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“Reserve your right to think,
for even to think wrongly

is better than not to think at all.”
Hypatia of Alexandria

Ikasten, ikasten, beti beti gure adimena zabaltzen,
ikasten, ikasten, momentu oro...

BTX
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Abstract

This PhD thesis contributes on designing and applying data mining techniques
targeting the improvement of Human Computer Interaction (HCI) in different
contexts. The main objectives of the thesis are to design systems based on data
mining methods for modelling behaviour on interaction and use data. Moreover,
having to work often in unsupervised learning contexts has lead to contribute
methodologically to clustering validation regardless of the context; an unsolved
problem in machine learning. Cluster Validity Indexes (CVIs) partially solve
this problem by providing a quality score of the partitions, but none of them
has proven to robustly face the broad range of conditions. In this regard, in the
first contribution several CVI decision fusion (voting) approaches are proposed,
showing that they are promising strategies for clustering validation.

In the Human-Computer Interaction context, the contributions are struc-
tured in three different areas. The accessibility area is analysed in the first one
where an efficient system to automatically detect navigation problems of users,
with and without disabilities, is presented.

The next contribution is focused on the medical informatics and it analy-
ses the interaction in a medical dashboard used to support the decision-making
of clinicians (SMASH). On the one hand, connections between visual and in-
teraction behaviours on SMASH are studied. On the other hand, based on
the interaction behaviours observed in SMASH, two main cohorts of users are
automatically detected and characterised: primary (pharmacists) vs secondary
(non-pharmacists).

Finally, two contributions on the e-Services area are made, focusing on their
interaction and use respectively. In the first one, potential students aiming
to enrol the University of the Basque Country (UPV/EHU) are satisfactorily
modelled based on the interactive behaviours they showed in the web of this
university. The second one, empirically analyses and characterises the use of
e-Government services in different European countries based on survey data
provided by Eurostat.
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Laburpena

Doktorego-tesi honek, hainbat testuingurutan, Pertsona-Konputagailu Elkar-
rekintzaren (PKE) hobekuntzarako datuen meatzaritzako teknikak diseinatzen
eta aplikatzen laguntzen du. Tesiaren helburu nagusiak datu-meatzaritzako
metodoetan oinarritutako sistemak diseinatzea da, elkarrekintza- eta erabilera-
datuen portaera modelatzeko. Gainera, gainbegiratu gabeko ikasketa-
testuinguruekin sarritan lan egin behar izanak, datuen testuinguru guztiei
zuzendutako clusteringa baliozkotzeari buruzko ekarpen metodologikoa egitera
bultzatu gaitu. Kluster baliozkotze indizeek (CVI) partizioen kalitate-neurri
bat ematen duten heinean, arazo hau partzialki ebazten dute, baina horietako
batek ere ez du erakutsi egoeren espektro handiari aurre egiteko gaitasuna. Ildo
honetatik, lehen kontribuzioan CVIen arteko erabaki-fusioen (bozketa) hainbat
sistema proposatzen ditugu, eta klusteringa baliozkotzeko estrategia eraginkor-
rak direla erakusten dugu.

Pertsona-Konputagailu Elkarrekintzaren testuinguruan, ekarpenak hiru ar-
lotan egituratuta daude. Irisgarritasun arloa lehenengo kontribuzioan aztertzen
da, sistema eraginkor bat aurkeztuz, desgaitasuna duten eta desgaitasuna ez
duten erabiltzaileen nabigazio-arazoak automatikoki detektatzen dituena.

Hurrengo ekarpena informatika-medikoan zentratzen da eta medikuei er-
abakiak hartzeko jardueretan laguntzeko erabiltzen den osasun-arbela mediko
baten (SMASH) elkarrekintza aztertzen du. Batetik, SMASH arbelean portaera
bisualen eta interaktiboen arteko loturak aztertzen dira. Bestalde, SMASH ar-
belean antzemandako portaera interaktiboen arabera, bi erabiltzaile talde na-
gusi detektatu eta ezaugarritu dira: lehen mailakoak (farmazialariak) eta bigar-
ren mailakoak (ez farmazialariak).

Azkenik, bi kontribuzio egiten dira zerbitzu elektronikoen (e-Zerbitzuen)
arloan, elkarrekintza eta erabileran oinarrituz, hurrenez hurren. Lehenen-
goan, Euskal Herriko Unibertsitatean (UPV/EHU) izena eman nahi duten
ikasle potentzialak modu eraginkorrean modelatu dira unibertsitate honen we-
bgunean erakutsitako jokabide interaktiboen arabera. Bigarrenean, gobernuko
e-Zerbitzuen erabilera aztertu da Europako hainbat herrialdetan, Eurostatek
emandako inkesta-datuetan oinarrituz.
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Resumen

Esta tesis doctoral contribuye al diseño y la aplicación de técnicas de mineŕıa
de datos dirigidas a la mejora de la Interacción Persona-Computadora (IPC)
en diferentes contextos. Los objetivos principales de la tesis son diseñar sis-
temas basados en métodos de mineŕıa de datos para modelar el comportamiento
en datos de interacción y uso. Además, como los contextos de aprendizaje
no supervisado han sido una constante en nuestro trabajo, hemos contribuido
metodológicamente a la validación de clustering independientemente del con-
texto de los datos; problema no resuelto en el aprendizaje automático. Los
ı́ndices de validación de cluster (CVI) resuelven parcialmente este problema al
proporcionar un valor cuantitativo de calidad de las particiones, pero ninguno de
ellos ha demostrado poder enfrentarse de manera robusta en una amplia gama
de condiciones. En este sentido, en la primera contribución se proponen varios
sistemas de fusión de decisiones (votaciones) entre CVIs, demostrando que son
estrategias prometedoras para la validación de cluster.

En el contexto de Interacción-Persona Computador, las contribuciones están
estructuradas en tres áreas diferentes. En la primera de ellas se analiza el área de
accesibilidad, presentando un sistema eficiente para detectar automáticamente
los problemas de navegación de los usuarios, con y sin discapacidad.

La siguiente contribución se centra en la informática médica y analiza la
interacción en una pizarra médica web (SMASH) utilizada para asistir en la
toma de decisiones de los médicos. Por un lado, se estudian las conexiones entre
los comportamientos visuales y de interacción en SMASH. Por otro lado, en
base a los comportamientos de interacción observados en SMASH, se detectan
y caracterizan automáticamente dos grupos principales de usuarios: primario
(farmacéuticos) y secundario (no farmacéuticos).

Finalmente, se realizan dos contribuciones en el área de servicios electrónicos,
centrándose en su interacción y uso, respectivamente. En la primera, se mod-
elan satisfactoriamente los estudiantes que potencialmente desean matricularse
en la Universidad del Páıs Vasco (UPV / EHU), en función de los compor-
tamientos interactivos que muestran en la web de esta universidad. La segunda
contribución, analiza emṕıricamente y caracteriza el uso de los servicios de go-
bierno electrónico en diferentes páıses europeos en base a datos de encuestas
proporcionados por Eurostat.
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Chapter 1

Introduction to
Human-Computer
Interaction and machine
learning

Due to the digital transformation of the society in the last decades, all kind of
electronic devices, including smart phones, tablets or computers, have invaded
our lives, completely transforming the way we interact with the world. This
means that, since we get up until we go to sleep in order to accomplish every
day tasks, we find ourselves forced to interact with a wide number of digital tools.
As a result, interactive systems are constantly gathering information about the
activities we perform and our personal preferences, which enable them to learn
about our behaviour and thinking.

Human-Computer Interaction (HCI), the study of the interaction between
humans and computers, has not been inherent to the popularisation of the use
of digital devices. In the early 80s Card et al. (Card et al. 1983) referred for
first time to Human-Computer Interaction using text edition tasks as a repre-
sentative example and proposing cognitive models about human performance
relevant to this area. In contrast, nowadays HCI comprises multiple disciplines
contributing to the three elements involved in HCI: the user (e.g psychology, so-
ciology and ethnography), the interaction (e.g computer science) and the device
(e.g engineering, ergonomics and design).

The goal of HCI is to build usable systems, namely, those being effective,
efficient (easy to use), safe, useful, easy to learn and easy to remember (Preece
et al. 2001). Accordingly, usability is defined by the International Organisation
for Standardisation (ISO), ISO 9241-11:2018 (ISO 2018), as the extent to which
a system, product or service can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use.

1



CHAPTER 1. INTRODUCTION

Some usability metrics can be used to measure these properties, such as com-
pletion rate (percentage of tasks successfully completed) for effectiveness and
task duration for efficiency (ISO 2018). In addition, usability entails users to be
satisfied, what can be evaluated asking the users about their experience when
interacting with the system through formal questionnaires such as the Ques-
tionnaire for User Interaction Satisfaction (QUIS) (Shneiderman 1997). Figure
1.1 summarises usability and user experience (UX) goals (Preece et al. 2001).

Figure 1.1: Usability and user experience goals to be considered in HCI.

Therefore, integrating usability in HCI systems requires users to be in the
centre of their design and evaluation processes. Human-Centred Design (HCD)
illustrates this idea, since it contributes to develop usable and useful interac-
tive systems by focusing on the users, their needs and requirements, and by
applying human factors/ergonomics, and usability knowledge and techniques
(ISO 2019). HCD is an iterative process where first, the context of use and the
user requirements need to be understood and defined to then, produce design
solutions (user, tasks and interface) and finally, the previous steps are repeated
until the solution design does meet the user requirements. But the reality is that
few HCI designers engage users in all the stages of the design process on the
grounds that it is expensive, time-consuming, technically complex to undertake
or difficult to manage. Even so, the analysis of real interaction of the users with
the final system is crucial to extract helpful knowledge (user profiles, navigation
problems...) about the usability of the solution design, thereby actions can be
taken (adaptations, recommendations...).
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In this context, machine learning becomes a powerful ally able to analyse
massive interaction data and automatically identify meaningful patterns in a
cheap and unobtrusive manner. Machine learning is a branch of Artificial In-
telligence (AI) which enables machines to learn from past experiences (training
data) to make independent decisions / predictions (e.g. classification) on new
data without human intervention. In particular, this learning can be described
as the acquisition of structural descriptions from the examples, that then can
be used for prediction, explanation and understanding (Witten and E. Frank
2005). Data mining techniques, also known as pattern discovery from data (Han
et al. 2011), provide these structural descriptions through mathematical mod-
els built based on sample data. As shown in Figure the 1.2 machine learning
process involves five steps: data selection, data preprocessing (noise removal,
feature extraction etc.), use of machine learning techniques and evaluation of
the patterns obtained.

Figure 1.2: Machine learning process.

Using a generalised taxonomy, machine learning algorithms are divided in
two main categories, supervised learning and unsupervised learning, which are
characterised by the availability and lack of labelled data respectively. Specif-
ically, supervised learning algorithms use labelled data to learn (training) and
infer a function to determine the label (dependent variable) of new data (test).
On the other hand, unsupervised learning algorithms (e.g clustering) infer a
function to group the data into a number of clusters (groups), according to
their proximity / similarity, somehow finding out a new unknown label for each
group. In both types of learning the validation of the results is essential in order
to legitimise the knowledge gathered. In supervised learning, also known as clas-
sification, the validation evaluates how good is the algorithm in classifying new
data by using the trained model with the test data to determine to what extent
the training model can be generalised. In contrast, in unsupervised learning,
the validation measures how well does the output partition fit the underlying
structures of the data.

In the HCI literature we find several approaches using machine learning with
the goal of improving user experience. Yang et al. (Yang et al. 2018) provide
a conceptual model where the contributions creating value for users made by
these approaches are classified into four types:
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CHAPTER 1. INTRODUCTION

• Self type: They are carried out by monitoring and logging the user’s
actions and provide personal knowledge, about the user or about a group
of users showing similar behaviours.

• World type: Provide information about the user’s current context, a dis-
tant context, or relevant information for a currently unfolding interaction.
A representative example of this channel will be a robot that transforms
data about the external world into machine intelligence.

• Optimal type: Provide information about an arbitrarily defined “optimal”
or “better” status, such as optimal behaviours (e.g. active participation
in a class). Intelligent tutoring systems that work to increase learning
efficiency are a representative example of this channel.

• Utility and/or new capability type: Provide information to increase util-
ity, including aspect such as interaction efficiency, availability, reduced
cognitive and interaction efforts, and/or the acquisition of new capability.
A representative example within this channel is an adaptive mobile user
interface that minimise the users’ navigation efforts.

In this dissertation four contributions valid to improve HCI have been drawn
using machine learning techniques in the following contexts: clustering vali-
dation, modelling users with disabilities, modelling the interactions on a web
platform from the medical area and modelling e-Services.

The first contribution is framed within the area of unsupervised learning
and it focused on clustering validation. In any clustering procedure, finding
the partition that best fits the underlying structure of the data, named cluster-
ing validation, is a difficult task because it implies to blindly group unlabelled
instances, that is, labelling the instances without a certain criteria. Cluster Va-
lidity Indexes (CVIs) make this task easier by measuring the compactness and
separation of the clusters using specific indexes that provide a quality metric
for the output partition. Even so, one of the most extensive comparative works
on CVIs to the date (Arbelaitz et al. 2013b) brings to light one of their major
weaknesses, the instability of their performances depending on the clustering
environments (e.g noise, dimensions, number of clusters etc.). To address this
problem, in our contribution we propose several CVI decision fusion approaches
that can improve the performances of individual CVIs in all the environments.
This contribution facilitates the decision-making on the optimal number of clus-
ters regardless of the nature of the data.

The second contribution deals with web accessibility and proposes a two-step
system based on machine learning techniques to automatically detect possible
user navigation problems. In the first step, supervised learning algorithms are
used to detect the interaction device being used, whereas in the second step, pos-
sible user navigation problems are detected by means of unsupervised learning
procedures. In addition some possible adaptations are discussed for the different
navigation problems detected. Therefore, this contribution is included in the
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four categories described above: self type, as it analyses how does each par-
ticipant perform particular tasks; world type, since it detects the device being
used by each participant to enhance accessibility; optimal type as it determines
which users may be experiencing different type of problems to accomplish a task;
utility/new capability provision type insofar as it discusses suitable adaptations
to alleviate the interaction problems detected.

The third contribution belongs to the area of medical informatics and it is
concerned to improve the existing technology designed to support clinicians in
decision-making activities, more precisely medical dashboards. In particular we
analysed the use of the Salford Medication Safety Dashboard (SMASH) used
in primary care across Salford, UK, (Williams et al. 2018), based on the data
collected in two different studies: one of a lab nature with six clinicians and
the other one of observational type with 35 clinicians. Two relevant questions
wanted to be answered in this work using machine learning algorithms on the
interaction and gaze data gathered in SMASH: whether visual behaviour can
be inferred from the interaction behaviour shown by the users in the dashboard
and whether is it possible to automatically classify and characterise the two
main cohorts of users of the dashboard. The first question was studied using
correlation metrics and clustering procedures initially on the gaze and interac-
tion data gathered in the lab study and in a second instance, on the interaction
data of both lab and observational studies. The second question was elucidated
using supervised learning procedures on the interaction data captured in the
observational study. In short, the contribution made in this context is included
in the four categories above described: self type because it provides knowledge
about different groups of clinicians sharing similar gaze and/or interaction be-
haviours; world type as it provides knowledge about clinician’s usage of medical
dashboards which can be used to improve the design of such decision support
tools such; optimal type insofar it detects and characterises competences of sec-
ondary users who engaged less with SMASH than primary users; utility/new
capability provision type since it monitors the interaction and gaze behaviour of
users in a medical dashboard, which are related with competence and cognitive
load respectively, to detect usability problems or lack of competence and inform
adaptations.

In the last contribution two different approaches are presented within the
area of e-Services, one for modelling the interaction of the users in the enrolment
web information area of the University of the Basque Country (UPV/EHU) and
the other one, for empirically analysing the real use of e-Government services
in Europe. In the first analysis both, supervised and unsupervised learning
algorithms were used on the interaction data of the enrolment area of the UP-
V/EHU to automatically classify and characterise two types of users: those
obtaining enrolment information (potential users interested in enrolling) and
those carrying out searching type tasks. In contrast, in the second work two
indexes were defined to quantify the e-Government practical use in 26 EU coun-
tries. Based on survey data provided by Eurostat and using supervised learning
procedures a characterisation of this factor was carried out for a selection of
countries with different levels of e-Government use. Therefore, the contribu-
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tion drawn in this context correspond to three of categories above explained:
self type by providing knowledge about groups of users showing similar inter-
action behaviours in the enrolment web information area of the UPV/EHU, or
regarding the use of e-Government services; world type by quantifying the use
of e-Services for different countries (location context of use); optimal type by
detecting and characterising users unsuccessfully seeking for information and
users who use e-Government services at a very low level.

1.1 Organisation of this dissertation

After this first part with the introduction the rest of this thesis is divided in
four different parts: Background, Contributions and Conclusions.

In Part II, Background, the key notions, principal techniques and particular
notation used in this dissertation are provided. This part is divided into two
chapters: Supervised learning techniques (Chapter 2) and unsupervised learning
techniques (Chapter 3).

Part III gathers the four contributions of the dissertation which are divided
in the following chapters: Contributions to clustering validation (Chapter 4),
Contributions to modelling the interaction of users with disabilities (Chapter 5),
Contributions to modelling the interaction with specific web platforms (Chapter
6) and Contributions to modelling the interaction and use of e-Services (Chapter
7).

Finally, in Part IV, Conclusions, the main conclusions of the dissertation are
drawn (Chapter 8). This chapter discloses the contributions of the dissertation,
discusses the main lessons learned from them and draws the future work to be
addressed hereafter. The document concludes showing the referenced bibliogra-
phy supporting the dissertation.
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Part II

Background
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Chapter 2

Supervised learning

As stated in the previous chapter, the goal of supervised learning is to predict
the label (dependent variable or class) of new data based on a training process
where labelled data are analysed. According to the general taxonomy, super-
vised learning is called regression when the data are of continuous type and
classification when it is of discrete type. In this dissertation algorithms of the
second type have been used, that is, those named classifiers. Inside this cate-
gory two main types of algorithms can be distinguished, parametric when some
parameters are assumed in the learning model (e.g data follow particular den-
sity of probability) and non parametric when no assumptions are made. The
algorithms used in this dissertation to deal with the problems raised in each
contribution are among the 10-top ranking presented by Wu et al. 2008. In
particular, we used one parametric algorithm, Näıve Bayes (NB) (G.H. John
and Langley 1995) and the non-parametric algorithms listed below:

• Neighbourhood based classifiers: IBK (Aha et al. 1991), which is a k
Nearest Neighbour implementation (kNN).

• Decision trees: C4.5 (J.R Quinlan 1993) and CTC (Consolidated Tree
Construction) (J.M. Pérez et al. 2007)

• Support Vector Machines (SVM): Sequential Minimal Optimisation
(SMO) (J. Platt 1998).

• Artificial Neural Networks (ANN): Multilayer Perceptron (MLP) (Rumel-
hart et al. 1986).

• Multiple classifier systems: Bagging (Breiman 1996) and Boosting
(Schapire 1999).

In the next sections the operating principles of these supervised learning
algorithms will be described, which were run using the suite of machine learning
free software Weka (M. Hall et al. 2009).
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2.1 Näıve Bayes

Näıve Bayes algorithm (NB) (G.H. John and Langley 1995) is based on the
Theorem of Bayes shown Equation 2.1 which assesses that, given the prior prob-
abilities, P(wi), and the class conditioned probability density functions P(x|wi),
it is possible to compute the posterior probability, P(wi|x):

P(w|xi) =
P(x|wi) ∗ P(wi)

P(x)
where P(x) =

C∑
i=1

P(x|wi) ∗ P(wi) (2.1)

Näıve Bayes algorithm assumes that the features or characteristics of the
data are statistically independent although it also performs well when this con-
dition is not met. If the data are independent the multivariate joint probability
is the product of the marginal conditional probabilities (P(x1, . . . , xF |wi) =
P(x1|wi) · . . . ·P(xF |wi)). Equation 2.2 shows the operating principle of the NB
classifier, which assigns to the pattern, xf the class with highest probability,
WNB :

WNB = argmax
wi∈C

P(x)

F∏
k=1

P(xf |wi) (2.2)

The NB algorithm is highly appreciated because of its computational sim-
plicity and its high efficiency which in some applications can be similar to that
of neural networks and decision trees.

2.2 Neighbour based classifiers

IBK (Aha et al. 1991) is a k Nearest Neighbour classifier (kNN) implemented
in Weka that bases the classification in a distance function. It labels any test
instance with the majority label among the k closest instances from the training
set. Figure 2.1 illustrates a 3NN example.

Figure 2.1: A three Nearest Neighbours (3NN) example.
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In the example shown in Figure 2.1 the instances of the training set have
three different labels or classes: circle, rhombus and square. According to the
3NN procedure the label assigned to the test instance, represented by a star, will
be the majority label among the three closest instances (circle, circle, rhombus),
circle in this case.

Algorithm 1 summarises the procedure followed by this algorithm which
consists of three steps: first, the distances between the instance to be classified
(test) and all the instances of the training set must be calculated; second, the
k closest instances (neighbourhood) from the training set (minimum distance)
must be selected; third, the majority class (label) among the k closest instances
is assigned to the test instance.

Algorithm 1 kNN algorithm.

1: neighbourhood = {};
2: x new test instance;
3: for each training instance y do
4: Compute the distance d(x, y);
5: if d(x, y) is into the k smallest distances; then
6: Add y to neighbourhood
7: end if
8: end for
9: x.class = FindMajorityClass(neighbourhood);

Several distances can be used with kNN, perhaps, the most popular distance
function used is the Euclidean distance. kNN algorithm is effective and simple
and allows adding new examples to the training set at any time. However,
its major drawback is its speed considering that the time required to classify
a single test instance is proportional to the number of training instances. In
addition, it does not deal very well with noise and redundant characteristics,
and it has a null or very limited explanatory ability.

2.3 Decision trees

A decision tree can be defined as a graphical representation of a particular type
of hierarchical analysis carried out on a set of data, separating the population in
subgroups of individuals which differ from each other according to a discriminant
criteria. A division function based on a discriminant criteria determines in each
step the predictive variable or attribute selected to divide the node being treated,
and the stratification of that variable to determine the different children nodes
(building sub-populations of the parent node). There are multiple discriminant
criteria when building a decision tree but the goal in all the cases is to generate
children nodes as homogeneous as possible from the dependent variable point
of view, that is, nodes with a minimal mixture of instances of different classes.

Figure 2.2 shows an example of a decision tree, where the leaf nodes in the
bottom represent the classifications or decisions, the node in the top is called
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CHAPTER 2. SUPERVISED LEARNING

root node considered and the rest of nodes (set of predictors required for a final
classification) are called the intermediate or split nodes.

Figure 2.2: An example of a decision tree.

The decision trees classify or estimate the class belonging probabilities, pro-
viding an explanation of the decision made with each pattern. They have a
very volatile behaviour (weak classifier) regarding the training set, due to the
fact that the first divisions condition overmuch the final tree. Depending on the
application they require methods to increase their stability.

2.3.1 C4.5

The C4.5 (J.R Quinlan 1993) algorithm, implemented as J48 in Weka, was de-
signed by J Ross Quinlan who also is the author of its predecessor the Induction
of Decision Tree ID3 (J.R. Quinlan 1986) algorithm, being both of them two of
the most widely used decision trees.

Both algorithms use the Shannon Entropy (Shannon 1948) as split function.
Equation 2.3 shows how the entropy or the amount of information of the de-
pendent variable (class), C, the independent variable, V, and the contingency
table are be computed (TC), Hy, y ∈ {C, V, TC}).

HC = −
nC∑
i=1

(pi log2 pi), HV = −
nV∑
j=1

(pj log2 pj), HTC = −
nC∑
i=1

nV∑
j=1

pij log2 pij

pi =
Mi

T
, pj =

Mj

T
, pij =

oij
T

(2.3)

• pi, pj and pij: distributions of the class, the independent variable and the
contingency table respectively.

• Mi and Mj: marginal distributions of the class and independent variable
respectively (probabilities of the values of one of the variable without
reference to the values of the other variable).
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• oij : number of observed instances in the training set with values i and j
for the class and independent variables respectively.

• T: grand total (total number of observations).

ID3 algorithm uses the Information Gain (HT) as a split function, shown in
Equation 2.4.

HT = HV + HC −HTC (2.4)

In the C4.5 algorithm the split function used is the Gain Ratio criteria (GR),
shown in Equation 2.5.

GR =
HT

HV
(2.5)

The procedure followed by the C4.5 algorithm is described in Algorithm 2.

Algorithm 2 C4.5 algorithm, based on (Zhu et al. 2019).

1: Tree= {};
2: D= feature-valued dataset;
3: if D is TRUE or Stopping Criteria is TRUE; then
4: Terminate
5: end if
6: for each attribute a in D do
7: subset=spliton(a);
8: a.GR = FindGainRatio(subset);
9: end for

10: a.best = Max(a.GR);
11: Tree=decision node=spliton(a.best);
12: Dv=Induce subsets from D based on a.best;
13: for all Dv do
14: Treev=C4.5(Dv)
15: Attach Treev to the corresponding branch of Tree
16: end for
17: Return Tree

According to Algorithm 2 the procedure of the C4.5 consists of the following
steps: selecting in the root node the attributes with the maximum information
gain to split the training data into as many subsets as the values of a chosen at-
tribute has; processing recursively for every subset until all of them are classified
(stopping criteria). Other stopping criteria include reaching a maximum tree
depth or a minimum number of instances in a leaf node (pruning threshold).

C4.5 present some improvements over ID3 in terms of methods to deal with
numeric attributes (continuous data), missing values, noisy data, and generat-
ing rules (Witten and E. Frank 2005). In addition, C4.5 incorporates pruning
(removal of sections of the tree with low predictive ability), which reduces the
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size of the tree and the over-fitting occurred when there is a is very high training
set accuracy at the expense of a high test set error preventing the generalisation
of the learning model.

2.3.2 CTC

The consolidated tree construction (CTC) algorithm (J.M. Pérez et al. 2007),
implemented as J48 Consolidated in Weka, was designed to deal with a class
imbalance problem. In contrast to C4.5 which uses a single sample to build
the tree, CTC creates several sub-sets of samples which then uses to build the
tree. The CTC algorithm carries out a voting procedure in order to select the
variable splitting the node of the tree at each step of the tree’s building process
(Arbelaitz et al. 2013a). The same split criteria proposed by Quinlan in the
C4.5 algorithm (J.R Quinlan 1993) is used in the CTC, that is, the Gain Ratio
(GR) illustrated in Equation 2.5. Algorithm 3 summarises the iterative process
to build a consolidated tree.

Algorithm 3 CTC algorithm, based on (J.M. Pérez et al. 2010).

1: S=training set
2: NS=number of sub-samples to generate;
3: RM=method used to generate sub-samples (Re-sampling Mode);
4: n=number of examples to generate;
5: for i in 1 to NS do
6: Si={RM (S)};
7: LSi={Si} // initialise LSi with Si);
8: end for
9: CurrentConsolidatedNode=RootConsolidatedNode;

10: repeat
11: for i in 1 to NS do
12: CurrentSi=First(LSi) ;// first element of the list
13: LSi= LSi − CurrentSi;
14: (X,B)i=BestSplit(CurrentSi)
15: end for
16: (Xc, Bc)= Consolidatedpair(X,B)i, 1 ≤ i ≤ NS
17: if (Xc, Bc) 6= NotSplit TRUE; then
18: Split(CurrentConsolidatedNode) basedon(Xc, Bc)
19: for i in 1 to NS do
20: {Six, 1 ≤ x ≤ n}=Divide(CurrentSi) basedon(Xc, Bc);
21: LSi= {Six, 1 ≤ x ≤ n} ∪ LSi
22: end for
23: else
24: LeafconsolidateNode=CurrentConsolidatednNode
25: end if
26: CurrentConsolidatedNode=NextNodeToConsolidate()
27: until ∀i LSi=empty;
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According to the algorithm, first, a set of sub-samples (Si, 1 ≤ i ≤ NS)
are extracted from the training set based on a particular re-sampling technique
(RM ), e.g bootstrap (random sampling with replacement). Then, all the sub-
samples Si are stored in a list in LSi and the construction of the CT tree
starts. The building process is commanded by CurrentConsolidatedNode as
it enables the function NextNodeToConsolidate() to return the next node to
be used. Similarly, CurrentSi is used as a pointer of the next data partition
(related to one node) of Si to be treated in the building process of the ith tree.

In Algorithm 3 the split proposal for the first data partition in LSi is rep-
resented by the pair (X,B)i, where X is the feature selected to split and B
represents the proposed branches (criteria) to divide the data in the current
node. Then, in the consolidation step, a voting process based on all the propos-
als is carried out in order to determine the consolidated feature and branches
(Xc, Bc). This process is repeated until LSi is empty for all i, that is, the tree
does not grow any more if in the last partition in all LSi, the majority vote is
not to split thus, to become a leaf node (stopping criteria).

The main strengths of the CTC algorithm are its good performance in im-
balanced an noisy contexts (high accuracy), the comprehensibility of the classi-
fication it carries out, which is provided in a single tree and the stability of the
explanation provided.

2.4 Support Vector Machines

The Sequential Minimal Optimisation (SMO) algorithm (J. Platt 1998) is cate-
gorised inside the group of Support Vector Machines which were first developed
by Cortes and Vapnic for binary classification (Cortes and Vapnik 1995). The
idea is to maximise the margin around the hyper-plane separating two classes,
assuming a lineal separability between them. This hyper-plane is determined
based on the subset of patterns defining the border between classes (quadratic
optimisation problem), which are named support vectors. When the margin
between the nearest points of the two classes is maximised, the points of the
boundaries are defined as support vectors and the middle of the margin is the
optimal separating hyper-plane.

Using a primary formulation the goal of SVM in the example will be to
minimise the objective function, 1/2

∑n
i=1 w

2
i , given the restrictions yi(wxi +

b) ≤ 1, 1 ≤ i ≤ N . Figure 2.3 illustrates an example of two dimensions
dataset with two lineally separable classes (yi ∈ {−1, 1}), where the points of
the hyper-plane that divides the two classes (xi) satisfy that, wxi+ b = 0, given
x : i ∈ Rn, 1 ≤ i ≤ l; yi ∈ {−1, 1}. In this case, all the training tuples allocated
in any of the hyper-planes will be support vectors (the four points touching the
two support vectors drawn in Figure 2.3.

Support Vector Machines can be applied to problems of high dimensions,
and in addition to lineal separable problems (hard margin) they also are able to
deal with non-linearity by using kernel procedures, where a projection of data
points into an (usually) higher-dimensional space is carried out so they become
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linearly separable. SVM algorithms can also deal with overlapping classes by
using soft margin, that is, applying low weights to the data points located in
the incorrect side of the margin so that their influence is diminished.

Figure 2.3: Two dimensions dataset with two lineally separable classes yi ∈
{−1, 1} divided by the hyper-plane.

2.5 Artificial Neural Networks

The Multilayer Perceptron (MLP) algorithm (Rumelhart et al. 1986) is cate-
gorised inside the group Artificial Neural Networks (ANN), which aroused from
the idea of modelling mathematically the human intellectual abilities.

The basic structure of an ANN is a neuron, and Simple Lineal Perceptron
(SLP) is the most simple ANN with a single one. As shown in Equation 2.6 the
output of a SLP (o), obtained applying a nonlinear activation function (f), e.g
sign, sigmoid (σ), to the network (net). The net is defined as the inner product
between the input weights (wj) of the neuron and the input pattern (xj).

o = f
( N∑
j=1

wj ∗ xj + w0

)
(2.6)

In the training of the simple lineal perceptron first, the input patterns
(xj , j ∈ N, 1 ≤ j ≤ N) are given to the network and their outputs are com-
puted (o) and then, the weights (wj , j ∈ N, 1 ≤ j ≤ N) are updated depending
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on whether the output obtained is correct or not (t, target). This process is
repeated until a good performance of the network is achieved or in case it does
not converge, until a certain predetermined number of training runs. Equation
2.7 shows how the weights are updated:

wjnew = wjprior + (t− o) ∗ x t: desired output

w0new = w0prior + (t− o)
(2.7)

This kind of network is not able to solve nonlinear problems. For such
problems more complex models like the Multilayer Perceptron shown in Figure
2.4 are used.

Figure 2.4: Structure of a MLP neuronal network (Faghfouri and Frish 2011)

MLP are feedforward type networks (all the connections between the neurons
are forward), where as shown in Figure 2.4 all the neurons of a particular level
are connected to all the neurons of the next level. As it can be observed in the
figure this network has one input layer, one output layer and can have none or
several hidden layers. Depending on the number of neurons (or internal levels)
of the MLP it is possible to approximate more complex functions. The working
principle of each neuron is the same described for the SLP and can is represented
in Equation 2.8.

okj = fkj
(
netkj

)
, netkj =

Nk−1∑
i=1

wk−1ij ok−1i
(2.8)

The learning in a MLP can be carried out using for example the Back Propa-
gation (BP) algorithm. BP prevents the delta rule, the gradient descent learning
rule for updating the weights of the inputs ∆wij

, and minimises its derivation,
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the Least Means Squares (LMS) function error shown in Equation 2.9.

E =
1

2

NL∑
i=1

(tj − oLj )2 (2.9)

The weights in an MLP are updated following the updated equation of the
SLP described by Equation 2.10. As shown in the equation the compute of δ
differs depending on the type of neuron, and ot is different for the output or
from an intermediate layer (hidden).

∆wkij = ηδk+1
j oki , η = learning coefficient

δLj = (tj − oLj )oLj (1− oLj ), output layer neuron

δkj = okj (1− okj )

Nk+1∑
l=1

δk+1
l wkjl, hidden layer neuron

(2.10)

Among the advantages of using a MLP are that they are computationally
efficient as they can easily be parallelised. In addition, some models with a finite
number of patterns are able to approximate any discriminant function with high
accuracy (universal approximation). However, they can not easily be scaled and
the convergence can be slow.

2.6 Multiple classifier systems

In order to achieve models with less variance (caused by the training set) and
bias (classification error caused by the algorithm), ensemble methods such as
like bagging (Breiman 1996) and boosting (Schapire 1999) are widely used com-
bining the output of different models (multiple classifiers). In the next lines
we summarise two ensemble methods widely used, bagging and boosting, which
accomplished simple (equally weighted) and weighted vote procedures between
several classifiers respectively to make the final decision.

2.6.1 Bagging

The first bagging algorithm named from Bootstrap aggregating was proposed
Breiman in 1996 (Breiman 1996) and consists of building classifiers based on
boostrap samples (with replacement) where the final decision is taken accord-
ing to the majority vote among all the individual classifiers. Algorithm 4 sum-
marises the bagging procedure.

The main strengths of a bagging procedure are that it reduces the variance
caused by the training and that it provides high accuracy, contributing to al-
leviate the over-fitting problem and improving the stability of the model. In
addition, the independence of the models being combined allows to apply paral-
lelisation techniques can if required. However, the model looses the explanation
capabilities.
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Algorithm 4 Bagging procedure.

1: S=training set;
2: T=number of boostrap samples (Bk, 1 ≤ k ≤ T))
3: L=inductor algorithm;
4: Ck=classifier built with the sample Bk;
5: C∗= final classifier
6: for k in 1 to T do
7: Bk = boostrap sample of S;
8: Ck=L(Bk);
9: end for

10: C∗(x) = argmax
wi∈C

∑
k:Ck(x)=wi

1;

2.6.2 Boosting

The boosting algorithm was proposed by Schapire in 1990 (Schapire 1999) aim-
ing to reinforce the performance of weak classifiers. Six years later Freund and
Schapire presented the AdaBoost (Adaptive Boosting) algorithm (Freund and
Schapire 1996), which has been used in this dissertation. In this algorithm T
classifiers are built sequentially and each pattern of the sample is assigned a
particular weight which vary in each step depending on whether the pattern is
correctly classified or not. The final decision is the result of a weighted voting
between all individual classifiers. Algorithm 5 shows the procedure used by
AdaBoost.

As described in Algorithm 5 AdaBoost starts assigning equal weights to all
the instances in the training data and then, uses a particular learning algorithm
to build a classifier for this data. At this point based on the output of the clas-
sifier, the instances are assigned new weights (re-weighting) so that correctly
classified instances (easy) are lowly weighted and the missclassified ones (hard)
are highly weighted. This process is repeated several times and when the error
on the weighted training data is higher than 0.5 or equal to 0, then, the boosting
procedure deletes the current classifier and does not perform any more itera-
tions. The logarithmic expression log(1− εk)/εk enables the correctly classified
instances to be highly weighted and vice versa. The weights of all the classifiers
that voted for a particular class are summed and the one with the highest total
is chosen in the end (argmaxwi∈C

∑
weightedvotes).

Among the advantages of using a boosting procedure we can mention that it
reduces the classification error caused by the algorithm (bias). However, unlike
in bagging here we can not parallelise the computations to combine the model
and thus, coordinating sequentially several complex models can be computa-
tionally expensive.
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Algorithm 5 Boosting procedure.

1: S=training set;
2: T=number of individual classifiers built based on S weighted (S’);
3: L=inductor algorithm;
4: Ck=classifier built with the sample Bk;
5: C∗= final classifier
6: for k in 1 to T do
7: Ck = L(S′) ;

8: εk=
1

n

∑
xj∈S′:Ck(xj)6=wi

weight(x); // weighted error in the training set

9: if εk >
1
2 ; then

10: Terminate;
11: end if
12: NS′=size(S′);
13: for xj in 1 to NS′ do
14: if Ck(xj) 6= wi; then

15: weight(xj)=
weight(xj)

2εk
;

16: else

17: weight(xj)=
weight(xj)

2(1− εk)
;

18: end if
19: end for
20: end for
21: C∗(x) = argmax

wi∈C

∑
k:Ck(x)=wi

log (1−εk)
εk

; // most voted class (weighted)

2.7 Validation

Validation in the supervised learning context evaluates the generalisation capac-
ity of a predictive model on an independent data set. In particular, predictive
models learn to perform predictions using the training dataset and then, their
learning ability is tested on new data named test dataset. To accomplish a suit-
able validation it is important to separate training and test datasets, carrying
out a hold-out procedure or performing a cross validation. The hold-out proce-
dure splits the dataset into training and test disjoint sets but the performance
of the classifier may be biased by the sets of data selected. In case limited data
are available and the split is not possible, a cross-validation procedure can be
used. Therefore, preferably random sub-sampling (repeated hold-out) is used,
which rather than generating a single training/test partition, it splits the dataset
several times by randomly selected instances in both types of sets so that the
learning capacity of the model is given in terms of average values obtained in
all the partitions.
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2.7.1 K-fold cross-validation

A K-fold cross-validation divides the data into K number of partitions or folds of
the same size. In order to predict the error rate of a learning algorithm usually
an stratified 10-fold cross-validation is performed. This way, the dataset is
randomly divided into 10 parts, trying to preserve the same original proportion
of class instances in all of them. Then, 10 performance estimations are carried
out, keeping nine of the parts for training and one for test. This way, the
learning is carried out 10 times in each of them, and the total error is computed
as the average of the 10 learning processes. The existing literature shows that
using 10 folds is the best approach to estimate the error (Kuhn and Johnson
2013), although 5-fold or 20-fold cross-validations are also suitable (Witten and
E. Frank 2005). In order to obtain reliable results, several runs of 10-fold cross-
validation are usually required.

2.7.2 Leave-one-out cross-validation

Alternatively, leave-one-out cross-validation can be used, which is a fold cross
validation with the same number of folds as instances has the dataset. Each of
the n learning processes are carried out leaving one instance out (test), that is,
with n−1 training instances. The final error is computed as the average of the n
learning processes. Therefore, this process is computationally expensive as the n
learning processes must be executed, which may not be possible in large datasets
but can be very effective for small datasets. In addition, as just one instance is
used as test in each learning, this procedure does ensure an stratification, which
can be a critical problem for balanced binary class datasets.

2.8 Performance metrics

The majority of metrics used to evaluate the performance of classifiers need
to be evaluated are based on the confusion matrix (Ron Kohavi and Provost
1998), where the number of instances which belong to each class are represented
in rows and the number of instances classified as belonging to the each class are
represented in columns.

In binary problems (two classes), the minority and majority classes are re-
ferred as positive and negative respectively and the confusion matrix is of 2x2
dimensions, providing therefore the four next listed distributed as shown in
Table 2.1:

• True Positive (TP): number of positive instances classified as positive.

• True Negative (TN): number of negative instances classified as nega-
tive.

• False Positive (FP): number of negative instances classified as positive.

• False Negative (FN): number of positive instances classified negative.
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Prediction
P N

Reality
T TP FN
F FP TN

Table 2.1: Confusion matrix

Equations 2.11 and 2.12 show respectively the most widely known metrics to
evaluate the performance of a classifier computed based on the values mentioned
above: accuracy (Acc), percentage of correctly classified instances, and error
rate (Err), percentage of wrongly classified instances.

Acc =
TP + TN

TP + FP + FN + TN
=

T

T + F
(2.11)

Err =
FP + FN

TP + FP + FN + TN
=

F

T + F
= 1−Acc (2.12)

In many problems, false positive are critical (e.g false terrorism accusation)
whereas in other problems false negative have more importance (e.g dismissing
a correct tumour diagnosis). Therefore, alternative metrics considering different
types of errors were proposed to evaluate the performance of the classifiers, such
as the ones shown in Equations 2.13, 2.14 and 2.15: precision (Pr), percentage
of instances that are actually positive among those who have been classified as
such ; recall (Re), percentage of correctly classified positive instances; F-measure
(Fm), harmonic mean of the precision and the recall.

Pr =
TP

TP + FP
(2.13)

Re =
TP

TP + FN
(2.14)

Fm = 2 · Pr ·Re
(Pr +Re)

(2.15)

In addition there are some methods that graphically combine two of the
above mention metrics over threshold values. The procedure of such methods
is carried out by first, performing a test to obtain the probability of being a
member of the positive class or the negative class for each instance and second,
by fixing a threshold that enables to determine whether each instance is clas-
sified positively or negatively. Analysing these plots the best threshold value
is selected keeping the crucial error to zero and the other as low as possible.
In this dissertation the Area Under ROC (Receiver Operating Characteristic)
Curve (AUC) graphic has been used, which graphically represents the recall (also
named True Positive Rate) in the X axis and the False Positive Rate ( FP

FP+NP )
in the Y axis. Ideally, the area under the curve in a classifier would be 1, thus,
the classifier with higher AUC is usually considered as the best classifier.
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2.9 Statistical tests

The goal of statistical tests is to determine whether significant differences exists
between the performances of different classifiers or other types of procedures
(e.g indexes, CVIs...). Thus, the initial or null hypothesis of such tests is that
the performances are not significantly different and accordingly, rejecting this
hypothesis implies that significant differences exist.

Two types of statistical tests can be distinguished, parametric which assume
that the data follow a particular probability distribution and infers its features
and non-parametric, which do made such assumptions and use order statistics
based on ranks of observations. In case the assumptions of parametric tests are
correct, they can provide more accurate estimations and are statistically more
powerful but in the opposite case they can be misleading.

In this dissertation on the one hand, the parametric statistical Student’s t-
test (Gosset 1908) was used in order to determine whether significant differences
existed between the performance of two classifiers. In particular, in the Student’s
t-test the null hypothesis is that the statistic follows a Student’s t-distribution
(continuous probability distribution aroused when estimating the mean of a
normally distributed population).

On the other hand, the non-parametric Kendall’s rank correlation test was
used in order analyse whether significant differences existed in the rankings
provided by different indexes. In particular this test is used to compare the
correlation on ranking type data being the tau-test a non-parametric test for
statistical dependence based on the tau coefficient.

In the next lines we briefly describe both statistical tests.

2.9.1 Student t-test

In order to compare two population samples X1 and X2 of n instances with the
Student t-test (Gosset 1908) the t statistic is computed as shown in Equation
2.16, where sp is the pooled standard deviation for n = n1 = n2 (populations
of equal sizes) and s2x1 and s2x1 are unbiased estimations of the variances of
the two samples.

t =
X1X2

sp
√

2
n

,

sp =

√
s2x1 + s2x2

2

(2.16)

The null hypothesis in this case is that the population means from the two
groups are equal. Using the tables of the t-distribution to the resulting t value
for the tn−1 distribution the p-value for the paired t-test can be obtained.
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2.9.2 Kendall test

Kendall’s tau (Kendall 1938) also named Kendall’s correlation coefficient, τ ,
measures the rank correlation, that is, the similarity between different orderings
of the same dataset. In particular, two ordinal variables are pairwise observed
computing their correlation, which would be high if observations have equal
ranks (tau = 1) and low in the opposite case (tau = −1). In Equation 2.17 the
computed τ is described, which is the ratio between the difference of concordant
(nc) and non concordant (nd) pairs and the binomial coefficient n0 =

(
n
2

)
=

n(n−1)
2 for the number of ways to choose two items from n items.

τ =
nc − nd
n0

(2.17)

For data with excessive number of ties, Kendall’s τb shown in Equation
2.18 is computed. In this case, the null hypothesis will be that the pairs are
not correlated τb = 0 and the alternative hypothesis that they are correlated
τb 6= 0. If in the pairwise correlation test we obtain a p-value higher than a
significant level α = 0.05, the null hypothesis will not be rejected meaning that
both variables are not correlated at 0.05 significance level, and the alternative
hypothesis (variables are correlated) will be accepted in case pvalue < 0.05.

τb =
nc − nd√

(n0 − n1)(n0 − n2)
, n1 =

∑
i

ti(ti − 1)

2
, n2 =

∑
j

uj(uj − 1)

2

ti : number of tied values in theithgroup for the first quantity

uj : number of tied values in thejthgroup for the second quantity

(2.18)
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Chapter 3

Unsupervised learning

In contrast to supervised learning, unsupervised learning deals with finding un-
derlying structures of unlabelled data (lack of a dependent variable). One of
the main methods used in unsupervised learning is clustering where similar
instances of a dataset are grouped in the same cluster and dissimilar ones in dif-
ferent clusters, based on a particular similarity metric (e.g Euclidean distance).
The clustering procedure consist of four steps (Xu and Wunsch 2008): feature
extraction (easy to interpret, representative , not redundant etc.), selection of
a clustering algorithm that best fits the data, clustering validation (evaluation
of clustering structure) and result interpretation.

In this dissertation two main types of clustering algorithms were used: hi-
erarchical, which provide a hierarchy of the partitions in a graph (dendrogram)
and partitional, which provide a single partition of the data. The specific algo-
rithms used are listed next:

• Hierarchical clustering: SAHN (Sneath and Sokal 1973) with average-
linkage (Jain and Dubes 1988) and with Ward (Ward 1963) criteria

• Partitional clustering: k-means (Lloyd 1982) and PAM (k-medoids) (Kauf-
man and P. Rousseeuw 1990)

Not having labelled data makes clustering validation one of the main chal-
lenges of this area. In order to evaluate the suitability of the partition obtained,
three main types of validation techniques can be distinguished: external, when
the correct partition exists and the resulting one can be evaluated by compar-
ison; internal, when the correct partition is not available and the compactness
and separation of the clusters is measured to evaluate the partitions; relative,
which combines external and internal validations. In this dissertation internal
validation has been studied, more concretely, defining several voting approaches
between Cluster Validity Indexes (CVIs) previously analysed in one of the most
extensive comparative works existing in the literature (Arbelaitz et al. 2013b).

In the following sections the three types of algorithms mentioned (hierarchi-
cal and partitional) will be described first and then a summary of the internal
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validation indexes (CVIs) will be provided. For the majority of the procedures
R (R Core Team 2017), the free software environment for statistical computing
and graphics, was used.

3.1 Hierarchical clustering

Hierarchical algorithms produce a hierarchical structure of clusters usually in
a dendrogram type diagram (see Figure 3.1), where instances at low levels are
more tightly clustered than those joined at higher levels (Witten and E. Frank
2005). As shown in the figure (right) in the y-axis and x-axis of the dendrogram
the similarity measure and the clustered instances are represented respectively.
In this case, if the dendrogram is horizontally cut where the dashed line we
obtain three clusters (k=3), marked as C1, C2 and C3, being the instances
inside the second one (D,E) more similar between them (compact) than the
ones inside the other two.

Figure 3.1: Dendrogram (left) obtained from a hierarchical clustering algorithm
applied to seven instances of a two dimensional dataset (right) (Jain et al. 1999).

The general taxonomy divides the hierarchical algorithms into two main
groups (Hastie et al. 2009) :

• Agglomerative (bottom-up): the starting point is in the bottom and at
each level a selected pair of clusters are recursively merged into a single
one so that the grouping at the next higher level has one less cluster. The
selection of the pair of clusters that will be merged is done according to
the smallest inter-group distance.

• Divisive (bottom-up): the starting point is in the top and at each level one
of the existing clusters is split into two new clusters. The split decision is
made so that the two new groups have the largest inter-group distance.

In this dissertation SAHN (Sneath and Sokal 1973) agglomerative type clus-
tering algorithm has been used, which is described in the next lines.
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3.1.1 Hierarchical agglomerative clustering

SAHN is an acronym to designate clustering methods that are Sequential, Ag-
glomerative, Hierarchical and Non-overlapping (Sneath and Sokal 1973). In
these clustering methods the distance between each pair of instances in the set
of instances to be clustered must be quantitatively specified, using for example
a distance matrix. The number of rows (i) and columns (j) of this matrix is
given by the number of instances (N) of the dataset and in each cell the distance
between each instance pair is provided.

Algorithm 6 summarises the procedure of SAHN, where initially each of
the N instances of the training set (S) in one cluster (a partition S1 of N
clusters) and then the distance matrix (M1) of the N clusters is computed.
In the third step, the two nearest clusters are joined (i, j) in the same cluster
(h) so that the new partition has one less cluster and the distance matrix is
accordingly updated. This procedure is repeated until a partition with two
clusters is obtained and the corresponding hierarchy can be provided.

Algorithm 6 SAHN algorithm (Day and Edelsbrunner 1984).

1: S=Training set with N instances;
2: S1=Partition with N clusters one for each training each;
3: M1=D(S1 (Distance matrix of S1);
4: for m in N to 2 do
5: Find the nearest two clusters (i, j) in M1;
6: Replace the two clusters (i and j) by an agglomerated cluster h.
7: Update M by computing the distance between h and the rest of the

clusters m− 1;
8: end for
9: Output: hierarchy of clusters (S1, S2, ..., SN );

In order to measure the distance between clusters different methods named
linkage criteria can be used, next. In particular we used three of the most
popular ones:

• Single-linkage: according to this criteria the distance between two clusters
C1 = {c1i, 1 ≤ i ≤ N} and C2 = {c2j , 1 ≤ j ≤ M} is computed as the
distance between the two closest instances of the two clusters (see Equation
3.1).

D(C1, C2) = min
c1i∈C1,c2j∈C2

d(c1i, c2j), 1 ≤ i ≤ N, 1 ≤ j ≤M (3.1)

• Complete-linkage: the distance between clusters C1 = {c1i, 1 ≤ i ≤ N}
and C2 = {c2j , 1 ≤ j ≤M} is computed as the distance between the two
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farthest instances of the two clusters (see Equation 3.2).

D(C1, C2) = max
c1i∈C1,c2j∈C2

d(c1i, c2j), 1 ≤ i ≤ N, 1 ≤ j ≤M (3.2)

• Average-linkage (Rédei 2008): according to this criteria the distance be-
tween two clusters C1 = {c1i, 1 ≤ i ≤ N} and C2 = {c2j , 1 ≤ j ≤ M}
is computed as the average distance between all the instances of the first
cluster (c1i) and all the ones belonging to the second cluster (c2j) (see
Equation 3.3):

D(C1, C2) =
1

NM

N∑
i=1

M∑
j=1

d(c1i, c2j) (3.3)

• Ward-linkage (Ward 1963): this criteria uses the sum of square errors
(SSE), also known as error sum of squares (RSS), as an objective function
to measure the distance between the clusters. If Ward-linkage is combined
with SAHN, in each step of the procedure the pair of clusters to be merged
(e.g C1 and C2 shown above) will be the one with slowest sum of square
error (see Equation 3.4), that is, those with the minimum increase in total
within-cluster variance after joining (C3):

SSE(C3) =

MN∑
k=1

(c3k − c3)2, c3 =
1

NM

MN∑
k=1

c3k,

C3 = {c3k, 1 ≤ k ≤MN}

(3.4)

The main strengths of SAHN and similar hierarchical algorithms is the easi-
ness to interpret the results provided in a dendrogram and the fact that no infor-
mation about the number of clusters is required beforehand. However, among
the weaknesses we find their bad performance with large and noisy datasets and
those with missing values or outliers and the difficulty to determine the right
number of clusters in complex dendrograms.

3.2 Partitional clustering

Partitional clustering methods provide a single partition dividing all the in-
stances of the training set into disjoint clusters. This kind of clustering is more
suitable for large-datasets contexts where a dendrogram can be computationally
very expensive.
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In partitional clustering the clusters are obtained by optimising a criteria
function locally (for a subset of instances) or globally (for the whole set of in-
stances) defined (Jain et al. 1999). Usually, the employed criteria is the squared
error shown in Equation 3.4. As we are describing in the following paragraphs
the k-means (Lloyd 1982) popular algorithm uses in this criteria.

3.2.1 K-means

K-means (Lloyd 1982) is one of the most widely used algorithms in the literature
(Wu et al. 2008) and its working principle consists of minimising the sum of
square errors. As represented in Algorithm 7 the procedure of k-means starts
defining the number of clusters desired, K, and continues by randomly selecting
K instances as cluster centroids (geometrical centres or average between all the
instances in the cluster) and assigning the instances to the nearest centroids
of the clusters. Then, the centroids of the clusters are newly computed and
instances are reassigned to the nearest clusters based on the new centroids.
This procedure is iterated until the same instances are assigned to each cluster,
that is, when the centroids are stabilised, or a particular number of iterations
is achieved.

Algorithm 7 K-means algorithm.

1: Training data=X={xi 1 ≤ i ≤ N};
2: Select the number of clusters: K ≤ N ;
3: Randomly select K centroids: C= {cj , 1 ≤ j ≤ K};
4: repeat
5: Assign the instances to the closest cluster centroids:

for i in 1 to N
closest c(xi)=arg min

1≤j≤K
d(xi, cj) ;

end for;
6: Update the K cluster centroids C:

for j in 1 to K
cj=mean(xi|closest c(xi) = j);
end for;

7: until Cluster centroids stop changing or maximum number of iterations
achieved.

K-means presents some advantages compared to hierarchical approaches,
such as its implementation simplicity and its good and fast performance for
large datasets. On the other hand, its mayor disadvantages are the difficulty of
determining the number of clusters k beforehand and its sensitivity to scale and
initialisation (the results for original and normalised data can totally differ).
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3.2.2 K-medoids

K-medoids is a variant of k-means algorithm which instead of using the centroid
as the representative instance of a cluster (C), the medoid of the cluster, M(C)
is employed. As shown in Equation 3.5 the medoid of a cluster is computed as
the instance (xj) with a minimum average distance to all the instances in the
cluster (xi). This is a key-difference between both algorithms because the fact
that the medoid used in k-medoids is a real instance, makes the algorithm more
robust against outliers which negatively affect the centroids used in k-means.
In addition, the new medoids can be directly picked up from a distance matrix
in contrast to new centroids which must be computed again in each step.

M(C) = arg min
xj∈C

N∑
i=1

d(ci, cj) C = {xi, 1 ≤ i ≤ N} (3.5)

Algorithm 8 summarises the procedure of k-medoids.

Algorithm 8 K-medoids algorithm.

1: Training data=X={xi 1 ≤ i ≤ N};
2: Select the number of clusters: K ≤ N ;
3: Randomly select K medoids: M= {mj , mj ∈ X, 1 ≤ j ≤ K};
4: repeat
5: Assign the instances to the closest cluster medoids:

for i in 1 to N
closest m(xi)=arg min

1≤j≤K
d(xi,mj) ;

end for;
6: Update the K cluster medoids M :

for j in 1 to K
mj=arg min(xi|closest m(xi) = j);
end for;

7: until Cluster medoids stop changing or maximum number of iterations
achieved.

The Partitioning Around Medoids (PAM) algorithm (Kaufman and P.
Rousseeuw 1990) is an implementation k-medoids algorithms. This algorithm
has two phases (Li et al. 2017) which are described next described:

• Build phase: a set of K instances are selected as medoids for an initial
partition S (set of selected instances). If the sum of the distances between
a particular instance and the rest of them is minimum, then that instance
is selected as the first medoid, repeating the process until K medoids
are obtained. In particular, for all the unselected instances i (i ∈ U)
candidates to be included in the set of selected instances S a total gain is
computed as shown in Equation 3.6. In the equation, each time j is the
instance of the unselected set of instances without i (j ∈ U − i) and the
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distance between j and the closest selected instance (S) is computed (Dj).
If Dj > d(i, j), then the instance will increase the quality of the cluster.

gi =
∑
j∈U

max{Dj − d(j, i)} (3.6)

After computing all the total gain of the set of unselected instances (U),
the instance that provides the highest gain, h, is included in the selection
set and excluded from the unselected set (S = S ∪ {h}, U = U − {h}).
The process is repeated until K instances are selected.

• Swap phase: instances not selected as medoids (u ∈ U) are exchanged
aiming to improve the quality of the cluster. In particular all possible
combinations of pairs of instances selected and not selected as medoids
(s, u ∈ SxU) are analysed by measuring the effect of each swap Tsu ac-
cording to Equation 3.7 and notation described below.

Tsu = sum{Ktsu|t ∈ U}

Ktsu =

{
min{d(t, u)−Dt, 0}, if d(ts) > Dt;

min{d(t, u)− Et} −Dt, if d(ts) = Dt;

(3.7)

– Ktsu: contribution of each instance t in U to the swap of s and u.

– Dt: dissimilarity between t and the closest object in S.

– Et: dissimilarity between t and the second closest object in S.

In particular, given a pair of instances (s, u) with the minimum contribu-
tion Tsu, if its value is lower than 0, a swap will be carried out whereas
the in opposite case, a halt will be carried out as no quality improvement
happened. This process is repeated until the quality of the cluster is the
best.

One of the biggest disadvantages of PAM is that its that is computationally
expensive because each medoid is compared with the whole dataset in each
iteration making difficult to deal with large datasets. On the other hand, the
use of medoids allows working with many different type of distances including
those employed in sequential data, e.g. edit distance Levenshtein 1966 defined as
the minimum number of operations (insertion, deletion or substitution) required
to transform one sequence into the other.
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3.3 Clustering validation

3.3.1 Cluster Validity Indexes (CVIs)

The goal of clustering validation is to evaluate the quality of the output partition
obtained in a clustering procedure. In this dissertation we focused on Cluster
Validity Indexes (CVIs), which quantify the quality of a partition by measuring
the compactness and separation of the clusters. In particular we focused on an
extensive comparative study of CVIs performed by Arbelaitz et al. 2013b which
compared a total of 30 CVIs and proposed different decision fusion strategies
using them.

The reference work (Arbelaitz et al. 2013b) is focused on CVIs that can be
easily evaluated by the usual methodologies and avoided those that could lead
to confusion due to the need for a subjective decision by the experimenter. Most
of the indices estimate the cluster cohesion (within or intra-variance) and the
cluster separation (between or inter-variance) and combine them to compute
a quality measure. The combination is performed by a division (ratio-type
indices) or a sum (summation-type indices) (Kim and Ramakrishna 2005). For
each index the authors provided an abbreviation that helps interpreting the
result. In addition each an downward arrow (↓) or upward arrow (↑) is added to
each abbreviation to indicate that a lower value of that index means a “better”
partition or the opposite respectively. Next lines we describe the 30 CVIs used
in this work (Arbelaitz et al. 2013b):

• Dunn index (D↑) (Dunn 1973): This index has many variants and some
of them will be described next. It is a ratio-type index where the cohesion
is estimated by the nearest neighbour distance and the separation by the
maximum cluster diameter. The original index is defined as shown in
Equation 3.8.

D(C) =

min
ck∈C
{ min
cl∈C\ck

{δ(ck, cl)}

max
ck∈C
{∆(ck)}

(3.8)

where

δ(ck, cl) = min
xi∈ck

min
xj∈cl

{de(xi, xj)}, (3.9)

∆(ck) = max
xi,xj∈ck

{de(xi, xj)}. (3.10)

• Calinski-Harabasz (CH↑) (Caliński and Harabasz 1974): This index ob-
tained the best results in the work of Milligan and Cooper (Milligan and
Cooper 1985). It is a ratio-type index where the cohesion is estimated
based on the distances from the points in a cluster to its centroid. The
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separation is based on the distance from the centroids to the global cen-
troid, as defined in Section sec:notation. Equation 3.11 shows how CH
index is computed.

CH(C) =
N −K
K − 1

∑
ck∈C

|ck|de(c̄k, X̄)∑
ck∈C

∑
xi∈ck

de(xi, c̄k)
. (3.11)

• Gamma index (G↓) (Baker and L.J. Hubert 1975): The Gamma index
is an adaptation of Goodman and Kruskal’s Gamma index and can be
described as shown in Equation 3.12.

G(C) =

∑
ck∈C

∑
xi,xj∈ck

dl(xi, xj)

nw
((
N
2

)
− nw

) (3.12)

where dl(xi, xj) denotes the number of all object pairs in X, namely xk
and xl, that fulfil two conditions: (a) xk and xl are in different clusters,
and (b) de(xk, xl) < de(xi, xj). In this case the denominator is just a
normalisation factor.

• C-Index (CI↓) (L.J. Hubert and Levin 1976): This index is a type of
normalised cohesion estimator and its definition is provided by Equation
3.13.

CI(C) =
S(C)− Smin(C)

Smax(C)− Smin(C)
(3.13)

where

S(C) =
∑
ck∈C

∑
xi,xj∈ck

de(xi, xj), (3.14)

Smin(C) =
∑

min
xi,xj∈X

(nw){de(xi, xj)}, (3.15)

Smax(C) =
∑

max
xi,xj∈X

(nw){de(xi, xj)}. (3.16)

• Davies-Bouldin index (DB↓) (Davies and Bouldin 1979): This is proba-
bly one of the most used indices in CVI comparison studies. It estimates
the cohesion based on the distance from the points in a cluster to its cen-
troid and the separation based on the distance between centroids. DB
index is computed as shown in Equation 3.17.

DB(C) =
1

K

∑
ck∈C

max
cl∈C\ck

{
S(ck) + S(cl)

de(c̄k, c̄l)

}
(3.17)
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where

S(ck) =
1

|ck|
∑
xi∈ck

de(xi, c̄k). (3.18)

• Silhouette index (Sil↑) (P.J. Rousseeuw 1987): This index is a nor-
malised summation-type index. The cohesion is measured based on the
distance between all the points in the same cluster and the separation is
based on the nearest neighbour distance. The definition of Silhouette is
provided by Equation 3.19.

Sil(C) =
1

N

∑
ck∈C

∑
xi∈ck

b(xi, ck)− a(xi, ck)

max{a(xi, ck),b(xi, ck)}
(3.19)

where

a(xi, ck) =
1

|ck|
∑
xj∈ck

de(xi, xj), (3.20)

b(xi, ck) = min
cl∈C\ck

{ 1

|cl|
∑
xj∈cl

de(xi, xj)}. (3.21)

• Graph theory based Dunn and Davies-Bouldin variations (DMST-
↑, DRNG↑, DGG↑, DBMST↓, DBRNG↓, DBGG↓) (Pal and Biswas 1997):
These indices are variations of Dunn and Davies-Bouldin. The variation
affects how the cohesion estimators are computed –∆(ck) for the Dunn
index and S(ck) for the Davies-Bouldin index.

For each of the 3 versions –MST, RNG and GG– these 2 functions are
computed in the same way. First, a particular type of graph is computed
for ck, taking the objects in the cluster as vertices and the distance between
objects as the weight of each edge. Then the largest weight is taken as the
value for ∆(ck) and S(ck). The difference between the 3 variants comes
from the selected graph type. For MST a Minimum Spanning Tree is built,
for RNG a Relative Neighbourhood Graph and for GG a Gabriel Graph.

• Generalised Dunn indices (gD31↑, gD41↑, gD51↑, gD33↑, gD43↑, g-
D53↑) (Bezdek and Pal 1998): All the variations are a combination of three
variants of δ –separation estimator– and two variations of ∆ –cohesion
estimator. Actually, Bezdek and Pal (Bezdek and Pal 1998) proposed 6×3
variants –including the original index–, but we selected those proposals
that showed the best results. Therefore we used the variants 3, 4 and 5
for δ and 1 and 3 for ∆ (see Equations 3.22 to 3.26).

δ3(ck, cl) =
1

|ck||cl|
∑
xi∈ck

∑
xj∈cl

de xi, xj , (3.22)
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δ4(ck, cl) = de(c̄k, c̄l), (3.23)

δ5(ck, cl) =
1

|ck|+ |cl|

∑
xi∈ck

de(xi, c̄k) +
∑
xj∈cl

de(xj , c̄l)

 (3.24)

and

∆1(ck) = ∆(ck), (3.25)

∆3(ck) =
2

|ck|
∑
xi∈ck

de(xi, c̄k). (3.26)

• SDbw index (SDbw↓) (Halkidi and Vazirgiannis 2001): This is a ratio-
type index that has a more complex formulation based on the euclidean
norm ||x|| = (xTx)1/2, the standard deviation of a set of objects,

σ(X) =
1

|X|
∑
xi∈X

(xi − x̄)2 (3.27)

and the standard deviation of a partition,

stdev(C) =
1

K

√∑
ck∈C

||σ(ck)||. (3.28)

The SDbw index is defined as shown in Equation 3.29.

SDbw(C) =
1

K

∑
ck∈C

||σ(ck)||
||σ(X)||

+
1

K(K − 1)

∑
ck∈C

∑
cl∈C\ck

den(ck, cl)

max{den(ck),den(cl)}
(3.29)

where

den(ck) =
∑
xi∈ck

f(xi, c̄k), (3.30)

den(ck, cl) =
∑

xi∈ck∪cl

f(xi,
c̄k + c̄l

2
) (3.31)
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and

f(xi, ck) =

{
0 if de(xi, c̄k) > stdev(C)
1 otherwise.

(3.32)

• CS index (CS↓) (Chou et al. 2004): This index was proposed in the image
compression environment, but can be extended to any other environment.
It is a ratio-type index that estimates the cohesion by the cluster diameters
and the separation by the nearest neighbour distance. Equation 3.33 shows
how the CS index is computed.

CS(C) =

∑
ck∈C

{
1
|ck|
∑
xi∈ck maxxj∈ck{de(xi, xj)}

}
∑
ck∈C mincl∈C\ck{de(c̄k, c̄l)}

. (3.33)

• Davies-Bouldin* (DB∗ ↓) (Kim and Ramakrishna 2005): This variation
of the Davies-Bouldin index was proposed together with an interesting
discussion about different types of CVIs. The definition of this index is
provided in Equation 3.34.

DB∗(C) =
1

K

∑
ck∈C

max
cl∈C\ck

{S(ck) + S(cl)}

min
cl∈C\ck

{de(c̄k, c̄l)}
. (3.34)

• Score Function (SF↑) (Saitta et al. 2007a): This is a summation-type
index where the separation is measured based on the distance from the
cluster centroids to the global centroid and the cohesion is based on the
distance from the points in a cluster to its centroid. Equation 3.35 shows
the definition of this index.

SF(C) = 1− 1

eebcd(C)−wcd(C)
(3.35)

where

bcd(C) =

∑
ck∈C

|ck|de(c̄k, X̄)

N ×K
, (3.36)

wcd(C) =
∑
ck∈C

(
1

|ck|
∑
xi∈ck

de(xi, c̄k)

)
. (3.37)

• Sym-index (Sym↑) (Bandyopadhyay and Saha 2008): This index is
known as symmetry based cluster validity index and it is an adaptation

36



3.3. CLUSTERING VALIDATION

of the I index (Maulik and Bandyopadhyay 2002) based on the Point
Symmetry-Distance. The index is defined as shown in Equation 3.38.

Sym(C) =

max
ck,cl∈C

{de(c̄k, c̄l)}

K
∑
ck∈C

∑
xi∈ck

d*
ps(xi, ck)

. (3.38)

• Point Symmetry-Distance based indices (SymDB↓, SymD↑, Sym33-
↑) (Saha and Bandyopadhyay 2009): These 3 indices are also based on
the Point Symmetry-Distance and modify the cohesion estimator of the
Davies-Bouldin, Dunn and generalized-Dunn (version 33) indices.

The SymDB index is computed as DB, but the computation of S is rede-
fined as described in Equation 3.39.

S(ck) =
1

|ck|
∑
xi∈ck

d*
ps(xi, ck). (3.39)

The symD index is like D, but the ∆ function is defined as

∆(ck) = max
xi∈ck

{d*
ps(xi, ck)}. (3.40)

And finally, the Sym33 index is a modification of gD33 where ∆ is defined
as shown in Equation 3.41.

∆(ck) =
2

|ck|
∑
xi∈ck

d*
ps(xi, ck) (3.41)

• COP index (COP↓) (Gurrutxaga et al. 2010): Although this index was
first proposed to be used in conjunction with a cluster hierarchy post-
processing algorithm, it can also be used as an ordinary CVI. It is a
ratio-type index where the cohesion is estimated by the distance from
the points in a cluster to its centroid and the separation is based on the
furthest neighbour distance. Its definition is provided by Equation 3.42.

COP(C) =
1

N

∑
ck∈C

|ck|

1
|ck|

∑
xi∈ck

de(xi, c̄k)

min
xi /∈ck

max
xj∈ck

de(xi, xj)
. (3.42)

• Negentropy increment (NI↓) (Lago-Fernández and Corbacho 2010):
This is an index based on cluster normality estimation and, therefore, is
not based on cohesion and separation estimations. Equation 3.43 shows
how this index is computed.

NI(C) =
1

2

∑
ck∈C

p(ck) log |Σck | −
1

2
log |ΣX | −

∑
ck∈C

p(ck) log p(ck). (3.43)
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where p(ck) = |ck|/N , Σck denotes the covariance matrix of cluster ck,
ΣX denotes the covariance matrix of the whole dataset and |Σ| denotes
the determinant of a covariance matrix. Although the authors proposed
the index as defined above, they later proposed a correction due to the
poor results obtained. Nevertheless, we used the index in its original form
since the correction does not meet the CVI selection criterion used for this
work.

• SV-Index (SV↑) (K.R. and Žalik 2011): This ratio-type index is one of
the most recent CVIs compared in this work. It estimates the separation
by the nearest neighbour distance and the cohesion is based on the distance
from the border points in a cluster to its centroid. It is defined as shown
in Equation 3.44.

SV(C) =

∑
ck∈C

min
cl∈C\ck

{de(c̄k, c̄l)}∑
ck∈C

10
|ck|
∑

max
xi∈ck

(0.1|ck|){de(xi, c̄k)}
. (3.44)

• OS-Index (OS↑) (K.R. and Žalik 2011): This is another recent ratio-
type index proposed by K. R. Žalik and B. Žalik (K.R. and Žalik 2011)
where a more complex separation estimator is used. In Equation 3.45 the
definition of this index is given.

OS(C) =

∑
ck∈C

∑
xi∈ck

ov(xi, ck)∑
ck∈C

10
|ck|
∑

max
xi∈ck

(0.1|ck|){de(xi, c̄k)}
(3.45)

where

ov(xi, ck) =

{
a(xi,ck)
b(xi,ck)

if b(xi,ck)−a(xi,ck)
b(xi,ck)+a(xi,ck)

< 0.4

0 otherwise
(3.46)

and

a(xi, ck) =
1

|ck|
∑
xj∈ck

de(xi, xj), (3.47)

b(xi, ck) =
1

|ck|
∑

min
xj /∈ck

(|ck|){de(xi, xj)}. (3.48)
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3.4 Statistical Tests

According to Demšar (Demšar 2006), in order to compare two classifiers the non-
parametric Wilcoxon-signed rank test (Wilcoxon 1945) should be used, whereas
when multiple classifiers are compared the non-parametric Friedman test (Fried-
man 1937) with the corresponding post-hoc tests should be implemented. Fol-
lowing this recommendation both tests were used in order to determine whether
significant differences existed between the performances of the CVIs analysed
and the voting strategies we designed using them. In the next lines we sum-
marise the working principles of both non-parametric statistical tests.

3.4.1 Wilcoxon-signed rank

The Wilcoxon-signed rank test (Wilcoxon 1945) is used to find statistically sig-
nificant differences between two dependent variables. Given a sample with N
pairs of instances, for pairs {1 ≤ i ≤ N} with x1,i and x2,i measurements,
the null hypothesis (H0) determines that the difference between the pairs fol-
lows a symmetric distribution around zero, and the alternative hypothesis (H1)
represents the opposite case.

In the first step of the test for all the pairs (i), the absolute differences and
the sign functions are computed, |x2,i − x1,i| and sgn(x2,i − x1,i). Then after
excluding all the tailed pairs, |x2,i − x1,i| = 0, the sample size is Nr and all
the pairs are reordered increasingly regarding their absolute differences. At this
point, the pairs are ranked accordingly so that the 1 value will be assigned to the
pair with the smallest non null absolute difference; in case of ties, they will be
assigned the average of the ranks of the individual ranks alternatively assigned if
ties had not occurred. Then, the W test statistic will be subsequently computed
as shown in Equation 3.49 with Ri representing the rank, that is, as the sum of
the signed ranks.

W =

N∑
i=1

[sgn(x2,i − x1,i)Ri] (3.49)

In case the null hypothesis is true, the distribution of the differences is
expected to be approximately symmetric around zero and the distribution of
positives and negatives is expected to be distributed at random among the ranks.
This assumption enables to determine the probability of observing a value of
W for the sample size. To do so, the sum of the positive ranks (W+) and the
absolute value of the sum of the negative ranks (W−) are computed, keeping
the lower value, W ′ = min{W+,W−}. Finally, a table of critical values for W
is used to find the probability of observing a value of W for different significant
levels provided for different sample sizes, Wcritical,Nr

. The null hypothesis at
the Nr significant level will be rejected if |W ′| ≤Wcritical,Nr

.
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3.4.2 Friedman test

The procedure of Friedman test aims to determine whether the performances of
different classifiers are significantly different in a group of datasets and has five
steps:

Given n classifiers (rows) and k datasets (columns) first, the correspond-
ing classifiers ranks (classifier numerical performances transformed to ranking
format values) in each dataset, rij , generate a matrix of nxk dimensions.

Secondly, the average ranks of the classifiers are compared (rj) as shown in
Equation 3.50.

rj =
1

n

n∑
i=1

rij (3.50)

In third place, the Q test statistic is computed according to Equation 3.51.

Q =
12N

k(k + 1)

k∑
j=1

(
rj −

k + 1

2

)2

(3.51)

Finally, for large values of n or k (i.e. n > 15 or k > 4), the probability
distribution of Q can be approximated by that of a chi-squared distribution,
that is, the distribution of a sum of the squares of k independent standard
normal random variables. In this case the p-value is given by P (χ2

k−1 ≥ Q). In
the opposite case, small values of n or k, the p-values should be obtained from
tables of Q specially prepared for the Friedman test.

If the p-value is significant, appropriate post-hoc test for multiple compar-
isons would be performed, which evaluate which pairs of classifiers have sig-
nificant differences , e.g Holm’s post hoc (Holm 1979). Given two classifiers i
and j (k=2) with Ri and Rj average ranks computed with Friedman test for N
datasets, the comparison will be carried out as shown in Equation 3.52. The
value of z in the equation enables to find the p-value given in the table of normal
distribution, which then is compared with a particular significance level α.

z =
Ri −Rj
k(k+1)

6N

(3.52)

In this dissertation Holm’s post hoc (Holm 1979) was used, which emulates
that the tests are being carried out sequentially, using the p-values in an in-
creasing order. Given m p-values in an increasingly ordered ({pi, 1 ≤ i ≤ m})
and m corresponding hypothesis ({Hi, 1 ≤ i ≤ m}), the test adjusts the value of
α in a step down method (Garćıa and Herrera 2008). According to the Holm’s
post-hoc, Hi to Hi−1 hypothesis will be rejected if i is the smallest integer such
that pi >

α
(m−i+1) .
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Chapter 4

Unsupervised classification:
Analysis of several decision
fusion strategies for
clustering validation.

4.1 Introduction

This contribution focuses on internal validation, which measures the compact-
ness and separation of the clusters using specific indexes. For easier reading,
hereinafter internal validation indexes will be denoted as Cluster Validity In-
dexes (CVIs). As far as we know, no research has found an “optimal” CVI able
to cope successfully with all the contexts. Meanwhile, guidelines about the suit-
ability of the indexes based on the particularity of each environment are gaining
relevance. Such guidelines can be easily inferred from extensive comparative
studies about the performance of the CVIs over a wide range of contexts.

Thus, the starting point of this contribution was the comparative study
of internal Cluster Validity Indexes published by Arbelaitz et al. (Arbelaitz
et al. 2013b). This study concluded that none of the CVIs compared showed
an optimal behaviour in all the contexts, although the Silhouette index (P.J.
Rousseeuw 1987) performed more robustly than the rest. Based on this work,
our purpose was to obtain a more stable behaviour which would avoid the user
having to select a different CVI for each particular environment. Aware of the
success achieved by voting strategies in supervised learning (Schapire 1990),
(Breiman 1996) we decided to export this method to our unsupervised learning
scenario and to implement a decision fusion approach (Kryszczuk and Hurley
2010) for CVIs.

In our research, we analysed several decision fusion strategies for clustering
validation; we implemented several voting approaches and applied them to the
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CVIs used in the reference work (Arbelaitz et al. 2013b), to improve individual
performances. Depending on whether the number of indexes that participated in
the votes was restricted or not, our voting strategies were divided into two main
types, Selective or Global Voting apiece. In addition, we used three different
criteria to restrict the CVIs involved in each Selective Voting strategy: the
global performance of the indexes, their factor dependent success rate and their
impact on the results. Our experiments showed that most of the decision fusion
approaches are more effective than using individual CVIs. Therefore, we claim
that the success of these voting strategies is not limited to supervised learning,
but also extends to the unsupervised learning context. This fact, leads us to
believe that CVI decision fusion strategies can be a key to successfully meeting
the challenges of clustering validation.

4.1.1 Related work

As mentioned before, no research to date has found a sole CVI able to cope with
the variability of existing environments. Thus, we switched our attention to the
extensive comparative studies of CVIs that, at least, provided some guidance to
the suitability of the indexes for each situation.

Surprisingly, the main reference work in this area dates back to 1985, when
Milligan and Cooper published a paper (Milligan and Cooper 1985) about in-
ternal clustering validation. They compared 30 CVIs using four hierarchical
algorithms over 108 synthetic datasets. The diversity of contexts was completed
using four numbers of non-overlapped clusters (2, 3, 4 or 5) and three values of
either dimensionality (4, 6 or 8) or cluster sizes. Specifically, the hierarchical
algorithms they used were single-linkage, complete-linkage, average-linkage and
Ward’s method. The results of the experiments were presented in a tabular
format, showing the hit rate of the CVIs in predicting the correct number of
clusters (K).

Some years later, in 1997 Bezdek et al. (Bezdek et al. 1997) also presented
a comparative work of 23 CVIs but running just three times a single algorithm
(EM) over 16 synthetic datasets. The experiment performed by Dimitriadou et
al. (Dimitriadou et al. 2002) in 2002 was more limited in terms of number of
CVIs compared (15) and besides, the 162 synthetic datasets used were of bi-
nary type. A more recent contribution provides a new perspective regarding the
quality of a clustering partition (Gurrutxaga et al. 2011). In this research Gur-
rutxaga et al. admit that there is no single approach to defining the quality of
a partition. Additionally, they support the use of Partition Similarity Measures
(PSMs) used in external validation for validating the results of CVIs. Unlike
their predecessors, who traditionally used the CVIs to estimate the correct num-
ber of clusters (K), they used them to predict the “best” partition, defined as
the most similar to a ground truth partition of labelled data according to PSMs.
Therefore, they measured the success of the CVIs based on matches between
partitions predicted by the CVIs and those addressed by the PSMs. Eventu-
ally, they demonstrated that the success rate achieved by the CVIs, SR (%),
was significantly higher using their approach. More exactly, they used seven

44



4.2. EXPERIMENTAL SETUP

CVIs, seven synthetic and two real datasets, 10 runs of the k-means algorithm
and two PSMs (Adjusted Rand (L. Hubert and Arabie 1985) and Variation of
Information (Meilă 2003) (VI)).

A contemporary survey (Arbelaitz et al. 2013b) inspired by Milligan and
Cooper (Milligan and Cooper 1985) provided the comparison of 30 CVIs in a
wide range of environments, reaching a total of 6,480 configurations. Arbelaitz
et al. 2013b used the methodological modification proposed by Gurrutxaga et
al. (Gurrutxaga et al. 2011). The results are displayed in bar graph format,
one per each experimental factor, showing the SR (%) of each CVI. The success
rate in this case was computed in terms of matches between the partitions pre-
dicted by the CVIs and the “correct” ones identified by the Partition Similarity
Measures (PSMs). Specifically, its experimental setup comprised 30 CVIs, three
PSMs (Adjusted Rand (L. Hubert and Arabie 1985), Jaccard (Jaccard 1908)
and VI (Meilă 2003)) and 10 runs of three clustering algorithms: k-means, Ward
and average-linkage (Jain and Dubes 1988). They experimented with 20 real
datasets and 720 synthetic datasets. The authors concluded that none of the
CVIs compared could be considered as optimal, although indexes such as Sil-
houette (P.J. Rousseeuw 1987) for synthetic datasets and Score Function (SF)
(Saitta et al. 2007b) for real datasets showed a relatively strong behaviour. The
results showed that the overall SR (%) of the CVIs analysed was not severely
affected by the experimental factors, although noise and overlap showed to be
critical reducing the overall success rate up to a third. Finally, the statistical
tests used Arbelaitz et al. 2013b identified three groups of CVIs with statistically
significant differences in their performances, rated as best (10 CVIs), middle (14
CVIs) and worst (6 CVIs).

Concerning CVI decision fusion, some related examples can be found in the
literature but they perform simple votes (equal weights for all the CVIs involved
in a voting procedure). For example Sheng et al. (Sheng et al. 2005) proposed
a Weighted Sum Validity Function (WSVF) where the weight assigned to the
vote cast by each of the six CVIs used has the same value, assuming that the
relative importance of every index is a priori the same. Conversely, we did not
only test simple votes (Global Voting) but also defined some others (Selective
Voting) involving just the CVIs with high relative importance and computing
the corresponding weights individually according to three different criteria: the
performance of the indexes, their factor dependent success rate and their impact
on the results.

4.2 Experimental Setup

As the research of Arbelaitz et al. (Arbelaitz et al. 2013b) was the starting
point for this contribution, we next provide some detailed information about
their experimental design.

The synthetic datasets were created using three values for the numbers of
clusters (K), three dimensionality values (dim), two overlap values (ov), two
cluster density values (den) and two noise levels (nl). They defined the nmin
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parameter to ensure a minimum number of objects per cluster. Table 4.1 shows
the values of the parameters to design the synthetic datasets, giving way to
72 configurations which were generated 10 times each. The five variable items
in Table 4.1 together with the three clustering algorithms (k-means, Ward and
average-linkage (Jain and Dubes 1988)) and the three PSMs (Adjusted Rand
(L. Hubert and Arabie 1985), Jaccard (Jaccard 1908) and Variation of Informa-
tion (Meilă 2003) (VI)) used are controllable experimental factors (EF) in our
experiments with the synthetic datasets and generate 6,480 configurations.

Experimental Factors (EF) Values

nmin 100
K 2, 4, 8
dim 2, 4, 8
ov 1.5 (strict), 5 (bounded)
den 1 (not overlapped), 4 (overlapped)
nl 0 (no noise), 0.1 (noise)

Table 4.1: Values of the experimental factors (EF) used to generate the synthetic
datasets.

The 20 real datasets used, drawn from the UCI repository (A. Frank and
Asuncion 2010), have different characteristics: numbers of clusters, ranging from
106 to 2310, numbers of features from three to 166 and the number of classes
ranging from two to 15. As these characteristics were predetermined, the num-
ber of controllable EFs for the experiments performed with the real datasets
was limited to two (three clustering algorithms and three PSMs).

We finally list the 30 CVIs used in the reference work (Arbelaitz et al.
2013b) which we described in Chapter 3: Dunn index (D) (Dunn 1973),
Calinski-Harabasz (CH) (Caliński and Harabasz 1974), Gamma index (G)
(Baker and L.J. Hubert 1975), C-Index (CI) (L.J. Hubert and Levin 1976),
Davies-Bouldin index (DB) (Davies and Bouldin 1979), Silhouette index (Sil)
(P.J. Rousseeuw 1987), Graph theory based Dunn and Davies-Bouldin varia-
tions (DMST, DRNG, DGG, DBMST, DBRNG and DBGG) (Pal and Biswas
1997), Generalised Dunn indexes (gD31, gD41, gD51, gD33, gD43 and gD53)
(Bezdek and Pal 1998), SDbw index (SDbw) (Halkidi and Vazirgiannis 2001), CS
index (CS) (Chou et al. 2004), Davies-Bouldin* (DB*) (Kim and Ramakrishna
2005), Score function (SF) (Saitta et al. 2007b), Sym-index (Sym) (Bandyopad-
hyay and Saha 2008), Point Symmetry-Distance based indexes (SymDB, SymD
and Sym33) (Saha and Bandyopadhyay 2009), COP index (COP) (Gurrutxaga
et al. 2010), Negentropy increment (NI) (Lago-Fernández and Corbacho 2010),
SV-Index (SV) (K.R. and Žalik 2011) and OS-Index (OS) (K.R. and Žalik 2011).
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4.3 The proposed approach

The extensive comparative work of Arbelaitz et al. (Arbelaitz et al. 2013b)
concluded that there was no optimal CVI able to cope successfully with all the
factors comprising a clustering environment (i.e, the context). Therefore, our
principal motivation was to devise new strategies which would provide a new
method that is robust enough to face any clustering situation.

Aware of the efficiency shown by some voting techniques in the supervised
learning field (Schapire 1990), (Breiman 1996) we decided to import them to
our particular unsupervised learning scenario and thus to implement some CVI
decision fusion strategies. Being the synthetic datasets the ones providing more
controllable experimental factors (EFs) we decided to test the voting strategies
first over the synthetic datasets and then use just the best ones for the real
datasets.

Evaluation of the proposed approaches was carried out according to the
following stages in the case of synthetic datasets: (1) Define decision fusion
strategy (DFi); (2) calculate the success rate (SRi) using DFi to estimate the
best partition in each of the 6,480 configurations; (3) compare SRi with the
success rates obtained by the best CVIs presented in (Arbelaitz et al. 2013b).

In particular, we designed two main types of voting approaches according
to the number of CVIs involved. The first type, named Global Voting, was
implemented using the 30 CVIs mentioned before. In the second type, called
Selective Voting, the number of indexes involved was restricted according to
three possible criteria: the global performance of the CVIs, their factor depen-
dent success rate and the impact they had over the results. These three criteria
were defined using the overall SR (%) achieved by the CVIs for the controllable
EFs of the synthetic and real datasets provided in the reference work (Arbelaitz
et al. 2013b) (see Tables 4.4 and 4.5, and Table 4.8 respectively).

Additionally, some of the CVI decision fusion strategies defined are simple
votes whereas in some others, the weight of vote cast by each index involved
(WCV Ik) is individually computed as shown in Equation 4.1. Particularly, the
Global Voting and the Selective Voting based on the global performance of
the CVIs described in sections 5.1 and 5.2.1 are simple votes (WCV Ik = 1).
Alternatively, in the Selective Voting approaches based on the factor dependent
success rate and based on the impact over the results of the CVIs shown in
sections 5.2.2 and 5.2.3 respectively, WCV Ik is individually computed for each
CVI.

Let N be the number of experimental factors (EFs) available in the dataset
of a voting approach, and let m be the number of values that a particular EF
can get (see Table 4.1). Then, to define the weight of the vote cast by any of the
CVIs involved in the voting (WCV Ik) we analyse the partition (k) suggested by
the index in each m value of every EF . More exactly, WCV Ik is computed as the
number of times that the index achieves the top n positions in the SR-rankings
of each of the m values of the N experimental factors available in the datasets
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(Topn,EF,mCV Ik ), as denoted in Equation 4.1.

WCV Ik =

N∑
EF=1

EFvmax∑
m=EFvmin

Topn,EF,mCV Ik (4.1)

In all the decision fusion systems after having defined WCV Ik for all the
indexes involved, we count the total votes obtained by each partition (k). Then,
the selected partition in a voting strategy (Kmax) is computed as the one with
the majority of the votes, and in the case of ties, the partition with the smallest
number of clusters (k) is selected as pointed in Equation 4.2.

Kmax = argmaxk
∑
k

WCV Ik (4.2)

Finally, to evaluate each voting strategy we compute the success rate in
each value of each controllable experimental factor (EF ), comparing the chosen
partition with the one suggested by the Partition Similarity Measures (PSMs).

4.4 Designed Strategies and Results

We describe in this section the different decision fusion strategies analysed in
the chapter.

4.4.1 Global Voting

The Global Voting approach is a simple vote that fuses the decision of 30 CVIs
(WCV Ik = 1 for all the indexes involved). Table 4.2 lists the overall success
rates (SRs) of this decision fusion system compared to the best individual CVIs
(Arbelaitz et al. 2013b). As it can be observed, this approach cannot beat the
best index for synthetic datasets (Silhouette). In particular, eight of the 30
CVIs achieved higher individual SRs than our Global Voting approach. The
same rankings hold for the SRs (%) of the seven experimental factors available
in the synthetic scenario.

CVIs Voting
Sil DB* CH gD33 gD43 gD53 SF DB Global Voting

Overall SR (%) 51.8 46.6 46.2 44.5 44.3 43.8 43.5 43 42.7

Table 4.2: Overall Success Rate (%) of the Global Voting approach for synthetic
datasets compared to the best individual CVIs.

Considering the weakness of the results achieved by the Global Voting for
synthetic datasets, we did not test this strategy on the real datasets. Aiming
to achieve a better performance, we developed more sophisticated strategies
denoted as Selective Voting, which are described in the next section.
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4.4.2 Selective Voting

The Selective Voting strategies use a restricted group of CVIs for decision fusion.
We developed three different approaches, each of which restricts the group of
CVIs who vote, based on one of the following criteria: the global performance
of the CVIs, their factor dependent success rate or the impact they have on
the results. Next we describe the three criteria used for each Selective Voting
approach and the results achieved in each case.

Global performance of the CVIs

The four Selective Voting approaches based on the global performance of the
CVIs consists on simple votes (WCV Ik = 1) where we only involved one or two of
the three groups of indexes with statistically significant different performances
discovered by Arbelaitz et al. (Arbelaitz et al. 2013b), as shown in Table 4.3.
In particular, the three voting strategies that use the best, middle and worst
rated group of CVIs shown in Table 4.3 are denoted as best, middle and worst
vote apiece. In addition, we developed another strategy denoted as half vote
that uses all the indexes of the best rated group and the top five of the middle
rated group.

Group Rankavg CVIs

Best 9-13 Sil, DB*, CH, gD33, gD43, gD53, SDbw, DB, Sym33, COP
Middle 14-17 DMST, DRNG, DGG, SF, Sym, DBMST, DBRNG, gD41,

SymDB, gD51, DBGG, gD31, SV, CS
Worst 19-23 D, SymD, G, CI, OS, NI

Table 4.3: Rated groups of CVIs with statistically significant different perfor-
mances according to Arbelaitz et al. 2013b.

Regarding the results for the synthetic datasets, none of these four Selective
Voting strategies based on the global performance of the CVIs was able to
beat the overall SR (51.8%) achieved by the best individual index for synthetic
datasets (Silhouette). The best strategy was best vote and achieved the second
best overall SR (47.4%). The next best approach, half vote, achieved the third
position in the overall SR-ranking with an overall SR of 46.6%. On the other
hand, the strategies denoted as middle and worst votes achieved further down
positions, the 15th one and the 30th one respectively, with SR values of 37.7%
and of 23.8% accordingly. Finally, similar to the case of Global Voting, the
overall results of these four strategies follow the same pattern for the SR (%)
broken down by the seven controllable EFs of the synthetic datasets.

In conclusion, the results achieved by these four Selective Voting strategies
did not meet our expectations, thus, we could claim that the simple votes (for all
the participating indexes) seem not to be promising. Therefore, we did not test
these approaches over the real datasets. Instead, aiming for an improvement in
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the results for the synthetic datasets, we computed WCV Ik individually for the
CVIs involved in the two Selective Voting strategies described next.

Factor dependent success rates of the CVIs

Arbelaitz et al. (Arbelaitz et al. 2013b) concluded that not every experimental
factor (EF ) affected the same way to the performance of the CVIs. Inspired by
this conclusion we designed two voting approaches involving just the CVIs with
what we denoted as high and middle factor dependent success rates (SRs). In
particular, the top two SR (%) of each controllable experimental factors (EFs)
in Table 4.1, were classified as high factor dependent success rates and the three
top ones were considered as middle factor dependent success rates. The vot-
ing strategies based on these two schemes are called the high and middle factor
dependent success votes. Tables 4.4 and 4.5 show the indexes with high and mid-
dle factor dependent SRs for the seven workable EFs for the synthetic datasets:
Partition Similarity Measures, number of clusters, dimensionality, overlap, den-
sity, noise and clustering algorithms.

Partition Similarity Measures
SR-ranking ARand Jaccard VI

1 Sil Sil Sil
2 CH CH DB*
3 DB* DB* CH

Number of Clusters
SR-ranking 2 4 8

1 Sil Sil CH
2 gD33 CH COP
3 SF DB* Sil

Dimensionality
SR-ranking 2 4 8

1 Sil Sil Sil
2 DB* CH CH
3 gD33 DB* DB*

Overlap
SR-ranking Yes No

1 Sil Sil
2 SF DB
3 DMST DB*

Table 4.4: Indexes with high and middle factor dependent success rates (three
top ranked CVIs, n = 3) for four of the seven controllable experimental factors
available in the synthetic datasets.
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Density
SR-ranking 1/1 1/4

1 Sil Sil
2 CH DB*
3 DB’ CH

Noise
SR-ranking Yes No

1 CH Sil
2 Sym SDbw
3 Sym33 DB*

Algorithms
SR-ranking K-means Ward Average Linkage

1 CH Sil Sil
2 Sil DB* CH
3 COP DB DMST

Table 4.5: Indexes with high and middle factor dependent success rates (three
top ranked CVIs, n = 3) for three of the seven controllable experimental factors
available in the synthetic datasets.

In these two CVI decision fusion strategies the votes cast by the indexes
involved (WCV Ik in Equation 4.1) were individually computed according to
the type of factor dependent success rates achieved (high or middle). In the
high factor dependent success vote, WCV Ik is equal to the number of times it
achieved the top two positions (n = 2 in Equation 4.1) in the SR-rankings of
the manageable EFs. Similarly, in the middle factor dependent success vote
WCV Ik corresponds to the number of times it achieved the top three positions
in the SR-rankings (n = 3 in Equation 4.1). The first three columns of Table
4.6 show the set of CVIs and the weights of their votes (WCV Ik) in the high and
middle factor dependent success votes.

Both Selective Voting approaches beat the overall SR (%) of Silhouette for
the synthetic datasets as shown in Table 4.7. In particular, the improvement
over this index was 1.4% for the high factor dependent success vote and 0.5%
for the middle factor dependent success vote. The overall SR-rankings also
remain for all the controllable EFs. Analysing the results of Table 4.7, we could
claim that weighting the votes of the CVIs according to their factor dependent
performance seems promising.

As the results achieved by these two voting approaches met our expectations,
we also tested them on the real datasets. Since the CVIs showed to behave
differently in the real datasets we calculated the new weights (WCV Ik) according
to that behaviour. In the real context, the number of experimental factors (EFs)
which could be manipulated (N in Equation 4.1) was limited to two: partition
similarity measures (PSMs) and clustering algorithms. Therefore, in this context
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the high and middle factor dependent success votes were implemented using the
CVIs with the top two and the top three success rates (SRs) for these two
governable EFs.

WCVIk in the voting approaches
High factor Middle factor Strong impact Signif. impact

CVIs dep. success dep. success n=2 n=3 n=2 n=3

Sil 16 17 34 37 25 27
CH 10 12 22 24 16 18
DB* 4 12 6 22 5 17
Sym 1 1 5 5 3 3
SDbw 1 1 5 5 3 3
gD33 1 2 3 4 2 3
COP 1 2 3 6 2 4
SF 1 2 3 6 2 4
DB 1 2 3 6 2 4
DMST 0 2 0 6 0 4
Sym33 0 1 0 5 0 3

Table 4.6: WCVIk of the CVIs involved in the Selective Voting approaches based
on the factor dependent success rate and bas.

Best CVI / Selective Voting Overall SR (%) Improv. on Sil (%)

High factor dependent success vote 52.5 1.4
Middle factor dependent success vote 52.1 0.5
Silhouette (Sil) 51.8 -

Table 4.7: Overall Success Rates (%) of the best CVI and the two Selective
Voting factor dependent strategies for the synthetic datasets.

Table 4.8 shows the CVIs with high and middle factor dependent SRs for
the two workable EFs of the real datasets, whereas the CVIs and the WCV Ik

assigned by the high and middle factor dependent success votes in this context
are displayed in the first three columns of Table 4.9.

Regarding the results (see Table 4.10), only the high factor dependent success
vote approach was able to beat the overall results of the best CVI for the real
datasets, SF. But the improvement of this voting approach over the best index
in the real context (2.7%) was higher than the one observed for the synthetic
context (1.4%). On the other hand, the overall SR (%) of the middle factor
dependent success vote, 39.4%, was slightly lower than the one achieved by SF,
41.1%. For the real data, the positions achieved by the high and middle factor
dependent success votes in the overall SR-rankings, first and third respectively,
agree for the two governable EFs (PSMs and clustering algorithms).
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Partition Similarity Measures
SR-ranking ARand Jaccard VI

1 gD31 SF SF
2 Sym DGG DGG
3 DMST DRNG DRNG

Algorithms
SR-ranking K-means Ward Average Linkage

1 SF SF Sym
2 DGG COP gD51
3 DRNG DRNG gD31

Table 4.8: Indexes with high and middle factor dependent success (three top
ranked CVIs, n = 3) for the two experimental factors available in the real
datasets.

Voting approaches
High factor Middle factor Strong impact Signif. impact

CVIs dep. success dep. success n=2 n=3 n=2 n=3

SF 4 4 8 8 6 6
DGG 3 3 5 5 4 4
Sym 2 2 4 4 3 3
COP 1 1 3 3 2 2
gD51 1 1 3 3 2 2
gD31 1 2 1 4 1 3
DRNG 0 4 0 8 0 6
DMST 0 1 0 1 0 1

Table 4.9: WCVIk of the CVIs involved in the Selective Votings based on the
factor dependent success rates and based on the impact of the indexes over the
results for real datasets.

Best CVI / Selective Voting Overall SR (%) Improvement on SF (%)
High factor dep. success vote 42.2 2.7
SF 41.1 -
Middle factor dep. success vote 39.4 -4.1

Table 4.10: Overall SR (%) of the best CVI and the two Selective voting based
on the factor dependent success rates of the indexes for real datasets.

Considering these results, we concluded that the high factor dependent suc-
cess vote is a good strategy, since it performed slightly more robustly than the
best CVIs. However, aiming for a higher improvement over the best perfor-
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mances of the CVIs, we defined a new criteria for the next Selective Voting
approaches.

Impact of the CVIs over the results

Arbelaitz et al. (Arbelaitz et al. 2013b) pointed out that some experimental
factors (EFs) had a stronger influence on the overall success rates of the CVIs
than others. Thus, we decided to quantify the impact of the EFs rating them in
three different levels: tiny, slight and great impact. The impact levels assigned
to the experimental factors were the following: tiny impact (Partition Similarity
Measures, dimensionality and density), slight impact (No. clusters, overlap and
clustering algorithm) and great impact (Noise).

This rating was the basis for the two Selective Voting approaches based
on the impact of the CVIs we called strong and significant impact votes
(I = strong/significant in Equation 4.3). The impact of the CVIs was com-
bined with their factor dependent success rate for these strategies. As was the
case for the two previous strategies, in these ones only the decisions of those
CVIs that had obtained the two and three best results (SRs) in the manage-
able experimental factors were fused. Consequently, the indexes involved in the
strong and significant impact votes were the same used in the strategies of the
previous section for the synthetic and real contexts (see Tables 4.4 and 4.5, and
Table 4.7 respectively). In fact, the difference between the voting approaches
mentioned is the way we computed the weight of the vote cast by each index
(WCV Ik).

In these decision fusion schemes, the vote cast by each CVI involved (WCV Ik)
is computed as the sum of the number of times it achieves the top two or the
three positions (n) in the SR-ranking of each experimental factor (Topn,EF,mCV Ik )
multiplied by the impact weight assigned to that experimental factor (WIEF,I):

WCV Ik =

N∑
EF=1

EFvmax∑
m=EFvmin

Topn,EF,mCV Ik ×WIEF,I (4.3)

Where WIEF,I , are the weights assigned to the impact levels (I) of the
experimental factors (EFs) for the strong and significant impact approaches
(Table 4.11).

As showed in Table 4.11, in these two decision fusion approaches the exper-
imental factors were rated according to three possible impact levels (tiny, slight
or strong) and each strategy entails a particular set of weights for these levels
(see in Table 4.6). In particular, the strong impact vote assigns a stronger set
of weights to the EFs with higher impacts than the significant impact vote.
Considering the two impact levels and the two types of ranked indexes involved,
I = strong/significant and n = 2/3 in Equation 4.3, a total of four votes based
on the impact of the CVIs were designed.

In the synthetic context, WCV Ik was computed according to the impact
defined for the seven experimental factors (EFs) available. Then, to compute
WCV Ik in the synthetic case, we used the SR-rankings provided by the seven
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experimental factors (Tables 4.4 and 4.5) and the weights assigned by the strong
and significant impact votes (Table 4.11). The corresponding values of WCV Ik

for the indexes involved in these four Selective Voting approaches are shown in
the last four columns of Table 4.6.

WCVIk in the voting approaches
Voting Tiny impact Slight impact Great impact

Strong impact vote 1 3 5
Significant impact vote 1 2 3

Table 4.11: Weights assigned to the impact levels, (WIEF,I), for the strong and
significant impact approaches.

As Table 4.12 illustrates, all four voting approaches based on the impact
of the CVIs over the results beat the overall SR (%) of the best CVI for the
synthetic datasets (Silhouette). The best overall success rate belongs to the
strong impact vote carried out with the top two CVIs of the mentioned rankings
(n = 2), achieving an improvement of 1.6% over Silhouette. The next best
overall result corresponds to the slight impact vote carried out with the top
two indexes of the rankings (n = 2), showing an improvement of 1.5% over
Silhouette. On the other hand the slight and strong impact vote carried out
with the three top ranked CVIs (n = 3), achieved lower improvements: 0.1 and
0 apiece. As before, the overall SR (%) of these four strategies follows a pattern
that remains for the success rates broken down by the experimental factors.

Best CVI / Selective Voting Overall SR (%) Improvement on Sil (%)

Strong impact vote (n=2) 52.6 1.6
Significant impact vote (n=2) 52.6 1.5
Significant impact vote (n=3) 51.9 0.1
Strong impact vote (n=3) 51.8 0
Silhouette (Sil) 51.8 -

Table 4.12: Overall Success Rates (%) of strong and significant impact votes
compared to Silhouette, the best CVI for the synthetic datasets.

As described in Table 4.12, a more efficient and stable performance is
achieved with these four Selective Voting approaches for the synthetic datasets.
Moreover, the improvement of the best strategy over Silhouette, (strong impact
vote with the top two CVIs of the rankings), 1.6%, was higher than the one
achieved by the best Selective Voting strategy from Section 5.2.2 (high factor
dependent success vote), 1.4%. Hence, these four voting strategies were tested
on the real data.

The two experimental factors that can be controlled for the real data are
the Partition Similarity Measures and clustering algorithms. The impact levels
defined for these two factors over the results were tiny and slight respectively.
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The tiny and slight impact levels of the two experimental factors were weighted
according to Table 4.11 (WIEF,I): 1 and 3 for the strong impact vote and 1 and
2 for the significant impact vote.

As a result, the CVIs used for the real datasets were selected using the
top two or top three indexes from the SR-rankings broken down by the two
experimental factors mentioned (Table 4.8). Finally, the vote cast by each CVI
was weighted using the same procedure described for the synthetic context (see
Equation 4.3), but considering just the two impact levels of the two available
experimental factors. The last four columns of Table 4.9 show WCV Ik for the
four Selective Voting approaches based on the impact over the results for the
real datasets.

Table 4.13 shows the overall SR (%) achieved by the four strategies based
on the impact over the results against the one shown by the best index (SF) for
the real datasets. Only the strong and significant impact votes that use the top
two indexes from the success rate rankings (n = 2) were able to beat the overall
SR of the best CVI. These two approaches improved the overall success rate of
SF by 2.7%. The two Selective Voting approaches based on the impact over the
results that used the best three indexes from the rankings (n = 3), achieved
exactly the same results, which were 4.1% lower than the one achieved by SF.
As before, the pattern followed by the overall results of the strategies described,
continues for the SRs broken down by the EFs.

Best CVI / Selective Voting Overall SR (%) Improvement on SF (%)

Strong impact vote (n=2) 42.2 2.7
Significant impact vote (n=2) 42.2 2.7
SF 41.1 -
Significant impact vote (n=3) 39.4 -4.1
Strong impact vote (n=3) 39.4 -4.1

Table 4.13: Overall Success Rates (%) of the best CVI and the strong and
significant impact votes for the real datasets.

Unlike for synthetic datasets, the highest improvement rate over the best
CVI for the real datasets is the same registered by the best Selective Voting
strategy based on the factor dependent success rates of the indexes (high fac-
tor dependent success vote), 2.7%. Considering the results for both types of
datasets, the best performance belongs to the strong impact vote that uses the
two top ranked CVIs from the SR rankings provided by the experimental factors.
In fact, the strong impact vote (with the top two CVIs) achieves the highest SR
(%) for both synthetic or real datasets, beating the former best approach named
high factor dependent success vote for the real case. Thus, weighting the votes
of CVIs correctly seems important for decision fusion strategies.
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4.4.3 Statistical Tests

Although, the use of statistical tests is not very usual in the unsupervised con-
text, Arbelaitz et al. (Arbelaitz et al. 2013b) adapted a methodology used in
the supervised scenario where several classification algorithms are compared by
running them on several datasets and computing a “quality” estimate, such
as the accuracy or the AUC value, for each algorithm and dataset pair. In
this context Demšar (Demšar 2006) proposed to use a single test over all the
algorithms and all the dataset and Arbelaitz et al. (Arbelaitz et al. 2013b)
adapted this particular proposal to the unsupervised learning context replacing
the classification algorithms by CVIs. However, this was not enough, since in the
experiments a Boolean value (success / not success) for each CVI-configuration
pair is obtained instead of a “quality” estimate and the configurations obtained
by varying the clustering algorithm and PSM cannot be considered independent
because they are based on the same dataset. The proposed solution, and the one
adopted in this chapter, was to add for each dataset the number of successes
each CVI obtained for each clustering algorithm–partition similarity measure
pair. Moreover, in order to obtain a more precise estimate, the number of suc-
cesses obtained in every run was also added —remember that 10 datasets were
created for each combination of dataset characteristics. We thus obtained 72
values (one for each of the 72 combinations of dataset characteristics obtained
varying the values of five of the seven controllable experimental factors) ranging
from 0 to 90 for each CVI or decision fusion strategy, that gave us a “quality”
estimate for independent datasets.

We compared the performance of our best voting strategy (strong impact
vote) with the 10 best CVIs according to the reference work using the Friedman
Aligned test (Friedman 1937) to check the existence of statistical differences and
the Holm’s post hoc (Garćıa and Herrera 2008) for pairwise index comparisons,
with confidence levels of 5%. We finally used the Wilcoxon-signed rank test to
compare the two best options; the strong impact vote approach with the best
CVI in (Arbelaitz et al. 2013b), Silhouette.

According to the Friedman-Aligned test there were significant differences in
a one-to all way, computing a p-value of the order of 4.2-10, which did not exceed
the threshold defined in this configuration. In this case the Holm’s post hoc test
established that there were statistically significant differences between our best
voting approach and nine of the best indexes compared; all except Silhouette.
Finally, applying the Wilcoxon-signed rank test we confirmed the existence of
statistical differences between our best voting approach and Silhouette, comput-
ing an asymptotic p-value of about 0.027, which was within the range defined
for the existence of statistical differences for this scheme.
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4.4.4 Summary

In the unsupervised learning environment, the correct partition of data is not
available, making it difficult to evaluate the performance of clustering algo-
rithms. Therefore, one of the biggest challenges in this area is the validation of
the results obtained by the algorithms. Amongst the various proposals currently
under discussion, one of the most popular approaches is the one based on inter-
nal Cluster Validity Indexes (CVIs). Comparative studies of such indexes show
that there is no optimal CVI able to cope successfully with all the contexts.

The aim of this contribution was to implement and analyse several decision
fusion strategies over the CVIs studied in an extensive comparative work pub-
lished in the bibliography (Arbelaitz et al. 2013b), motivated by the success
achieved by voting strategies in supervised learning. Thus, this experimental
contribution consists of designing and implementing different CVI decision fu-
sion strategies and then evaluating their performance in order to discover which
of them are promising and eventually select the best one. Experiments with
several strategies showed that the majority of the decision fusion approaches
designed cope with the diversity of contexts more effectively than single CVIs.

Specifically, we designed two main types of decision fusion approaches de-
pending on the number of CVIs participating in the voting, a Global Voting
using all them (30) and three different groups of Selective Voting approaches
where the indexes involved were selected considering three characteristics: their
global performance (best/middle/worst), their factor dependent success rate
(high/middle) and the impact they had on the results (strong/significant). In
the last two Selective Voting strategies the vote cast by each CVI was weighted
according to the characteristic used (factor dependent success rate/impact),
whereas in the remaining one as well as in the Global Voting, equal weights
were used.

Regarding the results, on the one hand, we observed that the Selective Voting
strategies performed better than the Global Voting and on the other hand,
we found that weighting the votes according to a particular criteria was more
effective than using equal weights. More concretely, the decision fusion which
selects the CVIs according to their impact on the results and strongly weights
their votes, strong impact vote, was found to be the best approach. Furthermore,
this best voting strategy was proven to be significantly better than the top 10
ranked indexes of the reference work (Arbelaitz et al. 2013b) according to the
Friedman Aligned test (Friedman 1937) carried out.
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Chapter 5

Modelling the interaction of
users with disabilities

5.1 Introduction

In recent decades, there has been a trend towards a dramatic increase in the
amount of information stored on the web and its subsequent use. Website
access has become an important tool for information seeking, communication
and participation processes in our society, and consequently, digital competence
is considered basic nowadays. This makes it important to familiarise and enable
people with disabilities in the use of digital devices and applications, and, to
adapt site interaction to their needs.

Unfortunately, a theoretically accessible design might not be enough to en-
sure that people with disabilities enjoy smooth access to a website (Arbelaitz
et al. 2016). In this context, the adaptation of the site to the users becomes
crucial. Adaptations could be determined according to the results of specific
questionnaires but this would be limited to the users participating in the ques-
tionnaire. Moreover, in general web applications it is all too easy to fail to
recognize the full range of types of users who might be interested in using them
or who might need to navigate in them (Dillon 2001). Another option for gath-
ering adaptation proposals is from the analysis of the interaction of the users
with the website. For example building adaptive systems able to generate mod-
els based solely on in-use information. This option will be more general and
applicable to new users accessing to the site.

The specific adaptations required will depend on the user characteristics, the
problems the user is having while navigating, etc. In this context, the detection
in use time of the navigation problems or the type of device being used, will be
a compulsory initial stage to then be able automatically adapt the site to the
user and thus, to improve the user experience.

The use of web mining (Liu 2006) for these objectives has many advan-
tages. It is not disruptive, it is based on statistical data obtained through real
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navigation data (decreasing the possibility of false assumptions) and is, itself,
adaptive (when the characteristics of the user change, the collected data allows
the automatic change of the interaction schema). When the user is a person
with physical, sensory or cognitive restrictions, data mining is the easiest (and
frequently almost the only) way to model user habits or characteristics.

In this chapter we present a system with a two-step architecture to detect
user navigation problems while the users are interacting with a website. The
first step is dedicated to detect automatically the device being used to interact
with the computer while the user is navigating on the web. The second step
tackles the issue of detecting the problem the user is having while navigating
on the site. The system is based on data collected by RemoTest (Valencia et al.
2015), a tool to collect the complete user interaction data. The complete data
mining process includes some specific steps as some meetings with accessibility
experts to define some of the features to be used in the system.

The results showed that the application of a complete data mining process to
the data collected by RemoTest is a promising strategy for automatically detect-
ing user problems and affords the opportunity to provide specific adaptations
in the future.

5.1.1 Related work

The application of machine learning techniques requires large amounts of data
to be collected. Data collection in the context of users with disabilities is not
an easy task, and this probably limits the number of works carried out in the
area.

When machine learning techniques are applied to user interaction data the
features extracted from the interaction are critical. Depending on the extracted
features the machine learning algorithms will be able to solve the problem or
not. Almanji et al. (Almanji et al. 2014) present a review of features extracted
from the client-side interaction data of users with pointing devices who suffer
from upper limb impairments due to cerebral palsy. They propose a model that
measures the influence of the MACS (Manual Ability Classification System)
level of each user and the characteristics of the analysed features. Among the
analysed features, movement time, acceleration-deceleration cycles and average
speed are the most significant. Authors claim that for individuals with cerebral
palsy, it is more important to focus on methods to increase speed because they
already appear to have enough accuracy.

Hurst et al. (Hurst et al. 2008) propose systems to automatically detect
pointing performance with the aim of learning how to deploy adaptations at
the correct time without prior knowledge of the participants’ ability. To this
regard, able bodied participants were also included in the experiment. They use
client-side interaction data to build several systems to: (a) distinguish point-
ing behaviours of individuals without problems from individuals with motor
impairments, (b) distinguish pointing behaviours of young people from people
with Parkinson or older adults, and (c) determine the need for the Steady Click
adaptation that was designed to minimise pointer slips during clicking. All the
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systems are built over labelled datasets including features related to clicking,
features related to movement, pause features and task specific features. They
used wrapper methods to select the features through C4.5 classifier. Concerning
the results, the systems presented achieved high accuracy values: (a) 92.7%, (b)
91.6% and (c) 94.4%.

De Santana and Baranauskas (Santana and Baranauskas 2015) propose a
remote evaluation tool, named WELFIT, for identifying web usage patterns
through client-side interaction data (event streams). They provide insights into
differences in the composition of event streams generated by people with and
without disabilities. The tool uses SAM (Sequence Alignment Method) for
measuring the distances between event streams and uses a previously proposed
heuristic (Santana and Baranauskas 2010) to point out usage incidents. They
label the groups built in the clustering procedure as AT (users using assistive
technologies), or non-AT, according to the majority in each group. With the
aim of identifying web usage patterns within the discovered groups, they found
significant differences in the distribution of several features between AT and
non-AT users.

Augstein et al. (Augstein et al. 2017) present a personalised interaction ap-
proach where a set of metrics are computed based on different interaction tests
performed by 22 users (four of them with cognitive impairments) and then used
to recommend the so-called ’interaction device setting’(IDS) that best fits the
user needs. A ranked list of all IDSs and an overall suitability value for each is
provided and the user can select the desired setting to work with two real-world
interaction tasks, scrolling in larger documents and navigation through the win-
dows start menu. In particular, the interaction tests were performed using three
different IDSs: physical pressure based on a smart phone vibration absorption,
physical pressure based on a smart phone magnetic field manipulation and hand
or arm shaking using a smart watch or an armband with integrated position/ac-
celeration sensor. According to their results, in more than 95% of the cases the
recommended IDS was the one the user had expected.

We stand that to our knowledge, no work has analysed a set of users (with
and without physical impairments) interacting with their preferred device (key-
board, trackball, joystick or mouse) and tried to find out any problematic pat-
tern that could happen in any of the two types of tasks defined: mechanical
task or mechanical and cognitive task requiring some cognitive effort. This is
important since previously unknown problems can be detected this way and this
is what we have done in this chapter.

5.2 Description of the platform used for the ex-
periments: RemoTest

The RemoTest platform (Valencia et al. 2015) provides the necessary function-
alities to assist researchers to define web-based user experiments, manage ex-
perimental remote/in-situ sessions and analyse the gathered interaction data.

61



CHAPTER 5. ACCESSIBILITY

This platform admits a wide range of experiments. The architecture of the plat-
form consists of a hybrid architecture model that includes some functions in a
client-side module and the other ones in some server-side modules. Figure 5.1
below shows the general architecture of RemoTest platform and the interaction
between its four modules (Arrue et al. 2018):

Figure 5.1: Description of RemoTest (Arrue et al. 2018).

• Experimenter Module (EXm): this module provides assistance to the re-
searchers during the experiment definition process and stores it in an XML
file based on specific vocabulary created to describe the experiments, com-
prehensive enough to detail the main elements, e.j objectives, stimuli to be
presented, task time limits, questionnaires to be filled in by participants
etc.

• Coordinator Module (COm): this module creates personalised experimen-
tal sessions for each participant using the information of the XML file
generated in the EXm module.

• Participant Module (PAm): this module uses the experimental sessions
transferred by the COm module, allowing the participants to visualise
them and storing their corresponding interaction data.

• Results Viewer Module (RVm): this module organisers and presents the
interaction data gathered in the experiments.

In order to build the system proposed in this chapter we did not work with
the information stored in the RVm module but directly with the interaction
units or events gathered and interaction information stored in PAm, such as
cursor movements, key presses, scrolls, clicks, etc.
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5.3 Experiments with users

Fifteen subjects took part in the study which were divided into five groups
based on the input device used for pointing and clicking actions: two keyboard
users, two keyboard users using a headpointer to interact with the keyboard
(keyboard+headpointer users), one trackball user, four joystick users and six
mouse users.

All subjects from the first four groups were participants with motor-
impairments most of them with over seven years of experience and using daily
the computer. The subjects in the last group only included users without dis-
abilities who had more than seven years of daily use of the mouse as an input
device.

The same Dell Precision M6700 laptop running a 64 bit version of Windows 7
was utilised in all sessions. An additional widescreen LCD monitor (aspect ratio
16:10) with a diagonal size of 24 inches and display resolution set to 1920x1200
pixels was used to present stimuli to participants. Firefox add-ons implementing
the virtual aids for the cursor were installed in this computer.

Before starting the study, participants were encouraged to adjust the pointer
motion behaviour to meet their preferences. Subjects with disabilities used their
own personal input devices to complete the study. All non disabled participants
used the same optical USB mouse (Dell M- UVDEL1).

Two different websites were selected as stimuli for the experiment: the Dis-
capnet website, http://www.discapnet.com/, which provides information to
people with disabilities (see Figure 5.2) and the institutional website from the
Council of Gipuzkoa, http://www.gipuzkoa.eus/ (see Figure 5.3).

Figure 5.2: Home page of Discapnet website: http://www.discapnet.com

A third website, that provides information about the Bidasoa local area
(Bidasoa Turismo), http://www.bidasoaturismo.com, was used for training
purposes, so participants could learn how to use the new cursor virtual en-
hancements (see Figure 5.4). All three websites claim, within their accessibility
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Figure 5.3: Home page of the website of the Council of Gipuzkoa: http://www.
gipuzkoa.eus/

sections, to conform to certain level of the WCAG 1.0 guidelines (Discapnet to
Level AA, Gipuzkoa and Bidasoa to the Level A).

Figure 5.4: Home page of Bidasoa Turismo website: http://www.

bidasoaturismo.com

5.4 Tasks’ characteristics

The users carried out two types of tasks:

• MiniTask: each MiniTask consisted of clicking on one highlighted target.
After each target-clicking the position of the cursor was reset to the center
of the screen. These types of tasks do not have any cognitive phase that
requires thinking about the requested information and looking for it in the
website, therefore these tasks measure exclusively the users’ motor skills
also named mechanical tasks. They are designed to be straightforward
and short navigations which are very interesting to study the intentioned
navigation of the user.

• SearchingTask: each task consisted of searching for a precise web page
in a website after having been given its title. The target web pages were
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between two and four steps away in the website. These tasks require a
cognitive phase where the user spends time thinking and searching for
the requested information also named cognitive tasks. The intentioned
navigation starts when the user identifies the target.

In total each user carried out 156 tasks (144 MiniTasks and 12 Searching-
Tasks carried out in two websites) whose corresponding interaction information
was used to detect first the device being used and then the possible navigation
problems experienced.

5.5 Feature extraction

The interaction of the users with the website was collected with RemoTest and
converted to a labelled dataset to be used in a supervised classification envi-
ronment. We supposed that each of the users interacted similarly in every page
visited during the experiments carried out, and that the interaction somehow
depended on the type of device the user was using. So, the device being used
was used to label the dataset examples, generating a dataset with five classes:
keyboard, keyboard + headpointer, trackball, joystick and mouse.

In order to build an automatic detection system, first for devices and then
for problems, we agree with accessibility experts to extract 25 features. How-
ever, based on the experts’ suggestions, the set of features used for device (D)
detection and problem (P) detection were different: 19 features were used for
device detection (DB1) and 11 features for problem detection (DB2M and DB2S),
which are shown in Table 5.1 marked as as D and P in column Use respectively.

For the extraction of the features in each page, we divided the space into
eight quadrants (1-8) as shown in Figure 5.5, that are divided by the horizontal
(Hi), vertical (Vi) and diagonal (Di) axes. Then, we computed the direction of
the cursor movements (slope) inside the defined quadrants and axes.

Figure 5.5: Space division to extract some features: horizontal (Hi), vertical
(Vi) and diagonal (Di) axes and eight quadrants (1-8).
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Id Feature Use Pr Unit Description
1 NEvent D 1 # No. events (cursor-move, click, hover...)
2 NSpKeysPress D 1 # No. special keys pressed (no letter/digit).
3 NWheel D 1 # No. times the wheel has been used.
4 NHVMov D 1 # No. movements aligned with the horizon-

tal or vertical axes.
5 NDMov D 1 # No. movements aligned with diagonals

axes.
6 MedGapTime D 1 ms Median of the time intervals without cur-

sor movements (gaps).
7 MedSpeed D 1 px/s Median of the cursor movements speeds.
8 MedAcc D 1 px/s2 Median of the cursor accelerations.
9 NKeyPress D 2 # No. keys pressed.
10 CurDist D 2 px Total distance traveled with the cursor.
11 RCurDistOpt D/P 2 ratio Ratio between CurDist and the distance

between the initial position of the cursor
and the target (optimal distance).

12 RStrQuadCh D/P 2 ratio NStrQuadCh / NQuadCh
13 NClick D/P 3 # No. clicks.
14 NScroll D 3 # No. times the scroll has been used.
15 RHVDmov D 3 ratio (NCross + NDMov) / (NCross + NDMov

+ NnotHVDMov).
16 NQuadCh D/P 3 # No. quadrant changes in the direction of

movements.
17 NStrQuadCh D 3 # No. strong changes (≥ 2 quadrants) in the

direction of movements.
18 NnotHVDMov D 3 # No. movements not aligned with horizon-

tal, vertical or diagonal axes.
19 TotTime D/P 3 ms Total time spent in the page.
20 ClickDist P px Average distance between click-down and

click-up actions.
21 ClickTime P ms Average time between click-down and

click-up actions.
22 DiagCurArea P px Length of the diagonal of the rectangle

that circumscribes the area traversed by
the cursor.

23 MedJerk P px/s3 Median of the changes of accelerations of
the cursor movements.

24 NCross P # No. times the cursor crosses the clickable
area limits.

25 NGap P # No. gaps.

Table 5.1: Description of the 25 features extracted in each visited page, 19 for
device detection and 11 for problem detection.
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5.5.1 Feature extraction for device detection

Each of the entries of the generated dataset contains the summary of the inter-
action of a user with a visited page. To summarise this interaction, we extracted
a total of 19 features considered meaningful by the accessibility experts for the
device (D) detection task, who in addition, grouped them into three priority
levels (Pr) according to their usefulness: 1-high (eight features), 2-middle (four
features), 3-low (seven features).

Table 5.1 summarises the 19 features extracted (marked as D and D/P in
column Use) and their priority levels (column Pr). In the table, the abbrevia-
tions for features’ units are pixels (px) for distances; seconds (s) and milliseconds
(ms) for times; and appearance times (#) for counting.

5.5.2 Feature extraction for problem detection

Following the recommendations of the accessibility experts a total of 11 features
were finally used for the problem (P) detection task, which are shown in Ta-
ble 5.1 marked as P in column Use. As it can be observed, five of these features
were also used for the device detection task (marked as D/P in column Use of
Table 5.1): number of clicks (NClick), number of quadrant changes in the direc-
tion of movements (NQuadCh), ratio between the number of quadrant changes
and the number of strong changes in the direction of movements (RStrQuad-
Ch/NQuadCh), ratio between the CurDist feature and the distance between
the initial position of the cursor and the target (RCurDistOpt), and total time
spent in the page (TotTime).

In the recording process some errors or fluctuations may appear in the inter-
action data that lead to outlier navigation behaviours or impossible behaviours.
In order to reduce the effect of these behaviours and obtain a smoother sig-
nal, a Butterworth filter (Proakis and Manolakis 1992) configured as a low-
pass filter was applied to the following features: cursor speeds (MedSpeed),
cursor accelerations (MedAcc), cursor jerks (MedJerk) and the angles of the
cursor direction (NnotHVDMov, NHVMov, NQuadCh, NStrQuadCh, RHVD-
Mov, RStrQuadCh). In the case of the nominal variables the smoothing was
carried out based on a Simple Moving Mode method and using a subset of 11 el-
ements (the five previous elements, the current element and the five subsequent
elements).

Table 5.2 shows the average values obtained for the features used for problem
detection for each of the devices, which was our final goal (data is split by devices
and task times). The average values of the variables for each device and task
type shown in Table 5.2 suggest that the overall behaviour is affected by both
the type of device used and the type of task. For instance, the MiniTask part of
the table shows that the highest values of MedJerk can be found for the mouse,
in contrast, the smallest ones for the keyboard. The trackball is prone to register
more NQuadCh. When it comes to TotTime, keyboard users spend the most
time in completing the task, while the mouse users are the ones spending the
least. For NGap, keyboard users make the most stops in navigation. As regards
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NCross, mouse and keyboard users are the most skilled controlling the cursor
around the target. The ClickTime with the joystick is much higher.
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MiniTask
Keyboard 208 1.1 0.3 0.1 1.3 1.1 4.4 5.1 9 0.3 418
Joystick 868 1.4 0.5 0.1 4.8 6.3 1.6 16.0 258 0.8 476
Trackball 2,039 1.6 0.5 0.1 8.8 5.9 1.4 29.5 86 0.0 465
Mouse 3,330 1.2 0.2 0.1 1.4 1.6 0.4 7.4 91 0.3 315

SearchingTask
Keyboard 234 2.2 0.5 0.8 2.9 46.9 8.3 5.4 311 1.0 575
Joystick 707 5.9 0.5 0.8 18.1 40.4 8.9 31.3 322 4.0 941
Trackball 1,917 6.2 0.5 0.8 40.5 39.6 9.0 59.7 117 0.1 1,117
Mouse 3,758 14.3 0.5 0.9 10.3 13.1 5.8 14.3 109 5.4 781

Table 5.2: Average values (centroids) obtained for each feature used for problem
detection and for each device, keyboard, joystick, trackball and mouse, and for
each type of task, MiniTask and SearchingTask.

The trends of the features across devices in the SearchingTask part are sim-
ilar to the ones described in the MiniTask part but not the values, which are
higher. Some of the differences to highlight appear in the features NGap, Click-
Time and ClickDist. The former becomes equal for all devices when the search-
ing process is added, with trackball, joystick and keyboard being the devices
with more stops. High values of ClickTime and ClickDist denote that users
need more time and distance to make the click, keyboard users need more time
(ClickTime) whereas mouse users travel more distance (ClickDist). In addition,
the increase of the value of RCurDisOpt, the ratio between the traveled dis-
tance and the optimal distance, or TotTime, denote that SearchingTasks are,
as expected, longer and more difficult.

In conclusion, the observable differences between devices and tasks suggest
that the identification of the device will be important to later identify problems.
This confirms our hypothesis about the need of a two phase system where the
device is detected first, and the dataset is divided by device for the second phase.
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5.6 Automatic device detection: first approach

5.6.1 Description of the dataset

In this first step of the architecture the entire dataset was given to the machine
learning algorithms, without distinguishing between devices and MiniTask or
SearchingTask URL-navigations, because, from the device point of view the
task type should be irrelevant.

In order to compute all the features proposed by the experts a minimum
activity within each URL navigation was established. As a result only the
interactions fulfilling the five following conditions were added to the dataset:

• The number of MouseMove events has to be greater than or equal to
five. Cursor-move events are recorded more or less every 10ms and offer
information about cursor position.

• The distance traveled by the cursor has to be greater than zero.

• The information about the dimensions of the clicked target area has to be
recorded by RemoTest.

• The click-up and click-down events need to appear among the stored data.

• The task duration (elapsed time) must be greater or equal than 4 seconds
(s).

The reasoning behind the last condition, elapsed time ≥ 4s, was to be able
to analyse the influence of the different intervals of the interaction (last 25%
...). Thus, we just considered tasks that could be split in smaller segments with
sufficient activity to compute the features needed. This criteria was not con-
sidered in the adopted approach first because it enabled the selection of shorter
navigations, mainly MiniTasks, and second because the use of a particular seg-
ment of the navigation (extracted splitting long sessions) was not found to be
effective in improving the results.

After applying the above mentioned requirements, a 5-class unbalanced
dataset with 20 (19 + class) features was generated (see Table 5.3). All the
features were standardised (standard score was calculated) so that their differ-
ences in ranges did not affect to the performance of the built classifiers.

As this first approach was an intermediate step to achieve the final goal to
detect navigation problems experienced by the users, features were extracted
thinking in both objectives. To confirm our decision, we experimented with the
complete set of features extracted (25) shown in Table 5.1, eight features con-
sidered by accessibility experts as significant to detect the used device (priority
1 features in Table 5.1) and features selected by two of the most used automatic
feature selection algorithms (Garćıa et al. 2015): the Correlation-based Feature
Subset Selection (M.A. Hall 1998) and a Wrapper (R. Kohavi and G.H John
1997) feature selection option which optimises the features for a given classifier
(J48 in our case).
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class Number of examples
Joystic 584
Keyboard 347
Keyboard+headpointer 338
Trackball 171
Mouse 235

Total 1,675

Table 5.3: Class distribution of the generated dataset.

5.6.2 Results and analysis

The calculated features were used to build classifiers to classify user interaction
data according to the device used for navigation. We built classifiers with the
complete set of features extracted, the features considered to be the most im-
portant by the accessibility experts and the features selected by some automatic
feature selection processes.

Experiments were run in Weka (M. Hall et al. 2009) with 4 basic classifiers,
Näıve Bayes (NB) (G.H. John and Langley 1995), IBK (a k-NN implementation)
(Aha et al. 1991), SVM (J.C. Platt 1999) and J48 (J.R Quinlan 1993) with
default parameters and two decision tree (J48) based multiple classifiers, bagging
(Bagg.) (Breiman 1996) and boosting (Boos.)(Freund and Schapire 1996), with
25 iterations. A five fold cross-validation (5 fold-CV) strategy was used for
validation (80% for training and 20% for testing). As it can be observed in
Table 5.4, four datasets differing in the contained features were evaluated:

• The most important features according to the experts (Priority 1 features)

• All the extracted features (All features)

• The features selected by the Correlation-based Feature Subset Selection
method (CF Subset Eval)

• The features selected by the wrapper selection method with J48 as classi-
fier and Genetic Search as search algorithm (Wrapper J48)

The values in Table 5.4 show that classification rates were not as high as ex-
pected. Generally the best rates were obtained with the most complex classifiers
or multiple classifiers: bagging and boosting.

Focusing the analysis on how the sets of features affect to the performance
of the system, it seems that the set proposed based on the experience of the
accessibility experts (Priority 1 features) is only the best option in the case of
Näıve Bayes (NB) classifiers. The rest of the classifiers behave better using the
complete set of features or automatically selected sets of features. These two
outcomes lead us to analyse confusion matrices in order to discover the source
of the error.
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Used features Accuracy (%) of the classifiers
NB IBK SVM J48 Bagg. Boos.

Priority 1 features 66.09 67.46 62.09 71.88 74.75 75.52
All features 57.85 67.82 67.10 74.45 79.34 79.76

CF Subset Eval 59.64 68.96 64.12 74.87 77.97 77.25
Wrapper J48 57.85 67.88 66.57 75.82 79.7 80.78

Table 5.4: Classification results for different feature sets and classifiers in the
5-class dataset.

Analysis of the source of the error

To analyse the source of the error, we selected one of the best classifiers, the
outcome of a J48 based boosting process applied to a dataset generated using
the features selected with the Wrapper Feature selection process, and, studied
its confusion matrix (see Table 5.5).

classified as a b c d e Fm (%)
Joystick = a 114 0 0 1 2 95.00

Keyboard = b 0 49 20 1 0 72.59
Keyboard+headpointer = c 0 16 51 0 0 73.91

Mouse = d 8 0 0 35 4 80.46
Trackball = e 1 0 0 3 30 85.71

Table 5.5: Confusion matrix + F-measure, Fm (%). Boosting with a Wrapper
feature selection for the 5-class problem.

The values clearly show that the main source of error comes from not being
able to differentiate classes keyboard and keyboard+headpointer. This was to
be expected somehow, since although managing it differently, in both cases the
finally used device is the keyboard. On the other edge, the joystick users are very
accurately classified obtaining a F-measure (%) value of 95% and the mistakes
done with mouse and trackball users are also few.

In this sense, we decided to simplify the problem to four classes, that is,
we joined into the same class keyboard users and keyboard+headpointer users.
The new dataset had still 1,675 examples but distributed now in the following
way: Joystick (584), Keyboard (685), Trackball (171) and Mouse (235). In this
regard, as we will explain later, accessibility experts supported this decision
for the future goal of problem detection, suggesting differentiated virtual aids
to improve the accessibility of the cursor for each group of devices (J.E. Pérez
et al. 2016).
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Solving the 4-class problem

The same experiments described in the previous sections were repeated in Weka
for the new 4-class dataset; NB, IBK, SVM and J48, bagging and boosting
models were built and evaluated based on a 5 fold-CV strategy.

As it could be expected, the values in Table 5.6 show that classification
rates increased for all classifiers. This means that the systems built combining
the features extracted from the experiments carried out with RemoTest with
machine learning algorithms are able to differentiate the used device accurately.

Used features Accuracy (%) of the classifiers
NB IBK SVM J48 Bagg. Boos.

Priority 1 features 82.99 83.52 80.48 87.22 89.19 90.39
All features 77.31 83.16 84.54 88.9 92.42 93.07

CF Subset Eval 81.19 82.75 80.54 87.34 90.69 91.22
Wrapper J48 77.49 84.12 83.52 89.67 92.48 92.66

Table 5.6: Classification results for different feature sets and classifiers in the
4-class dataset.

Comparing classifiers’ performance, the same trends observed in the 5-class
dataset were repeated; the best rates were obtained with the most complex
classifiers or multiple classifiers bagging and boosting. With regard to the sets
of features seeming to work better, they are again the automatically selected
ones or the complete set of features. In particular, the best results (93%) were
achieved when using boosting with the complete set of features extracted.

classified as a b c d Fm (%)
Joystick = a 108 2 5 2 91.91

Keyboard = b 1 136 0 0 98.91
Mouse = c 6 0 40 1 84.21

Trackball = d 3 0 3 28 86.15

Table 5.7: Confusion matrix + F-measure, Fm (%). Boosting with a Wrapper
feature selection for the 4-class problem.

If we further analyse the confusion matrices, see Table 5.7 for an example, we
realise that the classifier was able to nearly perfectly differentiate the keyboard
users from the rest, maintaining the general ability to differentiate devices for
the three remaining options. This suggest the idea of building a hierarchical
system to differentiate the different types of devices, where first keyboard is dif-
ferentiated from the rest, and then remaining devices, joystick/trackball/mouse,
are distinguished.
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Analysis of the importance of the features

As in any data mining process, the features used in the classification process
affected the efficiency of the classifiers. As stated before, it seems that the fea-
tures considered to be the most important by the accessibility experts were not
the best to use for classification. Therefore, we considered that the comparison
of the features selected by the two feature selection processes applied to the two
datasets (5-class and 4-class) and the experts could give us some clues about
the importance of the extracted features. Table 5.8 contrasts the selection done
by the experts and the one done by automatic algorithms. Each of the features
could have been selected at most four times.
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RHVDMov (4) RcurDistOpt(2)
NnotHVDMov(4) NquadCh(2)
NkeyPress(3) TotTime(2)

Nclick(2)
CurDist(1)
NStrQuadCh(1)
Nscroll(2)
RstrQuadCh(0)

Table 5.8: Use of the features.

In conclusion, only five out of the eight features considered very important
by the experts where considered effective for the classification process by most
of the four automatic feature selection processes carried out. However, there
were three features, RHVDMov, NnotHVDMov and NkeyPress, not considered
by the experts that are important for classification and will probably need to
be taken into account by the experts in the future.

Although as stated before some features seemed not to be determinant in-
tuitively for device detection, there was a single one, RstrQuadCh, not selected
by any of the feature selection processes executed. However, this feature will
probably be informative for problem detection.
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5.7 Automatic device detection: adopted ap-
proach

From the previous analysis we learned that the type of task was irrelevant for
the device detection goal and thus, in the adopted approach we also used the
complete dataset (DB1) without distinguishing between devices and MiniTask
or SearchingTask URL-navigations.

Concerning future adaptations, some accessibility experts suggest that rather
than adapting the website to people with disabilities, they should be provided
with virtual aids to enhance their cursor accessibility as an intermediate solution.
They point out that the solutions for the users should be different according to
two main groups of devices: devices with restricted movements (RestrictedMov)
and devices with free movements (FreeMov)(J.E. Pérez et al. 2016). This is in
line with the outcome of the previous approach, where the two meta-devices
are better distinguished, keyboard (with or without headpointer) and the group
with the rest of devices. Accordingly, we modified the previous classifier system
where all the devices were classified in a single step to better fit the new user
interaction adaptation context, proposing a two level hierarchical approach to
discriminate between devices. In the first level, two meta-classes were defined
for classification, placing together the devices with similar behaviour: discrete
input devices or devices with restricted movements, RestrictedMov (keyboard),
and devices with non-restricted movements or FreeMov (joystick, trackball and
mouse). In the second level, devices grouped into FreeMov meta-class were
modelled and classified, i.e., the joystick, trackball and mouse classes.

Experiments were run in Weka with the same algorithms used in the previous
approach: the basic classifiers, Näıve Bayes (NB), IBK, SVM and J48, with
default parameters and the two decision tree (J48) based multiple classifiers,
bagging (Bagg.) and boosting, with 25 iterations. Accordingly, a five-fold cross
validation (5-fold CV) strategy was used for validation (80% for training and
20% for testing). Regarding the set of features the best one from the previous
approach was selected, that is, the one made up of the 19 features marked as D
and D/P in column Use of Table 5.1).

5.7.1 Description of the new dataset

In the adopted solution the requirement of minimum elapsed time value (≥
4s) was not considered, what increased a 22% the size of dataset described in
Section 5.6 (from 1,656 to 2,148 examples). In particular, just the following four
requirements were established: No. MouseMove events ≥ 5, distance travelled
by the cursor ≥ 0, dimensions of the clicked target area are recorded = true,
No. click-up/click-down events 6= 0.

Theoretically, in MiniTasks there were 2,160 entries (15 users x 144 Mini-
Tasks) and in SearchingTasks there should be, approximately, 540 examples
(15 users x 12 SearchingTasks x 2-4 clicks). However, the requirements es-
tablished to ensure a minimum activity, diminished that theoretical number of
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recorded entries to 1,713 for MiniTasks (DB2M) and to 435 for SearchingTasks
(DB2S). For the device detection phase, the examples (DB1) were first divided
into two datasets with 464 and 1,686 examples, resulting from the two meta-
devices, devices with restricted movements (RestrictedMov) and those with
free-movements (FreeMov), and the two types of tasks joined (MiniTasks and
SearchingTasks). Then the second meta-device was divided into three datasets
with 130, 628 and 938 examples respectively arising from the three devices with
free-movements, trackball, joystick and mouse. See Table 5.9.

Meta-Device Device Problem detection Device det. N.users
MiniTask SearchingTask Task

RestrictedMov Keyboard 388 76 464 4
FreeMov Trackball 98 32 130 1

Joystick 491 127 618 4
Mouse 736 200 938 6
Total 1,325 359 1,686 11

RestrictedMov All 1,713 435 2,148 15
+FreeMov (DB2M) (DB2S) (DB1)

Table 5.9: Number of examples in the dataset for different types of devices and
tasks.

5.7.2 New results and analysis

As suggested by the accessibility experts, we considered as a critical error the
misclassification of devices of different meta-classes (first level) and as a non-
critical error the misclassification of devices of the same meta-class (second
level). Hence, in the first level of the approach the classes that must be perfectly
discriminated are addressed to minimise the critical error, whereas in the second
level, where interactions are more similar, the classes with smaller differences
are tackled.

Table 5.10 makes clear that the classifiers are able to discriminate the two
meta-classes with high accuracy. Although all but NB classifiers obtain high
accuracy, the best results are obtained with meta-classifiers, especially with
boosting J48, with accuracy values of 99.26. As a result, the critical error is
very small.

Set of features Accuracy (%) of the classifiers
NB IBK SVM J48 Bagg. Boos.

All (19 features) 90.33 96.06 96.30 98.57 99.04 99.26

Table 5.10: Accuracy values obtained when discriminating the two meta-classes
for different classifiers (critical error). The best value is shaded.
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With the intention of analysing the origin of the critical error in the first
level a confusion matrix is presented in Table 5.11. The results in the table show
that the critical error of the first level is 0.74% (see Table 5.10) and that the
F-measure (%) in the RestrictedMov group is slightly lower than in the FreeMov
group (98.29% < 99.53%). Note that the four navigations made with devices
with non restricted movements (FreeMov) misclassified as navigations made
by devices with restricted movements (RestrictedMov) have been computed as
critical errors in the first level thus they will not be considered as non-critical
errors in the second level.

Assigned class ⇒ a b Fm (%)
RestrictedMov = a 460 4 98.29

FreeMov = b 12 1,672 99.52

Table 5.11: Confusion matrix and F-measure, Fm (%), values generated apply-
ing boosting J48 to the two class dataset.

In the second level we tried to discriminate the devices that convey the
analogue movement: joystick, trackball and mouse. Table 5.12 shows that the
best value was obtained again with boosting J48 with 90.13% of accuracy so
the two levels of the hierarchy will be built using the boosting J48 classifier.

Set of features Accuracy (%) of the classifiers
NB IBK SVM J48 Bagg. Boos.

All (19 features) 73.33 80.10 80.10 84.24 87.17 90.13

Table 5.12: Accuracy values obtained when discriminating the three no re-
stricted movement classes for different classifiers (non-critical error).

Assigned class ⇒ a b c Fm (%)
Trackball = a 122 1 3 73.72
Joystick = b 38 536 40 90.16

Mouse = c 45 38 849 93.09

Table 5.13: Confusion matrix and F-measure, Fm (%), values generated apply-
ing boosting J48 to the dataset with all features and with examples of corre-
sponding class.

In order to analyse the origin of the non-critical error in the second level
Table 5.13 is presented. Focusing on the F-measure values, it can be seen that
the majority of errors are made misclassifying the mouse as a trackball, although
joystick has been misclassified more times percentage-wise. In particular the
non-critical error of the second level is 9.87 (see Table 5.12). Therefore, the
global error of the two level automatic device classifier system is 8.43% and
since the critical error (0.74%) is lower than the global smallest error of the
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approach described in Section 5.6 (6.93%, see Table 5.6) where all the devices
were classified in a single step, we consider this hierarchical solution better for
adapting the interaction of future users.

5.8 Automatic problem detection

5.8.1 Clustering for pattern discovery

Clustering algorithms, a type of unsupervised learning algorithm, can be used
to discover behavioural patterns within the data when no prior knowledge about
its structure or class exists. Based on the premise of devices having different
values for features (feat), the idea is to first perform the clustering for each
device (dev) and type of task, MiniTasks (M) and SearchingTasks (S), and
then, automatically select the clusters (i, j) showing anomalous behaviour; the
ones with higher deviation in the 11 features selected by the experts for this task.
With this aim, the average behaviour of the examples grouped within a cluster,
cluster centroid (MiniTasksMCdevi,feat and SearchingTasks SCdevj,feat respectively),

is compared to the overall behaviour, see global centroid (MGCdevfeat, SGC
dev
feat)

in Table 5.2 where values for each type of device and task appear.

One of the main parameters of the clustering algorithm is the number of
clusters (k) generated to obtain the best partition. According to Chapter 4, the
use of decision fusion strategies between several CVIs was proven to be more
effective than the use of a single CVI in the selection of the most suitable k.
Accordingly, we detected navigation problems by executing k-means algorithm
(Lloyd 1982) with different k values and then, selecting the best k according
to a decision fusion strategy carried out with eight Cluster Validity Indexes
(CVIs): Silhouette (P.J. Rousseeuw 1987), Davies-Bouldin variation (Kim and
Ramakrishna 2005), Caliński-Harabasz (Caliński and Harabasz 1974), Davies-
Bouldin (Davies and Bouldin 1979), COP (Gurrutxaga et al. 2010) and the
Generalised Dunn indexes GD33, GD43 and GD53 (Bezdek and Pal 1998).

Pattern discovery in MiniTasks

Compared to SearchingTasks (DB2S), the MiniTasks (DB2M) are more straight-
forward, they do not have a thinking period where the user does not have any
fixed direction. With regard to the variables, the biggest difference between the
two types of tasks is the average time needed to complete the task (shown in
Table 5.14). Focusing on the values, for the second group (SearchingTasks) the
cognitive component clearly takes effect and, consequently average, median and
maximum times increase considerably for all devices but their rank and differ-
ences are maintained in both types of tasks. The values for the rest of features
also vary considerably according to the device.

To compare the average behaviour of a cluster (i) to the overall behaviour
of all the navigations in the corresponding device (dev), all the values of the
features (feat) were previously normalised (normal distribution) by device. As
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shown in Equation 5.1, cluster centroids (MCdevi,feat) deviating more than or

equal to two standard deviations (2stdevdevfeat) of the global centroid (MGCdevfeat)
were considered to be good candidates to identify navigation problems.

MCdevi,feat ≥MGCdevfeat + 2stdevdevfeat, dev ∈ {Ke, Jo, Tr,Mo}, i ∈ N, i ≤ 15
(5.1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
MiniTask

Keyboard 3.9 7.5 10.1 10.6 12.7 38.9
Joystick 2.0 4.1 5.3 6.3 7.1 42.3
Trackball 2.5 4.4 5.4 5.9 6.5 19.4
Mouse 0.6 1.0 1.2 1.6 1.6 22.0

SearchingTask
Keyboard 3.7 21.6 38.7 46.9 61.9 176.1
Joystick 5.3 14.9 27.1 40.4 58.2 164.8
Trackball 7.5 15.1 28.7 39.6 49.4 162.5
Mouse 1.4 5.4 8.7 13.1 15.9 81.4

Table 5.14: Time needed in completing each type of task by each device (in
seconds).

Considering the sizes of the datasets for MiniTasks (one per device), the
different k values we tested for k-means algorithm (Lloyd 1982), were 10, 15,
20 and 25. After using the eight Cluster Validity Indexes (CVIs) to evaluate
the best partitions for each device, we computed the average k selected by the
CVIs for the four devices (14.53). Then, we selected accordingly the nearest k
(k=15) for the k-means used in the final problem detection process carried out
in the four MiniTask datasets.

Problematic patterns and indicators

Clusters where the values of the features were deviated were automatically se-
lected and then we inferred some problematic patterns and their meanings. The
problematic patterns inferred and their meanings are described in the following
paragraphs.

• Pattern 1: too much distance. Its indicator is the feature RCur-
DistOpt. It is a good predictor of a target selection problem; the cursor
has travelled a much longer distance than the expected one. However,
the causes of the problem are unknown. In order to explore the cause of
the problem it is necessary to analyse the other features triggered with
RCurDistOpt.

• Pattern 2: too much time. Its indicator is the feature TotTime. It
is good predictor of a task completion difficulty; the task has taken more
time than expected. However, in order to explore the cause of the problem
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it is necessary to analyse the other features triggered with TotTime. Thus,
this feature is normally triggered by numerous different problems.

• Pattern 3: rectifications in direction. Its indicators are the features
NQuadCh or RStrQuadCh that are triggered with the feature NGap be-
cause the adjustment of directions normally requires making short stops.

• Pattern 4: unnecessary clicks. Its indicator is the feature NClick. In
a straightforward task it is an unexpected behaviour, more than that, it
seems to be an indicator of ungainliness.

• Pattern 5: difficulties around the target. Its indicator is the feature
NCross. Specifically, it indicates lack of control and precision in landing
on the target. Whenever the target is passed over, there is a need to adjust
the direction so it is usual to see it in combination with Pattern 3. In this
context, the user may miss clicking on the target, so it will also frequently
appear in combination with Pattern 4.

• Pattern 6: long clicks. Its indicator is the feature ClickTime. In a
straightforward task it is an unexpected behaviour, indeed it seems to be
more an indicator of indecisive behaviour.

• Pattern 7: too many stops. Its indicator is the feature NGap. Mostly
it is related with the action of rectification (Pattern 3), but there are
cases when the user makes no rectification and continues with the same
direction, giving the idea that she/he is retaking control of the cursor.

Table 5.15 summarises the problematic patterns (Patt) inferred from the
clusters selected automatically and the deviated features in each of the patterns.
Where x indicates a significant deviation of a feature and [x] indicates a deviation
of, at least, one of the marked features (OR condition).

From the table it follows that although experts initially marked 11 features
as suitable indicators of navigation problems, the features MedJerk, ClickDist
and DiagCurArea were not matched with any of the seven problematic patterns
inferred but they may be connected to other types of problems not identified in
this contribution. Consequently, their values are not shown neither in the table
that describe the problematic patterns (Table 5.15) nor in the tables that show
examples of clusters with problematic patterns (Tables 5.16 and 5.17).

Table 5.16 shows one of the clusters identified as problematic for each device.
The table includes the standard deviation of the centroids of the clusters and
the problematic patterns related (column Pattern), marking in bold the devi-
ated features, that is, those which deviate more than two standard deviations
(stdev). The table also includes the reference to a figure where one of the navi-
gations of the cluster is illustrated (column Figure). Note that Pattern 6 (long
clicks) is difficult to visualise, as shown in the navigation pattern represented
in Figure 5.10. It is clear that each of the navigations represented is linked
to several of the identified patterns, meaning that users having problems are
probably finding difficulties in many aspects.
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P1 x
P2 x
P3 [x] [x] x
P4 x
P5 x
P6 x
P7 x

Table 5.15: Description of the seven problematic patterns inferred and the re-
lated features for MiniTasks.

Centroid: MCdevi,feat
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5.6 Keyboard 1, 2, 3, 7 2.21 1.48 0.87 2.06 2.21 2.24 1.78 -0.03
5.7 Joystick 1, 2, 4, 5 4.48 0.94 4.52 2.35 6.77 5.61 2.58 0.58
5.8 Trackball 6 -0.13 0.41 -0.18 0.15 0.56 1.73 1.00 2.49
5.9 Mouse 1, 2, 3, 4 6.51 1.03 6.33 5.82 7.24 7.94 0.77 1.08

Table 5.16: Problematic patterns in the MiniTasks navigation traces presented
and their corresponding centroids with deviated features according to Equa-
tion 5.1 in bold.

In Figures 5.6 to 5.9, an example per device and cluster is represented graph-
ically where most of the patterns detected in the cluster are visible: keyboard
in Figure 5.6, joystick in Figure 5.7, trackball in Figure 5.8 and mouse in Fig-
ure 5.9). Next we describe the symbology used in the figures:

• Big square: it represents the starting point.

• Medium square: it indicates a cursor stop.

• Little circumference: it indicates the cursor’s position every 10ms.
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• Medium circumference: it shows where a scroll was made.

• Medium cross: it means that a click was made.

• Big cross: it indicates the target position.

Keyboard

Figure 5.6: Example of problematic keyboard navigation extracted from cluster
7 with evident rectifications in the direction (P3) and excess of stops (P7).

Joystick

Figure 5.7: Example of problematic joystick navigation extracted from cluster
12, where time excess (P2) and difficulties around the target (P5) are particu-
larly noticeable.
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Trackball

Figure 5.8: Example of problematic trackball navigation extracted from cluster
10 with long clicks (P6).

Mouse

Figure 5.9: Example of problematic mouse navigation extracted from cluster 7
where too much distance (P1) is clearly manifest.

Pattern discovery in SearchingTasks

To compare the average behaviour of a cluster (j) to the overall behaviour of all
the navigations in the corresponding device (dev), all the values of the features
(feat) were previously normalised (normal distribution) by device. As shown in
Equation 5.2, in this case, cluster centroids (SCdevj,feat) deviating more than or

equal to one standard deviations ( 1stdevdevfeat) of the global centroid (SGCdevfeat)
were considered to be good candidates for identifying navigation problems. The
higher averages and standard deviations of the features in the SearchingTasks
justify this new threshold, as the type of tasks here are more complex than in
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the previous case.

SCdevj,feat ≥ SGCdevfeat + 1stdevdevfeat, dev ∈ {Ke, Jo, Tr,Mo}, j ∈ N, j ≤ 4
(5.2)

Considering the sizes of the datasets for the SearchingTask (one per device),
the different k values tested for k-means algorithm (Lloyd 1982), were set to K
ε N, k ≤ 12. After using the eight Cluster Validity Indexes (CVIs) to evaluate
the best partitions for each device, we computed the average k selected by the
CVIs for the four devices (3.72) and selected accordingly the nearest k (k=4) for
the k-means used in the final problem detection process carried out in the four
SearchingTask datasets. Although the selection was made based on the CVIs,
the outcome was a set of partitions with similar cluster sizes in both cases. For
the MiniTask navigations (partitioned with k=15) on average 25.9, 32.7, 6.5
and 49.1 navigations per cluster were obtained (keyboard, joystick, trackball
and mouse respectively) whereas in the case of SearchingTask navigations sim-
ilar cluster sizes were obtained using k=4: 19.0, 31.8, 8.0 and 50.5 (keyboard,
joystick, trackball and mouse respectively).

The patterns arising in the deviated clusters where mostly identical to the
ones discovered for MiniTasks (see section 5.8.1). The only difference appeared
with the feature NCross which never deviated for SearchingTasks and thus,
Pattern 5 (the difficulties around the target) was not inferred for this context.
This is comprehensible, as in the MiniTasks the users must reach particular
targets, whereas in the SearchingTasks they freely decide the targets they want
to reach and so may be more precise in this exercise.

Centroid: SCdevj,feat
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5.10 Keyboard 1, 2, 3, 7 0.20 0.30 1.07 1.27 1.47 1.55 0.61 0.51
5.11 Joystick 2, 3, 4 0.75 -0.18 0.19 1.32 1.33 1.17 0.38 0.17
5.12 Trackball 4, 6 -0.23 -0.13 1.56 0.21 0.49 0.91 0.22 1.49
5.13 Mouse 2, 3, 4, 7 0.83 -0.04 1.18 2.11 1.39 1.96 0.44 0.19

Table 5.17: Problematic patterns in the SearchingTasks navigation traces shown
and their corresponding centroids with deviated features according to Equa-
tion 5.2 in bold.

Table 5.17 shows one of the clusters identified as problematic for each device.
The table includes the standard deviation of the centroids of the clusters and the
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related problematic patterns (column Pattern), marking in bold the deviated
features (> 1 stdev). The table also includes the reference to a figure where one
of the navigations of the cluster is illustrated (column Figure).

Keyboard

Figure 5.10: Example of problematic keyboard navigation extracted from cluster
3, where too much distance (P1) can be easily recognised.

Joystick

Figure 5.11: Example of problematic joystick navigation extracted from clus-
ter 1, where time excess (P2) and rectifications in the direction (P3) are very
perceptible.
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Trackball

Figure 5.12: Example of problematic trackball navigation extracted from cluster
2 that clearly reveals unnecessary clicks (P4).

Mouse

Figure 5.13: Example of problematic mouse navigation extracted from cluster
4, where too many stops (P7) can be easily identified.

5.8.2 Use of the detected patterns to facilitate navigation

The designed system can be used to detect navigation problems in real time.
When a user is interacting with a web platform, 25 features can be extracted
from the data recorded with the RemoTest platform, the corresponding 19 used
in a first stage to automatically detect the used device based on the model
described in Section 5.7. Then, according to the type of device and task, the
nearest cluster (IBK or k-NN applied in the centroids of the clusters) of the
adequate partition can be used to determine if the user is having problems or
not and which problems she/he is having.
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The set of problematic patterns detected has practical applications. Prob-
lematic patterns do not only describe the accessibility barriers experienced by
the users, but also enable the definition of the most adequate adaptation tech-
niques in order to avoid them. With this aim, in this section potential sources
of problematic patterns are analysed and a number of feasible solutions are
proposed.

Pattern 1 (too much distance) and Pattern 2 (too much time) occur as a
consequence of other patterns found in the study. For example, these patterns
have a direct connection to Pattern 5 (difficulties around the target), implying
that the user requires increased distance and time to select the desired target.
Similarly, Pattern 3 (rectifications in direction), can be a consequence of either
the handling of the input device used or the specific characteristics of the user.
For example, discrete input devices (devices with restricted movements such
as keyboards) allow the user to move the cursor only in predefined directions;
horizontal Hi (where i can be E or W), vertical Vi (where i can be N or S)
and diagonal Di (where i can be NE, SE, SW, NW). When targets cannot be
reached directly following one of these predefined angles, the user must rectify
the trajectory (selecting different angles) to reach the target.

People having uncontrolled movements, e.g. people with cerebral palsy, can
experience difficulties in maintaining the position of the hand while they are
moving the cursor, bringing about rectifications in the cursor path (Pattern
3) and also produces more stops during the target selection (Pattern 7). In
addition, when the target size is not adequate, uncontrolled movements can
make target selection difficult (Pattern 5). A lack of control can also provoke
involuntary movements during the clicking process, moving the cursor away
from the target and therefore generating “unnecessary clicks” (Pattern 4). In
addition, these users might also have difficulties to press the buttons of the
joystick, trackball or mouse to perform a click action if they have difficulty in
stopping the ongoing action, producing “long clicks” (Pattern 6). This can cause
clicks outside the target (Pattern 4) or also move the cursor during the click,
preventing the click event to be triggered.

Different strategies can be followed to allow the user to make effective target
selections. For instance, the bubble cursor technique increases the cursor selec-
tion area, depending on the number of selectable targets within reach, (Gross-
man and Balakrishnan 2005). An alternative solution is a magnetic target that
attracts the cursor (Park et al. 2006). In this case, when the cursor is near
a target, the cursor is pulled towards the target center making its activation
easier. Another possible adaptation is the so called goal crossing (Wobbrock
and Gajos 2008),which activates the target when the cursor crosses it. This
adaptation makes the clicking action unnecessary and therefore the selection
of small targets becomes easier. The cross cursor technique (J.E. Pérez et al.
2016) divides the screen in zones by means of a crossbar that allows a remote
target to be selected by typing one letter, indicating the coordinates of the zone.
This procedure reduces the required number of corrections and stops. The goal
crossing technique appears to be an appropriate technique for people who use
trackballs since it does not require handling precision and minimises the use
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of buttons. On the other hand, joystick users can benefit from both magnetic
and bubble cursor techniques and keyboard users usually prefer the cross cur-
sor technique since it helps to reduce the effort to select the target. Therefore
adequate techniques to help to reduce the occurrence of the patterns 3, 4, 5, 7
can be selected depending on the used device.

With regard to problems relating to Pattern 6, diverse techniques can be
used. For instance, click on down, click on up, steady click or goal crossing.
Using click on down the target is selected just when the user presses the but-
ton. Similarly, click on up selects the target when the user releases the button.
Instead, steady click “freezes” the cursor during the click enabling the target
selection even if the user moves the cursor out away from the target (Trewin
et al. 2006).

To select the most appropriate technique for each user, it is necessary to
observe how they select the objectives. If the user tends to put the cursor on
the target at the beginning of the click but moves the cursor during the click,
the steady click or click on down techniques can be used. On the other hand, if
the user moves the cursor during the click and tends to put the cursor on the
target at the end, the technique to use would be the click on up.

Since each pattern has diverse associated techniques to avoid the related
accessibility barriers, the selection of the most appropriate one for a specific user
depends on his or her particular characteristics. Some of them can be selected
by the users themselves when presetting their interfaces but they can also be
selected by adaptive systems depending on the detected device and problem.

5.8.3 Summary

The importance of digital competence nowadays makes it essential to enable
people with disabilities in the use of digital devices and applications, and more-
over, to be able to automatically adapt site interaction to their necessities. Most
of the current adaptable systems are linked to predefined user profiles. How-
ever, the automatic detection of user characteristics allows adaptive systems to
be built, that is, to provide automatic adaptations to suit user characteristics.

In this chapter we made a contribution on adaptive systems by proposing a
system with a two-step architecture that detects the web navigation problems
of users with physical disabilities (see Figure 5.14).

The first step is to detect automatically the device being used to interact with
the computer (joystick, keyboard, keyboard+headpointer, trackball or mouse).
The second step is to detect the problems the user may be having while she/he is
interacting with the computer. Knowing the device being used and the problems
being encountered will allow the most adequate adaptation to be deployed. The
system proposed in this chapter is based on web user interaction data collected
by the RemoTest platform, and a complete data mining process applied to the
data. In particular, 25 features were computed based on the interaction data
gathered for each type of task and used them in the two stages of the system.
Specifically for the first stage we built a hierarchical classifier with the best
set of features (19) able first to discriminate between the two main groups of
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devices and then the specific device within each of them. From the adaptations
point of view, we consider that the classifier built was effective, as the critical
error occurred when missclassifying restricted movements and free movements
devices was very small, 0.74%. In the second stage of the system for each
type of task and each device k-means clustering algorithm was ran and then,
clusters with high probabilities of containing problematic navigation patterns
were automatically filtered based on particular standard deviation thresholds for
a set of 11 meaningful features. By means of a visual analysis of the navigation
traces grouped in the clusters we observed a total of seven problematic patterns:
(P1) too much distance, (P2) too much time,(P3) rectifications in directions,
(P4) unnecessary clicks, (P5) difficulties around the target, (P6) long clicks and
(P7) too many stops. We closed this contribution by discussing the hypothetical
reasons behind the detected patterns and by suggesting, according to these
patterns and the devices used, the most suitable adaptation technique in some
cases.

Limitations

The proposed system, due to its nature has some limitations. First, as the
system has been built based on client-side data, the system can only be extended
to new users if they allow the corresponding Firefox add-ons implementing the
virtual aids for the cursor to be installed in their computers. The use of client-
side data also limits the amount of data that could be used to build the system
as it has had to be collected in controlled experiments.

The system is able to detect the used device and problems the users are
having and we suggest adequate adaptations but the adaptations have not yet
been activated.
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Chapter 6

Modelling the interaction
with specific web platforms

6.1 Introduction

The responsibility of health care professionals (especially General Practition-
ers) is shifting from a reactive patient-by-patient role to a proactive manager
of population health. This shift requires the availability of health data and in-
formation tools that give a population-level view of such data, which allow the
identification of individual patients that require intervention. Consequently, the
use of medical dashboards is becoming increasingly important in using this data
to improve healthcare. While the current wealth of clinical data satisfies the
availability premise, it becomes, at the same time, a double-edged sword in that
medical dashboards suffer from information overload. What is more, clinicians
have varying levels of practical clinical experience, different problem-solving
skills, and vary considerably in their IT skills. As the information density in the
clinical environment is increasing rapidly and the role of medical dashboards is
still at an early stage, it is of paramount importance to build smart adaptive
systems that cater for the needs of clinicians and support them in the transition
towards a proactive management of population health.

Medical dashboards display population data and are being used to monitor
the health of communities and support clinicians in decision-making activities
(Dowding et al. 2015). A few examples highlight the benefits of the visual nature
of dashboards including successful interventions for diabetes care (Dagliati et
al. 2018) and management of alerts triggered by drug-drug interactions (Simpao
et al. 2014). Typically, medical dashboards display data in a tabular fashion
and contain images, charts, numeric and textual information that may tax the
perception and cognition of their user. While dashboards may help to alleviate
information overload, paradoxically, they may also contribute to this problem
by cluttering the screen with information and widgets – some have coined this
phenomenon as the “blizzard of dashboards” (Kalra et al. 2016).
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Information overload and substandard usability are well-known problems
for electronic health record (EHR) systems (Middleton et al. 2013; Ratwani
et al. 2015). To address this problem, usability guidelines that are sensitive to
specific clinical settings and their typical tasks have been derived from general-
purpose guidelines (Kushniruk and Patel 2004; Zhang and Walji 2011). Similar
usability guidelines have also been formulated for medical dashboards (Brown
et al. 2016). While implementing usability guidelines may address some of the
most prominent and critical usability issues, users still feel overwhelmed by the
amount of information on screen.

Consequently, it has been suggested that personalised and adaptive user in-
terface capabilities should be implemented in order to: mitigate the complexity
of audit and feedback interventions (Landis-Lewis et al. 2015); address informa-
tion overload in electronic medical records (Zahabi et al. 2015); and improve the
effectiveness of clinical tools for decision making (Brehaut et al. 2016). When it
comes to medical dashboards, this is not without difficulties in that adapting the
user interface to the user’s needs calls not only for eliciting such needs, but also
taking their skills and expertise into consideration (Dowding et al. 2017). Yet,
detecting the skills and expertise of users (i.e. competence) that will inform the
adaptations is particularly challenging due to the evolving nature of knowledge
acquisition. This suggests that systems that adapt to the skills and expertise of
the users should track competence automatically and unobtrusively.

In this context, in the first contribution we address the following research
question: can we determine the users’ visual behaviour based on their exhibited
interactive behaviour? Preliminary work has analysed the relationship between
gaze, which is a good indicator of interest (Ehmke and Wilson 2007), and inter-
active behaviour of users, finding out that mouse and gaze are strongly related:
dwell times on specific regions are correlated with the likelihood of visiting that
region with the mouse (Chen et al. 2001). In gaze prediction models for search
engine results pages (SERPs), the inclusion of the mouse coordinates, the ve-
locity and direction of the cursor, and the time elapsed since starting to view
the results achieves an accuracy of 77% (Huang et al. 2012). However, un-
like websites and SERPs, medical dashboards are constrained by grid layouts
where data is displayed in a tabular fashion, which determines the variability of
behaviours that can be exhibited.

On the other hand, we make a second contribution by computing proxies
of competence on two cohorts of users of a medication safety intervention: a
group of pharmacist who led the intervention (primary users) and a group of
non-pharmacist who engaged less (secondary users).

Both analysis were carried out on the Salford Medication Safety Dashboard
(SMASH), one of two vital components of a pharmacist-led information tech-
nology intervention for safe prescribing of medications in primary care, from
which we collected user interaction data and whose purpose and functionalities
we describe later in section 6.2. In particular we used the gaze and interaction
data collected in a user study with six clinicians in the lab and the interaction
data logged from a ten-month observational study with 35 clinicians in SMASH.

More concretely, in the first contribution, using exploratory unsupervised
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learning procedures we clustered the user study participants based on the col-
lected interactive behaviour and we employed inferential statistics to find rela-
tionships between their visual behaviour. Then, we applied the same clustering
analysis on the interaction data by adding the interaction of the 35 clinicians of
the observational study and analysed whether the lab findings could reliably be
extrapolated to a setting where no eye-tracking device is deployed. In the second
contribution, using supervised learning techniques on the interaction data of the
observational study, we were able to characterise and automatically distinguish
the interactive behaviour of primary users who were leading the intervention and
secondary users who used the dashboard to engage in safe prescribing practices.

6.2 Context: The SMASH Intervention

The SMASH intervention aims to determine whether implementation of a
pharm-acist-led complex intervention reduces the incidence of potentially haz-
ardous prescribing and medication monitoring practices in primary care across
Salford, UK (Williams et al. 2018). The SMASH dashboard was implemented
in 2016 and the quantitative evaluation of the impact on rates of potentially
hazardous prescribing is ongoing with results expected in 2019. A concurrent
qualitative process evaluation of the SMASH intervention has also been pub-
lished (Jeffries et al. 2018).

The SMASH intervention is comprised of two main components: a web-based
interactive dashboard that highlights patients exposed to potentially hazardous
prescribing in general practices, and dedicated clinical pharmacist support in-
volving collaborative working with practice staff to resolve hazardous prescribing
cases and prevent their future occurrence using root cause analysis. The SMASH
intervention follows that of the landmark pharmacist-led information-technology
based intervention (PINCER) trial (Avery et al. 2012) but the incorporation of
the interactive dashboard is novel.

The SMASH dashboard was co-designed with key stakeholders (Keers et al.
2015) and incorporates a refined set of 13 prescribing safety indicators which
have previously been applied to measure the rate of potentially hazardous pre-
scribing and medication monitoring (Akbarov et al. 2015; Stocks et al. 2015).
For instance, the dashboard identifies all patients’ with a history of peptic ul-
cer who have been prescribed a non-steroidal anti-inflammatory drug (NSAID;
e.g. ibuprofen) without co-prescription of gastro-protective medication, which
places them at risk of gastro-intestinal bleeding, a major adverse event with
high mortality rates. The dashboard displays summary statistics for each of the
indicators, counting how many patients are currently at risk in a given practice
and relating those numbers to previous episodes and other practices. In addi-
tion, pharmacists and general practitioners (GPs) can view which patients are
currently at risk for each indicator. The dashboard is deployed in Salford, a
city in the Greater Manchester conurbation, comprising a population of 270,000
served by primary care with additional linkage to secondary care records.
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(a) S1: overview (b) S2: table view

(c) S3: visualisations
(d) S4/S5: patients at risk/patients
affected by more than one indicator

(e) S6: trends (f) S7: indicator information

Figure 6.1: Screenshots of the SMASH dashboard (from the top-left to bottom
right): (a) S1: practice overview, (b) S2: tabular view of the safety indicators;
(c) S3: the visualisation of the safety indicators; (d) S4/S5: the list of patients
at risk; (e) S6: indicator trends and (f) S7: screen containing evidence about
why an indicator is a safety hazard.

As shown in Figure 6.1 the user interface of SMASH is divided into seven
screens or views: (a) S1: a landing page containing a tabular overview of a
given practice including the size of the practice and the number of patients
affected by more than one indicator; (b) S2: a table view displaying the number

94



6.3. USER STUDIES AND METRICS

of patients who are affected by the indicators, their severity, the number of
eligible patients and the percentage of patients who are affected. Indicators can
be contraindications between drugs and conditions (e.g. chronic kidney disease
and NSAIDs) or between drugs, habits and demographics; (c) S3: graph-based
visualisations displaying the incidence of indicators as time-series. Clicking on
the number of patients at risk on the table view S2 leads to (d) S4, a list
of patients at risk for a specific indicator, while clicking on the link‘Patients
affected by more than one indicator’ on the overview page (a) S1 leads to (d)
S5, which is a patient list similar to S4 but containing only those patients that
are affected by more than one indicator. (e) S6 displays the trends for a given
indicator over time and (f) S7 contains information and pointers to the medical
literature about why a certain indicator is considered a risk.

The SMASH dashboard logs the user interface events triggered by the users
in a dataset on the server. Because SMASH is a mouse-driven application the
collected events are mostly mouse clicks and mouse hovers. A third event logged
is the page load event, which signals navigation to a different view (e.g. from
the data table S2 to the data visualisation S3) that does not necessarily entail
an update in the URL and is triggered by clicking on the ‘Selection menu’. For
each event, SMASH collects the user id, the identifier of the session (i.e. every
time a user logs in, a new session is established), the timestamp, the URL where
the event took place and the specific element on the user interface where the
event occurred indicated by an XPATH statement.

6.3 User studies and metrics

As mentioned in the introduction, in our contributions we used the gaze and
interaction data from two different user studies, lab and observational, which
we describe in this section.

6.3.1 Lab study

In the first contribution we analysed fixation data collected by an eye-tracker
and the user interaction data collected by SMASH for participants of the lab
study, as well as the interaction data of the participants from the observational
study which is described hereunder.

Six participants (four male) took part in the lab study, five General Practi-
tioners (GPs) and one pharmacist, with an average age of 38 (stdev = 10 and
age range = 30–56). In particular, the Tobii X2-60 eye-tracker was employed
in the laboratory study to log gaze information including fixation coordinates
on the screen, duration of the fixations and the saccades (movement of eyes
between the fixations).

In this study participants were asked to complete nine tasks classified in three
ways: a) Identification of patients at risk: i.e. ’‘List up to three patients at risk
for indicator X”; b) Identification of problems in the practice and their evolution
over time: i.e. ’‘Identify the three indicators with the largest number of patients
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affected”; c) Comparison of problems between practices: i.e. ’‘Identify three
indicators in which your practice performs worse than others”

The main nine areas of interest (AOIs) of the SMASH user interface (see
Figure 6.3) considered in the design of the lab study we analysed, were defined
based on the gaze patterns observed in a previous pilot study described in the
next section.

Pilot study

Five participants (3 female) who were 39 years old on average (stdev = 13.5 and
age range = 27–62) took part in the pilot study. All of them were computer
savvy and familiar with the domain and terminology of the medication safety
dashboard. Two of them were members of the Research User Group, a pool of
users who frequently take part in e-Health studies, and of the remaining three:
one had a degree in nursing, another one was doing a PhD in nursing and one
was a medical microbiologist. In this study participants were asked to complete
the same nine tasks described in the laboratory study.

A qualitative analysis of the heatmaps of the pilot study yielded some inter-
esting insights: the visual search strategies on the dashboard followed particular
patterns. Figure 6.2 shows some examples of the heatmap patterns generated
in different screens of SMASH.

Figure 6.2: Heatmap patterns (right) generated on the pilot study for the table
view (top-left) and visualisations (bottom-left) of SMASH.

The C-shaped behaviour in Figure 6.2 (top-right) suggests that users look
at the data header, the list of indicators on the left and the values in a row
belonging to a particular indicator. On the other hand, the paint drop pattern
in Figure 6.2 (bottom-right) indicates that users look at the header and the
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top rows and visual search is restricted to a few columns. This strategy can
be explained by the fact that some users discovered that clicking on a header
sorted the indicators based on the values of the corresponding column/variable,
which was an effective strategy for completing many tasks and reduced the
need for visual exploration. While the boundaries between the components
of the dashboard are clear, it is difficult to establish the AOIs in a tabular
environment.

The gaze patterns found as well as the demarcation of existing user interface
elements informed the design of the areas of interest (AOIs), accounting for nine
of them: (1) file menu, (2) selection menu, (3) left menu, (4) practice summary,
(5) data header, (6) indicators, (7) data table, (8) chart (visualisation of data)
and (9) drop down menu (any drop-down menu folding down after clicking).
As depicted by Figure 6.3 the findings suggest that the column containing the
safety indicators, the table header and the remaining rows should constitute
independent areas of interest.

Figure 6.3: Six of the nine AOIs defined in SMASH; the remaining three AOIs
correspond to pop-up dialogues (9) and charts (8).

6.3.2 Observational study

35 participants, 10 pharmacists and 25 non-pharmacists, took part in the ob-
servational study that ran for a period of 10 months and where user interaction
data was collected by the SMASH dashboard. In this study no tasks were given
to the participants since the dashboard was used for the purpose it was intended:
the identification of those patients at risk and the promotion of good prescrip-
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tion practices. We expected that the participants in this study would carry out
tasks of a higher ecological validity than those given in the lab setting.

The group of pharmacists named primary user, leaded the intervention and
received 2–3 hours of face-to-face formal structured training based on the train-
ing principles of the PINCER trial (Sadler et al. 2014) including: an interac-
tive seminar covering the background and rationale of the SMASH project, a
guided tour of the SMASH dashboard, and the principles of root cause analysis
to identify the cause of problems. The group of non-pharmacists, named sec-
ondary users, consisted of eight members of the Clinical Commissioning Group
(CCG), eight GPs, five managers, and four other including nurses and pharmacy
technicians who were trained by the primary users following similar procedures.

In the qualitative evaluation of the intervention, primary users indicated
that the dashboard added value to their work, while secondary users reported
some resistance to engage with it, as some perceived the dashboard was owned by
primary users. These attitudes had implications for engagement in that primary
users engaged more with the intervention than their colleagues (Jeffries et al.
2018). This is important because the literature concerning engagement at the
workplace suggests that those individuals who are engaged are more competent
and perform better (Rich et al. 2010; Christian et al. 2011). This finding has
been confirmed in a variety of settings including healthcare (Laschinger et al.
2009).

Therefore, the main goal of this study, which we analysed in our second con-
tribution, was to explore whether we could model the interactive behaviour in
terms of competence of two groups of electronic dashboard users who reported
different levels of engagement in the qualitative evaluation of the SMASH inter-
vention. This would allow us to examine how the SMASH dashboard is being
used and identify distinctive interactive behaviours, and how this may then in-
form our understanding of the use of medical dashboards in general (Dowding
et al. 2015).

6.3.3 Computed metrics

Gaze metric

In particular, as shown in Equation 6.1 the gaze activity of the lab study (G) was
computed using the average fixation duration (henceforth fd) feature gathered
by the eye tracker in the nine Areas Of Interest (AOIj) that were defined as a
consequence of the pilot study:

G = fdAOIj , j ∈ N, j ≤ 9 (6.1)

Fixation duration is known to be a proxy for cognitive load (Ehmke and
Wilson 2007) so our premise is that, if we want to relate visual behaviour to
interactive behaviour on SMASH, cognitive load might well be an indicator to
profile participants.
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Interaction metrics

Based on the information of the logs gathered by SMASH (user and session IDs,
events, timestamps and URLs), we computed features for exploration and dwell
time for the lab and observational studies. In both features clicks events are
used as reference, knowing that a click triggers an update of the current view
by filtering information or leads to another screen of the dashboard.

• Exploration (e): median of the number of mouse hovers between two
consecutive mouse clicks. This is based on the fact that since mouse
location on screen is a proxy of gaze location (Guo and Agichtein 2010),
it can be used to quantify visual exploration. Higher exploration values
suggest more visual search activities.

• dwell time (d): median of the elapsed time between two consecutive
mouse clicks. This is supported by the fact that the time spent on a
screen is an indicator of how effective users are processing information
and solving problems. A study found that, on information seeking tasks,
longer times were correlated with lower cognitive ability (Chin et al. 2009).
Lower dwell time conveys higher efficiency accomplishing tasks.

Using these features, we created two interaction metrics (vectors) per par-
ticipant, considering their global interaction in all of the screens (V 1 global
perspective) or their interaction in each of the screens (V 2 screen perspective).

The first metric V 1 defined Equation 6.2 describes user interaction on all
of the screens available and is computed as a vector of two features, the global
exploration (e) and dwell time (d) on SMASH.

V 1 = (e, d) (6.2)

The second metric V 2 defined in Equation 6.3, takes into consideration the
above features (eSi , dSi) in each of the seven screens of SMASH (Si, i ∈ N,
i ≤ 7) and is represented as a vector of 14 features per participant.

V 2 = (eSi
, dSi

), i ∈ N, i ≤ 7 (6.3)
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6.4 Inferring visual behaviour from interaction
data

6.4.1 Description of the datasets

In this section we describe the three datasets built in this first contribution
with the metrics computed based on the data gathered during the lab an ob-
servational studies, one using the gaze data of the lab study and two using the
interaction data of both studies.

Gaze dataset: lab study

In particular for each of the six participants of the lab study we computed
the gaze activity (G) described in Equation 6.1, which measures the average
fixation duration (seconds), fdAOIj , in each of the nine Areas of Interest defined
(AOIj , j ∈ N, j ≤ 9). Table 6.1 shows the values of G for all the lab participants.

Part M Feature Areas of Interest (AOIj)
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

P1 G fdAOIj 0.0 173.3 241.9 167.0 254.5 240.1 168.1 164.3 140.6
P2 G fdAOIj 230.2 223 213.2 158.5 200.8 222.9 228 207.2 148.5
P3 G fdAOIj 212.9 220.5 268.7 295.0 294.0 248.2 244.7 263.2 235.5
P4 G fdAOIj 223.2 250 299.3 289.4 260.4 234.5 275.4 203.1 79.0
P5 G fdAOIj 201.6 151.4 201.2 189.0 264.8 163.0 243.3 278.9 91.5
P6 G fdAOIj 193.5 173.4 248.8 0.0 254.9 204.2 151.2 176.1 157.5

Table 6.1: Values of the gaze activity (G) metric (M) for the lab participants
(P), computed based on the fixation duration on average (seconds) in each of
the nine AOIs (fdAOIj ).

Interaction datasets: lab and observational studies

On the other hand, we computed two interaction metrics for the lab participants,
V 1 and V 2, based on the global and screen divided (Si, i ∈ N, i ≤ 7) explorations
(e/eSi) and dwell times (d/dSi) (see Equations 6.2 and 6.3). Table 6.2 shows
the values of V 1 and V 2 for all the lab participants.

Finally, V 1 and V 2 were also computed for the 35 participants of the obser-
vational study based on all the interaction they carried out in SMASH, this is,
the user perspective. In Section 6.5 we specify the values on average of these
metrics for all of the participants and for the two main groups of participants,
primary and secondary users. In this case, we built a dataset with the interac-
tion data (V 1 and V 2) of 41 participants, six from the lab study and 35 from
the observational study (user perspective).
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Participant Metric Feature Global Screens (Si)
i=1 i=2 i=3 i=4 i=5 i=6 i=7

P1 V 1 e 4.00
d 4.28

V 2 eSi
3.00 4.00 3.00 6.00 0.00 4.00 0.00

dSi
3.90 6.50 3.75 6.95 0.00 2.80 0.00

P2 V 1 e 5.00
d 6.54

V 2 eSi
5.50 5.00 3.00 4.00 0.00 3.00 0.00

dSi 6.03 9.23 2.99 3.35 0.00 1.22 0.00
P3 V 1 e 4.00

d 3.22
V 2 eSi 3.50 4.00 3.00 3.50 0.00 3.00 4.00

dSi 2.37 4.49 4.88 3.01 0.00 4.22 2.41
P4 V 1 e 3.00

d 3.31
V 2 eSi 4.00 3.00 3.50 2.00 0.00 2.00 0.00

dSi
5.36 3.82 4.11 0.95 0.00 0.64 0.00

P5 V 1 e 3.00
d 2.26

V 2 eSi
3.00 3.00 3.00 3.00 5.00 3.00 0.00

dSi
2.77 1.71 1.90 2.18 3.60 5.76 0.00

P6 V 1 e 4.00
d 9.43

V 2 eSi
9.00 4.00 3.00 6.00 4.00 0.00 0.00

dSi
36.39 6.20 6.59 7.13 5.40 0.00 0.00

Table 6.2: Values of the interaction metrics V 1 and V 2 for the lab participants,
computed based on the global and screen divided exploration (e/eSi

) and dwell
time (d/dSi).

6.4.2 Results and analysis

Gaze data analysis in the lab

In order to find participants with similar fixation durations across the differ-
ent AOIs (fdAOIj ) we run Pearson correlation analysis between the G vectors.
Consequently, a positive correlation between any two participants would entail
similar visual behaviours in terms of cognitive load. In particular, we paired
those participants with similar visual behaviour using the highest value for the
Pearson correlation computed in each case – note that data was normally dis-
tributed according to the Shapiro-Wilk test (p > 0.05). Table 6.3 shows the
results of the Pearson correlation coefficient (r) for the gaze metric G computed
for the six participants of the lab study.
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Pearson correlation (r) computed for G
P1 P2 P3 P4 P5 P6

P1 1.00 -0.05 0.63 0.33 0.15 0.26
P2 -0.05 1.00 -0.40 0.47 0.42 0.55
P3 0.63 -0.40 1.00 0.41 0.45 -0.18
P4 0.33 0.47 0.41 1.00 0.53 -0.03
P5 0.15 0.42 0.45 0.53 1.00 0.20
P6 0.26 0.55 -0.18 -0.03 0.20 1.00

Groups: {P1,P3}, {P2,P6} and {P4,P5}

Table 6.3: Pearson correlation coefficient (r) computed for the gaze data, G, of
the six lab participants.

Analysing Table 6.3, we identified three groups, which paired P1 and P3
(r = 0.63, p-value = 0.06), another one pairing P2 and P6 (r = 0.55, p-value
= 0.11) and a last one pairing P4 and P5 (r = 0.53, p-value = 0.13). It is
well known that p-values are sensitive to the sample size. Since the G vectors
contain nine items, an alpha value < 0.95 is justifiable so we can say that the
moderate-high correlations found show a clear tendency towards significance.

Interaction data analysis in the Lab

For the sake of identifying those users from the lab study who exhibited similar
interactive behaviours, we applied different clustering algorithms including k-
means and single-linkage method (Jain and Dubes 1988) to the two interaction
metrics we defined, the global one V 1 and the screen divided one V 2.

Specifically, the k-means algorithm (k=3 and Euclidean distance) clustered
clinicians in three pair wise groups for V 1: P4-P5, P1-P3 and P2-P6. To this
regard, a Silhouette analysis on Cluster Validity Indexes (Arbelaitz et al. 2013b)
indicated that for V 1 k=3 was the most appropriate cluster configuration when
compared to k = 4 and k = 5 obtaining scores of 0.51, 0.20 and 0.003 respectively.

To better understand the structure of these groups we carried out a sec-
ond clustering procedure including the centroids of the clusters generated by
the k-means algorithm. We then computed the distance matrix for V 1 and
then calculated the centroids using the Euclidean distance again. The resulting
distance matrix can be visualised using hierarchical clustering techniques (Jain
and Dubes 1988). Thus, we applied the single-linkage and Ward hierarchical
clustering algorithms using the Euclidean distance. Figure 6.4 shows the result-
ing dendrogram for the single-linkage clustering procedure, where the height at
which participants are grouped represents the distance between clusters. The
arrangement of clusters in the dendrogram shows three main branches that
group the participants and the centroids together: P4-P5-C1, P1-P3-C2 and
P2-P6-C3 which indicates that the groups discovered by k-means applied to the
global interactive behaviour of the participants remain stable.
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Figure 6.4: Single-linkage algorithm dendrogram for the distance matrix and
the computed centroids of V 1.

Regarding the closeness or similarity of the patterns, it can be observed that
the groups of P1-P3 and P4-P5 are more compact since they are placed at the
bottom of the dendrogram. To better show the proximity of the six participants,
we performed a more exhaustive study of the global interaction analysis and used
the neighbour-joining tree estimation of Saitou and Nei (Saitou and Nei 1987)
over the distance matrix of V 1, excluding the centroids. In the resulting tree
shown in Figure 6.5, it can be seen that P2 and P6 are at some distance from
the remaining participants, and P6 in particular is further than any other. This
suggests that the cluster of groups P2 and P6 was not as compact as the other
ones.

Figure 6.5: Neighbour joining method for the distance matrix of V 1.
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We applied the same pattern discovery method on V 2, that is, we ran the
k-means algorithm (k=3) using the Euclidean distance, then computed the cen-
troids of the resulting clusters. As done with in the previous procedure (V 1),
the k value was selected according to Silhouette, which indicated that for V 2,
among the values tested (k={3,4,5}), k=3 was the most appropriate cluster con-
figuration, achieving scores of 0.002, -0.011 and -0.046 respectively. Again, we
computed the distance matrix for V 2 and the centroids calculated in the pre-
vious step, using the Euclidean distance. Accordingly, the size of the distance
matrix was of 9 x 9 measuring the distance based similarity of the six partici-
pants and the three centroids (C1-C3). Finally, we studied the proximity of the
patterns discovered in V 2, using the single-linkage algorithm (Jain and Dubes
1988) in the computed distance matrix. Figure 6.6 shows the visual output of
the single-linkage algorithm and illustrates how participants were distributed
in the same form for the two clustering procedures used in V 2, k-means and
hierarchical clustering. These patterns matched the ones found for V 1 when
using the same clustering procedures. When we analysed the proximity of the
patterns represented in Figure 6.7, we found again that P2 and P6 are quite far
from the other two groups.

Figure 6.6: Single-linkage algorithm dendrogram for the distance matrix and
the computed centroids of V 2.

The patterns discovered on user interaction data (see Figures 6.4 and 6.6)
and the emerging gaze patterns generate the same groupings. That is, those
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individuals having similar interactive behaviour happen to have related visual
behaviour. Specifically, individuals with a similar cognitive load (as indicated
by fixation durations) exhibit similar mouse use as captured by the exploration
and dwell time features on SMASH (V 1) and on its seven views (V 2).

Figure 6.7: Neighbour joining method for the distance matrix of V 2.

Interaction data analysis in the observational study

We carried out the analysis of user interaction data including the data of the
lab participants and that of those who took part in the observational study.
The purpose of analysing the two datasets together was to ascertain whether
the emerging clusters would include the six laboratory participants in the same
pairs. If the pairs of users fell again in the same clusters we could speculate that
those participants belonging to the same cluster would have similar search be-
haviour to their lab counterparts. We therefore re-run our analysis (i.e. k-means
and Euclidean distance) on V 1, which this time accounted for 41 participants
(i.e. 35 from the observational study + six from the lab).

A Silhouette analysis on Cluster Validity Indexes indicated, again, that k
= 3 is the most appropriate cluster configuration for all ks, where 3 ≤ k ≤
10. Table 6.4 below shows the distribution of the lab study participants in the
generated clusters.

Clusters
1 2 3

Lab participants P6 P4, P5 P1, P2, P3
No. participants from the observational study 2 19 14

Table 6.4: Results of k-means (k=3, d = Euclidean) for V 1 when merging the
participants of the lab and the observational study

The results indicate that the six laboratory participants are grouped in a
similar way. P2 was the only participant falling in a different group, as instead
of belonging to the same pair as P6, it was a member of P1 and P3’s group.
Taking into account the proximity analysis carried out for V 1 (see Figure 6.5)
this finding was not surprising given that P2 and P6’s clustering was unstable.
Hence, the fact that P2 switched groups would be understandable.
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6.5 Characterizing different types of users

6.5.1 Description of the datasets

In this section we describe the two datasets built in this second contribution
with the metrics computed based on the data collected in the observational
study, one using the global perspective (V 1) and the other using the screens
perspective (V 2).

The interaction data generated by users of the observational study was re-
trieved from the dataset and cleansed, which involved identifying users accessing
the platform with different credentials, removing variables that were not neces-
sary for this study and eliminating entries corresponding to software engineers
and people testing the platform. We analysed the data from two perspectives:
users and sessions. In the users approach all the events of each user are com-
piled in one record irrespective of the sessions (accounting for 35 records, split
in two cohorts of primary and secondary users). In the sessions approach, one
record contains all the events corresponding to a single session (accounting for
564 records).

Since users have to be logged into the SMASH dashboard in order to access
the platform we could have computed session durations by using the total period
during which users are logged in. However, this method overestimates the length
of the session as long periods of inactivity would be included. Hence, we took
a more granular approach by which 20 minutes of inactivity would indicate
that the session was finished and another session would start as soon as the
activity resumed. This approach is in line with the literature on identifying
user sessions (Heer and Chi 2002). By applying this method we record a total
of 564 sessions: 419 corresponding to primary users (74%) and 145 to secondary
users (26%) distributed as 64 exhibited by CCG staff, 27 by GPs, 32 by general
practice managers and 22 by other. The unequal number of sessions confirms
what qualitative studies (Jeffries et al. 2018) reported on higher engagement of
primary users: 29% of the users (primary) generated 74% of the sessions.

Both interaction representations (global and screens) were computed for each
user and for each session. In both types of analysis the records are labelled
according to the user group of the user (i.e. primary and secondary). Table 6.5
shows the distribution of users and sessions per user group.

User group N (%) Sessions (%)
Primary users 10 (29) 419 (74)
Secondary users 25 (71) 145 (26)

GPs 8 (23) 27 (5)
CCG staff 8 (23) 64 (11)
Managers 5 (14) 32 (6)

Other 4 (11) 22 (4)

Table 6.5: Number of users and number of sessions per group.
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Tables 6.6 and 6.7 show values of exploration (e, eSi
) and dwell time (d, dSi

)
on the global (V 1) and screens (V 2) representation from the user and session
perspectives respectively. According to the tables in general, secondary users
exhibit higher values for both features, although, this behaviour is not consistent
across all the screens.

User group Metric Feature Global Screens (Si)
i=1 i=2 i=3 i=4 i=5 i=6 i=7

All V 1 e 3.40
d 3.47

V 2 eSi
3.84 3.21 3.29 2.83 2.34 1.87 1.60

dSi
8.93 2.75 16.02 3.68 6.28 2.15 7.93

Primary V 1 e 2.90
d 2.23

V 2 eSi
3.70 3.30 2.75 2.50 3.50 2.70 3.40

dSi 16.88 2.82 2.54 2.10 5.88 1.59 3.27
Secondary V 1 e 3.60

d 3.97
V 2 eSi 3.90 3.18 3.50 2.96 1.88 1.54 0.90

dSi 5.75 2.72 21.41 4.31 6.44 2.38 9.81

Table 6.6: Values of the interaction metrics V 1 and V 2 computed based on the
global and screen divided exploration (e/eSi

) and dwell time (d/dSi
) average on

observational study participants from the user perspective.

User group Metric Feature Global Screens (Si)
i=1 i=2 i=3 i=4 i=5 i=6 i=7

All V 1 e 3.79
d 3.28

V 2 eSi
4.18 3.43 1.05 1.94 0.79 0.62 0.47

dSi
6.81 10.01 4.6 3.03 3.4 1.05 3.35

Primary V 1 e 3.65
d 2.85

V 2 eSi
4.08 3.52 0.81 1.82 0.87 0.71 0.53

dSi 5.53 6.97 3.59 3.1 3.84 1.23 3.55
Secondary V 1 e 4.19

d 4.51
V 2 eSi 4.45 3.14 1.74 2.29 0.58 0.36 0.22

dSi 10.48 11.01 7.48 2.84 2.14 0.53 2.75

Table 6.7: Values of the interaction metrics V 1 and V 2 computed based on the
global and screen divided exploration (e/eSi

) and dwell time (d/dSi
) average on

observational study participants from the session perspective.
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6.5.2 Results and analysis

The user perspective

In our analysis we used the Weka machine learning software (M. Hall et al.
2009) to classify the different types of users – primary and secondary – using
machine learning algorithms, and used 10-fold cross validation (CV) to evaluate
the performance of the algorithms. In particular, among the 10-top algorithms
(Wu et al. 2008), we selected those applicable to our problem (AdaBoost, IBK,
J48, NB and SMO) and we included some other very extended algorithms such
as Bagging and MLP.

We calculated precision (ratio of users that were correctly classified, out
of those who were predicted to belong to a particular class: i.e. primary or
secondary), recall (ratio of users that were correctly classified, out of those who
belong to a particular class) and F-measure (the harmonic mean of precision
and recall).

The dataset was found to be unbalanced as 10 primary users accounted for
29% of users out of 35 individuals. Table 6.8 shows the performance of the
algorithms where IBK, J48 and Näıve Bayes (NB) produce scores for precision,
recall and F-measure above 0.80 for the screens representation. Scores were
lower when not taking into consideration the particular screens (i.e. global) al-
though the MLP algorithm achieved values above 0.80 for both representations.

Algorithm Representation Precision Recall F-measure
AdaBoost global 0.73 0.71 0.72

screens 0.77 0.77 0.77
Bagging global 0.67 0.71 0.67

screens 0.74 0.74 0.74
IBK global 0.71 0.71 0.71

screens 0.84 0.83 0.83
J48 global 0.60 0.60 0.60

screens 0.84 0.83 0.83
MLP global 0.83 0.83 0.83

screens 0.86 0.86 0.86
NB global 0.77 0.74 0.75

screens 0.90 0.89 0.89
SMO global 0.51 0.71 0.60

screens 0.72 0.74 0.71

Table 6.8: Precision, recall and F-measure on users per algorithm.

The scores in Table 6.8 were useful to the extent that false positives (com-
puted for precision) and false negatives (computed for recall) can be tolerated,
which is ultimately dependent on the purpose of the classifiers. While discrim-
inating users (primary vs secondary) is certainly necessary for user modelling
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purposes, the extraction of the characteristics of each user group provided valu-
able information that could inform future adaptations. Among the selected
classifiers the classifier with the clearest explaining capacity is J48 (Witten et
al. 2016), where the explanation is given by the path between the root node
and the leaves where the examples have fallen in the classification process. We
analysed the structure of the J48 classifier generated with the complete sample
for the global and screens representation, using all the available information,
because this would be the tree that would be deployed in a real system.

Despite J48 having lower scores than other algorithms for the global repre-
sentation (V 1), dwell time (d) was able to discriminate primary from secondary
users in the SMASH dashboard platform. According to the structure of J48’s
classification in Figure 6.8, if dwell time was smaller or equal to 2.5 seconds
(i.e. the user spends 2.5 seconds or less between mouse clicks), primary users
accounted for 62% (8/13) of the users (note that initially primary users com-
prised 29% of users), whereas secondary users constituted 91% (19/22) of the
individuals (up from the original 71%) when dwell time was restricted to obser-
vations greater than 2.5 seconds. Note that the average dwell time score when
using the SMASH dashboard was 3.47 (stdev = 1.87), which revealed that pri-
mary users spent less time between clicks (mean 2.23 seconds) compared to their
counterparts (mean 3.97 seconds).

Figure 6.8: Graphical representation of a J48 pruned tree for global (V 1) re-
sulting in 0.6 for precision, 0.6 for recall and 0.6 for F-measure. The circles on
the top-right part of each square indicate the number of individuals who fell in
this condition while the numbers in the square convey the distribution of these
individuals by group.

The structure of a J48 pruned tree is illustrated in Figure 6.9 for the screens
representation. The average value for the exploration metric on the indicators
information screen (eS7) was 1.6 mouse hovers (stdev = 2.31). However, pri-
mary users’ exploration was higher than the average (3.35 mouse hovers) and
secondary users exploration (0.9 mouse hovers). If exploration was restricted
to users with values of 0 – meaning there was no activity on the indicators
information screen – secondary users constituted 95% (19/20) from an initial
71% of the users in this node of the classification tree. The remaining 15 users
(53% primary and 47% secondary) who exhibited some activity in the indicators
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information screen (eS7
> 0) fell into three conditions.

The users whose exploration activity was more than 3 mouse hovers on the
screen listing patients affected by potentially hazardous prescribing indicators
(eS4) were exclusively secondary (four individuals, accounting for 100% of users
in this node). Note that the average is 2.83 mouse hovers, 2.50 for primary users
vs. 2.96 for secondary users. If the activity was equal to or less than 3 mouse
hovers and, if time spent on the trends screen (dS6

) was less than or equal to
1.84 seconds, all the users in this node were primary users (accounting for eight
individuals), while when dwell time was greater than 1.84 seconds, one was a
primary user and the remaining two were not – note that the average dwell time
is 2.15 seconds, 1.59 seconds for primary users (stdev = 0.92) and 2.38 seconds
(stdev = 4.91) for secondary users.

Figure 6.9: Graphical representation of a J48 pruned tree for screens (V 2)
resulting in 0.84 for precision, 0.83 for recall and 0.83 for F-measure.

The session perspective

In the sessions approach, since different session observations for the same user
are not independent, in addition to the 10-fold CV we also performed an ap-
proximately stratified 3-fold CV, splitting the dataset in three folds of similar
size and similar primary/secondary proportion but keeping all the sessions of
each user in the same fold. This way, we were able to estimate the performance
metrics for unseen users. In particular, we used the same seven algorithms de-
scribed in the user perspective: AdaBoost, IBK, J48, NB, SMO, Bagging and
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MLP. Table 6.9 shows the scores obtained when the data was analysed from a
session perspective.

Algorithm CV Analysis Precision Recall F-measure
AdaBoost 3-fold global 0.65 0.73 0.68

screens 0.73 0.71 0.67
10-fold global 0.68 0.73 0.69

screens 0.73 0.76 0.72
Bagging 3-fold global 0.71 0.72 0.69

screens 0.68 0.70 0.68
10-fold global 0.70 0.74 0.7

screens 0.77 0.78 0.77
IBK 3-fold global 0.63 0.64 0.63

screens 0.68 0.69 0.68
10-fold global 0.65 0.65 0.65

screens 0.72 0.73 0.73
J48 3-fold global 0.59 0.74 0.63

screens 0.69 0.69 0.68
10-fold global 0.67 0.72 0.68

screens 0.73 0.76 0.73
MLP 3-fold global 0.70 0.73 0.69

screens 0.70 0.74 0.7
10-fold global 0.67 0.72 0.68

screens 0.71 0.75 0.71
NB 3-fold global 0.64 0.71 0.64

screens 0.64 0.48 0.47
10-fold global 0.61 0.71 0.64

screens 0.69 0.59 0.62
SMO 3-fold global 0.55 0.74 0.63

screens 0.58 0.73 0.63
10-fold global 0.55 0.74 0.63

screens 0.55 0.74 0.63

Table 6.9: Precision, recall and F-measure on sessions per algorithm.

We analysed the structure of the J48 classifier generated with the complete
sample for the screens representation. As mentioned above, the performance of
the tree would be the one estimated with the 10-fold CV for regular users and 3-
fold CV for new users. The rightmost branch of the J48 classification structure
in Figure 6.10 indicates that 81% of the sessions belonged to secondary users
when there were more than 3.5 mouse hovers on the visualisations screen (1.74
mouse hovers by secondary users vs. 0.81 by primary users on S3), 0 mouse
hovers on the screen containing information about prescribing safety indicators
(0.22 mouse hovers by secondary users vs. 0.53 by primary users on S7) and
users spent less than 4.47 seconds between clicks on the screen showing patients
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at risk (S5), where 3.40 seconds were spent on average.

92% of the sessions belonged to primary users when the number of mouse
hovers between clicks on visualisations (S3) was less than or equal to 3.5 mouse
hovers and the time spent on the landing page (S1) was less than or equal to
2.8 seconds (average time was 6.8 seconds). When users spent more than 2.8
seconds on the landing page, the screen containing information about patients
at risk (S5) was decisive to classify the users: when they spent less than or equal
to the cut-off value(0.04 seconds, average was 3.4 seconds), 53% of the sessions
were exhibited by secondary users, whereas 85% of the sessions belonged to
primary users otherwise.

Figure 6.10: Graphical representation of the most relevant nodes of the J48
pruned tree for screens (V 2) resulting in 0.73 for precision, 0.76 for recall and
0.73 for F-measure.

6.5.3 Discussion

We found that our initial expectations that primary SMASH dashboard users
would exhibit lower values for dwell time and exploration were met in both
representations (i.e. global and screens) and perspectives – see users in Table
6.6 and sessions in Table 6.7. When considering the classification algorithms,
these expectations were also met as exhibited by the values of cut-off points
in the classification trees in Figures 6.8–6.10. In general, descriptive statistics
and classification algorithms confirm that lower dwell time and exploration was
characteristic of those who engaged more with the intervention (i.e. primary
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users).
Lower values of dwell time were key to distinguish primary from secondary

dashboard users in the global representation (Figure 6.8), in the screen that
displayed the prescribing safety indicator trends of a given practice (S6 in Figure
6.9) and on the landing page containing the overview of the practice (S1 in
Figure 6.10). The behaviour of secondary users was characterised by higher
dwell time on the screen that displays patients at risk (S4 in Figure 6.9) and
higher values of exploration on the visualisations screen (S3 in Figure 6.10). It
should be noted that the usage of the dashboard is not exclusive to the user
groups but what characterises the user groups is how this usage is exhibited.
Specifically, these findings suggest that secondary users exhibit characteristic
behaviours on screens showing a detailed breakdown of the safety of patients
(patients at risk and visualisations), while primary users are characterised by
their use of the SMASH dashboard to monitor population health on screens
showing the overview of the practice and trends.

Yet, there were exceptions: higher dwell time was characteristic of primary
users on the screen showing patients affected by more than one indicator (see S5

in 6.7 and Figure 6.10). We know from an ongoing study (Jeffries et al. 2019)
that primary dashboard users spend most of their time on S4/S5 (i.e. patients
at risk) because they would check these patients’ electronic health records and
perhaps make some phone calls. Additionally, lower values of exploration corre-
sponded to secondary users on the screen describing particular indicators (S7 in
Table 6.6 and Table 6.7, and Figure 6.9 and Figure 6.10). It is worth noting that
in these instances the cut-off values were close to 0 suggesting that secondary
users did not exhibit low dwell time and exploration values because they were
more effective, but because they did not access those screens. This implies that,
when the functionalities are accessed, dwell time and exploration serve as prox-
ies that characterise the interactive behaviour in the SMASH dashboard in that
they discriminate primary users with a high accuracy. For each algorithm the
screens representation performs better than the global one, which means that
including the screens in the modelling has added value.

These findings suggest that the two user groups (primary and secondary
users) have different characteristic behaviours when interacting with the
SMASH dashboard. These interactive behaviours, which are modelled using
features that are proxies of competence, make the two user groups distinguish-
able. Lower values of dwell time are indicators of users being more effective
in processing information and solving problems (Chin et al. 2009), which sug-
gests that primary users were more competent carrying out overseeing tasks in
the SMASH dashboard. Since longer visual activity conveyed by exploration is
known to be an indicator of less efficient search (Ehmke and Wilson 2007), we
attribute higher exploration values observed in secondary users to lower levels
of engagement and, consequently, lower performance. This is in line with the
literature that indicates that those who are more engaged perform better (Rich
et al. 2010; Christian et al. 2011).

Two design recommendations emerge from these outcomes. Since the per-
ceived lack of competence is a barrier to use this kind of interventions (Jeffries
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et al. 2017), we could monitor the competence of SMASH dashboard users (and
similar interventions) and intervene if needed. Individuals belonging to groups
of users who are less engaged (and are less competent) could be given support
using tailored educational nudges to encourage their learning. They could be
provided with personalised messages about their performance with respect to
their peers, which could help to challenge their perceptions if they underesti-
mated themselves and increase self-efficacy. These nudges could potentially be
delivered by retrieving the current URL and keeping track of mouse events to
compute dwell time and exploration, which can be carried out in real time in
the browser. Since this method does not require to remote storage of interac-
tion or personal data, user confidentiality and privacy are respected, removing
potential barriers for acceptance of such systems by prospective users (Angulo
and Ortlieb 2015). The second recommendation is about adapting the work-
flows in the SMASH dashboard according to the characteristic use of the two
groups. Informed by the stereotypical uses of the dashboard, SMASH should
facilitate workflows for (a) monitoring population health and (b) for a more
detailed analysis of individuals at risk, by grouping the screens accordingly.
Transitions between these two workflows should also be possible by mapping
an analogy of the information visualisation mantra (i.e. overview, filtering,
details-on-demand) (Shneiderman 1996) into dashboards for managing popu-
lation health through progressive disclosure principles: monitoring population
health, filtering, breakdown-of-data on demand.

Methodological Considerations

Primary users comprised 29% of the users in the study while their sessions
accounted for 74% of the total sessions. This means that since we had more
recurring sessions from primary users we might have confounded learning effects
in the user perspective. While our conclusion still holds (primary users are more
efficient carrying out overseeing activities in the SMASH dashboard) the reason
they are more confident could be a result not only of their engagement with the
intervention, but also to their expertise due to the fact they were pharmacists.
Nevertheless, we found that while having this expertise is beneficial, it is not
essential to engage with the intervention (Jeffries et al. 2019).

6.6 Summary

Making medical software easy to use and actionable is challenging due to the
characteristics of the data (its size and complexity) and its context of use. This
results in user interfaces with a high-density of data that do not support opti-
mal decision-making by clinicians. Anecdotal evidence indicates that clinicians
demand the right amount of information to carry out their tasks. This sug-
gests that adaptive user interfaces could be employed in order to cater for the
information needs of the users and tackle information overload. Yet, since these
information needs may vary, it is necessary first to identify and prioritise them,
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before implementing adaptations to the user interface. As gaze has long been
known to be an indicator of interest, eye tracking allows us to unobtrusively
observe where the users are looking, but it is not practical to use in a deployed
system.

In the first contribution, we address the question of whether we can infer
visual behaviour on a medication safety dashboard (SMASH) through user in-
teraction data. Towards that goal, we first analysed the gaze (fixation duration
on the Areas of Interest defined) and interaction data (global and screen divided
exploration and dwell time) collected in a lab study with six participants which
completed nine tasks. Using Pearson correlation on gaze data, lab participants
with similar gaze behaviours were paired, obtaining a total of three groups. The
same pairings were obtained from the k-means procedure used on the interac-
tion data of these participants, which implies a connection between the gaze and
interaction behaviours. What is more, the six lab study participants were sim-
ilarly paired when applying the k-means algorithm on their global exploration
together with that of the observational study participants (35). Therefore, the
gaze behaviour of the observational study participants may have been similar
to the one showed by lab study participants grouped in the same clusters.

In the second contribution we aimed to characterise the use of SMASH by
exploring and contrasting interactions from primary users who were leading the
intervention and secondary users who used the dashboard to engage in safe
prescribing practices. To that end, we analysed the global and screen divided
interaction data of the observational study and applied supervised learning al-
gorithms to classify primary against secondary users. Regarding the results, we
observed values for accuracy above 0.8, indicating that 80% of the time we were
able to distinguish a primary user from a secondary user. In particular, the Mul-
tilayer Perceptron (MLP) yielded the highest values of precision (0.88), recall
(0.86) and F-measure (0.86). The behaviour of primary users was distinctive in
that they spent less time between mouse clicks (lower dwell time) on the screens
showing the overview of the practice and trends. Secondary users exhibited a
higher dwell time and more visual search activity (higher exploration) on the
screens displaying patients at risk and visualisations. In other words, primary
users were more competent on population health monitoring activities, while
secondary users struggled on activities involving a detailed breakdown of the
safety of patients. Informed by these findings, we propose workflows that group
these activities and adaptive nudges to increase user engagement.
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Chapter 7

Modelling the interaction
and use of e-Services

7.1 Introduction

According to the eGovernment Benchmark 2018 report (Tinholt et al. 2018),
66% of the services delivered by public administrations in Europe were fully
available online, which represents an increase of 17% since 2012 (Tinholt et al.
2015). The present high online availability is not surprising, since citizens can
benefit from public e-Services which are delivered at any time (during 24 hours,
seven days a week) and provided in a personalised way (different languages,
adaptations for disabled users, etc.) (González et al. 2007). To this regard, de-
signing accessible and personalised e-Services is crucial so that they can be fully
inclusive for the wide variability of citizens who use them. However, the extrac-
tion of the user profiles needed for personalising such services is a difficult task,
since frequently they do not require registration or if so, no sensible information
about the user (e.g., about disabilities or limitations) is collected (Abascal et al.
2019). In this scenario, web usage mining techniques can be used for modelling
users from e-Services by gathering their interaction data unobtrusively from
Web server logs (Abascal et al. 2013).

Unfortunately, due to privacy concerns public institutions often do not facili-
tate access to the navigation data of the services they deliver. Proof of this were
the collaborations we carried out with the Gipuzkoa Provincial Council (GPC)
and the University of the Basque Country (UPV/EHU) who allowed us to anal-
yse the navigation on their websites, www.gipuzkoa.eus and www.ehu.eus re-
spectively, but not any particular service. Indeed, in the analysis performed in
the website of the Gipuzkoa Provincial Council (Yera et al. 2016a) we concluded
that modelling the users’ web interaction was an extremely difficult task because
added to the lack of user registration, the goal of the users was previously un-
known and the updating process of the website hindered to reproduce their
navigations. Thus, we pointed out some essential technical requirements that
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e-Services should fulfil to enable the modelling of the interaction of its users: a
minimum number of users (100-1000), a final goal, several steps to achieve the
final goal where users must select different options and availability of the URLs
requested by the users during their interaction to reconstruct the navigation.
In turn, we concluded that for each transaction the following data should be
gathered in the logs of the e-Services if machine learning techniques want to be
used for the analysis: the user identification (if registered) or IP, the timestamp,
the step of the process or the URL, the options selected by the users in that
step / URL, the achievement (success/ failure) in case it is the goal.

In absence of interaction data of a particular e-Service, in this chapter, we
present two contributions made in this area using machine learning procedures:
the modelling of the interaction on the enrolment web information area of the
University of the Basque Country (UPV/EHU) as an e-Service and an empir-
ical analysis of the use of e-Services in Europe based on surveys provided by
Eurostat. In the first contribution different systems were built to automati-
cally classify users reading enrolment information of the UPV/EHU and those
carrying out searching type tasks, which in addition enabled their characterisa-
tion. In contrast, in the second contribution based on survey data supplied by
Eurostat we defined two indexes to quantify the use of e-Government services
(EGUI/EGUI+), and using supervised learning procedures we characterised the
null and total levels of use of these e-Services.

7.2 Modelling the interaction with e-Services

This contribution presents a research result of the collaboration with the Uni-
versity of the Basque Country (UPV/EHU). Since February to the middle of
March 2016 the university provided us with access to the navigation data of
its whole website. In order to provide clues for future service improvements,
our main goal has been to model the university enrolment web information area
(www.ehu.eus/web/sarrera-acceso) as an e-Service and to extract as much
knowledge as possible from it through data mining processes.

Initially, we analysed the structure and content of the whole website of the
university, in order to identify the parts related to the enrolment area. Then,
we studied the usage of this particular area extracting the navigation sessions of
the users from the log files stored in the servers, and labelling them as success
or fail based on the end of the navigation. Finally, we used supervised and
unsupervised learning algorithms to answer three meaningful questions: whether
the sequence of URLs visited by the user and the way the user navigates (the
two types of information used to represent user sessions) affected the success
or failure of her/his navigation, if both sources, the navigation sequence and
the navigation style, were closely related and if it is possible to foresee if new
sessions will be successful or not, just analysing the beginning of the navigation.
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7.2.1 Context: The website of the University of the
Basque Country

The UPV/EHU is the public University of the Basque Country with campuses
over the three provinces of this region: Biscay, Gipuzkoa and Álava. This
institution was established in 1980 and it has around 45,000 students and a
staff of around 3,500 workers.

In this research we analysed the usage of the web page of the UPV/EHU
(www.ehu.eus) and more specifically we were interested in the enrolment e-
Service. This university has an online enrolment procedure that can be com-
pleted using an IT application called GAUR. However, this process requires to
be logged and the institutions have difficulties to provide such data due to pri-
vacy issues. Thus, we focused in the navigations of the enrolment area whose
main domain is wwww.ehu.eus/web/sarrera-acceso.

The enrolment area can be accessed using the top menu (University access
option) displayed in all URLs of the site. This area provides information about
the university (staff, contact and location), the access to the university (types of
access, academic calendar, admission and enrolment procedure, degree offer...)
and scholarships. The main web page of the enrolment area is shown in Figure
7.1 below.

Figure 7.1: The main web page of the enrolment area of the UPV/EHU (www.
ehu.eus/web/sarrera-acceso).
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7.2.2 Preprocessing, session classification and description
of the datasets

In this section we first describe the preprocessing and the session classification
carried out with the navigation data of the University of the Basque Country and
then, we explain how we generated the navigation sequence and navigation style
datasets (DBs) for the analysis. For this process a java project was implemented
in the Eclipse platform V3.8.1 and finally executed as a jar file in the terminal
of Ubuntu 14.04 LTS.

The UPV/EHU provided us access to their logs from the end of February to
the middle of March 2016 and we focused the analysis on the navigation in the
area that supplies enrolment information. These months partly cover the pre-
enrolment dates for the secondary school students, from the middle of January
to the middle of March (2016).

The preprocessing consisted on the one hand on removing the unsuitable
URL request from the user sessions which did not satisfy the following criteria:
Request method ∈ {GET, POST}, URL extensions ∈ {aspx, .htm, .html, .pdf,
.doc, .xml}, URL content 6= {admin, error, rss, piwik, wposta} and server’s an-
swer = 2XX (no errors). On the other hand, only user sessions with a meaningful
navigation in the area of interest were considered for the analysis, those meet-
ing the next requirements: session length ≥ 3 clicks, number of URLs within
the enrolment area ≥ 1 and inactivity period (session gap) ≤ 10 minutes. On
average after the preprocessing the number of sessions was diminished by 94%.

In our contribution we assumed that all users aim to obtain information
about the different enrolment options and we accordingly classified user sessions,
concretely, based on the kind of web page they last visited. Specifically, the
URLs requested in the sessions were characterised considering two criteria: the
content of the URL (whether the text or the links were dominant) and the area
of the URL (whether it corresponded to the enrolment area or not).

Regarding the content, those URLs with text format (.pdf/.doc/.docx) were
classified as of content type. The remaining URLs were classified as content
or scatter type (when links were dominant) using the LCIndex (Link Content
index) (Arbelaitz et al. 2016) described in Equation 7.1, where: Nlinks is the
number of links in the webpage and Nwords is the number of words appearing
in the webpage and NwordsLinks is the number of words used in the links of
the page.

LCIndex =
Nwords−NwordsLinks

Nlinks
;URLtype =

{
scatter, LCIndex ≤ 10

content, LCIndex > 10

(7.1)
Finally, we considered to be successful (classified as success) the user sessions

finished in a URL with enrolment information (content type and within the
enrolment area) because this will probably help in the enrolment process. On
the contrary, the user sessions ended in web pages with little information (scatter
type and any area) were considered to be of failure type, as they probably were
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carrying searching type tasks. Since we are focusing in users that want to
enrol, the sessions ended in a content type URL outside the enrolment area
were considered out of our scope (possible success in another area). Table 7.1
describes the session classification defined.

Last URL of the session
Type of session Area Type

Success Enrolment Content
Failure Enrolment Scatter

Not Enrolment

Table 7.1: User session classification of the enrolment web information area of
the University of the Basque Country (UPV/EHU).

The use of the last URL for the session classification was supported by the
statistical analysis carried out for the complete navigation sequences, revealing
that the nature of the last URL (type/area) determined the nature of the ma-
jority of URLs visited in the session. In this way in the failure type sessions, last
URL of scatter type and from any area, the proportion of URLs of failure type
on average was a majority, 53% for those ended in URL from the enrolment
area and 52% for those ending in a URL outside the enrolment area. Similarly,
in the success type sessions, last URL of content type and from the enrolment
area, the proportion of URLs of this type was higher than that of failure type,
53%.

After the log was preprocessed and the user sessions were classified, data
was prepared for analysis. As stated in the introduction, user sessions were
analysed from two points of view: navigation sequence and navigation style.
Accordingly, we created two datasets with the selected sessions: the first one
containing the sequence of URLs visited in each user session, and the second one,
representing the user sessions with a vector of interaction features calculated
from the information contained in the log files combined with the content and
the structure of the site. The features that represent the user sessions in the
second dataset were computed according to the time, the URL classification
(content/area) or the number of clicks. As shown in Table 7.2 a total of 18
interaction features were computed, which are classified in three categories:
seven click related features (session length, proportion of scatter/content type
or enrolment area/outside the enrolment area URLs requested...), seven time
related features (session duration, click duration on average in the two types of
URLs and two different areas...) and four transition related features (number
of transitions based on the type and area of the URL).

To better understand the datasets, in Tables 7.3 and 7.4 we show a par-
ticular user session from the dataset with the sequence of URLs visited and
the values (not normalised) of the interaction features computed for the same
session according to the information of the log files respectively. The session
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example shown in these tables is of success type, as the last URL visited is of
content type and inside the enrolment web information area of the UPV/EHU.

Int. feature Description

No. click Number of clicks (length of the session).
No. scat. % Number of scatter type URLs / length of the session
No. cont. % Number of content type URLs / length of the session
No. enr. % Number URLs of the enrolment area / length of the session
No. not-enr. % Number URLs from outside the enrolment area

/ length of the session
No. ind. % Number of times the start page of the enrolment area

(index) is visited / length of the session
No. ref-sear. % Number of URLs that a have web search engine as reference
T-ses Duration of the session (s)
T-click avg Average duration of a click (s)
T-scat. avg Average duration of a click on a scatter type URL (s)
T-cont. avg Average duration of a click on a content type URL (s)
T-enr. avg Average duration of a click on a URL of the

enrolment area (s)
T-not-enr. avg Average duration of a click on a URL outside the

enrolment area (s)
T-ind.-avg Average duration of a click on the start page of the

enrolment area (s)
No. cont.-scat. Number of transitions content-scatter type URLs
No. scat.-cont. Number of transitions scatter-content type URLs
No. enr.-not-enr. Number of transitions inside-outside enrolment area URLs
No. not-enr.-enr. Number of transition outside-inside enrolment area URLs

Table 7.2: Interaction features used to represent the user sessions.

N URL Type Area

1. http://www.ehu.eus/es/web/medikuntza-odontologia/medikuntza-14-15 Scat. Not-Enr.
2. http://www.ehu.eus/es/web/medikuntza-odontologia/gasteiz Scat. Not-Enr.
3. http://www.ehu.eus/documents/1546271/2600354-/horario6_vitoria_

castellano_2014-2015.pdf
Cont. Not-Enr.

4. http://www.ehu.eus/es/web/medikuntza-odontologia/medikuntza-plana Cont. Not-Enr.
5. http://www.ehu.eus/es/web/medikuntza-odontologia/tramiteak Scat. Not-Enr.
6. http://www.ehu.eus/es/web/medikuntza-odontologia Cont. Not-Enr.
7. http://www.ehu.eus/eu/web/sarrera-acceso/gutxieneko-notak Cont. Enr.

Table 7.3: An example of a navigation session expressed as sequence of URLs.
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Interaction features

No. click = 7 No. scat. = 43% No. cont. = 57%
No. enr. = 14% No. not-enr. = 86% No. ind. = 0
No. ref-sear. = 29% T-ses. = 98 s T-click avg = 14 s
T-scat. avg = 14 s T-cont. avg = 14 s T-enr. avg = 21 s
T-not-enr. avg = 13 s T-ind. avg = 0 No. cont.-scat. = 2
No. scat.-cont. = 2 No.enr.-not-enr. = 0 No. not-enr.-enr. = 1

Table 7.4: Interaction features computed for the navigation session shown in
Table 7.3.

7.2.3 Automatic classifier system based on supervised
learning techniques

For this approach we analysed the navigation data of 49 days, from 23/02/2016
to 12/04/2016. After the preprocessing described in Section 7.2.2, a total of
25,467 sessions were obtained (around 6% of the 416,354 sessions available),
10,734 of them of success type (42.1%) and 14,733 (57.9%) of them of failure
type.

Considering the future goal of building a system able to classify new user
sessions of the enrolment e-Service, in this first approach based on supervised
learning techniques we explored two options to automatically classify the ses-
sions using the dataset with the interaction features: one building 10 C4.5 (J.R
Quinlan 1993) and another one building 10 CTC (Consolidated Tree Construc-
tion) (J.M. Pérez et al. 2007) trees. In fact, these two supervised learning
approaches will provide us not only the specific discrimination capacity of the
system to classify new sessions as success or failure, but also a concrete descrip-
tion of the interaction features to be used in the process.

For this task, the sessions of the dataset were chronologically ordered and the
first 25,000 were selected for experiments. Then, as shown in Figure 7.2 below
the new dataset was divided in 10 parts of 2,500 sessions(Foldi|i ∈ N, i ≤ 10)
and each part was again divided into 10 segments of 250 sessions (Fij |i, j ∈
N, i, j ≤ 10). Every split respects the chronological order as it would happen in
exploitation in a real system. As in an ordinary 10 fold-cv procedure, the first
nine parts of this dataset (Foldi|i ∈ N, i ≤ 9) were used for training whereas the
last one with the newest sessions (Fold10) was kept for test. To build each of
the 10 trees a particular segment from the 10 parts of the dataset available was
used (first= Fi1, second= Fi2, third= Fi3 etc.) but always using these concrete
segments from the nine first parts (Fij |i, j ∈ N, i ≤ 9, j ≤ 10) as training (2,250
sessions) and the newest segment (F10j , j ∈ N, i ≤ 10) for test (250 sessions).
This way we ensured that the data were equally distributed on time among the
trees so that they had similar learning processes and that the newest sessions
(Fold10) were used for test.

The algorithms were implemented in Visual C++ although they are
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also available as official Weka (M. Hall et al. 2009) packages (C4.5 and
J48Consolidated1).

Figure 7.2: Procedure to build 10 C4.5 and 10 CTC trees using the dataset with
the interaction features

Ideally, the best classifier will be the one with better classification perfor-
mance, that is, the one with a low classification error and a simple and stable
explanation. Regarding the average error the C4.5 decision trees achieved a
lower value (0.0500) than the CTC ones (0.0626). Conversely, the CTC trees
achieved a higher average value (0.9828) for the Area Under the ROC (AUC)
than the one achieved by the C4.5 (0.9665) ones. These low classification errors
and high AUC values show that both types of trees are able to discriminate
between the success and failure navigations defined, however, in order to better
compare them a paired t-test was carried out using both metrics. The t-test
revealed on the one hand that the AUC of the CTC approach was significantly
better than the AUC of the C4.5 approach (significance level 0.05) and on the
other hand, that there were not statistically significant differences between the
classification errors of the two options (significance level 0.05). Concerning the
explaining capacity of the trees, we noticed that the structures of the CTC trees
were simpler, with values on average for the number leaves and for the number
of internal nodes, 14.4 and 13.4 respectively, lower than the ones achieved by the
C4.5 trees, 44.3 and 43.3. Accordingly, the explanation provided by the CTC
approach was proof to be more stable, achieving an average value of common

1http://www.sc.ehu.es/aldapa/weka-ctc/
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nodes among the different trees (21.81%) higher than the one obtained in the
C4.5 approach (6.02%).

Therefore, the CTC approach was found to be the best option as it achieved
a significantly better AUC value and it provided more stable and simple ex-
planations. According to the structure of the CTC trees these are the main
interaction features to differentiate each type of session (success / failure): the
average duration of a click on a URL of content or scatter type (T-cont. avg and
T-scat. avg), the proportion of content type URLs in the session (No. cont. %)
and the number of content type URL– scatter type URL transitions (No. cont.-
scat.). More specifically, the CTC highlighted the following rules to discriminate
each type of navigation:

Main rules to detect failure type sessions:

• (T-cont. avg ≤ 13.95 s) AND (T-scat. avg > 14.06 s)

• (T-cont. avg ≤ 13.95 s) AND (T-scat. avg ≤ 14.06 s)
AND (No. cont. % ≤15%)

Main rules to detect success type sessions:

• T-cont. avg > 13.95 s

• (T-cont. avg ≤ 13.95 s) AND (T-scat. avg ≤ 14.06 s)
AND (No. cont. % > 15%) AND (No. cont.-scat. ≤ 0.01)

Hence, failure type sessions are closely linked with short times in content
type URLs (T-cont avg ≤ 13.95 s) and long times in scatter type URLs (T-
scat. avg > 14.06 s). This could represent the navigation of those users who are
not able to find certain information. In addition, the sessions with small values
for the two interaction features mentioned T-cont. avg / T-scat. avg, and low
proportion of content type URLs (No. cont. % ≤ 15%) have more probabilities
to be of failure type. Conversely, success type sessions have a close relation with
longer times on average in content type URLs (T-cont. avg > 13.95 s). To a
lesser extent, short times in content and link type URLs, high proportions of
content type URLs and an absence of content-scatter type URL transitions (No.
cont.-scat. ≤ 0.01) lead more easily to success type sessions.

Finally, it should be remarked that the rules mentioned above, are very
similar to the ones provided by the C4.5 trees. This fact reinforces the validity
of the interaction features noted to discriminate the types of sessions defined.
Thus, we think that the conclusions achieved will be very effective to classify
the new user sessions and improve the enrolment e-Service of the UPV/EHU in
the future.

Additionally, we decided to compare the effectiveness of using supervised and
unsupervised learning techniques to build classifier systems in terms of accuracy
to classify success and failure type sessions. Thereby, in the next section we de-
scribe several classifier systems built based on unsupervised learning procedures
using each of the two session representations available (navigation sequence /
navigation style) and a combination of both.
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7.2.4 Automatic classifier system based on unsupervised
learning techniques

The goal of this contribution was to model the enrolment web information area
so that it could be improved in the future. We mainly focused on characteris-
ing successful and failure sessions and detecting failure sessions thereby actions
can be taken. With that aim in the first approach just described we built an
automatic classifier system based on supervised learning procedures using the
interaction features computed from user navigation sessions. In contrast, in this
second approach we explore the potential of unsupervised learning techniques
to automatically classify new user sessions but using the two representations
proposed, the set of interaction features or the sequences of URLs visited.

To that end, we first analyse whether the two aspects studied, navigation
sequence and navigation style were meaningful to decide if a user session will
be of success or failure type, whether they can be used to foresee the type of
new sessions, and if they are complementary or not. Unsupervised learning
techniques used allow on the one hand, characterising success and failure pat-
terns. On the other hand, the centroids we computed in the resulting clusters
of the two session representations, provide stable patterns that enable to tune
the success and failure session classification system in order to control its level
of precision. The next sections describe the analysis carried out.

Analysis of the discriminating capacity of the navigation sequence
and navigation style

In this approach we analysed the navigation data of 53 days, from 23/02/2016
to 16/04/2016, obtaining after the preprocessing a total of 26,467 sessions. The
25,467 sessions of the first 49 days (same period analysed in the previous ap-
proach) were used to model the enrolment web information area of the UP-
V/EHU and build automatic classifier systems based on unsupervised learning
techniques, whereas the last four days (1,000 sessions) were kept to validate
these classifiers. The class distribution in the validation dataset was similar
to the modelling dataset with 37.9% (∼ 42.1%) of sessions of success type and
62.1% (∼ 57.9%) of them of failure type.

The dataset built with sequences of URLs was used to analyse how the
navigation sequence is interrelated with the type of sessions defined. We used
PAM (k-medoids) (Kaufman and P. Rousseeuw 1990) clustering algorithm that
allows to group sequences into high quality clusters (Barioni et al. 2008) with
edit distance. Broadly, in a clustering procedure the number of clusters selected
is ideally high, as it contributes to create clusters with as many cases as possible
of the same type. We selected the k value according to the Silhouette Cluster
Validity Index (Arbelaitz et al. 2013b) which indicated that k=50 was the most
appropriate cluster configuration when compared to k=25, k=75 and k=100.
The scores for each k in ascending order were 0.046, 0.069, 0.055 and 0.047
respectively.

To evaluate the discernment power of the approach for the two types of
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navigation sessions, we focused on the clusters where the superiority of success
or failure cases was over 74%. In the selected clusters, the total number of
sessions grouped was significant (42% of the whole dataset), and a suitable
representation of each type of session can be found (12% of success and 29%
of failure). Table 7.5 summarises the types of examples grouped in the eight
success type clusters and the 17 clusters of failure type.

Table 7.5 shows that half of the clusters (25) have a proportion of one class
or the other one above 74%. The whole dataset contains 14,733 user sessions of
failure type and the clusters labelled as failure, 6,669. Consequently, although
the percentage of failure type sessions in the dataset is 58%, within the failure
type clusters that probability raises to 89%. Similarly, being the success type
user sessions 42% in the whole dataset, in the selected success type clusters this
percentage increases up to 82%.

Feature Clusters with a no. Clusters with a no.
success-sessions ≥ 74% failure-sessions ≥ 74%

No. clusters 8 (16%) 17 (34%)
No. success-sessions 2,551 (81.9%) 842 (11.2%)
No. failure-sessions 564 (18.1%) 6,669 (88.8%)
No. sessions-clusters 3,115 7,511
No. sessions-DB (%) 12.20% 29.50%

Table 7.5: Results of PAM (k=50) in the dataset built with sequences of URLs.

These results suggest that the navigation sequence (URLs visited) and the
success/failure of a user session are connected. Hence, we can gather that there is
a chance to automatically classify the navigation of new users of the UPV/EHU
enrolment e-Service, based on the navigation sequence.

The dataset with the interaction features of the sessions (Table 7.2) was used
to determine whether unsupervised learning procedures support the findings of
the supervised learning approach, that is, that the navigation style is tightly
interrelated with the success/failure of a session. We ran the k-means algorithm
(Lloyd 1982) with Euclidean distance using k=50 in the previously normalised
(normal distribution) dataset. Then, we selected the clusters with a superiority
of success or failure cases over 74%, which grouped 43% of the total number of
sessions of the DB (14% of the success and 29% of failure). Results are shown
in Table 7.6.

As it happened with the navigation sequence dataset, Table 7.6 shows that
in more than half of the clusters (27/50), the proportion of one of the types
of sessions defined or the other is higher than 74%. In the case of the failure
clusters there are 6,842 sessions of failure type what raises form being 58% of the
sessions in the complete dataset, to 93% within those clusters. Likewise, being
the success type sessions 42% of the dataset, in the success clusters this number
raises to 88%. Thus, the results show that the navigation style is discriminant
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for the two types of navigations defined, success and failure.

Feature Clusters with a no. Clusters with a no.
success-sessions ≥ 74% failure-sessions ≥ 74%

No. clusters 6 (12%) 21 (42%)
No. success-sessions 3,212 (87.7%) 544 (7.4%)
No. failure-sessions 451 (12.3%) 6,842 (92.6%)
No. sessions-clusters 3,663 7,386
No. sessions-DB (%) 14.40% 29.00%

Table 7.6: Results of k-means (k=50) in the interaction features dataset.

Comparison of the navigation sequence and navigation style

According to the results shown in the previous paragraphs, we can state that
whether a session will be of success or failure type depends on both the navi-
gation sequence and the navigation style. But it would be interesting to know
if both perspectives are closely related or not. With this aim we compared the
partitions of the two clustering procedures using the Jaccard index (Jaccard
1908) which provided a very low value (0.04) in the comparison, showing that
both results are quite different. This suggests that in the navigation of the
UPV/EHU enrolment area, the navigation sequences (URLs visited) and the
navigation style described by the interaction features are independent, and thus
the design of each concrete URL does not affect much to how the user navigates.

Hence, in principle to classify the navigation of new users in the enrolment
area of the website, both view points, could be useful and might be comple-
mentary. To this regard, in the following paragraphs, Section Description of
the automatic classifier systems based on unsupervised learning techniques, we
describe the validation process performed to test these hypotheses.

Characterisation of the types of session based on the navigation style

Additionally, we extracted the main characteristics of the six success type clus-
ters and the 21 failure type clusters to model both types of navigation, which
are summarised in Table 7.7. According to the table, these are the main char-
acteristics for the failure type sessions compared to the success type sessions:
the click-streams on average tend to be larger (No. click = 13.1 vs. 6.2); they
are more focused on scatter type URLs (No. scat. % = 80% vs. 30%); the
internal and external navigations are more balanced (No. enr. % = 48% vs.
92%); the total duration of these sessions is higher (T-ses = 184.6 s vs. 106.3 s);
the duration on average of a click on a scatter type URL is longer (T-scat. avg
= 27.8 s vs. 11.7 s); the duration on average of a click on a content type URL
is shorter (T-cont. avg = 7.4 s vs. 20.9 s); there is at least one transition from
enrolment area to outside this area (No. enr.-not-enr. = 0.8 vs. 0); there is
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almost no transition from outside the enrolment area to the enrolment area (No.
not-enr.-enr = 0.4 vs. 1.1).

Interaction Failure type sessions Success type sessions
features (21 clusters) (6 clusters)
No. click 13.1 6.2
No. scat. % 80 30
No. cont. % 20 70
No. enr. % 48 92
No. not-enr. % 52 8
T-ses (s) 184.6 106.3
T-scat. avg 27.8 11.7
T-cont. avg 7.4 20.9
No. scat.-cont 1.95 1.19
No. cont.-scat 0.91 2.04
No. enr.-not-enr. 0.8 0
No. not-enr.-enr 0.4 1.1

Table 7.7: Main interaction features of the sessions inside the six success type
clusters and the 21 failure type clusters obtained from the navigation style data.

This is partially in line with the main rules provided by the CTC trees
used in the supervised learning system described in Section 7.2.3, where the
interaction features marked in bold in Table 7.7 were found to be decisive for
the session classification: the time on average on content/scatter type URLs, the
proportion of content type URLs and the number of transitions from content to
scatter type URLs. In particular, according to the decision trees, the duration
on average shorter than 13.95 seconds on content type URLs (together with
other rules) were related with failure type sessions, whereas the opposite case
was found to be related with success type sessions.

Description of the automatic classifier systems based on unsupervised
learning techniques

As mentioned before, a total of 1,000 sessions of the initial dataset were kept for
validating the system (validation dataset). These sessions were also represented
as sequences of URLs visited (navigation sequence perspective) and as vectors
of the interaction features described in Table 7.2 (navigation style perspective).
The next paragraphs describe the three automatic classifiers built using cluster-
ing, one based on the navigation sequence, another one based on the navigation
style and a last one based on both representations.

In the system based on the navigation sequence we first computed the
medoids of the 25 clusters with a wide percentage of sessions (≥ 74%) of success
or failure type (Table 7.5) and labelled them with the majority class of their
corresponding cluster. Then, for each new session of the navigation sequence
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dataset, we calculated the 10 nearest medoids (10-NM ) using the edit distance
and finally labelled each new session with the most voted type according to the
simple voting performed using different numbers (km) of nearest medoids: km-
NM ; km ∈ {1, 3, 4, 7, 9, 10}. We measured the accuracy (%) in terms of number
of examples where the type of sessions is guessed in the validation set (see Table
7.8). The voting approach that involved the 10 nearest medoids was found to
be the best one, reaching an accuracy of 61.90% thus the results were not very
good.

Voting approaches performed with medoids (km-NM )
1-NM 3-NM 5-NM 7-NM 9-NM 10-NM

Accuracy (%) 55.70 56.10 55.90 61.80 59.90 61.90

Table 7.8: Accuracy (%) of the system built with the km-NM of the 25 clusters
obtained with PAM (k=50) procedure used in the navigation sequence dataset.

Similarly, in the system based on the navigation style, we computed the
centroids (average) of the 27 clusters with a wide majority of sessions (≥ 74%)
of success or failure type (Table 7.6) and labelled them with the majority class
of their corresponding cluster. Then, each session of the new navigation style
dataset was labelled with the most voted type according to the different numbers
(kc) of nearest centroids (NC ) computed with the Euclidean distance: kc-NC ;
kc ∈ {1, 3, 5, 7, 9, 10}. The results of this system (see Table 7.9) were better
than the previous ones. In this case, the voting that involved the five nearest
centroids (5-NC ) was found to be the best, reaching an accuracy of 78.2%.

Voting approaches performed with centroids (kc-NC )
1-NC 3-NC 5-NC 7-NC 9-NC 10-NC

Accuracy (%) 75.50 76.70 78.20 77.50 76.90 74.80

Table 7.9: Accuracy (%) of the system built with the kc-NC of the 27 clusters
obtained with k-means (k=50) procedure used in the navigation style dataset.

In order to analyse if both systems were complementary or not, we built a
third system that combined the votes of the system based on the navigation se-
quence dataset, km-NM ; km ∈ {2, 3, 4, 5, 6}, and the votes of the best approach
of the system based on the navigation style dataset (5-NC ). Accordingly, each
new session was classified using the most voted type among the km nearest
medoids and kc nearest centroids involved. The best voting was the one that
involved the nine nearest neighbours (9-NN ), using the four nearest medoids (4-
NM ) for the navigation sequence dataset and the five nearest centroids (5-NC )
for the navigation style dataset. Table 7.10 shows the accuracy obtained for dif-
ferent configurations. Although no weighting of other more complex strategies
where used in this first approach, it seems that both options could be comple-
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mentary.

Voting approaches performed with medoids and centroids
(k-NN = km-NM + kc-NC )

7-NN 8-NN 9-NN 10-NN 11-NN
2-NM 3-NM 4-NM 5-NM 6-NM
5-NC 5-NC 5-NC 5-NC 5-NC

Accuracy (%) 78.20 77.90 78.70 76.90 77.40

Table 7.10: Accuracy (%) of the system built combining the votes of the systems
built with the km-NM and the kc-NC of the navigation sequence and navigation
style datasets respectively.

In summary, we can state that the automatic classifier system based on
supervised learning techniques described in the Section 7.2.3 (first approach)
performed better than the systems based on unsupervised learning techniques
described in this section (second approach). Indeed, the accuracy obtained
obtained in the first approach (98%) was higher than the one achieved by the
best classifier of the second approach (78.70%). In addition, the navigation
style perspective seems to be more effective to classify success and failure type
sessions than the navigation sequence perspective.

Failure detection subsystem based on the navigation style

Finally, we built a subsystem to detect users that were having problems (fail-
ure type sessions) enabling to adapt the restriction level (minimising the false
positives).

In this subsystem new sessions were classified based exclusively on the 21
clusters of the navigation style dataset that detected failure type sessions (Ta-
ble 7.6). Specifically, for each new session we computed the nearest centroid
(1-NC ) of the selected clusters and then, we reordered the validation dataset
according to the distance (ascendant order). The smaller the distance is, the
higher probability will the pattern have to be of failure type.

This allowed us to segment the new users and only work with those who were
more similar to the failure patterns detected with the following accuracy values:
100%, 99% and 91% for the 10%, 15% and 25% nearest new sessions to the
computed centroid respectively. This method also enabled us to define a distance
threshold (1.657) to classify new users individually with a high certainty to be
of failure type. Table 7.11 shows the accuracy of the failure detection subsystem
for different number of nearest new sessions (%) based on the nearest centroid
(1-NC ).
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Number of nearest new sessions (%)
100% 75% 50% 25% 10% 5% 2.5%

Accuracy (%) 62.10 71.87 77.40 91.20 100.00 100.00 100.00

Table 7.11: Accuracy (%) of the failure subsystem built for different number of
nearest new sessions (%) based on the nearest centroid (1-NC ).

7.3 Modelling the use of e-Services

In this section we describe the contribution made to modelling the use of e-
Services, where an empirical analysis of the use of e-Services in European coun-
tries based on survey data provided by Eurostat (Eurostat 2004) was carried
out.

7.3.1 Introduction

Despite the efforts made by European governments and administrations in re-
cent decades, the digital divide in the old continent still persists. The Digital
Economy and Society Index (DESI) (European Commission 2018), a composite
index which has been published annually since 2014 by the European Commis-
sion to measure the progress of the 28 European Union (EU) countries towards
a digital economy and society, provides an idea of the digital divide in Europe.
In particular, DESI regroups 34 indicators in five principal policy areas weighted
as follows: 25% connectivity, 25% human capital, 15% use of Internet services,
20% integration of digital technology and 15% digital public services. From 2014
to 2018 the highest digital divide between the 28 EU countries (max-min) was
reduced 11%, from 58% to 47%. Nevertheless, analysing the DESI of 2018, we
observe that only four countries achieved high DESI values (≥70%), whereas
around half of the countries (15) scored medium values (∈ [50%, 70%)) and
about a third of the countries (9) achieved low values (< 50%). Although these
statistics indicate a slight improvement, it is clear that more forceful actions are
called for.

One of the aspects affected by the consequences of the digital divide and also
analysed within DESI (European Commission 2018) is the e-Government use
or adoption. e-Government has several aspects, including social, technical, eco-
nomic, political, and public administrative but most works define the mission of
e-Government as systems that use Information and Communication Technology
(ICT) to provide citizens with a better service (Shareef et al. 2011; Layne and
Lee 2001). E-Government has been defined as the use of digital technology,
especially Web-based applications, to enhance access to -and efficiently deliver
of- government information and services. Although it has featured a substan-
tial growth, development and diffusion, citizens in all developed and developing
countries may not be willing to adopt such services (Carter and Bélanger 2005).

According to Shareef et al. (Shareef et al. 2011) e-Government has several
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aspects, including social, technical, economic, political, and public adminis-
trative. Most dominating concepts of e-Government arise from the technical
perspective and a combination of the socio-economic and public administra-
tive perspectives but in the academic literature, the adoption models offered
so far are mainly conceptual. For instance, inside DESI e-Government is rep-
resented by the E-Government Development Index (EGDI) a composite index
which has been published biannually in the UN E-Government Survey since
2010 (UN 2010) and which considers three aspects: telecommunications infras-
tructure, human capital and online services. In 2018 the average value of the
EGDI for the 28 EU countries (80%) was rated as Very-High (> 75%) and in
line with DESI, the average EGDI score for the period 2010-2018 improved by
14% (UN 2010; UN 2012; UN 2014; UN 2016; UN 2018). Although some digital
divide related themes are still mentioned in the 2018 UN E-Government Survey
(UN 2018): access, affordability, age, bandwidth, content, disability, education,
gender, migration, location, mobile, speed and useful usage, it seems that the
e-Government situation in Europe is promising, at least from a theoretical point
of view.

Another conceptual analysis is provided by the World Economic Forum’s
Networked Readiness Index (NRI), also referred to as Technology Readiness,
which measures the propensity for countries to exploit the opportunities of-
fered by Information and Communication Technology (ICT). It is published
in collaboration with INSEAD (a graduate business school with campuses in
Europe, Asia, and the Middle East), as part of their annual Global Informa-
tion Technology Report (GITR) (Dutta et al. 2015). The report is regarded as
the most authoritative and comprehensive assessment of how ICT impacts the
competitiveness and well-being of nations. The index is a composite of three
components: the environment for ICT offered by a given country or community
(market, political, regulatory, and infrastructure environment), the readiness of
the country’s key stakeholders (individuals, businesses, and governments) to use
ICT and the usage of ICT among these stakeholders.

Beyond the conceptual models, some limited empirical studies exist. For
instance, the study carried out by Schwester (Schwester 2009) in US municipal-
ities, concludes that e-Government adoption is a function of financial, technical,
and human resources. Holding all other factors constant, municipalities with
higher operating budgets, more full-time IT staff, and technical resources are
more likely to implement a comprehensive e-Government platform. However,
extensive empirical studies among the actual users to validate and generalise
the models are absent (Shareef et al. 2011).

In this context, we consider the Eurostat Community Statistics on Informa-
tion Society (CSIS) (Eurostat 2004) (Eurostat CSIS Surveys) an opportunity to
carry out an extensive empirical study in European countries. They stated that
in 2018 the average e-Government Use (EGU) in the 28 EU countries reached
just 52%. The EGU is computed as the percentage of individuals who used the
Internet to interact with public authorities, for example by obtaining informa-
tion from public websites and downloading or submitting official forms.

The aim of this contribution is to offer some insights into the empirical
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e-Government adoption across Europe (26 EU countries). Inspired on the e-
Government adoption options described by different authors (Bélanger and
Carter 2008; Nam 2014; Thompson et al. 2005) and based on the Eurostat
CSIS Surveys’ (Eurostat 2004) e-Government Use (EGU) question, which asks
about the contact of respondents with public authorities or public services, we
defined two indexes: the E-Government Use Index (EGUI) and an extreme ver-
sion of it (EGUI+). With regard to EGUI+ we defined four ranges: very high,
high, low and very low and characterised the extreme levels of e-Government
practical use (null and complete) by applying supervised learning procedures
to the Eurostat data of two countries from each of the four EGUI+ ranges. In
addition, the ranking comparison carried out between EGUI+ and four compos-
ite indexes measuring the level of e-readiness of a country provided by United
Nations (UN 2010; UN 2012; UN 2014; UN 2016) and The World Economic
Forum (Dutta and Mia 2010; Dutta and Mia 2011; Dutta and B. Bilbao-Osorio
2012; B. Bilbao-Osorio et al. 2013; Bilbao-Osorio et al. 2014; Dutta et al. 2015)
determined that the index we defined is highly correlated with them.

7.3.2 Eurostat CSIS Surveys

In this section we first describe the data on e-Government extracted from the
Eurostat’s Community Statistics on Information Society (CSIS) 2009-2015 (Eu-
rostat CSIS Surveys). Then we show the two indexes defined to characterise
the e-Government practical use, EGUI and EGUI+, based on the information
extracted from the Eurostat CSIS Surveys.

Description of the Eurostat CSIS Surveys

From 2002 to the present, Eurostat CSIS Surveys have been annually conducted
in all Member States, in two countries of the European Free Trade Association
(EFTA), as well as in the candidate countries for future membership of the EU,
and those in the process of accession to the EU. The data collection is based on
Regulation (EC) 808/2004 (European Parliament and Council of the European
Union 2004) of the European Parliament and the Council of the European Union
and since 2011 the transmission of microdata to Eurostat is mandatory.

The Eurostat CSIS Surveys collect data on access and use of information
and communication technologies (ICT) from households and individuals. The
survey covers households with at least one member aged between 16 and 74
and individuals in this age range. Information on access to ICT, e.g. Internet
connection, is collected at household level while statistics on the use of ICT,
mainly on the use of the Internet, is gathered for individuals. Annual core
subjects (included every year) and episodic topics on various ICT phenomena
(changing for different years) are distinguished in the survey. There are six
annual core subjects: access to ICT, use of computers, use of the Internet, e-
Government, e-Commerce and e-Skills. To analyse variables of access and use of
ICT in relation to household or individual characteristics, a number of so called
social background variables, b.vi, are collected (see Table 7.12). These include
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composition, income and regional location of the household as well as the age,
gender, educational attainment and employment situation of individuals.

Code Description Type Value Description

HH CHILD No. children b.vi [1-4] From one to four or more
HH IQ Income quartile b.vi [1-4] Lowest / Second lowest /

Second highest / Highest
AGECLS Age range b.vi [1-8] ≤ 15 / ∈ {[16-24], [25-34],

[35-44], [45-54], [55-64],
[65-74]} / ≥ [75]

SEX Gender b.vi [1-2] Male / Female
ISCED Education level b.vi 1 Primary/lower secondary

2 Upper secondary
3 Tertiary

EMPST Employment b.vi 1 Employee/self-employed
situation 2 Unemployed

3 Student
4 Not in the labour force

OCC ICT ICT occupation b.vi [0-1] Non ICT / ICT professional
OCC MAN Manual occupation b.vi [0-1] Non manual / Manual worker
IACC Internet access qi [0-1] No / Yes
CU Computer use qi 1 >a year ago/never

2 ∈ (3 months-a year) ago
3 < 3 months ago

CFU Computer freq. qi 1 ≤ once a month/year
of use 2 ≤ once a week

3 (Almost) every day
IU Internet Use qi 1 ≥ a year ago/never

2 ∈ (3 months-a year) ago
3 < 3 months ago

IFU Internet freq. qi 1 ≤ once a month/year
of use 2 ≤ once a week

3 (Almost) every day
IBUY Buy goods over qi 1 ≥ year ago/never

the Internet 2 ∈ (3 months-a year) ago
3 < 3 months ago

EGU E-Government qi/ 1 Null
use d.vi 2 OI

3 OI & DF
4 OI & DF & SF

OI = obtain information, DF = download forms, SF = send filled forms

Table 7.12: Questions (qi) and background variables (b.vi) for the characterisa-
tion of the dependent variable (d.vi) e-Government practical use (EGU).
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We were given access to the annual micro-datasets for the period 2009-2015,
which we used for the analysis on the practical use of e-Government. Some
questions in the micro-datasets varied from year to year, thus, for the analysis
we used just the seven questions about ICT (qi) common to all the years and
the eight background variables (b.vi), which are shown in Table 7.12 above.

Among the seven questions selected, one is at a household level and related
to Internet access (IACC) whereas the remaining six are at individual level, two
related to computer use (CU / CFU) and four related to the use of Internet (IU,
IFU, IBUY and EGU). In the last row of Table 7.12 we show in bold the ques-
tion selected as dependent variable (d.vi) to measure e-Government practical
use, EGU, which was obtained by coding a question about the activities related
to interaction with public services or administrations through the Internet for
private purposes, providing four possible values: 1 if none of the three possi-
ble activities was carried out, 2 if the obtaining information activity (OI) was
carried out, 3 if the OI and the downloading official forms (DF) activities were
completed and 4 if OI, DF and sending filled in forms activities were carried
out.

Analysing the micro-datasets, we realised that six countries were missing
data for the year 2008 and thus, we focused our analysis on the period 2009-
2015. United Kingdom and Croatia were removed from our analysis because
they were missing data for two of the years (2009 and 2010) of the period of time
of our scope. Therefore our analysis comprises a total of 767,691 surveys from 26
different EU countries. Table 7.13 illustrates the ample variability in the number
of surveys for the countries selected over the years. As shown in the table, Italy
is the country with the biggest total number of CSIS Surveys (133,698) which
is 25 times higher than that of the country with the smallest number, Malta
(5,327), although in 2015 this country had 134 times lower population.

Literature analysis suggest that the information provided in the surveys to
be promising for the empirical study proposed in this contribution. In the study
conducted by Carter and Bélanger (Carter and Bélanger 2005), perceived ease
of use, compatibility and trustworthiness appear to be significant predictors
of citizens’ intention to use an e-government service. In an empirical study
conducted by Shareef et al. (Shareef et al. 2011), the authors observed that,
e-Government adoption behaviour differs based on service maturity levels, i.e.,
when functional characteristics of organisational, technological, economical, and
social perspectives of e-Government differ. A user will not arrive at an inten-
tion to use an e-Government system, which requires computer knowledge to get
a competitive advantage, unless the user has competence from experience in
the use of modern ICT. From technological, behavioural, economic, and organ-
isational perspectives, it is anticipated that failing to get hands-on experience
of technology will not create in the user an attitude favorable to adopting the
system. Therefore, from organisational perspectives, computer self-efficacy is
an important predictor of whether a user will adopt an e-Government system
instead of using traditional government services. Bélanger and Carter (Bélanger
and Carter 2008) propose a model of e-Government trust composed of dispo-
sition to trust, trust of the Internet (TOI), trust of the government (TOG)
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and perceived risk. Results from a citizen survey (214 responses) indicate that
disposition to trust positively affects TOI and TOG, which in turn affects in-
tentions to use an e-Government service. According to Nam (Nam 2014) the
degree of e-Government use for a specific purpose is predicted by five sets of
determinants: psychological factors of technology adoption, civic mindedness,
information channels, trust in government, and socio-demographic and personal
characteristics. Socio-demographic conditions influence usage level of various
transactional services provided by e-Government. Perceived ease of use facili-
tates the acquisition of general information through e-Government.

Number of Eurostat CSIS Surveys
Country Co 2009 2010 2011 2012 2013 2014 2015 Total

Austria AT 4,634 4,620 3,178 3,454 3,371 3,291 3,455 26,003
Belgium BE 4,049 4,109 3,872 3,899 4,000 3,794 0 23,723
Bulgaria BG 2,832 3,325 4,876 4,064 4,682 5,167 4,847 29,793
Cyprus CY 1,562 1,601 1,879 2,350 2,234 2,677 2,609 14,912
Czech R. CZ 4,233 4,682 4,119 5,514 5,606 5,265 5,439 34,858
Denmark DK 3,399 3,100 2,942 2,974 3,071 3,128 3,044 21,658
Estonia EE 2,751 3,043 2,946 3,604 3,792 2,763 1,919 20,818
Greece EL 1,538 1,568 1,865 1,482 1,813 2,080 2,522 12,868
Spain ES 8,586 9,268 9,295 8,312 8,509 8,837 9,076 61,883
Finland FI 1,989 2,053 2,164 2,141 2,107 1,967 2,072 14,493
France FR 2,180 3,323 4,819 6,517 5,675 4,831 6,711 34,056
Hungary HU 4,092 4,373 4,793 4,811 4,656 4,844 4,593 32,162
Ireland IE 4,321 4,520 3,683 6,653 6,815 6,054 5,401 37,447
Italy IT 18,133 18,461 19,143 18,611 19,229 19,539 20,582 133,698
Lithuania LT 6,551 6,484 6,150 5,931 5,947 6,450 4,262 41,775
Luxemb. LU 1,126 1,204 1,060 1,297 1,134 1,072 1,132 8,025
Latvia LV 0 4,252 4,742 4,043 4,264 3,533 4,306 25,140
Malta MT 583 634 812 709 852 881 856 5,327
Netherl. NL 3,304 3,323 3,392 3,563 3,459 2,954 3,435 23,430
Norway NO 878 803 856 778 842 854 902 5,913
Poland PL 5,746 6,568 6,341 6,080 5,285 10,642 4,844 45,506
Portugal PT 2,578 2,745 2,799 3,126 3,415 3,689 3,992 22,344
Romania RO 4,731 5,688 6,154 6,216 7,819 8,570 9,405 48,583
Sweden SE 3,207 2,976 2,124 1,033 1,110 1,067 966 12,483
Slovenia SI 1,136 1,213 1,235 1,210 1,384 1,318 1,157 8,653
Slovakia SK 2,682 3,025 2,930 3,357 3,593 3,320 3,233 22,140

Table 7.13: Number of Eurostat CSIS Surveys analysed for the period 2009-2015
in each country.
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E-Government Use Indexes: EGUI / EGUI+

The literature identifies different e-Government adoption levels. Bélanger and
Carter (Bélanger and Carter 2008) differentiated the dependent variable ”Adop-
tion” into two sub-groups:

• Adoption 1: Decision to accept and use an e-Government system to view,
collect information, and/or download forms for different government ser-
vices as the user requires with the positive perception of receiving a com-
petitive advantage.

• Adoption 2: Decision to accept and use an e-Government system to in-
teract with, and seek government services, and/or search for queries for
different government services as the user requires with the positive per-
ception of receiving a competitive advantage.

On the other hand, Nam (Nam 2014) and Thompson et al. (Thompson et
al. 2005) identified three main purposes of e-Government use: information use,
service use or engaging in electronic transactions with government and policy
research or to participate in government decision making. The first two, could
be equivalent to the Adoption 1 and 2 defined in Bélanger and Carter 2008.

Bearing these definitions in mind, in order to quantify e-Government practi-
cal use we defined two indexes, EGUI and EGUI+, which are computed as ratios
between the number of answers (#) to the question on EGU (EGUi) that reveal
some level of e-Government use (i ∈ {2,3,4}) and the ones that indicate no use
(i=1). Equation 7.2 specifies how the two defined e-Government Use Indexes
are computed. As it can be observed, EGUI takes into account the Adoption
1 or information use idea and EGUI+ is an extreme version of EGUI that only
involves the users engaged in electronic transactions, null use against complete
use (#EGUi, i ∈ {1,4}).

EGUI =

4∑
i=2

#EGUi

#EGU1
; EGUI+ =

#EGU4

#EGU1
(7.2)

In Table 7.14 we provide the list of countries ordered according to the EGUI+

ranking, the total number of possible answers gathered for the EGU question
(#EGUi, i ∈ {1, 2, 3, 4}), and the EGUI and EGUI+ values.

Based on the EGUI+ values we were able to rate the countries into four
different e-Government use levels: very high (≥ 2.0), high (∈ [1.0, 2.0)), low
(∈ [0.5, 1.0)) and very low (< 0.5). As a result, two countries were rated as
having a very high level (DK, NO), six as having a high level (FI, NL, SE, FR,
IE, EE), eight with a low level (AT, LU, ES, PT, SI, HU, LT, LV) and 10 with
a very low level (BE, MT, EL, CY, SK, IT, BG, CZ, PL, RO).
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#EGUi Value
Country i=1 i=2 i=3 i=4 EGUI EGUI+ EGUI+ level

DK 2,955 3,718 1,701 13,284 6.33 4.50 Very High
NO 1,263 1,003 771 2,876 3.68 2.28

FI 3,564 2,656 1,656 6,617 3.07 1.86 High
NL 7,231 3,986 1,278 10,935 2.24 1.51
SE 3,285 2,573 2,085 4,540 2.80 1.38
FR 11,844 5,263 4,497 12,452 1.88 1.05
IE 16,406 2,677 1,647 16,717 1.28 1.02
EE 8,202 4,251 394 7,971 1.54 0.97

AT 9,747 4,993 4,451 6,812 1.67 0.70 Low
LU 2,948 1,083 1,982 2,012 1.72 0.68
ES 26,320 11,815 7,409 16,339 1.35 0.62
PT 11,689 2,784 921 6,950 0.91 0.59
SI 3,222 1,690 1,896 1,845 1.69 0.57
HU 14,802 5,803 3,127 8,430 1.17 0.57
LT 23,661 4,532 329 13,253 0.77 0.56
LV 10,589 7,706 1,263 5,582 1.37 0.53

BE 11,525 4,528 2,303 5,367 1.06 0.47 Very Low
MT 2,636 723 776 1,192 1.02 0.45
EL 6,375 2,842 949 2,702 1.02 0.42
CY 7,678 1,799 2,247 3,188 0.94 0.42
SK 10,210 5,250 2,769 3,911 1.17 0.38
IT 88,551 13,377 13,555 18,215 0.51 0.21
BG 18,996 5,231 1,809 3,757 0.57 0.20
CZ 21,731 6,969 2,169 3,989 0.60 0.18
PL 29,955 6,473 3,708 5,370 0.52 0.18
RO 39,003 5,751 1,268 2,561 0.25 0.07

Table 7.14: Average values of EGUI and EGUI+ (2009-2015) in the 26 EU
countries analysed.

7.3.3 Characterisation of extreme values of E-
Government Use (EGU)

Aiming to obtain a greater understanding of e-Government practical use, we
characterised the factors involved in the EGUI+ index. As a preliminary study
we computed the Pearson correlation for the 26 countries to get the correlation
of the 14 independent variables with the two values of the dependent variable
EGU: EGU1 and EGU4. This provided us with a global picture of factors which
most influenced the extreme values of e-Government use in Europe. To facilitate
the interpretation of the correlation results, the irrelevant answers (9=no answer
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/ don’t know) were removed for this analysis.

According to Pearson, a high frequency to buy goods over the Internet
(IBUY) was the variable with the highest correlation coefficient (|r| = 0.43) with
e-Government use (EGU), which according to Cohen (Cohen 1988) suggests a
medium strength correlation (0.3 < |r| < 0.5). In addition, a medium strength
correlation (|r| = 0.34) was also found between education level (ISCED) and
e-Government use. Finally, manual occupation (OCC MAN) and Internet fre-
quency of use (IFU) were found to be inversely and positively correlated with
EGU respectively (|r| = 0.27), which is considered nearly medium strength cor-
relations. In all the cases the p-value of the test was lower than the significance
level alpha, 0.05 and thus, the correlations found are significant although the
majority of the values are of small strength (0.1 < |r| < 0.3).

To find more specific characteristics of e-Government use, we used the super-
vised learning algorithm Consolidated Tree Construction (CTC) (J.M. Pérez et
al. 2007), which beyond a specific discriminating capacity to distinguish between
the two extreme levels of EGU, provided a particular and stable description of
the most influential variables for each EGU value. For the analysis we selected
two countries from each of the four EGUI+ levels defined, very high, high, low
and very low.

In particular an experiment was run in Weka (M. Hall et al. 2009) with
CTC for the eight countries selected, using the 14 independent variables and
the dependent variable EGU with two possible values, null (EGU1) and com-
plete (EGU4). A ten-fold cross-validation (10-fold CV) strategy was used for
validation. Table 7.15 shows the characteristics of the datasets and the obtained
classification rates. As can be observed the datasets are quite unbalanced in the
majority of countries selected: columns #EGUi and #EGUi (%). Thus, in order
to obtain a better characterisation of the minority EGU class in each country,
CTC was run using a distribution of the minority class of 50% and 2% of each
dataset as the minimum number of instances per leaf, which limits the minimum
size of any decision node to the specified value.

#EGUi #EGUi (%) CTC average results
Co. EGUI+ level i=1 i=4 i=1 i=4 Pr Re Fm Acc

DK Very High 2,955 13,284 18 82 0.85 0.83 0.84 0.83
NO Very High 1,263 2,876 31 69 0.76 0.74 0.74 0.74
IE High 16,406 16,717 50 50 0.73 0.73 0.73 0.73
EE High 8,202 7,971 51 49 0.73 0.73 0.73 0.73
LV Low 10,589 5,582 65 35 0.77 0.74 0.74 0.73
BE Low 11,525 5,367 68 32 0.77 0.71 0.72 0.71
PL Very Low 29,955 5,370 85 15 0.86 0.74 0.77 0.74
RO Very Low 39,003 2,561 94 6 0.94 0.67 0.75 0.67

Table 7.15: Number of answers for extreme EGU levels (#EGUi, i ∈{1,4}) and
CTC average results in eight countries with four EGUI+ levels.
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According to Table 7.15 the average results achieved by the CTC trees in
terms of precision (Pr), recall (Re), F-measure (Fm) and accuracy (Acc) were
good with values over 0.71 in the four groups, except in Romania where recall
and accuracy scored 0.67. This is not surprising since Romania has a very
unbalanced dataset, with 94% of the surveys being of null e-Government use
type (#EGU1), which reduces the recall and accuracy of the minority class.

The structures of the classification trees provide an explanation of the classi-
fication. In Figures 7.3, 7.4 and 7.5 CTC trees obtained for Denmark, Belgium
and Poland are shown by way of example. In the CTC trees displayed, in the
leaf nodes the first number (0/1) represents the class given to the leaf node
(EGU1/EGU4), whereas inside the parenthesis, the numbers before and after
the slash represent the number of examples involved and the number of misclas-
sified examples respectively.

Figure 7.3: CTC tree obtained for Denmark which has a very high EGUI+ level.

Figure 7.4: CTC tree obtained for Belgium which has a low EGUI+ level.
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Figure 7.5: CTC tree obtained for Poland which has a very low EGUI+ level.

Main rules for extreme levels of e-Government use
Country Null: EGU1 Complete: EGU4

DK IBUY=1 IBUY=3 & OCC ICT=0
IBUY=3 & EMPST=1/3 IBUY=2

NO IFU=3 & IBUY=1 IFU=3 & IBUY=3
IFU6=3 IFU=3 & IBUY=2 & ISCED6=1

IE IBUY=1 & CFU 6=3 IBUY=3 & IFU=3 & ISCED=3
IBUY=1 & CFU=3 & ISDEC 6=3 IBUY=3 & IFU=3 & ISCED=2

& AGECLS6=2

EE IBUY=1 & OCC MAN6=0 IBUY=3 & ISCED 6=1
IBUY=1 & OCC MAN=0 IBUY=1 & OCC MAN=0
& CFU 6=3 & CFU=3

LV ISCED=1 ISCED=3 & EMPST 6=4
ISCED=2 & IBUY=1 ISCED=2 & IBUY 6=1

BE IFU 6=3 IFU=3 & IBUY 6=1
IFU=3 & IBUY=1 & ISCED 6=3

PL ISCED=1 ISCED=3
ISCED=2 & CFU6=3 ISCED=2 & CFU=3 & IBUY=3

RO OCC MAN6=0 OCC MAN=0

Table 7.16: Main rules provided by the CTC trees for complete an null e-
Government use.

Globally analysing the structures of the classification trees, we con-
cluded that excluding the countries with a very low EGUI+ level, com-
plete e-Government use (EGU4) was closely related to recent online shopping
(IBUY=3), whereas the same action carried out more long time ago (IBUY=1)
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seemed to be connected to null e-Government use (EGU1). Table 7.16 sum-
marises the main rules provided by the CTC trees for each country and their
descriptions are given in the next paragraphs. According to the table, the follow-
ing variables were found to have a close connection with extreme e-Government
use levels, listed in a descending number of appearances in the main 29 rules
presented for the eight countries: Buy goods over the Internet (IBUY) = 21/29,
Education level (ISCED) = 14/29, Internet frequency of use (IFU) = 8/29,
Computer frequency of use (CFU) = 6/29, Manual occupation (OCC MAN) =
5/29, Employment situation (EMPST) = 2/29 and ICT occupation (OCC ICT)
= 1/29.

Countries with a very high EGUI+ level: Denmark and Norway

In Denmark the citizens who rarely bought goods over the Internet (IBUY=1)
and those who had done online shopping recently and were employees/self-
employees or students (IBUY=3 & EMPST= 1/3) did not use e-Government
tools (EGU1). On the other hand, Danish citizens who did use e-Government
tools (EGU4) had bought online quite recently and were not ICT professionals
(IBUY=3 & OCC ICT=0) or had done online shopping between three months
and a year previously (IBUY=2). These main CTC rules found for EGU
in Denmark are also available in the most representative nodes of each class
(0:EGU1/1:EGU4) in Figure 7.3.

In Norway the people who used the Internet almost everyday but had
not bought goods over the Internet for a time (IFU=3 & IBUY=1) and the
ones who did not daily use the Internet (IFU6=3) did not use e-Government
tools. Conversely, Norwegian people who used the Internet almost everyday
and had recently bought goods over the Internet (IFU=3 & IBUY=3) did use
e-Government. In addition, Norwegians who used the Internet almost daily, had
bought goods over the Internet quite recently and did not have a low education
level (IFU=3 & IBUY=2 & ISCED6=1) also used e-Government tools.

Countries with a high EGUI+ level: Ireland and Estonia

In Ireland the citizens not using e-Government tools (EGU1) were those who
hardly ever bought goods over the Internet and who did not use the computer
daily (IBUY=1 & CFU 6=3) together with those who hardly ever did online
shopping, used the computer almost daily but did not have a high education
level (IBUY=1 & CFU=3 & ISCED 6=3). On the other hand, the Irish citizens
who recorded a complete use of e-Government (EGU4) were those who had
bought goods over the Internet recently, used the Internet daily and had a
high education level (IBUY=3 & IFU=3 & ISCED=3). Additionally, Irish
people who had shopped online recently, used the Internet almost daily, had a
medium education level and were not in the age range of 16-24 years also used
e-Government tools (IBUY=3 & IFU=3 & ISCED=2 & AGECLS 6=2).

In Estonia citizens who had not bought online for long time and had a
manual occupation (IBUY=1 & OCC MAN6=0), as well as those who had not
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shopped online for a long time, but did not have a manual occupation and did
not use the computer daily (IBUY=1 & OCC MAN=0 & CFU 6=3) did not use
e-Government tools. However, Estonian citizens who had bought goods over the
Internet recently and did not have a low education level (IBUY=3 & ISCED6=1)
or those who had bought online long time ago, did not have a manual occupation
but used the computer almost every day (IBUY=1 & OCC MAN=0 & CFU=3),
did use e-Government tools.

Countries with a low EGUI+ level: Latvia and Belgium

In Latvia, people with a low education level (ISCED=1) and those with a
medium education level who had bought goods over the Internet only a long
time ago (ISCED=2 & IBUY=1) had no inclination to use the e-Government
tools (EGU1). On the other hand, Latvians with a high education level who
were not retired (ISCED=3 & EMPST 6= 4) and those with a medium education
level who had bought online in the previous 12 months (ISCED=2 & IBUY6=1)
did use such tools (EGU4).

In Belgium the null use of e-Government is related to citizens who did not
use the Internet daily (IFU6=3) along with the ones who used it almost daily
but had not bought goods over the Internet for a long time and did not have
a high education level (IFU=3 & IBUY=1 & ISCED6=3). On the other hand,
Belgian citizens making a complete use of e-Government, used the Internet daily
and had shopped online within the previous 12 months (IFU=3 & IBUY 6=1).
The most representative nodes of each class (0:EGU1/1:EGU4) in the CTC tree
shown in Figure 7.4 also exhibit the main CTC rules found for EGU in Belgium.

Countries with a very low EGUI+ level: Poland and Romania

In Poland citizens with a low education level (ISCED=1) together with those
with a medium education level who did not use the computer daily (ISCED=2 &
CFU 6=3) showed a null trend towards the use of e-Government (EGU1). On the
other hand, Polish who used e-Government tools (EGU4) had a high (ISCED=3)
or a medium education level, used the computer almost daily and had bought
goods over the Internet quite recently (ISCED=2 & CFU=3 & BUY=3). The
most representative nodes of each class (0:EGU1/1:EGU4) shown in Figure 7.5
also illustrate the main CTC rules found for EGU in Poland.

Romania was the only country where the two extreme e-Government use
levels were characterised by two rules that involved a single factor, manual
occupation (OCC MAN): manual workers (OCC MAN6=0) did not use the e-
Government tools, whereas non manual workers did use them.

7.3.4 Comparison between EGUI+ and other indexes

Aiming to analyse if the performance of the index we defined to measure the
practical e-Government use is similar to other conceptual indexes broadly used
as indicators of related features such as e-Readiness of a country, we selected
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four indexes and compared them to EGUI+: E-Government Development Index
(EGDI) and its Online Service Index (OSI) component, and the Networked
Readiness Index (NRI) and its Government Use (GU) component. Next we
describe the indexes mentioned and the comparison carried out.

7.3.4.1 Description of the indexes

From 2001 to the present, The United Nations Department of Economic and
Social Affairs (UNDESA) has published the UN E-Government Survey (UN
2018). In 2003 this survey began to provide an analysis of the progress in using
e-government via the E-Government Development Index (EGDI), a compos-
ite index based on the weighted average of three normalised (norm.) indices,
assigning one third weight to each of them (see Equation 7.3): the Telecommu-
nications Infrastructure Index (TII), the Human Capital Index (HCI) and the
Online Service Index (OSI). As a composite indicator, the EGDI is used to mea-
sure the readiness and capacity of national institutions to use ICTs to deliver
public services (UN 2018). Prior to the normalisation of the three component
indicators, the Z-score standardisation procedure is implemented for each com-
ponent indicator to ensure that the overall EGDI is decided equally by the three
component indexes.

EGDI =
1

3
(TIInorm. +HCInorm. +OSInorm.) (7.3)

The OSI index, one of the three components of the EGDI index described
in Equation 7.3, is a composite normalised score based on an independent sur-
vey questionnaire, conducted by UNDESA, which assesses the national online
presence of all 193 United Nations Member States. The survey questionnaire
computes several features related to online service delivery, including whole-of-
government approaches,open government data, e-participation, multi-channel
service delivery, mobile services, usage up-take, digital divide as well as innova-
tive partnerships through the use of ICTs. (UN 2018)

The World Economic Forum has been annually publishing The Global Infor-
mation Technology Report (Dutta et al. 2015) since 2001, where the Networked
Readiness Index (NRI) is provided. As shown in Equation 7.4, the NRI is a
composite index computed as the weighted average of four main subindexes
(subind.), being all the weights a quarter: Environment subindex, Readiness
subindex, Usage subindex and Impact subindex.

NRI =
1

4
(Enviromentsubind.+Readinesssubind.+Usagesubind.+Impactsubind.)

(7.4)

The Usage subindex of NRI assesses the level of ICT adoption by a society’s
main stakeholders: government, businesses and individuals (Dutta et al. 2015).
In particular, the Usage subindex is computed as the weighted average of three
pillars (using weights of one third), the Individual usage, Business usage and
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the Government usage. In this case we focused on the Government usage pil-
lar, which assesses the leadership and success of the government in developing
and implementing strategies for ICT development, as well as in using ICTs, as
measured by the availability and quality of government online services (Dutta
et al. 2015). The Government usage pillar is computed as the average of the
importance of ICTs to government vision, the Government Online Service Index
and the Government success in ICT promotion.

7.3.4.2 Ranking comparison

In order to study the relationship between e-Government adoption (EGUI+) and
the level of e-Government readiness (EGDI), network readiness (NRI), national
online presence (OSI) and ICT adoption by government (GU), we compared
their rankings for the 26 countries analysed. For the comparison we tried to
use similar time periods, 2009-2015 period for the annual indexes or indicators,
EGUI+, NRI and GU (Dutta and Mia 2010; Dutta and Mia 2011; Dutta and
B. Bilbao-Osorio 2012; B. Bilbao-Osorio et al. 2013; Bilbao-Osorio et al. 2014;
Dutta et al. 2015), and 2010-2016 period for the biannual indexes or indicators,
EGDI and OSI (UN 2010; UN 2012; UN 2014; UN 2016).

Specifically we computed the number of positions won or lost (positive or
negative value) by the countries from the EGDI, OSI, NRI and GU rankings
to the EGUI+ ranking, which in general terms is low (see Table 7.17). As
shown in Table 7.17, we grouped the countries into three different sets using ±5
positions as a threshold for the ranking differences appreciated (nearly a 20%
of the ranking) represented by the following codes: blue-bold if they drop more
than five positions, green-roman if they drop or gain fewer than five positions
(stable countries) and red-italic if they gain more than five positions.

According to Table 7.17, for a great majority of the countries involved in
the analysis, 74% on average (green-roman ones) the practical e-Government
use does match the features measured by the conceptual the indexes, EGDI,
OSI, NRI and GU. To this regard, we found twelve countries (46%) appear-
ing in all the groups with small ranking differences (stable countries): Austria
(AT), Bulgaria (BG), Cyprus (CY), Denmark (DK), Hungary (HU), Lithuania
(LT), Luxembourg (LU), Latvia (LV), Netherlands (NL), Norway (NO), Por-
tugal (PT) and Sweden (SE). In addition, we observed that EGDI is the most
similar index to EGUI+, since 88% of countries (23/26) are of stable type.

On the other hand, only 16% of the countries (blue-bold ones) on average
showed higher positions in the rankings provided by the rest of the indexes than
for that of EGUI+ (< -5 positions). Analysing all the groups with high negative
ranking differences with EGUI+ (blue-bold ones), we did not find any country
common to all of them but Czech Republic (CZ) and Belgium (BE) could be
considered as common since they are nearly in the blue-bold groups of EGDI
and GU indexes respectively. In addition, the negative ranking differences were
lower for EGDI than for the rest of indexes, where we observed that Czech
Republic (CZ) was the country with higher drops, falling from 7th, 4th and
3rd positions in the OSI, NRI and GU rankings to the 26th one in the EGUI+
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ranking.
Finally 9% of the countries on average achieved lower positions (red-italic) in

the rankings of the four conceptual indexes than in the ones provided by EGUI+

(> 5 positions), although the EGDI one does not have any country with such
ranking rises. In the rest of indexes, we found that Estonia (EE) is the only
country common to all the groups with high positive ranking differences. In
addition, Estonia also was the country with the highest ranking rise for the
index we defined, rising from 22nd, 24th and 26th positions in the OSI, NRI and
GU rankings to 8th one in that of EGUI+.

Ranking dif. Ranking dif. Ranking dif. Ranking dif.
Co. EGDI-EGUI+ Co. OSI-EGUI+ Co. NRI-EGUI+ Co. GU-EGUI+

IT -10 CZ -19 CZ -22 CZ -23
BE -7 EL -16 ES -9 MT -12
PL -6 IT -12 BE -6 SK -10
CZ -4 BE -6 MT -5 EL -7
ES -4 ES -6 PL -5 RO -6
FR -4 PL -6 SE -4 BE -4
NL -3 LT -5 IT -3 BG -4
LT -2 RO -4 LU -3 ES -3
MT -2 FI -2 RO -3 SE -3
RO -2 NL -2 CY -2 PT -2
AT 0 HU -1 EL -2 IT -1
BG 0 AT 0 HU -2 LT -1
EE 0 MT 0 AT -1 LU -1
EL 0 BG 1 IE -1 PL -1
SE 0 LV 1 NL -1 CY 0
LU 1 NO 2 BG 1 DK 0
DK 2 PT 2 LT 1 HU 1
NO 2 CY 3 PT 2 NL 1
SI 2 SE 3 SI 2 AT 2
CY 3 SI 3 SK 2 NO 2
FI 3 SK 4 LV 3 LV 3
SK 3 DK 5 NO 3 FI 4
HU 4 LU 5 FI 7 SI 4
LV 4 FR 13 DK 8 IE 9
IE 5 IE 13 FR 14 FR 12
PT 5 EE 14 EE 16 EE 16

Table 7.17: EGUI+, EGDI, OSI, NRI and GU ranking comparison for the 26
countries analysed.
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For a deeper analysis of the similarity between the performance of the four
conceptual indexes and that of EGUI+ we computed four pairwise comparisons
based on Kendall correlation (Kendall 1938) using the rankings provided by each
index. Table 7.18 shows the results of Kendall pairwise tests between EGUI+

and EGDI, OSI, NRI and GU, in terms correlation values (T ) and significance
(p-values). The second and third columns of the table show the performance of
the stable countries (green-roman ones in Table 7.17) suggesting that the four
indexes are highly correlated with EGUI+ at 0.05 significance level, p-value < α,
with correlation values (T ) on average of 0.8. In addition, in the in the fourth
and fifth columns of Table 7.18 we also show the results of the Kendall tests
carried out analysing the complete set of countries. In this case, the values
of T decreased down to 0.5 on average, being EGDI the index which scores
the highest correlation value (T =0.72) with the index we defined. In the global
comparison, we observed higher correlation values for the indexes measuring the
e-readiness of the countries (EGDI and NRI) than for the indicators of features
related with e-Government (OSI and GU).

Stable* countries 26 countries
Index p-value T p-value T

EGDI 3.87× 10−06 0.72 8.90× 10−10 0.78
OSI 2.35× 10−02 0.37 5.51× 10−05 0.82
NRI 4.04× 10−03 0.46 2.38× 10−08 0.81
GU 4.69× 10−03 0.43 2.29× 10−07 0.79
* Ranking differences with EGUI+ ≤ ±5 positions.

Table 7.18: Results of the Kendall pairwise correlation tests between EGUI+

and EGDI, OSI, NRI and GU.

Considering all the above, we can state that the empirical analysis carried
out on e-Government adoption across Europe through EGUI+ index concur to
a large extent with the theoretical studies which measure the level of e-readiness
of European countries through different indexes (EGDI, OSI, NRI and GU).

7.3.5 Discussion

On the one hand the digital divide makes the task of providing universally
accessible online government services challenging (Schwester 2009) and on the
other hand, citizen confidence in the ability of an agency to provide online
services is imperative for the widespread adoption of e-government initiatives
(Bélanger and Carter 2008). According to Shareef et al. (Shareef et al. 2011),
e-Government adoption behaviour differs when functional characteristics of or-
ganisational, technological, economical, and social perspectives of e-Government
differ. The first part of the empirical study carried out based on Eurostat CSIS
surveys, the classification of countries in different e-Government use levels (see
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7.14) is in concordance with the statement since, first of all, no all countries
have the same e-Government use level, and, although with exceptions, more
developed and wealthier countries seem to have higher levels of e-Government
use.

With regard to the factors affecting the e-Government use, buying goods
in the Internet could be expected to be one of the factors directly related to
e-Government use due to the similarities existing between e-commerce and e-
government. According to Schwester (Schwester 2009) the same way factors
from Technology Acceptance, Diffusion of Innovation and trustworthiness mod-
els play a role in user acceptance of e-commerce, it is expected that they will
also affect e-Government adoption. The outcome of our study shows that in
countries with higher e-Government adoption according to Eursotat CSIS sur-
veys, IBUY, the variable related to e-commerce is the one conditioning most of
the times the use or not use of e-Government services.

But, this is not always the case, there are differences between commercial
businesses and government agencies (Bélanger and Carter 2008). E-commerce
and e-Government differ in their reasons for existence (profit vs. service) and
constituents served (target market vs. population at-large). Businesses can
choose their customers; however, in e-Government, agencies are responsible for
providing access to the entire eligible population, including individuals with
lower incomes and disabilities (Schwester 2009). Mandatory relationships exist
only in e-Government. Citizens perceive businesses differently than govern-
ment. In addition, the structure of businesses is different from the structure of
agencies in the public sector. Decision-making authority is less centralised in
government agencies than in businesses. This dispersion of authority impedes
the development and implementation of new government services. The third
difference is accountability. In a democratic government, public sector agencies
are constrained by the requirement to allocate resources and provide services ‘in
the best interest of the public’. The political nature of government agencies is
also a feature that makes e-Government and e-commerce different. These fac-
tors could be related with the fact that in countries with lower adoption level,
other factors such as education level and occupancy appear to be related to the
e-Government adoption.

On the other hand, some authors, Afyonluoglu and Alkar (Afyonluoglu and
Alkar 2017) for instance, compared 16 international e-government benchmark-
ing studies completed between 2001 - 2016 by five active organisations including
UN and WEF and identified the common points and the differences with respect
to 22 different criteria including indexes such as EGDI and NRI. They pointed
out that none of studies compared measures the “usage of e-services by citi-
zens”, “governance model of e-Government”, “benefits of e-services” and “sat-
isfaction”, suggesting that they should be considered for future e-Government
framework improvements. Similarly, Jadi and Jie (Jadi and Jie 2017) use the
EPI E-participating index, a supplementary indicator designed by the UN, as
an output of government effort to evaluate the performance of e-Government
systems. The authors state, that although the EGDI is used as a benchmark to
provide a numerical ranking of e-Government development, building websites,
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infrastructures and providing online services only shows how the readiness of the
government to exploit the facilities. However, in addition to those indicators the
performance of e-Government systems can be analysed by measuring to what
extent citizens are using these facilities. The second part of this work is in line
with the previous lines, where we have compared the e-Government adoption
and the e-readiness of 26 EU countries, based on the EGUI+ index empirically
computed from the 2009-2015 Eurostat CSIS Surveys, the EGDI index and its
OSI component published in the 2010-2016 UN e-Government Surveys, and the
NRI and its GU component provided by the 2010-2015 World Economic Fo-
rum’s Global Information Technology Reports. According to our analysis, it
seems that in the majority of the countries the situation of the e-Government
does not differ substantially despite using different calculation methods. To this
regard we think that the compute of e-readiness of countries (EGDI, NRI) could
be improved by including the real use of e-Services quantified in the index we
define (EGUI+).

7.4 Summary

In this chapter we presented two contributions made on e-Services, the first one
focused on modelling the interaction of users in the enrolment web information
area of a university and the second one empirically analysing the use of e-
Government services in Europe.

In particular, in the first contribution we analysed the navigation in the
enrolment area of the University of the Basque Country, carrying out a com-
plete data mining process which showed that successful and failure navigation
behaviours can be automatically modelled using data mining techniques. To
that end, two domains were defined to represent the navigations of the users:
28 interaction features extracted from the recorded click-streams (navigation
style) and URLs visited by the users in each session (navigation sequence). On
the one hand, using supervised learning, CTC trees (J.M. Pérez et al. 2007)
over the first domain (navigation style), we are able to automatically distin-
guish the two navigation types with an accuracy rate of 98%. On the other
hand, using unsupervised learning techniques, in each of the two domains and
in a combination of both, we were also able to automatically detect the success
and failure navigation sessions but achieving a lower accuracy, around 78%. Be-
sides, an additional subsystem to detect failure type sessions was built based on
the navigation style using unsupervised procedures, which enabled to tune the
accuracy in order to achieve higher values, 100% for a 10% of the new nearest
sessions. The two main systems built based on the navigation style to auto-
matically classify success and failure type navigations, were also able to identify
the main rules (supervised) and characteristics (unsupervised) of each type of
session, e.g. the time spent on average on content (text is dominant) or scatter
(links are dominant) type URLs. Thus, we think that this contribution is a
suitable basis to improve the e-Service analysed in a near future.

In the second contribution, we analysed the practical use of e-Services sup-
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plied by Governments across Europe (e-Government adoption for 26 EU coun-
tries) based on the empirical data provided by Eurostat (Eurostat 2004). Based
on the data obtained we first quantified this factor by defining two indexes, the
E-Government Use Index (EGUI) and an extreme version of it (EGUI+). Then,
using CTC trees (J.M. Pérez et al. 2007), we characterised the use/non use
of e-Government services in a selection of countries with different EGUI+ lev-
els. These procedures achieved an average accuracy of 73% and determined the
main factors related to the practical use of e-Government in each of the coun-
tries, e.g. the frequency of buying goods over the Internet or the education level.
In addition, we compared one of the proposed index (EGUI+) to other indexes
measuring the level of e-readiness of a country such as the E-Government Devel-
opment Index (EGDI) its Online Service Index (OSI) component, the Networked
Readiness Index (NRI) and its Government Use component. The ranking com-
parison found that EGUI+ was correlated with the four indexes mentioned at
0.05 significance level. The outcomes contribute to gaining an understanding of
what are some of the factors characterising the practical use of e-Government
in Europe. Thus, our findings can provide some guidelines with which to im-
prove the interaction of citizens with web services and information offered by
institutions depending on their e-Government use level (EGUI+).
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Chapter 8

Conclusions

This dissertation presents contributions to improve HCI systems based on ma-
chine learning techniques in different contexts. Therefore, there are contribu-
tions in machine learning and HCI contexts:

In the context of machine learning, the work deals with one of the main
difficulties that the use of clustering procedures presents, which is evaluating
the quality of partitions in all type of contexts. Cluster Validity Indexes (CVIs)
enable this evaluation but none of them has proven to be the best in all situations
thus, in the first contribution several decision fusion approaches using different
indexes are proposed as an effective alternative.

In HCI, the contributions are framed in three areas. The first one belongs
to the accessibility context and presents a system to automatically detect navi-
gation problems of users with and without disabilities.

The medical informatics area is analysed in the next one by first, connect-
ing visual and interaction behaviours on a medical dashboard used to support
the decision-making of clinicians (SMASH) and second, by automatically de-
tecting and characterising two main cohorts of users based on their interaction
behaviour: primary (pharmacists) vs secondary (non-pharmacists).

Finally, we also contributed to the area of e-Services modelling their inter-
action and use. On the one hand, based on the interaction data gathered in
the website of a university (UPV/EHU) potential students aiming to enrol the
university were modelled. On the other hand, based on survey data provided
by Eurostat a quantification and characterisation of the e-Government adoption
was accomplished.

Our contributions in such different HCI environments prove the importance
of machine learning to generate better HCI systems in the future. In the follow-
ing sections the main conclusions aroused in each of the contexts will be break
down.
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8.1 Machine learning - Clustering validation.

The analysis carried out shows that the design of CVI decision fusion strategies
similar to the ones used in multiple classifier systems for clustering validation
requires weighting the votes according to the characteristics of the CVIs involved
and the experimental factors available (e.g noise level). None of the strategies
with unweighted votes, showed any improvement in performance compared to
the best CVI (Silhouette), whereas nearly every voting strategy weighting the
CVIs according to their performance showed to behave better than single CVIs.

In particular, the best voting strategy for real and synthetic datasets uses
the two CVIs with the highest success rates in each controllable experimental
factor and weights each vote according to the importance of each factor defined
beforehand. In this regard, the Friedman and Wilcoxon tests performed indi-
cated that the results of the best voting strategy were significantly better than
the ones given by the 10 top ranked indexes of the reference work (Arbelaitz
et al. 2013b).

In light of the results achieved, we think that decision fusion strategies are
a successful path to determine which is the best partition for each context,
which is the key issue in the unsupervised learning field. Thus, we believe that
new contributions on decision fusion strategies for clustering validation can help
reducing the uncertainty about the suitability of the partitions generated by the
algorithms.

8.2 HCI - Accessibility

A system built carrying out a complete data mining process on the data collected
by RemoTest platform showed to be a promising strategy to automatically de-
tect the web navigation problems that users with and without disabilities may
be experiencing.

The first step, a hierarchical two-level approach based on supervised learn-
ing procedures to automatically discriminate four different devices first in two
groups (keyboard and others) and second, trackball, joystick and mouse ob-
tained high accuracy: 99.26 in the first level and 89.84 in the second level. As
future adaptations discussed for each type of devices differ significantly, mini-
mizing the critical error occurred when discriminating both groups of devices
was vital.

The second step of the system detects automatically problems that each
user may be experiencing while carrying out two types of tasks using unsuper-
vised learning procedures. On the one hand MiniTasks are directed navigations
in which users are asked to click highlighted targets and on the other hand,
SearchingTasks are searching and directed navigations where users are asked
to search a particular web page. Concretely, for each task and each device,
the navigation traces grouped in clusters with automatically detected deviated
features were visually analysed to find problematic patterns. A total of seven
problematic patterns including too much distance, too much time, rectifications
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in directions, unnecessary clicks, difficulties around the target, long clicks, and
too many stops were found in MiniTasks, and, all of these, except difficulties
around the target, were also observed in SearchingTasks, which is understand-
able given that in the first scenario the users had to reach the targets appearing
in the screen.

In addition we were able to point out the reasons behind the detected pat-
terns and suggest suitable adaptations according to the patterns and the devices
used.

8.3 HCI - Medical informatics

In this contribution for which two analysis were accomplished using interaction
and visual data gathered in two studies (lab and observational) carried out with
clinicians using a medical dashboard (SMASH), conclusions on two matters
were obtained: synergies between visual and interactive behaviours and user
modelling based of interactive behaviour.

8.3.1 Synergies between visual and interactive behaviours

SMASH has seven screens and we analysed the screen divided interaction as well
as the global interaction of lab study participants, who had to complete specific
tasks. The clustering analysis of the interaction data showed that the users’
interactive behaviour was similar across all screens of SMASH. Alternatively, if
the behaviour was different (i.e. a specific screen led to a different behaviour)
this also changed similarly across the participants within the clusters. This
finding suggests that incorporating the specific screen in the user model may
not make any difference to the way dwell time and exploration metrics, elapsed
time and number of mouse hovers between two consecutive clicks respectively,
are used in the model.

On the other hand, the SMASH Interface is divided in nine different areas
of interest (AOIs) considered relevant for the gaze activity and we analysed
the AOIs divided gaze activity of lab study participants, in terms of fixation
duration. The analysis of the gaze activity yields the same groups as the ones
generated by the analysis of user interaction. This indicates that those partic-
ipants who exhibited a particular interactive behaviour in terms of dwell time
and exploration had a similar visual behaviour in terms of fixation duration
on the AOIs. Since gaze is a proxy of attention and, at the same time, atten-
tion precedes action (Huang et al. 2012), we can say that these groupings are
not incidental and the exhibition of particular interactive behaviours might be
determined, to some extent, by the duration of fixations on specific areas of
interest.

The inclusion in the analysis of the interaction data of the participants
from the observational study who used SMASH as part of their daily activ-
ities, showed that the resulting behaviours are stable across the two settings
despite the fact that different tasks were conducted.
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This has promising consequences in that visual behaviour could be inferred
using interactive data alone. Some interaction data analysis can be carried out
in real time in the browser. The processing and analysis of interaction data
is straightforward –provided that the right metrics are being monitored– and
the deployment of eye-tracking devices beyond laboratory settings is not to be
expected in the medium term. The computed metrics to measure the interaction
and the gaze activity can be used 1) to infer usability problems in real-time and
2) to inform adaptations on the user interface. Without having gaze data from
the participants of the observational study, we can hypothesise that their visual
behaviour might be similar to that of the laboratory participants who were
grouped in their respective clusters. Future work will certainly pursue this lead.

8.3.2 User modelling based on interactive behaviour

This contribution successfully modelled the interactive behaviour of two differ-
ent cohorts of electronic dashboard users of the observational study. In addition
to the explicit differences derived from the descriptive analysis, we identified
the differences that characterised the two groups in terms of their interactive
behaviours. These differences are important to understand everyday use of the
SMASH dashboard where primary pharmacist users are more competent on
screens that provide summary and trends information, and secondary general
practice staff users are less competent on screens containing a detailed break-
down of the data. We propose workflows that encompass these activities in a
coherent sequence and personalised educational nudges to foster engagement.

The contributions of the work are twofold. On the one hand, a method-
ological contribution suggests that it is feasible to characterise the interactive
behaviour of users in a medication safety dashboard using user interaction events
such as mouse hovers and elapsed time between two consecutive clicks. On the
other hand, an empirical contribution advances into our understanding of how
medical dashboards are used by health care stakeholders, an area which remains
largely unexplored and is key to perform adaptations that cater for the users’
ability to perceive, process and make data actionable (Dowding et al. 2015).

8.4 HCI - E-Services

The last two contributions lead us to conclude that modelling both, the inter-
action and the use of e-Service, is possible.

8.4.1 Modelling the interaction with e-Services

This contribution presents the modelling of the enrolment web information area
of the UPV/EHU using web mining techniques. The navigation sessions, were
classified in two types based on the last URL visited: success (users interested in
enrolment information) and failure (users not reaching enrolment information).
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In the first approach, using two supervised algorithms, C4.5 and CTC, we
were able to characterise failure and success type sessions based on the set of in-
teraction features computed for them. According to the paired t-test carried out
the CTC approach provided a significantly better AUC value (0.9828>0.9665),
as well as more simple and stable explanation. CTC indicated that failure type
sessions spent shorter times on average URLs with text dominance and longer
times on average URLs with links dominance. In contrast, success type URLs
were closely linked to long times in URLs with text dominance. Other alterna-
tive rules indicated that low proportions of such type of URLs are related with
failure and high ones with success. This characterisation agreed with the one
carried out with unsupervised classification where similar features were found
to be decisive for session classification.

On the other hand, unsupervised learning algorithms applied to both session
representations used, set of interaction features and sequence of URLs visited,
produced partitions where half of the clusters had a high proportion (>74%) of
one of the navigation types defined, thereby showing that the two perspectives
give rise to automatically detect success and failure type sessions. However,
when comparing both partitions with Jaccard index we concluded that both
perspectives were not connected and thus, may be complementary. Later, the
combination of the selected clusters with a majority of success or failure type
sessions in three different voting systems, showed that the session representa-
tion using a set of interaction parameters was more effective than the one using
the sequence of URLs visited to classify new sessions (accuracy of 78.2%). The
combination of both representations could be complemented successfully, per-
forming slightly better than the previous strategies. Finally, a failure detection
subsystem was built based on the set of interaction parameters allowed defining
a distance threshold to classify new sessions as failure type with high probability.

Thanks to both approaches, we have taken the first step to model the en-
rolment web information area of the UPV/EHU and considering the results, we
can state that either supervised and unsupervised learning techniques are useful
in that process, although the first one has shown to be more accurate.

8.4.2 Modelling the use of e-Services

In this contribution we analysed the e-Government adoption, the practical use of
e-Services supplied by Governments, across Europe (for 26 EU countries) based
on the empirical data provided by Eurostat 2004. The outcomes contribute to
gaining insight on some of the factors influencing the e-Government adoption in
Europe and can provide some guidelines to improve the interaction of citizens
with web services and information offered by institutions depending on their
e-Government use level.

The data provided information to quantify the adoption level and classify
countries into four e-Government use levels (very high, high, low and very low).
The characterisation of two countries from each level using supervised learning
procedures, CTC trees, could differentiated individuals doing null e-Goverment
use from those doing complete use of it with an average accuracy of 73% in
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the eight countries selected: Denmark and Norway, Ireland and Estonia, Latvia
and Belgium and Poland and Romania (e-Government use level in descendent
order).

In addition, Pearson correlation analysis revealed that European citizens
who had bought goods quite recently over the Internet and those with high
education levels did a complete use e-Government tools. These findings are in
line with the ones aroused from the CTC structures of the majority of countries
analysed.

Finally, for the 26 EU countries analysed, the comparison of the rankings
provided by the index measuring the e-Government adoption we defined and
other conceptual indexes measuring the level of e-readiness of a country showed
that they all were correlated at 0.05 significance level. Therefore, we can state
that the adoption levels extracted from the empirical analysis are in general
aligned with more conceptual and theoretical values.

In summary, we think that our research results provide some key-aspects
that could be considered for future strategic decisions on the improvement of
e-Government adoption in different European countries, in terms of knowledge
about the most influential factors on null and complete e-Government use and
also in terms of proposing complementary indexes based on empirical data.

8.5 Further work

The four contributions presented in this dissertation leave room for different
future lines of work.

In the context of clustering validation, further work could include aspects
such as: testing the decision fusion approaches proposed over a large number
of synthetic and real datasets, designing new voting strategies using other CVIs
than those used herein, computing more precisely the impact of the experimental
factors used to define the weights assigned to the CVIs in order to improve
the results or designing voting approaches that are specialised in particular
environments (noisy, overlapped, high dimensionality. . . ).

Regarding the accessibility context, the main future line of action would be
the implementation of suitable adaptations in the system proposed. Therefore,
as both the device used and the problematic patterns are automatically discov-
ered, the corresponding adaptation techniques should be activated accordingly.
To this regard the system could be improved by comparing the interaction fea-
tures of new navigations where adaptations have been activated with the ones
computed in previous navigations where no adaptation was activated.

In the first analysis done in the medical informatics context, new experiments
with remote users could be carried out as further work, where the gaze informa-
tion of such participants will need to be gathered together with the interaction
information in order to validate the relationships found between visual and in-
teraction behaviours. In addition the visual information gathered in a video
format could be used to enrich the analysis by detecting for example problems
that users may have experienced while interacting with the dashboard. Re-
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garding the second analysis, new experiments could be designed providing the
same training to all participants so that other type of user profiles could be
automatically detected and characterised. In addition, involving the designers
of the medical dashboard in the future, could enable the design of the medi-
cal dashboard to be automatically adapted to the profiles extracted in order to
enhance the user experience. Finally, more participants should be engaged in
both analysis thereby the conclusions extracted can be generalised.

In the context of e-Services, regarding the analysis of the University of the
Basque Country, we would like to do an in depth analysis of the complementary
system, considering more complex voting criteria e.g using weighted votes. In
addition, we will like to review the features selected to represent the sessions
and find out if the use of a subset of these features leads to better results.
Additionally, we wish to do an in-depth analysis of the models created in order to
anticipate to the future users, and to identify and improve those elements having
a negative influence on the usability. Regarding the analysis of e-Government
adoption in Europe, our study could be extended by including new Eurostat
(2016-2020) and UN (2018-2020) data and by involving other e-Government
indicators suggested by various authors (Seri et al. 2014; Kabbar and Dell 2013;
Jadi and Jie 2017). Finally, the research could be enriched by extending the
geographical area of interest or focusing more closely on an smaller area.

8.6 Related publications

Throughout this dissertation different type of publications, international journal
papers, international and national conference papers, book chapter and internal
research reports, have been made in four different contexts. Below the related
publications are summarised for each category and context.

• International journals:

– Clustering validation (Yera et al. 2017a): Ainhoa Yera, Olatz Arbe-
laitz, Jose Luis Jodra, Ibai Gurrutxaga, Jose Maŕıa Pérez, and Javier
Muguerza. Analysis of several decision fusion strategies for clustering
validation. Strategy definition, experiments and validation. Pattern
Recognition Letters, 85, 42-48, 2017.

– Accesibility (Yera et al. 2019b), submitted on November 2019: Ain-
hoa Yera, Iñigo Perona, Olatz Arbelaitz, Javier Muguerza, Juan Ed-
uardo Pérez, and Xabier Valencia. Automatic web navigation prob-
lem detection based on client-side interaction data. Data Mining and
Knowledge Discovery.

– Medical informatics (Yera et al. 2019c): Yera, Ainhoa, Javier
Muguerza, Olatz Arbelaitz, Iñigo Perona, Richard N. Keers, Dar-
ren M. Ashcroft, Richard Williams, Niels Peek, Caroline Jay, and
Markel Vigo. Modelling the interactive behaviour of users with a
medication safety dashboard in a primary care setting. International
journal of medical informatics, 129, 395-403, 2019.
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– E-Services (Yera et al. 2019a), submitted on October 2019: Ainhoa
Yera, Olatz Arbelaitz, Oier Jauregi, and Javier Muguerza. Charac-
terisation of e-Government adoption in Europe. PLOS ONE.

• International Conferences:

– Accesibility (Perona et al. 2019): Iñigo Perona, Ainhoa Yera, Olatz
Arbelaitz, Javier Muguerza, Juan Eduardo Pérez, and Xabier Valen-
cia. Towards automatic problem detection in Web navigation based
on client-side interaction data. In Proceedings of the XX Interna-
tional Conference on Human Computer Interaction, 41:1-41:4, ACM,
2019.

– Medical informatics (Yera et al. 2018a): Ainhoa Yera, Javier
Muguerza, Olatz Arbelaitz, Iñigo Perona, Richard N. Keers, Dar-
ren M. Ashcroft, Richard Williams, Niels Peek, Caroline Jay, and
Markel Vigo. Inferring Visual Behaviour from User Interaction Data
on a Medical Dashboard. In Proceedings of the 2018 International
Conference on Digital Health, 55-59. 2019.

– E-Services (Yera et al. 2018c): Ainhoa Yera, Iñigo Perona, Olatz
Arbelaitz, and Javier Muguerza. Modelling the enrolment eService
of a university using machine learning techniques. In Proceedings of
the XVI International Conference e-Society, 83-91, 2018.

• National Conferences:

– Accesibility (Perona et al. 2016): Iñigo Perona, Ainhoa Yera, Olatz
Arbelaitz, Javier Muguerza, Nikolaos Ragkousis, Myriam Arrue,
Juan Eduardo Pérez, and Xabier Valencia. Automatic device de-
tection in web interaction. In Procedings of the XVII Conference of
the Spanish Association for Artificial Intelligence (CAEPIA 2016),
835-844, 2016.

– Accesibility (Perona et al. 2017): Iñigo Perona, Ainhoa Yera, Olatz
Arbelaitz, Javier Muguerza, Juan Eduardo Pérez, and Xabier Va-
lencia. Web elkarrekintzan erabilitako gailuen detekzio automatikoa.
II. IKERGAZTE NAZIOARTEKO IKERKETA EUSKARAZ. Kon-
gresuko artikulu-bilduma Ingeniaritza eta Arkitektura, 22-29, 2017.

– E-Services (Yera et al. 2017b): Ainhoa Yera, Iñigo Perona,
Olatz Arbelaitz, and Javier Muguerza. UPV/EHUko eZerbitzu
baten modelatzea ikasketa automatikoaren bidezII. IKERGAZTE
NAZIOARTEKO IKERKETA EUSKARAZ. Kongresuko artikulu-
bilduma Ingeniaritza eta Arkitektura, 111-118, 2017.

– E-Services (Yera et al. 2018b): Ainhoa Yera, Iñigo Perona, Olatz Ar-
belaitz, and Javier Muguerza. Modeling the navigation on enrolment
web information area of a university using machine learning tech-
niques. Advances in Artificial Intelligence. 18th Conference of the

162



8.6. RELATED PUBLICATIONS

Spanish Association for Artificial Intelligence, CAEPIA 2018. Lec-
ture Notes in Artificial Intelligence 11160 (LNAI 11160), 307-316,
2018.

• Book chapter:

– Accesibility (Abascal et al. 2019): Julio Abascal, Xabier Gardeaza-
bal, Juan Eduardo Pérez, Xabier Valencia, Olatz Arbelaitz, Javier
Muguerza and Ainhoa Yera. Personalizing the user interface for
people with disabilities. Personalized Human-Computer Interaction,
part III, chapter 10, 254-282, 2019.

• Internal research reports:

– E-Services (Yera et al. 2016a): Ainhoa Yera, Iñigo Perona, Olatz
Arbelaitz, and Javier Muguerza. Análisis de la estructura, contenido
y uso del sitio web de la Diputación Foral de Gipuzkoa - Gipuzkoako
Foru Aldundiaren webgunearen egitura, eduki eta erabilera analisia.
Internal research report, 2016.

– E-Services (Yera et al. 2016b): Ainhoa Yera, Iñigo Perona, Olatz Ar-
belaitz, and Javier Muguerza. Análisis de la navegación en la web de
la UPV/EHU - UPV/EHUko webgunearen nabigazioaren azterketa.
Internal research report, 2017.
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Rédei, G.P. (2008). “UPGMA (unweighted pair group method with arithmetic

means)”. In: Encyclopedia of Genetics, Genomics, Proteomics and Informat-
ics. Dordrecht: Springer Netherlands, pp. 2068–2068. isbn: 978-1-4020-6754-

175

https://doi.org/10.1145/2899475.2899489
http://doi.acm.org/10.1145/2899475.2899489
http://doi.acm.org/10.1145/2899475.2899489
https://doi.org/10.1145/3335595.3335642
https://doi.org/10.1145/3335595.3335642
http://doi.acm.org/10.1145/3335595.3335642
http://research.microsoft.com/%5C~jplatt/smo.html
https://doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1093/jamia/ocv050
http://oup.prod.sis.lan/jamia/article-pdf/22/6/1179/6956965/ocv050.pdf
http://oup.prod.sis.lan/jamia/article-pdf/22/6/1179/6956965/ocv050.pdf
https://doi.org/10.1093/jamia/ocv050


BIBLIOGRAPHY

9. doi: 10.1007/978-1-4020-6754-9_17806. url: https://doi.org/10.
1007/978-1-4020-6754-9_17806.

Rich, B.L., J.A. Lepine, and E. Crawford (2010). “Job Engagement: Antecedents
and Effects on Job Performance”. In: Acad Manage J 53, pp. 617–635. doi:
10.5465/AMJ.2010.51468988.

Rousseeuw, P.J. (1987). “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of Computational and Applied
Mathematics 20, pp. 53–65. issn: 0377-0427. doi: https://doi.org/10.
1016/0377-0427(87)90125-7. url: http://www.sciencedirect.com/
science/article/pii/0377042787901257.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1”. In:
ed. by David E. Rumelhart, James L. McClelland, and CORPORATE PDP
Research Group. Cambridge, MA, USA: MIT Press. Chap. Learning Internal
Representations by Error Propagation, pp. 318–362. isbn: 0-262-68053-X.
url: http://dl.acm.org/citation.cfm?id=104279.104293.

Sadler, S., S. Rodgers, R. Howard, C. Morris, and T. Avery (2014). “Training
pharmacists to deliver a complex information technology intervention (PIN-
CER) using the principles of educational outreach and root cause analysis”.
In: Int J Pharm Pract 22, pp. 47–58. doi: 10.1111/ijpp.12032.

Saha, S. and S. Bandyopadhyay (2009). “Performance Evaluation of Some
Symmetry-Based Cluster Validity Indexes”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews 39 (Issue:
4), pp. 420–425. doi: 10.1109/TSMCC.2009.2013335.

Saitta, S., B. Raphael, and I.F.C. Smith (2007a). “A Bounded Index for Cluster
Validity”. In: Machine Learning and Data Mining in Pattern Recognition.
Ed. by Petra Perner. Vol. 4571. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 174–187. isbn: 978-3-540-73498-7. doi: 10.1007/978-
3-540-73499-4_14. url: http://dx.doi.org/10.1007/978-3-540-
73499-4_14.

Saitta, S., R Raphael B., and I.F.C. Smith (2007b). “A Bounded Index for
Cluster Validity”. In: Machine Learning and Data Mining in Pattern Recog-
nition. Ed. by Petra Perner. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 174–187. isbn: 978-3-540-73499-4.

Saitou, N. and M. Nei (1987). “The neighbor-joining method: a new method for
reconstructing phylogenetic trees.” In: Molecular biology and evolution 4.4,
pp. 406–425. doi: 10.1093/oxfordjournals.molbev.a040454.

Santana, V. de and M.C. Baranauskas (2010). “Summarizing Observational
Client-side Data to Reveal Web Usage Patterns”. In: Proceedings of the
2010 ACM Symposium on Applied Computing. SAC ’10. Sierre, Switzerland:
ACM, pp. 1219–1223. isbn: 978-1-60558-639-7. doi: 10.1145/1774088.

1774344. url: http://doi.acm.org/10.1145/1774088.1774344.
Santana, V. de and M.C. Baranauskas (2015). “WELFIT: A remote evaluation

tool for identifying Web usage patterns through client-side logging”. In: In-
ternational Journal of Human-Computer Studies 76, pp. 40–49. issn: 1071-

176

https://doi.org/10.1007/978-1-4020-6754-9_17806
https://doi.org/10.1007/978-1-4020-6754-9_17806
https://doi.org/10.1007/978-1-4020-6754-9_17806
https://doi.org/10.5465/AMJ.2010.51468988
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://dl.acm.org/citation.cfm?id=104279.104293
https://doi.org/10.1111/ijpp.12032
https://doi.org/10.1109/TSMCC.2009.2013335
https://doi.org/10.1007/978-3-540-73499-4_14
https://doi.org/10.1007/978-3-540-73499-4_14
http://dx.doi.org/10.1007/978-3-540-73499-4_14
http://dx.doi.org/10.1007/978-3-540-73499-4_14
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1145/1774088.1774344
https://doi.org/10.1145/1774088.1774344
http://doi.acm.org/10.1145/1774088.1774344


BIBLIOGRAPHY

5819. doi: https://doi.org/10.1016/j.ijhcs.2014.12.005. url: http:
//www.sciencedirect.com/science/article/pii/S1071581914001682.

Schwester, R. (2009). “Examining the Barriers to e-Government Adoption”. In:
Electronic Journal of e-Government 7.1, pp. 113–122. issn: 1479-436-9X.
url: www.ejeg.com.

Schapire, R.E. (1990). “The strength of weak learnability”. In: Machine Learn-
ing 5.2, pp. 197–227. issn: 1573-0565. doi: 10 . 1007 /BF00116037. url:
https://doi.org/10.1007/BF00116037.

Schapire, R.E. (1999). “A Brief Introduction to Boosting”. In: Proceedings of
the 16th International Joint Conference on Artificial Intelligence - Volume 2.
IJCAI’99. Stockholm, Sweden: Morgan Kaufmann Publishers Inc., pp. 1401–
1406. url: http://dl.acm.org/citation.cfm?id=1624312.1624417.

Seri, P., A. Bianchi, and P. Matteucci (2014). “Diffusion and usage of public
e-services in Europe: An assessment of country level indicators and drivers”.
In: Telecommunications Policy 38.5. Special issue on : Selected papers from
the 10th Conference in Telecommunications, Media and Internet Techno-
economics Special issue on : The development of public e-services: Empirical
analysis and policy issues., pp. 496–513. issn: 0308-5961. doi: https://doi.
org/10.1016/j.telpol.2014.03.004.

Shareef, M.A., V. Kumar, U. Kumar, and Y.K. Dwivedi (2011). “e-Government
Adoption Model (GAM): Differing service maturity levels”. In: Government
Information Quarterly 28.1, pp. 17–35. issn: 0740-624X. doi: https://doi.
org/10.1016/j.giq.2010.05.006. url: http://www.sciencedirect.
com/science/article/pii/S0740624X10000985.

Shannon, C.E. (1948). “A Mathematical Theory of Communication”. In: Bell
System Technical Journal 27.3, pp. 379–423. doi: 10.1002/j.1538-7305.
1948.tb01338.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/j.1538-7305.1948.tb01338.x. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x.

Sheng, W., S. Swift, L. Zhang, and X. Liu (2005). “A Weighted Sum Valid-
ity Function for Clustering with a Hybrid Niching Genetic Algorithm”. In:
Trans. Sys. Man Cyber. Part B 35.6, pp. 1156–1167. issn: 1083-4419. doi:
10.1109/TSMCB.2005.850173. url: https://doi.org/10.1109/TSMCB.
2005.850173.

Shneiderman, B. (1996). “The eyes have it: a task by data type taxonomy for in-
formation visualizations”. In: Proceedings 1996 IEEE Symposium on Visual
Languages, pp. 336–343. doi: 10.1109/VL.1996.545307.

Shneiderman, B. (1997). Designing the User Interface: Strategies for Effec-
tive Human-Computer Interaction. 3rd. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc. isbn: 0201694972.

Simpao, A.F., L.M. Ahumada, and B.R. et al Desai (2014). “Optimization of
drug–drug interaction alert rules in a pediatric hospital’s electronic health
record system using a visual analytics dashboard”. In: J Am Med Inform
Assoc 22, pp. 361–369.

Sneath, P.H.A. and R.R. Sokal (1973). Numerical Taxonomy. The Principles
and Practice of Numerical Classification. Freeman.

177

https://doi.org/https://doi.org/10.1016/j.ijhcs.2014.12.005
http://www.sciencedirect.com/science/article/pii/S1071581914001682
http://www.sciencedirect.com/science/article/pii/S1071581914001682
www.ejeg.com
https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/BF00116037
http://dl.acm.org/citation.cfm?id=1624312.1624417
https://doi.org/https://doi.org/10.1016/j.telpol.2014.03.004
https://doi.org/https://doi.org/10.1016/j.telpol.2014.03.004
https://doi.org/https://doi.org/10.1016/j.giq.2010.05.006
https://doi.org/https://doi.org/10.1016/j.giq.2010.05.006
http://www.sciencedirect.com/science/article/pii/S0740624X10000985
http://www.sciencedirect.com/science/article/pii/S0740624X10000985
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/TSMCB.2005.850173
https://doi.org/10.1109/TSMCB.2005.850173
https://doi.org/10.1109/TSMCB.2005.850173
https://doi.org/10.1109/VL.1996.545307


BIBLIOGRAPHY

Stocks, S.J., E. Kontopantelis, A. Akbarov, S. Rodgers, A.J. Avery, and D.M.
Ashcroft (2015). “Examining variations in prescribing safety in UK gen-
eral practice: cross sectional study using the Clinical Practice Research
Datalink”. In: BMJ 351. doi: 10.1136/bmj.h5501. eprint: https://www.
bmj.com/content/351/bmj.h5501.full.pdf. url: https://www.bmj.
com/content/351/bmj.h5501.

Thompson, D.V., R.T. Rust, and J. Rhoda (2005). “The business value of e-
government for small firms”. In: International Journal of Service Industry
Management 16.4, pp. 385–407. issn: 0956-4233. doi: https://doi.org/
10.1108/095642305106140226.

Tinholt, D., N. Van der Linden, M. Ehrismann, G. Cattaneo, S. Aguzzi,
L. Jacquet, S. Vanmarcke, G. Noci, M. Benedetti, and G. Marchio
(2015). Future-proofing eGovernment for the Digital Single Market. Fi-
nal insight report, June 2015 - Study. doi: 10 . 2759 / 32843. url:
https : / / ec . europa . eu / futurium / en / system / files / ged /

egovernmentbenchmarkinsightreport.pdf.
Tinholt, D., Van der Linden N., S. Enzerink, R. Geilleit, A. Groeneveld, G.

Cattaneo, S. Aguzzi, F. Pallaro, G. Noci, M. Benedetti, G. Marchio, and
A. Salvadori (2018). eGovernment Benchmark 2018: Securing eGovernment
for all. doi: 10.2759/371003. url: https://publications.europa.eu/
en/publication-detail/-/publication/82749e75-f389-11e8-9982-

01aa75ed71a1/language-en.
Trewin, S., S. Keates, and K. Moffatt (2006). “Developing Steady Clicks:: A

Method of Cursor Assistance for People with Motor Impairments”. In: Pro-
ceedings of the 8th International ACM SIGACCESS Conference on Comput-
ers and Accessibility. Assets ’06. Portland, Oregon, USA: ACM, pp. 26–33.
isbn: 1-59593-290-9. doi: 10.1145/1168987.1168993. url: http://doi.
acm.org/10.1145/1168987.1168993.

UN (2010). United Nations E-Government Survey 2010: Leveraging e-
government at a time of financial and economic crisis. url: https : / /

publicadministration.un.org/egovkb/Portals/egovkb/Documents/

un/2010-Survey/Complete-survey.pdf.
UN (2012). United Nations E-Government Survey 2012: E-Government for the

People. url: https://publicadministration.un.org/egovkb/Portals/
egovkb/Documents/un/2012-Survey/Complete-Survey.pdf.

UN (2014). United Nations E-Government Survey 2014: E-Government for the
future we want. url: https://doi.org/10.18356/73688f37-en.

UN (2016). United Nations E-Government Survey 2016:E-Government in Sup-
port of Sustainable Development. doi: https : / / doi . org / 10 . 18356 /

d719b252-en.
UN (2018). United Nations E-Government Survey 2018: Gearing E-Government

to Support Transformation Towards Sustainable and Resilient Societies. doi:
https://doi.org/10.18356/d54b9179-en.
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