is based on Faraday’s law. In a VSM, a sample is placed within sensing coils, and then it is

vibrated in a sinusoidal motion, this motion introduces perturbations in the external magnetic

field and it generates an (emf) in the sensing coils that is proportional to the magnetic moment

of the sample. The signal is amplified by a transimpedance amplifier and lock-in detected by

the VSM detection module. The magnetic field may be generated by an electromagnet, or a

superconducting magnet.

A VersaLab 3 T cryogen-ree PPMS, with a temperature range of 50-400 K (sensitivity 0.16

µemu, magnet: 0.016 mT) from Quantum Design and a high field VSM with a superconducting

magnet up to 14 T cooled with He closed circuit refrigerator (CFMS from Cryogenic Ltd) were

employed. The calibration of VSM was performed using a Ni standard sample.

Anisotropy field measurements were performed on oriented samples prepared by mixing the

powders with a cold-curing epoxy structural adhesive (RS 132-605) placed in a gel capsule and

dried under a 2 T magnetic field. A chain structure develops under the field, as shown Fig. 2.8(a).

To do the magnetic measurement the gel capsule was placed in a plastic straw. The straw did

not give any magnetic contribution to the measured signal and the gel cap only showed a small

diamagnetic contribution, as shown in Fig 2.8(b). Other way of sample preparation was by

placing the powders in a teflon mold (4 of diameter and 5 mm of length) with wax, then heated

up to 60◦C, and afterward dried under a 2 T magnetic field. For hot deformed pieces, a small

rectangular prism shaped was cut using an electrical discharge (spark erosion) machine EDM

ONA Prima E-250. The hysteresis loop was measured in two directions, along and perpendicular

to the pressing direction.
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Figure 2.8: (a) Gel cap cross section of cured oriented powder. (b) Diamagnetic contribution of the gelcap.

2.3.5 Mössbauer spectroscopy

Mössbauer spectroscopy is a technique based on recoil-free, resonant absorption and emission of

γ-rays in solids. Only a few nuclei are appropriate for this technique. The most common one is

57Fe which is present in a 2% atomic concentration in natural Fe. As the main component of all

compounds studied in this thesis is Fe, Mössbauer spectroscopy is a very important technique for

their microscopic study. Figure 2.9 is a schematic illustration of a regular setup used in a 57Fe

Mössbauer transmission experiment. The setup has 4 main components: the γ-rays source, the

drive system, the absorber (sample) and the γ-rays detector. The spectral line shape of source

and absorber approximates to the ideal nuclear transition of Lorentzian line shape. For example,

the 57Fe 14.4 keV excited state of mean lifetime τ ≈ 1.4× 10−7s corresponds to a Lorentzian line

of width Γnat ≈ 10×−9eV (γτ = h/2π). In practice a combined source and absorber linewidth

of Γobs = Γs + Γa ≈ 0.24mm/s can be obtained in the laboratory compared with the ideal value

for the minimum observable linewidth of 2Γnat = 0.194mm/s. The additional broadening is due

mainly to thickness effects in sample and to external vibrations.

In a regular Mössbauer setup, the γ-rays are emitted by the source that is moving toward

and away from the sample at a velocity of a few mm/s. The movement of the source produces

a change of energy via Doppler-Fizeau effect. The modulated γ-rays pass through an absorber

that is stationary (the sample) and are detected by a radiation detector. When the incident

radiation energy corresponds to the nuclear transition energy, the radiation is absorbed, and

therefore the intensity decreases. The output of the detector, after amplification, is processed

by a single channel analyzer. The logic pulses from it are further analyzed by a multichannel
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Figure 2.9: Schematic representation of a standard Mössbauer transmission experiment. The decay scheme of
57Co source to 57Fe is also shown with the 14.4 keV Mössbauer transition indicated by the heavy arrows. The

high resolution of a Mössbauer experiment can be appreciated from the width of the Lorentzian line shapes for

emission and absorption compared with Eγ the energy of the transition (Γ/Eγ ∼ 10−9/104 ∼ 10−13)

analyzer as a function of the source velocity (energy). A Mössbauer spectrum is thus a plot of

the transmitted gamma rays through an absorber versus velocity of the source.

Resonant absorption occurs when the atoms in the emitting and absorbing matrices are in

identical environments. In the more common case, the emitting and absorbing materials differ,

and resonant absorption will occur at slightly different energies.

Nuclei in the absorber atoms undergo several interactions with the sourronding, which are

reflected in the emission or absorption of a γ-ray. The nuclear energy levels change or split

due to hyperfine interactions with the electronic and magnetic environment, so these changes in

energy levels can be used to provide information about the local structure and properties of the

atoms in a system. The energy levels perturbation of the absorbing nuclei are reflected in the

isomer shift (δ), quadrupole splitting (QS), and magnetic hyperfine splitting (Bhf).

Isomer shift: isomer shift arises as a result of the Coulomb interaction between the nuclear

charge and the electron charge density at the nucleus. Any difference in the s-electron environ-

ment between the source and absorber will result in a shift in the resonance transition energy.
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Isomer shift is useful in determining valence states, ligand bonding states, electron shielding and

the electron-drawing power of electronegative species.

Quadrupole splitting: nuclei in states with an angular momentum quantum number I > 1/2

have a non-spherical charge distribution. This produces a nuclear quadrupole moment. In

the presence of an asymmetrical electric field this splits the nuclear energy levels. The charge

distribution is characterized by a single quantity called the Electric Field Gradient.

Magnetic hyperfine splitting: hyperfine splitting is caused by the dipole interaction between

the nuclear spin moment and a magnetic field, i.e., the Zeeman splitting. The effective magnetic

field experienced by the nucleus is a combination of the applied magnetic field and another

three fields: Bcontact is due to the spin density of s-electrons penetrating the nucleus, which are

polarized by magnetic interactions with the magnetic electrons, Borbital is due to the orbital

moment of magnetic electrons, which is almost quenched in 3d elements, and Bdipolar is the

dipolar field due to the spin of magnetic electrons other than s-electrons.

In the present work, 57Fe Mössbauer spectra were obtained at room temperature, with a

25 mCi 57Co/Rh source, on a constant-acceleration 512-channel spectrometer. The calibration,

performed with bcc-iron foil, gave a linewidth for the external peaks of 30 mm/s. The final

natural iron concentration in the samples was around 12 mg/cm2. The spectra were fitted with

the software NORMOS, developed by Richard Brand [83]. The estimated errors were at most

±0.1 T for hyperfine fields, ±0.005 mm/s for isomer shifts, and ±0.01 mm/s for the quadrupole

splitting.



Chapter 3

Intrinsic magnetic properties in

Sm-Fe-M (M = V, Ti) systems

3.0.1 Introduction

In response to the increasing limitations on critical R metals supplies [1, 2], a global effort is

being devoted to find R-lean/free magnetic phases suitable for permanent magnets applications.

As a result, there has been a renewed interest in the R(Fe,M)12 compounds, that were studied

in the late 80’s and early 90’s, because of the reduced R content, as compared with the other R

based compounds. Recently, there have been reports investigating the stability of the R(Fe,M)12

phase by replacing the R = Nd or Sm with less expensive R metals, such as Ce [69, 84], or even

by non R metals, for instance Zr [85, 86, 87].

In all the cases, there is a need of stability studies, prior or in parallel with the optimization

of composition and the magnetic properties of the 1:12 phases. In addition to the commonly

used structural, microstructural, thermal and magnetic characterization techniques, the use of

spectroscopy tools as Mössbauer spectroscopy, can give a special insight on the local environment

and its influence on the stability of different compounds.

This chapter is devoted to the study of the stability of Sm based 1:12 phases with different

substitutions for R and M elements, and their intrinsic magnetic properties. The first section

shows an example of how Mössbauer spectroscopy can resolve different chemical environments

in a 1:12 structure. In particular, the preference of Co occupation is analyzed when Sm is

41
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replaced by Ce in a series of compounds of (Sm1−xCex)Fe9Co2Ti (x = 0.0, 0.25, 0.50, 0.75, 1.0).

Despite Ce-based 1:12 systems show poor magnetic properties [84, 69, 88, 70], alloys with partial

Sm-substitution for Ce could be used in applications with medium performance demands. The

reason behind the type and amount of the stabilizing element selected, and the amount of Co

(2 atoms per unit cell), is magnetic properties optimization as already determined by others

authors. For instance, the substitution of small amounts of Co for Fe in Sm(Fe,Co)11Ti was

reported to be beneficial to the T C, M s and µ0H A [52, 79, 87].

The second section studies the intrinsic magnetic properties of the SmFe12−xVx (0.5 ≤ x ≤ 2)

compounds. The stability range of the ThMn12 structure is investigated for low V concentrations

in an effort to improve the magnetic properties. In the last section, substitution of Zr for Sm in

Sm1−xZrxFe11V (0 ≤ x ≤ 0.6) is studied in order to analyze the evolution of the magnetic and

structural properties with a non rare-earth element.

Not only the third element M in R(Fe,M)12 is essential to stabilize the ThMn12 structure,

but also the amount of the stabilizer is an important factor in terms of the magnetic properties.

Different authors have reported changes in M s and T C with the stabilizer concentration. For

instance Verhoef et al. [89] in YFe12−xMx (M = Ti, V, Mo, W) and Zhong et al. [90] in RFe12−xVx

(R = Er and Ho) systems reported a decrease in the magnetic moment with increase in stabilizer

concentrations. Also Buschow [34] reported a decrease in the T C in YFe12−xMx (M = Ti, Mo,

V, Cr) systems.

So far, in SmFe12−xVx compounds, the 1:12 structure has been obtained only for high V

concentration (x ≥ 1.5) and is very difficult to synthesize it as a single phase material [53, 42, 91].

Single phase materials are required to study the intrinsic properties and in most of the cases for

subsequent processing. Initially, in SmFe10V2 system, the formation of 1:12 was reported in the

ingots subjected to very long annealing, 10 days at 950◦C [42] and 2 weeks at 850-900◦C [53].

However, shorter annealing times were reported later; for 1 day at 1050◦C [59] and 20 hours at

1100-1200◦C [10]. In the case of SmFe10.5V1.5, the 1:12 structure was obtained after annealing

at 900-1000◦C for 1 week [91].

Isothermal sections of Sm-Fe-V phase diagram at 1100 and 1200◦C published by Sugimoto et

al. [10] are shown in Fig. 3.1. Here the phase regions appearing in this system are characterized

by two or three phase fields among the compounds Sm3(Fe,V)29, Sm(Fe,V)12, Sm2(Fe,V)17, α-

(Fe,V), γ-(Fe,V) and liquid. The dashed lines in figures are expected from both experimental

results and binary phase diagrams. From these results it can be seen that pure 1:12 phase is
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Figure 3.1: Isothermal section of the Sm-Fe-V system at 1100 and 1200◦C taken from [10]

stable for 7.9 < Sm(at.%) < 9.5 and 7.1 < V(at.%) < 12.9 at 1100◦C. If Sm is equal to 7.7 at.%

(equivalent to 1 atom of Sm per unit cell), a combination of 1:12 phase and α-(Fe,V) can be

obtained when V is equal to 10 at.%. Considerable changes in the 1:12 stability are produced

with 100◦C of difference therefore it may be possible to change the stabilitity range by using

different annealing temperatures. For instance, at 1200◦C the 1:12 stability moves to higher V

and lower Sm concentrations. If Sm is equal to 7.7 at.% and V to 11 at.% (equivalent to 1.4

atoms per unit cell) is possible to stabilize the pure 1:12 phase.

In the last section, substitution of Zr for Sm in Sm1−xZrxFe11V (0 ≤ x ≤ 0.6) is studied in

order to analyze the evolution of the magnetic and structural properties with a non rare-earth

element. Despite Zr being more expensive than Ce or Sm, it is not considered as a critical raw

material. According to the previous studies [92, 93], Zr atoms occupy only the rare-earth 2a

sites. Sakurada et al. [76] reported that substitution of Nd with Zr stabilized the ThMn12 phase

even for x ≈ 0.75 in Nd1−xZrxFe10Si2. More recently Gabay et al. [75] synthesized Zr(Fe,Si)12,

the first RE-free ThMn12 compound. They reported a ZrFe10.4Si1.6 system with µ0M s of 1.15

T but with a very weak uniaxial anisotropy of µ0H A ≈ 1.9 T.

Partial substitution of Zr with R = Y, La, Ce, Pr, Sm has been investigated by Gabay et

al. [73] and Nd by Gjoka et al. [74]. In terms of µ0H A, the effect of Sm was the strongest

with a value of 4.07 T in Zr0.7Sm0.3Fe10Si2. In the same direction, Tozman et al. [87] in 2018,
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attained the ThMn12 structure for Sm1−yZry(Fe0.8Co0.2)11.5Ti0.5 (y = 0.1 to 0.3) compounds.

However, with increase in Zr content from x = 0 to 0.3, µ0M s decreased from 1.61 to 1.52 T and

µ0H A from 8.4 to 1.53 T. A largest T C of 830 K was found for (Sm0.8Zr0.2)(Fe0.8Co0.2)11.5Ti0.5

alloy. Since Sm-substitution with Zr in Sm-Fe-Ti and Sm-Fe-Si systems has been successfully

investigated, the same approach was used in this thesis in the SmFe11V alloy system.

3.1 Preferent Co occupation in the Sm1−xCexFe9Co2Ti series:

Mössbauer analysis

3.1.1 Sample preparation

The series of samples of Sm1−xCexFe9Co2Ti (x = 0.0, 0.25, 0.50, 0.75, 1.0) were kindly provided

by Dr. Salazar, produced at the University of Delaware, USA. The alloys were prepared by arc

melting the pure elements. Ribbon samples were prepared by melt spinning technique, where

the molten alloy was ejected onto a copper wheel rotating at a linear speed of 35 m/s [94]. The

as-spun ribbons shown in Fig. 3.2 were sealed in Ar and annealed at 700-850◦C for 3-120 min

to crystallize into 1:12 structure.

Figure 3.2: Photograph of the Sm0.5Ce0.5Fe9Co2Ti as-spun ribbons. The thickness was 30 µm approximately.

3.1.2 Statistical calculation of the chemical environments

First neighbours and Wigner-Seitz cell (WSC) volumes for the different Fe crystallographic sites

in SmFe11Ti unit cell are given in the Table 3.1.
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Table 3.1: Near neighbour environments and volumes of SmFe11Ti unit cell derived from Wigner-Seitz analy-

sis [14].

site Fe(8i) Fe(8j ) Fe(8f )
WSC volume

(Å3)

Fe(8i) 5 4 4 18.84

Fe(8j ) 4 2 4 11.94

Fe(8f ) 4 4 2 11.64

When Fe atoms occupy the three inequivalent 8i, 8j, and 8f crystallographic sites and Ti

atoms occupy only the 8i sites, at least three sextets, corresponding to the 8i, 8j and 8f sites,

are required to fit the Mössbauer spectra. However, when Ti enters randomly into the structure,

it creates different chemical environments around the Fe atoms and, therefore, each crystal-

lographic site would have several different environments. This means that the three sextets

must be further subdivided to take into account the distribution of the titanium atoms in the

neighbourhood of each of the Fe sites.

The substitution of Fe by Co, also produces new environments. However, as Co is a magnetic

atom and is next to Fe, it was considered that its presence would not affect too much the

hyperfine levels in such environments. In the following, it was assumed that a number of Co

atoms in an environment do not create a new splitting nor another set of subspectra, although

this environment will be affected by the presence of Co [95].

In the first step of the analysis, the relative sextet areas were calculated by using a binomial

distribution,

P(n,m) =
(n + m)!

n!m!
pn(1 − p)m, (3.1)

where P(n,m) is the probability of an environment with n Fe atoms and m Ti atoms, and p is the

Fe concentration at that site. These relative areas are associated with the Mössbauer resonant

areas of Fe nuclei at each site. Table 3.2 presents the number of Fe and Ti atoms per site in the

stoichiometry of SmFe11Ti. These values allows us to calculate the Fe concentration per site.
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Table 3.2: Number of Fe and Ti atoms at each site SmFe11Ti unit cell

site Total Fe Ti

8i 8 6 2

8j 8 8 0

8f 8 8 0

Total 24 22 2

Table 3.3 shows all the environments together with their probability of occurrence. For

example, an iron atom in 8i site will have a 6.47% of probability of having 5 Fe and 0 Ti

neighbours, 10.79% of probability to have 4 Fe and 1 Ti neighbours and so on. Summarizing,

there are 16 different environments for Fe atoms, which implies that it would be needed a total

of 16 subspectra to fit the Mössbauer spectra.

Table 3.3: Atomic distribution and the probabilities of each magnetic environment of each position of Fe,

P(nFe,mTi) is the probability of an Fe atom that has n Fe atoms and m Ti atoms.

Mössbauer

atom

Neighbor Neighbor Neighbor
Total P(nFe,mTi)

(%)

Normalized

probability
8j 8f 8i

nFe mTi nFe mTi nFe mTi Fe n

Fe(8i)

4 0 4 0 5 0 13 6.47 6.90

4 0 4 0 4 1 12 10.79 11.50

4 0 4 0 3 2 11 7.19 7.7

4 0 4 0 2 3 10 2.40

4 0 4 0 1 4 9 0.40

4 0 4 0 0 5 8 0.03

Fe(8j )

2 0 4 0 4 0 10 11.51 12.30

2 0 4 0 3 1 9 15.34 16.40

2 0 4 0 2 2 8 7.67 8.20

2 0 4 0 1 3 7 1.70

2 0 4 0 0 4 6 0.14

Fe(8f )

4 0 2 0 4 0 10 11.51 12.30

4 0 2 0 3 1 9 15.34 16.40

4 0 2 0 2 2 8 7.67 8.20

4 0 2 0 1 3 7 1.70

4 0 2 0 0 4 6 0.14
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However, there are several environments with probabilities lower than 3%. These envi-

ronments were discarded because they were in the limit of the measurement resolution. The

probabilities were renormalized and the new values are shown in the last column of the Table

3.3. Only nine sextets with their corresponding areas (the 8i sextet is subdivided into three

sextets with 6.9, 11.5, and 7.7 percent areas, and each of the 8j and 8f sextets is subdivided into

three sextets with 12.3, 16.4, and 8.2 percent areas) were used to simulate the ThMn12 phase,

labeled as i0, i1, i2; j0, j1, j2; f0, f1, f2, where the subscript refers to the presence of 0, 1, 2

adjacent Ti neighbours to the i, j, f Fe atom.

3.1.3 Spectra classification

Three hyperfine parameters define each sextet, the hyperfine field (Bhf), the isomer shift (δ) and

the quadrupole shift (QS). In order to reduce the number of free parameters, it was assumed

that the three hyperfine parameters of the nine sextets (for each crystallographic inequivalent

Fe site) varied linearly with the number of Ti near neighbours. The δ is very sensitive to the

different chemical environments. From previous works in similar compounds, it was observed

that an increase of the nonmagnetic atom (at expenses of Fe) resulted in a decrease of the δ [96],

so this was assumed true here too.

The areas ratios were also fixed. For instance, for 8i site the areas were 6.9, 11.5 and 7.7

(see Table 3.3), so the system was constraint to A2 ≈ A1 (11.5/6.9), A3 ≈ A1 (7.7/6.9). For 8j the

areas were 12.3, 16.4, 8.2, and the constraints A5 ≈ A4 (16.4/12.3) and A6 ≈ A4 (8.2/12.3).

According to the XRD results [94], in addition to 1:12 phase, α-Fe was also present, then ten

sextets were used to fit the Mössbauer spectra, nine sextets for 1:12 phase and one for α-Fe. In

total 27 hyperfine parameters, one linewidth, and one total absorption area were used to fitting

the spectra.

The WSC values (Table 3.1) of the three inequivalent Fe sites in SmFe11Ti indicates that the

8i site has the largest average number of Fe near neighbours, whereas the 8j and 8f Fe sites have

only nine Fe near neighbours. Consequently, the sextets with the largest Bhf were assigned to

the 8i site, both on the basis of its percent contribution and its Fe near-neighbour environment.

As 8j and 8f sites have identical percentage areas and Fe near-neighbour environments, their

assignment was based on the δ on the basis of the WSC volume analysis, i.e. 8j > 8f.
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Figure 3.3: Mössbauer spectra comparison of as-spun and heat-treated Sm1−xCexFe9Co2Ti (x = 0.0) ribbons

3.1.4 As-spun ribbons

The Mössbauer spectra of as-spun and heat-treated Sm1−xCexFe9Co2Ti (x = 0.0) ribbons, ob-

tained at 300 K are shown in Fig. 3.3. Here, the difference between spectra of the amorphous

(as-spun) and crystallized ribbons (heat-treated) is clear. The first one presents much wider lines

than the crystallized. Such a broadening is due to chemical and structural disorder, because

there are plenty of different equivalent positions. Other features are also visible, for example,

(i) the outer lines are wider than inner ones and they follow the relation Γ1 > Γ2 > Γ3, and

Γ6 > Γ5 > Γ4. Being Γi the line width i, indexed from negative to positive velocity, (ii) the

position of the absorption peaks is symmetric with respect to the centre of the spectrum and

(iii) the resonant areas follow the relations A1 < A6, A2 > A5 and A3 > A4.

Due to the disordered nature of as-spun ribbons, the Mössbauer spectra were fitted with a

distribution of hyperfine magnetic fields (〈Bhf〉). The theoretical spectra were produced with a

superposition of 40 subspectra and variation of δ as well. Fig. 3.4 shows the field distributions

obtained for all samples. For low concentrations of Ce (x < 0.5), the field distributions show an
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Figure 3.4: Hyperfine field distribution of Sm1−xCexFe9Co2Ti (x = 0.0, 0.25, 0.50, 0.75, 1.0) as-spun ribbons

almost unimodal behaviour, with a sharp peak around 〈Bhf〉 = 21 T. For higher concentrations,

x > 0.5, the environments around 10 T take importance, and it is more visible when the Sm is

completely substituted by Ce, for which also the probability around 21 T becomes stronger.

3.1.5 Crystallized ribbons

The Mössbauer spectra of the heat-treated ribbons, together with their fits are presented in

Fig. 3.5. Here all samples show a complete crystallization into two phases, 1:12 and α-Fe.

Black circles correspond to the experimental data, the colored lines to the contribution of each

environment (3 sites for 8i, 3 sites for 8j, 3 sites for 8f from ThMn12 phase and one site for α-Fe)

and the black line to the superposition of all the sextets.
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Figure 3.5: Mössbauer spectra of Sm1−xCexFe9Co2Ti at 300K. Nine sextets, corresponding to the 1:12 phase

(colored lines) and one to the α-Fe (purple line) are shown. The black solid line corresponds to the superposition

of all sextets

From Fig. 3.5, it is evident that the resonant area of α-Fe phase (purple curve) is much

smaller than the resonant areas of ThMn12 phase. Also the shape of the spectra changes when

the Ce concentration is higher than 0.5, especially through modifications in the 8j and 8f sites,

as it can be verified in the fitted values of Table 3.4.
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Table 3.4: Mössbauer parameters for heat-treated Sm1−xCexFe9Co2Ti ribbons, 〈δ〉: isomer shift, Bhf: hyperfine

field, QS: quadrupole splitting and the resonant area. The nCo corresponds to the Co occupation.

x Site
〈δ〉 〈Bhf〉 〈Q〉 Area

nCo
(mm/s) (T) (mm/s) (%)

0.00

8i -0.120 30.5 0.065 34.3 0.0

8j -0.148 28.6 0.086 26.6 1.5

8f -0.164 26.4 0.077 36.1 0.5

α-Fe -0.087 33.0 0.000 3.1

0.25

8i -0.120 30.4 0.094 34.2 0.0

8j -0.107 28.8 -0.008 27.7 1.4

8f -0.187 26.4 0.087 36.2 0.6

α-Fe -0.087 33.0 0.000 1.8

0.50

8i -0.141 30.7 0.074 31.3 0.0

8j -0.098 29.4 -0.029 28.2 1.4

8f -0.200 26.4 0.091 36.0 0.6

α-Fe -0.087 33.0 0.000 4.4

0.75

8i -0.190 28.8 0.018 35.3 0.0

8j -0.108 26.1 0.047 30.0 1.0

8f -0.169 27.0 0.095 29.8 1.0

α-Fe -0.087 33.0 0.000 4.8

1.00

8i -0.182 28.3 -0.021 36.4 0.0

8j -0.123 25.4 0.031 31.2 0.9

8f -0.153 26.7 0.099 28.3 1.1

α-Fe -0.087 33.0 0.000 4.2

Table 3.4 summarizes the Mössbauer parameters of the heat-treated ribbons. From the

resonant areas the occupation of Co atoms for each site were calculated. From the results it can

be seen that for concentrations up to 0.5, 70% of Co occupies 8j sites and 30% 8f sites, while for

concentrations above 0.5, there is a redistribution of Co: About 50% goes to 8j and 50% to 8f.

This is in agreement with the decrease of the hyperfine field in the 8j site while the hyperfine

field of 8f site is increasing. The tendency of the δ also shows variations for concentrations

above 0.5.



52 Chapter 3. Intrinsic Properties

3.2 Study of SmFe12−xVx series

3.2.1 Sample preparation

Ingots of SmFe12−xVx (x = 2.0, 1.5, 1.0, 0.5) alloys were prepared by arc melting in Ar atmo-

sphere. Samarium loss during the melting was compensated by adding an appropriate excess

amount. The ingots were homogenized at temperatures ranging from 900 to 1100◦C for 1-3

days and then quenched in water. The annealed ingots were ground in a mortar and the fine

powders were used for XRD measurements. Anisotropy fields were determined from the initial

magnetization curves of oriented samples measured ‖ and ⊥ to the oriented direction.

Figure 3.6: Arc-melted polished Sm-Fe-V ingots.

3.2.2 Structural properties

The XRD patterns of SmFe12−xVx (x = 2.0, 1.5, 1.0 and 0.5) alloys with different V concentration

heat-treated at 1000◦C for 2 days are presented in Fig. 3.7. Apart from the sample with x = 0.5,

the main phase in all the samples is ThMn12-type (space group I 4/mmm), with a very low

content of α-(Fe,V) (space group Im3̄m) around 0.5-1%.

Along the series, the parameters a and c decrease almost linearly from 8.522 and 4.765 to

8.509 and 4.758 Å, respectively with decreasing V concentration from x = 2.0 to 1.0, as seen in

Fig. 3.8. The lattice contraction with decreasing V concentration makes the characteristic 1:12

peaks to shift slightly towards higher angle. This is reasonable considering the atomic radius of

V (1.34 Å [97]), which is larger than that of Fe (1.26 Å [97]). The cell volume decreased from

346.05 to 344.52 Å3. For x = 0.5 alloy, the rhombohedral Th2Zn17-type structure and α-(Fe,V)

were observed. Different heat treatments were performed in the range of 900-1100◦C for 1 and

3 days but the 1:12 phase did not formed.
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Figure 3.7: The XRD patterns of SmFe12−xVx alloys with different V concentration annealed at 1000◦C for 2

days.

BSE-SEM images of the as-cast and annealed samples are shown in Fig. 3.9. Examination of

the as cast sample (Fig. 3.9(a)) revealed the composition of the light gray areas to be Sm: 33.8

at.%, Fe: 61.8 at.% and V: 4.4 at.%, the dark gray areas to be Sm: 13.6 at.%, Fe: 80.7 at.%

and V: 5.7 at.%, and darker inclusions to be Sm: 1.4 at.%, Fe: 88.0 at.% and V: 10.6 at.%. The

excess Sm appears as lighter inclusions, which are more visible in the inset of Fig. 3.9(a). After

annealing, no phase contrast was observed in the BSE-SEM image (Fig. 3.9(b)), confirming the

nearly pure SmFe11V phase.

3.2.3 Magnetic properties

Macroscopic properties

The T C values of SmFe12−xVx (x = 2.0, 1.5, 1.0) annealed samples were determined by using a

thermogravimetric analyser with a magnet. An example plot, for x = 1, is shown in the inset of
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Figure 3.9: BSE-SEM images of SmFe12−xVx (x = 1) (a) as-cast alloy and (b) annealed at 1000◦C for 2 days.

the Fig. 3.10. When heated, the sample loses its ferromagnetic properties at T C, resulting in an

apparent mass gain that can be detected by the TGA. As Fig. 3.10 displays, the T C increases

when V concentration is reduced. The T C of SmFe12−xVx compounds is determined by the

Sm-Sm, Sm-V, Sm-Fe and Fe-Fe exchange interactions. Among them, the Fe-Fe interactions are
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the strongest, and in a first approximation they determine the ordering temperature. Therefore,

it is reasonable that when the V concentration is reduced, the number of Fe-Fe interactions

is increased and hence the T C is increased. The non-linearity of the T C dependence on V

concentration is also observed. This non-linearity behavior has been recently predicted by T.

Fukazawa et al. [98] in RFe12−xCrx (R = Sm, Nd and Y) at low concentrations of Cr.
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Figure 3.10: Dependence TC on V concentration SmFe12−xVx heat-treated alloys. The inset shows a TGA

plot for x = 1.

Figure 3.11(a) shows the isothermal magnetization curves of oriented powders measured at

room temperature along (‖) and perpendicular (⊥) to the magnetic field. The M s for x = 2 is

83 Am2/kg (0.81 T, 12.0 µB/ f.u.), which is consistent with the values reported by Ohashi et

al. [42] (79.6 Am2/kg) and Wang et al. [59] (85 Am2/kg). An M s value of 115 Am2/kg (1.12 T,

16.8 µB/ f.u.) was obtained for SmFe11V (x = 1), which is 35% higher than M s of SmFe10V2

(x = 2). Assuming the magnetic moment of the Sm atoms is 1.5 µB [11], and the coupling of

the Sm and Fe moments to be parallel, the average magnetic moment per Fe atom would be 1.1

µB/Fe (x = 2) and 1.4 µB/Fe (x = 1), which means that the increase of magnetization when V

is reduced, is due to the increase of the magnetic moment per Fe atom (32%) also and not just

due to the increase of Fe concentretion (10%).

The µ0H A value was determined by plotting M in the ⊥ direction as a function of [(µ0H)−2],

where a change in the slope of the M in the vicinity of µ0H A is expected, because at this point a

transition from macroscopic to microscopic spin rotations takes place [99]. As the change of slope
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in M was not clear, it was considered that the minimum of the M derivative (see Fig. 3.11(b))

was related with the anisotropy field, as other authors have done it recently [87, 100]; these

values are consistent with those obtained from a rough estimation of the point at which the ‖

and ⊥ initial magnetization curves merge (the difference is less than 10%).
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Figure 3.11: (a) Magnetization curves of magnetically aligned powder particles of SmFe10V2 (x = 2) and

SmFe11V (x = 1) measured at room temperature in parallel (‖) and perpendicular (⊥) direction to the magnetic

field. The inset shows the XRD pattern of the oriented SmFe11V compound, indicating the easy magnetization

direction (002) along the c-axis. (b) M and dM /d[(µ0H)−2] as a function of [(µ0H)−2]. The anisotropy field is

determined from the derivative minimum.

For x = 1, µ0H A is found to be 1.1 T, which is slightly higher than for x = 2. The difference

can be attributed to a higher contribution from the second order anisotropy constant K2 for

x = 1. An anisotropy field of 9.8 T was obtained for x = 2. This is 1 T higher than the value

reported by Grössinger et al. [101], which was determined by the singular point detection method
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Table 3.5: Experimental magnetic properties of SmFe12−xVx heat-treated alloy.

x
µ0M s M s µ0H A K1 + 2K2 MAE T C

(T) (µB/f.u.) (T) (MJ/m3) (MJ/m3) (◦C)

2.0 0.81 12.0 9.8 3.2 1.58 321

1.0 1.12 16.8 11.0 4.9 1.92 361

using pulsed fields. An effective anisotropy constant was determined by using the equation µ0H A

= 2(K1 + 2K2) /µ0Ms [102], and the MAE was determined by calculating the area between the ‖

and ⊥ direction curves. These results are summarized in Table 3.5. Coercivity of the optimally

annealed samples found to be around 0.045 T.

Local magnetic properties: Mössbauer analysis

The Mössbauer spectra at room temperature for SmFe12−xVx (x = 2.0, 1.5, 1.0) heat-treated

alloys, and the fits are shown in Fig. 3.12. The spectra were fitted according to the local

environment of each of the three crystallographic Fe sites, 8i, 8j and 8f, and considering the 8i

as the preferred site of V atoms. The choice of the 8i site for the V atoms was based on the

results of previously reported neutron diffraction studies in RFe12−xVx (R = Y, Tb, Er, Nd, Dy,

Ho, Er) [103, 104, 38]. A visual inspection of the spectra indicates that is necessary to use more

than three sextets to fit the spectra.

The statistical distribution of V atoms over 8i site modifies the local environment of each

8i, 8j and 8f Fe atom, and thus the spectra of 8i, 8j and 8f sites are split in a set of subspectra.

Each subspectrum corresponds to one different environment, i.e. a different number of V atoms,

around the Mössbauer nuclei. The number and the relative areas of each subspectrum was

calculated from a binomial distribution [48]. The environments with probabilities lower than

3% were discarded. Nine sextets (3 for 8i, 3 for 8j and 3 for 8f ) were used to fit the spectrum

for x = 1, eleven (3 for 8i, 4 for 8j and 4 for 8f ) for x = 1.5 and ten (4 for 8i, 3 for 8j and 3

for 8f ) for x = 2. The sum of all the subspectra for a given site is presented in each spectrum

of Fig. 3.12. The assignment of the Fe sites was according with reports by Denissen et al. [96],

where the site dependence of hyperfine fields follows the condition 8i > 8j > 8f. The linewidths

and areas of the relative subspectra were fixed, and the total area of a given site, i.e. the sum

of all the subspectra of such site, was a free parameter.
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Figure 3.12: Room temperature Mössbauer spectra for SmFe12−xVx with different V concentration x.

Average 〈Bhf〉 and average of 〈δ〉 of all Fe sites, as a function of V concentration x, are listed

in Table 3.6. As it shows, the contribution of the 8i subspectra with the highest Bhf values

increases when going from x = 2 to 1. When the V concentration is reduced, the probability

of finding Fe atoms in 8i site is higher, then environments with more adjacent Fe atoms are

more likely, and the hyperfine fields are larger. This effect can be seen in Fig. 3.12, when the

Mössbauer spectrum of SmFe10V2, appears contracted in comparison with that of SmFe11V.

A similar behaviour was observed by Sinnemann et al. in GdFe12−xVx and Denissen et al. in

YFe12−xVx series [48, 96]. The increase of Bhf values are in agreement with the results of the

magnetization measurements, where there is an increase of the average moment per Fe atom
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Table 3.6: Mössbauer hyperfine parameters for SmFe12−xVx (x = 2.0, 1.5, 1.0). Average hyperfine field (〈Bhf〉),

average isomer shift (〈δ〉), and average hyperfine field per site. The values in brackets are assumed moments of

Fe in the different sites, in µB/Fe.

x
〈δ〉 〈Bhf〉

〈
B8i

hf

〉 〈
B8j

hf

〉 〈
B8f

hf

〉
(mm/s) (T) (T) (T) (T)

2.0 -0.08 21.0
22.5 20.6 19.2

[1.13] [1.03] [0.96]

1.5 -0.09 22.0 25.6 21.7 20.3

1.0 -0.15 25.0
26.9 24.6 23.4

[1.50] [1.37] [1.30]

from 1.1 µB/Fe to 1.4 µB/Fe when going from x = 2 to 1.

It is usual that the experimental 〈Bhf〉 values are converted to local moments by means of a

factor (hyperfine constant), which is considered the same for all Fe sites, and can be defined as

the ratio of the 〈Bhf〉 to the average moment per Fe atom. For SmFe11V, using µ = 1.4 µB/Fe

and 〈Bhf〉 = 25.0 T, leads to a conversion factor of 18.0 T/µB and for SmFe10V2 a factor of 20.0

T/µB. With these factors, the magnetic moments of Fe at different sites were calculated, as the

values listed in square brackets in Table 3.6.

The negative values of 〈δ〉 indicate an increase in s electrons charge density at the Fe nuclei

in SmFe12−xVx, compared to pure Fe [96]. The 〈δ〉 decreases with decreasing V concentration.

This behavior could be explained in terms of a redistribution of the 4s electron charge with a

slightly higher tendency to be around the Fe atoms than V ones. When the V concentration is

reduced, the screening effect of the 4s electrons is reduced as well, producing an increase of the

s charge density at the nucleus and hence a decrease of the isomer shift.

3.2.4 Theoretical calculations

A collaboration was open with Dr. Vekilova, Dr. Herper and Dr. Eriksson from University of

Uppsala, who studied SmFe11V and SmFe10V2 phases from first principles in order to compare

our experimental results.

For the electronic structure, lattice parameters and phase stability, VASP simulation pack-

age [105, 106, 107] was used within the projector augmented wave (PAW) method [108]. The
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electronic exchange and correlation effects were treated by the generalized gradient approxi-

mation (GGA) in the Perdew, Burke, and Ernzerhof (PBE) form [109]. A 13 atom cell of

SmFe12−xVx, where x = 1 and 2, was considered. The plane-wave energy cut-off was set to 268

eV. The converged k-point mesh was found to be 16×16×16 Monkhorst-Pack k-points [110]. For

the estimation of phase stability of ternary compounds the following equation was used:

∆Hf =
1

26

[
2H (SmFe12−xVx) − H (Sm2Fe17)

−2xH (V) − (7 − 2x)H (α-Fe)

]
, (3.2)

where x = 1, 2 is the number of V atoms in the cell on the Fe sublattice. The enthalpy

of the SmFe12−xVx system was calculated and compared with the enthalpy of another phase

stable at these conditions (Sm2Fe17) as well as with the enthalpy of pure elements, V and

α-Fe. The obtained VASP lattice parameters were used for the calculation of the magnetic

properties with help of the highly accurate all-electron FP-LMTO method implemented in the

RSPt code [111, 112]. Integration over the Brillouin zone was performed using the tetrahedron

method with Blochl’s correction [113]. The k-point convergence of the MAE for the chosen

supercell size was found when increasing the Monkhorst-Pack mesh [110] to 24×24×24 and it

was further used in all calculations. For the treatment of the 4f electrons of rare-earth Sm atom

the spin polarized core approximation was used.

Table 3.7 summarizes the values of formation of enthalpies, structural and magnetic proper-

ties of SmFe12−xVx (x = 1 and 2) obtained theoretically. Negative formation enthalpy indicates

that the structure is stable. Calculations show that with decreasing concentration of V from

2 to 1 the SmFe12−xVx structure maintains its stability. The close numbers of the formation

enthalpies with one slightly lower for the SmFe10V2 phase might reflect the preferential stabi-

lization of this phase. However, SmFe11V is nearly as stable as SmFe10V2, which is consistent

with the experimental results.

Table 3.7: Theoretically obtained enthalpy of formation, cell volume, c/a ratio, magnetization and MAE of

SmFe11V and SmFe10V2.

x
∆Hf V c/a Ms µ0Ms MAE

(eV/u. cell) (Å3) (µB/f.u.) (T) (MJ/m3)

2 -0.87 339.6 0.5519 12.4 0.85 1.31

1 -0.73 336.4 0.5520 15.8 1.00 1.66
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As one can see from Table 3.7, the volume of the structure slightly reduces, but the c/a

ratio remains almost unchanged with the decrease of the V concentration. That is in line with

the observation made in experiment. The MAE was calculated as the energy difference between

the (110) and (001) crystallographic directions. The MAE and magnetic moment of SmFe11V

are substantially higher than those of SmFe10V2. Theoretically obtained MAE increases with

the decrease of the V concentration in good agreement with experiment. A 26% increase of

MAE was obtained when the concentration of V was reduced from 2 to 1 atom per formula unit.

Theoretical values of 1.66 and 1.31 MJ/m3 for SmFe11V and SmFe10V2, respectively, are in good

agreement with corresponding experimental values of 1.92 and 1.58 MJ/m3. An increase of the

magnetization by about 18% was also observed; magnetic moment increases due to reduction of

V content, which induces an increase of the Fe magnetic moment, in addition to the increase of

the Fe content.

3.3 The Zr substituted Sm1−xZrxFe11V series

In some 1:12 Nd compounds, the substitution of Nd by Zr has been shown to increase the

stability of the 1:12 phase [76, 75]. This section reports the effect on the structural and magnetic

properties of the partial substitution of Sm by Zr in Sm1−xZrxFe11V (0 ≤ x ≤ 0.6). The alloys

were prepared by arc melting and homogenized at temperatures ranging from 1000 to 1100◦C

for 3-4 days, then they were quenched in water. The Sm losses were compensated by adding

appropriate amount of excess Sm.

3.3.1 Structural properties

Figure 3.13 displays the XRD patterns of the optimally annealed samples of Sm1−xZrxFe11V

(0 ≤ x ≤ 0.6). The major phase in all these samples is the 1:12, followed by the cubic α-

(Fe,V) and the cubic laves phase ZrFe2 (MgCu2-type, space group Fd3̄m). As the Zr content

increases the α-(Fe,V) phase increases and the Laves phase only appears when x ≥ 4. Laves-

phase compounds occur frequently in alloy systems involving transition metals [114]. Lattice

parameters and volume percentages 1:12, α-(Fe,V) and ZrFe2 laves phase in each sample obtained

from the Rietveld analysis of the XRD patterns are listed in Table 3.8.
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Figure 3.13: XRD patterns of optimally annealed Sm1−xZrxFe11V optimally heat-treated alloys.

As Zr has a smaller atomic radius (1.60 Å [97]) than Sm (1.80 Å [97]), the substitution of

Zr results in lattice contraction (unit cell decreases). A good indication of this, is the shifting

of the characteristic 1:12 peaks to higher 2θ angles with increasing Zr content, as it is displayed

from the vertical dashed line (Fig. 3.13).

Table 3.8: Volume fraction and lattice parameters of the phases present in Sm1−xZrxFe11V (0 ≤ x ≤ 0.6) heat

treated alloys.

Volume fraction Lattice Parameters

x 1:12 α-(Fe,V) ZrFe2

1:12 α-(Fe,V) ZrFe2

a(Å) c(Å) a(Å) a(Å)

0.0 0.99 0.01 8.509 4.758 2.876

0.2 0.95 0.05 8.491 4.761 2.875

0.4 0.91 0.06 0.03 8.483 4.760 2.878 7.027

0.6 0.70 0.23 0.07 8.482 4.757 2.876 7.029
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Figure 3.14: Variation of lattice parameters of 1:12 phase with Zr-content in Sm1−xZrxFe11V in optimally

annealed alloys.

Variations in the lattice parameters, unit cell volume and c/a ratio of 1:12 phase are shown

in Fig. 3.14. The constant a decreases monotonically from 8.509 to 8.482 Å with increasing Zr

from 0 to 0.6, while c oscillates around 4.759 Å. The unit cell contraction comes with a 0.7% of

volume reduction when x goes from 0 to 0.6. The contraction of a was recently observed in the

Sm1−yZry(Fe0.8Co0.2)11.5Ti0.5 (0 ≤ y ≤ 0.3) alloys reported by Tozman et al. [87].

Figure 3.15: BSE-SEM of optimally annealed Sm1−xZrxFe11V alloys (a) x = 0.2 (b) x = 0.4 and (c) x = 0.6.
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Figure 3.15 shows BSE-SEM micrographs of the annealed alloys x = 0.2,0.4,0.6. After

the annealing, narrow dendrites of α-(Fe,V) between 5 and 20 µm are formed and uniformly

distributed, the matrix phase is identified as the 1:12, and the light gray areas as the ZrFe2 Laves

phase, this last phase is only visible for x = 0.6. A SEM micrograph and an EDX elemental

mapping for x = 0.6 is shown in Fig. 3.16. From the mixed map, is clear the segregation of

the α-(FeV) and the ZrFe2 phases, the former are represented by the green-red dendrites and

the latter by the blue-green’s. The chemical composition of the 1:12 compounds determined by

EDX are listed in the Table 3.9.

Figure 3.16: SEM and EDX composition images of Sm, Zr, V and Fe elements on the polished surface of the

optimally heat treated Sm1−xZrxFe11V (X = 0.6) alloy.
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3.3.2 Magnetic Properties

Thermomagnetic scans, which are presented in Fig. 3.17 confirm that the 1:12 phase is not the

only magnetic phase present, but there is also some ZrFe2, and its volume fraction becomes more

evident as Zr content increases. ZrFe2 is a ferromagnetic phase of large Fe magnetic moment,

Bhf and high T C. In the literature, Brückner et al. found that T C increases from 337 to 525◦C

as the Fe content increases [115]. In this case, the T C for x = 0.4 and 0.6 is 436 and 424◦C,

respectively. On the other hand, the T C of 1:12 phase decreases from 361 to 310◦C with the Zr

substitution from x = 0 to 0.6, respectively. The T C values found are consistent with the phases

observed from the XRD patterns.
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Figure 3.17: TC of optimally annealed Sm1−xZrxFe11V alloys.

Figure 3.18 shows the room temperature magnetization curves of the oriented powders of

Sm1−xZrxFe11V alloys measured ‖ and ⊥ to the orientation direction. They are arranged in

order of increasing Zr content, x. On the right side, the XRD patterns of the oriented powders

are shown. The M s values for the 1:12 phase were deduced by subtracting the contribution

from the secondary phases taking into account their volume fractions. The M s value at room

temperature rises from 115 to 138 Am2/kg with increasing x from x = 0.0 to 0.6.

The µ0H A was determined in the same way as described in section 3.2.3, by plotting M

in the perpendicular direction as a function of [(µ0H)−2], and the minima of the derivative

was taken as µ0HA. Table 3.9 summarizes the intrinsic magnetic properties together with the
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chemical composition of the compounds determined by EDX. As Zr content is increased, the

µ0H A decreases from 11.1 T for x = 0.0 to 8.8 T for x = 0.6, which means that even for highest

Zr content the µ0H A value is reasonably high. In accordance with the anisotropy field, XRD

measurements of field oriented powder samples indicate that the easy magnetization direction

is along (002) c-axis. The other reflexions like (321), (202) are attributed to the presence of the

secondary phases or misoriented grains.
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Figure 3.18: (Left) Magnetization curves measured on oriented samples of Sm1−xZrxFe11V alloys. (Right)

XRD data of oriented samples of Sm1−xZrxFe11V alloys.

All the magnetization curves measured in direction ⊥ to the orientation have a curvature
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in the low-field portion. This can be due to the combination of two effects, the presence of

a soft phase of high susceptibility α-(Fe,V), and poor alignment, as the < 38 µm particles in

the powder samples are certainly not all single crystals and also have irregular external shapes

that prevent their perfect alignment. The demagnetization factor of the aligned powders was

considered negligible as the µ0H A was large enough.

Table 3.9: Intrinsic magnetic properties of the 1:12 phase in Sm1−xZrxFe11V alloys.

x Composition Ms (Am2/kg) µ0HA (T) TC (◦C)

0.2 Sm0.77Zr0.20Fe10.98V1.05 115 9.8 335

0.4 Sm0.61Zr0.40Fe11.03V0.96 129 9.2 324

0.6 Sm0.40Zr0.60Fe11.02V0.98 138 8.8 310

3.4 Summary and conclusions

In this chapter the intrinsic properties of different Sm-based 1:12 systems were studied both in

ribbons and bulk.

In the first section, a series of melt-spun ribbons of (Sm1−xCex)Fe9Co2Ti (x =

0.0, 0.25, 0.50, 0.75, 1.0) were studied by Mössbauer spectroscopy. Here, it was possible to

establish the highly disordered character of the as-spun ribbons. The Bhf showed broad distri-

butions centered around 10 T and 21 T. Mössbauer analysis on heat-treated ribbons allowed to

identify the different magnetic responses of the Fe located in the 8i, 8j and 8f sites. Analysis

on the spectra indicated a redistribution of Co in the 8f and 8j sites as the Sm was replaced by

Ce. For x ≤ 0.5 the occupation percentage was 70/30 (8j /8f ), whereas for x > 0.5 was 50/50.

This coincided with the decreasing of the Bhf in the 8j site whereas 8f was increased. The δ

also showed variations for Ce concentrations above 0.5. When the redistribution of Co in the 8j

and 8f sites was 50/50, coincided with the constant behaviour of the H A.

In order to obtain the SmFe12−xVx alloys with V content smaller than reported earlier [59,

34, 91], the phases and magnetic properties in the alloys with x varying from 0.5 to 2.0 were

studied both experimental and theoretically. The alloys were prepared by arc-melting followed by

homogenization at temperatures in the range of 900-1100◦C for 1 to 3 days. After the appropriate

homogenization, apart from the sample with x = 0.5, the main phase identified was the ThMn12
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structure, with a very low α-(Fe,V) around 0.5-1%. The volume of the structure slightly reduced

with the decrease of the V concentration. A strong peak (002) in the X-ray diffraction patterns

was observed for the oriented powders, confirming a uniaxial magnetocrystalline anisotropy.

The theoretical results are consistent with the experimental. The reduction of x from 2 to 1,

increased the T C from 321 to 361◦C, M s from 83 to 115 Am2/kg and µ0H A from 9.8 to 11 T.

Regarding the Mössbauer measurements, the decrease of V content from 2 to 1, increased the

〈Bhf〉 from 21 to 25 T, whereas the 〈δ〉 decreased from -0.08 to -0.15 mm/s. The study suggests

that the family of SmFe12−xVx (x = 1.0, 1.5, 2.0) compounds are good candidates for permanent

magnets applications. In particular, the newly synthesized SmFe11V compound showed superior

magnetic properties.

In the last section, substitution of Zr for Sm in Sm1−xZrxFe11V (0 ≤ x ≤ 0.6) was studied

in order to analyze the evolution of the magnetic and structural properties with a non rare-

earth element. For all the samples optimally annealed, the major phase was the 1:12 phase,

followed by α-(Fe,V) and the laves (MgCu2) ZrFe2 phase. For high concentrations of Zr there

was segregation of Zr and Fe and hence ZrFe2 was formed. The Laves phase was detected for

x = 0.4 and 0.6, with T C of 436 and 424◦C, respectively. The formation of α-(Fe,V) increased

with the Zr content. The substitution of Zr resulted in a contraction of 0.7% of the 1:12 cell

volume. The lattice constant a decreased monotonically from 8.509 to 8.482 Å with increasing Zr

from 0 to 0.6, while c oscillated around 4.759 Å. Oriented powder XRD measurements indicated

that the easy magnetization direction was along (002) c-axis. As Zr content increased from

x = 0.0 to 0.6, the µ0HA decreased from 11 to 8.8 T and the T C from 361 to 310◦C. On the

other hand, the M s increased from 115 to 138 Am2/kg.



Chapter 4

Development of coercivity

4.1 Introduction

Having a material with good intrinsic magnetic properties do not guarantee a good hard magnet,

however can be considered as a starting point to process one. Transferring the intrinsic proper-

ties into extrinsic properties requires an appropriate processing, and it is a complex task. The

development of coercivity in an uniaxial ferromagnetic 4f -3d compounds is achieved through

refinement of the grains. In practice, for permanent magnet manufacturing, this refinement typ-

ically involves rapid solidification or powder metallurgy. Although the former had been proven

to work for the ThMn12-type alloys [116, 117, 94], only powder metallurgy is really suitable in

the production of permanent magnets industrially. Mainly, because of its cost effectiveness [118]

(mass production ability, low energy consumption and minimum number of steps) and the pos-

sibility of being able to control the density, particle size and microstructure.

This chapter presents different approaches to develop coercivity in Sm-Fe-V based alloys

with ThMn12 structure (hereafter 1:12), such as grain size reduction by mechanical milling, bulk

hardening by intergrain boundary phases, and amorphization induced by mechanical milling

and melt-spinning and subsequent recrystallization of the hard 1:12 phase upon appropriate

heat treatments.

69
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4.2 Grain size reduction by mechanical milling

The starting stoichiometric SmFe10V2 alloy was prepared by arc melting followed by homoge-

nization for 2 days at 1000◦C, as it was determined in chapter 3. The heat-treated alloys were

crushed into particles of diameter less than < 300 µ, after removing the impurities of the ingots

surface. The powders were sealed into a hardened steel vial with several steel balls of 12, 8,

5.5 and 4 mm in the ratio of powder to ball of 1 to 20 in hexane, to protect from oxidation.

The powder was high energy ball-milled from 2 min to 4 h. After the milling, the powder was

washed with ethanol and dried in a vacuum chamber. For heat treatment, the powder was

pressed into cylinders of 5 × 3 mm in diameter and height, respectively, and sealed in Ar-filled

quartz ampoules. The samples were sintered at temperatures ranging from 450 to 1000◦C for

20 and 40 min, followed by quenching in water.

4.2.1 Structural and magnetic properties

Figure 4.1(a) presents the XRD patterns of the as-milled powder milled for different times. The

XRD patterns of the starting powder show diffraction peaks corresponding to the 1:12 phase

and a very low fraction (< 2%) of α-(Fe,V). After 30 min milling, XRD peaks broaden but still

the starting alloy patterns remain unchanged. As the milling time increases, there is a slow

decomposition into the metastable TbCu7-type (hereafter 1:7) structure and α-(Fe,V) phases.

After 4 h of milling the transformation into the 1:7 structure is complete (some reflections of

1:12 phase, for instance the [3 1 0] disappear).

During milling the intensity of the reflections decreases gradually and all peaks become

broader with increasing milling time, indicating that a large number of defects and dislocations

are formed during the milling. Also the broadened diffraction peaks indicate a finer grain size.
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Figure 4.1: X-ray diffraction patterns of SmFe10V2 (a) as-milled powder with different milling times (b) 4 h

milled powder annealed at 450, 500, 750 and 1000◦C for 40 and 20 min.

It is worth noting that the 1:7 structure has been considered as a precursor of some 1:12

alloys when the intermetallic compounds is prepared by melt-spinning, mechanical alloying or

mechanical milling. The formation of the hexagonal 1:7 structure was reported before in Nd-

Fe-Ti [119, 120] and Sm-Fe-Ti [121] alloys, prepared by mechanical alloying and subsequent an-

nealing at temperatures ranging from 600 and 850◦C respectively. In NdFe11Ti alloy, Tang [122]

reported the decomposition of Nd(Fe,Ti)12 to Nd(Fe,Ti)7 and α-Fe(Ti) solid solution on mechan-

ical milling. For longer times of 5h milling, it was observed a transformation to an amorphous

phase and a supersaturated bcc solid solution of Ti in Fe.

Although it was reported that increasing the annealing temperature promoted the trans-

formation of 1:7 to 1:12 phase, in our case after heat-treating the 4 h milled powder, at

temperatures ranging from 450 to 1000◦C (see Fig. 4.1(b)), the 1:12 could not be formed. In

contrast, there is a crystallization to an unknown phase at 500◦C, and at higher temperatures,
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only the precipitation of α-(Fe,V) phase occurs.

Figure 4.2: SEM Secondary electron micrographs of the SmFe10V2 powder milled at different times.

The SEM secondary electrons images in Fig. 4.2 shows morphology of the SmFe10V2 powders

milled up to 4 hours. In the first hour, the as-milled particles with sharp edges evolve into faceted

particles. After 1 h, flakes start to form and by 4 hours they become more evident. The average

particle size decreases with the increase in milling time, going from 30 to 8.8 µm during the first

30 min, however the size is not uniform throughout. There are bigger particles which have not

been milled properly. For longer milling time, the particles are more homogeneous and although

the morphology changes, the average size is approximately the same. After milling for 4 h, the

average flake size is ranging from 2 to 10 µm with thickness from 0.2 to 0.5 µm.
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Figure 4.3: (a) Demagnetization curves of the SmFe10V2 powder with different milling times (b) Variation of

coercivity and magnetization at 3 T with milling time.

Figure 4.3(a) shows the demagnetization curves of SmFe10V2 powders milled for different

times. The µ0H c value increased from 0.06 T in the starting powder to reaching a maximum of

0.21 T. This increase of µ0H c may be attributed to the grain size reduction and residual stress.

Milling for more than 2 h or more, results in decrease of µ0H c value which may be attributed

to the low anisotropy of the 1:7 structure as observed from XRD in Fig. 4.1(a).
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Figure 4.4: (a) Demagnetization curves of the 4 h milled powder heat treated at 450, 500, 750 and 1000◦C for

40 and 20 min (b) Variation of coercivity and magnetization at 3 T applied field with temperature.
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The 4 h hour milled powder was selected to do different heat treatments at temperatures

between 450 and 1000 ◦C, as the 1:7 structure was completely formed in this powder. From

Fig. 4.4(b) can be seen that the µ0H c decreased and M3T value increases after annealing as

it was expected due to the formation of the α-(Fe,V) soft phase. The increase of α-(Fe,V)

after annealing results from the Sm evaporation, due to its high vapor pressure and enthalpy of

vaporization (see Appendix C).

4.3 Bulk hardening by intergrain boundary phases

One of the alternatives for manufacturing functional magnets, different to the sintering and rapid

solidification, is via recrystallization of regularly cast ingots. If formation of the hard magnetic

phase is initially suppressed, subsequent heat treatment can be tuned to ensure that the phase

crystallizes with the proper microstructure. The only known R(Fe,M)12 alloy susceptible to

the bulk hardening is the Sm(Fe,V)12; it solidifies into a mixture of the α-(Fe,V) and SmFe2

(hereafter 1:2) phases and, after controlled crystallization of the SmFe10V2 phase, develops a

µ0H c value up to 3.7 kOe [123].

One of the strategies to enhance the µ0H c value by bulk magnetic hardening is, in a sim-

ilar way to the Alnico magnets. In these magnets, the magnetic hardness originates from the

shape anisotropy of FeCo-rich magnetic rods (α1 phase) which are embedded in a non-magnetic

NiAl-rich matrix (α2 phase). Lanthanum is the only element among the R not forming binary

compounds with Fe, and it was also shown to avoid the 1:12 structures [73]. It is, therefore, con-

ceivable that addition of La to R(Fe,M)12 alloys will lead to a composite of the R(Fe,M)12 and

La phases, thus facilitating the development of µ0H c value through heat treatment. To test this

hypothesis, an alloy of Sm0.12Fe0.75V0.13)98La2 was prepared by arc melting and homogenized

for 10 to 20 h at temperatures 700-800◦C.

The XRD patterns shown in Fig. 4.5 reveal that the as-cast alloy is composed of five phases:

Sm(Fe,V)12 (tetragonal, I 4/mmm), SmFe2 (cubic, Im 3̄m), α-(Fe,V) (cubic, Im 3̄m), Sm3La

(hexagonal, P63/mmc) and Sm (hexagonal, P63/mmc). The lattice parameters and vol.% are

listed in table 4.1.

The SmFe2 Laves phase has a cubic MgCu2-type (C15) structure with space group of Fd 3̄m

(No. 227) [124, 125]. In this structure, the Sm atoms occupy the 8a sites, and Fe atoms the 16d
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sites. It was reported that SmFe2 is ferromagnetic at room temperature (TC = 688 K) and its

saturation moment is 2.68 µB/mol (57.1 emu/g) [23, 125].

  

 

A s - c a s t

♦♦

• S m ( F e , V ) 1 2    Ñ  S m
♦  S m F e 2           Å  S m 3 L a
♦  a - ( F e , V )

• • •
•

•

∇

∇

∇

∇

∇

∇

∇

∇⊕⊕

∇

⊕

♦

 7 0 0 ° C ,  2 0 h  ♦

♦

♦
♦•

•
•

•

••
•

••• •

•• •
•

•

•∇⊕ ∇ ∇⊕

∇

⊕∇⊕ ∇

8 0 0 ° C ,  2 0 h  

•

•

•

•
•

•

• •• •
•

⊕

•⊕⊕ ∇ ∇⊕
⊕

  8 0 0 ° C ,  1 0 h

•
•

•
•

•
•

•

•

•
• •• •

••⊕⊕∇ ∇⊕ ⊕

 

8 0 0 ° C ,  1 0 h  +  7 0 0 ° C ,  2 0 h    

 
♦ •

••• •

•
•

•
•

•

•

• ⊕ •∇⊕⊕∇ ⊕

⊕

3 0 3 5 4 0 4 5 5 0 5 5

8 0 0 ° C ,  1 0 h   +  7 0 0 ° C ,  1 0 h     

2 �  ( D e g r e e s )

♦♦
•

• •

•
•

• •
•

• •
•••∇⊕∇ ⊕ ⊕∇

Figure 4.5: The XRD patterns of (Sm0.12Fe0.75V0.13)98La2 alloy in as-cast state and after heat treatment at

700◦C for 20 h, 800◦C for 20 h, 800◦C for 10 h, 800◦C for 10 h + 700◦C for 20 h, 800◦C for 10 h + 700◦C for 10

h.

The heat-treated sample at 700◦C for 20 h shows an increase of 1:12 and 1:2 vol.%, and

a decrease of α-(Fe,V). The contribution of the α-(Fe,V) becomes neglible (< 1%) or zero, for

the heat-treated samples at 800◦C. Combination of different heat treatments 800◦C for 10 h +

700◦C for 20 h, 800◦C for 10 h + 700◦C for 10 h allow to suppress the α-(Fe,V) and to retain

the 1:2 phase. In all heat-treated samples the 1:12 phase exists as the major phase. On the

other hand, the Sm and Sm3La are still present after heat treatment, however in most cases,

their vol.% decrease in a 40%.
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According to previous reports, at ambient conditions Sm normally assumes a rhombohedral

structure (α-form) [126, 127]. Upon heating to 731◦C, its crystal symmetry changes into hcp,

although this transition temperature has been found to be dependent on the metal purity [128].

Further heating to 917◦C transforms the metal into a bcc phase. Heating to 300◦C combined

with compression to 40 kbar results in a dhcp structure [129, 130]. The dhcp phase could

be also produced without compression, using a non-equilibrium annealing regime with a rapid

temperature change between 400 and 900◦ [131].

Table 4.1: Lattice parameters and volume fractions of different phases, present in the Sm0.12Fe0.75V0.13)98La2

alloy in as-cast state and after heat treatment at different conditions, derived from Rietveld analysis.

Sample a1:12 ± ∆a1:12 c1:12 ± ∆c1:12 V1:12 V1:2 Vα−(Fe,V) VSm VSm3La

As cast 8.521 ± 0.004 4.781 ± 0.003 57.5 5.7 30.1 5.3 1.4

700/20h 8.499 ± 0.001 4.757 ± 0.001 69.1 13.5 14.0 2.2 1.2

800/20h 8.517 ± 0.001 4.763 ± 0.001 95.4 0.0 0.0 4.2 0.5

800/10h 8.516 ± 0.001 4.765 ± 0.001 94.9 0.0 0.8 3.7 0.6

800/10h - 700/20h 8.522 ± 0.002 4.767 ± 0.001 95.7 1.0 0.0 2.1 1.3

800/10h - 700/10h 8.522 ± 0.002 4.767 ± 0.001 94.8 1.9 0.0 2.9 0.5
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Figure 4.6: The SEM-BSE micrographs of (Sm0.12Fe0.75V0.13)98La2 alloy: (a) as-cast and heat-treated alloys

at (b) 700◦C for 20 h (c) 800◦C for 20 h (d) 800 for 10 h + 700◦C for 10 h.

Figure 4.6 shows the SEM-BSE microstructures images of as-cast alloy and after heat treat-

ment at 800◦C for 20 h, 700◦C for 20 h and 800 for 10 h + 700◦C for 10 h. The EDX compo-

sitional analysis of the alloys reveals that the as-cast ingot consists mostly of α-(Fe,V), 1:2, a

small amount of 1:12, Sm and Sm3La phases. The brighter regions correspond to the Sm and

Sm3La phases. Annealed alloys develop a microstructure consisting of 1:12 grains surrounded

by either La (or La-Sm)-rich (at 800◦C) or 1:2 (at 700◦C). The grain size of heat-treated alloy at

700◦C is around 3-6 µm, but in the alloy annealed at 800◦C, grain growth occurs and becomes

8-15 µm.
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Figure 4.7: Room-temperature hysteresis loops of (Sm0.12Fe0.75V0.13)98La2 alloy: as-cast, heat-treated at

800◦C and 700◦C for 20 h. Inset: DTA scan of heat-treated alloy at 700◦C for 20 h.

Table 4.2: Magnetic properties, M 3T, M r and µ0H c of (Sm0.12Fe0.75V0.13)98La2 as-cast and heat-treated

alloys extracted from the hysteresis loops in Fig. 4.7.

Sample
M 3T M r µ0H c

(T) (Am2/kg) (Am2/kg)

As-cast 77 18 0.09

700/20h 62 33 0.33

800/20h 64 24 0.18

800/10h 66 30 0.21

800/10h - 700/20h 64 32 0.26

800/10h - 700/10h 66 31 0.22

Figure 4.7 shows the hysteresis loops of (Sm0.12Fe0.75V0.13)98La2 as-cast and heat-treated

alloys at 800 and 700◦C for 20 h measured by applying a maximum field of 3 T. The as-cast

alloy shows a M 3T, M r and µ0H c values of 77 Am2/kg, 18 Am2/kg and 0.09 T, respectively.

After annealing at 700◦C, the values of M r and µ0H c increases to 33 Am2/kg and 0.33 T,
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respectively, and M 3T decreases to 62 Am2/kg. Increasing the heat treatment temperature

decreases the value of µ0H c without significantly affecting the M 3T and M r values. Table 4.2

lists the M 3T, M r and µ0H c values obtained from the hysteresis loops (Fig. 4.7) along with the

values for the rest of the samples. The heat-treated alloy at 700◦C exhibiting high µ0H c of 0.33T

has the smallest vol.% of 1:12 phase (69.1%) and the maximum of 1:2 phase (13.5%) compared

to the rest of the annealed alloys.

The M 3T does not change significantly with the heat treatment conditions above 800◦C as

the 4 samples contain almost same vol.% of the 1:12 phase(≈ 95%). Despite containing smallest

vol.% of 1:12 phase, the heat-treated alloy at (700◦C for 20 h) shows M 3T value very close to

other annealed samples, this is because of important contribution of α-(Fe,V). The best results

achieved were: µ0M r = 0.37 T, µ0H c = 3.3 T, (BH)max = 33.7 kJm−3(4.24 MGOe).

The DTA thermogram of the heat-treated alloy at 700◦C for 20 h (see Fig. 4.7, inset) reveals

a probable eutectic reaction involving the La-Sm phase at 753◦C (in the binary alloy systems,

the eutectic reaction between La and Fe occurs at 770◦C, and the one between Sm and SmFe2

at 720◦C). The same eutectic reaction was observed in the heat-treated alloy at 800◦C for 20 h.

These results suggest that the µ0H c value is not developing because La addition, but because

the combination of other effects, like the grain size and the ratio of 1:12 and 1:2 phases. Shultz

et al. reported the presence of 1:2 phase in Sm15Fe70V15 alloy prepared by mechanical alloying

followed by a heat treatment at 700◦C for 30 min. They reported a µ0Hc value of 1.12 T [132].

4.4 Mechanical milling: amorphization and crystallization of

off-stoichiometric alloys

As shown in the section 4.2, one of the obstacles to get the 1:12 phase, and hence the µ0H c value,

in the Sm(Fe,M)12 alloy system is the Sm losses that occur throughout the processing. In order

to compensate the Sm losses, off-stoichoiometric Sm-Fe-V alloys, with nominal composition of

Sm12Fe73V15 equivalent to SmFe10V2, were prepared and processed to get powder with reason-

able µ0H c value. The method consisted of preparing the master alloy with 1:12 phase, followed

by its amorphization by means of mechanical milling, and lastly the crystallization of the nano

sized grains of 1:12 phase through short heat tratment. Figure 4.8 illustrates the different stages

followed.
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Figure 4.8: Processing flow diagram

Alloys with nominal composition of Sm12Fe73V15 were prepared by arc-melting the pure

elements Sm (pieces 99.9%), Fe (pieces 99.97%) and V (sheets 99.7%) under Ar atmosphere.

The ingots were heat-treated in Ar to maximize the volume fraction of the 1:12 phase at 800◦C

for 20 h and quenched in water. The ingots were crushed in a hardened steel mortar to obtain

powders with particle size < 300 µm. The powders were milled for 10 h under Ar atmosphere in

a SPEX mill unit using a custom-made hardened steel vial equipped with a vacuum valve. Steel

balls of 12, 8, 5 and 4 mm diameter and a ball to powder to balls mass of 1:20 was used. The

powders were sealed in Ar-filled quartz ampoules and subsequently annealed in the temperature

range of 600-800◦C for 15-45 min.

4.4.1 Homogenized alloy

Figure 4.9 shows the XRD pattern of Sm12Fe73V15 alloy annealed at 800◦C for 20 h. The

homogenized alloy shows reflections from Sm(Fe,V)12 (estimated 83.1 vol.%), SmFe2 (14.7%),

Sm (1.5%) and an almost undetectable α-(Fe,V) phase (0.8%). The lattice parameters obtained

by Rietvelt analysis are given in the same figure. In contrast with the stoichiometric alloys

(section 4.2), the Sm excess results in the formation of 1:2 phase and the segregation of metallic

Sm, both from the same nature than the previous section.
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Figure 4.9: (Top) X-ray diffraction pattern of Sm12Fe73V15 homogenized at 800◦C for 20 h. (Bottom) computed

phases from the Rietvelt analysis.

The microstructure of the as-cast sample reveals coarse α-(Fe,V) regions with a dendritic

morphology surrounded by small 1:2 grains of 0.1-1 µm. The matrix and brighter regions were

detected to be the 1:12 and Sm phases, respectively. As expected, from the XRD results, the

predominant phase in the homogenized microstructure is the 1:12 (Fig. 4.10(b)) with small

grains of about 1 µm (see the inset of Fig. 4.10). In this case, the matrix and the minor brighter

regions are identified to be SmFe2 and Sm phases, respectively. The morphologies indicate that

the solidification sequence for the major phase is from α-(Fe,V) to 1:12.

Figure 4.10: SEM-BSE images of Sm12Fe73V15 alloy: (a) As-cast (b) homogenized at 800◦C for 20 h
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4.4.2 Mechanical milling and Sm(Fe,V)12 crystallization

After 10 h of milling, the particle size is quite homogeneous and is found to be (3.1± 0.4) µm as

shown in Fig. 4.11(a). The XRD pattern of the as-milled powder shown in Fig. 4.11(b), depicts

a strong broad peak around 44.3◦ along with an almost negligible broad halo peak. No peaks

corresponding to 1:12 and 1:2 phases are present. This indicates the formation of an amorphous

phase coexisting with an α-(Fe,V) phase. The small shift from the pure α-Fe diffraction angle

(2θ = 44.7◦C) suggests a lattice expansion, this is a result from the solid solution of V atoms in

the Fe-based bcc lattice. In contrast with the milling of the stoichiometric alloy (section 4.2), it

seems that milling in hexane does not facilitate the amorphization of this alloy, and it is more

convenient the use of Ar.

3 0 3 5 4 0 4 5 5 0 5 5
2 �  ( d e g r e e s )

1 0  h  -  m i l l e d
( b )

Figure 4.11: The Sm12Fe73V 10 h milled powder (a) SEM secondary electrons-image (b) XRD pattern
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Figure 4.12: X-ray diffraction patterns of as-milled Sm12Fe73V powder annealed at indicated temperatures.

Figure 4.12 shows the XRD patterns of 10 h mechanically milled Sm12Fe73V15 sample, heat-

treated at temperatures between 600 and 800◦C for 30 min. As it is noted, at 600◦C broad

peaks corresponding to the Sm(Fe,V)12 starts to appear and it is completely formed at 700◦C.

With further increase in the temperature, the 1:12 peaks becomes sharper, as an effect of the

cristallite size growth. For all the heat-treated samples, the additional peaks were identified

as SmFe2, Sm and Sm-oxides. In particular, 1:2 is present at 600◦C, and the vol.% increases

from 3 to 6% at 700◦C. For temperatures above 700◦C, the 1:2 phase decomposes, resulting in

a Sm segregation, and hence a higher vol.% of the 1:12. All the heat-treated samples contain at

least 3 different Sm-oxides, SmO (cubic face-centered, space group Fm3m) and the sesquioxides

Sm3O2 (cubic, space group I 213) and Sm2O3 (cubic, space group Pn 3̄m).
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It appears that the all Sm-oxides are formed as a direct consequence of the annealing of the

very fine powders (≈ 3 µm). In previous investigations from other authors, SmO was formed

when a small sliver of Sm metal was heat-treated to 626◦C for 15 min in an evacuated vitreous

silica capillary [126]. On the other hand, Sm2O3 (bixbyite structure I 213) was identified by

Goldschmith et al.[133] by using temperatures ranging 600-750◦C. In our case, the Sm-oxides

physically could be observed as a coating formed in the tube walls during the annealing as

shown in Fig. 4.13.

Figure 4.13: Appearance of the tubes after the heat treatment.

The hysteresis loops of Sm12Fe73V 10 h mechanically milled powders and heat-treated at 600,

700, 750, 775 and 800◦C for 30 min are illustrated in Fig. 4.14(a). The homogenized sample (not

shown here) has a µ0M 3T = 0.62 T (64 Am2kg−1) and µ0H c = 0.09 T. After milling, the value of

µ0M r increases to 102 Am2kg−1 and the µ0H c was measured to be 0.02 T. The low value of µ0H c

is due to the absence of high-anisotropy 1:12 phase and the presence of large vol.% of the α-(Fe,V)

solid solution. For low temperature 600◦C, the annealing time is either not sufficient to form 1:12

or the grain size is too small for optimum µ0H c. At high temperatures, for instance 800◦C and

above, the µ0H c value drops, due to coarsening of the crystallites. It is well established that the

µ0H c value decreases with increasing grain size, i.e., with increasing the temperature. The effect

of temperature on µ0H c value is shown in Fig. 4.14(b). Among the investigated temperatures,

the optimal heat treatment was at 700◦C for 30 min, with µ0H c = 1.03 T, M 3T = 64 Am2kg−1

and M r = 42 Am2kg−1.



4.4. Mechanical milling: amorphization and crystallization of off-stoichiometric alloys 85

- 3 - 2 - 1 0 1 2 3- 1 2 0
- 9 0
- 6 0
- 3 0

0
3 0
6 0
9 0

1 2 0

 a s - m i l l e d   
 6 0 0 ° C ,  3 0  m i n
 7 0 0 ° C ,  3 0  m i n
 8 0 0 ° C ,  3 0  m i n

 

 

M 
 (A

m2 kg-1 )

� 0 H   ( T )

( a )

6 0 0 6 5 0 7 0 0 7 5 0 8 0 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

 

 

� 0H c (T
)

T a n n e a l i n g  ( ° C )

( b )

Figure 4.14: (a) Room-temperature hysteresis loops of as-milled Sm12Fe73V15 powder and heat-treated at 600,

700 and 800◦C (b) Dependence of the µ0H c on the temperature for mechanically milled Sm12Fe73V15 powder

(heat-treated for 30 min)

4.4.3 Rapidly solidified ribbons

The process to obtain coercivity by using melt-spinning is very similar to the one used in

mechanical milling. It started by making amorphous or nanocrystalline melt-spun ribbons of

Sm12Fe73V15 alloy, and then is subsequently heat-treated in order to crystallize or grow the hard

phase.

Starting ingots of Sm12Fe73V15 were made by arc melting the pure element in Ar atmosphere.

The ingots were rapidly quenched by melt spinning the molten alloy through a 0.50 mm orifice

onto the surface of Cu wheel rotating at a linear speed of 45 m/s. It has been reported that at

high wheel speed (more than 35 m/s) a beginning amorphization is observed. The ribbons were

ground and sieved using a 325 mesh (< 45 µm particle size) and sealed in quartz tubes under

Ar. The ribbons were heat-treated at temperatures ranging from 600 to 900◦C for 10-30 min

followed by quenching into water.

Figure 4.15(a) shows a hysteresis loop of the ribbons optimally annealed at 700◦C for 30

min. The ribbons exhibit a µ0M 3T = 89 Am2kg−1, µ0M r = 59 Am2kg−1 and µ0H c = 0.96 T.

The presence of α-(Fe,V) is reflected as a kink in the demagnetization curve. The amount of

α-(Fe,V) depends on both the heat-treatment conditions and the chemical composition. It is
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expected that harder magnetic properties can be obtained by varying the heat treatment as well

as by adjusting the sample composition and particularly the amount of impurity elements. XRD

measurements show the presence of the 1:12 structure in the heat-treated samples together with

a low amount of α-(Fe,V). As in the case of mechanically milled alloys, the 1:12 is formed after

crystallization of the amorphous Sm-Fe-V. The microstructure shown in Fig. 4.15(b) shows

grain size around 60-100 nm.
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Figure 4.15: (a) Hysteresis curve and (b) secondary electrons image of optimally annealed melt-spun

Sm12Fe73V15 ribbons.

4.5 Summary and conclusions

This chapter presented different approaches to develop µ0H c in Sm-Fe-V alloys. In the first part,

the stoichiometric SmFe10V2 alloy was mechanical milled in hexane for different times in order

to reduce the grain size. As the milling time increased, the XRD peaks of 1:12 phase broaden

until there was a decomposition into the metastable 1:7 and α-(Fe,V) phases for 4 h milling.

The highest µ0H c value was found to be 0.21 T and the mean crystallite of nm, computed from

Scherrer broadening. After trying different heat treatments for the as-milled powders, the 1:12

phase was not formed.

In the second part, to compensate the Sm-losses during the heat treatment process, we

worked with off-stoichiometric Sm12Fe75V13 as-cast alloys. As the 1:12 structure was not initially
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formed, subsequent heat treatment was made. Also we attempted to improve the microstructure

developing an eutectic alloy of Sm-La by adding La. Although a uniform 1:12 microstructure of

fine, 1-10 µm grains surrounded by a La-rich phase was obtained, the maximum µ0H c was 0.33

T. Heat treatments at different temperatures allowed to suppress and to stabilize the SmFe2

phase; the µ0H c was found to be consistently higher when the SmFe2 phase was present in the

alloy.

In the last part, nanocrystalline magnetic powders from Sm12Fe73V15 by both mechanical

milling and melt spinning from were produced. After performing short heat treatments on

the as-milled powders and melt-spun ribbons, the hard 1:12 was formed as majority phase

accompanied by a small α-(Fe,V) and other secondary phases such as SmFe2 and Sm-oxides. The

µ0H c value could be tuned optimizing the grain size by varying the heat treatment conditions.

Sm12Fe73V15 powders and ribbons demonstrated µ0H c values up to 1 T, comparable to those

already published in literature. Despite the presence of the Sm-oxides phases, this material

showed reasonable extrinsic magnetic properties.





Chapter 5

Fabrication of bulk Sm-Fe-V based

1:12 magnets

To achieve a practical application for the high-coercivity powder, a process of consolidation or

densification is necessary to transform the powder into a bulk material and preferably into a

fully-dense magnet. In this process, it is important that the bulk material maintains or develop

the proper microstructure to keep or even improve the magnetic properties of the powder in

the bulk form. In this chapter, we report the preparation of Sm-Fe-V based bulk magnets

by hot compaction of mechanically milled powders. Structural, microstructural and magnetic

properties, as well as the thermal stability of µ0H c and µ0M r of these magnets are investigated

in detail. In the last part of the chapter, we show the results of the attempts we made to obtain

an anisotropic magnet by hot deformation of the alloys with substitutions of V by Ti, Cu and

Mo metals.

5.1 Introduction

The early attempts to develop reasonable hard magnetic properties in the Sm-based 1:12 alloys,

produced µ0H c values ranging between 0.59-1 T in Sm-Fe-V(Ti) melt-spun ribbons [134, 57, 135]

and between 0.5-1.17 T in Sm-Fe-V alloys prepared by mechanical alloying [132]. Additional

substitutions in Sm-Fe-(V/Ti,X) with X = Zr, Nb, Mo, W and Ga did not lead to significant

improvement in µ0H c value [136, 117]. Most of the Sm-based compounds have sufficiently

89
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high values of T C and H A for technical applications, however experiments with sintering of

powdered Sm(Fe,M)12 alloys into fully dense magnets were not successful in keeping the powder

properties [137].

Only a couple of attempts of producing bonded magnets were successful. Shultz et al. [132]

reported a Sm-Fe-V based resin bonded magnet with 1.17 T of µ0H c prepared from mechanically

alloyed powders. Pinkerton et al. [134] reported a bulk magnet of Sm0.89Fe10V2 produced by hot

pressing of melt spun ribbons at 850◦C, however the µ0H c was only 0.56 T. The main challenge

in making a bulk magnet is to obtain 1:12 phase while suppressing the formation of α−(Fe,M)

because of the loss of Sm-metal during the various stages of processing due to evaporation and

oxidation. Development of high µ0M r in the final magnet, optimizing the microstructure and

maintaining it throughout the processing of the bulk sample is crucial.

5.2 Hot-pressed magnets

5.2.1 Sample preparation

The as-milled powders Sm12Fe73V15 from section 4.4.2 were hot compacted at 650◦C in vacuum

using a WC die by applying a pressure of ≈ 220 MPa. In this process, the sample was heated

to 650◦C at a heating rate of 65◦C/min and the pressure was applied for 13 min. Finally, the

sample was cooled to room temperature and a 92%-dense isotropic magnet was obtained. The

hot-compacted sample was then heat-treated at 700◦C for 15 to 60 min (hereafter referred to

as heat-treated compact) to optimize the coercivity. To obtain an anisotropic magnet, hot-

deformation was used as described in the section 5.3.

5.2.2 Structural analysis

Figure 5.1 shows the XRD patterns of Sm12Fe73V15 sample at different stages of the processing.

The XRD patterns in Fig. 5.1(a) and (b) correspond to the homogenized sample and the as-

milled powder,respectively, which were discussed previously in section 4.4.2. The XRD pattern

of the hot-compacted sample Fig. 5.1(c) shows very broad peaks indicating very fine grains and

is quite similar to the XRD pattern of the powder which was heat-treated at 600◦C for 30 min

(See Fig. 4.12). The XRD peaks were attributed to the 1:12 and 1:2 phases along with Sm

oxides.
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The same Sm-oxides were observed in the heat-treated powders presented in section 4.4.2.

After a short heat treatment at 700◦C for 30 min, the XRD pattern Fig. 5.1(d) of the compacted

piece showed sharper and well-defined peaks compared with the previous stage, indicating an

increase in the grain size. The phases (and volume fractions) were identified as 1:12 (86.1%),

1:2 (1.9%), SmO (5.0%), Sm2O3 (3.1%), Sm2O3 (3.1%) and a very small amount of α-(Fe,V)

(0.9%). From the volume fractions, one can see how the 1:2 phase is reduced by a 89% after

all the processing, which means that the formation of the 1:2 phase (generated by the initial

excess of Sm) has prevented loss of the 1:12 phase. The Rietveld refinement parameters are

summarized in Table 5.1.

Table 5.1: Lattice parameters of 1:12 phase and volume fractions of different phases present at each stage of

the processing of the Sm12Fe73V15 magnet.

Lattice Parameters Volume fraction

Stage
a b V1:12 V1:2 Vα-(Fe,V) VSmO V(Pn3̄m)

Sm2O3
V(I213)

Sm2O3

(Å) (Å) (%) (%) (%) (%) (%) (%)

Homogenized 8.527 4.769 84.9 14.3 0.8

Hot-compacted 8.489 4.817 87.1 4.1 1.9 2.1 2.4 2.4

Annealed
8.503 4.773 87.1 1.9 0.9 5.0 3.1 3.1

hot-compacted
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Figure 5.1: The XRD patterns of Sm12Fe73V15 (a) alloy homogenized at 800◦C for 20 h (b) after high energy

milling for 10 h in Ar (c) hot-compacted at 650◦C and (d) optimally annealed hot-compacted (heat treated at

700◦C for 30 min).

5.2.3 Magnetic properties

Figure 5.2(b) displays the evolution of the hysteresis loops of homogenized, as-milled, hot-

compacted and the optimally annealed hot-compacted Sm12Fe73V15 samples, measured by ap-

plying a maximum field of 3 T at room temperature. Table 5.2 summarizes the magnetic

properties of samples at different processing stages. The homogenized sample shows µ0H c and

µ0M 3T of 0.09 T and 0.62 T (64 Am2kg−1), respectively. After milling, the value of µ0M r in-

creases to (102 Am2kg−1) and the µ0H c was measured to be 0.02 T, which is very low due to

the absence of high-anisotropy phase and large volume fraction of the α-(Fe,V) solid solution.

As hot-compacted sample exhibit a µ0M 3T of 0.64 T (74 Am2kg−1) and µ0H c of 0.57 T.

Different pieces cut from the compacted were subjected to additional annealing at 700◦C for 15

to 60 min to optimize the µ0H c value. Fig. 5.2(a) shows the hysteresis loops for the corresponding
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heat treatments, from here the optimized time was found to be 30 min, however it is clear that

the magnetic properties are relatively stable in a time window of 1 h. Optimal heat treatment of

the hot-compacted magnet results in an increase of µ0H c to 1.06 T, the highest value reported so

far in 1:12 bulk magnets. The µ0M 3T, µ0M r and (BH )max were 0.59 T (64 Am2kg−1), 0.42 T (46

Am2kg−1) and 28 kJm−3 (3.5 MGOe) respectively. The hysteresis loops of the hot compacted

and optimally annealed hot-compacted sample did not show any zero-field steps which could

indicate presence of the soft magnetic α-(Fe,V) phase, which is consistent with the XRD results.
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Figure 5.2: Hysteresis loops of Sm12Fe73V15 (a) heat-treated compacted pieces at 700◦C for 15 to 60 min (b)

at different stages of the processing: homogenized, after milling for 10 h, hot-compacted and optimally annealed

hot-compacted.

We obtained greater coercivity and better loop rectangularity than Pinkerton and Van

Wingerden [134], the only earlier reported fully dense Sm-Fe-V magnet (µ0H c = 0.56 T, µ0M r

= 0.54 T in Sm15Fe70V15). The improvement may be due to the use of high-energy milling to

produce the nanocrystalline precursor material rather than the melt-spinning. Indeed, the coer-

civity values achieved in this work are similar to those reported by Schultz et al. [132] (µ0H c =

1.17 T, µ0M r = 0.49 T in Sm15Fe70V15) who employed mechanical alloying but did not prepare

a fully dense magnet. On the other hand, the higher remanence values reported by Ding and

Rosenberg [135] for melt-spun Sm-Fe-Co-V alloys indicate that a partial Co substitution for Fe

may increase the energy density of the fully dense Sm-Fe-V magnets even in the absence of the

crystallographic texture.
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Table 5.2: Magnetic properties of the Sm12Fe73V15 sample at different stages of processing. Values of µ0H c,

µ0M 3T and µ0M r in the parenthesis are given in Am2kg−1. The value of (BH )max in parenthesis is given in

MGOe.

Stage
µ0Hc µ0M3T µ0Mr (BH )max

(T) (T) (T) (kJm−3)

Homogenized 0.09 0.62 0.25 4
(64) (26) (0.5)

Milled 0.02 - - -
(102) (7) -

Hot compacted 0.57 0.64 0.45 31
(74) (51) (3.8)

Annealed 1.06 0.59 0.42 28
hot-compacted (64) (46) (3.5)

In order to study the coercivity mechanism, the virgin and demagnetization curves were

measured and are shown in Fig. 5.3. The virgin magnetization curve shows a susceptibility that

increases with the applied field going through a maximum at 0.9 T, a field comparable with

the maximum coercivity of the sample, consistent with the fact that the maximum amount of

reversals occurs at this field. The susceptibility falls off again as the magnetization is approaching

to saturation at high fields. The dependence of coercivity and remanent magnetization on

applied field µ0H m, which is determined from the demagnetization curves, are plotted in the

inset of Fig 5.3. The remanent magnetization and coercivity curves show a similar behavior: a

small initial increase with µ0H m until µ0H m becomes comparable to the coercivity, whereupon

both µ0H c and M r increase dramatically to saturation. This kind of behavior is similar to the

isotropic nanocrystalline hard magnetic materials (like Nd-Fe-B). However, the role of domain

wall-pinning can not be completely discarded.
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Figure 5.3: Virgin and demagnetization curves at room temperature of the optimally annealed hot-compacted

Sm12Fe73V15 magnet. The field value on each demagnetization curve is the maximum applied field in T. The

sample was thermally demagnetized before the measurement of each curve.

Thermomagnetic curve of the optimally annealed hot-compacted sample is shown in Fig. 5.4.

The curve exhibits a pronounced peak known as Hopkinson maximum followed by an abrupt

drop of the curve on the high-temperature side, and a minor second step at a slightly higher

temperature. The shape of the Hopkinson peak is characteristic of low field susceptibility of

many ferromagnets, in which anisotropy falls off more rapidly than magnetization with the

temperature. In analyzing the curves, the inflection points are taken as T C, 330◦C for 1:12 and

411◦C for 1:2 phase.
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Figure 5.4: Temperature dependence of the magnetization of annealed hot-compacted Sm12Fe73V15 magnet

under an applied field of 0.01 T. The dotted line shows dM/dT vs. T.

5.2.4 Thermal Effects

Figure 5.5(a) shows the second quadrant of hysteresis loops measured at temperatures ranging

from -223 to 327◦C for the optimally annealed hot-compacted magnet. The temperature de-

pendence of µ0M r and µ0H c, are shown in Fig. 5.5(b). Here, µ0H c and µ0M r decreases with

increasing temperature, and ultimately the µ0M r becomes zero at the T C of the 1:12 phase

(330◦C). Similarly, to the Nd-Fe-B magnets [138], the decrease in µ0H c is more prominent than

µ0M r. The values of µ0H c and µ0M r are found to be 2.6 T and 0.5 T (51 Am2kg−1) at -223◦C

and 0.5 T and 0.3 T (33 Am2kg−1) at 177◦C, respectively.

Temperature coefficients α and β, are calculated using eq. B.6 and B.7 (see Appendix B,

eq. B.6 and B.7). The coefficients of the polynomial regressions and r-square are shown in

Table 2. The absolute values of α and β in the temperature range from 20 to 100◦C are

0.14%◦C−1 and 0.39%◦C−1, respectively. The coefficient β is significantly lower than that of

standard Nd-Fe-B sintered or hot-deformed magnets, which is about 0.55% ◦C−1 [138, 139].
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Figure 5.5: (a) Demagnetization curves measured at different temperatures and (b) temperature dependence of

coercivity and remanence of the annealed hot compacted Sm12Fe73V15 magnet.

5.2.5 Microstructure

After 10 h of intensive milling, the particle size distribution is homogeneous enough, and the

particle size is between 2 to 10 µm, as it can be seen in Fig. 5.6(left). Fig. 5.6(right) shows

the microstructure of the compacted sample. In general, the grains are well-packed and inter-

grain pores of few micrometers (< 5 µm) are only visible at higher magnification. Density was

measured indirectly using the Arquimedes method, and it was calculated to be 7.026 g/cm3,

corresponding to the 92% of the density.
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Figure 5.6: SEM secondary electrons-image of as-milled powder and fractured surface of the as-compacted

Sm12Fe73V15 magnet.

Typical TEM bright field image of the optimally annealed hot-compacted Sm12Fe73V15 mag-

net is shown in Fig. 5.7. The image reveals very fine grains of approximately 89 ± 25 nm with

a not too broad distribution. The grains have the shape of irregular prisms and its possible to

observe triple junctions, where three grains meet.

Figure 5.7: Bright field TEM micrograph of the optimally annealed hot-compacted Sm12Fe73V15 magnet.

The high µ0H c obtained in the optimally annealed compacted sample could be attributed

to the fine grain size. The as-milled structure aids to the formation of a very fine grain mi-

crostructure of 1:12 phase during the hot compaction. The amorphous powder particles of

approximately 6 µm evidently transform into tiny polycrystals once they are hot pressed. After
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short heat treatment, every particle may contain at about about 67 (6000/89 : size of amorphous

particles/average grain size) nanocrystalline grains.

5.3 Hot-deformed magnets

5.3.1 Sample preparation

As mentioned before, to obtain an anisotropic magnet, a hot-compacted magnet with the same

composition Sm12Fe73V15 was reproduced and deformed up to 75% of its original height, parallel

to the press direction at 800◦C. The process was employed to the other systems in which V was

reduced Sm12Fe76.5V11.5 or partially substituted by another transition metal: Sm12Fe73V7.5Ti7.5,

Sm12Fe73V7.5Mo7.5 and Sm12Fe74V12Cu2. Figure 5.8 shows a photograph of how the magnets

look before and after the deformation. Surfaces of the hot-compacted and deformed magnets,

likely to contain impurities, were machined off prior to characterization. Densities of the magnets

were determined with the Archimedes method using water as immersion liquid. Samples cut from

the compacted and deformed magnets were immobilized with paraffin wax in teflon holders and

used for magnetic measurements. The hysteresis loops were corrected for self-demagnetization

effect.

Figure 5.8: Photograph of Sm12Fe73V15 hot-compacted (left) and hot-deformed (right) magnets.

Hysteresis loops of Sm12Fe73V15 hot-deformed magnet measured parallel (‖) and perpendic-

ular (⊥) to the compression direction (∆L) are shown in Fig 5.9(a). After deformation at 800◦C,

µ0M 3T remains almost unchanged at 0.63 T (66.4 Am2kg−1) and the µ0H c is increased to 0.88 T

compared with µ0M 3T of 0.64 T (74 Am2kg−1) and µ0H c of 0.57 T of the hot-compacted magnet

prepared in section 5.2. An µ0M r value of 0.45 T (47 Am2kg−1) and 0.42 T (44 Am2kg−1) are
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obtained when the hysteresis loops were measured with field applied ⊥ and ‖ directions, respec-

tively, indicating a small degree of anisotropy (DOA) development in the plane perpendicular to

the deformation. This is in contrary to that of Nd2Fe14B based hot-deformed magnets, where

the c-axis of grains aligns along the press direction [139, 140]. The DOA was calculated using

the formula DOA = (µ0M⊥r −µ0M ‖r )/µ0M⊥r , where µ0M⊥r and µ0M ‖r are the remanence measured

⊥ and ‖ to the deformation. The deformed magnet shows a DOA value of 0.095. The (BH )max

of 33 kJm−3 (4.1 MGOe) was obtained from the hysteresis loop measured in ⊥ direction.
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Figure 5.9: Hysteresis loops of the hot-deformed magnet measured parallel (‖) and perpendicular (⊥) to the

deformation (a) Sm12Fe73V15 and (b) Sm12Fe76.5V11.5.

When V content is reduced from 15 to 11.5 at.%, and the compacted magnet is deformed at

1000◦C (see Fig. 7(b)), there is a noticeable increase in the DOA to 0.286 resulting in µ0M ⊥
r of

0.47 T (52 Am2kg−1) and µ0Hc of 0.41 T. Also T C exhibits a notable increase from 330 to 380◦C

as is displayed in Fig. 5.10. Table 5.3 summarizes the magnetic properties of the Sm12Fe73V15

and Sm12Fe76.5V11.5 hot-deformed magnets.
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Table 5.3: Magnetic properties of Sm12Fe73V15 and Sm12Fe76.5V11.5 hot-deformed magnets. Values in paren-

thesis are given in Am2kg−1. The value of (BH )max in parenthesis is given in MGOe.

Magnet
T deform µ0M⊥r µ0M ‖r

DOA
T C M 3T µ0Hc (BH )max

(◦C) (T) (T) (◦C) (T) (T) (kJm−3)

Sm12Fe73V15 800 0.45 0.42 0.067 330 0.63 0.88 33
(47) (44) (66) (4.1)

Sm12Fe76.5V11.5 1000 0.47 0.37 0.213 380 0.67 0.41 29
(52) (40) (72) (3.7)
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Figure 5.10: M(T) cooling curve measured in a magnetic field of 0.05 T depicting the Curie temperature of the

1:12 phase for Sm12Fe73V15 and Sm12Fe76.5V11.5.

As revealed by SEM examination in Fig. 5.11(b), much larger grains ranging between 0.3

and 1 µm are observed, which explain the markedly lower µ0Hc of 0.41 T. The grain growth

takes place during the deformation at 1000◦C. Although texture is clear from the magnetic

measurements, the 1:12 grains maintain a nearly equiaxed morphology (unlike, for example, the

Nd2Fe14B grains in the hot-deformed Nd-Fe-B magnets [141]).
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Figure 5.11: SEM Secondary electrons images of hot-deformed magnets (a) Sm12Fe73V15 and (b)

Sm12Fe76.5V11.5.

5.3.2 The Sm-Fe-(V,M) hot-deformed magnets with substitution of V by M

= Mo, Ti and Cu

In order study effect of elemental substitution on microstructure and magnetic properties,

bulk magnets of Sm-Fe-V with V substituted by Mo, Ti and Cu were produced by follow-

ing the same route of processing: arc melting → homogenization → ball milling → hot

compaction → hot deformation. The compositions of the magnets investigated were

Sm12Fe73V7.5Ti7.5, Sm12Fe73V7.5Mo7.5 and Sm12Fe74V14Cu2.
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Figure 5.12: Temperature logs recorded during the hot deformation of Sm12Fe73V15, Sm12Fe73V7.5Ti7.5,

Sm12Fe73V7.55Mo7.5 and Sm12Fe74V12Cu2 hot compacted magnets

Hot-compacted magnets of Sm12Fe73V15, Sm12Fe73V7.5Ti7.5, Sm12Fe73V7.55Mo7.5 and

Sm12Fe74V12Cu2 were hot deformed at 900, 900, 800 and 800◦C, respectively. Figure 5.12

shows the profiles of the hot deformation temperatures. The hot-compacted magnets with Cu

substitution could be deformed by 75% in a time less than the time required to deform the

compact without substitution. For example, the Sm12Fe73V7.5Cu7.5 magnet only needed 90 s to

be deformed. The partial substitution of Cu seems to aid the deformation. It is not possible to

comment on the role of Ti and Mo on the deformation as the temperatures of deformation used

are different.
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Figure 5.13: XRD patters of hot-deformed magnets (a) Sm12Fe73V15 deformed at 800◦C (b) Sm12Fe73V7.5Ti7.5

deformed at 900◦C (c) Sm12Fe73V7.55Mo7.5 deformed at 900◦C (d) Sm12Fe74V12Cu2 deformed at 800◦C.

The XRD patterns of the Sm-Fe-(V,M) (M = Ti, Mo, Cu) hot-deformed magnets are shown

in Fig. 5.13. As can be seen, the 1:12 phase is present in all the magnets. However, as deduced

from the width of the XRD peaks, Sm12Fe73V15 and Sm12Fe74V12Cu2 samples show broader

peaks indicating finer grains compared to the Sm12Fe73V7.5Ti7.5 and Sm12Fe73V7.5Mo7.5 sam-

ples. The size of the grains in the hot-deformed magnets depends on the deformation temper-

ature and composition. The former were deformed at lower temperatures (800◦C) while the

later at 900◦C. In all the magnets, except for Sm12Fe73V7.5Ti7.5, the volume fraction of the

1:12 phase represents approximately 90%, and the 10% remaining represents Sm-oxides such as

SmO (space groupFm3m) and 2 types of Sm2O3 (space groups I213 and Pn 3̄m). In the case

of Sm12Fe73V7.5Ti7.5, the 1:12 volume fraction is 78% due to the formation of Fe2Ti (7.5%)

and Sm-oxides (14.5%). Table 5.4 summarizes the structural parameters of 1:12 phase and the

volume fractions of the phases in the magnets.

The lattice constants of the 1:12 vary according with the element-substituted. A slight
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decrease in the a and c constants is observed when V is substituted with Cu, whereas an

increase is observed when V is substituted with Ti or Mo. This result is in agreement with

the atomic radii of the corresponding elements, as rMo > rTi > rV > rCu [142]. This effect is

especially visible in Fig. 5.13(d) where the Sm12Fe74V12Cu2 XRD pattern is shifted towards

higher angles.

Table 5.4: Lattice parameters of the 1:12 phase and volume fractions of the phases present in the hot-deformed

magnets. The density values were measured from Archimedes method.

Stage

Lattice Parameters Volume fraction

a b V1:12 VFe2Ti VSmO V(Pn3̄m)
Sm2O3

V(I213)
Sm2O3

(Å) (Å) (%) (%) (%) (%) (%)

Sm12Fe73V15 8.503 4.772 89.8 4.8 3.1 2.2

Sm12Fe73V7.5Ti7.5 8.533 4.784 77.9 7.5 8.4 1.0 5.1

Sm12Fe73V7.5Mo7.5 8.543 4.782 88.8 5.6 1.3 4.2

Sm12Fe74V12Cu2 8.480 4.769 91.1 3.8 2.7 2.3

Figure 5.14(a), (b) and (c) shows the hysteresis loops measured ‖ and ⊥ to the deformation

direction for Sm12Fe73V7.55Ti7.5, Sm12Fe73V7.55Mo7.5 and Sm12Fe74V12Cu2. As can be seen, the

Sm12Fe73V7.55Ti7.5 and Sm12Fe74V12Cu2 exhibit no texture. The Sm12Fe73V7.55Mo7.5 magnet

shows a small texture of 20% and the anisotropy is in the plane perpendicular to the deforma-

tion direction. The same characteristic was observed for the Sm12Fe73V15 and Sm12Fe76.5V11.5

magnets.

The magnetic properties derived from the hysteresis loops are listed in Table 5.5. As can be

seen, the substitution of V by Ti does not affect the magnetic properties significantly, the µ0H c

remains unchanged at 0.88 T and µ0M 3T and T C slightly decrease from 330 to 325◦C and from

0.63 (66) to 0.54 T (58 Am2kg−1), respectively. On the other hand, the substitution of V by Mo,

results in an considerable decrease of T C from 330 to 268◦C and µ0H c from 0.88 T to 0.45 T.

The µ0M 3T barely changes being 0.62 T (62 Am2kg−1). Although the µ0H c is low, the (BH )max

of 33 kJm−3 is comparable to the 31 kJm−3 of Sm12Fe73V15, this is due to the additional 20%

degree of texture. The substitution of V by Cu is reflected in a notable increase of T C from 330

to 362◦C, µ0H c from 0.88 to 0.96 T and µ0M 3T from 0.63 (66) to 0.68 T (62 Am2kg−1). From

all the magnets the Sm12Fe74V12Cu2 showed the largest (BH )max of 42 kJm−3.
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Figure 5.14: Hysteresis loops of hot-deformed magnets measured parallel and perpedicular to the pressing

direction (a) Sm12Fe73V7.5Ti7.5 (b) Sm12Fe73V7.5Mo7.5 (c) Sm12Fe74V12Cu2.

Table 5.5: Magnetic properties of Sm12Fe73V7.5Ti7.5, Sm12Fe73V7.5Mo7.5 and Sm12Fe74V14Cu2 hot-deformed

magnets. Values in parenthesis are given in Am2kg−1. The value of (BH )max in parenthesis is given in MGOe.

Magnet
T deform µ0M⊥r µ0M ‖r

DOA
T C µ0M3T µ0Hc (BH )max

(◦C) (T) (T) (◦C) (T) (T) (kJm−3)

Sm12Fe73V7.5Ti7.5 900 0.38 0.37 0.026 325 0.54 0.88 26
(41) (40) (58) (3.2)

Sm12Fe73V7.5Mo7.5 900 0.44 0.35 0.205 268 0.62 0.45 31
(44) (35) (62) (3.9)

Sm12Fe74V14Cu2 800 0.49 0.49 0.000 362 0.68 0.96 42
(51) (51) (62) (5.3)
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SEM images of a broken piece of Sm12Fe74V12Cu2 show a fine grained structure with grains

of 83±17 nm (Fig. 5.15(a)). The grains are well-packed and have the form of well-defined prisms

(some of them hexagonal) like in sintered magnets. This magnet with the highest µ0H c has the

most uniform microstructure. The Sm12Fe73V7.5Mo7.5 on the other hand shows a much larger

grained structure with grains of 1.1± 0.3 µm in diameter. The grain morphology corresponds to

irregular prisms, and along the boundaries one can observe pores of different sizes.

Figure 5.15: Secondary-electrons images of hot-deformed magnets (a) Sm12Fe74V12Cu2 and (b)

Sm12Fe73V7.5Mo7.5

Figure 5.16 shows a TEM image and EDX elemental map analysis of Sm12Fe73V7.5Ti7.5. The

microstructure shows a relatively large grain size distribution with grain sizes around 105 ± 30

nm. This can be partly related to the presence of secondary phases such as Fe2Ti and Sm-oxides.

The grain size is coarser than that in Sm12Fe73V15 and Sm12Fe74V14Cu2. In the EDX map, the

Sm and Ti are not distributed homogeneously. Sm-rich and Ti-rich grains are observed through

the sample. The Ti-rich grains corresponds to Fe2Ti phase.
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Figure 5.16: TEM/EDX elemental map analysis of Sm12Fe73V7.5Ti7.5 hot-deformed magnet.

5.4 Summary and Conclusions

This chapter deals with the fabrication of 1:12 Sm-Fe-V bulk magnets. For this purpose, the

as-milled powders produced based on the results from chapter 4, were hot-compacted. In order

to obtain anisotropic magnets, the hot-compacted magnets were hot deformed.

In the first section, a bulk magnet based on Sm-Fe-V with 1:12 structure was successfully

consolidated into a bulk magnet by pressing mechanically milled Sm12Fe75V13 powders at 650◦C.

The relative density of the as-compacted magnet reached a 92% of the theoretical density. The

isotropic magnet exhibited a maximum µ0Hc of 1.06 T, µ0M3T of 0.59 T, µ0Mr of 0.42 T and a

(BH )max of 28 kJm−3 at 3 T applied field. The T C was found to be 330◦C and the temperature

coefficients of remanent magnetization and coercivity, measured in the range of 0-100◦C, were

α = 0.14%C−1 and β = 0.39%C−1, respectively, the latter is comparatively lower than that of

NdFeB magnets. Minor hysteresis loops indicated a coercivity mechanism similar to that of

the nanocrystalline Nd-Fe-B magnets. The isotropic magnet was hot-deformed up to 75% of

its height, and the best magnetic properties obtained were µ0M3T = 0.63 T, µ0Mr = 0.45 T,

µ0Hc = 0.88 T and (BH )max = 33 kJm−3.
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Following the same route of processing, magnets of Sm-Fe-(V,M) (M = Ti, Mo, Cu) were

synthesized in order to investigate the effect on the magnetic properties of Sm12Fe75V13 when

V was reduced or partially substituted by another transition metal. All the mechanically milled

powders were successfully consolidated into fully-dense magnets. A small texture (21%) in

the plane perpendicular to the pressing direction was detected for Sm12Fe76.5V11.5 deformed

at 1000◦C. Same type and degree of texture (20%) was also observed in Sm12Fe73V7.5Mo7.5

deformed at 900◦C. The Sm12Fe74V12Cu2 magnet showed the best performance with T C =

362◦C, µ0H c = 0.96 T, µ0M 3T = 0.68 T (62 Am2kg−1) and (BH )max = 42kJm−3.

The examination of the microstructure showed that the magnets made of (V,Cu), (V,Ti)

and only V were composed of fine grains with sizes between 60 and 150 nm. Although the

Sm12Fe73V7.5Ti7.5 magnet had larger grains than Sm12Fe75V13, the magnetic properties re-

mained constant, including the µ0H c of 0.88 T. This fact can partly be related with the presence

of the secondary phase Fe2Ti, which is homogeneously distributed through the sample. From

all the magnets, the Sm12Fe74V12Cu2 microstructure was the most uniform and reminds the

microstructure of a sintered magnet, the small amount of Cu, not only improve the magnetic

properties but also slightly refine the grain size. On the other hand, the substitution of V by

Mo, favored the grain growth during the hot deformation, this has a detrimental influence on

the T C and µ0H c which were 268◦C and 0.45 T. Despite the µ0H c of this magnet decreased

severely mainly due to the grain coarsening, the small texture developed in this magnet led a

(BH )max of 31 kJm−3.

The most striking result was that some of the 1:12 Sm magnets developed a texture perpen-

dicular to the deformation direction. This kind of behavior is different from that of die-upset

Nd-Fe-B magnets, and is similar to that of observed in Mn-Al hot-deformed magnets [143, 144].

This kind of texture would indicate the use of hot extrusion rather than die-upsetting for the

development of bulk magnets. These results encourage the study on highly textured ultrafine-

grained magnets, reopening the development of 1:12 Sm-based anisotropic magnets.





Chapter 6

Conclusions

The main conclusions of this thesis are summarized as follows.

• Mössbauer analysis on the as-spun and heat-treated ribbons of (Sm1−xCex)Fe9Co2Ti (x =

0.0, 0.25, 0.50, 0.75, 1.0) allowed to investigate the amorphous and crystalline character

of the ribbons. The Sm substitution by Ce led to a redistribution of Co in the 8f and 8j

sites. For x ≤ 0.5, the occupation percentage for 8j and 8f sites was 70 and 30% whereas

for x > 0.5 was 50 and 50%, respectively.

• The study of the 1:12 phase stability dependance on the content of stabilizing element V

in SmFe12−xVx alloys, revealed that 1:12 phase can be obtained in alloys with V content

as low as x = 1.0. The µ0H A, µ0M s and T C were enhanced as the V concentration was

reduced. The newly synthesized SmFe11V compound showed M s of 1.12 T, large µ0H A

of 11 T, and a moderate T C of 361◦C. These properties make it an interesting candidate

for permanent magnets applications. Further decrease in V content to x = 0.5, the 1:12

phase was not formed, instead 2:17 and α-(Fe,V) phases were observed.

• The substitution of Zr for Sm in Sm1xZrxFe11V (0 ≤ x ≤ 0.6) alloys resulted to be posi-

tive. Although higher concentrations of Zr led to the formation of secondary phases such

as ZrFe2 and α-(Fe,V), the magnetic properties are still reasonables for permanent appli-

cations. For Zr = 0.6, the magnetic properties were µ0HA = 8.8 T, M s = 138 Am2/kg and

T C = 310◦C.
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• An intergrain phase of La-rich was formed by performing different heat treatments to

(Sm0.12Fe0.75V0.13)98La2 alloy. Although a uniform microstructure of 1-10 mm grains

surrounded by a La-rich phase was obtained, the maximum µ0H c was only 0.33 T. The

different heat treatments allowed to suppress and to stabilize the SmFe2. The µ0H A was

found to be consistently higher when the SmFe2 phase was present in the alloy.

• Mechanical milling of stoichiometric SmFe10V2 alloy, led to a decomposition of the 1:12

into 1:7 structure. The µ0H c increased continuously during milling up to a certain time,

and then decreases. The highest µ0H c value was found to be 0.21 T. After trying different

heat treatments for the as-milled powders, the 1:12 phase was not formed.

• Following a controlled route of processing, nanocrystalline Sm12Fe73V15 powders

demonstrated µ0H c values up to 1 T. The route of processing consisted of arc

melting−→homogenization of the 1:12→amorphization of the alloy by mechanical milling→

crystallization of the 1:12 phase using short heat treatments.

• One of the advantages of using the mechanical milling to obtain the powders instead of

mechanical alloying was relatively short milling time. As the milled powder was already

alloyed, and only a transformation of phase had to be induced mechanically, the milling

time required to amorphization of the 1:12 phase was only 5 hours. Whereas the other

authors [145] reported 60 h to obtain the same phase by mechanical alloying of blended

elemental powders.

• Mechanical milling starting from the already alloyed materials favored to the formation of a

well distributed amorphous matrix, which contributed later to the homogeneous formation

of the 1:12 phase. Furthermore, the sizes of the nanograins could be appropriately con-

trolled during the subsequent crystallizing process, which contributed to the improvement

of the magnetic properties of the powders.

• The transformation from the amorphous phase into the tetragonal 1:12 phase depends

critically on the annealing temperature and the sample composition. Milling in hexane

does not facilitate the amorphization of this alloy, and it is more convenient the use of Ar.

• A bulk magnet based on Sm-Fe-V with 1:12 structure was successfully consolidated by hot

pressing the mechanically milled Sm12Fe75V13 powders. The density of the as-compacted
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magnet reached a 92% of the theoretical density. The isotropic magnet exhibited a maxi-

mum µ0Hc of 1.06 T, µ0M3T of 0.59 T, µ0Mr of 0.42 T and a (BH )max of 28 kJm−3 at 3

T applied field. The T C was found to be 330◦C and the temperature coefficients of rema-

nent magnetization and coercivity, measured in the range of 0-100◦C, were α = 0.14%C−1

and β = 0.39%C−1, respectively, the latter was comparatively lower than that of NdFeB

magnets.

• In the hot-deformed magnets, a small texture (≈ to 20%) perpendicular to the pressing

direction was observed for Sm12Fe76.5V11.5 and Sm12Fe73V7.5Mo7.5 magnets deformed at

1000 and 900◦C, respectively. This type of texture is different from that of die-upset Nd-

Fe-B magnets, and would indicate the use of hot extrusion rather than die-upsetting for

the development of bulk magnets.

• The use of an small amount of Cu to substitute V in Sm12Fe74V12Cu2, slightly reduces the

grain size, and results beneficial for the magnetic properties T c = 362◦C, µ0H c = 0.96 T,

µ0M 3T = 0.68 T (62 Am2kg−1) and (BH )max = 42kJm−3. Substitution of Ti for V, does

not change the magnetic properties. This fact can partly be related with the presence

of the secondary phase Fe2Ti, which is homogeneously distributed through the sample.

Substitution of Mo favored the grain growth (≈ 1 mm) during the hot deformation, this

had a detrimental influence on the T c and µ0H c which were 268◦C and 0.45 T.





Appendix A

Conversion of Units

Table A.1 gives the conversion factors from the cgs unit to the SI unit. To convert a cgs unit to

SI, multiply the cgs value by the conversion factor C.

Table A.1: Relation between commonly used units in magnetism (after Ref. [15]).

Quantity Symbol Gaussian & cgs emua
Conversion

SI & rationalized mks
factor C

Magnetic induction B gauss (G) 10−4 tesla (T) Wb/m2

Magnetic field strength H Oersted (Oe), Gb/cm 103/4π A/m

(Volume) magnetization M emu/cm3 103 A/m

(Volume) magnetization 4πM G 103/4π A/m

Magnetic Polarization J, I emu/cm3 4π × 10−4 T, Wb/m2

intensity of magnetization

(Mass) magnetization σ, M emu/g 1 Am2/kg

4π×−7 Wb m/kg

Magnetic moment m emu, erg/G 10−3 Am2, J/T

Anisotropy constant K erg/cm3 10−7 MJ/m3

Energy product BH MGOe 102/4π kJ/m3

Demagnetization factor D, N dimensionless 1/4π dimensionless

aGaussian units and cgs emu are the same for magnetic properties, and are based on B = H + 4πM

The upper one is recognized under SI and is based on B = µ0(H + M) where µ0 = 4π × 10−7 H/m.

The lower one is not recognized under SI and is based on B = µ0H + J.
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Appendix B

Thermal coefficients

The Taylor expansion of second order of M r around a T is given by

Mr(T0 + ∆T) = |Mr |T0 +
dMr

dT

����
T0

∆T +
1

2

d2Mr

dT2

����
T0

(∆T)2 (B.1)

with ∆T = T − T0 and (∆T)2 = T2 − 2T0T + T2
0 .

Reducing eq. B.1, M r can be written as

Mr(T ) = arT2 + brT + cr, (B.2)

where ar, br and cr are the regression coefficients of the quadratic function. For T 1 and T 2, M r

can be expressed as

Mr(T1) = arT2
1 + brT1 + cr (B.3)

and

Mr(T2) = arT2
2 + brT2 + cr (B.4)

respectively. Subtracting eq. B.3 from eq. B.4,
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Mr(T2) − Mr(T1) = ar (T2
2 − T2

1 ) + br (T2 − T1)

Mr(T2) − Mr(T1) = ar (T2 − T1)(T2 + T1) + br (T2 − T1)

Mr(T2) − Mr(T1)

(T2 − T1)
= ar (T2 + T1) + br

Mr(T2) − Mr(T1)

Mr(T1)

1

∆T
=

ar (T2 + T1) + br
Mr(T1)

(B.5)

then, the α coefficient is

α =
ar(T2 − T1) + br

Mr(T1)
. (B.6)

Following the same procedure one can obtain,

β =
ac(T2 + T1) + bc

µ0Hc(T1)
. (B.7)



Appendix C

Physical properties of different

elements

Physical properties of some elements used in this work after Ref. [146]
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Appendix D

Supplementary plots of chapter 3

D.1 X-ray diffraction patterns of Sm1−xZrxFe11V
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Figure D.1: XRD patterns of Sm0.2Zr0.2Fe11V heat-treated alloys.
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Figure D.2: XRD patterns of Sm0.6Zr0.4Fe11V heat-treated alloys.
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[101] R. Grössinger, R. Krewenka, and K. H. J. Buschow, “Note on the anisotropy fields in

tetragonal RFe10V2 compounds,” Journal of Alloys and Compounds, vol. 186, no. 2,

pp. 11–15, 1992.

[102] K. Buschow, “Chapter 4 Magnetism and processing of permanent magnet materials,” in

Handbook of Magnetic Materials, vol. 10, pp. 463–593, Elsevier Science, 1997.

[103] R. Helmholdt, J. Vleggaar, and K. Buschow, “Note on the crystallographic and magnetic

structure of YFe10V2,” Journal of the Less Common Metals, vol. 138, pp. L11–L14, mar

1988.

[104] R. Helmholdt, J. Vleggaar, and K. Buschow, “Crystallographic and magnetic structure of

TbFe10V2 and ErFe10V2,” Journal of the Less Common Metals, vol. 144, pp. 209–214, dec

1988.



134 Bibliography

[105] G. Kresse and J. Hafner, “Ab initio molecular dynamics for open-shell transition metals,”

Physical Review B, vol. 48, pp. 13115–13118, nov 1993.

[106] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals

and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6,

pp. 15–50, jul 1996.

[107] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy cal-

culations using a plane-wave basis set,” Physical Review B, vol. 54, pp. 11169–11186, oct

1996.
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