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Degree of Quantumness in 
Quantum Synchronization
H. Eneriz1,2, D. Z. Rossatto   3,4*, F. A. Cárdenas-López5, E. Solano   1,5,6 & M. Sanz   1*

We introduce the concept of degree of quantumness in quantum synchronization, a measure of 
the quantum nature of synchronization in quantum systems. Following techniques from quantum 
information, we propose the number of non-commuting observables that synchronize as a measure of 
quantumness. This figure of merit is compatible with already existing synchronization measurements, 
and it captures different physical properties. We illustrate it in a quantum system consisting of two 
weakly interacting cavity-qubit systems, which are coupled via the exchange of bosonic excitations 
between the cavities. Moreover, we study the synchronization of the expectation values of the Pauli 
operators and we propose a feasible superconducting circuit setup. Finally, we discuss the degree of 
quantumness in the synchronization between two quantum van der Pol oscillators.

Synchronization is originally defined as a process in which two or more self-sustained oscillators evolve to swing 
in unison. The original intrinsic frequencies are modified by the interaction between the oscillators, and a com-
mon effective frequency is observed1,2. It is a rich phenomenon manifested in a variety of disciplines that was typ-
ically studied in classical settings. Examples beyond pendula include heart beats3, neural networks4 and beating 
of flagella5.

During the last decades, a significant progress has been achieved in quantum technologies, which has allowed 
the search of synchronizing behaviors in quantum platforms6,7. Since then, the most studied case consists of 
chains of quantum harmonic oscillators with driving fields, dissipative mechanics, and nonlinearities8–11. These 
models can be straightforwardly compared with the classical case, which corresponds to the presence of many 
quanta in the model. Quantum mechanics, on the other hand, introduces two main effects, namely, quantum 
noise and quantum correlations12. Quantum correlations have been reported to be strong in quantum synchro-
nization13 and, indeed, a synchronization between micromasers stronger than expected by semiclassical models 
has been recently discussed14. Likewise, it is also reported that synchronization is closely related with the perfor-
mance on quantum heat engine15. In such case, the relation between the bath temperatures imposes a bound on 
the performance of such system. Furthermore, measures to quantify the synchronization of continuous variable 
quantum systems, such as two coupled optomechanical systems and topological lattice of these systems, have also 
been proposed16,17. Moreover, it has also demonstrated that synchronization it is closely related to a symmetry 
breaking on the system dynamics rather than the values of the macroscopic parameters of the model associ-
ated18,19. Finally, in refs. 20,21 it has been reported the use of the synchronization on two-level system as a feature to 
reduce the computational complexity of the quantum key distribution protocol.

The study of quantum synchronization has also been extended to quantum systems without classical analogue, 
e.g. two-level systems22–24. The lack of a classical counterpart makes the definition of synchronization non-trivial, 
and it has been addressed by studying periodically oscillating observables, and recently has been addressed con-
sidering local dissipation25,26. These approach have been further validated by measures of quantum correlations, 
such as quantum mutual information27, and the first practical applications in qubits have been recently pre-
sented28–30. However, some of the aforementioned results might be considered as classical synchronization pro-
cesses in quantum setups, as we will explain below. Moreover, we will show that synchronization can occur even 
when there are no quantum correlations between the synchronized parts in the steady state27, which has been also 
recently noted in ref. 31. This rises the question about the quantumness of quantum synchronization processes.
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In this Article, we address the problem of how quantum a quantum synchronization process is from the point 
of view of quantum information. To this aim, we introduce the concept of degree of quantumness Ξ of quantum 
synchronization. Afterwards, we illustrate it in two composed cavity-qubit systems, showing that one can tune 
internal parameters to achieve all possible degrees of quantumness between the qubits. Then, to exemplify it, we 
propose a feasible circuit quantum electrodynamics (cQED) setup. Finally, we briefly discuss the extension of the 
concept of degree of quantumness to infinite-dimensional quantum systems, as is the case of quantum van der Pol 
oscillators. It is worth stressing that we are not interested in developing another method to quantify how much 
two observables of two different systems are synchronized. Our goal here is the identification and quantification 
of the true quantum nature of a synchronization process between two quantum systems. For the sake of clarity, 
hereafter, when we assert that two observables are synchronized, we are considering the general case in which 
their dynamics converge to periodic oscillations with the same frequency. In this manner, these processes can 
be classified in any type of synchronization, e.g, in-phase, anti-phase or complete synchronization, and so on1,2. 
To characterize and to quantify the type of synchronization between two observables, one can make use of the 
already known measures of synchronization1,2,31.

A natural language to deal with synchronization is information theory, since the parties share out information 
during this process. In this sense, the mutual information was proposed as an order parameter for signaling the 
presence or absence of quantum synchronization27. However, this quantifier is not sufficient to answer the ques-
tion of how quantum this process actually is and, indeed, one could straightforwardly engineer quantum dynam-
ics in which only one observable is synchronized. However, from the point of view of quantum information, 
this synchronization may be considered classical, since there exists an equivalent classical dynamics describing 
the same synchronization process. This approach has already been followed in the context of partial cloning of 
quantum information32–34 or bio-inspired quantum processes35, and could be useful to quantify the quantumness 
of quantum operations with respect to the environment36. Along these lines, we extend this idea to quantum syn-
chronization, constructing a quantifier of the quantumness of the process.

Degree of Quantumness
We will formally define the concept of degree of quantumness Ξ of quantum synchronization for a bipartite sys-
tem, since the extension to multipartite cases is straightforward. Let us consider a bipartite quantum system 
 ⊗d d, which can also be coupled to a complex environment. Let S M= ∈ | = χ

= †A A A{ ( ) }i d i i i 1 be a set of 
all linearly independent operators which simultaneously synchronize in both subsystems, with χ = | |, that we 
call cardinality of quantum synchronization, and the sets = ∈ | =X A A A{ [ , ] 0}k i k i  and = | |c Xmaxk k . Then, 
the degree of quantumness of quantum synchronization is given by Ξ = χ − c. Notice that 0 ≤ Ξ ≤ d2 − d and that 
 is a set but not a vector space since, if ∈A B, , it does not necessarily mean that + ∈A B . The reason is that 
even though A and B synchronize, they could do it with different frequencies and phases, so that linear combina-
tions do not synchronize in principle. Therefore, linear independence removes the redundancies when more than 
one operator synchronize with the same frequency.

Let us remark that, if the degree of quantumness of a given synchronization process is Ξ = 0, i.e. every operator 
synchronized in both subsystems can be diagonalized in the same basis, then this is just classical synchronization 
from the point of view of information theory. The reason is that an equivalent classical dynamics synchroniz-
ing for the same operators can be constructed34, since only populations (diagonal terms of the system density 
matrix) synchronize, with the coherences (off-diagonal terms that take into account the quantum superposition) 
remaining desynchronized. On the other hand, if the degree of quantumness is maximum, i.e. Ξ = d2 − d, then 
all non-commuting observables are synchronized, that is, not only the populations but also the coherences are 
synchronized. In the case of synchronization with the same frequency, phase and amplitude is equivalent to the 
synchronization of the reduced density matrices. From the point of view of quantum information, we call this a 
complete quantum synchronization.

Continuous-variable systems, i.e. infinite dimensional quantum systems, deserves an special mention. In this 
case, it is obvious that the number of linearly-independent Hermitian operators which are necessary to retrieve 
the information about the density matrix is infinite. For instance, a harmonic oscillator can be described through 
all its moments +x p p xk n n k1

2
 and x p p xi k n n k

2
− , which are linearly independent37. Indeed, in case of a total 

quantum synchronization, the cardinality is χ = | | = ∞, which opens several theoretical challenges. A proto-
typical model is a network of van der Pol (vdP) oscillators. The quantum version of this model has recently 
attracted much attention, and several proposals for engineering it in the oscillating dynamics of trapped ions or 
nanomechanical oscillators has been put forward8,10,11. We will study below an example of degree of quantumness 
with quantum vdP oscillators.

The Model
We illustrate now our definition in a setup consisting of two coupled cavities with a qubit in each of them, and 
investigate the synchronization between the two-level systems, in which the natural observables are Pauli opera-
tors. In our work, we are interested not only in one of the components of the spin operator24,27, but in all of them. 
In this case, the maximum degree of quantumness happens when the expectation values of the three Pauli opera-
tors, σx

1, σy
1 and σz

1, are synchronized with their counterparts, σx
2, σy

2 and σz
2, respectively. The two cavity-qubit 

systems, depicted in Fig. 1, are coupled through a hopping term in the degrees of freedom of the cavities. A weak 
driving field acts on one of the two-level systems. Furthermore, the cavities loss and gain energy at rates κL, and 
κG, respectively. The dynamics of such systems can be described by the master equation

H D D∑ρ ρ κ ρ κ ρ= − + +
=

†


i a a[ , ] [ [ ] [ ] ],
(1)j

L j j G j j
1,2

, ,
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here, κL,j, and κG,j correspond to the loss and gain energy rate, respectively. Furthermore,  † †ρ ρ= −O O O O O[ ] { , }1
2

 
is the Lindblad superoperator. Finally,  is the system Hamiltonian given by the following expression
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in which aj ( †aj ) stands for the annihilation (creation) operator of the cavity modes, while σ− (σ+) stands for the 
lowering (rising) operator of the qubits (|g〉 is the ground state while |e〉 is the excited state). Here, ωj is the fre-
quency of the cavity modes, ωqj is the frequency of the qubits, g0 is the cavity-qubit coupling, J is the hopping 
strength between the cavity modes, and Ω and ωd are the amplitude and the frequency of the driving field, respec-
tively (see Fig. 1). For this work, it is convenient to express the Hamiltonian in Eq. (2) in the rotating frame with 
respect to the laser field. In such a case, the Hamiltonian is given by

 † † † †∑
δ

σ σ σ σ=







Δ + + − −
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j

j
j

x
1,2

0 1 2 1 2
1j

where Δj = ωj − ωd and δj = ωj − ωd are the detuning of the jth mode and jth two-level system with respect to the 
driving frequency ωd, respectively. In what follows, we analyse the condition required to consider the two-level 
system composing the system as a self-sustained oscillator.

The Limit Cycle and Phase Locking
In this section, we analyse the condition that the two-level system embedded in the master system must meet to 
describe a limit cycle. The limit cycle is defined as a stable trajectory which attracts nearby orbits. This cycle 
appears as a result of the competition between energy loss and energy gain on the system in the absence of an 
external signal15. Our figure of merit characterising the limit cycle of our master system correspond to the Husimi 
Kano Q-representation function38 θ φ θ φ ρ θ φ π=Q( , ) , Tr [ ] , /2f st , where θ φ θ θ= φe, (cos /2, sin /2)i T

 with 
θ ∈ {0, π} and φ ∈ {0, 2π} is the SU(2) generalized coherent state39, and ρst corresponds to the steady state density 
matrix given by the following master equation

H D Dρ ρ κ ρ κ ρ= − + +


†t i a a( ) [ , ] [ ] [ ] , (4)L G1 ,1 1 ,1 1

where 1 is the master system Hamiltonian expressed in the rotating frame with respect to the laser driving

 † †
δ

σ σ σ= Δ + + + .− +a a g a a
2

( ) (5)
q

z1 1 1 1
1

0 1
1

1
11

This representation permits to define an analogous to the phase space in spin systems. Furthermore, these 
states have the property that they precess over time according to t, , q1

θ φ θ δ φ| → | + 40. This permits to define 
φ as the phase variable, which is essential in the synchronization phenomena. For any mixed two level system, the 
Husimi Kano Q-representation function takes the following form

Rθ φ ρ θ φ θ ρ θ ρ= + − + .φ−e, , 1 cos (2 1) 2 sin [ ] (6)
i

00 10

Here, ρ00 and ρ01 correspond to the matrix element of the steady-state density matrix, which provides infor-
mation about the population and the coherences, respectively. Furthermore, R z[ ] stands for the real part of the 

Figure 1.  Quantum optical implementation of Eq. (1). The qubits, represented by arrows, are strongly coupled 
to the cavities, which can interchange photons coherently with rate J.
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complex number z. From Eq. (6) it is easy to see that for steady-state of the form ρ = p0|0〉〈0| + (1 − p0)|1〉〈1| 
(absence of coherence), the Q representation function is phase free i.e., the representation only depends on θ as 
shown in Fig. 2. In such a case, the dissipative source of energy produced by the master equation on the system 
does not prefer any particular phase on the steady-state. As a result, the Q(θ, φ) representations have diffusive 
shape for both cases, i,e., κG,1 > κL,1 (Fig. 2(a)), and κG,1 < κL,1 (Fig. 2(b)), respectively. Moreover, the maximal/
minimal value of Q is achieved at θ = 0, which corresponds to a state precesing on the z axis. On the other hand, 
Fig. 2(c) shows that equal loss/gain energy ratios in the Q representation are zero for any value of {θ, φ}. This 
occurs because the steady state corresponds to a maximally mixed state which does not precess in the z axis. These 
facts constitute the required condition to achieve the limit cycle on the two-level system composing the master 
system.

Another feature to be considered in the description of the self-sustained oscillator corresponds to the 
phase-locking observed when the system interacts with an external signal. Phase locking can be analyzed in terms 
of a phase distribution containing all the information about both the phase and the steady state of the system. This 
phase distribution can be written as the polar average of the Husimi Q representation41 as follows

 ∫φ ρ θ φ θ θ
π

= − .
π
Q d( , ) ( , )sin 1

2 (7)0

Here,  θ φQ( , ) corresponds to the Husimi Kano Q-representation function of the steady state given by the master 
equation represented in the rotating frame with respect to the classical laser

H D D †

ρ ρ σ ρ κ ρ κ ρ= − − Ω + +t i i a a( ) [ , ] [ , ] [ ] [ ] , (8)x L G1

1
,1 1 ,1 1

which is nothing more than the master equation on Eq. (1) with a driving term. On the other hand,  φ ρ( , ) is zero 
when the oscillator is phase free. This condition resembles the similar behaviour observed in a noisy classical 
limit-cycle oscillator, where the oscillator has a uniform phase distribution41.

Figure 3 shows the phase distribution as a function of the detuning δq,1 for several dissipative configurations. 
As expected, when one of the dissipative rates dominates the phase-locking on the two-level system emerges (see 
Fig. 3(a),(b)). In these cases, the phase distribution reaches its optimal value in a vicinity of the zero detuning case 
i.e., δq,1 ∈ {−0.1, 0.1} κL,1. These optimal values are related to the phase, or anti-phase locking observed between 
the signal and the two-level system. Finally, for equal loss/gain rate, there is no phase locking. In fact, as  φ ρ( , ) 
is zero in all the parameter space we say that synchronisation has not achieved and the qubit is free-phase. On the 
other hand, Fig. 4 shows  φ ρ( , ) as a function of the external signal strength Ω. In this case, we achieve 
phase-locking on the two-level system when one of the dissipative scales dominates. Moreover, the optimal value 
of the phase distribution gives us information concerning with the phase (Fig. 4(a)) or anti-phase (Fig. 4(b)) 
nature of the synchronisation, respectively. For the case where loss and gain ratios are equal, we observe again that 
there is no syncrhonization and the two-level system is free-phase. Finally, the existence of the limit cycle and the 
phase-locking between the signal and the qubit exhibited on the master system allows to define this system as a 
self-sustained oscillator.

The Effective Model
In our work, it is possible to distinguish two subsystems; the master system and the slave system1 which are consti-
tuted by the first, and second qubit-cavity system, respectively. The former characterizes for having an independ-
ent movement provided by the signal applied to it. On the contrary, the slave system has a non-free movement as 
a result of the cavity-cavity interaction. To understand how the cavity-cavity interaction allows us to achieve 
synchronization between the two level systems on the master and slave systems, respectively, it is convenient to 
write the cavity interaction in the normal modes basis i.e, = −b a a( )/ 21 1 2  and = +b a a( )/ 22 1 2 . Notice that 
this transformation is valid when the cavity modes are equal i.e., ω1 = ω2 = ω, obtaining the following master 
equation

(a) (b) (c)

Figure 2.  The limit cycle for the master system. Husimi Kano Q-representation function Q(θ, φ) for the steady-
state describing the two-level system for different dissipative configurations; (a) stands for the case where 
κG,1/κL,1 = 10, (b) κG,1/κL,1 = 0.1, and (c) κG,1 = κL,1. The system parameters are given by Δp,1 = 10κ, δq,1 = 0, 
g = 0.5κ, J = 10κ.
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where nm is the Hamiltonian in Eq. (1) expressed in term of the normal mode
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Considering the case of equal qubit frequencies, we set the frequency of the external driving field 
quasi-resonant to the atomic transition and to the high-frequency normal mode (ωd ≈ ωq ≈ ω + J). In the interac-
tion picture with respect to  ω ω σ= − + + + ∑

ω
=

† †J b b J b b( ) ( ) j z
j

0 1 1 2 2 1,2 2
q , we have

 † †σ= Ω − + + .− −ig b S e b Q[ H c], (11)x
iJt

nm
1
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2

2

where σ σ= +± ± ±S ( )/ 21 2 , and σ σ= −± ± ±Q ( )/ 21 2  are collective spin operators. By considering | | | |J g2 0 , we 
see that the second term on Eq. (11) is highly oscillating. In order to eliminate this term, we apply the following 
unitary transformation over the master equation in Eq. (1)

 = × × .
∑ ∑ω σ ω σ− + − +

− +

†
†
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e e e (12)

i b b t g
J S b S b i b b t/2

2 ( ) /2d
j

j j z
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j j z
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0
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Neglecting highly-oscillating terms, the dynamics up to second order in g0/2J is given by

H D D D D∑ ∑ρ ρ κ ρ κ ρ κ ρ κ ρ= − + + +



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where ∼nm is the effective normal mode Hamiltonian in the Schrödinger picture

(a) (b) (c)

Figure 3.  Phase distribution  φ ρ( , ) as a function of the two-level system detuning δA,1; (a) stands for the case 
where κG,1/κL,1 = 10, (b) κG,1/κL,1 = 0.1, and (c) κG,1 = κL,1. The system parameters are given by Δp,1 = 10κ, 
Ω = 0.01κL,1, g = 0.5κ, J = 10κ.

(a) (b) (c)

Figure 4.  Phase distribution  φ ρ( , ) as a function of the external signal strength Ω; (a) stands for the case 
where κG,1/κL,1 = 10, (b) κG,1/κL,1 = 0.1, and (c) κG,1 = κL,1. The system parameters are given by Δp,1 = 10κ, 
δq,1 = 0, g = 0.5κ, J = 10κ.
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Then, we observe that the nonresonant term induces shifts in the low-frequency normal mode and qubit bare 
energies, and an effective dissipative term for the qubits (collective dissipation). Assuming 

 κ| | | |J g2 { /2L j, 0 , 
κ|Ω | g J/4 } G j0 ,  and adjusting ωq = ω + J − g0

2/4J (effective resonance between the qubits and the high-frequency 
normal mode), the field variables can be adiabatically eliminate42, so that the reduced dynamics for the qubits, in 
the interaction picture, is given by
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The approximation allows us to identify that the high-frequency normal mode effectively acts as a common 
reservoir that couples the qubits. Such effective coupling will be responsible for the onset of synchronization.

Numerical Result
A numerical simulation of the evolution of the expectation values of Pauli operators according to Eq. (1), in 
the rotating frame with laser frequency, for three sets of parameters is depicted in Fig. 5, as well as the quantum 
mutual information between the qubits. The quantum mutual information I quantifies how much the knowledge 
about the system A gives information about the system B. It is defined as I(ρAB) = S(ρA) + S(ρB) − S(ρAB), where 
S(ρ) = −Tr(ρ logρ) is the von Neumann entropy, with ρA = TrB(ρAB) and ρB = TrA(ρAB). In Fig. 5(a), we observe  

(a)

(b)

(c)

Figure 5.  Time evolution of the expectation values of the Pauli operators corresponding to qubit 1 (light color) 
and qubit 2 (dark color), and the mutual information between the qubits. Here, we consider κL,1 = κL,2 = κ, 
κG,1 = κG,2 = 0.01κ, J = −10κ, g0 = κ/2, and Δ1 = ω1 − ωd = −J, together with (a) Δ2 = ω2 − ωd = Δ1, δ1 = δ2 = 0 
and Ω = 5 × 10−4κ, (b) the same of (a) except for Ω = 0, (c) Δ2 = Δ1, δ1 = 0κ,δ2 = −0.03κ, and Ω = 1 × 10−3κ. 
Initially, the cavities are in the vacuum state while the qubits are in state ψ| 〉(0)  = . | 〉 + . | 〉( 0 9 g 0 1 e ) ⊗ 

. | 〉 + . | 〉( 0 7 g 0 3 e ). We observe a total quantum synchronization in (a), i.e., all Pauli operators are 
synchronized (Ξ = 2 − maximum degree of quantumness). In (b), we have a partial quantum synchronization 
(Ξ = 1), since just σx and σy are synchronized, while we have a classical synchronization (Ξ = 0) in (c), because 
only σz is synchronized. In every case, we observe synchronization even in the absence of correlations between 
the qubits in the steady state.
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that the external driving field induces a total quantum synchronization of the qubits (maximum degree of quan-
tumness Ξ = 2), since all Pauli operators get almost immediately synchronized, even in amplitude. If the driving 
field is off, see Fig. 5(b), the qubits spontaneously synchronize. However, it is a partial quantum synchronization 
since just σx and σy get synchronized (Ξ = 1), while σz for both qubits exhibits a pure exponential decay. In 
Fig. 5(c), we consider a case in which the external driving field can only induce (anti-)synchronization in σz, i.e., 
a classical synchronization (Ξ = 0). Although it is not depicted in Fig. 5 for the sake of clarity, the approximate 
reduced dynamics [Eq. (15)] reproduces the exact numerical results with excellent agreement, ratifying the state-
ment made in the previous paragraph.

In ref. 27, the authors propose the use of quantum mutual information as a steady-state order parameter for 
signaling the presence or the absence of quantum synchronization, claiming that it is well defined for every bipar-
tite quantum state and does not depend on the particular details of the system. They suggest that synchronized 
systems should converge to a steady state having large mutual information. The intuition behind this proposal is 
that, under a quantum dynamics, quantum correlations tend to emerge. Surprisingly, every case shown in Fig. 5 
exhibits synchronization even though the amount of mutual information embedded on the two-level systems 
bipartition is small. Therefore, as already noticed for entanglement9,11,16,23,27, there is not a one-to-one corre-
spondence between correlations in the steady state and synchronization, and this relation strongly depends on 
the specific details of the system. From our point of view, quantum mutual information is a signal of quantum 
synchronization, but the opposite is not true, and a quantum dynamics can yield quantum synchronization with-
out generating a high mutual information.

Distinct resonator frequencies can be created by means of different resonator lengths, and the interaction 
between different cavity modes, known as mode mixing, occurs via tunneling of photons. The corresponding 
hopping term which connects both resonators in the Hamiltonian, can be implemented using a superconducting 
quantum interference device (SQUID) made of a superconducting loop interrupted by two Josephson junctions 
(JJs), provided that ω| | J / 143. Each of the resonators, on the other hand, contains a superconducting qubit, 
which can be coupled to cavities well beyond the value g0/ω ≈ 0.01 that we require, as it has been reported very 
recently by Bosman et al.44. Additionally, they can reach coherence times as high as 100 μs45–47, while the plotted 
amount of time in Fig. 5, on the other hand, corresponds to the order of 1 μs, which means that the observation 
of hundreds of oscillations is available. Finally the driving field on one of the qubits is implemented via a coherent 
microwave source48.

Coupled Van der Pol Oscillators
We finally focus on a model made of two coupled quantum van der Pol Oscillators oscillators. We introduce an 
in-phase synchronizing Hamiltonian

 † † † †ω ω= + + − .a a a a iJ a a a a( ) (17)vdP 1 1 1 2 2 2 1 2 1 2

The dynamics of the coupled vdP oscillators is given by the following master equation is given by8

Figure 6.  Time evolution of Sc, the average number of photons, and the average of the lowest moments of the 
oscillators. Here, we consider κL,1 = κL,2 = 2ω2 = 2ω1, J = 0.5ω1 and κG,1 = κG,2 = 0.001ω1. The initial state is 
ψ| 〉 = . | 〉 + . | 〉 ⊗ . | 〉 + . | 〉(0) ( 0 25 0 0 75 1 ) ( 0 05 0 0 95 1 ), where |n〉 are Fock states.
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 †
 ∑ρ ρ κ ρ κ ρ= − + +

=
i H a a[ , ] [ ] [ ] ,

(18)j
G j j L j jvdP

1,2
, ,

2

In this model, each oscillator gains one photon at rate †κ 〈 〉a aG j j j, , and losses two photons at rate †a a( )G j j j,
2 2κ 〈 〉. 

These processes resemble the non-linear and quadratic damping observed in the classical vdP oscillator in 
absence of external signal8. The lowest moments for this model are depicted in Fig. 6, showing a transient oscilla-
tory behavior in which synchronization is observed in all of them, except for 〈xp + px〉/2. The quantum synchro-
nization figure of merit Sc(t) := 〈x−(t)2 + p−(t)2〉−1 ≤ 1, introduced by A. Mari et al.16, is also plotted, where 

= −−x t x t x t( ) : [ ( ) ( )]/ 21 2  and = −−p t p t p t( ) : [ ( ) ( )]/ 21 2 , with †= +x a a( )/ 2j j j  and †= − −p i a a( )/ 2j j j  
the canonical variables of each oscillator. These simulations suggest that almost full degree of quantum synchro-
nization is attained. However, the existence of infinite moments gives rise to the theoretical challenge of proving 
that higher moments are actually synchronized, since the numerical approach is limited. This, therefore, means 
that there are still open questions in the case of continuous variables which should be addressed in future 
research.

Conclusions
Summarizing, in this work we have proposed a quantifier of the quantumness of a quantum synchronization 
process based on quantum information techniques. Indeed, we define the degree of quantumness in terms of the 
number of synchronized non-commuting observables. This approach is different to the previous works, since 
we are not proposing another measure of synchronization, but of the quantumness of the generated quantum 
synchronization. We study in detail the case of finite-dimensional systems, illustrating it with two cavity-qubit 
systems, in which we show that all possible degrees of quantumness may be reached for the qubits. Additionally, 
we show that this setup is feasible in superconducting circuits with current technology. Finally, we analyze the 
case for continuous variables, illustrating it with two quantum van der Pol oscillators, where we show that there 
are still open questions which should be addressed in the future.
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