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Abstract 
In this Thesis, an elaborate control solution combining Machine Learning and Soft 

Computing techniques has been developed, targeting a challenging vehicle dynamics application 
aiming to optimize the torque distribution across the wheels with four independent electric motors. 

The technological context that has motivated this research brings together potential -and 
challenges- from multiple domains: new automotive powertrain topologies with increased degrees 
of freedom and controllability, which can be approached with innovative Machine Learning 
algorithm concepts, being implementable by exploiting the computational capacity of modern 
heterogeneous embedded platforms and automated toolchains. The complex relations among these 
three domains that enable the potential for great enhancements, do contrast with the fourth domain 
in this context: challenging constraints brought by industrial aspects and safety regulations. 

The innovative control architecture that has been conceived combines Neural Networks as 
Virtual Sensor for unmeasurable forces, with a multi-objective optimization function driven by Fuzzy 
Logic, which defines priorities basing on the real-time driving situation. The fundamental principle 
is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel 
slip using the inputs provided by the Neural Network. Complementary optimization objectives are 
efficiency, thermal stress and smoothness. Safety-critical concerns are addressed through 
architectural and functional measures. 

Two main phases can be identified across the activities and milestones achieved in this work. 
In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform 
and -benefiting from a seamless transition using Hardware-in-the-Loop-  it was integrated into a real 
Motor-in-Wheel vehicle for race track tests. Having validated the concept, framework, methodology 
and models, a second simulation-based phase proceeds to develop the more sophisticated controller, 
targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was 
further evolved to support a joint research work which lead to outstanding FPGA and GPU based 
embedded implementations of Neural Networks. 

Ultimately, the different building blocks that compose this work have shown results that 
have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear 
multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are 
accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are 
clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded 
implementation is shown to be viable. Consequently, the proposed control concept -and the 
surrounding solutions and enablers- have proven their qualities in what respects to functionality, 
performance, implementability and industry suitability. 

The most relevant contributions to be highlighted are firstly each of the algorithms and 
functions that are implemented in the controller solutions and, ultimately, the whole control concept 
itself with the architectural approaches it involves. Besides multiple enablers which are exploitable 
for future work have been provided, as well as an illustrative insight into the intricacies of a vivid 
technological context, showcasing how they can be harmonized. Furthermore, multiple international 
activities in both academic and professional contexts -which have provided enrichment as well as 
acknowledgement, for this work-, have led to several publications, two high-impact journal papers 
and collateral work products of diverse nature. 
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CHAPTER 1: 

Introduction 
 

“A goal is a dream with a deadline” 
 

N. Hill 
 

 

 

This first chapter starts by providing a conceptual overview, 
firstly discussing the engineering fields that are involved in the notably 
multi-disciplinary character of this work, and secondly anticipating a 
first insight into the technological context. This leads to the motivation 
and hypothesis, which consequently lead to the objectives and scope.  

This chapter also presents the academic and professional 
context of the doctoral thesis, besides the planning of international stays 
and other formative activities. Finally, the structure of the document is 
presented, illustrating the thread that connects the subsections 
throughout the entire document. 
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1. Introduction 

1.1.  Introduction and technological context 
 

Automobiles and embedded technologies are fields of different nature, but close 
relations can be identified when discussing many of the involved topics. Some of these 
relations certainly arise when working with algorithms for automotive systems, thus also 
involving the field of control theory and software engineering. 

The presented research work is mainly focused in the overlapping area of four 
engineering fields, each of which cover several topics that currently are subject to 
technological changes of notable relevance. This multi-disciplinary area is illustrated in a 
simplified manner by Figure 1-1. Besides well-known relations and dependencies among 
these fields, under deeper analysis, a series of seemingly independent topics also turn out 
to involve relevant multilateral implications connecting them with each other. On the 
upside, some of these implications present innovation potential that could be harnessed by 
exploiting the corresponding novel technologies. On the downside, some other implications 
inevitably present notable challenges and constraints to overcome. The complexity of these 
topics multiplies when their relations need to be carefully studied. This requires exhaustive 
analysis if an added value design, which furthermore is intended to be capable of evolving 
towards an industry-suitable solution, is pursued. This is the case for this dissertation.  

 

Figure 1-1.   Simplified representation of the main fields involved in this research work 

The fundamental points of the technological context of the aforementioned fields 
are briefly highlighted in the following subsection 1.1.2. These lead to the motivation and 
hypothesis discussed in the section 1.2 and the subsequent objectives in section 1.3.  
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As vehicle electrification moves forward, new powertrain topologies are appearing 
and attractive research and innovation opportunities for developing enhanced propulsion 
systems can be been identified. The potential of the increased degrees of freedom and 
controllability of powertrains consisting of multiple electric motors can be conveniently 
addressed by exploiting several enabler technologies. Modern high performance 
heterogeneous embedded platforms can be used to implement complex algorithms, 
including Machine Learning and other Soft Computing algorithms. Although such advanced 
controller designs can be greatly supported by the means of the continuously improving 
model-based development solutions, major challenges appear not only on the notably 
complex technical layers, but also in the regulatory layer addressing safety requirements 
for safety-critical applications. These key points can be summarized as seen in Figure 1-2 
and are introduced in the following paragraphs. 

 

Figure 1-2.   Overview over key topics [1][2][3][4][5][6][7][8][9][10][11] 

Electrified vehicles -i.e. hybrid and pure electric vehicles- are showing a steadily 
growing sales trend. This is not only pushed by environmental, geo-political and economic 
considerations which have led to stringent regulations and certain scandals. It is also driven 
by improving acceptance rates as technology is evolving to provide better capabilities at 
more affordable costs. Some electrified powertrain topologies are evolving towards multi-
motor configurations, beyond conventional hybrids with one motor of each kind. 
Powertrains with multiple electric motors and particularly with independent motors for 
each of the wheels on a same axis are appearing, enabling to implement advanced torque 
vectoring algorithms. This means, that a controller can apply additional torque to individual 
wheels aiming not only to enhance cornering capabilities, but also to provide additional 
safety and stability. 

Relevant changes are also to be observed in the field of vehicle control systems in 
general, besides the powertrain domain. As the number of components and functions in 
modern vehicles increases, the complexity and derived issues in such systems are reaching 
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hardly sustainable levels, with over 100 million lines of source code distributed on board 
among over 100 ECUs (electronic control units). Besides vehicles with multiple motors and 
energy sources, as well as diverse comfort features, ADAS (advanced drivers assistance 
systems) and automated driving are strongly contributing to this issue. The technical 
challenge is further increased by several industry-related constraints. Firstly, some well-
known aspects inherent to the big-scale vehicle industry need to be considered, such as 
strong cost sensitivity and diverse requirements pushing towards modularity, combined 
with accelerated product cycles. Secondly a major constraint is being added to this already 
challenging context: increasing impact from safety standards and regulations addressing 
safety critical systems.   

One of the technological enablers with the potential to play a supporting role in the 
discussed context are the new generation of high-performance embedded platforms. A 
diversity of heterogeneous platforms offering vast computational power is appearing on the 
market, including multiple cores, FPGA logic and GPU units, with a computing power gain of 
at least one order of magnitude. These platforms are rapidly approaching towards industry-
suitable levels of cost and robustness, meaning that they could eventually be exploited to 
cover points from both previous paragraphs. They appear as a suitable solution to 
implement complex algorithms for enhanced control. Furthermore, they enable to integrate 
several control functions into a single unit, thus reducing the ECU count and some of the 
associated complexity and costs. 

Another enabler which can be used to cover several of the previous points is the 
consolidation of model-based development methodologies. This includes automated 
toolchains providing hardware abstraction through automatic code-generation and 
hardware synthesis, which can be helpful to tackle the complexity of modern embedded 
platforms. It also includes automated testing (from model-in-the-loop, MiL, to hardware-in-
the-loop, HiL) and support for requirements traceability and documentation, facilitating to 
handle standards and regulations which typically involve diverse certification processes. 
Such tools can be very conveniently aligned with the V-model throughout the entire 
development process, up to the point of reaching industrialization.  And, in the same way 
they provide valuable agility and flexibility during early development and research, they 
also can provide important modularity and reusability for final product development. 

The final point which presents attractive applicability are advanced algorithms in 
general and Machine Learning in particular. Although the origins of most Machine-Learning 
and Soft Computing techniques are not recent, the performance and intrinsic parallelism of 
some of the mentioned embedded platforms enables real-time implementations of 
computationally demanding algorithms. These circumstances fit very conveniently to 
develop enhanced control solutions targeting the faster times constants, increased degrees 
of freedom and better controllability of the multi-electric-motor powertrains mentioned at 
the beginning of this subsection. 

The discussed topics are the trigger for the Motivation and Hypothesis discussed in 
the following section 1.2. Besides the related overview in Figure 1-2, these topics are 
represented in a structured manner Figure 1-3-part1 (in blue: technology and 
opportunities; in purple: constraints). Each of these technological topics will be subject to a 
detailed discussion in chapter 2, State of the Art, including extensive referencing. 
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1.2. Motivation and hypothesis 
Following the technological context highlighted in the previous subsection 1.1.2, 

several hot topics related to novel technologies and potential applications with remarkable 
research and innovation perspectives have been identified. Each of the topics does already 
present considerable research potential and notable challenges by itself, but beyond that, 
the complex relations interleaving the topics from different fields bring challenges of even 
greater complexity. While some of the points imply dependencies and act as enablers (e.g. 
powerful embedded platforms enabling sophisticated control solutions), some others 
impose restrictions (e.g. industrial cost and safety constraints). This scenario not only 
motivates, but even requires, to take a transversal approach harmonizing the different 
research and engineering disciplines and technical domains in a consistent research project 
of major proportions, in order to cover the broadness of the spectrum being addressed. 

The discussed complex scenario and the underlying motivations will hereby be 
articulated in a concise schematic manner in the following points. It is also illustrated by 
Figure 1-3 where the said structured points are further supported by visual aids:  

 Blue: technological aspects. 
 Purple: aspects which are bound to imply constraints. 
 Green: points with major research and innovation potential, which will shape the 

objectives and contribution of this work. 
 Text next to shapes: related keyworks. 

 

Figure 1-3.   Key points of the thesis illustrating connections between concepts, technologies, 
opportunities, challenges and research potential 
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1) Electric Vehicles are strongly entering the market and multi-electric-motor vehicles 
are appearing as well. Such powertrains provide several relevant points offering 
significant improvement potential in different physical domains, driven by the additional 
degrees of freedom and controllability: 

o Potential 1.1: Vehicle dynamics: applying torque-vectoring techniques enables 
enhanced cornering performance and safety in critical situations. 

o Potential 1.2: Energy efficiency: optimizing the workload among different 
motors depending on their operating points can bring energy savings.  

o Potential 1.3: Thermal stress can be distributed and furthermore optimized as 
well, thus potentially minimizing transient limitations. 

o The resulting control problem is a very complex multivariable and multi-
objective optimization problem. Furthermore, more refined algorithms might 
benefit from signals which are not measurable with conventional vehicle sensors, 
which would need to be estimated somehow. 

 Bottomline Potential: applicability of Soft Computing and Machine Learning 
techniques for several of the algorithmic challenges for the powertrain domain.  

 
2) The new generation of high-performance heterogeneous embedded platforms is 

providing new levels of parallelism and at least one order of magnitude higher 
performance, while being increasingly suitable for vehicle industry applications. 

o Potential 2.1: Implement highly demanding advanced algorithms to satisfy the 
application potential from point 1, including Machine Learning for real-time 
variable estimation, prediction and even iterative optimization. 

o Potential 2.2: Integrate several ECUs into a single ECU, for architectural and 
interfacing complexity reduction, and for better variable availability for 
controllers by reducing bottlenecks. 

 
3) Challenges and constraints for automotive software development are growing due to a 

combination of factors, where two main points consequently derive in two further 
factors: 

o Challenge 1: Growing complexity of the vehicles as a result of multi-motor 
powertrains and other features, such as ADAS, automated driving and other 
functions. 

o Challenge 2: Increased regulatory pressure for the development of safety-
critical functions, which is also applicable to the discussed powertrain control 
functions. 

o Consequence 1: MBD is being consolidated as engineering solution aligned with 
the V development methodology. This is supported by a series of improving 
toolchains with high automation and abstraction. Besides facilitating to 
tackle these challenges and constraints, such tools also simplify the complex 
implementation tasks when working with advanced algorithms (point 1) and 
modern platforms (point 2).  

o Consequence 2: the need for a complexity reduction by implementing 
architectural changes of the automotive systems arises, facilitated by 
Consequence 1 and already mentioned in Potential 2.2. 

 

The motivation that finally crystalizes is to conceive and implement a sophisticated 
solution which is capable to exploit the remarkable innovation potential of several novel 
technologies, maximizing the added value and real-world applicability by exploiting the 
relations among enabler technologies while simultaneously tackling challenging technical 
and industrial constraints.   
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The hypothesis is that this highly complex constellation, if the enabler technologies 
are correctly exploited and implemented, can lead to introduce highly capable Machine 
Learning algorithms into a field which presents notable resistance to such concepts: 
automotive applications of safety critical character. 

The objectives concluded from this argumentation in the following section 1.3 will 
reflect the above discussed points, leading to a solution which as illustrated in  is… 

1) …constructed on 4 pillars:  

o Target multi motor electric powertrains, which represent a multivariable 
multi-objective multidomain optimization problem, addressable with 
torque vectoring. 

o Research applicability of Machine Learning methods for real-time 
estimations, predictions and optimization 

o Exploit new-generation of industry-suitable heterogeneous embedded 
platforms providing great computing power and parallelism 

o Benefit from Abstraction and automatization linked to MBD and V 
development methodologies provided by modern automotive-suitable tools 
 

2) …subject to major constraints considering industry suitability, including costs, 
safety, regulations, methods and platforms. 

 
3) …aiming to provide an innovative added-value contribution and baseline for future 

work. 

 

Figure 1-4.   Four main pillars of the thesis supporting under the constraints that need to be 
overcome to reach the objectives [2][6][7][8][9][10][11] 
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1.3. Objectives and scope 
Following the above argumentation leading to the motivation and hypothesis, the 

main underlying objective of this dissertation is to contribute to the progress of advanced 
control systems in the field automotive applications, by demonstrating not only the 
suitability, but also the benefits and enhancement capabilities, of applying a series of novel 
and non-established technologies in the automotive sector. The presented innovations, 
illustrated in the pillar of the previous Figure 1-4, are targeting next generation of multi-
motor electric vehicles by exploiting the potential of heterogeneous embedded platforms to 
implement Machine Learning algorithms, supported by modern model based approaches 
and code-generation solutions. 

Therefore the specific objective is to develop a control solution exploiting the 
abovementioned technologies to obtain an automotive-suitable integrated control system 
solution for real-time multi-domain optimization of a multi-motor electric powertrain, 
primarily enhancing its dynamic handling and energy efficiency, while also considering 
thermal limitations. 

The underlying work can be defined through a series of tasks, which determine the 
scope of the activities to be carried out: 

 Conceive a control solution for the multi-domain optimization problem. 
 Conceive a Highly Integrated ECU architecture for the Powertrain Control. 
 Establish a MBD framework aligned with the V Development Methodology. 
 Elaborate a model of the vehicle as a system to be controlled. 
 Validate the essential parts of the model with respect to real systems. 
 Select and integrate Machine Learning methods, considering of safety criticality 
 Test and tune the solution using the MBD framework. 
 Exploit the modern toolchains for efficient development and portability. 
 Provide implementation solutions on new heterogeneous embedded platforms. 

 
The main benefits expected of the solution to be developed are the following: 

 Enhanced vehicle dynamics (performance, comfort and safety). 
 Enhanced energy efficiency. 
 Reduced performance limitations related to thermal aspects. 
 Simplification of vehicle architecture. 
 Cost reduction of the control system (production and development). 
 Enhanced development, testing and validation workflow agility and effort. 
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1.4. Context and Planning of the research 
This research work has been conducted dedicating major care and effort to 

consistently adopt good practices and methodological approaches from both the scientific 
and engineering perspectives.  

The most important points are discussed in the upcoming subsections, being the 
bottomline that the backbone of the research line was consolidated over the years, with 
solid foundations in the form of corresponding publications and with the additional support 
of other activities, providing coverage for the core contents. While the primary academic 
path was centred at the UPV/EHU, multiple international research activities were carried 
out, of both academic and professional nature. These have reflected their influence in 
certain aspects of the work and offered multiple opportunities which were positively 
exploited, but also imposed challenging boundary conditions. The intricacies of these 
intense but fruitful multilateral activities and their relations are also discussed below. 

 

The presented research work has been carried out in a multilateral context 
involving the Faculty of Engineering of Bilbao (ESI) at the University of the Basque 
Country (UPV-EHU).  In particular, the conduction of the dissertation, as well as a major 
part of the academic education, was located under the umbrella of the Department of 
Automatic Control and Systems Engineering (DISA). This department addresses the 
domains of Automation, Process Control, Robotics, Industrial Computer Science and 
Instrumentation for Control Systems. 

One of the characteristic lines of this department can be said to be focusing on formal 
aspects of modelling and control theory of diverse advanced techniques, alongside with 
hard-real-time systems and embedded platforms. These topics certainly are of notable 
relevance in relation to the presented dissertation and are also present in the Engineering 
and Master of Science courses that the department offers. 

The author had previously obtained his second engineering degree, followed by the 
Master of Science degree in Control Engineering, Automation and Robotics of the DISA 
department. The contents of these courses are connected to the Intelligent Control 
Research Group (GICI), where the research activities were conducted in different phases, 
starting from early collaborations in 2009 up to the development of this dissertation. This 
research group is focuses on intelligent control and Soft Computing techniques for multiple 
applications and is closely linked to the specialization fields of the mentioned Master course. 

Alongside with the previous activities at the DISA department and the GICI research 
group, the author was recruited by the private research corporation Tecnalia Research 
and Innovation, particularly its Automotive Department of its Industry and Transport 
division. Activities at both institutions concurrently developed through different phases, 
from cooperating student to PhD candidate and ultimately a permanent contract. Further 
aspects related to this are discussed in subsection 1.4.2. 
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It must be highlighted, that the attendance to the Master of Science course over two 
years and the following PhD candidate position and salary were funded by a grant given by 
Fundación Iñaki Goenaga, which was linked to the concurrent activities at Tecnalia.  

The academic scope of the research has been additionally extended with two long 
stays at European universities, attending lessons and working on research activities at the 
Automotive Technology Department (FZD) of the TU-Darmstadt (Germany) and 
performing an international PhD researcher stay at the Department of Mechanical 
Engineering at KU-Leuven (Belgium). Further aspects related to this are discussed in 
subsection 1.4.3 

The coordination and management of doctoral programmes and interdisciplinary 
research training, as well as the official masters, is handled by the Master and Doctoral 
School (MDE) of the UPV/EHU. This central institution establishes the guidelines and 
requirements for the research activities, acknowledgements and fundamental dissertation-
related aspects. 

Alongside other criteria, the established dissertation development methodology of 
the MDE requires to periodically report the progress of the activities with respect to the 
research plan proposed by the researcher, including publications, merits, updates and 
deviations. These are reviewed by the dissertation director and co-director in a first 
instance and then evaluated by the academic commission in a second instance. This is 
required to permit the continuation of the research work. 

 

As briefly mentioned above, the author got engaged in a research constellation 
involving educational and research activities at universities alongside with professional 
work at Tecnalia Research and Innovation. 

Tecnalia is a technology corporation initially established in 2001, which has grown 
as a strategic alliance combining multiple research centres, currently accounting to a 
headcount of roughly 1500 people. 

In 2009 the author got involved in this organization by reference, firstly in 
cooperating and working student phases over two years in total. Then he was given a PhD 
candidate status under the umbrella of the Iñaki Goenaga grant, which required to 
concurrently attend the master course and research and development work at Tecnalia. 
Eventually the PhD candidate program transitioned to a normal engineering contract, due 
to a diversity of factors. 

The work carried out at Tecnalia involved a broad diversity of research and 
development activities in different contexts, ranging from purely academic work to 
engineering projects for the industry. The reason behind this is that this corporation is 
dedicated to projects of different nature, coming from both clients from the industry as well 
as research projects with mostly competitive public funding. The funding split between 
industry and public funding roughly account for one half each. The research projects range 
across funded European, national and regional projects. 
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These projects were mostly under the scope of the Electronics and Control Systems 
area and particularly in the Motor Control and Power Electronics group, the Simulation and 
HiL test systems group, and predominantly the Powertrain Control Group. Additional 
cooperation was also held with the Automated Driving group of the same area as well as 
with the Safety group from the Software Systems department. 

Considering the corporate character and the combination of funded research with 
industry-oriented engineering tasks at Tecnalia, the bilateral academic-professional 
playground could eventually be perceived as challenging to harmonize at certain points. In 
practice, although this constellation has proven to be very demanding respecting to 
balancing concurrent projects leading to high workloads, it has provided exceptionally 
enriching knowledge acquisition and productivity at an accelerated pace. 

The following bullets collect some of the most relevant projects, roughly grouped by 
the topics they covered, although some partly extend their scope across multiple domains. 
Most of them involved different embedded implementation aspects, and while some used 
more conservative control approaches, other more innovative research projects were 
directed towards more complex and advanced solutions. 

 Control and algorithms for electric powertrains, closer to power electronics: 
E-Vito, IEB, BETRACTION, ECUPOW, ECUFAST, SYRNEMO, FPGA-MC, COMA. 

 Control and algorithms for alternative and hybrid powertrains: 
AUTOSHIFT2, SHIFT2. EUNICE, VEMTESU, SPAIN2017, ECOCHAMPS, 
KT4ETRANS, VEMTESU, ECAT2, 3Ccar. 

 Vehicle dynamics and modelling:  
Winter Testing, Observauto. 

 Safety critical aspects and related topics: 
SafeAdapt, ENABLE-S3. 

 Automated driving: 
AutoDrive. 

 Other projects:  
IOSENSE. 

Additional details and merits related to the most notable and relevant project, 3Ccar, 
are provided in subsection 7.7. 

 

Placing the focus back on the academic and scientific side of research, two major 
international stays were set up in the context of this work. Both activities were calibrated 
to gain additional knowledge in selected fields by choosing not only the corresponding 
courses and activities, but also by targeting highly acknowledged universities and 
departments. The following subsections illustrate these aspects, the selection criteria 
followed and some information about the universities. 

The results for both activities successfully fulfilled the plans. Further details 
regarding the outcomes of both stays, as well as information about the high ranking of these 
institutions, are provided in section 7.1. 
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For the purpose of deepening the knowledge in selected fields and engaging in 
research-oriented activities a long academic stay at a prestigious German university was 
planned at the beginning of the research activities. Besides the control system development 
topics, it was intended to place the emphasis on the automotive domain. Finally the TU-
Darmstadt was selected and the author was accepted as a Master student to attend lessons 
and other activities. The stay was programmed over two entire semesters (2012-2013), 
firstly at the Electronics department and secondly at the Mechatronics department.  

The TU-Darmstadt is one of the most notable German universities, particularly in 
the field of Mechanics engineering, where the Vehicle Technology Department (FZD) is of 
special relevance, and of special interest to the author. It is ranked top 3 in Germany for the 
field of mechanics and around the edge of top 100 in the World. [12] 

Furthermore, this was intended to be combined with the participation in a so-called 
Research Seminar. Here the author chose to deepen into an exhaustive research work of 
notable formal character about different kinds of Machine Learning techniques and their 
applicability in the automotive domain. 

This work was planned to extend over the entire period of one semester under the 
tutoring of a scientific worker of the department, involving regular review meetings 
(typically bi-weekly). Ultimately the work culminated with a presentation and the 
evaluation of the head of the Automotive Technology department, Prof. Dr. Hermann Winner. 

Further details about the positive outcome in general, and the contents of this 
research work in particular, are provided in section 7. 

 

For the purpose of achieving the international recognition status of the PhD while 
simultaneously enriching its scientific contents, a European stay at a University as a PhD 
researcher was planned for 2017, aiming to find a place at some prestigious institution. 
Eventually the list was narrowed down to two preferred options: RWTH-Aachen and KU-
Leuven. 

As a brief comparison of both universities, it can be said that while RWTH Aachen 
stands out in the field of industrial and mechanical engineering, with strong bounds to the 
automotive industry, while KU-Leuven offers attractive research activities in the fields 
related to Virtual Sensing on mechanical systems and Machine Learning. KU-Leuven can be 
seen as a more balanced and solid research institution for the focus of this particular work, 
placed at the top (50 of the World, 15 of Europe) of the typically known university rankings, 
as can be seen in subsection 7.4 and Figure 7-3.  

Besides the recognition of the university itself, the most important part remains to 
align the research interests. At KU-Leuven the Noise and Vibration Research Group was 
through previous professional contact with its research manager Dr. Bert Pluymers. 
Common ground was found because this group had already been placing Virtual Sensing as 
one of their main focuses over the years, also addressing parallel computing challenges. 
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Furthermore, Dr. Francesco Cosco, with extensive expertise in GPU programming, was 
leading a research team around the modelling and simulation of complex mechanical 
systems.  Consequently, under supervision the group’s head Prof. Dr. Wim Desmet, an 
arrangement was made to join Dr. Cosco’s research team by sharing his office. Driven by the 
notable mutual interest, the cooperation was certainly intense and fruitful, ultimately 
leading to a high-impact journal article. 

Further details about this positive outcome, and the contents of this research work 
in particular, are provided in chapter 7. 

 

Besides the previously discussed major academic and professional activities, the 
author aimed to extend his interdisciplinary knowledge by attending a diversity of courses, 
workshops, trainings, etc. 

Following, a shortened list of the most relevant points is provided, also illustrating 
the steady interest in fundamental topics involved in this work, mainly complex control 
systems, Machine Learning, embedded systems and automotive topics. 

 2008: Summer Course on Artificial Intelligence at University of Cantabria. 
 2010: Summer Course on Wind Turbine Control (2 Weeks, 5 ECTS) at the University 

of Århus in Denmark. 
 2010-2017: Diverse Training and Workshops with duration ranging between 1 day 

and 1 week: ISO-26262, AUTOSAR, TargetLink, Simulink™ C- and HDL-Generation, 
MCAL implementation, Model-Based-Development, amongst others. Provided by 
dSpace, MathWorks®, Intecs, Medini, ArcCore, amongst others. 

 Since 2016: Multiple driving trainings and experience for vehicle dynamics and 
vehicle prototype driving. 
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1.5. Contributions of the work 
The following list summarizes the most relevant contributions of this work, aiming 

to provide an overview over the different key points together with a short description, from 
the author’s perspective. More detailed information regarding contributions and merits can 
be found in the concluding chapters 6 and 7, alongside with the publications and cross 
references. While the actual core of this work is reflected in the first bullet point, multiple 
outcomes, which can be exploited for related and future research activities, are highlighted 
as well. 

 Novel control concept application: this work focuses on the conception, 
development and validation of an innovative control concept of notable complexity, 
exploiting cutting edge technology to tackle challenging multivariable vehicle 
dynamics challenges. The usage of Neural Networks as Virtual Sensors is one of its 
highlights. The design as a whole is proven valid to enhance stability, efficiency and 
thermal load. Consequently, the outcome (concepts, solutions and resources) can be 
used as baseline and enablers for future research. 

 Illustration of multidisciplinary technological context: the attractive 
technologies arising across widespread fields of engineering, which triggered this 
research work, are carefully explained for a solid justification of this work, as well 
as to provide a better understanding for the readers. 

 Adapted to constraints from multiple domains: the approaches and technical 
solutions implemented in this work prove their applicability in spite of being subject 
to the challenging constraints. The main restrictions come from the implications of 
the automotive industry, which require a more formal development process, less 
complex solutions and less powerful embedded platforms. 

 Implementation on different embedded platforms: besides the processor-based 
SoC implementation during this work’s first phase, the activities of this research 
have led to further elaborate implementations of Neural Networks on two 
intrinsically different parallel computing platforms, a GPU and a FPGA, embedded in 
cost-sensitive SoCs. 

 Defined a scalable and robust architecture: the created software architecture in 
what respects to the controller and its algorithms, and the system architecture in 
what respects to the vehicle and its components, offer a solid and modular 
foundation to scale towards diverse applications. 

 Established a sustainable simulation framework: the versatile model-based 
framework for simulation, development and implementation, ranging from MiL to 
HiL, has enabled not only productive iterations for this particular work, but also has 
been used for development activities for other projects. The vast infrastructure 
constructed around the main model can further be exploited for other projects. The 
same applies to generated data. 

 Consolidated a mature development methodology: the framework in 
combination with the correct methodology and aligned with the V development 
model and good practices, facilitates deployment towards industrial projects. These 
solutions have already proven themselves in parallel customer projects and are 
expected to remain as reference. 
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 Contributed to major international research projects: many concepts and 
solutions, as well as multiple outcomes, were directly propagated into relevant 
European research projects in the >50M€ budget range, receiving the blessing of 
European Commission in multiple occasions. 

 Geared derived research lines across institutions: different pieces of work have 
also trickled into other researchers’ works with which relations have been 
established. For instance, inheritance occurred towards a follow-up PhD candidate 
across Tecnalia and the University of the Basque Country. Furthermore, while 
performing a stay at KU-Leuven, which is a Top-50 University in the World, it directly 
involved the local team lead, as well as a researcher from Latvia. 

 Positive results and acceptance enable future work: the research objectives 
were covered and original expectations satisfied or exceeded. Consequently, the 
control concept, implementability, architecture, framework and methodology can 
be exploited for upcoming research. Good publication impact, presenting detailed 
technical and conceptual contents, as well as the basis of the research project as a 
whole, showed solid acceptance, ultimately also in a high-impact journal. 
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1.6. Structure of the document 
This document has been structured following the workflow of the scientific research 

methodology of followed in the dissertation. Besides this structure, which shapes the 
document as a whole, the parts which contain the subset of the activity with a stronger 
technical core –chapters 3, 4 and 5–  have been internally shaped by the development and 
engineering processes they present. The document consists of 7 main chapters, summarized 
in the following paragraphs. 

The current chapter 1, Introduction, has started by presenting the general 
introduction to the work, followed by a subsection providing a first insight into the 
Technological context and key points which will support the next two sections addressing 
the Motivation and hypothesis and the Objectives and scope. Following, the Academic 
Framework and the Professional Context of the doctoral thesis, as well as the Planning of the 
International Stays and Other Activities is discussed. Lastly, the Contributions of the Work are 
presented. The chapter concludes with the present section, explaining the Structure of the 
Document. 

Chapter 2 provides a detailed insight into the State of the Art, covering a wide 
spectrum of topics which reflect the interdisciplinary character of the work, which have 
already been identified in chapter 1. Each of the different topics, which constitute the 
essential parts of this work, are supported by a dedicated section. The first topic covers the 
application field this research is being targeted to, Automotive propulsion systems in general 
and Electrified powertrain topologies in particular. After aspects of related subcomponents 
are briefly discussed, the second subsection is dedicated to the closely related topic of 
Automotive control systems, which starts with several subsections discussing the main 
challenges and constraints such systems are facing, paying special attention to industrial 
topics. The next section covers the Embedded systems, which basically are enablers for 
upcoming developments, covering a wide and heterogeneous spectrum of platform types, 
including FPGAs, GPUs and processor-based platforms. The evolution of such platforms and 
their applicability to automotive systems is also discussed. The previous topics lead the 
thread to a section dedicated to Software development methodology, addressing the V-model 
and model-based methodologies and automated toolchains, which are a further important 
enabler. Finally, the chapter concludes with a section dedicated to Advanced algorithms. 

Chapter 3 addresses the Definition and Modelling of the Control and Optimization 
Problem, and therefore contains the first phases of the development activities. Firstly the 
targeted vehicle and its Powertrain Type and Topology and entire Vehicle Specification is 
defined. This is followed by the Definition of Elements to be optimized. Before proceeding to 
the Definition of the Controller Requirements, the Design according to Automotive Constraints 
is first discussed. The work finally proceeds to the Representation of the MIMO control and 
optimization problem together with the Definition of Test-Cases. At this point, the first block 
which collects all the aspect that represent the actual engineering challenge according to 
the objectives and technical aspects, discussed mostly in chapter 1 and partly in chapter 2, 
is concluded. Therefore this chapter proceeds to its second major block, which is the 
modelling of the previously defined system for the purpose of the controller to be designed 
according to the established criteria. The modelling tasks start with the most complex 
problem, the Modelling of the vehicle Dynamics, followed by the Modelling of the Electric 
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Powertrain and its Energetic and Thermal aspects is handled. To conclude, the models of 
secondary elements such as TCS and ABS systems are discussed. 

Chapter 4 is the most extensive part of this document, as it condenses the entire 
Development and Implementation tasks. In practice it combines design, development and 
research topics with a notable technical density. The requirements from the previous 
chapter are propagated into the Definition of the Control Architecture, which reflects not only 
the controller, but also the targeted vehicle as a whole system. Following it proceeds to the 
Definition of the Embedded Platform as well as of the Toolchain and Workflow. Having 
established all the previous, the detailed research and development work can be executed. 
The Advanced Torque Vectoring Algorithm is conceived after describing the Baseline 
Algorithm. Then, the detailed development of each of the subcomponents that conform the 
entire solution follows, with the Development of the Multi-objective Optimization and the 
Multi-objective Weighting algorithms and ultimately the challenge of one of the core parts: 
the Development of the Virtual Sensing. This will be seen to be a Neural Network, so 
correspondingly the training and selection of topologies and impact of different aspects are 
addressed. Finally, the Development of Mechanisms for Robustness is addressed before 
processing to another major technical challenge which is the Embedded implementation.  

Chapter 5 gathers the Results of the different aspects developed in chapter 4, 
covered by Race Track Tests with real embedded hardware in a vehicle in a first phase, and 
a highly representative real-time multibody vehicle simulator in a second phase. The Final 
Tests of the Control System assess the performance of the entire solution with respect to the 
previously defined test-cases aiming to satisfy the requirements, by performing extensive 
Automated Simulation-Based Tests before concluding with Qualitative and Overall 
Assessment including subjective evaluation. Finally Embedded Implementation Results 
include highlights from a common partnership work targeting not only processor but more 
outstandingly FPGA and GPU parts. To conclude, a summary over the entire Achieved 
Solution is provided with clarifying diagrams. 

The work concludes with chapter 6, discussing the Conclusions and Future work, 
including derived research lines, and with chapter 7 providing and overview of Other 
Merits, Works and Publications, including metrics for institutions, journals and projects 
related to the developed research. 
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CHAPTER 2: 

State of the Art 
 

“If you knew what you were doing, it wouldn't be called research” 
 

Albert Einstein 
 

 

The State of the Art in this chapter is presented by following the 
thread throughout a wide spectrum of interdisciplinary topics which 
was already introduced present diverse complex connections, involving 
both attractive research potential as well as challenges. 

It starts with two different domains of the automotive context, 
firstly focusing on electrified and multi-motor powertrains, and secondly 
on control systems and industrial implications. 

Then it proceeds to a detailed discussion of the vast diversity of 
embedded platform following different computation paradigms, 
focusing on those relevant to the targeted application: processor-based 
platforms, FPGAs, GPUs and their heterogeneous integration in SoCs. 

The implications of the previously discussed automotive 
applications, industrial aspects and embedded complexity, highlight the 
importance of the next topic: software development methodology in 
general and the V development methodology, MBD and code generation, 
in particular. 

Lastly, control algorithms and specifically Machine Learning are 
discussed, avoiding redundant contents already well illustrated in 
literature and focusing on providing a formal classification of Machine 
Learning before proceeding to illustrate some automotive applications. 
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CHAPTER 4: 

Development and 
Implementation 

 
“When you want to know how things really work, 

study them when they're coming apart” 
 

William Gibson, 
 

 

 

This chapter assembles the actual implementation of the control 
solution presented in this work ranging from the conception of the 
control architecture and algorithms, to implementation topics. 

It starts by defining the control and system architecture and the 
firstly selecting the embedded platform as well as the toolchain and 
workflow, before proceeding to the dense development tasks. 

The development starts firstly with the baseline torque vectoring 
controller and secondly the entire advanced controller concept. In the 
following sections each of the subcomponents -i.e. the multiobjective 
weighting, the optimization, and most importantly, the Virtual Sensing- 
are extensively discussed. Robustness mechanisms are also briefly 
addressed. Finally, the implications and challenges of embedded 
implementation are discussed.   
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4. Development and implementation 

4.1. Definition of the control architecture 
As already discussed in subsection 2.2, modern vehicles are immensely complex 

systems which can hold up to over 100 ECUs . Even vehicles with a notably simplistic 
technological approach do present a non-neglectable amount of subsystems and 
connections.  

Even when focusing exclusively on the powertrain domain, the complexity of the 
components and their functionality is still notable. This subsection will focus on the 
powertrain in general and ultimately on the implemented solution in particular. 

Taking as reference the previous, Figure 4-1 illustrates with a simplified 
representation of a generic powertrain control architecture, where the main Powertrain 
ECU governs over the ECUs controlling different subcomponents and functionalities. It must 
be noted that this shape of the architecture does not represent the hierarchy. For instance, 
the ESP ECU can govern over the Brake ECU through the Powertrain ECU.  

In many occasions a visual representation of the architecture, or eventually also of 
the electrical wiring, highlight the central role that the Powertrain ECU plays in the vehicle 
architecture, due to the fact that many different devices and networks are connected to it, 
and interact with each other through it. In other occasions, especially if a gateway is 
implemented, this is not equally obvious. This is the case for  Figure 4-1. 

 

Figure 4-1.   Architecture diagram with powertrain-domain and related ECUs highlighted [264] 



132 
 

Having a common understanding of typical automotive control architectures, at the 
entire vehicle level, we proceed to focus on the architecture of the powertrain domain and, 
in particular, on the application and solution developed in this work. 

Figure 4-2 provides a baseline by illustrating a generic architecture for the 
powertrain domain, with the Powertrain ECU acting as centrepiece as previously discussed. 
Multiple specific ECUs which directly control important vehicle components and 
subsystems, such as the motor, the brakes, the stability systems, etc., are interfaced to it. It 
also acts as gateway to the rest of the vehicle, typically through a Central ECU which handles 
systems of less criticality, such as the HMI, including the instrument cluster and inputs such 
as the key, the shifter, etc. 

Energy
Sources / Storage

Energy 
System ECU

Motor 
Control

ECU

Power electronics 
and Motor

Brake
ECU

Brake Systems

Powertrain
ECU

Central ECU

Other
ECU

Other Systems

Other
Systems and 

ECUs

Other
Systems and 

ECUs

ESP
ECU

Sensors
 

Figure 4-2.   Generic architecture for the powertrain domain 

Having a generic understanding of this domain, the particularization for this work 
can be described as follows. The first major difference is the presence of four sets of ECUs 
and power electronics corresponding to each of the four motors. The second is the addition 
of the Torque Vectoring ECU, which is the actual core of this work, on which upcoming 
discussions will focus. This is illustrated in Figure 4-3. 

Nevertheless, it must be clarified that although the remaining components and 
subsystems are not objects to be developed as a solution in this work, in order to achieve 
representative simulations, considerable knowledge needs to be invested into their 
modelling. This has been already extensively described in the previous section 3.  

It must also be emphasized that this architecture representation is an indicative for 
its topology, but does not necessarily represent the hierarchy. Following the inevitable 
safety concerns -such as discussed in subsection 3.3- and the general concept for stability 
for the developed solution, which come together with other fundamental principles in the 
controller requirements specified in subsection 3.4, the logic described in the upcoming 
paragraphs highlights the functional hierarchy, which is not effectively represented in such 
a diagram. 

The basic principle is that the Torque Vectoring ECU is enabled to almost directly 
send torque requests to the motors. The nuance of almost directly doing it -instead of 
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directly- means that the requested set points are handled through the Powertrain ECU, 
which makes sure that no limit is exceeded, before forwarding these values to the motors. 
These limits may be constant limits given by the specification of the system components and 
its configuration, such as absolute figures like torque, power, speed, as well as transient 
magnitudes like gradients. They may also be condition-related limits, such as derived from 
battery performance constraints due to charge level or temperature, or the temperature of 
any other powertrain components as well. Even if the Torque Vectoring ECU should -and 
does- already anticipate such limitations in order to generate better optimized set points, 
the Powertrain ECU needs to act as supervisory agent and ensure that no limit is ever 
exceeded. But besides such limitations, a further, limiting element can come into action. 
These are the vehicle’s own stability systems, basically the ESP, which will intervene if any 
critical situation is detected. This last point, is, in fact, a very important point for the safety 
concept in this work, as repeatedly discussed in the corresponding sections. 
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Control
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Motor 
Control

ECU

Power electronics 
and Motor  

Figure 4-3.   Particularized powertrain domain architecture for the targeted application 

The following Figure 4-4 provides a more detailed representation of the Torque 
Vectoring’s functionality in the context of the above discussed general architecture and 
functional concept. It illustrates the following two important points. 

Firstly, it provides a clearer definition of the mentioned hierarchy of the control 
components. It matches the discussed general architecture also illustrated in Figure 4-3, 
emphasizing again the superior role of the Powertrain ECU. Furthermore, it explicitly 
indicates the already discussed fact that the torques requested by the Torque Vectoring 
controller are not directly applied to engines, but it can be influenced by the Powertrain 
ECU’s control policies as well as the TCS/ESP system’s limitations if necessary, in 
consistency with the previously cited topics from subsections 3.3 and 3.4. 

Secondly, it shows the functional building blocks necessary to satisfy the said 
requirements. The specific algorithmic solutions contained in these blocks are yet to be 
defined and will be individually discussed in the upcoming subsections. But their general 
functional concept to provide a complete architectural understanding needs to be specified 
first as follows, and as illustrated in Figure 4-4. 

Optional 
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The Virtual Sensing function (which could also be considered as an estimator) is 
conceived to provide additional inputs for the Torque Vectoring function, by providing 
information of values which are meaningful from the vehicle dynamics perspective, but not 
provided by the available sensors. 

The baseline Torque Vectoring function can serve multiple purposes: 

 Serve as reference point for the multi-objective optimization searching for the 
optimized torque distribution. 

 Input for plausibility functions aiming to enhance robustness, stability and 
smoothness.  

 In case of misbehaviour of the Advanced Optimizing Torque Vectoring controller, be 
used as fallback control function. 

 The Objective Weighting function provides an input to the multi-objective 
optimization function by dynamically adapting the weight of each of the objectives 
depending on the real-time situation of the vehicle. 

The Multi-objective Optimization function is ultimately responsible for finding an 
optimized torque distribution basing on the previous inputs. 

At this point of the discussion, the analysis of the system architecture is mostly left 
aside in order to proceed to a deeper analysis of the internal architecture of the controller 
itself. This will be addressed alongside with the main development of this element, in its 
dedicated section 4.4. 

 

Figure 4-4.   Powertrain architecture including advanced controller’s fundamental functions 

  

4x Motors per wheel 

baseline 
torque vectoring 
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4.2. Definition of the embedded platform 
The diversity of embedded platform solutions available on the market is notable, 

including devices of different nature which offer a wide range of capabilities, as well as costs 
(please refer to section 2.3 for an overview and explanations about relevant concepts like 
FPGA, GPU, lockstep, etc.). Nevertheless, with respect to the embedded platform market as 
a whole, the subset of devices eligible for automotive control applications is notably 
constraint due the aspects already discussed in section 2.2 regarding automotive control 
systems in general, and following section 3.4, when focusing on the developed control 
system in particular. Basically, the most critical aspects are the reliability and robustness 
linked to the functional safety considerations, while keeping a reasonable cost point. The 
expectation inevitably, is to obtain the greatest possible performance and parallelism under 
such constraints, but these inevitably are conflicting expectations.  

Ultimately, the requirements that the selected embedded control platform should 
satisfy, crystallize down to the following specific points, which have been evaluated in a 
parametric manner. The following criteria is listed in no particular order: the priority of 
each will be discussed in the remainder of this section, where the implications of each point 
are elaborated. Ultimately these will be represented as weights for a parametric evaluation 
in Table 4-1. 

 Suitability for automotive applications 
 Reliability and robustness 
 Redundancy 
 Intrinsic parallelism 
 Computing capabilities 
 Interfacing and peripheral capabilities 
 Development ecosystem 
 Cost point 

Criteria such as automotive suitability in particular, together with reliability and 
robustness in general, were combined under a single metric. This represents characteristics 
from different domains. From the purely physical point of view, it considers aspects such as 
the availability of the AEC-Q automotive qualification and the corresponding temperature 
ranges. From the embedded capabilities perspective, the availability of error prevention, 
detection and handling mechanisms are considered, such as ECC, MPU, etc.  

The redundancy characteristic specifically is addressed separately, having to take 
into account that redundancy also contributes to a higher score in the previous criteria, 
firstly, because of the higher degree of integrity the redundancy itself provides, and 
secondly, because microcontrollers targeted at safety critical applications typically combine 
multiple additional solutions for that purpose. While single-core processors offer no 
redundancy at all, some multicore processors offer lockstep hardware-level “hard” 
redundancy down to each instruction-cycle. Nevertheless, also multicore processors which 
do not offer lockstep can enable the potential for software-based “soft redundancy”. 
Similarly, heterogeneous platforms enable other forms of redundancy to a further extent, 
by the means of their computational platform diversity. Besides FPGAs permit the 
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implementation of multiple isolated implementations of a same function for the same 
purpose. [141]  

Parallelism is another highly relevant feature, which again holds certain relation 
with the previous paragraph. It might be that a device has two cores but offers no 
parallelism, if the second core is used for lockstep redundancy. Although some products are 
configurable to select either lockstep or parallelism, the first option would be chosen for the 
sake of this work. Besides using multiple cores, some embedded platforms also offer a 
certain degree of parallelism by the means of coprocessors dedicated to particular tasks, 
such as certain signal handling and mathematical functions. In what respects to GPUs, which 
still follow the instruction-based computation paradigm but with a strongly different 
architecture, they provide vast parallelism through their hundreds of cores, although 
subject to notable internal bottlenecks. Lastly, FGPAs, due to their vastly different 
computation paradigm, have great potential in intrinsic parallelism -and pipelining- 
brought by their hardware nature.  

The last point of high importance in what respects to the capabilities of the device is 
the performance for the sake of tackling complex control algorithms, which is again partly 
related to the previous point. Although greater parallelism can be associated to greater 
performance in general, this is not necessarily the case and must be addressed as a separate 
criterion. On one hand, for instance, the parallelism of a low frequency multicore 
microcontroller might still provide lower total performance that a high clock processor with 
less cores. Furthermore, efficiently distributing algorithms among multiple cores brings an 
additional difficulty to harness the total available computing power, due to the complex 
relations between functionality distribution, execution time variations, bottlenecks, etc. and 
notable software architecture challenges. Besides the instruction set of the processor, 
memory also plays a major role. Firstly, in what respects to memory size. Secondly in what 
respect to memory bandwidth and performance, which can evidence shortcomings in 
runtime not only with regard to variable handling, but also in what respects to the reading 
of the program code. To support partial mitigation of such issues, mechanisms, such as DMA 
and caches are available on many platforms. 

An important emphasis is to be made in relation to the two previous points, 
parallelism and performance: both are strongly application and implementation dependant, 
and should be discussed with care if considered out of context. In general terms, also with 
single-core platforms, the difference between the theoretical figure (like DMIPS) and the 
real executed instruction count per time, greatly depends on the application and its 
implementation. This gets even more acute on parallel embedded platforms. While certain 
applications -or algorithms- might be highly suitable for strongly parallel platforms, others 
present strong challenges to exploit the architecture. This might be, for instance, because 
the algorithm has a very linear character with highly coupled data dependencies, or because 
in spite of possible parallelism, intra-core communication bottlenecks occur. Even assuming 
a highly parallelizable function, the adequacy of the implementation, in what respects to 
structuring, programming techniques, and utilization of the particular hardware 
capabilities, can have a notable impact, easily of one order of magnitude -as will in fact be 
discussed in the results section-.  
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Lastly, two additional criteria of less weight are to be considered as well. The first 
are the interfacing capabilities, paying special attention to automotive-specific interfaces 
such as CAN, FlexRay and for more modern approaches, also Ethernet and its variations. 
Secondly development facilities are considered in the sense of the available resources and 
technical solutions to enable a more flexible and agile development of algorithms, especially 
for those platforms which represent greater challenges due to their greater complexity. 
Here, the more advanced solution of automatic code generation, as well as previously 
discussed automatic hardware synthesis (for the case of FPGAs) are of higher interest, 
which will be reflected in the upcoming section 4.3. Nevertheless, none of these aspects are 
of critical character for a good solution, as weak interfaces can be complemented with 
external solutions, and suboptimal development conditions can be compensated by greater 
development know-how -or simply time-. 

To conclude, the inevitably strong constraint of the cost point is included as 
parameter. In practice, in real industry applications, this can be an extremely sensitive 
aspect, especially for bis scale products, although in certain cases the category of the 
product and the added value of the solution might be expected to relax this constraint. As a 
rule of thumb, a 50€ price (quoted for a 1000 unit order) is already considered costly, and 
100€ would in most cases be prohibitive. Nevertheless, it must also be considered that in 
big quantity orders the unitary price might considerably drop as well, and furthermore, as 
technology and the market keep improving the performance/cost ratios, eventually some 
costlier devices might slide into the acceptable range. Subsequently, some of the devices on 
the high end some of the product categories are excessively costly to be considered suitable 
for the typical automotive price restrictions. The highest performing microcontrollers and 
microprocessors might have a borderline acceptable cost point, but currently only the SoCs 
on the lower performance end are considered to be suitable for the typical automotive cost 
constraints. 

Table 4-1 collects the representation of the previously discussed criteria. Due to the 
immense diversity of embedded computing platforms available on the market, as seen in 
section 2.3 on which the facts discussed here are based on, the platforms are grouped into 
families of similar nature, for the purpose of a preselection. For each group multiple 
representative platforms are selected, illustrating the typical and most frequent 
characteristics and value ranges they offer, paying special attention to the higher end of 
specifications, as long as costs don not become disproportionate. This means that not all 
devices can be accurately represented and exceptions cannot be reflected. Each category is 
given a weight following the previous discussions. Additionally, for each category a 
minimum mark is specified as a mechanism to enforce strong constraints (i.e. the greatest 
platform cannot be eligible if the price is clearly excessive). 

The result highlight three platforms with the highest marks, being the 
heterogeneous FPGA-based devices the ones with the highest score, followed by Lockstep 
Automotive Microcontrollers and Heterogeneous Multiple-Based platforms. Besides their 
score, the two later show relevant weaknesses in different critical points: the first in what 
respects to performance and parallelism, and the second in what respects to the excessive 
cost. The Heterogeneous FPGA-Based solution shows to be a very balanced solution, being 
the redundancy and cost point the most borderline criteria. Pure FPGAs also show relatively 
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well balanced parameters, with no borderline criteria but a clearly below threshold value 
in redundancy, besides having a lower total score. High Performance Microprocessors also 
fail due to reliability and redundancy, similarly to the GPU-based heterogeneous platform. 
Lastly, legacy industrial microcontrollers, basically combine most of the previous 
weaknesses.  

Being the selected platform type the heterogeneous FPGA-based SoC, the decision 
between the two major vendors offering these kind of devices -Xilinx (Zynq® 7000 SoC) and 
Altera® (Cyclone® V SoC)- fell for Xilinx. Being their technical aspects and features coarsely 
comparable, the final decision was driven mostly considering the context of the application 
development, with factors being the ecosystem, available resources, integrability and the 
implementation approach of the toolchain, which as will be seen in the upcoming section 
4.3, is most convenient to be aligned with MBD solutions already discussed, making it 
suitable for the overall modular philosophy of this work. 

A major highlight is the heterogeneous combination of two opposed computing 
paradigms, enabling elaborate software architectures for robustness and exploiting 
strength of each application type. It integrates a dual core processor with mid-high 
performance -and exploitable for soft-redundancy- with a FPGA with notable performance, 
great throughput potential and sufficient size for many algorithms – plus additional soft-
redundancy by diversity, plus redundant hardware possibility-.  Figure 4-5 illustrates the 
architecture and main features of this device. 

 

Figure 4-5.   Block diagram of a Xilinx Zynq® 7000 Soc [265] 
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The particular model finally used for this work is a mid-low model of the Xilinx 
Zynq® 7000, specifically the 7020 version. This is a highly capable but reasonably priced 
devices with adequate automotive suitability thanks to AEC-Q100 suitability and the 
inclusion of diverse robustness and data integrity mechanisms. The main characteristics 
and features are summarized in the following points, differentiating among its two different 
parts (FPGA first, microprocessor second) and thirdly some of their integration features 
[95][266]. 

 Artix-7 FPGA including: 
o 280 embedded memory blocks (4.9 Mb) 
o 220 DSPs (digital signal processing units) 
o 53200 LUTs (combinational logic) 
o 106400 registers (sequential logic) 

 2x ARM Cortex-A9 cores: 
o ARMv7-A architecture with Thumb2 instruction set and NEON engine 
o Single/double precision floating point 
o 667 MHz clock frequency 
o 2x 32KB L1 Instruction Cache, 2x 32KB L1 Data Cache, 512KB L2 Cache 
o 2x CAN 2.0B, 2x 1Gbps Ethernet, 2x USB 2.0, and other diverse interfaces 
o 3x Watchdog timer 
o Byte-parity support on Cache and On-Chip Memory 
o ECC double-bit error detection 

 SoC FPGA and Microcontroller integration  
o Multiple bidirectional interfaces 
o 8 Direct memory access (DMA) channels (4 for FPGA) 
o Coherent and noncoherent access 
o DDR3 memory support 
o Separate power supply voltage lines 
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4.3. Definition toolchain and workflow 
 

A MBD workflow aligned with the V development methodology -explained in section 
2.4- has been followed for this work. This firstly was anticipated in and follows the 
argumentation related to Development in the Automotive Context from section 3.3 and the 
subsequent requirements of the controller defined from section 3.4. A relevant reason is to 
facilitate handling the mentioned complexity of automotive systems, which is also present 
in considerably intricate system models and control systems being developed in this work. 
Secondly it also satisfies the general modular philosophy of this work, where one of the 
motivations is to contribute to the State of the Art with enabler solutions and building blocks 
which can be used for future work. 

Considering that the general aspects and details with respect to software 
development methodology, the V design approach and automated toolchains have already 
been discussed in section 2.4, redundancies will be avoided in the present section. 

Instead the focus is placed on the particular tool solutions for this work, which are 
driven by three major factors: 

 The nature of the domain and the particular application. 
 The individual (sub)components being developed in this work. 
 The dependencies and limitations linked to the embedded platform selected in 0. 

The requirements relevant to the toolchain and its workflow, derived from the 
previous argumentation and methodological expectations, can be summarized as follows, 
basically specifying the criteria that the development solution should satisfy:  

 Provide a modular, reusable and scalable solution, enabling to efficiently reuse parts 
of the current work, as well as take it as baseline for future work. 

 Facilitate to handle complex systems, composed by a diversity of subsystems with 
extensive interfacing needs and with multiple abstraction layers, in an efficient and 
sustainable manner. 

 Support documentation and certification tasks required for industrialization, such 
as automotive standards for safety critical applications. 

 Maximize development flexibility to switch across development phases and use-
cases. 

 Maximize agility through development iterations to modify, analyse, calibrate and 
implement efficiently. 

 Provide high portability of the developed control functions, especially including 
means of generic as well as platform and target specific code-generation. 

 Facilitate the integration of third party components and models. 
 Enable the interfacing with hardware components, especially physical ECUs over 

CAN protocol. 
 Permit the execution of real-time simulations. 
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Different workflows are required depending on the approach and setup 
corresponding to different development tasks across different phases. The following 
paragraphs illustrate the fundamental closed-loop cases aligned with the previous 
methodological discussion and references, which shall be enabled together with the above 
requirements by the toolchain.  

The fundamental solution is a MiL setup, illustrated in Figure 4-6. It is fundamental 
firstly because it covers the broadest part of the closed-loop development needs and 
secondly, because the following approaches can be seen as different variations of the same. 
In a MiL setup all the components of the system are integrated into a simulation platform, 
in this case a PC running a single simulation environment. This means that the controller as 
well as the plant model being controlled, including the multibody vehicle dynamics 
simulation, is running all together. It permits fully reproducible simulations, meaning that 
multiple runs with the same parameters will produce the same results. It also enables 
accelerated simulations, which are highly convenient for iterative batch simulation runs as 
typically used for analysis and calibration purposes.  

For illustrative examples of the resulting Simulink™ models, please refer to the 
subsections in chapter 3; where this was already anticipated.  

 

Figure 4-6.   Model-in-the-loop (MiL) setup in the context of this work 

The MiL setup evolves into a HiL configuration, illustrated in Figure 4-7, when the 
loop is closed over a real physical component which is connected to the simulation running 
in real time. In this work, the piece of hardware under development being the ECU running 
the control algorithm, the models remained in the simulation environment and the loop was 
closed over a real ECU prototype. At this point, real CAN messages are used. This means that 
a wired CAN bus is physically present and the actual CAN Database File (DBC) 
corresponding to the real vehicle will be applied to the interfaces. Should the case be that, 
unlike the system implemented in this work, analog and/or digital input/outputs should be 
present, corresponding interfacing modules could be added. 

The productivity of a HiL approach such as this, where the ECU under development 
is the hardware element closing the loop, is greatly improved through the implementation 
of an automated process to deploy the controller model from the development environment 
to the hardware. This strongly streamlines each iteration. Furthermore, good calibration 
possibilities (i.e. adjusting controller parameters without recompiling and re-flashing, and 
with minimal effort) is also of considerable importance. 
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Figure 4-7.   Hardware-in-the-loop (HiL) with automated deployment into ECU 

The HiL setup in this work should ultimately provide a very accurate depiction of 
the behaviour of the vehicle and be totally transparent to the ECU. In other words: the ECU 
should not even “notice” that it is not connected to the real car, but to a simulated 
environment instead. 

The bottomline is that the HiL setup should be a solid step before proceeding to test 
the ECU in a real vehicle. This method was used in this work: successive implementations 
were validated running the ECY firstly in the HiL setup and then the ECU was directly 
unplugged from the HiL and plugged into the car. 

It must be noted that no SiL (software-in-the-Loop) nor PiL (processor-in-the-Loop) 
setups where chosen to be used in this work. The main reason is that, having elaborate MiL 
and HiL setups with highly automated infrastructure, these intermediate steps were not 
sufficiently relevant. Considering the higher implementation effort, ultimately the use-cases 
which could be covered by this complementary setups cam be covered by combining the 
MiL and mostly the HiL features. 

Although the MiL and the HiL approaches should cover most of the use-cases and 
development time, a further use-case worth briefly describing is the reproduction of real 
recorded data towards the ECU. The purpose of this use-case is to anticipate any 
misbehaviour the ECU might show when exposed to the actual vehicle signals, in case there 
is some aspect of it which is different from the HiL setup, like for instance some unexpected 
signals, unstable values, etc., coming from vehicle subcomponents. Inevitably, this being an 
open loop setup, its coverage and representativity is limited to certain aspects. This setup 
is illustrated in Figure 4-8.  
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Figure 4-8.   Open Loop CAN trace reproduction setup 

A final setup is in practice a variation of the previous. It consists in actually 
connecting the ECU to the car, but blocking all the ECUs transmit signals. This can be made 
either by using a CAN communication gateway or router, or by disabling the transmit 
functionality in the ECU software. It remains being an open loop test, as the ECU will receive 
the same messages as with the trace-based approach but, instead of using an intermediate 
device under laboratory conditions, with the difference of doing so directly inside the car, 
consequently being exposed to the vehicle’s electrical harshness, voltage variations, etc. 

 

Figure 4-9.    In-vehicle ECU integration with blocked transmit messages 

Besides the diverse closed-loop and open-loop setups themselves, the different 
approaches for providing driver inputs to them are equally relevant. Basically, three 
different approaches are followed, as will be further seen in the upcoming sections: 

 DiL (driver-in-the-loop): enables to drive the simulator in real-time using a 
steering wheel wit pedals together with the 3D visualization. The most 
common use case here is to combine it with the MiL simulation, although is 
also makes sense with the HiL setup. It is also to be used to record data for 
multiple purposes, such as arbitrary driving manoeuvres for the Machine 
Learning algorithms and reference paths for the autonomous driving 
function. 

 Autonomous: an autonomous “virtual” driver function is used to drive the 
car over a specified path following a series of parameters, such as speed and 
acceleration limits. This is ideal to perform big batches of repeatable 
accelerated simulations, for instance, driving around a race track. 

 Automated: basically is a simplified variant of the previous where the virtual 
driver acts in open loop and simply repeats predefined inputs, without any 
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control action. These inputs can be either a predefined pattern of steering, 
torque and brake inputs, or a recording of a previous manoeuvre. This is 
useful for instance for constant steering angle tests. 

 

The following points provide a compact overview of the particular tools selected for 
the framework to develop this work and implement the solutions and methodologies 
described in the previous subsections. 

MathWorks® Matlab™ Simulink™, is taken as central platform for the entire 
development. Both the system model (as illustrated in chapter 3) and the controller model 
(to be developed in this chapter 0) are implemented here. Matlab™ scripts are used to 
automate tests, data analysis and parameter handling. Code generation functions are used 
for efficient implementation of the functions. [267] 

Dynacar™ 2.0, is the high-fidelity multibody vehicle dynamics model, extensively 
explained in 3.8, which is integrated into the Simulink™ model as well. [249] 

Xilinx Vivado™ and SDK, is the fundamental tool offered by the semiconductor 
vendor for development and deployment on FPGA platforms in general, and Zynq® SoC 
devices in particular, by combining the general Vivado™ tool for FPGA implementation with 
the SDK application for microcontroller code implementation. It can be partly integrated 
with Matlab™ Simulink™ HDL Coder™. [268] 

Xilinx HLS™, is an additional tool stands for High Level Synthesis, and permits to 
automatically convert generic C code into VHDL or Verilog FPGA hardware description IP 
blocks. [188] 

Xilinx SDSoC™, is a tool which goes beyond the features of HLS™ by taking a higher 
level approach. It uses the same principle of converting C into hardware description 
languages, but additionally automates the integration of the FPGA and Microprocessor part, 
by automatically configuring the timing mechanisms and the interfaces for data exchange. 
[189] 

Nvidia CUDA®, is the development environment for Nvidia GPUs and SoCs 
integrating them. It provides very complex performance analysis tools. [153] 

Peak-Systems CAN solutions, are hardware and software solutions for working 
with the physical CAN bus. Peak USB-CAN interfaces are selected both for analysis, control 
and Simulink™ integration purposes. A CAN-GPIO module is also chosen for the purpose of 
in-vehicle parameter tuning on the race track. A CAN-WIFI gateway is used for telemetry on 
the race track. A CAN-GPS-IMU module is used for complementary race-track data 
acquisition. A CAN-logger device is used for complementary data logging. The software 
PCAN Explorer is used to plot signal and build GUIs to control and monitor during runtime. 
[269] 
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Racelogic VBOX, is a professional vehicle dynamics logging system which 
incorporates GPS data with a 6-DOF IMU inertial sensor, for race-track tests with the vehicle.  
[270] 

 

The above defined toolchain enables a notable variety of implementation and code 
generation approaches. Due to the fact that the primary source for the function 
implementation is not C code -but an abstraction layer above: a model- multiple ways are 
viable to achieve the implementation of a function on a single platform, as illustrated in 
Figure 4-10. 

This is particularly the case for the FPGA implementation. Here two main 
approaches are possible, which present fundamental differences. The first is generating 
directly from Simulink™ to VHDL using MathWorks® HDL Coder™. The second is using C-
code as intermediate representation, to then be implemented into the FPGA using high-level 
hardware synthesis with Vivado™ HLS™ or SDSoC™. This has the conceptual advantage of 
being a more generic common ground for all three platform types (Microprocessor, FPGA 
and GPU), but arises efficiency concerns. 

 

Figure 4-10.   Code generation approaches 

For the first stage of the work, the approach is relatively straight forward: the target 
platform being microprocessor-based, a generic C-code generation approach is sufficient. 

For a second stage of the research work, further challenges implementing not only 
in FPGAs, but also in GPUs are concurrently explored. Here, the suitability and versatility of 
the MBD and code-generation approach is yet again validated: For both implementations, 
the original Simulink™ model can be taken as baseline and the output successfully 
propagated to the corresponding toolchains. For more details please refer to section 5.4. 

4.4. Development of the Torque Vectoring controller 
Before proceeding to the design of the advanced optimizing Torque Vectoring 

controller itself, the baseline Torque Vectoring controller, which will be a standard Torque 
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Vectoring controller, needs to be developed as well, following the foundations established 
mostly in the requirements and architecture in sections 3.4 and 4.1. 

 

 

The baseline Torque Vectoring solution is intended to consist of a simple, robust, 
efficient and predictable algorithm, as brought by the discussion from the multiple previous 
sections. Consequently, purely arithmetic approach of primarily open-loop nature and 
without any temporally dynamic components (i.e. integrative parts) is preferred. This 
means that the design needs to base on conventional arithmetic operations and look up 
tables. Still, sufficient behavioural complexity can be achieved in desired to adjust it to the 
perform as desired, by combining multiple look up tables and variable gains to amplify or 
attenuate the vectoring effect depending on the desired behaviour, following a criteria-
based behavioural expression form which conceptually has similarities to fuzzy logic 
semantics. 

Alternative approaches were certainly considered as well, especially using closed-
loop yaw rate controller concepts and Fuzzy Logic. Torque Vectoring controllers involving 
such a solution were developed in a later ramification of this research line leading to 
concurrent research activities (explained in chapter 7) were a Fuzzy yaw rate controller is 
implemented with positive results [271][56].   

Nevertheless, to comply with the requirements defined in this work, the 
hypothetical benefit of such a Soft Computing-based controller is considered insufficient to 
trade of the more straight-forward design initially discussed, intended to act both as a 
baseline as well as a fall-bac solution. Consequently, the look-up-table based approach was 
selected. 

 

A standard look-up-table based Torque Vectoring controller, such as the one 
discussed, was developed as part of an dedicated specialization project exploiting the 
demonstrator vehicle from the Eunice research project [227]. This was a fundamental part 
for the first major stage of this work, and is as well an important building block for the 
further advanced algorithms in the seconds phase.  

This Torque vectoring controller, illustrated in Figure 4-11, is conceived as a widely 
tuneable algorithm with open-loop as well as closed-loop operation capabilities, aiming to 
enhance the development and testing flexibility. The core control variable is based on a 
theoretical calculation of the centripetal acceleration corresponding to the curve that is 
being driven. This is calculated using the vehicle’s speed and the radius that would 
correspond to the steering wheel angle under optimal traction conditions. Considering this 
theoretical centripetal force as a representative of the magnitude of the curve being driven, 
a Torque Vectoring value is determined. The control law applies low values for soft 
cornering forces (under 0.15g), rapidly increasing the value for medium corners and 
limiting it to a 10/90% distribution for the strongest corners (over 0.55g). 
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Figure 4-11.   Baseline Torque Vectoring design for two wheel in motor Eunice vehicle [50] 

Taking this as reference value, a series of factors are overlaid to increase or decrease 
the Vectoring value. For instance, it is attenuated at very low and very high speeds. It is also 
attenuated for close to zero wheel angles. An additional factor is the steering wheel velocity, 
which can be adjusted to increase if agile and incisive reactions are desired, or to attenuate 
if stability and safety have highest priority. 

Furthermore, this controller was conceived to permit the addition of a closed-loop 
behaviour using feedbacks from the inertial sensor, either with the lateral acceleration or 
the yaw rate. The theoretical value of the later corresponding to the driver’s inputs can be 
calculated in a simple manner similarly to the centripetal value. If these values are far below 
or beyond the theoretical ideal values, amplification or attenuation factors are applied. 
Nevertheless, under consideration of the achieved results and for the sake of simplicity, 
stability, and sensor inaccuracy and noise immunity, these functions were chosen not to be 
activated in this first phase. 

 

Consequently, this look-up-table based design approach was taken as baseline for 
the Torque Vectoring of the vehicle with four independent motors presented in this work. 
Furthermore, it will also serve as runtime fall-back solution, if any kind of malfunction is 
suspected. The fundamental principles remain the same, as illustrated in Figure 4-12: it uses 
static look-up-tables and standard arithmetic functions in combination with variable 
attenuation and amplification factors to implement a straight forward open loop control 
approach.  

Fundamentally, the only major change with respect to the baseline Torque Vectoring 
is the fact that, with the introduction of two additional motors, two new degrees of freedom 
are added as already explained and mathematically formulated in section 3.5: three torque 
distribution values are needed, one between the front/rear axis, and then the left/right 
distribution on each of the axes, which in combination with the total torque demand input, 
determines the specific torque for each wheel. 

An additional enhancement made to the original concept is that the main look-up-
tables, those that control the distribution basing on the theoretical lateral force, were 
extended with an additional dimension. The third dimension is the requested torque, which 
permits a better handling of the limits of the engine, strongly reducing the incidence of the 
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saturation functions in the constraint blocks at the output of the Torque Vectoring. Such 
constraints blocks enforce the limitations of the power and torque specifications of the 
motors and could cause the values of the vectoring to get truncated (please see Figure 4-16 
and related explanation in subsection 4.4.1). Should this undesired event occur, a 
reassignment function is put in place to, identically as in the original Eunice Torque 
Vectoring, add the truncated torque to one of the other wheels. This is aimed to fulfil the 
delivery of demanded torque. 

 

Figure 4-12.   Block diagram of the baseline Torque Vectoring controller 

 

The calibration of these 3D look-up-table values, shown in Figure 4-13 and Figure 
4-14, also follows the same principle and even similar values to the original controller, 
especially in what refers to the lateral distribution (left/right) among each axis. A difference 
is brought by the longitudinal distribution, where more torque goes to the rear axis for two 
reasons. Firstly, because this axis is dimensioned to provide greater power, and 
consequently a 50/50 distribution cannot be kept at all times. Secondly, because excessive 
torque on the front axis tend to lead to understeer, in contraposition to the rear axis, where 
it tends to cause oversteer. Consequently, by default a rear distribution proportional to the 
power difference is applied by default. This also avoids subjective inconsistency feeling 
when, while accelerating, the front motors would arrive at their power limit earlier than the 
rear motors. 
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Figure 4-13.   3D Look up table for longitudinal torque distribution 

 

Figure 4-14.   3D Look up tables for lateral torque distribution 

 

Having established the baseline Torque Vectoring function, Figure 4-15 represents 
all the elements of the control function as whole, represented as the green box. Here, the 
actual advanced part, which provides the MIMO optimization an represents the one of the 
main engineering challenges, is represented in a blue dotted box. The elements on the left 
side of this box, architecturally speaking, provide inputs to the advanced functionality, while 
the grey boxes can be seen as standard elements. 

This diagram also highlights another element which represents a major challenge: 
the Virtual Sensing inputs. While the definition of the needed signals for the intended 
Torque Vectoring functionality will be established in this subsection, the development of 
the said Virtual Sensing building block itself will be developed in the dedicated section 4.7. 
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Figure 4-15.   Functional architecture of the advanced optimizing Torque Vectoring controller, 
combining multiple functions and subfunctions from multiple functional and depth layers 

There are two conceptually different kinds of inputs for the optimization function 
of the advanced Torque Vectoring controller.  

1) Signals that provide information about the dynamic situation of the vehicle itself. 
This information can come from multiple sources, although the physical sensors are 
the primary source for all of them: 

a. Sensors directly providing physical values such as vehicle speed, wheel 
speeds, acceleration forces and rotational velocities of the vehicle. 

b. Theoretical real-time calculated value(s) representing to severity of the 
cornering, as previously discussed for the standard Torque Vectoring. 

c. Virtual sensing real-time signals providing values that are not measurable 
using the actual sensors. 

2) Reference value from the baseline Torque Vectoring algorithm. This is to be used 
as starting point for the optimization function of the advanced algorithm. 

With these inputs, the actual core functions, which are the multi-objective weighting 
function and ultimately the multi-objective optimization function itself composed by a 
variety of subfunctions, come into action. As these building blocks are major components 
with an entity of their own, the corresponding extensive explanations will be addressed in 
the two additional dedicated sections 4.5 and 4.7. 

Nevertheless before proceeding, it is worth mentioning some secondary 
functionalities shown at multiple points of the diagrams. The one requiring some more 
explanation is the constraint functionality, which in the previous Figure 4-15 appears at the 
beginning and at the end of the chain. The purpose of the first function is to anticipatedly 
feed the effect of the specified power and torque limits of the motor, and take these into 
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account in order to avoid optimizing towards a non-applicable value, which would get 
truncated at the end of the chain with the post-control constraints, illustrated in Figure 4-16, 
thus reducing the optimality of the set-point. 

 

Figure 4-16.   Constraints function, applied as pre-control function 

Another of two further minor secondary functionalities is the smoothing function, 
which basically is a first order filter. This has been calibrated to be little restrictive, as the 
nature of the vehicle dynamics might require fast actions, and smoothness. Therefore its 
main purpose here is to smoothen the discrete variations between consecutive samples. 

The last secondary block to be mentioned is the conversion from the solutions 
expressed as three distribution variables, into torque for each of the wheels according to 
the demanded total torque. This function and its inverse are actually present at multiple 
points of the discussed diagrams, but are usually considered among the trivial blocks to be 
omitted for the sake of simplicity and clarity. 

Besides the architecture and the functionality discussed, a fundamental parameter 
also needs to be defined: the sampling time of the controller. Observing the dynamics of the 
system from the models and race track data acquisition, finally a value of 5 ms has been 
defined. This is a suitable compromise between the time constant of the actuator, which is 
the motor, the slower behaviour of the vehicle dynamics and slip, and the data flow on the 
CAN communications protocol, which is not faster than a 10 ms cycle for most signals. 
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4.5. Development of multi-objective objective weighting 
The purpose of this function, conceptually speaking, is to determine in real-time the 

importance of each of the objectives, in accordance to what has been defined in sections 3.4 
and 3.5. This means, that the four outputs of the objective weighting are the weights for the 
each of the objectives: 
 

 Vehicle dynamics 
 Energy efficiency 
 Thermal load 
 Comfort/Smoothness 

Architecturally speaking, as illustrated in Figure 4-15, this function is very closely 
linked to the general multi-objective optimization function, as it can in fact be considered a 
part of it, and the objective weighting output is needed for the multi-objective optimization’s 
total fitness evaluation and final solution selection. These other functional elements will be 
discussed in the upcoming section 4.6.  

The nature of the objective weighting function, which needs to decide in real-time 
the importance of each of the four objectives depending on the current driving variables, 
was identified to be highly suitable for the utilization of a Soft Computing such as Fuzzy 
Logic, as it is principally based on qualitative criteria which can best be expressed through 
the formulation of rules based on expert knowledge. The explicit accuracy of a numerical 
approach is not only considered as unnecessary, but might even be counterproductive, for 
instance for (re)calibration task efforts, besides greater difficulty in expressing the 
knowledge and experience-based rules.  

One alternative could have been following a look-up-table based approach, similarly 
to the baseline Torque Vectoring described in subsection 4.4.1. Actually, the reasoning 
behind those Torque Vectoring rules expressed as look-up-table curves, could eventually 
also have been expressed as Fuzzy rules, and vice versa. Nevertheless, it was determined 
that due to the amount of needed input and output variables, and the complexity of their 
relations, expressing and adjusting the wanted behaviour would have been notably more 
challenging and, as discussed in the previous paragraph, it was not considered necessary 
nor adequate. 

Having determined the usage of a standard Fuzzy-Logic algorithm for the real-time 
determination of each of the four objective weights, under consideration of the vehicles 
behaviour regarding vehicle dynamics, as well as the other aspects as a system as a whole, 
six inputs were selected for the Fuzzy Logic function. These are enumerated in the upcoming 
bullet points, together with the dedicated functions which provide the corresponding 
information. 

The calculation of these input signals that are provided to the Fuzzy Logic objective 
weighting function is simpler when compared to many other functions in the controller. 
Therefore, they are better explained than represented graphically. Some of them are even 
basically just forwarding of the information already available from the previous layers. An 
additional element present in each of these functions is a scaling factor added to normalize 
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but which also can be used to alter the sensitivity of the Fuzzy Logic controller. In other 
words, these are additional calibration parameters. The resulting function is reflected in 
Figure 4-17. 

 

Figure 4-17.   Fuzzy Logic function with 6 inputs and 4 outputs, with membership functions and 
their number, plus the functions to provide the values to the inputs 

 Curve: Forwards the numerical values already used for other functions representing 
the theoretical yaw rate and lateral acceleration the vehicle should be theoretically 
facing under optimal grip, basing on the steering angle and longitudinal speed. 
These values represent the severity of the curve being negotiated and therefore 
higher values will mean a more demanding situation, although not necessarily 
critical. 

 Criticality: This is the only function that involves some complexity if compared to 
the others. Fundamentally it bases on the same theoretical values from the previous 
“curve” function, but the value grows if the lateral acceleration and/or yaw values 
significantly differ from the theoretical values. This means it follows an equivalent 
logic to the one discussed in 4.4.1. The meaning is, that the vehicle is starting to slip 
and that therefore the situation is critical, this value will increase. 

 Torque: Simply forwards the total requested torque value. It is meant to represent 
how demanding the acceleration request is, as higher values are more likely to 
represent a dynamically challenging situation and also to saturate the wheels. 

 Power: Calculates the total mechanical power value basing on the wheel speeds and 
current standard Torque vectoring distribution. It is related to the previous due to 
the common element of the torque, but simultaneously represents the magnitude of 
speed. This means that the behaviour at higher speeds can be indirectly assigned 
differently. 

 Charge: Simply forwards the charge status of the battery. The reason is that it should 
take into account to prioritize efficiency as far as possible, if battery level gets 
reduced. 

 Temperature: Provides information if any of the four power electronics modules or 
motors are overheating, to correspondingly provide higher priority to the heat 
redistribution objective. 
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The membership functions were determined to be organized in an intuitive 
equidistant manner aiming to slightly reduce the significant calibration complexity, as the 
representativeness for their physical meaning can be conveniently calibrated anyway 
through the previously mentioned gains, besides the rules themselves. Another reason was 
to ensure smooth operation with progressive transitions which ae perceived as natural for 
the driver and passengers. As computational load was not determined to be a relevant 
constraint in this case subject to relatively few evaluations, a gaussian membership function 
was used aiming for the same reason. Depending on the physical magnitudes involved, three 
or four membership functions were considered as representative. So conclusively, the input 
membership functions were defined as illustrated by Figure 4-18. Similarly, the output 
membership functions were defined as in Figure 4-19. 

 

Figure 4-18.   Membership functions for Fuzzy Logic inputs  

Finally, the rules were defined to reflect the qualitatively expected behaviour under 
consideration of expert experience. Certain iterative adjustments were performed following 
the common practice of this work by objectively evaluating metrics following the use-cases. 
Effort was invested into reflecting the intended behaviour and the most important criteria 
with the minimum amount of rules possible, for the sake of simplicity and clarity. The 
resulting rules are showed in Figure 4-20, which were implemented  using Mamdani 
inference with centroid Defuzzification method, leaving the remaining parameters on 
default values. Basically, the operation principle as always follows the Requirements  from 
section 3.4: Vehicle dynamics is generally the top priority objective, as it is also the most 
safety critical aspect, especially when the driving state is getting closer to critical limits. 
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Otherwise, energy efficiency is kept predominant, unless temperatures get closer to the 
functional limits, which progressively increases the weight of the corresponding objective.   

 

Figure 4-19.   Membership functions of Fuzzy Logic outputs 

 

Figure 4-20.   Rule set of the Fuzzy Logic function 

  

1. If (Curve is Soft) and (Critiallity is Low) and (Torque is Low) then (WeightDynamics is 
Low)(WeightEfficiency is High)(WeightThermal is High)(WeightSmoothness is Medium) (1) 

2. If (Curve is Strong) or (Critiallity is Medium) or (Torque is Medium) then (WeightDynamics is 
High)(WeightEfficiency is Medium)(WeightThermal is Low)(WeightSmoothness is Low) (1)  

3. If (Curve is Limit) then (WeightDynamics is Dominant)(WeightEfficiency is Low)(WeightThermal is 
Low)(WeightSmoothness is Low) (1) 

4. If (Critiallity is Uncontrolled) then (WeightDynamics is Dominant)(WeightEfficiency is 
Low)(WeightThermal is Low)(WeightSmoothness is Low) (1)  

5. If (Torque is Extreme) then (WeightDynamics is Dominant)(WeightEfficiency is Low)(WeightThermal is 
Low)(WeightSmoothness is Low) (1)  

6. If (Power is Extreme) then (WeightDynamics is Dominant)(WeightEfficiency is Low)(WeightThermal is 
Low)(WeightSmoothness is Low) (1) 

7. If (Power is Medium) or (Charge is Medium) then (WeightEfficiency is Medium)(WeightThermal is 
Medium)(WeightSmoothness is Low) (1)  

8. If (Charge is Low) then (WeightEfficiency is High) (1)  

9. If (Curve is Medium) and (Critiallity is Medium) and (Power is High) then (WeightDynamics is 
Low)(WeightEfficiency is High)(WeightThermal is Medium)(WeightSmoothness is Low) (1) 

10. If (Curve is Soft) and (Critiallity is Low) and (Torque is Low) and (Power is High) then (WeightDynamics 
is Low)(WeightEfficiency is High)(WeightThermal is Medium)(WeightSmoothness is Low) (1) 

11. If (Curve is Soft) and (Critiallity is Low) and (Torque is Low) and (Power is Medium) and (Temperature 
is Medium) then (WeightDynamics is Low)(WeightEfficiency is Medium)(WeightThermal is 
High)(WeightSmoothness is Low) (1) 

12. If (Temperature is High) then (WeightThermal is High) (1) 
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4.6. Development of multi-objective optimization 
The purpose of this function, conceptually speaking, is to perform the optimization 

of the torque distribution itself. Having -in the previous sections- established the 
surrounding functions which define and provide the relevant inputs, as well as the 
objectives to optimize in real time with adapting weights, this concluding building block for 
the scope of the optimization functionality can be developed. At this point, some major 
design decisions still remain to be made, fundamentally, the optimization search area and 
consequently the optimization algorithm type itself, and with certain dependency on this, 
the implementation and complexity of the fitness evaluation functions. 

Architecturally speaking, this function block actually is a cluster of functions, as is 
illustrated in Figure 4-15, meaning that in spite of already having addressed multiple 
functions in the previous subsections, multiple partially independent blocks are still to be 
implemented. The three fundamental parts are: 

 Solutions generation 
 Fitness evaluation 
 Optimization per se (including solution selection) 

The first and most important decision is selecting an optimization approach itself. 
For this decision to be made, the dimensionality of the problem needs to be known. It is 
already known, from sections 3.4 and 3.5, that the function has: 

 3 control variables (Dlong, Dfront, Drear) 
 4 optimization objectives and corresponding fitness functions (dynamics, efficiency, 

thermal, comfort) 

The optimization search area is still to be defined. From the vehicle dynamics 
perspective and considering the meaning of the control variables and their effect on the 
behaviour of the car, it is determined that it is not reasonable to allow an excessively 
widespread search area, as the value coming from the baseline Torque Vectoring is already 
considered as a high quality value from which no excessive deviations are desirable. Finally, 
a search space in a region of ±0.1 in each axis is selected. This value needs to be interpreted 
in the context of the internal distribution value convention of the algorithms, given by Eq. 
3-1 in section 3.5. In other words, it represents a notable search window of 20% for the 
longitudinal distribution, and 40% for the lateral distribution on each axis. This is explained 
by the fact that by definition, the longitudinal distribution may vary from in the range [0, 1] 
at any time, but the lateral distributions have half the range, either [0, 0.5] or [0.5, 1] 
depending on the direction of the curve, because it is not wanted to generate a vectoring 
force towards in the opposite direction of the rotation of the curve. In practice, the effective 
search space is even smaller, because additional constraints apply: it is not allowed to apply 
a 100% vectoring on any side, instead, it is limited to [0.2, 0.9] for longitudinal, and [0.05, 
0.5] or [0.5, 0.95] for lateral. Furthermore, additional constraints might apply, due to torque 
and power limitations, further compressing the search area. Consequently, the effective 
resolution is enhanced in most of the cases because, as will be later explained later and is 
illustrated in Figure 4-21, steps will be smaller for many possible solutions. 
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This means, that the search space and the amount of possible solutions is relatively 
small, especially, considering that with the fast control cycles of 5 m and vehicle dynamics 
in combination with the output filtering, a smaller step resolution would provide 
questionable benefit at the cost of considerable computational cost. Consequently, a 
resolution of 0.05 (worst case) is considered sufficient, which means 5 solutions on each 
dimension. As the number of corresponding solutions is given by the power of 3 (number 
of control variables) the resulting total possible solutions is restricted to:  

 5^3 = 125 possible solutions 

This is a relatively small and simple search space, which hardly would justify the 
implementation of some kind of iterative method such as Genetic Algorithms, and not even 
simpler Gradient Descent and similar methods. Consequently, a “one shot” method which 
evaluates all the finesses in a single iteration is established. This will provide a kind of 
Pareto front, of which then the preferred solution will be selected. 

The generation of the potential solution batch inside the search space, illustrated in 
Figure 4-21, is performed by a dedicated block which is constructed using a combination of 
Simulink™ blocks and, exceptionally, a small coded function, for the sake of efficiency of 
operations of vectorial nature. 

One important peculiarity of this function can be noticed in the said figure: if any of 
the search dimensions hits a constraint, the steps separating the solutions will be reduced, 
in order to stay inside the boundaries without effectively losing the possible solution count. 
Here the additional resolution gain discussed before can be seen. 

 

Figure 4-21.   3D representation of the search area near to the limits, where boundaries of 0.50, 
0.95 and 0.90 are hit, accordingly adapting steps 
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Each of these 125 solutions needs to be evaluated for the four defined objectives, 
and its total fitness calculated according to the real-time objective weight values. The four 
fitness functions were implemented as different subsystems, which will be explained in the 
upcoming subsections. It must be noted, that many of the operations inside these functions 
are especially challenging to represent graphically, even in a simplified block diagram. In 
fact, the dimensions of the actual Simulink™ diagrams rendered the functions to be 
incomprehensible even on big screens, because it was not possible to represent them in a 
4-dimensional vectorial manner to handle all wheels as a batch as usual, because the 
vectorial nature was used to handle the 125 solution arrays, resulting in massive Simulink™ 
diagrams. Consequently, the four fitness functions and their operation principles are 
described in textual form in the following paragraphs. 

The vehicle dynamics fitness function bases its principle of operation on 
determining how close to the limit the grip of each wheel is. But due to the massive dynamic 
load transfer during cornering and acceleration manoeuvres (transiently change of the 
normal force the wheel is holding, as already discussed in 3.8) which directly affects the grip 
capacity of the wheel, this would not make sense if the value of the normal force was 
unknown.  

As the measurement of the normal force on the wheel is not available from any 
conventional sensor, this is where the need for a Virtual Sensor arises, which will be 
developed in section 4.7.  Additionally, the friction coefficient with the ground could also be 
estimated, but for the scope of this work the assumption was made that all four wheels are 
rolling on identical floor with respect to each other, which should be the case in most non-
exceptional situations (such as driving over leaves, or a manhole cover, or some split-mu 
situation). 

Receiving the input about the normal force estimation from the Virtual Sensing 
function, a balanced torque distribution is intended to be achieved. Here, a reasonable 
balance between providing more torque to the exterior wheel to enhance the yaw moment 
while not getting to close to the wheel’s grip limit is intended. The grip limit is typically 
approximated by the “traction circle” (occasionally also referred to as “Kammscher Kreis” 
from German) illustrated in Figure 4-22, which represents the vectoral decomposition of 
the lateral and longitudinal forces on the wheel, being the module the equivalent to the total 
grip. Ideally the total grip should provide somewhere near 1g acceleration, assuming 
friction mu=1, which in practice would be somewhat less. [272] 

Consequently, to satisfy the expectation of enhancing the yaw while not risking slip, 
following the principle of the vectorial decomposition of the traction circle, the function 
internally calculates values such as the total lateral force and longitudinal force request, 
with the corresponding distribution among each individual wheel. Using this information 
together with the vertical force, the relative margin until the traction limit is calculated. 
Basing on this information, two look-up-tables are used to evaluate the balance between 
yaw generation and slip avoidance for each wheel, which together with their relative load 
generates the total fitness of each particular solution from the vehicle dynamics point of 
view.  
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Figure 4-22.   “Kammscher Kreis” representing the friction circle with value of 1g 

The energetic efficiency fitness function is a relatively simple subsystem, 
especially when compared to the vehicle dynamics function. It basically implements static 
3D-look-up-tables with an off-line characterization (the same as in section 3.9) of each 
engine’s efficiency at each operating point (with respect to speed and demanded torque). 
From here, depending on each motor’s current power load, the current global efficiency is 
calculated, which is directly normalized to the fitness value. 

The thermal load fitness function is somewhat more complicated again, as it 
involves finding a good compromise for 8 temperatures (power electronics module and 
motor for each wheel). Consequently, the current situation of each of these values needs to 
be considered to determine a scalar fitness value. 

The fundamental principle relies on a look-up-table for each of the value, which 
provides an exponential-like slope as the component gets closer first to its warning 
temperature, and then to its maximum temperature. The resulting value is not directly 
applied to the total fitness output summation, but instead, an additional factor is applied to 
consider the relative load of each of the motors. This is designed to reflect the fact that even 
if one motor is closer to the limit than another one, if it is receiving a much lower power 
demand at the moment, it should not be as relevant as some other motor which might be 
marginally cooler, but withstanding multiple times the power load. 

The comfort fitness function ultimately has been implemented with a quite 
simplistic approach, which combines multiple different metrics basing on the control action 
and its previous values. Basically, the main criteria are the variation of the solution with 
respect to the torque distribution value currently being applied, and the trend over the 
previous samples. In other words, these values basically are mathematically represented by 
a series of filters and derivatives, which reflect both fast dynamics as well as mid-term 
changes, to avoid oscillations. Their calibration to achieve the desired behaviour, once again, 
is performed by a series of look-up-tables. 
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The total fitness is simply calculated by multiplying the normalized objective 
weight values with each of the fitness function outputs, and adding them together. 

Finally, a relatively simple solutions selection function (the second of two 
functions exceptionally programmed in coded language), selects the preferred solution. 
This function selects a kind of Pareto front the three best solutions and then selects the two 
that best satisfy the currently most important objective. Of the remaining solutions, the 
solution which is closest to the value provided by the standard Torque Vectoring algorithm 
is selected as final solution. 

This last solution selection functionality could potentially be even further enhanced 
by adding some additional intelligence, for instance with some Soft Computing method to 
reflect expert knowledge again, but this was not implemented in the scope of this work. 
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4.7. Development of Virtual Sensing 
 

The purpose of this function, conceptually speaking, is to provide the values of a 
physical magnitude for which no sensor is available in the car. Particularly, it must provide 
the value of the normal forces on each wheel, for the purpose of the fitness evaluation for 
vehicle dynamics optimization, basing on the closeness to the critical grip limit of each 
wheel, as discussed in the previous sections. 

Consequently, this section will address another major challenge in this work: the 
estimation of a highly non-linear physical magnitude subject to fast variations under the 
influence of a wide diversity of variables of different nature, as seen in section 3.8.  

 

For the estimation of the normal forces, multiple algorithmic solutions where 
considered, which should satisfy the following criteria, mainly derived from the 
requirements in section 3.4: 

 Rely on a relatively simple structure, accessible for statistical analysis. 
 Not involve computationally excessively costly calculations. 
 Perform with good but not necessarily excessive accuracy, prioritizing consistency 

(avoiding big deviations) and the previous two bullets in general. 
 Offer reasonable flexibility to adapt to differing vehicle configurations, supporting a 

systematic re-configuration. 
 Be suitable to be executed in highly parallel and non-sequential-code-based 

platforms. 

It must be noted that an additional optional requirement was also kept in mind: 
thinking of future works and concurrent research activities, it would be ideal for this 
function to be also suitable for the prediction of values with a horizon of around 30-60ms. 
Such predicted values could firstly be used to adapt to delays due to the time constant of the 
motors, and secondly -and more interestingly- to optimize different solutions according to 
the predicted effect of their action. In fact, this second concept was finally pursued in a 
parallel research activity. This leads to notable major complexities and multiplies the 
function evaluation needs, all of which is not relevant for the approach in this work and 
certainly not in the present subsection. These concepts have been addressed in a dedicated 
publication [273] as discussed in 7.2, being also related to the solutions in section 5.4. 

With respect to these concepts, it is understood that using the same algorithm for 
two different kinds of estimations is not necessarily optimal from the purely algorithmic 
point of view, but it would be highly convenient from the implementation efficiency point 
of view, having the possibility of using the same algorithm structure, especially in what 
respects to an FPGA implementation. Being able to estimate and predict different values 
with the very same implementation on the FPGA hardware (logical gates, flips-flops, etc.) 
by just changing the parameters, would enable a greatly improved cost efficiency of the 
solution. Although for this purpose theoretically potentially more adequate solutions could 
be considered as well, such as instance Recurrent Neural Networks (RNN) [274]–[276] or 
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Long Short Term Memory (LSTM) Networks  [277]–[279], embedded hardware resource 
optimization motivates such a multi-purpose NN concept.  

Basically, the possible estimation -and also eventually prediction- approaches can 
be divided in two big groups: those with a modelling or analytical basis on one hand, and 
those based on some kind of Machine Learning or similar approach. 

Following diverse implications and considering their remarkable suitability for the 
described physical magnitude problem -and the alignment with the motivation and 
technological context described in chapter 1- a Machine Learning based approach is 
selected. 

This choice was also partly supported by a fundamental comparative analysis task 
in cooperation with other researchers -as explained in section 5.4- which provided relevant 
inputs for the purpose and consequently brought additional confidence with respect to 
adequacy of the decision. 

In particular, two representative algorithms of the Machine Learning domain were 
compared together with a mathematical formulation based estimation. This does not mean 
that other approaches were not considered as well, especially Kalman-filter based 
approaches [280][281][282]. But ultimately, the research was oriented to the Machine 
Learning concepts. Thus, the following approaches were compared: 

 Standard Feed-Forward Neural Network (Perceptron) 
 Standard Support Vector Machine 
 Analytical simplification of weight distribution 

A representative resulting plot is shown in section 4.7.3, where the outputs are 
compared to the ground-truth provided by the multibody simulation model described in 
3.8. The particular driving situation is not the most challenging one, but still is sufficiently 
complex to highlight the strength and weaknesses of each method, although all can be said 
to provide reasonably good results. 

It must be noted, that the Neural Network counted with 17 inputs and two hidden 
layers of 35 and 20 neuron (which is a medium size in relative terms, as will be seen in the 
upcoming subsections). The SVM implied a lower computational cost, with its 18 inputs and 
the simple subjacent vector operations involved, assuming the constant values were 
precalculated offline and the block-based implementation was adequately optimized. In 
principle the analytical model was computationally even simpler, as it just involved a few 
dozen of algebraic operations. But it must be noted, that it relied on the roll angle as input 
signal, which is a value which cannot be directly obtained either from the available signals. 
This means, that in order to implement it in practice in the vehicle, this signal would need 
to be estimated as well, which would involve firstly additional computational cost, 
depending on the selected method, and secondly would have an undetermined impact on 
the accuracy. This option was not further analysed. 
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Figure 4-23.   Comparison of estimation solutions: NN, SVM, mathematical model 

 

Ultimately, the relatively simple Feed Forward Multilayer Perceptron Neural 
Network was chosen as Virtual Sensor solution for the normal forces of the four wheels. 
This was considered as more than adequately accurate, as upcoming results will show, and 
it maximizes the principle of prioritizing simplicity (although not so much dimensionality) 
for the multiple reasons already discussed, mainly embedded implementation and 
robustness/safety. 

This section briefly describes the fundamentals of the proposed NN inference 
algorithm, the Multilayer Perceptron [193][199], for the purpose of providing a more 
accurate understanding for the upcoming embedded implementation discussions. 

As illustrated in the flow chart in Figure 4-24, once the input signals are received, 
they need to be scaled to normalized values, before the execution of the actual NN can start 
with the hidden layers. For each hidden layer, each of its neurons needs to apply a weight 
to each of the signals from the previous layer (or the inputs, in the case of the first layer) 
and calculate the resulting sum. This can be represented as a multiplication of a vector with 
a matrix, but can be also implemented as dot products. Having the intermediate results of 
the previous layer, the bias values are added to each output. The final output of the layer is 
obtained after applying the activation function for each neuron. This process is repeated for 
each hidden layer, until reaching the output layer. This last layer does not have an activation 
function and will provide the results to be scaled to get the actual NN outputs. 
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Figure 4-24.   Flow chart of the generalized version of the implemented NN inference algorithm, 
indicating the dimensions of the data and the amount of operations 

It is relevant to understand that due to the vectorial and matricidal character of the 
operations, the computational complexity and spatial complexity are not neglectable. The 
dimensions are represented as  for the amount of inputs and  for the output count. Each 
hidden layer numbered from 1 to  with the index i, has  neurons, meaning that the 
dimension of the weight matrix will be    and the bias vector . Consequently, the 
count of parameters (weights and biases) and basic math operations are expressed in  Eq. 
4-1 and Eq. 4-2 respectively.  

=  2 + ( + 1)  

+ ( + 3) 

 Eq. 4-1 

= 2 + (2 + 1)

+ (2 + 3) 

Eq. 4-2 

The mathematical operations from Eq. 4-2 are decomposed in multiplications and 
additions in Eq. 4-3 and Eq. 4-4. 

=

+   + ( + 1) 
Eq. 4-3 

= + ( + 1)

+ ( + 2) 

Eq. 4-4 

To the previous basic arithmetic operations, the operations for the computation of 
the activation function needs to be added. As each hidden neuron includes an activation 
function, the number of activation functions equals the number of hidden neurons, as in Eq. 
4-5. 
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_ = ( ) 
Eq. 4-5 

In this work a NN with a sigmoidal activation function, has been selected, expressed 
as in Eq. 4-6.  

Sigmoid(x) =  
2

1 + 
 Eq. 4-6 

Besides increasing both the addition and multiplication count by one per hidden 
neuron, the reciprocal division and especially the exponential function can represent a 
notable computation cost, depending on the platform and the implementation. To tackle this 
issue, an approximate function could be implemented by the means of a look-up table (LUT) 
with a specific amount of data points. Therefore these operations are counted separately. 

The following Table 4-2 collects the theoretical complexity magnitudes –parameter 
and operation counts- for a few representative NN topology examples. A NN with three 
hidden layers  of 32, 16 and 8 neurons respectively with a reduced input set  of 16 is 
taken as reference topology. As for all other cases, the output count  is 4 –one per wheel-
, thus the topology is {16, 32|16|8, 4}. This is also taken as baseline to normalize relative 
complexity for other topologies. The same topology with an extended input set of 24 is also 
considered in the second row. The third row reflects a smaller topology, thinking of space 
constricted FPGAs. The remaining rows show examples for bigger topologies, illustrating 
the notable growth of complexity. It also illustrates the fact, that even for the same total 
quantity of neurons, these magnitudes change depending on their distribution. 

Topology  Complexity 
In 

(L0) 
Hidden Layers Out 

(O) 
 

Param. Oper. 
Activation f. 

(hid. neurons) L1 L2 L3 L4  
16 32 16 8 0 4  1284 2468 56 
24 32 16 8 0 4  1556 (+21%) 2996 (+21%) 56 (+0%) 
8 16 12 8 0 4  512 (-60%) 960 (-61%) 36 (-36%) 

32 32 16 8 0 4  1828 (+42%) 3524 (+43%) 56 (+0%) 
32 32 24 0 0 4  2020 (+57%) 3908 (+58%) 56 (+0%) 
32 64 32 16 0 4  4860 (+279%) 9532 (+286%) 112 (+100%) 
32 128 32 16 0 4  9020 (+602%) 17788 (+602%) 176 (+214%) 
32 64 64 32 16 4  9020 (+602%) 17788 (+602%) 176 (+214%) 

Table 4-2.   Theoretical complexity values of different NN topologies 

It must be noted that the impact of the scaling operations is almost negligible, 
accounting for L + O multiply and addition operations (e.g. just 40 operations for the 
baseline NN), and can typically be optimized away by inlining them in some interface 
operation outside the Neural Network, consequently, they are not taken into account. 
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The training of Neural Networks can be said to be a challenging task which has fed 
the publication of different kinds of work for already over two decades now [283]–[285]. 
Even for the relatively small NNs developed in this paper, it can represent a considerable 
engineering challenge due to the many design parameters that can be tuned. And even with 
the high computational power of modern computers, training jobs can take multiple days to 
complete on a high-end personal computer. Besides, these activities involve considerable 
amounts of data and results that are generated and which need to be properly organised 
and analysed in order to achieve a solid solution. 

The two most fundamental questions with major implications, 1) the input signal 
selection and 2) the NN topology itself (i.e. the number of layers and the amount of neurons 
on each layer), will be discussed in the upcoming subsections, 4.7.6 and 4.7.7. In any case, 
their adjustment requires an empirical approach involving abundant iterations to find the 
best suited combination of settings. 

Besides the design of the NN itself, a few other options are also to be selected 
regarding the training process, mainly the data partitioning and the training algorithm, as 
well as the performance evaluation function. In this sense, during the first iterations of the 
training process, computationally less intensive options were taken: Levenberg-Marquardt 
backpropagation training method instead of Bayesian Regularization Backpropagation, and 
a smaller sample subset of the training datasets. This accelerated the training until getting 
a rough approach to the design dimension range that is suitable. Once the potential design 
ranges here identified, a more refined adjustment and analysis process was started. The 
basic principle is to train an extensive variety of combinations of different topologies and 
input signals, searching for the best possible compromise between estimation accuracy, NN 
size and computational effort. 

For the purpose of achieving a productive and reliable design work in what respects 
to the training, analysis and decision making, notable effort was invested into the creation 
of a systematic training infrastructure. Furthermore, this should be provided as a reusable 
design resource for future work. For the purpose of better understanding of the upcoming 
steps, as well as due to the magnitude and importance of the Neural Network training, some 
additional details will also be discussed in the context of this section. 

The training infrastructure was built aligned with the iterative steps of the 
development process around the Neural Network training, being the major building blocks 
the following, also illustrated in Figure 4-25: 

 Master configuration template. This includes a section for the training process 
with documented parameters and option lists, and selectable training a validation 
datasets. Identically, for the definition of the design of the NN itself, it includes 
selectable and tuneable topology and input signal configuration lists, which are 
vectorized. This permits to, for instance, configure an array of topologies and 
another array of input signals, and launch a batch training and evaluation of the 
matrix resulting from each of their combinations. To ensure a stable design 
workflow, all the adjustments are centralized in this single file, and each batch job 
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configuration is explicitly linked to the outcoming NNs and result with the 
corresponding sequential numbering, prefixes and naming patterns. 

 Batch job launcher script. This is the main script which launches all the other 
scripts which implement the dataset preparation, training, storing, analysis, 
documentation, and auxiliary functions, which are automatically launched. 

 Dataset preparation script. It handles the generation of the data that is fed directly 
into the training algorithm. It extracts the desired signals from each of the raw data 
logs in the dataset, reshapes them and concatenates them into a single data matrix. 
It offers some options, such as the reduction of the data samples to accelerate the 
training without eliminating variety, as well as resampling. The same script is called 
also for the generation of the validation and testing dataset. 

 Driving data mirroring script. It is designed to be called by the previous data 
preparation script only one time for each new item added to the dataset. 
Considering that the car is symmetric, it is thought to ensure that both sides 
(left/right) of the car are trained consistently, avoiding biases which could for 
instance come from asymmetric circuits and different occurrences in time. 

 Old standard dataset reprocessing script. This script was created to update older 
training datasets when different changes were introduced into the newer datasets, 
(for example, adding derivatives or other calculated values derived from existing 
signals, or correcting a unit conversion error in the model). 

 NN performance evaluation script. It enables using different ad-hoc written 
functions for the evaluation and metric obtention of the trained networks, against 
the selected testing dataset. 

 NN storage script. It embeds the generated NN into a structure, together with all 
the relevant information about the settings of the NN itself, as well as the training 
procedure and the involved datasets and variables. This information not only 
facilitates the manual handling of the NNs, but it also simplifies the internal 
functions of the relatively complex reporting and summarizing scripts. 

 Old standard NN updating script. Similarly to the dataset reprocessing script, this 
script was used to update legacy trained NNs when the structure into which 
information is embedded was updated. They were also used to add the resulting 
performance evaluation metrics, in order to facilitate comparative analysis without 
having to re-process test datasets and execute metric calculations again. 

 Equivalent NN performance averaging script. As NN training is subject to 
randomness, identical NNs trained with the same datasets can deliver different 
results. Consequently, in order to avoid an unfortunate NN to distort the analysis, 
this script permits to combine the performance metrics of multiple equivalent NNs 
into a single, which can also be used for statistical analysis of different kinds. This 
script can additionally also be used for combining the metrics of equivalent NNs 
which were trained with different datasets, if they are tested with the same set.  

 Report generation script. It calls multiple functions to generate different outputs 
for the reporting of the training results. It can be either called automatically after 
finishing a batch training job, or on demand by manually providing a list of selected 
previously trained networks. It provides different plots and subplots, and it also 
generates a detailed Excel spreadsheet which very conveniently summarizes the 
most important information about each network in a one-page view. 
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Figure 4-25.   Screenshots of main parts of the training infrastructure and the outcomes to illustrate 
the process in a simplified manner, excluding multiple scripts (e.g. performance evaluation) 
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 NN list creation script. It creates an excel file with one row for each of the found 
(or selected) NNs providing a clear overview over the prediction horizon, topology, 
estimated variables, training inputs, training dataset, etc. of each. 

 NN deployment script. It launches the automated generation of the selected NN in 
form of Simulink™ block and in form of code. 

 Model update script. It inserts the selected NN into the general simulation model 
and automatically reassigns the corresponding bus selector to map the input signals 
required for the NN to operate. 

The last relevant point to be discussed regarding training obviously is the dataset 
on which the entire training, testing and validation activities were based. As already 
anticipated in section 3.8, a highly accurate multibody vehicle dynamics model was used. 
This firstly permitted generating a vast dataset in a consistent manner representing a wide 
variety of driving situations. Furthermore, a simulated vehicle is necessary anyway, as it 
was not possible to equip any test vehicle with normal force sensors on each wheel, which 
is necessary to train the NNs. In other words, the only way to train the NNs with an 
unmeasurable signal, is using the multibody simulator as highly representative ground 
truth. 

In order to give the possibility for the NN to have good generalization capabilities 
and adapt to the widest possible of driving circumstances, an extensive dataset covering 
many different scenarios, road types, manoeuvres and driving styles was created by many 
hours of driving by different drivers on the multibody simulator with 3D visualization and 
steering wheel setup. The scenarios or race tracks driven where the following, some of 
which are digitalized versions of real race tracks, while others are synthetically generated 
virtual tracks for testing purposes: 

 Nürburgring (Germany) race track 
 Inta (Spain) race track 
 Flat (synthetic) race track 
 Oval (synthetic) race track 
 Proving ground (synthetic) race track 

All the tracks were driven in different styles to cover the widest possible spectrum 
of the highly non-linear behaviour of the vehicle dynamics: 

 “Slow”: normal street driving speed or below, far away from any dynamically critical 
limit. 

 “Fast”: fast but smooth driving, aiming to achieve good lap times, with some wheel 
squeak but trying to avoid sliding. 

 “Borderline”: driving on the stability borderline and beyond, with the vehicle sliding 
and partly out of control, requiring strong recovery manoeuvres.  

 “Arbitrary”: performing diverse driving manoeuvres, such as driving in a slalom-like 
S shape, in circles, in figure eight and evasive manoeuvres, at different speeds on 
different grounds. 
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Additionally, in order to enhance the diversity of the training, test and validation 
data, all tracks were also driven in reverse direction, roughly duplicating the size of the 
training data. Besides that, in order to ensure symmetry, all datasets were mirrored (as 
explained in “driving data mirroring script” in the above bullets), which further doubles the 
dataset. 

 

The amount of available input signals for the NN is relatively extensive, as there are 
dozens of signals available from the vehicle sensors and its subsystems, besides a variety of 
signals obtained from these, such as derivatives and calculated values.  

Input variable selection can turn into a surprisingly complex problem, especially 
when handling highly non-linear systems with an extensive amount of eligible signals, as is 
the case addressed in this work with the NN. The optimization of input variables with 
respect to criteria such as relevance, computational effort, training difficulty, 
dimensionality and comprehensibility, can be approached with different methods and 
algorithms, as discussed in [286]. In relation to this, it must be noted, that the impact of the 
input variable quantity and topology size not only affect the runtime computational effort, 
but also the offline training effort and required dataset size. 

In this work, the previous considerations were included in the design and decision 
process, in combination with a knowledge and observation-based selection approach under 
consideration of the meaningfulness of the physical magnitudes represented by the 
variables. Therefore, no formal approach involving a concise optimality criterion. The 
avoidance of correlations and direct linear combinations was addressed by analysing the 
physically meaningful relations of the variables. 

In alignment with the given reasoning, the following principles were followed: 

 All vehicle dynamics signals of high relevance are to be included (i.e. vehicle speed, 
inertial sensor signals, wheel slips, etc.) 

 Tightly coupled (or directly correlated) signals should be avoided. 
 Multiple derivative signals are to be included, to reflect dynamics behaviour in time. 

 
This design decision holds a relevant relation with the discussion from the next 

subsection, which is the selection of the topology itself. As changes on either side affect the 
outcome of the other, these evaluations where in practice combined in an iterative manner. 

Ultimately, three different input sets were defined and analysed through extensive 
batch-wise training and performance analysis: 

A. 17 inputs: minimal set 
B. 24 inputs: reasonable set 
C. 32 inputs: extended set  
 

The detailed list of inputs is provided in Table 4-3. 
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It must be noted that the two bigger input sets were adjusted to a size which is a 
multiple of 8 to facilitate embedded implementation in general, probably being of special 
interest for a GPU implementation, due to its internal kernel and warp organization. 

For an exhaustive analysis including plots regarding the performance of each option, 
please refer to the results in section 5.  

Ultimately, a topology with the intermediate variant of 24 inputs was concluded to 
be the most adequate. 
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A 
(17) x         x x x x x x x     x  x   x x x x x x x  

B 
(24) x x x x x     x x x x x x x     x x x x x x x x x x x x  

C 
(33) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

Table 4-3.   Three different variants of NN input signal sets 

 

A further aspect of the NN configuration of the NN to be defined is the topology. This 
involves the number of layers, the number of neurons, and the distribution of the number 
of neurons on each layer. 

Here many considerations can be made from the NN theory point of view and the 
impact of different topologies for instance for the representation of non-linearities, 
generalization capacity, and so on. 

Ultimately, keeping these aspects in mind, an empirical approach was taken to 
evaluate the topology, together with the input signal set discussed in the previous 
subsection, and the MISO/MIMO decision from the upcoming subsection. This was achieved 
in an efficient manner exploiting the highly automated infrastructure described in 4.7.4, 
enabling to launch big batch training and evaluation jobs. 

Assuming that a single NN should provide the information for the normal forces on 
all four wheels, a multi-layer topology was considered as interesting. Nevertheless, single 
layer topologies were taken into consideration in the analysis as well. Multiple topology 
sizes were evaluated across an adequate range of dimensions, for each of which the same 
amount of neuron was distributed across one or multiple layers in different manners (i.e. 
hidden layers as [50] or [30 20] or [15 15 0]). 
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For an exhaustive analysis including plots regarding the performance of a selected 
subset of the vast amount of possible solutions, please refer to the results in section 5.  

The results illustrate the entire boundary of reasonable solutions, including lower 
and higher extremes in what respects to neuron count and network depth. Ultimately, the 
best balanced middle region, aiming to keep a good compromise between accuracy and 
computational cost, is addressed. The selected topology being: 24 inputs, hidden layers with 
30 and 20 neurons, 4 outputs. 

 

Before concluding, it may be mentioned as well that it was evaluated to re-structure 
the NNs, from one single MIMO NN for all wheels, into four MISO NNs, one for each wheel. 

It was thought that this could have enhanced the estimation capacity of each of the 
NNs while reducing their size. Another consideration in favour of multiple MISO NNs could 
be the implementation on FPGA. Especially under the risk, that the NN might face issues to 
fit onto the selected SoC, as will in fact be seen in the upcoming section 5.4. 

Nevertheless, the empirical results discussed above show that this approach is in 
principle not worth it. The savings in computational cost (~1/2) are not sufficient to 
compensate the fact that the NN would be needed to run four times.  

The interpretation of this conclusion is that the physical magnitudes of all four 
wheels are relatively closely coupled from the vehicle dynamics point of view. Simplifying, 
the four wheel present complementary magnitudes: when some goes up, others go down. 
Besides, two wheels on of different sides fluctuate similarly: when turning to one side, the 
wheels on that side get unloaded while the ones on the other get both loaded. Idem when 
braking and accelerating, with the front and rear end. Of course, to this simplified behaviour 
description, the challenging effects of the transients need to be added, but from a structural 
point of view the coupling can be assumed as such. Correspondingly it is understood that a 
significant part of the internal numbers being calculated in the hidden layers are to an extent 
similar for all cases, meaning that using a same topology for all wheels simultaneously 
should turn out to be more efficient, as similar calculations can be reused.  

For an analysis including plots regarding the performance of each option, please 
refer to the results in section 5.  
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4.8. Development of mechanisms for robustness  
The system architecture, the controller architecture and the individual subfunctions 

have been carefully conceived to reduce the degree of uncertainty, facilitate their analysis 
and mitigate the impact of an eventual prediction malfunction, as repeatedly discussed in 
multiple previous sections. This inevitably induced the algorithms to be designed avoiding 
unnecessary complexity, not only to enhance computational efficiency and reduce 
embedded device costs, but also to enhance robustness and furthermore facilitate the 
supervision of their intended behaviour. 

In what respects to concerns regarding the usage of a Machine Learning algorithm, 
a fundamental consideration to be highlighted is the following: a malfunction of a Virtual 
Sensor should be considered similarly to a malfunction of any conventional physical sensor: 
both can potentially suffer some kind of malfunction and need the corresponding support 
mechanisms to detect, contain and mitigate the effect. For instance, limiters of different kind 
and plausibility checks to detect excessive value variations or unrealistic values. 

A further fundamental consideration, of architectural nature, is that the designed 
optimizing algorithm is conceived to provide an enhanced set-point over the baseline 
Torque-Vectoring algorithm, aiming to reduce the slip, but it must not be permitted to cause 
critical situations. It might happen that anyway certain slip occurs, in the same way slip can 
happen with a generic Torque-Vectoring or simply a normal torque distribution. The worst-
case scenario would be some other unwanted effect which could eventually affect the 
stability of the vehicle. But in such an unlikely situation, a superior layer of conventional 
traction and stability control functions –i.e. TCS and ESP- must override the torque set-
points.  

Nonetheless, aiming to mitigate the risk of stability systems having to intervene in 
such a worst case scenario and following discussions from sections 3.4, 4.1 and 4.4, a 
diversity of functions have been placed across the controller, in order to implement such 
mechanisms and enhance the robustness and stability both of the estimations and the 
control actions.  

The functions that have been implemented include partly rather simple elements 
such as saturators and rate-limiters, but also more elaborate functions that detect excessive 
fluctuations in multiple time windows. Furthermore, a simplified mathematical model to 
estimate wheel forces is used to enable plausibility checks. Whenever unexpected values 
are detected, logical functions trigger an error and smoothly fall back to the default Torque-
Vectoring values. The threshold to trigger an error is three bad samples in a window of 5 
samples. 

In conclusion, besides the diverse functional blocks to handle the values of diverse 
signals, such as absolute saturators, dynamic saturators, rate limiters, an additional top-
level layer has been placed for purely supervision and intervention purposes. In other 
words, this block is not part of the control flow per se, in the sense that it does not directly 
modify the value of the signals. Instead, it checks the calculated signals for correctness and 
triggers a fallback to the baseline controller if unexpected values are found. 
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For simplicity and better clarity, the implemented checks are enumerated as follows, 
with some additional clarification. It must be emphasized, that the checks are applied at two 
points: one is the output of the NN normal force estimation values, to avoid implausible data 
to be fed into the controller. The second, is the output of the controller itself, to avoid any 
erratic behaviour brought by any of its inputs or its optimization functions. 

Supervision of NN signals: 

 Lowpass filters (basic blocks) + Rate limiters (basic blocks) 
 Absolute saturators (basic blocks) 
 Mathematical plausibility function (subsystem) 
 Oscillation detections (subsystem) 
 Bidirectional integrators (basic blocks) + dynamic saturators (basic blocks) 

 

Control action: 

 Rate limiters (basic blocks) 
 Absolute saturators (basic blocks) 
 Dynamic saturators (basic blocks) 
 Bidirectional integrators (basic blocks) + dynamic saturator 
 Oscillation detection (subsystem) 
 Bidirectional integrators (basic blocks) + dynamic saturators (basic blocks) 

 

All the functions have been calibrated basing on data analysis and tests in order to 
avoid false positives but provide sufficient detection sensibility. 

For validation purposes, the functions where successfully validated with multiple 
fault injection tests, meaning that erroneous values were spontaneously fed into the signals 
during runtime, in order to test the detection. 
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4.9. Embedded implementation 
 

The first embedded implementation effort, which was fully in the scope of this work, 
was made during the first phase of the Torque Vectoring development. Basically three 
fundamental milestones were accomplished here, and it consequently served as a proof of 
concept for multiple points and as basic enablers for future tasks of this work and potential 
future works. 

The first major milestone was to establish the framework for the execution on the 
selected Xilinx Zynq® 7020 SoC embedded platform. This means, achieving an operational 
implementation of the elemental building blocks around the actual algorithm to be 
implemented, which is later to be integrated into some kind of periodically called function 
with input and output interfaces.  

A low-level bare-metal approach was followed for this implementation, relying on 
periodical timer-based function calls with different priorities, implemented using the Xilinx 
Vivado™ and its additional SDK environment. 

This meant that additionally low-level CAN functions needed to be implemented for 
the CAN-based input and output interfacing, because there was no availability of Simulink™ 
blocks or automatically generated functions, and the available Xilinx CAN-libraries were for 
Linux runtimes. Besides adapting sample code for the processor’s CAN module, the CAN 
frame encoding and decoding functions had to be written. This implies that the raw data 
frame with up to 64 bits that is transmitted by CAN needs to be correctly handled to 
physically meaningful variables in the software. In other words, basing on the bit mapping 
and signal scaling definition in the DBC file, the corresponding value offset and scaling 
factors need to be applied for every frame, decoding each message for reception, and 
encoding for transmission. 

Additionally, CAN calibration and monitoring capabilities were also implemented, 
which in contrast to the previous might be seen as optional, but are highly convenient for a 
productive development workflow, especially on the race track. Otherwise, for each 
parameter change, code would need to be re-compiled (and probably even re-generated) 
and re-programmed onto the target. Having these calibration functions enabled to adjust 
selected parameters directly over CAN during runtime. 

Both previous building blocks were harmonized under the umbrella of an additional 
enhancement to the infrastructure: a self-written code generator the described CAN 
encoding, decoding, initialization, calibration and monitoring routines, plus for some 
additional functions, such as consistent automatic model and HiL parameter initialization. 
Taking as input a CAN signal specification file, this code generator created 5 output files of 
different kind -source code .c and .h files and Matlab™ .m scripts- containing all the previous 
functions. A relevant benefit of this is that it facilitates any modification to the interfaces 
and furthermore guarantees consistency across multiple work products implemented in 
different places -Vivado™ and Simulink™-, clearly accelerating the development workflow 
and reducing exposure to inconvenient error variables. 
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Besides the peripheral CAN communication solution, internal communication also 
needed to be implemented for such a heterogeneous embedded platform. AXI interfaces 
were configured to interface the data exchange between the processor cores and the FPGA. 
Besides, a very basic FPGA test function was implemented for solution validation purposes. 

Besides the achieved implementation discussed above, multiple alternative 
implementation approaches were evaluated and even partly developed as well. One of them 
based on using the fully Simulink™-based deployment approach, which is based on a specific 
Linux runtime. Another approach also used Linux, but being entirely Xilinx-based. Besides 
determinism and criticality concerns, as well as toolchain immaturity at the time, both 
implementation attempts were deprecated when the bare-metal solution succeeded. This 
involved greater effort than the other higher level solutions, but also provided greater 
control about many implementation and runtime aspects, and forced to acquire a better 
understanding of the inner workings of the platform. 

The second milestone was the establishing of the entire simulation and development 
framework, supporting up to real-time HiL with the physical ECU. The simulation setup and 
the associated methodology have already been extensively discussed, across the 
corresponding sections of chapter 3 and 0, thus redundant discussions in the subsection 
will be avoided.  

The third milestone was the actual implementation of the first algorithm iteration, 
namely the baseline Torque Vectoring Controller. For this to be possible, the two previous 
milestones were a necessary technical dependency. Here the model-based Simulink™ 
framework is exploited to automatically generate functional program code of the controller. 
Following successful deployment and implementation on the embedded platform, the 
correctness of the solution was firstly validated using the real-time HiL framework. 

Lastly, this solution was deployed in the car for race track tests, actually achieving 
the final milestone. 

Please note that additional details about the achieved results related to these 
milestones are further discussed in the upcoming chapter 5. 

Inevitably, as in any real-world embedded implementation activity, in spite of the 
sophisticated and highly automated toolchain, a notable amount of time was invested into 
this first iteration as diverse unexpected technical and tool-related obstacles had to be 
overcome. In any case, it was considered a necessary part of this work. Besides, it 
highlighted the fact of the notable initial effort -or learning curve- that needs to be invested 
into such kind of tasks, and the fact that sophisticated toolchains can be a double edged 
sword: they enable great development potential once the setup is consolidated, but as long 
as the setup -or the product themselves- is not fully mature, time-consuming major setbacks 
can arise. In fact, a very clear example of such a situation can be seen in the next subsection. 

 

As anticipated in the previous subsection, when using the Matlab™-Simulink™ HDL-
Coder based approach for FPGA hardware description code generation, several limitations 
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where detected, which serve as a notoriously representative example of the intricacies such 
ambitious implementation approach can imply. 

These limitations are attributed to the fact that the HDL-Coder toolbox was 
originally rather oriented to the implementation of simpler algorithms, typically involving 
bitwise arithmetic, logical operations, basic math operations and at most signal filtering 
using fixed point variables. 

Although, probably driven by the current technological context discussed along this 
work, MathWorks® is clearly making an effort to extend relevant features, important 
capabilities for the scope of this work are still missing. This means that achieving an efficient 
implementation is currently excessively complicated, but the expectation is that this should 
not be such a blocker issue in upcoming releases. Although this cannot be discussed due to 
NDA, even looking at release notes it can be assumed that some relevant implementation 
possibilities, are upcoming. In fact, some such features have started to be available post-
2017 releases.  

The first relevant example for very recently added fundamental capabilities is the 
AXI-slave interface, which was included in release 2017a. Several floating point operations 
and capabilities where also introduced in 2017a, as well as the capability to reuse certain 
blocks. Many important interfacing and basic matrix and vector handling capabilities where 
also introduced in 2017a and 2016b. It also wasn’t before 2016b, that native floating point 
and optimized implementations for many elemental operations and filters were added. In 
other words, until shortly before the closure of the first phase of this work and the 
corresponding implementation tests, not even the most rudimentary vector-based 
algorithm could have been implemented. 

Focusing again on the limitations impeding a reasonable implementation for this 
work, one major limitation is the fact the Simulink™ “while iterator” block is not supported. 
This was the most convenient solution to implement the layer reutilization in order to 
achieve a significant resource utilization reduction. 

Another limitation is the lack of support for non-element-wise matrix 
multiplications.  

M-functions, which can be used as workaround for some other limitations 
(especially the while-loop limitation) present yet a further limitation: they are incompatible 
with floating-point signals. 

The matrix multiplication limitation could be overcome by using and array of dot 
product blocks, one per neuron in each layer. The downside of this is that it is very prone to 
generate a very resource-consuming implementation. 

A better solution for the previous is presumed to be available in some upcoming 
Matlab™ release, by using the new multiply-accumulate and multiply-add blocks. This 
would be functionally equivalent but provide an optimized implementation, as these blocks 
are designed for an efficient mapping on the DSP slices of the FPGA. Furthermore, these 
blocks would permit to configure serial implementation for enhanced resource usage 
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accelerated by pipelining, or parallel implementation, for greatest throughput. But still the 
resource utilization may not necessarily be ideal. 

The matrix signal handling limitation can be overcome by serializing the matrixes 
and reconstructing them using the blocks. 

The floating-point interfacing limitation can be conveniently avoided by converting 
the model to a fixed-point implementation. This would furthermore enhance the resource 
utilization and timing performance. But this would slightly reduce the accessibility of the 
solution, as it would require additional steps to deploy different neural networks and it 
limits the NN implementation reusability. 

This shows that it is technically not impossible to implement the solution, but it can 
be anticipated that implementing such workaround will inevitably generate some new 
drawbacks, such as questionable efficiency and the loosing many of the benefits of the MBD 
approach (excessive complexity, strongly ad-hoc solution, loss of modularity and 
significantly lower abstraction). In other words, it would be probably contradictory to do 
an MBD implementation in this manner, making it more reasonable either to: 

 Wait for these limitations to be overcome with one of the following Matlab™ 
releases. 

 Use a C code-based implementation in combination with high-level synthesis as 
alternative solution. 
 
The second point is the most reasonable approach to obtain a widely optimal and 

restriction-free NN implementation on the FPGA. It is expected to permit to keep good 
modularity and the model-based abstraction by using the automated IP implementation 
methodology. In fact, a solution aligned with this approach was eventually explored in a 
joint research activity, as further explained in section 5.4. 

 

                

 

 

 

 

 

 

 

 



180 
 

 

  



  181 
 

 

CHAPTER 5: 

Results 
 

“Your data is just as important as your model: 
If bullshit in, then bullshit out” 

 
H. Winner 

 

     

 

The results chapter kicks off with a recap of already published 
results from the MBD-HiL workflow that culminated with race track test 
of the real embedded implementation of the baseline Torque Vectoring 
algorithms, integrated in a motor-in-wheel vehicle. 

Followingly the results focus on the second development phase 
and the core contributions brought by this work beyond those first phase 
tests, firstly in what respects to the Neural Networks by themselves and 
their capabilities as Virtual Sensors for vehicle dynamics. 

Secondly results focus on the analysis of the entire algorithmic 
solution as a whole, constituting the advanced real-time optimizing 
Torque vectoring controller, showing striking enhancements to 
performance and behaviour. 

The chapter is wrapped up with relevant highlights of embedded 
implementation on highly parallel heterogeneous devices from a 
partnership work, and finally providing a summary and graphical 
overview of the achieved solution. 

 

  



182 
 

  



  183 
 

 

5. Results 

5.1. Race-track tests with real MiW vehicle  
As mentioned in various occasions across this work, validating and showing real-

world applicability of the proposed solutions was considered of importance and 
correspondingly notable effort was invested exploiting the available resources for the 
purpose of algorithm testing/calibration/validation and data acquisition for modelling. 

For these purposes, the demonstrator vehicle of the Eunice European project was 
reused. In the context of an internal follow-up project, the author lead an upgrade stage to 
the vehicle was in order to integrate torque-vectoring. Additionally, instrumentation was 
enhanced, a panel with knobs and switches for calibration was built and most importantly, 
the power was slightly increased. 

  

Figure 5-1.   Strong cornering applying baseline Torque Vectoring on the Eunice vehicle in its 
original state at Tecnalia’s facilities (left) and in upgraded at Los Arcos in Navarre-Spain (right) 

This vehicle was taken as reference for the modelling of fundamental components 
of this work, namely the vehicle dynamics and the powertrain model, including thermal 
behaviour and efficiency. This has been extensively discussed in the corresponding 
subsections 3.1, 3.8 and 3.9. It must be emphasized, that these tests correspond to the first 
phase of this work, i.e. the baseline. The more powerful 4WD vehicle including the 3Ccar 
rear axis which was defined for the advanced controller in phase two, an entirely model-
based approach was followed, with results discussed in the remaining sections. 

   

Figure 5-2.   Plot of the GPS traces of different tests at Los Arcos Circuit 
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The achieved race-track test results were widely positive. The vehicle’s handling 
improved as expected. The notably understeering character of the original vehicle was 
enhanced to a mostly neutral character. Under aggressive manoeuvres it even turned 
slightly oversteering. The responsiveness and cornering capability was notably enhanced. 
This was especially perceivable under subjective assessment. Furthermore, slip in the curve 
interior wheel was drastically reduced and the exterior wheel was forced to exploit the 
transiently available extra normal force given by the dynamic weight redistribution. 

Measurement graphics also confirmed the enhanced handling behaviour. The yaw 
rate plot in Figure 5-3 shows the sharper responsiveness and slightly higher values in 
general. Table 5-1 illustrates the improvement of all numeric metrics. The weaker point was 
the speed, but this is to be attributed to the relatively low maximum torque and power of 
this vehicle in particular, being this the limiting factor rather than the available grip, which 
was relatively high and often could not be not fully exploited.  

 

Figure 5-3.   Baseline Torque Vectoring performance on Eunice vehicle at high grip handling circuit 

Metric 
Test (dry) 

Skid Pad Figure 8 Handling 
Circuit 

 Torque Vectoring: off on off on off on 
 Lap Time (s) - - 13.63 13.37 24.61 24.68 
 Max Speed (km/h) 52.2 53.1 - - - - 
 Max. Peak Lat. Acc. (g) - - 0.92 0.95 0.91 0.93 
 Max. Sust. Lat. Acc. (g) 0.83 0.85 0.82 0.84 0.80 0.83 
 Max. Yaw Rate (deg/s) 33 34 51 58 63 71 
 Advantage for TV yes yes yes 

Table 5-1.   Baseline Torque Vectoring performance on Eunice vehicle (Los Arcos) 

A further step was taken for additional testing of the vehicle’s and the baseline 
algorithm’s performance under extreme and low grip conditions, again upgrading the 
vehicle and taking it to OEM and TIER1 Winter Testing facilities in Sweden. These tests 
provided complementary data for the discussed purposes. 

Besides, these low-grip conditions where used to validate the TCS control function 
developed, which has been integrated into the model as discussed in section 3.10.1. 

Torque Vectoring on / off 

± 1g 

± 100deg/s 

  0-50Km/h 
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Figure 5-4.   Baseline Torque Vectoring testing on Eunice vehicle under extreme conditions at the 
Colmis Winter Testing Track in Arjeplog-Sweden 

On snow, as expected from more extreme conditions, the vehicle highlighted the 
character of both cases more acutely: stronger understeer without Torque Vectoring and 
noticeable oversteer when turning the controller on. The detailed analysis of this 
assessment is shown in Table 5-2 and Table 5-3. 

Handling criteria 
Dry tarmac testing conditions 

No 
Throttle 

High Throttle 
No TV (50/50) Standard TV Aggress. TV 

Cornering speed N/A Medium High High 

Curve entry Slight 
Underst. Understeer Neutral Incisive 

Handling Slight 
Underst Understeer Neutral Oversteer 

Wheelspin (in/out) N/A Slip    Grip Grip  Grip Grip  Grip 
Acceleration exit N/A High Med-High Medium 
Subjective perform. N/A Normal Very High High 
Subjective agility N/A Normal High Very High 

Table 5-2.   Qualitative criteria for baseline Torque Vectoring on tarmac (Los Arcos) 

Handling criteria 
Slippery surface testing conditions 

No 
Throttle 

High Throttle 
No TV (50/50) Standard TV Aggress. TV 

Cornering speed N/A Lowest Highest Average 
Curve entry Understeer Strong Underst. Slight Underst Understeer 
Handling Understeer Strong Underst. Slight Underst Oversteer 
Wheelspin (in/out) N/A Slip Slip Grip Grip Grip  Slip 
Acceleration exit N/A High High Medium 
Subjective perform. N/A Low High Good 
Subjective agility N/A Low High Good 

Table 5-3.   Qualitative criteria for baseline Torque Vectoring on snow (Winter Testing) 

A further positive outcome of these tests was the successful implementation basing 
on the conceived MiL/HiL/Deployment as discussed in section 4.3. The resulting practical 
result is that algorithm modifications could directly be deployed into the ECU using code 
generation. Then the infrastructure permitted the implementation to be tested with the 
entire vehicle model including multibody simulation in real-time with HiL. If this test was 
successful, the ECU could be directly unplugged from the desk and plugged into the car. 

Further details and deeper analysis around these results have been published in 
[49] and [287].  
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5.2. Neural Networks 
In order to achieve the presented Neural Network solution, a wide variety of 

different solutions and adjustments were evaluated in this work. For instance, adjustments 
for aspects such as training method, data selection, performance metrics, stopping criteria, 
and so on, are to be made. The variant number further grows with the design decisions 
corresponding to the NNs themselves, fundamental choices being the input signal selection, 
network topology and dimensions of each layer, as already discussed in section 4.7. 

Many challenges -of similar nature to those faced when working with vehicle 
dynamics models and complex controllers- arise when digging into exhaustive analysis 
regarding NNs. The most obvious is the mentioned vast amount variables and 
corresponding variant combinatory, which further increases the problem of long 
computation times, as training times tend to be an inconvenient with NNs. Besides the 
amount of inputs to the training jobs, the amount of outputs -i.e. the generated information- 
promptly reaches borderline unmanageable magnitudes. In contrast to the case of vehicle 
dynamics simulations, disk usage is not so critical with NN, but keeping overview might turn 
into a problem instead. This work resulted in training over 1300 NNs, for each of which 
dozens of settings and output metrics had to be analysed in order to take design decisions 
for the next development iteration. 

An additional challenge comes from the usual randomness of the NN training 
process. This implies that -in contrast to vehicle model and controller simulations- running 
a same input dataset and parameters multiple times, generates a different output each time. 
Consequently, each NN solution was programmed to be trained multiple times, calculating 
the average performance representing multiple results of the same topology. Inevitably, 
results often showed outliers with exceptionally bad performance. Such an example is 
illustrated in Figure 5-5, showing and outlier not only for small -and potentially less 
accurate- topologies, but also for a big NN. Such outliers certainly distort the average 
representations as well and, therefore, need to be handled and discarded. 

 

Figure 5-5.   Unwanted NN training effect: outlier NNs with exceptionally poor performance for 
both small and big solutions (left and right) while good solutions lay on lower side 

58 NNs with similar order of magnitude performance 

2 outliers 
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Another typical issue also resulting from the training randomness, is that 
occasionally the training fails to converge even after an excessive number of iterations. The 
consequence is that the training job, which typically takes between 5 minutes and 2 hours -
depending on a variety of factors such as the size of the NN and the dataset- can get stuck 
for over 12 hours. This not only generates a disposable result, but also disrupts batch 
training jobs.  

To address some of these issues and implement a relatively efficient and systematic 
workflow -in line with the repeatedly discussed philosophy of this work- a wide variety of 
scripts, functions and subroutines of different nature were created for the training, analysis, 
plotting, documentation and organization tasks. The resulting infrastructure reached 27 .m 
MatLab™ files containing the over 2000 lines of functional code implementing the necessary 
functionalities. The most relevant fraction of these is briefly explained in section 4.7. For the 
sake of result analysis, the automatic generation and storage of figures, reports, summaries, 
overview spreadsheets and even logs, is fundamental. An example NN overview table can 
be seen in Figure 5-6, as well as in Figure 4-25 of the said section. 

 

Figure 5-6.   Example of dimensions of automatically generated Excel spreadsheet containing roughly 
5% of the total NNs trained and subset of the analysis criteria (columns) 

Proceeding to the results of main interest, in what respects to the NNs themselves, 
Figure 5-7 illustrates a collection of a variety of network topologies selected from different 
batches but trained under the same conditions. These can be seen as the most relevant 
results from the NN development, which lead relevant conclusions. 

An important note is that as for all other analysis and metrics, different datasets 
were used to firstly train, and secondly re-test the NNs. The following graphics and metrics 
were generated with this second independent re-test dataset.  

For the major part of the analysis the MSE (mean squared error) metric was payed 
primary attention to, mostly in order to apply a greater penalty on bigger errors, besides its 
frequent convenience for visualization purposes. 
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The previous visualization in particular actually is a crop for legibility purposes. This 
means that multiple NN samples and average values mostly of the smaller NN solutions -
which are less capable- and even some of the bigger and deeper, are beyond the upper plot 
boundary. 

Another point to provide a more relevant visualization is to represent the 
complexity of the NNs -always shown in the X axis- according to the corresponding 
theoretical computational operation count. This computational complexity is extensively 
discussed in subsection 4.7.3. An alternative representation, for instance used in Figure 5-5, 
is to represent the NN complexity by the sum of the neuron count, considering the hidden 
neuron topology. 

Proceeding to the overall result analysis, the first observation is the fact that a bigger 
network is not necessarily better, although many smaller topologies present dominantly 
worse results. In this figure, a clear trend can be observed: initially error tends to decrement 
as NNs get bigger, but after a relatively flat region, results tend to worsen again. And several 
big and deep NNs do in fact show surprisingly poor accuracy. 

A relevant observation is that the topologies with 24 inputs consistently show better 
results. It can be seen to be a balanced compromise with respect to the insufficient 17 input 
approach. In what regards to the 33 input approach, unexpectedly inconsistent results can 
be found. In general terms, these additional inputs are concluded to not be worth the 
additional computational cost and could even be said to be counterproductive. 

Another observation from these results is that the topologies with two layers seem 
to show the most consistent results and appear as the best compromise solution. 

Nevertheless, in order to provide a clearer perception of the behaviour of the 
involved signals, as well as their physical meaningfulness, Figure 5-8 shows the real-time 
estimations of a selected subset of NNs in a dynamically challenging situation, which means 
that highly non-linear phenomena are happening and estimations become significantly 
more challenging for the NN. 

This subset of NNs selected for their representativeness is summarized in Table 5-4. 
It includes not only the best but, to provide a contrast, also some less good examples. 

NN Topology Comp. Operations Δ MSE Δ MAE Δ 
17[35]4 816 -46% 82517 21% 202 14% 
17[30,20]4 1286 -15% 88480 30% 202 13% 
17[35,25,15]4 2026 34% 86060 27% 203 14% 
24[15]4 495 -67% 71444 5% 181 2% 
24[35]4 1075 -29% 69106 2% 180 1% 
24[30,20]4 1510 0% 67956 0% 178 0% 
33[35]4 1408 -7% 67732 0% 180 1% 
33[35,25,15]4 2618 73% 82948 22% 192 8% 

Table 5-4.   Subset of particularly representative NNs with main attributes and metrics, including 
delta (Δ) with respect to selected solution in bold 
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Figure 5-8.   Runtime estimations of different NN topologies 
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Another observation of physical meaningfulness is given by the MAE (mean average 
error) metric. Ultimately, the key figure is that the MAE is in the range of 180 N shows a 
notably good performance, considering that the physical magnitude of this variable is 
around the range of 2000-7000 N depending on the driving situation (in average roughly 
4300 N on the front axis and 4600 N on the rear). In other words, this represents a relative 
error of under 4 % with respect to the average load on the wheels. 

The most important conclusion that can be drawn from these results, especially 
under observation of the plots in time, is that all the selected NNs provide widely satisfying 
results and roughly similar behaviour, even under dynamically challenging situations and 
occasionally physical oscillations, as plotted. Minor deviations can be observed especially at 
dynamically intensive transients and peaks. But even in such cases, on the wheel supporting 
less weight -where the relative error for the same absolute error increases- the error figure 
only exceptionally exceeds 10%. In most cases, it can be seen to be inside a 1-2 % error 
boundary. The fundamental consideration here is that that level of accuracy is considered 
more than sufficient for the application targeted in this work, were the controller should 
anyway be calibrated to offer a margin of at least 10-15 % with respect to the physical limit 
of the wheels. 

In what respects to the compromise between size and accuracy, a clear non-
proportionality can be observed. For the given examples, minor accuracy gains come at the 
cost of notably greater computational cost. In any case, only one evaluation per control cycle 
is needed in this application. Taking as reference previous work, were a smaller NN with 
roughly 1/6 of the computational complexity took just 34.7 µs to run on an even more 
constraint embedded platform with roughly 1/4 of single-core performance [288], 
optimization needs at this point are estimated as negligible.  

It may also be observed, that among the selected NN subset another outlier can be 
identified, but of opposite nature of the previously discussed badly performing outliers. This 
particular example of NN appears to provide exceptionally good accuracy for its size. 
Nonetheless, diverse other trained NNs with the same topology show clearly worse 
performance. Therefore the interpretation in this case would be, that the randomness in the 
training data pushed it to some kind of overfitting which coincidentally happens to be well 
suited for the test driving scenario. Nevertheless, such a NN should not be trusted for a solid 
solution, as its performance under other input data clearly degenerates. Besides, it lacks 
reproducibility, meaning that if a similar NN would be wanted to be trained again, it 
probably would not work as expected either.  

Ultimately, following the previous argumentation, the topology with 24 inputs and 
hidden layers as [30,20] is selected as final solution for this work. It shows near the best 
metrics overall in spite of its computational cost being in the middle range. Its behaviour in 
time provides a consistently reliable impression, with no unusual deviations. Furthermore, 
multiple examples of the same topology showed low variance with respect to the 
performance, while multiple other topologies presented greater inconsistencies among 
each other. 

Before concluding, another analysis of great interest, which was actually addressed 
prior to the elaboration of the final results above, as already discussed in section 4.7, is the 
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comparison of the results with respect to a NN approach with only one output. In other 
words, for the concept of using four smaller NNs with one output instead of one bigger one 
with four outputs. The corresponding results are illustrated in Figure 5-10. 

Basically these results lead to identical conclusions as those already discussed 
above. Some nuances may be observed though. For instance, the 17 input solutions shows 
a clearer disadvantage for this sample of NNs, while the 24 input variant does show a 
somewhat clearer advantage this time. This further strengthens the previous selected 
solution. 

Nevertheless, the bottomline of these results is that the trade-off of using smaller 
NNs is, in principle not worth it. At least not for a sequentially executed platform. Roughly 
similar results can be achieved for 4 outputs with a complexity of around 1000 operations, 
while for the 1 output case, most of the similarly performing solutions are in the 500-750 
complexity range, which would need to be multiplied x4, needing one NN execution per 
wheel. This would mean that in global, the benefit is questionable considering that 2-3x 
computations would be required in total. 

To conclude, a brief comment in what respects to another aspect in the scope of 
future work and parallel works, as already briefly suggested in other sections, may be made. 
This is with regard to the applicability of a similar NN topology for predictive purposes. 
Particularly, for batch predictions -in the order of 1000 per cycle- of future slip values, in 
order to evaluate the fitness of diverse possible torque set-points. This is part of a further 
research line and further discussed in section 7.2 and [273]. Figure 5-9 provides the most 
representative plot of this use-case, in a worst case dynamical situation with a very 
ambitious 50 ms slip prediction horizon.  

 

Figure 5-9.   NN Prediction capacity for slip values with 50 ms horizon under very unstable 
conditions as in [273] 
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5.3. Final test of the full control system 
The final overall performance of the vehicle -as a system being controlled by the 

advanced controller- will be analysed in this section. This involves addressing not only the 
most challenging part of vehicle dynamics, but also criteria representing the other 
objectives of this solution. 

As already extensively discussed, vehicle dynamics are a field of great complexity, 
involving an extensive variety of physical magnitudes related by non-linear magnitudes and 
time behaviour which involve major challenges. This makes such systems not only difficult 
to model, but they are also outstandingly challenging to control and laborious to analyse, 
especially when the control and optimization problem involves multiple domains and 
multiple objectives. 

A similar problem to the one just discussed for NNs is faced when developing the 
control solution, in what respects to the high number of adjustable parameters and 
correspondingly borderline unmanageable permutations, which actually is even worse in 
this case. Besides, the analysis task turns even more complicated, with a high amount of 
output variables to analyse, which often can be of difficult interpretation as roughly 
illustrated in Figure 5-11.  

   

Figure 5-11: Screenshot of a typical 3-monitor setup to illustrate the magnitudes of a typical batch 
of data and report analysis after each simulation job involving a subset of calibration variants 

The following paragraphs will follow a multiple-step approach to address the most 
important performance aspects for the developed controller. Following the test-cases 
defined in 3.6, the most important criteria are illustrated with selected figures, tables and 
derived explanations to facilitate the understanding of the behaviour of the system for the 
relevant points of interest in particular.  
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The following tests rely on an automated approach using a combination of metrics 
and plots, mainly for the sake of firstly reproducibility, and secondly iterative and 
systematic calibration approaches. For this purpose, a third party automated driver 
function was used with Dynacar™, which follows a defined path. 

In every plot, the vehicle’s behaviour with the advanced controller turned off and 
turned on is illustrated, the legend being respectively red and blue coloured lines. In the 
tables, for each metric the delta that the advanced controller provides is indicated, in green 
if it is an improvement, or red otherwise. 

 

The first collection of relevant results is obtained by starting with the most basic test 
manoeuvre, the Constant Radius Circle as defined in section 3.6.1. 

This test shows grip limits and might bring up understeer or oversteer, but it does 
not represent a dynamically extremely critical situation. It is a quite stationary behaviour 
which can be observed. Conveniently, this facilitates analysis with less risk for confusion 
through other complex phenomena which appear in upcoming tests. It does not highlight 
some of the advantages of the controller though, which will become more obvious in those 
tests, where the focus will be particularly placed in analysing those additional aspects. 

Figure 5-12 shows the torque set points provided by the controller. None of this set 
points had to be limited at any point by the TCS system. The controller sends clearly more 
torque to the rear right wheel, which helps to turn left. The front right wheel does not 
receive much additional torque, which would probably saturate it and risk more understeer. 

 

Figure 5-12.   Constant radius test: Torque set points on each wheel 

The advanced controller shows stable behaviour, with smooth control actions and 
few switching between different optimization steps. This can be said to show the intended 
ideal behaviour, which suits well a stable situation as the one in the test case.  
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Figure 5-13 shows the achieved speeds. The advanced controller manages to 
accelerate faster and achieve a higher final speed. This is attributed to less friction losses, 
as slip is minimized. Consequently it also finishes the first full 360º turn 0.9 seconds faster. 

 

Figure 5-13.  Constant radius test: Speed 

Figure 5-14 illustrates the lateral dynamics performance with the lateral 
acceleration and yaw rate criteria, which probably are among the points of major interest. 
The advanced controller provides greater values for both cases, in consistency with the 
greater speed observed above. 

 

Figure 5-14.   Constant radius test: Lateral acceleration and yaw rate 

It must be noted that the glitch seen roughly after second 5 can be ignored. This is 
introduced by a minor unintended behaviour bug of the autonomous driver function. The 
practical effect of this glitch on the test run is negligible. Unwanted oscillations of another 
kind occasionally also appear at the first fractions of second in each run, when the vehicle is 
placed on the ground. For this purpose, the first fractions of second of some plots are 
truncated for cleaner visualization purposes. 

Figure 5-15 shows the slips on all four wheels. While the most critical wheel -i.e. the 
front right one which takes most of the steering load- suffers from less slip, the rear right 
one shows slightly higher slip. Surprisingly, the front left wheel suffers from more slip in 
this particular run. One explanation is that greater lateral acceleration makes it receive less 
vertical force, so it eventually starts gaining some additional rotational speed. In any case, a 
value of under 0.04 is a very low and unproblematic slip. Nevertheless, this is a good 
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example of multiple phenomena in this complex domain that might be perceived as 
counterintuitive. Furthermore, it must be clarified that the left wheels show lower values -
partially out of scope- because of the way slips are calculated in Dynacar™, relative to the 
longitudinal speed of the vehicle. As this test describes a very narrow radius, the curve inner 
wheels are turning noticeably slower, slightly distorting the metric, which is mostly 
noticeable when zooming in to such small values. 

 

Figure 5-15.   Constant radius test: Wheel slip rates 

The main metrics from the previous figures can be summarized into Table 5-5. It 
provides a clear view of how the advanced controller notably provides performance 
enhancement for all the most relevant criteria, as discussed above. 

 

Table 5-5.   Summary of the most relevant results for the constant radius test 

The previous table includes the average lateral acceleration, which in this particular 
test probably is of less interest than the maximum value, as it includes the speeding up 
phase starting from standstill, where the lateral grip is not yet at the limit. 

As a concluding observation, a few significant effects can be highlighted when the 
torque request is further increased. For instance, increasing it to 1800 Nm in total, to force 
a more extreme situation. Figure 5-16 pays special attention to the slip on the right wheels, 
which are supporting the greatest vertical load and correspondingly should provide the 
greatest contribution to following the curve. It shows how the advanced controller 
consistently keeps the slip of the front right wheel below the symmetric distribution, which 
facilitates this wheel to keep steering the vehicle around the curve. 

Controller

On 20.9 -4.4% 43.50 4.0% 33.85 6.0% 0.76 7.7% 0.54 11.0% 0.62 1.3% 0.48 5.6%
Off 21.8 41.81 31.93 0.70 0.49 0.61 0.45

Yaw Rate
Max

(rad/s)

Speed
Average
(km/h)

360º time
(s)

Speed
Max

(km/h)

Lat. Accel.
Max

(m/s^2)

Lat. Accel.
Average
(m/s^2)

Yaw Rate
Max

(rad/s)
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Furthermore, at some point, without the advanced controller, the vehicle starts to slip and 
get unstable, which can be appreciated with increasing slip values and finally even 

oscillations.

 

Figure 5-16.   Constant radius test under extreme conditions: Outer wheel slip rates 

The result is that the vehicle without advanced controller eventually slides to a 
wider curve than 20,, with a deviation of roughly 0.6 metres, as illustrated in Figure 5-17. 

 

Figure 5-17.   Constant radius test under extreme conditions: Trajectory deviation 
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The second test, the Elk Test as defined in section 3.6.2, provides a more dynamically 
challenging situation, prone to bringing the vehicle to a critical situation from the stability 
point of view. It involves multiple transients and therefore provides a couple of points to be 
further analysed and added to the previous results and criteria. 

The torque set points are illustrated in Figure 5-18. The advanced controller adapts 
to the situation as expected, with no abrupt variations, but when necessary making minor 
adjustments, as multiple optimization steps can be seen. 

 

Figure 5-18.   Elk test: Torque set points on each wheel  

The resulting trajectory is shown in Figure 5-19. While the path for the first part is 
surprisingly similar, in the second part greater sliding and a noticeable instability can be 
appreciated with the advanced controller turned off, making the vehicle miss the path and 
forcing the driver to strongly correct. 

 

Figure 5-19.   Elk test: Trajectory 

The way the vehicle is struggling to keep the trajectory is considerably more 
noticeable when looking at the yaw angle in Figure 5-20. Without advanced controller, the 
vehicle reaches high rotation over its own vertical axis, being on the edge of spinning and 
fully losing control. 
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Figure 5-20.   Elk test: Yaw rate 

The effect of the Torque Vectoring can be clearly seen when zooming into this 
second part of the manoeuvre, as shown in Figure 5-21. At that moment, both cases have 
the vehicle sliding sideways -somewhat more without advanced controller- but the reaction 
to the steering wheel input with the controller on is noticeably quicker in time and with a 
greater gradient.  

 

Figure 5-21.   Elk test: Steering wheel input and lateral acceleration 

An even more noticeable advantage is seen when looking at the slips, in this case 
focusing the analysis on the front wheels, depicted in Figure 5-22, which are steering the 
vehicle in both directions in this test. The slip rate with the advanced controller is 
consistently lower and also more stable. In fact, eventually without advanced controller the 
slip peaks at 0.2, where the TCS system, adjusted for that particular value, happens to 
successfully intervene. 

As a result of the sliding, the vehicle loses considerable speed without advanced 
controller, as illustrated in Figure 5-23 
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Figure 5-22.   Elk test: Steering wheels slip rates 

 

Figure 5-23.   Elk test: Speed 

Following the above discussion, the main additional enhancements that are 
highlighted through this particular test, are summarized in Table 5-6. 

 

Table 5-6.   Summary of the most relevant results for the elk test 

While the general lateral dynamics -and collaterally also the longitudinal dynamics- 
keep showing notable enhancements in the higher end of one-digit percentages -except for 
the yaw angle, which shows an even bigger difference-, the slip values are roughly half for 
both metrics, which is a very satisfying result as well. 

Finally, a few additional observations may again be made by pushing the test to a 
more extreme situation. In both cases, when the advanced controller is not active, the 
autonomous driver loses control over the vehicle and ends up spinning the car and sliding 
of the track. 

Controller

On 63.69 7.7% 66.76 2.8% 0.093 -53.7% 0.034 -45.2% 20.7 -41.0%
Off 59.15 64.93 0.201 0.062 35.2

Speed
Min

(Km/h)

Speed
Average
(km/h)

Slip Rate Front
Max
(pu)

Slip Rate Front
Average

(pu)

Yaw Angle
Max
(deg)
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This happens in different scenarios. Firstly, the total torque request is doubled. To 
compensate, the speed is decreased to 62 Km/h. The resulting trajectory is illustrated in 
Figure 5-24 

 

Figure 5-24.   Elk test under extreme conditions: Trajectory and loss of control in absence of 
advanced controller 

Another even more extreme scenario is illustrated in Figure 5-25, where with an 
also high torque request of 2500 Nm, the vehicle is driven into the curve with a clearly 
excessive speed. First, in absence of the advanced controller, the vehicle makes a much 
wider curve. And ultimately again, the vehicle ends up strongly sliding, spinning, and flying 
off the track. With the advanced controller, slip is also high, but the vehicle remains 
controllable even for the autonomous driver. Inevitably, the specified path cannot exactly 
be followed and the vehicle gets back to its original lane over 20m later than intended. 

 

Figure 5-25.   Elk test under extreme conditions: Trajectory and loss of control without advanced 
controller 

 

 

To conclude, the long-distance Nürburgring race-track test, as discussed in 3.6.3, 
provides a few final conclusions and additional metrics with a wider scope, providing a 
complete image about the performance of the advanced controller and enhancements also 
for other -less microscopic- metrics. 
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It must be noted though, that once again the black-box autonomous driver caused a 
few restrictions here. In many cases excessive accelerations and speeds caused autonomous 
driver to lose control over the vehicle. Correspondingly, the maximum power was 
maintained, but the accelerator pedal was truncated to half. Furthermore, speed was limited 
to 130 Km/h -consequently leading to very humble lap times-. Besides, a few extra 
functional blocks had to be added to the autonomous driver’s commands, in order to impose 
constraints to mitigate misbehaviours. Nevertheless, for the runs without advanced 
controller, a few track departures happened, as highlighted in Figure 5-26. 

 

Figure 5-26.   Nürburgring trajectory, highlighting track departures without advanced controller 
(scale on main plot: 1 square = 1000 m, zoom plots scale:  n/a) 

 

The fact that the autonomous driver crashed a multiple of times without advanced 
controller is consistent with the observations in previous tests. The interpretation for this 
is that -although the advanced controller generated additional yaw moment which could 
hypothetically cause oversteer- it is not so prone to exceed the traction capacity of the 
wheels, consequently causing less critical and unstable situations. 
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Before proceeding to the remaining bigger scope metrics, a final detailed view of the 
response of the yaw rate in dynamically challenging situations is highlighted in Figure 5-27. 
Here again, the strong gradient and higher peaks of the yaw rate can be seen under the effect 
of the Torque Vectoring implemented under the advanced controller. 

 

Figure 5-27.   Nürburgring test: Yaw rate 

Ultimately, Table 5-7 provides the macroscopic metrics of relevance -for which 
corresponding plots with a scope of around 800 seconds would not be useful-. In this case, 
the focus is placed firstly on energetic values. Secondly on overall metrics related to slip. 
And ultimately, on some additional overall lateral dynamics metrics related to the steering 
behaviour and slip angle. 

 

Table 5-7.   Summary of the most relevant results for the Nürburgring test 

Interestingly the total mechanical power used to make the entire lap is the only of 
the discussed metrics which provides a worse value. It is assumed to be related to higher 
speeds around curves, and correspondingly higher aerodynamic and friction losses. But 
nevertheless the advanced controller’s efficiency gains are able to make up for this and end 
up consuming less electrical power anyway.  

The total power consumption is slightly over 35 kWh. This might appear somewhat 
high for the Nürburgring’s slightly under 21 km, but considering that other big vehicles like 
for instance the Jaguar I-Pace claim 27 kWh/100km under optimal economic driving 
conditions [289], it certainly is plausible. Furthermore, it must be considered, that on the 
race track the vehicle is constantly under high throttle, full braking and also burning energy 
in friction and slips. Besides, regenerative braking is not enabled. 

Ya
w

 R
at

e 
(ra

d/
s)

Controller

On 793.8 -6.3% 35.82 -1.7% 30.77 1.1% 85.9% 2.8% 10.77 -30.7% 15.9 -23.3% 31.1 -40.0% 119 -10.9% 1737 -25.4%

Off 847.2 36.44 30.45 83.6% 15.54 20.8 51.9 133 2330

Steering
total
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Slip Angle
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Lap time
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Ele. Energy
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(kWh)

Mec. Energy
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(kWh)
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Further relevant metrics are related to slip. The first metric indicates the total 
accumulated slip of all wheels. For the sake of simplicity it is provided as unitless magnitude, 
in contrast to the previous cases, as it is not calculated as average (because the total time is 
different). A further metric is added to indicate for how much time per wheel the TCS had 
to intervene to reduce slip, in average across the four wheels. Similarly to the total slip 
metric, a unitless total limitation metric is calculated as well. This metric indicates how 
strongly the TCS had to limit the requested torque values.  

To conclude with these metrics, two additional unitless total metrics are provided. 
One indicates the amount of steering that the autonomous driver had to provide as input, 
where more steering is considered as worse, as an indication of understeer and strong 
corrective manoeuvres. Furthermore, understeer and lateral slip of the steering wheels can 
also be identified by its slip angle, for which another accumulated metric is provided. 

Having extensively addressed vehicle dynamics and now also efficiency, the final 
focus is placed on the thermal aspects, which were also exhaustively modelled. To provide 
better comparability of thermal plots on the time axis, another simulation was run with less 
aggressive driver settings. The result is, that the total time advantage for the advanced 
controller is reduced to under 2 seconds, thus the plots are better aligned. Furthermore, the 
difference of mechanical power -which has the most direct impact on the thermal model- is 
smaller. 

Thermal behaviour is illustrated in Figure 5-28 and summarized in Table 5-8. Left 
and right temperatures without advanced controller obviously show almost identical values 
-minor differences being due to the effect of different rotations speeds and slip-. In contrast, 
clear differences over time can be appreciated amongst motors due to the effect of the 
vectoring. 

The impact of vectoring on temperature divergences is probably not as strong as 
might have been thought. At some point nevertheless the difference between left and right 
sides reaches roughly 10ºC. Although the optimization rules of the controller must have 
contributed to reducing this difference, in this test, where critical driving situations are 
predominant, the contribution of the optimization algorithm is limited, as maximizing the 
grip for the sake of keeping stability needs to be prioritized. 

In overall, no major impact is noticed in what respects to average values. While the 
final temperature with advanced controller was notably lower on the power electronics 
modules side -which is attributed to a coincidence and their fast dynamics- the mean 
temperature for the motors was roughly 1% higher, which another minor surprise but not 
concerning anyhow. 

 

Table 5-8.   Main figures of the thermal behaviour from the Nürburgring test 

FL FR RL RR FL FR RL RR Motors Modules
Mean On 62.0 ºC 65.6 ºC 79.8 ºC 83.4 ºC 38.9 ºC 39.5 ºC 41.6 ºC 41.8 ºC 72.7 ºC 40.5 ºC

Off 63.6 ºC 63.2 ºC 79.9 ºC 81.3 ºC 39.4 ºC 39.4 ºC 41.6 ºC 41.7 ºC 72.0 ºC 40.5 ºC
On 73.0 ºC 76.4 ºC 95.5 ºC 92.2 ºC 43.2 ºC 43.3 ºC 52.5 ºC 32.6 ºC 84.3 ºC 42.9 ºC
Off 75.6 ºC 75.3 ºC 94.8 ºC 95.8 ºC 48.4 ºC 48.3 ºC 53.1 ºC 53.5 ºC 85.4 ºC 50.8 ºC

Final

AverageCriteria Controller Motor Temperatures Modules Temperatures
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Figure 5-28.   Nürburgring test: Motor temperatures 

A final observation is that surprisingly the autonomous driver had even bigger 
difficulties to keep the vehicle on the track, when it was tested by activating only the 
baseline Torque Vectoring controller, without the advanced controller’s estimation and 
optimization features. In fact, it was only capable of finishing a lap unharmed under 
considerably restrictive throttle and TCS limitations. The most plausible explanation -
besides the driver’s shortcomings- is that it was designed for a front wheel drive vehicle 
with notably less power. Apparently, in this upgraded powerful 4WD vehicle, and in absence 
of an ESP system, strong oversteer frequently occurs, which would probably require a more 
skilful driver at the steering wheel.  

Nevertheless, it is notorious that the advanced controller is capable of mitigating the 
instabilities that are caused by the baseline Torque Vectoring controller, considering that 
the baseline vectoring provides the initial values for the optimization function. This is 
another highlight in what respects to the good performance of the implemented estimation 
and optimization functions, and the developed concept overall. 

 

 

Besides the previous mainly objective automated tests, which are basically based on 
automatically generated metrics in combination with expertise-based qualitative 
assessment of the plots -as seen above-, additional subjective criteria are also to be 
incorporated for a final overall assessment of the control solution. 

Firstly, real-world test-track tests already have proven the attractiveness and 
benefits of the torque-vectoring concept un general, as discussed in section 5.1. In spite of 
being for a different vehicle setup, the objective assessment certainly shows fundamental 
similarities between the performance of the real vehicle on track and the upgraded vehicle 
model ultimately used. For instance, key figures such as yaw rate showed identical 
improvements, and the nature of the improvement of the vehicle's behaviour overall is of 
similar nature in both cases. 
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The subjective aspects with the most perceivable gain are better cornering 
responsiveness when cornering -also viewable in the plots, mostly through the yaw rate-. 

Secondly, a subjective assessment was also performed using the simulator setup 
itself, representing the high power 4WD vehicle from the second phase. Although inevitably 
the subjective perception in what respects to driving forces and other nuances are not fully 
available here, force-feedback on the steering wheel provides certain feedback nonetheless. 
And in any case, the vehicle’s reactions to the driver’s inputs with different controller setups 
are visible in the 3D visualization of the virtual race tracks, which in any case was a relevant 
supporting tool to gain better understanding of how the vehicle reacts. This is in fact 
applicable to the DiL tests as well as to the automated test, as watching a 3D visualization 
facilitates the understanding of phenomena that are not always self-explanatory when 
watching a plot, especially when the vehicle slides out of control. 

The results of this assessment widely coincide with the dynamical and performance 
enhancements discussed in the above sections. 
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5.4. Embedded implementation: common FPGA & GPU work 
In the second development phase leading to the final advanced controller, it was not 

expected -and would have not been reasonable- to aim to achieve a complete embedded 
implementation of the fully functional system, including the entire set of algorithms that 
compose the advanced controller. This is consistent considering the scope of the work itself, 
besides some of the constraints discussed in section 4.9. 

Nonetheless, multiple building blocks of different nature were effectively 
implemented on the targeted embedded Zynq® FPGA/SoC-platform. Aiming for a solid proof 
of concept, milestones with a triple purpose were pursued: achieve validation of relevant 
concepts, enable further development steps and provide solutions for future work. These 
achieved results are further detailed in section 4.9 as well, but can be summarized as 
following milestones which were successfully achieved: 

 Write CAN functions for embedded implementation and runtime calibration 
 Build a framework for algorithm implementation on the embedded platform 
 Set up a code-generation solution 
 Implement the baseline Torque Vectoring code on the embedded platform 
 Exploit the full system simulation framework for MiL and HiL validation 
 Integrate the embedded platform on a real vehicle 
 Perform race-track tests  
 

The bottomline is that a fully functional baseline Torque Vectoring implementation 
was efficiently achieved in an heterogeneous embedded platform, by exploiting the 
established simulation, development and implementation frameworks to successfully 
integrate and test it on a real prototype vehicle, illustrated in 5.1. Figure 5-29 illustrates this 
in a simplified manner. 

 

Figure 5-29.   Streamlined workflow from MBD development to HiL and vehicle 
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Secondly, a couple of highly relevant heterogeneous embedded implementations of 
the NN was pursued in partnership with outstanding fellow researchers: a post-doctoral 
researcher and another doctoral researcher. Their expertise and contributions not only led 
to the results that will be discussed in the following paragraphs, but also to a high-impact 
journal publication, as further discussed in section 7.2 [273]. 

In this common work, a variation of the NN from this dissertation was implemented 
on two highly parallel heterogeneous SoC platforms. The code for the NN was automatically 
generated and implemented on the two embedded platforms identified as most relevant 
and industry suitable: the same Xilinx Zynq® 7020 FPGA-SoC-platform discussed along this 
work, and the NVIDIA Tegra K1 GPU-SoC also previously mentioned. 

The use-case targeted in this work is basically a step towards one of the proposed 
future research lines by further evolving the advanced Virtual Sensing-based Torque 
Vectoring Concept established in the second phase of this dissertation. The extended use-
case is to provide, as an input to the Torque Vectoring optimization algorithm, a vehicle 
dynamics prediction of the effect of different possible control actions. This means, that at 
each control cycle, a big batch of 512-1024 NN instances needs to be evaluated, each with 
different values for different possible solutions. 

These implementations required exhaustive optimizations in order to exploit the 
parallelism of the platforms and avoid internal bottlenecks, which required the platform-
specific expertise of the research partners. 

The most representative results are illustrated in Table 5-9. The main conclusions 
in what respects to the embedded platforms is that both FPGA and GPU devices widely 
outperform the processor-based capabilities. Furthermore, the GPU outperformed the 
FPGA. The FPGA mostly suffered a notable performance impact because, for a fully pipelined 
solution, the implementation approach consumed more hardware resources than available. 
Correspondingly, alternative FPGA implementations were evaluated using smaller NNs, 
look-up-tables for the sigmoidal function, and 32 bit fixed point arithmetic instead of 
floating point. 

Platform NN 
Topology 

Implem. 
Variant 

NN 
Batch 
Size 

Time 
per NN 

(µs) 

GPU 
Occupancy 

FPGA 
Resource utilization 

CPU 16 [32 16 8] 4 Baseline 1024 ~12.0 - - 

GPU 16 [32 16 8] 4 Const. 
Mem. 512 0.05 25% - 

GPU 16 [32 16 8] 4 Const. 
Mem. 1024 0.03 x - 

FPGA 8 [16 12 8] 4 Fix32 
Pipelined 1024 ~0.19 - 0%, 521%, 132%, 406% 

FPGA 8 [16 12 8] 4 Fix32 
LUT1k 1024 3.25 - 19%, 80%, 17%, 29% 

FPGA 16 [32 16 8] 4 Fix32 
LUT1k 1024 4.20 - 37%, 83%, 25% 76% 

Table 5-9.   Extract of results of NN implementations on FPGA and GPU as in [273] 
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In any case, in absence of pipelining the GPU scaled up notably better and increased 
the performance gap. Besides, it can be assumed that the GPU would also have performed 
notably better if the algorithm would have grown in complexity. 

It must be emphasized, that these remarkable computation time results correspond 
to big batches of parallelly executed NNs. In other words, the resulting outstandingly low 
average execution times per NN are achieved because many are computed simultaneously. 
This means that reducing the amount of NNs will not scale linearly. In fact, below a certain 
number of NNs, the total computation time would remain virtually unaltered for the GPU 
implementation. So, executing a single NN would take almost the same time as executing for 
example 10. For the FPGA implementation, the scalability depends on the pipelining 
implementation. For further details and extensive results and analysis, please refer to the 
publication [273].  
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5.5. Summary of Achieved Solution 
As a wrap up of the most important parts from the previous chapters, it can be 

summarized that a successful development setup and controller implementation have been 
achieved, establishing a model-based automated framework. This is illustrated in Figure 
5-30 and Figure 5-31. 

This framework enables to develop algorithms with notable abstraction, by 
benefiting from real-time HiL and DiL simulations, automatic code-generation and 
automated tests and analysis, amongst other features. In a first project phase, where a 
prototype vehicle with a 2xMiW electric powertrain was taken to race track tests, this 
solution enabled a seamless implementation of the baseline Torque Vectoring algorithm, 
firstly on the HiL, and secondly directly plugging the same ECU in the real vehicle. This 
represents a major improvement to the productivity and flexibility of the workflow. 

A highly representative system model representing the targeted vehicle has been 
developed, this being fundamental for a second fully simulation-based phase. The core is a 
high-fidelity multibody vehicle dynamics model. Furthermore, complementary 
subcomponent models have been created, mainly a powertrain model integrating elaborate 
thermal and efficiency models, besides secondary models for mechanical aspects, TCS and 
ABS. Most of these models were adjusted by exploiting data acquired in race track tests. The 
ultimately targeted vehicle is defined to have a powerful powertrain with four independent 
electric motors. 

 

Figure 5-30.   HiL setup with physical ECU prototype and Simulink™ based framework  

The developed advanced controller itself implements a real-time optimization 
approach, extending the baseline Torque Vectoring algorithm from the first phase. Multiple 
refined algorithms have been integrated to enhance its capabilities and realize the real-time 

Model 

3D visualization 

Real-Time DiL Wheel 
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multivariable multiobjective optimization concept. A Fuzzy Logic algorithm provides the 
priorities of the different objectives basing on the driving situation. The most important 
objective is related to vehicle dynamics, namely avoiding slip by preventing excessive 
torque on the wheels. For this purpose, a Neural Network is implemented as Virtual Sensor 
for an unmeasurable physical magnitude: normal force on each wheel.   

Multiple implementation approaches were followed for the most important building 
blocks of this work, namely the Torque Vectoring and the Neural Network. These targeted 
heterogeneous embedded platforms, including microprocessor, FPGA and GPU parts. This 
was partly done in cooperation with fellow researchers. 

 

Figure 5-31.   Wrap up of the building blocks and relations of the implemented solution 
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CHAPTER 6: 

Summary and Conclusions 
 

“Learning is not a spectator sport” 
 

D. Blocher 
 

 

 

 

This chapter presents the conclusions and future work. The main 
conclusions in general are firstly summarized over the two first pages, 
before proceeding to a more detailed discussion on per-topic basis.  
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