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Magnetoencephalography (MEG) has been used in conjunction with resting-state functional connectivity (rsFC)
based on band-limited power envelope correlation to study the intrinsic human brain network organization into
resting-state networks (RSNs). However, the limited availability of current MEG systems hampers the clinical
applications of electrophysiological rsFC. Here, we directly compared well-known RSNs as well as the whole-brain
1sFC connectome together with its state dynamics, obtained from simultaneously-recorded MEG and high-density
scalp electroencephalography (EEG) resting-state data. We also examined the impact of head model precision on
EEG rsFC estimation, by comparing results obtained with boundary and finite element head models. Results
showed that most RSN topographies obtained with MEG and EEG are similar, except for the fronto-parietal
network. At the connectome level, sensitivity was lower to frontal rsFC and higher to parieto-occipital rsFC
with MEG compared to EEG. This was mostly due to inhomogeneity of MEG sensor locations relative to the scalp
and significant MEG-EEG differences disappeared when taking relative MEG-EEG sensor locations into account.
The default-mode network was the only RSN requiring advanced head modeling in EEG, in which gray and white
matter are distinguished. Importantly, comparison of rsFC state dynamics evidenced a poor correspondence be-
tween MEG and scalp EEG, suggesting sensitivity to different components of transient neural functional inte-
gration. This study therefore shows that the investigation of static rsFC based on the human brain connectome can
be performed with scalp EEG in a similar way than with MEG, opening the avenue to widespread clinical ap-
plications of rsFC analyses.

1. Introduction (Brookes et al., 2011; de Pasquale et al., 2010; Hipp et al., 2012; Wens

et al., 2014a; for a review, see also O’Neill et al., 2015a), thereby shed-

The human brain intrinsically organizes into large-scale functional
networks that play a central role in major human brain functions such as
the processing of sensory stimuli, goal-directed task performance, or
spontaneous cognition (for a review, see, e.g., Deco and Corbetta, 2011).
Functional magnetic resonance imaging (fMRI) investigations of
resting-state  functional connectivity (rsFC) identified several
resting-state networks (RSNs) (for a review, see Fox and Raichle, 2007).
Similar RSNs were also uncovered using magnetoencephalography
(MEG) combined with the band-limited envelope correlation method

ding light on their spectral and temporal dynamics (Brookes et al., 2011;
de Pasquale et al., 2010; Hipp et al., 2012; Wens et al., 2019).

The concept of rsFC also bears great clinical interest as it requires
minimal patient participation and mitigates biases related to differences
in task-related performance (for reviews, see, e.g., Fox, 2018; Fox and
Greicius, 2010). A distinct advantage of electrophysiological rsFC is to
avoid the issue of altered regional neurovascular coupling occurring in
several brain disorders (for a review, see D’Esposito et al., 2003) and
healthy ageing (Coquelet et al., 2017), that impacts on the fMRI blood
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oxygen level dependent signal. Still, widespread translation of
MEG-based rsFC from research to clinics is bound to be hampered by the
limited availability and cost of current cryogenic MEG systems
(notwithstanding the prospects of wearable MEG relying on optically
pumped magnetometers, see Boto et al., 2018). On the other hand,
electroencephalography (EEG) is considerably cheaper (even in its
high-density version) and thus more accessible to clinical environments,
motivating the translation of rsFC and RSN mapping from MEG to EEG.

Using simultaneous MEG/EEG recordings, the seminal study of Siems
et al. (2016) showed that 64-channel scalp EEG is sufficient to recon-
struct (at least) four RSNs similar to those obtained with MEG, albeit with
lesser spatial resolution possibly due to a smaller number of sensors. Liu
et al. (2017, 2018) were able to detect most of the classical RSNs with
better spatial resolution by combining high-density 256-channel scalp
EEG and advanced head modeling. Alongside a few others (Knyazev
et al., 2016; Sockeel et al., 2016), these studies confirmed the ability of
scalp EEG to map classical RSNs as with MEG, and widened the clinical
prospects of RSN mapping. Still, topics developed in recent fMRI and
MEG rsFC studies remain to be generalized to the case of scalp EEG, e.g.,
the functional connectome and its transient dynamics. The connectome
(i.e., “all-to-all” brain rsFC) provides a global representation of brain rsFC
encompassing all intra- and cross-RSN interactions (for review, see, e.g.,
Craddock et al., 2015; Friston, 2011), which allows, e.g., for a modeli-
zation of brain functional integration into graphs or a prior-free exami-
nation of disease-related disconnections. This whole-brain setup is also
necessary for a consistent understanding of rsFC dynamics at short
timescales (i.e., 1-10 s), where RSNs transiently split into sub-networks
and establish cross-network coupling (for a review, see, e.g., de Pas-
quale et al., 2018), thus forming dynamic states of rsFC (for reviews, see
Hutchison et al., 2013; O’Neill et al., 2018). Dynamic rsFC appears
crucial for human brain functional integration (de Pasquale et al., 2016,
2012) and may be more sensitive than static rsFC to some physiological
processes (Brookes et al., 2018) and pathological disconnections (Dam-
araju et al., 2014).

Here, we used simultaneous 306-channel MEG and 256-channel scalp
EEG recordings at rest and compared directly the resulting electrophysi-
ological connectomes, including their dynamic aspects. Under the hy-
pothesis formulated by Siems et al. (2016) that rsFC is generated by
cortical areas sufficiently large to cover both gyri and sulci and thus be
detectable by both MEG and scalp EEG (for a detailed review on MEG and
scalp EEG, see Harri and Puce, 2017), we expected the two modalities to
yield similar static and dynamic rsFC patterns. Further, given the reported
importance of gray/white matter separation for EEG source reconstruction
(Gencer and Acar, 2004), we considered two versions of the EEG con-
nectome: one based on a three-layer head model that does not discriminate
gray/white tissue conductivity and the other, based on a five-compartment
model that assigns different conductivity values. Extrapolating from Liu
et al. (2018), we expected moderate MEG-EEG rsFC consistency when
using the former, and good consistency when using the latter.

2. Materials and methods
2.1. Participants

Twenty-four healthy adult subjects (10 females; mean age + SD: 26.0
+ 4.3 years; range: 20-35 years) took part in this study. All subjects were
right handed according to the Edinburgh handedness inventory (Old-
field, 1971), had no prior history of neurological or psychiatric disorder
and did not take any psychotropic drug. Each participant signed a written
informed consent before scanning. The CUB — Hopital Erasme Ethics
Committee approved this study prior to participants’ inclusion.

2.2. Data acquisition

Subjects underwent a resting-state session (eyes opened, staring at a
fixation cross, 5 min) with simultaneous MEG and high-density EEG signal
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acquisition. Neuromagnetic activity was recorded (band-pass: 0.1-330 Hz,
sampling frequency: 1 kHz) with a 306-channel whole-scalp MEG system
installed in a light-weight magnetically shielded room (Maxshield™,
Elekta Oy, Helsinki, Finland; now MEGIN, Cronton Healthcare), the
characteristics of which have been detailed elsewhere (De Tiege et al.,
2008). Fourteen subjects were scanned with a Neuromag Vectorview™
MEG (Elekta Oy, Helsinki, Finland) and the ten last subjects with a Neu-
romag Triux™ MEG (MEGIN, Cronton Healthcare, Helsinki, Finland) due
to a system upgrade. The two neuromagnetometers have identical sensor
layout (i.e., 102 magnetometers and 102 pairs of orthogonal planar gra-
diometers) but differ in sensor dynamic range. Of note, previous works
mixing recordings from these two systems did not reveal significant
changes in data quality (Marty et al., 2019; Naeije et al., 2019). Four coils
tracked subjects’ head position inside the MEG helmet. Neuroelectric ac-
tivity was measured with a MEG-compatible, 256-channel scalp EEG sys-
tem (low-pass: 450 Hz; sampling frequency: 1 kHz) based on low profile,
silver chloride-plated carbon-fiber electrode pellets (MicroCel Geodesic
Sensor Net with Net Amp GES 400, Electrical Geodesics Inc., Philips,
Eugene, Oregon, USA). Its 257 passive electrodes were specifically
designed to avoid EEG-induced magnetic artifacts. Further, electrodes
were only 2-mm thick so they minimally hampered head positioning in the
MEG helmet. The reference electrode was placed at Cz and all impedances
were kept below 50 kQ thanks to a conductive gel between each electrode
and the skin. The location of the head position coils, scalp EEG electrodes,
and approximately 200 scalp points were determined with respect to
anatomical fiducials using an electromagnetic tracker (Fastrack, Polhe-
mus, Colchester, Vermont, USA). Participant’s high-resolution 3D
T1-weighted cerebral magnetic resonance images (MRIs) were acquired on
a 1.5 T MRI scanner (Intera, Philips, The Netherlands).

2.3. Data preprocessing

Signal space separation (Taulu et al., 2005) was applied offline to
MEG data to subtract environmental magnetic noise and correct for head
movements (Maxfilter™ v2.2, Elekta Oy, Helsinki, Finland). Bad EEG
channels were detected and reconstructed with an automated pipeline
adapted from Bigdely-Shamlo et al. (2015). Specifically, we selected
three criteria to identify noisy electrodes: (i) too small windowed cor-
relation (1 s window, threshold: 0.4 for at least two windows) of
low-passed signals (40 Hz) with the other channels, contradicting the
expected volume conduction, (ii) too large high-to-low frequency
amplitude ratio (1-40 Hz vs 40-60 Hz, threshold: 5 SD above mean)
characteristic of high-frequency noise, and (iii) too large wide-band
amplitude (1-300 Hz, threshold: 5 SD above mean) detecting extreme
signal deviations due to, e.g., momentary electrode-skin contact loss.
Channels marked as bad were reconstructed using spherical spline
interpolation from the other electrodes (Perrin et al., 1989). This pipeline
was repeated until no more bad channels were detected, and at most
three times. Note that bad channel detection was not necessary for MEG
data.

Ocular, cardiac, and remaining system artifacts were further elimi-
nated using an independent component analysis of the band-passed
(1-40 Hz) MEG and EEG data separately (FastICA with dimension
reduction to 30 components, hyperbolic tangent nonlinearity contrast)
(Vigario et al., 2000). Artefactual components were identified by visual
inspection and regressed out of the full-rank data (number of components
removed for MEG: 3.0 + 0.7, range: 2-5; for EEG: 6.6 + 1.7, range: 3-11).
The EEG data were then re-referenced to their average across all elec-
trodes. For comparability of rsFC time series (see below), we ensured the
synchronization of MEG and EEG signals by temporal re-alignment to a
common trigger.

2.4. Forward modeling

Forward models were computed on the basis of the participants’ MRI,
which was segmented beforehand using the FreeSurfer software
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(Martinos Center for Biomedical Imaging, Massachussetts, USA). The
coordinate systems of MEG and EEG were co-registered to that of the MRI
using the three anatomical fiducials for initial estimation and the head-
surface points to manually refine the surface co-registration (Mrilab,
Elekta Oy, Helsinki, Finland). Afterwards, a volumetric, regular 5-mm
source grid was built using the Montreal Neurological Institute (MNI)
template MRI and non-linearly deformed onto each participant’s MRI
with the software (SPM12, Wellcome Trust Centre for Neuroimaging,
London, UK). Three orthogonal current dipoles were then placed at each
grid point. Given the relative robustness of neuromagnetic signals to
head conductivity inaccuracies (Gencer and Acar, 2004), we performed
MEG forward modeling on this source space using the one-layer
boundary element method (BEM) implemented in the MNE-C suite
(Martinos Centre for Biomedical Imaging, Massachussets, USA). On the
other hand, we considered two different forward models for scalp EEG:
(1) a three-layer BEM (BEM3) computed with the MNE-C suite and its
default conductivity values Oprin = 0.3/Qm, 65 = 0.006/Qm, and
Oscalp = 0.3/Qm, and (2) a five-compartment finite element model
(FEMs) computed with the integrated FieldTrip-Simbio toolbox (Vor-
werk et al., 2018) and its default conductivity values Gwhite matter =
0.14/Qm, Ogray matter — 0.33/Qm, Ocerebrospinal fluid = 1.79/Qm, Gl =
0.01/Qm, and Ggep = 0.43/Qm. The EEG forward models were
re-referenced to their average across electrodes.

2.5. Source reconstruction

Cleaned MEG and EEG data were filtered in the alpha (a: 8-13 Hz)
and the beta (f: 12-30 Hz) frequency bands. Minimum norm estimation
(MNE; Dale and Sereno, 1993) was applied to reconstruct the sources of
band-limited activity. The MEG noise covariance matrix was estimated
individually for each subject from 5 min of empty-room data filtered in
the relevant frequency band. The EEG noise covariance matrix was taken
as the identity projected in the sensor subspace corresponding to the
average reference. The regularization parameter was estimated in each
case using the consistency condition derived in Wens et al. (2015).
Three-dimensional dipole time series were projected on their direction of
maximum variance, and their analytic source signal was reconstructed
using the Hilbert transform.

We did not explicitly correct for the depth bias in these source data
since functional connectivity measures (such as the envelope correlation
described below) are scale invariant and thus unaffected by this bias. In
fact, in this context, our source projection pipeline is rigorously equiva-
lent to noise-normalized versions of MNE such as standardized low-
resolution tomography (Pascual-Marqui, 2002).

2.6. Functional connectivity estimation

We quantified here intrinsic rsFC between two source time courses as
their envelope correlation preceded by signal orthogonalization to cor-
rect for spatial leakage (Brookes et al., 2012). For static rsFC, envelopes
were low-pass filtered below 1 Hz and temporal correlation was
computed over the whole recording length (see Wens et al., 2014b,
2015). Dynamic rsFC estimation was similar, except that the low-pass
was set to 10 Hz and correlations were computed over sliding windows
(length: 10 s, step: 5 s; see de Pasquale et al., 2010; Wens et al., 2019),
resulting in one rsFC estimate per time window.

Although our main focus was on the connectome, following Siems
et al. (2016), we started by a quality control analysis of the seed-based
static rsFC maps associated with five well-known MEG RSNs in their
preferential frequency band (Wens et al., 2014a): the primary sensori-
motor (SM1; seed MNI coordinates: [42,-26,54] mm; p band), auditory
(A1; [54,-22,10] mm; B), and visual (V1; [20,-86,18] mm; o) networks as
well as the default-mode (DMN; [-2,51,2] mm; a) and the fronto-parietal
(FP; [34,20,44] mm; p) networks.

In the connectome approach, we estimated rsFC between signals
summarizing the source-reconstructed activity within brain parcels. The
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brain was parcellated into 82 cortical areas using the automated
anatomical labeling atlas (Tzourio-Mazoyer et al., 2002), from which we
discarded deep brain structures such as the putamen, the pallidum, and
the caudate area. We extracted the summary signal of each parcel as the
principal component of all point source estimates falling within that
parcel. The matrix gathering all rsFC estimates was symmetrized by
averaging it with its transpose (as in Hipp et al., 2012), because asym-
metries can be introduced by pairwise orthogonalization of the parcel
signals. These asymmetries are indicative of leakage correction errors
and may affect rsFC estimation quality (Palva et al., 2018). In principle, a
better solution is to resort to the symmetric multivariate orthogonaliza-
tion of Colclough et al. (2015). However, in our case, this algorithm
would be ill-conditioned and thus not applicable, because the number of
signals to orthogonalize (i.e., 82 in this parcellation) is larger than the
number Ny, of spatial degrees of freedom in our source-projected data.
This number can be estimated as the rank of the forward model (Wens
et al., 2015) and is reported in Table 1 (top row).

For the statistical comparisons described below, all resulting rsFC
matrices (i.e., for each subject, and also for each time window in the
dynamic case) were normalized by their whole-brain average in order to
suppress global differences in rsFC levels between subjects and between
MEG and scalp EEG. This procedure enabled us to focus on relative/
regional rsFC (Kiebel and Holmes, 2007).

2.7. State classification of dynamic connectomes

To extract dynamic rsFC states from the sliding-window rsFC
matrices, we applied a k-means clustering approach adapted from Allen
etal. (2014) and O’Neill et al. (2015b). Briefly, group k-means clustering
was performed by temporally concatenating the regional rsFC time series
across subjects and using Lloyd’s algorithm (Lloyd, 1982) with Pearson
correlation of matrices as clusterization index. The initial clusters were
set to the k first principal components of the data. To identify a reason-
ably small number of states needed to model the rsFC data, we applied
this clustering for all parameters k between 1 and 50 and used the elbow
criterion on the ratio of the within-cluster sum of squares to the
between-cluster sum of squares. The optimal number of states was chosen
as the abscissa of the point on the elbow curve that is farthest away from
the chord joining the first (k = 1) and the last (k = 50) points. The
resulting clusters at this optimal value were then interpreted as rsFC
states. Each was characterized temporally by a binary time series iden-
tifying the windows where the state is active (by design, one and only one
state was active in each window) and spatially by the average rsFC matrix
across those windows.

2.8. Spatial similarity of connectivity patterns

Pearson correlation of group-level static rsFC maps or matrices was
used to quantify the topographical similarity of RSNs or connectomes
between the different modalities (i.e., MEG vs. EEG-BEM3, MEG vs. EEG-
FEMs, and EEG-BEM3 vs. EEG-FEMs). Significance was assessed using
one-tailed parametric tests at p < 0.05 against the null hypothesis that
Fisher-transformed correlations follow a Gaussian with mean zero and SD

N1 5 For the seed-based maps, Ny represents the number of spatial
[sdof —

degrees of freedom, which was estimated as the rank of the forward

model (Table 1, top row). For the connectome, we used Nygor = @

where p denotes the rank of the forward model restricted to the 82 parcel
signals (Coquelet et al., 2017), see Table 1 (bottom row). Because the

Table 1

Number of spatial degrees of freedom in the three modalities.
Nidor MEG EEG-BEM3 EEG-FEMs
Seed-based mapping 55 32 29
Connectome 360 148 100
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higher spatial smoothness of EEG forward models led to smaller ranks
than for MEG forward models (see Table 1), we applied these tests using
the smallest value among the two Ny,’s considered, leading to conser-
vative correlation tests.

To quantify a possible effect of the EEG forward model type (BEM3
and FEMs) on MEG vs. EEG rsFC similarity, we performed two-tailed
parametric tests of correlation differences. The null distribution was

here a zero-mean Gaussian with SD \/ﬁ where M;4,r denotes the sum
[sdof —

of the corresponding two values of Nyg’s.

2.9. Spatial dissimilarity of connectivity matrices

To locate more precisely regional differences between connectomes,
we considered the contrast between pairs of group-level static regional
rsFC matrices. We applied two-tailed tests based on a null rsFC contrast
distribution generated non-parametrically using 10° sets of random
permutations of the modality label (MEG, EEG-BEM3, EEG-FEMs) before
group averaging (Nichols and Holmes, 2002). The family-wise error rate
associated with the multiple matrix entries to test was controlled by
Bonferroni correcting the significance level p < 0.05 with the highest
value among the two Nyq,’s considered (Table 1, second row), leading to
somewhat conservative testing. The significant connections were map-
ped on the MNI glass brain using the BrainNet viewer (Xia et al., 2013),
with the location of each extended parcel represented by its center.

2.10. Pairing of dynamic connectivity states

To compare the rsFC state dynamics across the different modalities,
we sought to pair states using non-parametric (Spearman) correlation of
their binary time series. Temporal pairing was detected statistically by
one-tailed parametric tests against the null hypothesis that Fisher-
transformed Spearman correlations follow a Gaussian with mean zero

and SD , / Ni':f)gs' The number Ny, of temporal degrees of freedom was

here half the total number of sliding windows (to take their overlap into
account) across all subjects. This estimate neglects possible long-time
autocorrelations in rsFC time series as well as the contribution of
epoch overlapping. The former increases noise on correlation estimates
while the later decreases the noise. The significance level was set to p <
0.05 Bonferroni corrected for the number of possible state pairs (i.e.,
Kmodatity 1 X Kmodatiry 2)- The cross-modality spatial similarity of significant
rsFC state pairs was then examined using the Pearson matrix correlations
described above.

2.11. Temporal similarity of envelope signals

To further illustrate the possible commonalities or discrepancies
identified in rsFC estimation based on slow envelope correlation, we
directly compared MEG and EEG envelope signals via their temporal
Pearson correlation, for each brain parcel, EEG forward model, and fre-
quency band. This MEG-EEG envelope similarity was derived separately
for the two envelope filtering schemes (1-Hz low pass as used for static
rsFC and 10-Hz as used for dynamic rsFC). The Fisher transform of these
correlation values were then averaged within five distinct areas (frontal,
parietal, occipital, cingulate, and temporal) and subjected to paired, two-
tailed t tests to investigate possible effects of location (i.e., 5 areas; 10
tests per envelope filter totaling to 20) or envelope filter (i.e., 1-Hz vs. 10-
Hz low pass; 1 test per region totaling to 5). The significance level was set
to p < 0.05 Bonferroni corrected for the total number of tests (i.e., 25 x 2
EEG forward models x 2 frequency bands). Of note, we did not use an
ANOVA here because the two factors of interest are a priori inter-
dependent. Indeed, envelope signals are correlated across brain regions
due to the existence of rsFC, and by construction their 1-Hz low-pass
component is part of their 10-Hz low-pass component. It is also note-
worthy that these statistics built from a set of individual correlation
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coefficients combine both the estimation errors due to finite time sam-
pling (whose variance is affected by the low-pass filters since they lead to
different amounts of temporal degrees of freedom) and other sources
(e.g., biological) of inter-subject variability. In our data, the latter turned
out to dominate the finite-sampling errors.

2.12. Data and code availability statement

MEG and EEG data used in this study will be made available upon
reasonable request to the corresponding author.

3. Results
3.1. Network maps

Fig. 1 depicts the seed-based static rsFC maps of five RSNs obtained
using MEG, EEG-BEM3, and EEG-FEMs. All classical primary RSN, i.e.,
SM1, Al, and V1 were recognizable within each modality, and the cor-
responding cross-modality similarities were all significant (Pearson cor-
relation R > .54, p < 1072 in all cases). Usage of FEMs instead of BEM3
increased the similarity between MEG and EEG for the A1 RSN (corre-
lation difference |AR| = .27, p = 10~*) but not for the SM1 or the V1
RSNs (|AR| < .05, p > .7). The typical antero-posterior interactions of the
DMN were observable with MEG and EEG-FEMs, whose maps were
similar (R = .75, p = 3 x 1077), but absent with EEG-BEM3 where
frontal rsFC dominated, leading to maps dissimilarity (R < —.18,p > .8)
and a strongly significant increase of MEG-EEG similarity when using
FEMj instead of BEM3 (|AR| = .94, p = 2 x 10~'7). Finally, the topog-
raphy of the MEG FP map disclosed a notable dissimilarity with those of
EEG-BEM3 and EEG-FEMs (R < .3, p > .06), the two latter being similar
(R =.92,p = 3 x 1071%), with no effect of forward model type (JAR| =
.05, p = .3). The MEG FP map appeared mostly sensitive to the intra-
hemispheric fronto-parietal connection, while those of EEG rather dis-
closed the inter-hemispheric frontal connection.

3.2. Static connectomes

Fig. 2 illustrates the static rsFC matrices obtained with each modality
in both a and f frequency bands. Qualitatively, the MEG connectomes
displayed relatively focal rsFC patterns peaking mainly in the parietal,
occipital, and cingulate areas (Fig. 2, leftmost column). Of note, MEG
rsFC was estimated by pooling data from two distinct systems (Vector-
view vs. Triux), but they did not exhibit a significant dependence in the
system type. Indeed, a regression analysis of individual MEG rsFC with a
categorical regressor identifying the corresponding system type did not
reveal any significant correlation (Pearson correlation test at p < 0.05
Bonferroni corrected for the effective number of independent connec-
tions, see the second row of Table 1). Similar parieto-occipito-cingular
rsFC patterns were observable with EEG, but EEG also disclosed sub-
stantial p-band frontal rsFC (Fig. 2, center columns). Notably, EEG rsFC
appeared blurrier than MEG rsFC (in line with the higher smoothness of
EEG as assessed in Table 1). There was also no clear effect of forward
modeling type (BEM3 and FEMs) on the EEG connectomes.

The correlation analysis of these rsFC matrices demonstrated statis-
tically that each modality yielded significantly similar connectomes in
both o and p frequency bands (R > .23, p < .01), with no significant ef-
fect of EEG forward modeling type on MEG-EEG similarity (|AR| < .05,
p > .79). Incidentally, this last result also suggests that changing the
precise conductivity values (which were quite different, e.g., BEM3 skull
conductivity was 60% the value for FEMs) does not substantially impact
EEG rsFC estimation. As a control, we re-derived the EEG-BEM3 con-
nectome using the FEMs skull conductivity value and obtained virtually
identical rsFC matrices (matrix correlation R > .99).

To examine possible topographical differences between EEG and MEG
connectomes, we further considered the contrast of regional rsFC values,
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Fig. 1. Seed-based static rsFC mapping of selected RSNs superimposed on the MNI brain with MEG (first column), EEG-BEM; (second column), and EEG-FEMs5
(third column). Seeds are represented by blue dots. The location of coronal and axial MRI slices is indicated by MNI x, y, or z coordinates below each slice. Thresholds
of RSN maps were set for visualization purposes. The cross-modality spatial similarity (light gray: MEG vs EEG-BEM3, dark gray: MEG vs EEG-FEMs, black: EEG-BEM3

vs EEG-FEMs), as well as the changes in MEG-EEG similarity due to EEG forward modeling, are also shown (fourth column; *: p < 1073, **: p < 1076, *¥**

p< 10715).

i.e., standardized to the whole-brain average rsFC (which was system-
atically higher with EEG than MEG, see Fig. 2). In both o and f frequency
bands and independently of the EEG forward model type, EEG showed
higher regional rsFC within nodes of the frontal region, and MEG higher
regional rsFC within the parieto-occipital region (Fig. 3 left and middle,
second and third rows). We further observed higher regional a-band rsFC
between the frontal and the parietal regions with MEG compared to EEG-
BEMj3 (Fig. 3 left, second row) but not compared to EEG-FEMs (Fig. 3
middle, second row). This effect of EEG forward modeling could also be
seen on the direct comparison of the two EEG modalities, mainly in the o
band (Fig. 3 right, second row) and scarcely in the p band (Fig. 3 right,
third row).

Findings of increased frontal and decreased parieto-occipital regional
1sFC for EEG compared to MEG were considered to be potentially driven
by inhomogeneous topography of brain-sensor distances associated with
MEG recordings done in the sitting position (i.e., posterior sources might
have been closer to MEG sensors than frontal sources as the head typi-
cally lays at the back of the MEG helmet for obvious comfort reasons). We
therefore compared the group-averaged brain-sensor distances (specif-
ically, the distance between each brain parcel and the closest sensor)
obtained for the MEG helmet and the scalp EEG sensor net (Fig. 4). The
MEG sensors were 2—4 cm farther away than the scalp EEG electrodes
depending on the parcel, with minimal differences in the parieto-
occipital region where MEG regional rsFC dominated, and maximal dif-
ferences in the frontal region where scalp EEG regional rsFC dominated.
We thus hypothesized a relationship between regional rsFC contrasts and

the MEG vs. EEG differences in brain-sensor distances. To confirm this
qualitative observation, we repeated the contrast analysis after regress-
ing out from each matrix entry the distance differences for the two cor-
responding brain parcels. The rsFC contrasts and their double regression
models are shown in Fig. 5 and no significant residual MEG vs. EEG
contrast subsisted.

3.3. Connectivity state dynamics

The cross-modality similarity of dynamic rsFC states was then
investigated. The optimal number of states was quite similar across
modalities and frequency bands, i.e., 7-10 (Table 2). State-specific rsFC
patterns are detailed in Figs. 6 and 7.

Temporal correlations of state time series revealed poor correspon-
dence between MEG and EEG. In the a band, we identified only one
significant pair of corresponding MEG and EEG states when using BEM3,
two when using FEMs (Spearman correlation, R > .13, p <5 x 107).
We obtained no temporal pairing in the  band (R < .09, p > .01). As can
be viewed from Fig. 6, the three significant state pairs were also spatially
similar (Pearson correlation, R > .55, p < 7 x 10710). The MEG-EEG pair
identified when using BEM3 involved primarily rsFC between left tem-
poral and bilateral frontal regions (Fig. 6, green arrow). Those obtained
with FEMs corresponded to occipital (Fig. 6, top orange arrow) and
bilateral sensorimotor rsFC (Fig. 6, bottom orange arrow). This somehow
restricted correspondence between MEG and EEG states contrasted with
the comparison of the two EEG modalities, which revealed significant
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Fig. 2. Static functional connectomes with MEG (first column), EEG-BEMj; (second column), and EEG-FEM; (third column) in the o (top) and p (bottom) frequency
bands. Brain parcels are gathered by hemisphere (L: left, R: right) and lobe (frontal, parietal, occipital, temporal, and cingulate). Thresholds of rsFC matrices were set
consistently across the three modalities. The cross-modality spatial similarity (light gray: MEG vs EEG-BEMj3, dark gray: MEG vs EEG-FEMs, black: EEG-BEM; vs EEG-
FEM) is also displayed (fourth column; *: p < 0.05, **: p < 1074, ***: p < 10715).
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Fig. 3. Cross-modality contrasts of static regional connectome rsFC matrices comparing MEG vs. EEG-BEMj; (left), MEG vs. EEG-FEM5 (middle), and EEG-BEM3 vs.
EEG-FEM; (right). Significant corrected p values are shown as matrices (first row) wherein the parcels are gathered by hemisphere (L: left, R: right) and lobe (frontal,
parietal, occipital, temporal, and cingulate). The lower and upper triangles of each matrix correspond respectively to « and p frequency bands. Connections with
significant contrast are also shown on the MNI glass brain (a: second row; f: third row).

pairing for a majority of states. Most of EEG-BEM3 states corresponded 1.4 x 1077). The situation in which a state is split into two might be
temporally to one or two EEG-FEM;s states (R > .14, p < 1.4 x 1074, explained by the differences in state numbers across the two EEG mo-
with each pair consisting of spatially similar rsFC matrices (R > .48, p < dalities. In the o band (Fig. 6), where we identified fewer states with EEG-
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3.9cm

2.1cm

Fig. 4. Difference in brain-sensor distances from the center of each parcel to the
MEG helmet vs. the scalp EEG net.

FEM;5 than with EEG-BEM3, three EEG-BEMj states appeared mixed into
two EEG-FEMj states. Conversely, in the p band (Fig. 7), there was more
states with EEG-FEM5 than with EEG-BEM3 and two EEG-FEMs states
appeared mixed into one EEG-BEMj3 state.

3.4. Envelope signals

Fig. 8 shows that the pattern of MEG-EEG dissimilarities observed in
frontal static rsFC and in rsFC state dynamics could also be identified
directly at the level of the envelope signals. In all cases, the MEG and EEG
envelope time courses were significantly more correlated in the parieto-
occipital region than in the frontal area (p < 3.1 x 10~*; Fig. 8, left).
Cross-modal envelope similarity was also significantly higher with the 1-
Hz low pass than with the 10-Hz low pass (p < 6.9 x 107°; Fig. 8, left).
This is reminiscent of the poor correspondence between MEG and EEG
rFC states. Fig. 8 (right) presents excerpts of p-band envelope time
courses at the right SM1 seed (see Fig. 1, top) and its left homologous
source. Even on these short segments, this example illustrates the loss of
correspondence between MEG and EEG signals when turning from slow
to fast envelope.

4. Discussion

In the present study, we directly compared well-known RSNs as well
as the whole-brain rsFC connectome together with its state dynamics,
obtained from simultaneously-recorded MEG and scalp high-density EEG
resting-state data. Besides evidencing fairly similar RSN patterns, we
found that intrinsic functional connectivity patterns reconstructed from
MEG and scalp EEG resting-state data differ in their sensitivity to frontal

o band
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and parieto-occipital rsFC. This difference mainly impacts the FP RSN
and seems to relate to that anterior MEG sensors are typically more
distant from the brain than posterior sensors. Distinguishing between
gray and white matter affects the estimation with scalp EEG of antero-
posterior rsFC and appears necessary to recover the DMN as observed
with MEG. Finally and importantly, we found little agreement between
modalities in state temporal dynamics, which appeared rooted in the
dissimilarity of fast envelope fluctuations (i.e., above 1 Hz). This suggests
that MEG and EEG are sensitive to different components of transient
neural functional integration.

4.1. Similar static rsFC patterns between MEG and scalp EEG

The observation that both MEG and scalp EEG led to similar RSN
patterns (except for the FP RSN) is in line with previous works (Liu
etal., 2018, 2017; Siems et al., 2016). Worth mentioning, subjects kept
they eyes closed in Siems et al. (2016) and open in the present study.
The convergence of our findings shows that MEG and EEG concur for
RSN mapping regardless of this experimental difference. Our study
generalizes this cross-modal agreement to the whole-brain connectome.
Still, we identified topographical differences, i.e., MEG regional rsFC
was lower in the frontal areas and higher in the occipito-parietal areas
compared with scalp EEG. Accordingly, the consistency of MEG and
EEG envelope signals was least in the frontal area. These differences
appeared imputable to inhomogeneities in the relative distance of the
MEG vs. EEG sensors to brain sources. This can be explained by that
increasing brain-sensor distance decreases the MEG/EEG signal ampli-
tude (for a review, see, e.g., Harri and Puce, 2017), which in turn affects
rsFC estimation. Compared to EEG electrodes, frontal MEG sensors were
indeed further away from the scalp (about 4 cm) than posterior sensors
(about 2 cm). Assuming comparable noise levels across MEG sensors,
this signal loss induces lower signal-to-noise ratio and thus lower MEG

Table 2
Number of states for each modality and frequency band.
MEG EEG-BEM3 EEG-FEMg
o band 8 9 8
p band 7 8 10

model

MEG vs
EEG-BEM;

i NS
R [~ )

0.8

MEG vs
EEG-FEM;

-0.5

Fig. 5. Regression analysis of the effect of brain-sensor distance on regional rsFC contrasts. For each matrix entry, we modeled the contrast of rsFC between the two
parcels using double regression by the two corresponding distance differences. The rsFC contrast matrices and their regression models are shown for the comparison of
MEG vs. EEG-BEM; (top) and EEG-FEMs (bottom) in the o (left) and the f (right) bands.
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Fig. 6. States of dynamic rsFC in the « band identified with MEG (left), EEG-BEM3 (middle), and EEG-FEMs (right). Their spatial signature is illustrated by showing
the 5% strongest connections on the MNI glass brain. Temporal pairing between states is represented by arrows (green between MEG and EEG-BEM3, orange between

MEG and EEG-FEMs, and purple between EEG-BEM3 and EEG-FEMs).

rsFC estimation within frontal nodes compared to within posterior
nodes. This effect may explain why the FP RSN obtained with MEG did
not reveal the inter-hemispheric frontal connection (to which EEG
appeared sensitive) but only the intra-hemispheric fronto-parietal
connection. Of note, this bias towards posterior rsFC could be less
prominent in MEG systems based on different sensor layouts. For
example, it has been suggested that CTF MEG may better identify
frontal rsFC than the Neuromag system used here (Sjggard et al., 2019).
That said, the effect of doubling the brain-sensor distance will neces-
sarily decrease signal amplitude by a factor between four (for magne-
tometers) and eight (for gradiometers), so we expect this problem to

remain whatever the cryogenic MEG system used. In the future, the
issue of brain-sensor distance should be completely solved by the rise of
wearable scalp neuromagnetometers (Boto et al., 2018). Further, scalp
MEG based on optically pumped magnetometers (OPMs) should bring
substantial increase in signal-to-noise ratio and spatial focality
compared with current MEG systems based on superconducting quan-
tum interference devices (SQUIDs). Accordingly, we envision that
OPMs will eventually provide higher spatial resolution imaging of rsFC
than SQUIDs or EEG, at least once multi-channel systems with suffi-
ciently many OPMs (i.e., more than the number of spatial degrees of
freedom in MEG, see first row of Table 1) will become available. As
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Fig. 7. States of dynamic rsFC in the p band identified with MEG (left), EEG-BEM; (middle), and EEG-FEMs (right). Their spatial signature is illustrated by showing
the 5% strongest connections on the MNI glass brain. Temporal pairing between states is represented by arrows (purple between EEG-BEMj3; and EEG-FEM5).

such, this novel technology might ultimately become the reference
technique for electrophysiological rsFC investigations, overpassing the
performances of scalp EEG and cryogenic MEG.

In any case, we conclude that SQUID-based MEG and scalp EEG both
allow to map similar static rsFC patterns. Notwithstanding the brain-
sensor distance bias, this convergence is in line with the hypothesis of
Siems et al. (2016) that static rsFC and RSNs are generated by cortical
areas large enough to cover both sulci and gyri, thus mitigating the dif-
ferences in EEG and MEG sensitivity to precise source orientation (for a
review, see Harri and Puce, 2017) and to field distortion by skull con-
ductivity or conductivity anisotropy (Gencer and Acar, 2004; Wolters
et al., 2006), at least at the group level. However, this hypothesis is
challenged by our analysis of dynamic connectomes.

4.2. Discordant state dynamics between MEG and EEG

The state models for MEG and EEG rsFC revealed a similar complexity
(i.e., number of states). We therefore expected a high degree of concor-
dance between MEG and EEG states. However, their temporal corre-
spondence appeared marginal at best (especially compared to the
substantial pairing observed between EEG-BEMj3 vs. EEG-FEMj5 states).
This could be due to strong statistical errors in short-time correlation
estimates (a general limitation of dynamic rsFC, see, e.g., Hutchison
et al., 2013), which could be independent in the two modalities and thus
hamper their comparability. Spatial leakage mis-correction associated
with orthogonalization asymmetry could also contribute to this
discrepancy. Still, their impact may be less drastic than expected at the
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Fig. 8. Cross-modality similarity of source envelope signals. Left: The MEG vs. EEG temporal correlation of «- and p-band envelopes is shown for the two low-pass
filters (light gray: 1 Hz, dark gray: 10 Hz) and the two EEG forward models. Correlations were averaged per brain regions (frontal, temporal, cingulate, parietal, and
occipital). Significant effects according to t tests with Bonferroni correction are also emphasized. Right: Illustration of the effect of modality and low-pass filtering on
the envelope similarity of the right SM1 seed (location indicated on Fig. 1, top) and its left-hemispheric homologous source.

level of rsFC states, given the averaging process included in k-means
clustering (see also Wens et al., 2019, for a related discussion). Another,
more basic factor independent of any rsFC estimation details is the
observed lack of temporal correspondence between MEG and EEG
high-frequency envelope signals used for dynamic rsFC estimation. This
contrasted with the temporal similarity of their slow, 1-Hz low-pass
filtered counterpart that underlies static rsFC. One possible explanation
for this low/high envelope frequency dichotomy relies on the observa-
tion that static rsFC corresponds to an average of rsFC state patterns
(weighted by their fractional occupancy). Temporal summation leads to
spatial smoothing and thus lesser sensitivity to the precise location and
orientation of rsFC neural generators. For the same reason, low-pass
filtering of spatio-temporal data such as the source envelope signals
effectively induces a spatial smoothing. The convergence of MEG and
EEG static rsFC may thus be explained by this smoothing effect instead of
the “extended-area” hypothesis (Siems et al., 2016). Furthermore, this
smoothing effect breaks down at the shorter timescales of dynamic rsFC,
which may have higher sensitivity to different neural generators of the
spontaneous neuromagnetic and neuroelectric fields, leading to poor
temporal correspondence in MEG and EEG signals and thus discrepancies
in rsFC state allocation. In this context, MEG and scalp EEG appear
complementary (rather than redundant) techniques to study the dynamic
functional network organization of the human brain (de Pasquale et al.,
2018). It will be interesting in future works to examine whether recent
MEG discoveries about sub-second state dynamics (Baker et al., 2014)
including transient phase couplings at rest (Vidaurre et al., 2018), dy-
namic core networks (de Pasquale et al., 2016, 2012), and cross-network
synchrony and metastability (Wens et al., 2019) translate to scalp EEG.

Besides, this complementarity raises the interesting question of the
advantages of a complete MEG-EEG integration for rsFC analysis.
Combining MEG and EEG data for source estimation is thought to
improve localization accuracy and lessen spatial extent (Liu et al., 2002),
however the generalization to the study of the intrinsic functional
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connectome based on envelope rsFC remains to be developed. This rep-
resents a challenging but potentially rewarding methodological advance.
More modestly, we limited the goal of our study to the comparison of
MEG and EEG to probe intrinsic connectivity.

4.3. Electrophysiological static rsFC investigations can be performed with
scalp EEG

This study demonstrates that static electrophysiological rsFC analyses
and RSN mapping can be performed with scalp EEG, which concurs with
previous studies (Siems et al., 2016; Liu et al., 2017, 2018) but extends
these to the whole-brain functional connectome. Pragmatically, this
observation enables moving the field of static rsFC from MEG, whose
availability is limited by the high costs related to its cryogenics and heavy
shielding (Baillet, 2017), to EEG, which is comparably cheaper (even in
its high-density version) and more commonly accessible. In particular, it
is also bound to broaden the clinical applications of electrophysiological
1sFC investigations. Several RSNs have been identified, mainly with
fMRI, as being involved in the pathophysiology of a wide spectrum of
neurological or psychiatric disorders (Fox, 2018; Fox and Greicius,
2010). The ability to use scalp EEG rather than fMRI in clinical assess-
ments of static rsFC appears critical since several brain disorders (e.g.,
stroke, Alzheimer’s disease, epilepsy) are characterized by altered neu-
rovascular coupling that impacts the fMRI signal (for a review, see, e.g.
D’Esposito et al., 2003). Investigating the electrophysiological correlates
of static rsFC with scalp EEG thus emerges as a potential breakthrough for
clinical neurosciences.

In this context, the DMN appears as a relevant clinical target since it
plays a key role in several brain disorders (Fox, 2018; Fox and Greicius,
2010), notwithstanding its centrality for physiological brain organization
as well (see, e.g., de Pasquale et al., 2012; Wens et al., 2019). It is well
established that electrophysiological mapping of the DMN is feasible
with MEG (de Pasquale et al., 2010; Wens et al., 2014b). Importantly,
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Sjggard et al. (2019) demonstrated that imaging all the nodes of the DMN
including the posterior medial cortices (which are critical to physiolog-
ical and clinical conditions; for a review, see Leech and Sharp, 2014)
requires source reconstruction based on MNE rather than Beamforming.
This is why we relied on MNE in our rsFC analysis pipeline. This study
confirms that full DMN mapping is possible with scalp EEG and MNE
source projection, provided that head models are estimated with rela-
tively precise methods distinguishing between gray and white matter
(e.g., FEMs). This observation argues for the use of advanced,
state-of-the-art volume conduction models, such as the recent
12-compartment FEM developed by Liu et al. (2017). This being said, the
impact of precise head modeling was moderate at best for the other RSNs
for which a semi-realistic BEM3 model appeared sufficient. The reason
why only antero-posterior connections of the DMN required proper
modelization of the gray/white matter separation remains unclear.
When envisioning clinical applications, two key factors must also be
considered to properly assess rsFC: recording length and number of
electrodes. Liuzzi et al. (2017) showed that robust estimation of indi-
vidual rsFC with MEG would require at least 10 min-long resting-state
sessions. Here our recordings lasted only 5 min, which is why we con-
ducted group-level analyses only. Ultimately, however, EEG rsFC should
be robustly estimated based on individual data to be clinically useful.
Determining the minimal recording length necessary to obtain robust
single-subject connectomes is thus an important factor to be considered
in future works. Regarding the number of electrodes, clinical systems
typically contain 32 or 64 electrodes. Here, we focused on 256-channel
scalp EEG, but recordings across densely-packed electrodes are highly
redundant due to field spread and volume conduction, both of which
effectively act on the scalp potential topography as a spatial low-pass
filter. Accordingly, we estimated that the 256 electrode signals entailed
only about 30 degrees of freedom. This means that 32-channel scalp EEG
may in theory be sufficient to capture rsFC, at least in the limit of large
signal-to-noise ratio. More realistically though, to compensate for noise
and bad channels it is reasonable to require at least twice as many
electrodes. Thus, we recommend 64-channel scalp EEG as the minimal
setup to study rsFC. This conclusion agrees with the systematic exami-
nation by Liu et al. (2018) of the sensor count effect on RSN maps.

4.4. Are MEG and scalp EEG complementary for electrophysiological
dynamic rsFC investigations ?

Clinical value is less established for dynamic than for static rsFC,
although promising results already emerged (Hutchison et al., 2013).
Here, the divergence between MEG and scalp EEG rsFC dynamics sug-
gests the added value of simultaneous MEG/EEG recordings. This com-
bination and multimodal integration of electrophysiological techniques
currently remains confined to research centers, where it could bring new
insights into the dynamic integration structure of the human brain, as
was discussed above. Still, together with the emergence of wearable scalp
OPM-based MEG systems (Boto et al., 2018), the conjunction of simul-
taneous MEG/EEG with rsFC analysis may eventually revolutionize the
position of functional mapping of brain networks in the clinics.
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