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An ancestral inversion of 900 kb on chromosome 17q21, which includes the
microtubule-associated protein tau (MAPT ) gene, defines two haplotype clades in
Caucasians (H1 and H2). The H1 haplotype has been linked inconsistently with AD.
In a previous study, we showed that an SNP tagging this haplotype (rs1800547) was
associated with AD risk in a large population from the Dementia Genetics Spanish
Consortium (DEGESCO) including 4435 cases and 6147 controls. The association was
mainly driven by individuals that were non-carriers of the APOE ε4 allele. Our aim
was to replicate our previous findings in an independent sample of 4124 AD cases
and 3290 controls from Spain (GR@ACE project) and to analyze the effect of the H1
sub-haplotype structure on the risk of AD. The H1 haplotype was associated with AD
risk (OR = 1.12; p = 0.0025). Stratification analysis showed that this association was
mainly driven by the APOE ε4 non-carriers (OR = 1.15; p = 0.0022). Pooled analysis
of both Spanish datasets (n = 17,996) showed that the highest AD risk related to
the MAPT H1/H2 haplotype was in those individuals that were the oldest [third tertile
(>77 years)] and did not carry APOE ε4 allele (p = 0.001). We did not find a significant
association between H1 sub-haplotypes and AD. H1c was nominally associated but
lost statistical significance after adjusting by population sub-structure. Our results are
consistent with the hypothesis that genetic variants linked to the MAPT H1/H2 are
tracking a genuine risk allele for AD. The fact that this association is stronger in APOE
ε4 non-carriers partially explains previous controversial results and might be related to a
slower alternative causal pathway less dependent on brain amyloid load.

Keywords: Alzheimer’s disease, MAPT, H1H2, APOE, genetic association

INTRODUCTION

Dementia is related to many underlying pathologies, with Alzheimer’s disease (AD) being the most
common. AD is pathologically defined by the deposits of two proteins: tau which accumulates
intracellularly and β-amyloid that accumulates extracellularly and within the walls of the blood
vessels of the central nervous system. Dementia of AD-type is a complex entity with a common
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clinical syndrome that is likely to be reached by different routes
influenced by genetic and environmental factors. This complexity
is likely to have contributed to the constant failures of AD
clinical trials. In particular, therapies based on the amyloid
cascade hypothesis have not demonstrated any disease-modifying
effect, despite some of these attempts have been proved to
be effective in permanently removing brain β-amyloid plaques
(Nicoll et al., 2019). This has led the pharmaceutical industry
to focus on other therapeutic targets such as the tau protein
(Corvol and Buée, 2019).

Neurofibrillary tangles composed of truncated and
hyperphosphorylated tau proteins are hallmarks of AD pathology
(Goedert, 2004). Tau protein plays an essential role in the central
nervous system by promoting microtubule assembly and stability
in neuronal cells. Emerging evidence supports that tau function
is essential for normal synaptic mechanisms and it may be
dysregulated in AD potentially through interaction with genetic
risk factors in an Aβ-dependent or Aβ-independent manner
(Dourlen et al., 2019). Additionally, tau has been proposed
to spread through the brain from neuron to neuron by a
“prion-like” mechanism (Clavaguera et al., 2015).

Tau protein is encoded by the MAPT gene (MAPT: OMIM:
∗157140), located at chromosome 17q21-22. There are two
common MAPT extended haplotypes in Caucasians resulting
from an ancestral inversion: H1 and H2. The H1 haplotype
has been linked with familial and sporadic neurodegenerative
disorders like progressive supranuclear palsy (PSP) (Conrad et al.,
1997; Baker et al., 1999; Higgins et al., 2000; Pastor et al., 2004,
2016), corticobasal degeneration (CBD) (Houlden et al., 2001),
Frontotemporal Dementia (FTD) (Verpillat et al., 2002), and
Parkinson’s disease (PD) (Martin et al., 2001; Simón-Sánchez
et al., 2009; Pastor et al., 2016). Genome-wide association studies
(GWAS) have shown that the MAPT H1 haplotype is associated
with CBD, PSP, and FTD (Yokoyama et al., 2017).

The H1 haplotype is further divided into sub-haplotypes, of
those H1c has been associated with several neurodegenerative
diseases (Myers et al., 2005; Heckman et al., 2019). H1c has
been associated with higher levels of tau in plasma and CSF
(Myers et al., 2007; Chen et al., 2017) and inconsistently with AD
(Myers et al., 2005).

Although recent genetic studies show that several AD GWAS-
associated genes, especially BIN1, are potentially involved in
tau pathways (Dourlen et al., 2019), MAPT itself has not
emerged until recently as a locus associated with AD. The IGAP
consortium found a significant association between an SNP
tagging MAPT H1 haplotype (rs2732703) and AD in subjects
not carrying APOE ε4, however, the authors concluded that their
conditional analysis pointed out that MAPT was probably not the
causal gene (Jun et al., 2016).

Microtubule-associated protein tau H1/H2 haplotype
frequency varies according to populations, with H2 frequency
being maximum in the Mediterranean region and decreasing
gradually as we move away from that area (Donnelly et al., 2010).
These differences might contribute to explain controversial
results among studies, as genetic stratification in genetically
heterogeneous populations might constitute an important
confounder. It is therefore essential to study these variants in

large genetically homogeneous populations. In a previous study,
we showed that H1 MAPT haplotype was strongly associated
with risk of PSP, PD, and AD in 4435 cases and 6147 controls
from Spain (Pastor et al., 2016). Therefore, it seems that MAPT
H1/H2 haplotypes might play a relevant role within the genetic
architecture of several neurodegenerative pathologies in our
country. It is worth mention that the prevalence of the haplotype
H2 in our control sample was one of the highest reported
worldwide (29%) (Pastor et al., 2016).

In the present study, we aimed to replicate our previous
findings in an independent sample. To do that, we assessed the
association between the AD risk and the MAPT H1/H2 haplotype
and H1 sub-haplotypes in 4,124 AD cases and 3,290 controls from
Spain (GR@ACE/DEGESCO project).

MATERIALS AND METHODS

A detailed description of the methods and population
of the GR@ACE study has been published elsewhere
(Moreno-Grau et al., 2019)1.

Population
The GR@ACE study comprises 4,120 AD cases and 3,289 control
individuals. Cases were recruited from Fundació ACE, Institut
Català de Neurociències Aplicades (Barcelona, Spain). Diagnoses
were established by a neurology working-group according to the
DSM-IV criteria for dementia and to the National Institute on
Aging and Alzheimer’s Association’s (NIA-AA) 2011 guidelines
for defining AD. In the present study, we considered AD cases,
dementia individuals diagnosed with probable or possible AD at
any moment of their clinical course.

Control individuals were recruited from three centers:
Fundació ACE (Barcelona, Spain), Valme University Hospital
(Seville, Spain) and the Spanish National DNA Bank Carlos III
(University of Salamanca, Spain)2. Written informed consent
was obtained from all participants. The Ethics and Scientific
Committees have approved this research protocol (Acta 25/2016,
Ethics Committee, Hospital Clinic I Provincial de Barcelona,
Barcelona, Spain).

Genotyping, Quality Control, Imputation,
and Statistical Analysis
Participants were genotyped using the Axiom 815K Spanish
Biobank array (Thermo Fisher). Genotyping was performed in
the Spanish National Center for Genotyping (CeGEN, Santiago
de Compostela, Spain).

We removed samples with genotype call rates below
97%, excess heterozygosity, duplicates, samples genetically
related to other individuals in the cohort or sample mix-
up (PIHAT > 0.1875). If a sex discrepancy was detected,
the sample was removed unless the discrepancy was safely
resolved. To detect population outliers of non-European
ancestry (>6 SD from European population mean), principal

1https://www.biorxiv.org/content/10.1101/528901v1
2www.bancoadn.org
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component analysis (PCA) was conducted using SMARTPCA
from EIGENSOFT 6.1.4.

We removed variants with a call rate < 95% or that grossly
deviated from Hardy–Weinberg equilibrium in controls (P-
value≤ 1× 10−4), markers with a different missing rate between
case and control (P-value < 5× 10−4 for the difference) or minor
allele frequency (MAF) below 0.01. Imputation was carried out
using Haplotype reference consortium (HRC) panel in Michigan
Imputation servers3. Only common markers (MAF > 0.01) with
a high imputation quality (R2 > 0.30) were selected to conduct
downstream association analyses.

Statistical Analysis
Allelic and genotypic frequencies were compared using χ2

statistics. Adjusted analyses were performed using multiple
logistic regression. We used rs1800547 to tag MAPT H2
haplotype. Additionally, we used six tagging variants (rs1467967,
rs242557, rs3785883, rs2471738, rs8070723, rs7521), to construct
most common MAPT H1 sub-haplotypes as previously described
(Pittman et al., 2005; Allen et al., 2014). To control for population
sub-structure, results were co-variated by the main four principal
components detected in this population (Moreno-Grau et al.,
2019). All analyses were performed in PLINK 1.7.

RESULTS

We included 3290 controls with a mean age of 54.3 ± 14.4 years,
and 48.9% of females, and 4124 AD cases with a mean age of
79.0± 7.5 years, 69.6% of females. No gross deviation from Hardy
Weinberg equilibrium was found in controls for any of the MAPT
studied variants (Table 1).

Table 2 shows the allelic and genotypic frequency distribution
of the SNPrs1800547 tagging the H1/H2 haplotype. We found
a statistically significant overrepresentation of the MAPT H1
haplotype, present in 73.3% of AD compared to 71.1% of controls
(p = 0.00025). When we stratified the sample by APOE ε4
status, the association of the H1 haplotype was driven by non-
carriers of APOE ε4 (p = 0.0022) (Table 2). The association
followed exactly the same pattern as our previous study (Pastor
et al., 2016). Pooling both Spanish population confirmed that
MAPT H1 was significantly more common in AD compared to
controls (73.5 versus 70.7% respectively; p = 1.0× 10−5), and this

3https://imputationserver.sph.umich.edu

TABLE 1 | Hardy–Weinberg equilibrium test in controls.

SNP Genotypes Observed (HET) Expected (HET) P-value

rs1467967 264/1346/1679 0.41 0.41 0.83

rs242557 346/1426/1517 0.43 0.44 0.69

rs3785883 128/955/2206 0.29 0.30 0.06

rs2471738 89/991/2209 0.30 0.29 0.08

rs8070723 292/1328/1669 0.40 0.41 0.24

rs7521 614/1564/1111 0.48 0.49 0.13

association was predominantly due to the APOE ε4 non-carriers
(p = 8.0× 10−5) (Table 2).

Table 3 shows the sub-haplotypes of MAPT in cases and
controls. In addition to the protective effect of H2, only H1c
was statistically significantly associated with AD. However, when
we adjusted by the four main genetic components H1c was not
statistically significant. After stratifying by APOE ε4 these results
did not change substantially, and in addition to H2, only two rare
sub-haplotypes (H1u and H1v) were nominally associated with
AD. After adjustment, none of the associations survived multiple
comparisons correction (Table 4).

Figure 1 shows the genotypic distribution of the SNP
rs1800547 (MAPT H1/H2) stratified by APOE ε4 across age
tertiles for the pooled population. In the available entire sample of
15,522 individuals, we appreciated that within the APOE ε4 non-
carriers the association between MAPT H1/H2 and AD increased
with age, and it was stronger in the oldest individuals.

DISCUSSION

Our data, from a large and homogeneous single country
population, shows that individuals carrying the H1 MAPT
haplotype are at higher risk to develop AD dementia. The
association is predominantly present in the APOE ε4 non-carriers
and it is stronger in the eldest. These results replicate our
previous findings (Pastor et al., 2016) and are concordant with
the IGAP study (Jun et al., 2016) showing an association of
another SNP tagging H1 (rs2732703) with AD only in the APOE
ε4 non-carriers.

Our pooled analysis, including 15522 individuals, strongly
support an etiological role of the MAPT region in AD. This
association has been difficult to replicate, and results of previous
studies assessing MAPT H1/H2 haplotype as a risk factor for
AD have been controversial, although some of them were
considerably under-powered (Russ et al., 2001; Mukherjee et al.,
2007; Babić Leko et al., 2018). A robust statistical association
only emerged in large sample studies and meta-GWAS, after
stratifying by APOE ε4 (Jun et al., 2016; Pastor et al., 2016). An
alternative interpretation of our results would be that the causal
variant could be in linkage disequilibrium with the MAPT H1
haplotype but outside the MAPT gene, as other authors have
suggested (Jun et al., 2016). A less likely explanation might be
contamination of non-AD tauopathies in APOE ε4 non-carriers.

There are several factors that might be related to our
findings. Taken together, our two studies, comprise one of the
largest single-country population assessing MAPT H1/H2 and
AD risk to date. This is of special value, as the inversion
haplotype frequency has been shown to differ significantly across
populations, and it is estimated to be 20% in Europeans, 6% in
Africans, and less than 1% in East Asians (Holzer et al., 2004).
This ethnic variability might cause population sub-structure
biasing the results in countries with a high degree of population
admixture. This is likely to be less problematic in our study as
our sample come from a single country, and we have tested
population sub-structure in Spain which does not represent
a substantial problem for common genetic variants analyses
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TABLE 2 | Microtubule-associated protein tau H1/H2 haplotypes and AD risk.

Control (%) AD (%) Genotype P-value Allelic P-value Allelic OR (95%CI)

ALL

H2H2 290 (8.8) 328 (8.0) p = 0.008 p = 0.00025 1.12 (1.04–1.20)

H1H2 1324 (40.2) 1546 (37.5)

H1H1 1676 (50.9) 2250 (54.6)

H1 frequency 0.711 0.733

APOE4+

H2H2 58 (8.3) 136 (8.3) p = 0.42 p = 0.32 1.07 (0.93–1.23)

H1H2 286 (40.7) 625 (37.9)

H1H1 358 (51.0) 887 (53.8)

H1 frequency 0.714 0.728

APOE4−

H2H2 232 (9.0) 190 (7.7) p = 0.009 p = 0.0022 1.15 (1.05–1.25)

H1H2 1033 (40.1) 913 (37.2)

H1H1 1311 (50.9) 1353 (55.1)

H1 frequency 0.709 0.737

ALL (Pastor et al., 2016)

H2H2 532 (9.15) 344 (8.34) p = 0.001 p = 0.00051 1.12 (1.05–1.19)

H1H2 2444 (42.03) 1614 (39.11)

H1H1 2839 (48.82) 2169 (52.56)

H1 frequency 0.698 0.721

APOE4+ (Pastor et al., 2016)

H2H2 78 (9.07) 139 (8.50) p = 0.88 p = 0.65 1.03 (0.91–1.18)

H1H2 345 (40.12) 655 (40.04)

H1H1 437 (50.81) 842 (51.47)

H1 frequency 0.709 0.715

APOE4− (Pastor et al., 2016)

H2H2 343 (8.46) 160 (8.16) p = 0.001 p = 0.0025 1.14 (1.05–1.24)

H1H2 1701 (41.97) 730 (37.24)

H1H1 2009 (49.57) 1070 (54.59)

H1 frequency 0.706 0.732

ALL pooled

H2H2 822 (9.0) 672 (8.1) p = 1.03 × 10−5 p = 1.0 × 10−5 1.126 (1.075–1.127)

H1H2 3769 (41.4) 3160 (38.3)

H1H1 4515 (49.6) 4419 (53.6)

H1 frequency 0.703 0.727

APOE4+ pooled

H2H2 136 (8.7) 275 (8.4) p = 0.52 p = 0.286 1.053 (0.958–1.157)

H1H2 631 (40.4) 1280 (39.0)

H1H1 795 (50.9) 1729 (52.6)

H1 frequency 0.711 0.721

APOE4− pooled

H2H2 575 (8.7) 350 (7.9) p = 5.16 × 10−5 p = 8.0 × 10−5 1.148 (1.08–1.22)

H1H2 2734 (41.2) 1643 (37.2)

H1H1 3320 (50.1) 2423 (54.9)

H1 frequency 0.707 0.735

(Moreno-Grau et al., 2019). Additionally, in our sub-haplotype
analysis, we controlled for population sub-structure by adjusting
for genetic principal components. It is worth mentioning that,
despite it is commonly reported that the inversion is found at a
frequency of around 20% throughout Europe, it shows a great
range of frequencies within Europe (from 5 to 37.5%). The H2
haplotype, which identifies the inversion, is most frequent around

the Mediterranean decreasing outward in all directions (Donnelly
et al., 2010). Our controls presented the inversion in nearly
30% of individuals, this high frequency of the H2 haplotype has
increased our power to detect the association compared to other
populations in which this variant is less prevalent.

A potential limitation of our study is the age difference
between the cases and the controls, which are significantly
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TABLE 3 | Microtubule-associated protein tau sub-haplotypes.

Haplotype ID Haplotype∗ Cases Controls P Adjusted P-value∗∗

H1o AAACAA 0.022 0.021 0.63 0.47

H1y AAATAG 0.013 0.011 0.31 0.22

H1d AAGCAA 0.069 0.072 0.60 0.30

H1u AAGCAG 0.025 0.022 0.19 0.14

H1q AAGTAA 0.012 0.013 0.52 0.22

H1c AAGTAG 0.114 0.104 0.05 0.14

H1h AGACAA 0.050 0.047 0.51 0.25

H1l AGACAG 0.046 0.044 0.65 0.44

H1t AGATAG 0.011 0.010 0.64 0.30

H1e AGGCAA 0.075 0.077 0.75 0.90

H1j AGGCAG 0.016 0.016 0.78 0.95

H2 AGGCGG 0.283 0.309 0.0009 0.0008

H1z GAATAG 0.014 0.011 0.12 0.07

H1i GAGCAA 0.038 0.040 0.69 0.72

H1m GAGCAG 0.026 0.023 0.32 0.36

H1f GGACAA 0.014 0.014 0.95 0.75

H1v GGATAG 0.014 0.012 0.27 0.08

H1b GGGCAA 0.159 0.156 0.60 0.31

∗rs1467967; rs242557; rs3785883; rs2471738; rs8070723; rs7521; ∗∗adjusted by the four genetic principal components.

younger. However, this could only jeopardize the validity of our
findings in the case of a survival bias. But to our knowledge, the
MAPT H1/H2 haplotype has not been associated with mortality.
The most likely consequence of our age unbalance is a decrease
in our power to detect the association, as some of the controls
carrying the H1 haplotype may still develop AD in the future. It
is therefore likely that we are underestimating the true association
between the H1/H2 haplotype and AD.

Microtubule-associated protein tau H1 has been associated
with many neurodegenerative diseases: PSP, PD, CBD, FTD,
and AD. It has been reported that the MAPT H1 is more
efficient at driving gene expression than the H2 haplotype (Kwok
et al., 2004). This has been shown to be particularly true with
the H1c sub-haplotype (Myers et al., 2007). However, the H1
sub-haplotype association with AD is controversial, and H1c
findings have been difficult to replicate (Myers et al., 2005;
Abraham et al., 2009; Allen et al., 2014). It is likely that
population stratification might have played a role. In our data
H1c was nominally associated with AD, however, the statistical
significance was lost after adjusting by the principal components
supporting the notion that no H1sub-haplotype is specifically
increasing AD-risk, and stratification by APOE ε4 did not change
substantially these results.

Our results add further evidence for an etiological role of
MAPT gene variants in clinical AD, supporting the role of the
APOE ε4 allele as a modulator of this association. As seen in
our previous study in population from Spain (Pastor et al.,
2016) and by the international consortium IGAP (Jun et al.,
2016), this association is significantly stronger in APOE ε4 non-
carriers. Recent studies with tau and amyloid PET supports a
view of AD as a tauopathy driven by amyloid, suggesting that
tau pathology would appear in middle temporal lobe earlier
than amyloid deposits, but the co-occurrence of both would be
needed for tau pathology to expand beyond the temporal lobes

(Schöll et al., 2016). This is also coherent with the new findings of
AD meta-GWAS which shows the involvement of both amyloid
and tau pathways (Dourlen et al., 2019; Kunkle et al., 2019).
Therefore, it seems that tau and amyloid deposits might follow,
at least initially, independent trajectories up to the point when
they reach a threshold in which β-amyloid might accelerate
tau pathology. A recent single case publication showing that a
patient with a presenilin 1 mutation was resistant to cognitive
impairment, likely due to a homozygous mutation in APOE,
supports the hypothesis that APOE might play an important role
in this tau pathology acceleration (Arboleda-Velasquez et al.,
2019). On the other hand, APOE status is associated to prevalence
of brain amyloid pathology, as shown by a large PET and CSF
study in non-demented population that found that APOE ε4
carriers had two to three times higher prevalence than non-
carriers (Jansen et al., 2015).

We hypothesize that the MAPT H1 variant might increase
the risk of tau pathology which might be related to different
amyloid thresholds to disparate tau pathology. We speculate
that the association is only significant in the APOE ε4 non-
carriers because in the carriers the amyloid would mask the
H1 MAPT effect, while in the non-carriers the “tau etiologic
pathway” would play a more relevant role and might be able to
increase AD risk with a lower amyloid involvement. It is likely
that this phenomenon might take longer to develop which might
explain why this association is not significant in the youngest
patients and stronger in the third tertile. This hypothesis could be
tested studying the trajectory of individuals classified according
to APOE ε4 status and MAPT H1/H2 haplotype in prospective
cohorts with sequential amyloid and tau PET assessments.

Our study highlights the complexity of AD and suggests the
existence of different pathogenic routes influenced by the genetic
background. To look for successful therapeutic strategies it will
be very important to take into account this mechanistic diversity
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and to combat specifically the pathology demonstrated on each
afflicted individual.

MEMBERS OF THE GR@ACE STUDY
GROUP

Research Center and Memory Clinic, Fundació ACE, Institut
Català de Neurociències Aplicades, Universitat Internacional
de Catalunya, Barcelona, Spain: C. Abdelnour, N. Aguilera, E.
Alarcon, M. Alegret, M. Boada, M. Buendia, P. Cañabate, I. de
Rojas, S. Diego, A. Espinosa, A. Gailhajenet, P. García González,

TABLE 4 | Microtubule-associated protein tau sub-haplotypes stratified by
APOE ε4 status.

Haplotype ID Haplotype∗ OR P-value Adjusted P-value∗∗

APOE4+

H1o AAACAA 1.17 0.61 0.63

H1f GGACAA 1.55 0.31 0.20

H1h AGACAA 0.96 0.81 0.93

H1i GAGCAA 1.04 0.83 0.90

H1d AAGCAA 0.85 0.26 0.18

H1b GGGCAA 1.08 0.43 0.37

H1e AGGCAA 1.02 0.88 0.93

H2 AGGCGG 0.93 0.28 0.23

H1z GAATAG 1.77 0.14 0.10

H1v GGATAG 0.95 0.86 0.92

H1t AGATAG 1.46 0.37 0.28

H1c AAGTAG 1.13 0.27 0.37

H1l AGACAG 1.01 0.95 0.64

H1m GAGCAG 1.07 0.78 0.89

H1u AAGCAG 0.91 0.71 0.76

H1j AGGCAG 0.66 0.18 0.21

APOE4−

H1q AAGTAA 1.12 0.56 0.86

H1g GAACAA 0.94 0.81 0.92

H1o AAACAA 1.12 0.46 0.40

H1f GGACAA 0.93 0.74 0.93

H1h AGACAA 1.11 0.34 0.19

H1i GAGCAA 0.89 0.37 0.46

H1d AAGCAA 1.02 0.83 0.83

H1b GGGCAA 1.04 0.55 0.34

H1e AGGCAA 0.94 0.46 0.90

H2 AGGCGG 0.88 0.00 0.00083

H1z GAATAG 1.33 0.20 0.24

H1y AAATAG 1.30 0.25 0.35

H1v GGATAG 1.41 0.13 0.04

ND AGATAG 1.03 0.91 0.65

H1c AAGTAG 1.12 0.10 0.37

H1l AGACAG 1.06 0.56 0.60

H1m GAGCAG 1.21 0.20 0.33

H1u AAGCAG 1.41 0.03 0.04

H1j AGGCAG 1.15 0.46 0.30

∗rs1467967; rs242557; rs3785883; rs2471738; rs8070723; rs7521; ∗∗adjusted by
the four genetic principal components.
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FIGURE 1 | Genotype frequency distribution of the rs1800547 SNP tagging MAPT H1/H2 haplotype stratified by APOE ε4 status and age tertiles.

Memory Disorders Unit, Department of Neurology, Hospital
Universitari Mutua de Terrassa, School of Medicine, University
of Barcelona, Barcelona, Spain: I. Álvarez, M. Diez-Fairen,
and P. Pastor. Laboratorio de Genética, Hospital Universitario
Central de Asturias, Oviedo, Spain: V. Álvarez. Instituto de
Investigación Biosanitaria del Principado de Asturias, Oviedo,
Spain: V. Álvarez, C. Martínez, and M. Menéndez-González.
Department of Neurology, Hospital Universitario Son Espases,
Palma, Spain: G. Amer-Ferrer. Unidad de Demencias, Hospital
Clínico Universitario Virgen de la Arrixaca, Murcia, Spain: M.
Antequera, C. Antúnez, A. Legaz, S. Manzanares, J. Marín-
Muñoz, B. Martínez, V. Martínez, M. P. Vicente, and L. Vivancos.

Servei de Neurologia, Hospital Universitari i Politècnic La Fe,
Valencia, Spain: M. Baquero and J. A. Burguera. Unidad de
Demencias, Servicio de Neurología y Neurofisiología, Instituto
de Biomedicina de Sevilla, Hospital Universitario Virgen del
Rocío/CSIC/Universidad de Sevilla, Seville, Spain: M. Bernal,
E. Franco, M. Marín, and S. Rodrigo. Sant Pau Memory Unit,
Neurology Department, Sant Pau Biomedical Research Institute,
Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de
Barcelona, Barcelona, Spain: R. Blesa, J. Clarimón, J. Fortea, and
A. Lleó. Centro de Biologia Molecular Severo Ochoa (CSIC),
Universidad Autonoma de Madrid, Madrid, Spain: M. J. Bullido,
A. Martín Montes, and I. Sastre. Instituto de Investigacion

Frontiers in Aging Neuroscience | www.frontiersin.org 7 December 2019 | Volume 11 | Article 327

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00327 December 4, 2019 Time: 12:32 # 8

Sánchez-Juan et al. MAPT H1 and Alzheimer’s Risk

Sanitaria “Hospital la Paz”, Madrid, Spain: M. J. Bullido, T.
del Ser, A. Frank-García, and M. Medina. CIEN Foundation,
Queen Sofia Foundation Alzheimer Center, Madrid, Spain: M.
Calero, A. B. Pastor, and A. Rábano. Instituto de Salud Carlos
III, Madrid, Spain: M. Calero, S. Garcia Madrona, and G. Garcia-
Ribas. Hospital Universitario Ramón y Cajal, Madrid, Spain:
M. J. Casajeros. BIOMICs, Centro de Investigación Lascaray,
Universidad del País Vasco UPV/EHU, Leioa, Spain: M. M.
de Pancorbo. Neurology Service, Hospital Universitario La Paz
(UAM), Madrid, Spain: A. Frank-García and A. Martín Montes.
Alzheimer Research Center and Memory Clinic, Andalusian
Institute for Neuroscience, Málaga, Spain: J. M. García-Alberca,
S. Hevilla, and T. Marín. Neurology Service, Marqués de
Valdecilla University Hospital, IDIVAL, University of Cantabria,
Santander, Spain: C. Lage, S. López-García, E. Rodríguez-
Rodríguez, and P. Sánchez-Juan. Hospital Donostia de San
Sebastían, Donostia, Spain: A. López de Munáin. Fundación
para la Formación e Investigación Sanitarias de la Región de
Murcia, Murcia, Spain: S. Manzanares. Servicio de Neurología,
Hospital de Cabueñes, Gijón, Spain: C. Martínez. Centro de
Investigación y Terapias Avanzadas, Fundación CITA-Alzheimer,
Donostia, Spain: P. Martínez-Lage Álvarez. Navarrabiomed,
Pamplona, Spain: M. Mendioroz Iriarte. Servicio de Neurología,
Hospital Universitario Central de Asturias, Oviedo, Spain:
M. Menéndez-González. Barcelonaβeta Brain Research Center,
Fundació Pasqual Maragall, Barcelona, Spain: J. L. Molinuevo.
Unitat de Genètica Molecular, Institut de Biomedicina de
València, CSIC, Valencia, Spain: J. Pérez Tur. Unidad Mixta de
Neurologia y Genètica. Instituto de Investigación Sanitaria La
Fe, Valencia, Spain: J. Pérez Tur. Unitat Trastorns Cognitius,
Hospital Universitari Santa Maria de Lleida, Institut de Recerca
Biomédica de Lleida, Lleida, Spain: G: Piñol Ripoll. BT-CIEN,
Madrid, Spain: A. Rábano. Hospital Universitario La Princesa,
Madrid, Spain: D. Real de Asúa. Hospital Clínic de Barcelona,
Barcelona, Spain: R. Sanchez del Valle Díaz.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be accessed from the
https://ega-archive.org/studies/EGAS00001003424.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Acta 25/2016, Ethics Committee, Hospital
Clinic I Provincial de Barcelona, Barcelona, Spain. The

patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

PS-J and AR: data collection, data analysis, study design,
manuscript drafting, and manuscript critical review. SM, IR,
IH, SV, MA, LM, PG, CL, SL-G, ER-R, and AO: data
collection, data analysis, and manuscript critical review. LT and
MB: data collection, data analysis, manuscript critical review,
and study design.

ACKNOWLEDGMENTS

The Genome Research at Fundacio ACE/Dementia Genetics
Spanish Consortium (GR@ACE/DEGESCO) would like to
thank patients and controls who participated in this project.
GR@ACE/DEGESCO GWAS program was funded by Grifols
SA, Fundacion Bancaria “La Caixa,” and Fundació ACE, Institut
Català de Neurociències Aplicades. PS-J and AR have also
received support by grant PI16/01861. Accion Estrategica en
Salud integrated in the Spanish National I+D+i Plan and
financed by Instituto de Salud Carlos III (ISCIII) – Subdireccion
General de Evaluacion and the Fondo Europeo de Desarrollo
Regional (FEDER – “Una Manera de Hacer Europa”). PS-J was
supported by IDIVAL, Instituto de Salud Carlos III [Fondo
de Investigacion Sanitario, PI08/0139, PI12/02288, PI16/01652,
JPND (DEMTEST PI11/03028)], and the CIBERNED program.
We thank Biobanco Valdecilla for their support. LM was
supported by Consejería de Salud de la Junta de Andalucía
(Grant PI-0001/2017). DEGESCO was also sponsored by the
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED, Spain). Control samples and
data from patients included in this study were provided in part
by the National DNA Bank Carlos III (www.bancoadn.org,
University of Salamanca, Spain) and Hospital Universitario
Virgen de Valme (Sevilla, Spain) and they were processed
following standard operating procedures with the appropriate
approval of the Ethical and Scientific Committee. The genotyping
service to generate GR@ACE/DEGESCO GWAS data was
carried out at CEGEN-PRB3-ISCIII; it was supported by grant
PT17/0019, of the PE I+D+i 2013–2016, funded by ISCIII
and ERDF. GR@ACE/DEGESCO consortia would also like to
thank to all researchers contributing to this project. A complete
list of collaborators involved in the GR@ACE/DEGESCO
GWAS can be found at https://ciberned.es/proyectos/
degesco.html.

REFERENCES
Abraham, R., Sims, R., Carroll, L., Hollingworth, P., O’Donovan, M. C., Williams,

J., et al. (2009). An association study of common variation at the MAPT locus
with late-onset Alzheimer’s disease. Am. J. Med. Genet.. Part B Neuropsychiatr.
Genet. 150B, 1152–1155. doi: 10.1002/ajmg.b.30951

Allen, M., Kachadoorian, M., Quicksall, Z., Zou, F., Chai, H. S., Younkin, C.,
et al. (2014). Association of MAPT haplotypes with Alzheimer’s disease risk and
MAPT brain gene expression levels. Alzheimer’s Res. Ther. 6:39. doi: 10.1186/
alzrt268

Arboleda-Velasquez, J. F., Lopera, F., O’Hare, M., Delgado-Tirado, S., Marino, C.,
Chmielewska, N., et al. (2019). Resistance to autosomal dominant Alzheimer’s

Frontiers in Aging Neuroscience | www.frontiersin.org 8 December 2019 | Volume 11 | Article 327

https://ega-archive.org/studies/EGAS00001003424
www.bancoadn.org
https://ciberned.es/proyectos/degesco.html
https://ciberned.es/proyectos/degesco.html
https://doi.org/10.1002/ajmg.b.30951
https://doi.org/10.1186/alzrt268
https://doi.org/10.1186/alzrt268
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00327 December 4, 2019 Time: 12:32 # 9

Sánchez-Juan et al. MAPT H1 and Alzheimer’s Risk

disease in an APOE3 Christchurch homozygote: a case report. Nat. Med.
doi: 10.1038/s41591-019-0611-3 [Epub ahead of print].
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