
RESEARCH ARTICLE

Reducing the WCET and analysis time of

systems with simple lockable instruction

caches

Alba Pedro-Zapater1,3*, Juan SegarraID
1,3, Rubén Gran Tejero1,3, Vı́ctor Viñals1,3,

Clemente Rodrı́guez2,3

1 Dpt. Informática e Ingenierı́a de Sistemas, Instituto de Investigación en Ingenierı́a de Aragón (I3A),

Universidad de Zaragoza, Zaragoza, Spain, 2 Dpt. Arquitectura y Tecnologı́a de Computadores, Universidad

del Paı́s Vasco, Paı́s Vasco, Spain, 3 HiPEAC

* albapz@unizar.es

Abstract

One of the key challenges in real-time systems is the analysis of the memory hierarchy.

Many Worst-Case Execution Time (WCET) analysis methods supporting an instruction

cache are based on iterative or convergence algorithms, which are rather slow. Our goal in

this paper is to reduce the WCET analysis time on systems with a simple lockable instruction

cache, focusing on the Lock-MS method. First, we propose an algorithm to obtain a struc-

ture-based representation of the Control Flow Graph (CFG). It organizes the whole WCET

problem as nested subproblems, which takes advantage of common branch-and-bound

algorithms of Integer Linear Programming (ILP) solvers. Second, we add support for multi-

ple locking points per task, each one with specific cache contents, instead of a given locked

content for the whole task execution. Locking points are set heuristically before outer loops.

Such simple heuristics adds no complexity, and reduces the WCET by taking profit of the

temporal reuse found in loops. Since loops can be processed as isolated regions, the opti-

mal contents to lock into cache for each region can be obtained, and the WCET analysis

time is further reduced. With these two improvements, our WCET analysis is around 10

times faster than other approaches. Also, our results show that the WCET is reduced, and

the hit ratio achieved for the lockable instruction cache is similar to that of a real execution

with an LRU instruction cache. Finally, we analyze the WCET sensitivity to compiler optimi-

zation, showing for each benchmark the right choices and pointing out that O0 is always the

worst option.

Introduction

Real-Time systems are increasingly present in the industry and the daily life. We can find

examples in many sectors such as avionics, robotics, automotive, manufacturing, or air-traffic

control. A real-time system consists of a number of tasks, which perform the required func-

tionality. These tasks can be organized by priorities and they have to be scheduled in a way so

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pedro-Zapater A, Segarra J, Gran Tejero

R, Viñals V, Rodrı́guez C (2020) Reducing the

WCET and analysis time of systems with simple

lockable instruction caches. PLoS ONE 15(3):

e0229980. https://doi.org/10.1371/journal.

pone.0229980

Editor: Inés P. Mariño, Universidad Rey Juan

Carlos, SPAIN

Received: April 2, 2019

Accepted: February 19, 2020

Published: March 19, 2020

Copyright: © 2020 Pedro-Zapater et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All benchmark

source files are available from the TACLeBench

(http://www.tacle.eu/) and Malardalen (http://www.

mrtc.mdh.se/projects/wcet/benchmarks.html)

repositories.

Funding: This work was supported in part by

grants FPU14/02463, TIN2016-76635-C2-1-R

(AEI/ERDF, UE), and gaZ: T58_17R research

group (Aragón Gov. and European ESF)

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-1550-735X
https://doi.org/10.1371/journal.pone.0229980
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229980&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229980&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229980&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229980&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229980&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229980&domain=pdf&date_stamp=2020-03-19
https://doi.org/10.1371/journal.pone.0229980
https://doi.org/10.1371/journal.pone.0229980
http://creativecommons.org/licenses/by/4.0/
http://www.tacle.eu/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

that they satisfy their deadlines. In order to guarantee their correctness, Worst-Case Execution

Time (WCET) and schedulability have to be analyzed. WCET depends on the hardware tech-

nical specifications and how it interacts with the running task, so a particular WCET is not

valid for hardware other than the one analyzed. If schedulability fails, the system must be rede-

signed, repeating all previous procedures. Since this is complex, some approaches propose to

apply it just to safety-critical tasks, and not to other tasks in the real-time system [1]. Thus,

improving the time required for a part of this validation process might reduce very much the

time required to design a real-time system. Also, a fast WCET analysis can be an alternative to

parametric WCET analysis, which is usually quite limited on the parameters it supports [2].

Given a processor with fixed-latency components, the WCET of a single task could be cal-

culated from the partial WCET of each basic block of the task. However, current processor

organizations include variable-latency components in order to enhance performance on the

average case. Variable-latency components are caches, pipelines, branch prediction, and other

speculative mechanisms [3]. Although performance oriented platforms benefit from this, the

analysis for hard real-time systems becomes more difficult.

One of the main challenges in the WCET analysis is the memory hierarchy [4]. Conven-

tional cache behavior depends on past references and, for a precise analysis, it is necessary to

know all the previous memory accesses in order to predict the latency of the current memory

access. Depending on the replacement policy, such dependence usually implies either a rather

high analysis time (e.g. LRU), or a high overestimation in the WCET when grouping the possi-

ble alternative execution events (e.g. domino effects in Pseudo-LRU) [5]. Focusing on LRU

replacement, current WCET analysis methods are based on Abstract Interpretation (AbsInt)

[6, 7], Implicit Path Enumeration (IPET) [8], or use them both [9]. Given the significant analy-

sis time these methods require for the WCET analysis of systems with an instruction cache, it

is not clear whether they can support the analysis of complex programs on systems including

other hardware components such as data cache, prefetch, etc. For instance, although theoreti-

cally both AbsInt and IPET support data caches [8], as far as we know no study has thought-

fully evaluated them.

To reduce the analysis time, many studies propose using fully-lockable caches [10], present

in processors of most manufacturers, such as Motorola (ColdFire, PowerPC, MPC7451,

MPC7400), MIPS32, ARM (904, 946E-S), Integrated Device Technology (79R4650,

79RC64574), Intel 960, etc. These caches, on a miss event, request the missed line to the next

memory level, but on arrival they send it to a line buffer, without keeping any copy. Therefore

no replacement is needed, and all the storage and control devoted to implement replacement

in conventional caches becomes unnecessary and is removed. Since the content is known and

it does not change, the hit/miss computation is much easier and it does not depend on any pre-

vious memory access, so the WCET analysis is simplified. However, the challenge now is to

determine the best set of instructions to lock in cache, additionally to perform its WCET analy-

sis. Therefore, cache locking methods try to find contents so that they generate the minimum

WCET when locked in cache. Depending on their flexibility regarding the loading and locking

points, the distinct sets of contents to manage, and also how they address the analysis (heuristi-

cally, analytically, etc.), there are many approaches to this problem. Static locking methods per-

form a single selection of instructions to lock among all the tasks that run in the system, so that

such set is fixed at system start-up [11]. On the other hand, dynamic locking methods perform

one or more selections of contents per task. In general, dynamic locking performs better than

static locking in terms of WCET [12]. Focusing on dynamic locking, let us use single-content
dynamic locking to refer to those dynamic locking methods that select a single content per

task, which is loaded and locked at every task context switch (e.g. [13]), and multiple-content
dynamic locking to those methods that allow each task to load and lock cache contents at will

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 2 / 21

https://doi.org/10.1371/journal.pone.0229980

during its execution (e.g. [14]). Two very interesting properties of single-content dynamic

locking are, first, that its WCET analysis can be performed without losing precision by struc-

ture-based methods, whose solving is much faster, and second, that such methods also provide

the optimal selection of contents to lock [13]. This allows to extend the WCET analysis so that

it includes prefetch [15], data cache [16, 17], and even to analyze at the same time the Worst-
case Energy Consumption (WCEC) in order to obtain a balanced WCET-aware–WCEC-aware

trade-off [18]. On the other hand, multiple-content dynamic locking methods may improve

the WCET, but they must decide the best code locations to perform the loading and locking of

instructions, and the best selection of instructions to lock at each loading point. Usually, both

these problems are addressed heuristically in order to limit their associated analysis time, so

their results are not optimal and their required analysis time may be comparable to that

required for the WCET analysis of an LRU cache [14, 19]. Other studies use genetic algorithms

to address these problems [20].

Finally, some studies assume partial set-level lockable caches. For each cache set, these

caches are able to track a variable number of non-locked lines sorted in LRU order, and lock

the remaining ones [21, 22]. Control complexity and storage to support this fine-grained lock-

ing-replacement surpasses the abilities of conventional caches and, of course, that of fully-lock-

able caches. To the best of our knowledge, such hardware is not yet ready, and current cache

designs are far from reaching this behavior. The high number of configurations supported by

partial set-level lockable caches requires high analysis times. For instance, a convergence pro-

cess consisting of two steps has been proposed [22]. The first step performs a WCET analysis

assuming a conventional instruction cache which may have some locked lines. The second

step test whether there is a new suitable line to lock, configuring the instruction cache accord-

ingly for the next iteration of the convergence algorithm. However, none of these studies pro-

vides system-independent baselines (e.g. always-hit, always-miss), being difficult to interpret

their results. Also, they do not compare with conventional caches. Furthermore, when com-

paring to completely locked caches they use a biased hardware, since they do not consider the

line-buffer component, required for locked caches to work properly [11, 13–17, 19]. Neverthe-

less, in this paper we focus on simple cache structures and fast WCET analysis methods, so

approaches towards partial set-level lockable caches are out of our scope.

As stated above, a short analysis time is so important that many times heuristic methods are

preferred to analytical methods. However, analysis methods aimed at lockable caches have not

thoroughly explored the potential of these systems for a fast analysis. Our goal in this paper is

to reduce the WCET analysis time of tasks in presence of lockable instruction caches. This is

achieved by developing DLock-MS, a multiple-content dynamic locking method. Essentially,

it consists of two key improvements built on Lock-MS [13], a single-content dynamic locking

method.

Our first contribution is an algorithm to translate the Control-Flow Graph (CFG) to a tree-

based structure representing the WCET analysis problem, which allows us to use Lock-MS as a

structure-based method. Such kind of methods are in general the fastest ones, since they do

not use convergence algorithms nor overlapped flow problems. With our algorithm the

WCET problem is organized as nested subproblems, which exploits common branch-and-

bound algorithms of Integer Linear Programming (ILP) solvers, so that each subproblem is

optimized for a fast resolution. In terms of efficiency, our proposed algorithm generates the

tree-based structure in a single pass, and explores each branch a single time.

Our second improvement addresses the size limitation that single-content dynamic locking

methods present, not only to surpass such limitation with better WCET results, but also focus-

ing on a fast and efficient analysis. DLock-MS applies a loop-based heuristics for the placement

of multiple loading and locking points for the instruction cache, and then lets the solver to

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0229980

find the optimal content to load and lock at each point. Additionally, regions where the locked

contents are fixed can be processed as isolated subproblems, which accelerates even more the

WCET analysis and solving time, and even enables computing in parallel (not addressed in

this paper).

The rest of this paper is organized as follows. Section Structure-based WCET analysis

describes our methodological context. Our two proposals are described in Sections CFG to

tree transformation and Placement of loading and locking points. In Section Results we evalu-

ate them. Finally, our Conclusions are presented.

Structure-based WCET analysis

Initial ways of approaching the WCET analysis problem through static analysis considered

alternatives such as path-based, IPET, and structure-based calculation [3]. The main limitation

of path-based calculation is that it must explicitly represent the exponential number of paths

that a task may contain. Structure-based calculation, as used in initial versions of Heptane

[23], for example assumed a tree-structure representation of the CFG to perform a bottom-up

calculation of the specific costs of each branch. Its main limitation arose when used on systems

with conventional caches, since it cannot support their inherent context-based behavior. Nev-

ertheless, such approach was probably the fastest one [3]. So, for certain targets, improved

structure-based methods may be the most adequate ones. Specifically, our contributions are

applied on the WCET analysis method Lock-MS, briefly described below [13].

Lock-MS is a path-based/structure-based static WCET analysis method. Contrary to for-

mer structure-based methods, it does not calculate the WCET by a bottom-up traversal of the

tree representation of the CFG, but generates an ILP model to be solved. Although such ILP

model may be path-based or structure-based, in this paper we address the structure-based

model. So, its application may be closer to IPET, which also generates an ILP model. However,

IPET represents the WCET analysis as an ILP flow problem, whereas Lock-MS represents it as

a structure-based ILP problem. In this paper only the main structure-based constraints are

shown in examples, but modeling details of these methods can be found in previous work

[8, 13].

Lock-MS is designed for the WCET analysis of systems with a fully-lockable instruction

cache. So, additionally to obtain the WCET, it obtains the single content to load and lock into

cache. Note that such approach is not compatible with IPET, since IPET maximizes possible

execution cases and Lock-MS obtains the locked contents that minimize the WCET. That is, it

performs a WCET-aware optimization regarding the contents to lock into the instruction

cache. In order to model such behavior, Lock-MS associates each instruction memory line to a

binary variable representing its presence in the locked cache. The cost of executing the task to

analyze is then expressed as a set of linear constraints dependent of previous binary variables.

Thus, solving the resulting ILP model provides both the optimal selection of instructions to

lock into the instruction cache, and the resulting WCET.

An important detail to notice is that all solutions that comply with the IPET model are

unsafe, except the one that maximizes the WCET. This is due to the space of valid solutions

(] −1, WCET]) in the maximization problem. On the contrary, any solution complying with

the Lock-MS model is safe, since valid solutions are the complementary ones in a minimiza-

tion problem ([WCET,1[). For instance, a bad but safe solution would be to use an empty

locked cache, which would provide an overestimated WCET. This implies that using Lock-

MS, one may choose to stop the ILP solver if it takes too long, and safe results (suboptimal

cache configurations and their associated WCET) are obtained even when the analysis is not

completed.

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0229980

Finally, it must be taken into account that any contextual information such as path taken,

relation between variables, unfeasible paths, hardware state (cache, buffers, branch predictors,

etc.) is problematic in WCET analysis, and it usually implies overestimating the WCET. This is

also the main limitation of structure-based methods. Such contextual information depends on

the hardware to analyze. For instance, this limitation discourages from using Lock-MS on con-

ventional caches, since the contextual information for such systems is the whole cache state.

Nevertheless, Lock-MS can incorporate the contextual information required for other hard-

ware such as a locked cache plus line-buffer (single-line conventional instruction cache) [13],

an instruction prefetch buffer implementing a next-line tagged prefetch policy [15], and the

predictable data cache ACDC [16, 17]. The context for an accurate analysis of such hardware

is smaller, and it can be integrated into the structure-based model along with the CFG. How-

ever, no algorithm to transform the CFG into a tree structure (required for any structure-

based method) has been proposed [13, 23].

CFG to tree transformation

Our first contribution is an algorithm for efficiently translating the CFG information into a

tree structure. First, loops and functions other than the main program are substituted by vir-

tual nodes (basic blocks) in the CFG. Then, they are processed as independent sub-CFGs to be

transformed into independent trees. For the main CFG and each one of the sub-CFGs, Algo-

rithm 1 is applied recursively from the starting node in the corresponding CFG and an empty

starting path (Explore(start,;)). This algorithm performs a recursive in-depth search that

builds the trees associated to each CFG and generates their corresponding ILP constraints,

according to the Lock-MS model. Essentially, each tree is composed of a conditional node plus

all its alternative paths until reaching another conditional node. Algorithm 1 works as follows.

Lines 1 and 2 address the ending nodes of a CFG, returning just the ongoing path plus the cur-

rent (ending) node and completing the exploration of such path. In lines 3 and 4, correspond-

ing to a node with a single child, the exploration just goes deeper by following this single child

in the path. Lines 5 and 6 correspond to the exploration of a conditional node (more than one

child) already explored. Since it is already explored, its corresponding processing and con-

straint generation have already been performed, so further exploration of this node is not

required. Finally, lines 7 to 13 describe how to proceed when the current node is a conditional

node that has not yet been explored. In such case, a new tree is generated, with the current

node as its root. Each child of the current node is explored to form the branches (alternative

paths) of this root (lines 8 and 9). Then, each branch is processed, and the corresponding ILP

constraints (explained below) are set (line 10). Finally, the current node is set as explored,

returning the path until this node (lines 12 and 13). It must be taken into account that the

entry node of a loop is not considered as a child of the nodes with the back edges.

Algorithm 1 Explore(currCFGnode, currPath)
1: if |children(currCFGnode)| = 0 then # no more nodes in path
2: return currPath + currCFGnode
3: else if |children(currCFGnode)| = 1 then # single child:

expand path
4: return Explore(child(currCFGnode), currPath + currCFGnode)
5: else if |children(currCFGnode)| > 1 and explored[currCFGnode] then
6: return currPath + currCFGnode # already explored conditional
7: else #unexplored conditional (|children(currCFGnode)| > 1)
8: for all childNode 2 children(currCFGnode) do #process each

alternative path
9: alternativePath Explore(childNode, currCFGnode)

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0229980

10: processAndBuildConstraint(currCFGnode, alternativePath #set
constraints like CBBx � alternativePath

11: end for
12: explored[currCFGnode] true
13: return currPath + currCFGnode #all alternative paths

processed
14: end if

Essentially, the ILP constraints (line 10, Algorithm 1) model a minimization problem for a

tree of nodes (basic blocks, BB). The cost of each particular node BBi would correspond to the

total cumulative cost of executing the node, which would be an expression depending on its

different execution cases and their number of occurrences. For each cacheable memory line j
in the basic block, an associated variable cachedBBij determines whether it should be cached or

not in order to reduce the WCET. Such cached memory lines cannot grow beyond the cache

capacity, so they are also constrained according to the cache sets and ways. For instance,

assuming just a lockable cache and a basic block BB1 fiting in a single cache line, these costs

would be set as BB1 = hitCostBB1 � nExecsBB1 � cachedBB1 + missCostBB1 � nExecsBB1 � (1 −
cachedBB1), where hitCostBB1 and missCostBB1 would be precalculated constants based on

the hardware parameters, nExecsBB1 would depend on the CFG, and cachedBB1 would be a

logical (0/1) variable. Nevertheless, in this paper we focus on the structure of the general con-

straints modeling the CFG, and not in those modeling the hardware [13, 15–18]. As an exam-

ple, Fig 1 shows a CFG with 12 explicit paths to consider for the WCET analysis, the resulting

trees after its transformation, and their corresponding main ILP constraints. Notice that with a

locked cache the worst case of executing a loop cannot include combinations of the alternative

paths that it contains [13]. So, the 12 paths to consider execute the following basic blocks: 1-2-

4-5-10-11-13, 1-2-4-5-10-12-13, 1-3-4-5-10-11-13, 1-3-4-5-10-12-13, 1-2-4-6-7-9-10-11-13, 1-

2-4-6-7-9-10-12-13, 1-2-4-6-8-9-10-11-13, 1-2-4-6-8-9-10-12-13,1-3-4-6-7-9-10-11-13, 1-3-4-

6-7-9-10-12-13, 1-3-4-6-8-9-10-11-13, and 1-3-4-6-8-9-10-12-13. Tree A represents the latest

conditional, in BB10, and its cost would be the maximum of its two alternative branches. Tree

B represents from BB4 until BB10, which has already been explored. The loop starting in BB6

is analyzed as an independent CFG with its own tree (Tree Loop), and it is represented as a vir-

tual node (LoopBB6) in Tree B. Tree C represents BB1 to BB4. Thus, instead of the 12 paths in

the CFG, our proposal provides 4 subtrees with 2 subpaths each one. The WCET can be set as

the cost of the whole tree, i.e. the cost of its root: WCET = CBB1. In turn, the cost of each tree

(composed of costs of nodes and subtrees) must be greater than any of its alternative paths, as

detailed in Fig 1. Then, minimizing the variable WCET, the ILP solver would provide the best

values for the cachedBBij variables, i.e., those that provide the minimum WCET.

Apart of the actual CFG to tree transformation, our approach has the following benefits. All

the process is performed in a single pass, and no preprocessing is required to known the size of

the CFG. Also, branches are explored just once. Since branches are usually associated to basic

blocks, this makes our approach essentially linear with respect of the basic blocks in the pro-

gram. Only terminating basic blocks may be explored more than once (e.g. loop-terminating

BB9 and CFG-terminating BB13 in Fig 1).

Placement of loading and locking points

The main drawback of single-content dynamic locking methods such as Lock-MS is their

inability to follow the working set changes that could appear during program execution. So, an

apparently straightforward improvement is to define region-specific contents to load and lock

previously to the execution of such regions in the task [14, 19, 24]. However, this implies find-

ing both adequate loading points and adequate instruction lines to lock at each point,

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0229980

accounting for the time overhead of instruction loading, and modifying the memory layout of

the task. Thus, improving the behavior of the optimal single-content dynamic locking is not as

straightforward as one could think. Indeed, studies claiming better results than single-content

dynamic locking specifically state that they remove the line-buffer hardware component,

required for locked caches to work properly [21].

Our second contribution is a dynamic locking heuristics that addresses the problems stated

above. We consider the entry of outer loops as the points to load and lock the instruction

cache. This simple heuristics addresses the following points. First, each program region bene-

fits from a privately locked cache content. This means that our analysis finds the contents that

minimize the WCET for each region. Second, there are no loading and locking points inside

loops, so that their corresponding overhead will never be multiplied by loop iterations. Third,

since locked caches exploit temporal reuse, and temporal reuse is found in loops, our heuristics

allows to use the whole cache capacity for each of these temporal reuse environments. Note

also that such heuristics does not prevent to set other loading points. That is, the resulting ILP

model can be modified if the designer wants to change their location.

In order to have a practical insight, let us compare our proposal with other approaches. Fig

2A reproduces the example presented in a recent study to show the improvement of its

Fig 1. Simple CFG example, its associated trees, and their ILP constraints.

https://doi.org/10.1371/journal.pone.0229980.g001

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0229980.g001
https://doi.org/10.1371/journal.pone.0229980

approach with respect to previous work (Fig 3 in [22]). As it can be seen, it sets three loading

and locking points with specific contents (dashed arrows). Instead, our proposal (Fig 2B) sets a

single loading and locking point with the optimal contents for the outer loop. In order to per-

form a simple WCET calculation, let us just account for hits and misses considering that each

loaded cache line is equivalent to a miss (Mi). For the loading and locking points, a function

call (with its corresponding executed instructions and cache misses) is assumed [22]. So, for

our proposal to be in disadvantage, let us consider that the cost of each loading point is just

that of a single miss (Mp). In such case, the obtained WCET for Fig 2A would be: (Mp + M5) +

10 � (Mp + M0 + M1 + M2) + 4 � (3H + 1M) + (Mp + M6 + M7 + M8) + 3 � (3H)) = 122M +

210H. On the other hand, with our proposal (Fig 2B) the obtained WCET would be: (Mp +

M0 + M5 + M6 + M8) + 10 � (4 � (2H + 2M) + 3 � (2H + 1M)) = 115M + 140H. So, our approach

would provide a significantly lower WCET (5.7% fewer misses and 33.3% fewer hits). Never-

theless, it is important to remember that the heuristics of the proposal in Fig 2A requires a

partial set-level locking cache, whereas ours assumes just a fully-lockable cache. Since the hard-

ware is completely different, this means that our methods are not comparable, except when the

whole cache is locked, as in Fig 2. Also, note that other approaches must perform preliminary

or convergent WCET analyses in order to set their loading points, which imply much longer

analysis times [19, 22].

As stated above, each outer loop is associated to a region (with specific and fixed cache con-

tents) which is analyzed isolatedly. Fig 3 shows an example with five loops, the outer ones set

as regions. The instructions in basic blocks (nodes) that do not belong to any region (instruc-

tions in BB1, BB7, and BB8) are not candidates to be locked, but they will be cached neverthe-

less by the line-buffer [11]. In this way, each region can be addressed as a single-content

Fig 2. Locked basic blocks and loading points on the example presented in [22]. A: the proposal of Zheng et al. B:

our approach.

https://doi.org/10.1371/journal.pone.0229980.g002

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0229980.g002
https://doi.org/10.1371/journal.pone.0229980

dynamic locking isolated problem. Such approach ensures that, for each loading point, the

selected cache contents are optimal. That is, the ILP solver provides the selection of the con-

tents for each loading point so that the execution cost for the corresponding region in the

worst case is the minimal possible one. Also, the number of paths to explore is reduced even

more. Discarding loops, the number of paths to explore in Fig 3 without applying regions

would be 3 × 2 × 2. Since analysis of regions is isolated, with our dynamic locking heuristics

the number of paths to explore is 3 + 2 + 2. Note also that having independent regions allows

us to build an ILP problem for each region, solve all of them in parallel, and then use their

result (the partial WCET of each region) as the specific cost for this region in the main ILP

model. As far as we know, no other method exhibits such potential. In this paper we do not

exploit such parallelism, but it would reduce even more the analysis time.

Results

In this section we evaluate DLock-MS, our extension of Lock-MS, both in terms of the

required analysis time and the effectiveness of the results. It is studied for the different optimi-

zation levels in compilation, which may transform loops in different ways. Indeed, several

interesting observations have been found on such experiments, so a specific evaluation of the

impact on the WCET of the optimization levels in compilation and their loop transformations

is also included in this section.

Our target architecture is a 32-bit ARM processor considering the default architecture

assumed by the Otawa toolset [9], a state of the art tool based on AbsInt and IPET. That is, a

single instruction wide pipeline with stages consuming no more than a single cycle (apart of

instruction cache misses) and a static branch prediction of not-taken. This means that all taken

Fig 3. CFG example with the regions considered in DLock-MS.

https://doi.org/10.1371/journal.pone.0229980.g003

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0229980.g003
https://doi.org/10.1371/journal.pone.0229980

branches introduce a penalty of 2 cycles. Also, we assume the presence of an instruction line

buffer, i.e. a single-line conventional (dynamic) instruction cache, as in previous studies [11,

15, 16]. Such line buffer is required for a lockable instruction cache to work properly. The

tested binaries have been generated with ARM Compilation Toolchain GCC 6.3.1 [25] with

hardware support for floating point. For each benchmark, experiments include all possible

combinations of the parameters shown in Table 1. We have carried out further experiments

varying the compiler version, line size, memory latency, and cache associativity, but they did

not show any interesting or unexpected behavior, so they are not included in this paper. We

consider an instruction cache hit cost of 1 cycle, and a relatively low memory latency (10

cycles). Other studies consider off-chip main memories and assume a higher miss penalty,

such as 30 cycles [22]. Clearly, improvement in such systems would be much higher.

We have implemented DLock-MS as a module on the Otawa framework [9]. Such frame-

work provides us with the parsing of binaries and the CFG, so that we can directly apply our

proposed CFG to tree transformation, and build our required ILP constraints from the tree

structure. Also, Otawa requires control flow information, such as loop bounds, to be provided

in advance. For each binary, this information has been manually set by carefully studying the

effect of compiler optimizations, particularly loop transformations such as unroll, fusion, split,

move, duplicate, etc. Nevertheless, any loop bound analysis tool could be used [26, 27]. The

only transformation we have found is full loop unrolling at optimization levels O2 and O3 in

benchmarks binarysearch, crc, g723_enc, lift, matrix1, md5, ndes, and petrinet.
Table 2 shows the 30 benchmarks used in our experiments, downloaded in feb. 2017 from

the TACLeBench [28] and Mälardalen [29] suites. Some benchmarks in these suites have been

discarded for the following reasons: compilation errors (powerwindow, bitcount, gsm_dec, rijn-
dael_dec, dijndael_enc, susan), unknown number of loop iterations in library functions

(powerwindow, prime, adpcm_dec, adpcm_enc, ammunition, anagram, cjpeg_transupp,
cjpeg_wrbmp, epic, huff_enc, rijndael_dec, rijndael_enc), and CFG extraction issues. CFG

extraction issues include switch constructs as jumps to unknown addresses, CFGs with irre-

ducible loops (i.e. loops with multiple entries), recursive functions, etc. These issues come

from binary parsing limitations, but they do not affect our proposal. Benchmarks with such

issues are sha, gsm_enc, h264_dec, cover, duff, mpeg2, lms, test3, quicksort, recursion. For differ-

ent benchmarks containing the same algorithms (binarysearch/bs, countnegative/cnt, jfdctint/
fdct, petrinet/nsichneu), only the TACLeBench version is shown in our results, although both

versions have been tested to confirm that each pair shows the same behavior.

Values under Binary code size (Bytes) in Table 2 show the number of bytes of the analyzed

instructions in the binary file, depending on the optimization level. That is, the sum of all

Table 1. Experimental setup.

Parameter Tested cases

Analysis method Lock-MS, DLock-MS, Otawa (AbsInt+IPET), simulation

Max. iterations in loops Manually set

Compilation toolchain ARM gcc 6.3.1

Optimization level (-O) 0, 1, 2, 3

Instr. line buffer Present (cache line size)

Instr. cache line size 32 Bytes

Instr. cache assoc. Direct-mapped, 2 set-associative

Instr. cache size 128, 256, 512, 1024 Bytes, always-hit, always-miss

Memory latency 10 cycles

Data memory access Ideal (no penalty cycles)

https://doi.org/10.1371/journal.pone.0229980.t001

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0229980.t001
https://doi.org/10.1371/journal.pone.0229980

instructions in the CFG times their size (4 bytes per instruction). Optimization for size (-Os)

has been discarded due to it generally requires library functions containing loops with an

unknown number of iterations. For the O3 optimization, we also show several values to pro-

vide an insight of the complexity of the WCET analysis regarding the number of execution

paths to analyze. Column CFG shows an approximation of the number of paths in the CFG.

Column Tree shows the specific number of paths to analyze with a structure-based WCET

analysis method. Such value corresponds to the application of our first improvement. Finally,

column T+R shows the paths corresponding to the application of our regions on the tree, i.e.

our DLock-MS method. In this case, the reduction in the number of paths is due to each region

is analyzed in isolation. This means that the number of paths of consecutive regions are not

multiplied, but added, as explained on Fig 3. Note also that counting the number of paths may

be harder than performing the WCET analysis, since most analysis methods merge paths pre-

cisely to avoid their combinatorial explosion. For instance, we have been unable to obtain the

number of paths in the O3 version of the g723_enc benchmark.

Table 2. Tested benchmarks (TACLeBench [28] and Mälardalen [29]).

Name Binary code size (Bytes) O3 complexity (Paths)

O0 O1 O2 O3 CFG Tree T+R

audiobeam 8572 3880 3940 4848 * 2597 224 1512

basicmath 10048 4516 4516 5028 > 22080 262 69

binarysearch 604 264 260 1812 16 2 2

bsort 652 276 200 200 2 2 2

complex_updates 936 428 376 2300 1 1 1

countnegative 780 356 300 320 1 1 1

crc 1120 448 384 580 256 256 256

dijkstra 1544 764 636 808 > 21860000 124 63

fft 1644 960 836 784 > 22048 4 3

filterbank 1652 768 688 880 2 2 2

fir2dim 1456 712 640 1148 1 1 1

fmref 6344 3156 3288 5892 > 2854 252 234995

g723_enc 6772 2724 2960 6104 - - -

iir 748 348 340 556 1 1 1

janne_complex 264 100 100 100 1 1 1

jfdctint 2972 1088 1136 1136 1 1 1

lift 3828 2440 2304 3704 > 21001 4462 4462

ludcmp 2540 1084 972 4004 * 295 2789600 776

matmult 704 304 324 308 1 1 1

matrix1 592 264 244 380 1 1 1

md5 7968 3268 3128 5432 > 22827 231 78839

minver 3048 1252 1108 1920 * 230 1800 363

ndes 3168 1464 1760 2296 * 2998 98560 104

petrinet 6644 3700 3604 3644 > 2133 267 267

pm 8092 3648 3692 3984 > 22541 233 374641

qsort-exam 1480 620 620 620 * 2175 40 40

qurt 1092 580 548 540 1000 1000 1000

select 1332 516 520 520 * 264 30 16

st 1680 768 780 1044 162 162 162

statemate 9508 7600 6676 6388 > 21000 246 246

https://doi.org/10.1371/journal.pone.0229980.t002

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0229980.t002
https://doi.org/10.1371/journal.pone.0229980

When applying DLock-MS, some overhead cost must be considered. We assume that

dynamic locking is performed by executing functions, as other studies do [22]. These functions

load and lock into the cache the set of instructions required for the next region of code. Specifi-

cally, we consider a penalty of 47 cycles per call, one per region, which would correspond to

the execution costs, cache misses, and pipeline penalties of an estimated length of code of 12

instructions. Additionally, for each locked cache line, we add the cost of the memory latency

(10 cycles). This is a conservative scenario, since lock instructions might use specialized load

operations, e.g. loading a large number of contiguous memory lines using some kind of burst

memory transfer mode, which could decrease notably the total transfer time [22].

Our resulting ILP models are solved by lp-solve version 5.5.2.3. Due to the particular nesting

properties of our structure-based model, we have used the solver options -BB, -Bc, -Bd, -Bg,

and -Bo to order variables and apply a greedy reverse branch-and-bound.

Evaluation of analysis times

In this section we study the time required for the WCET static analysis of DLock-MS, an exten-

sion of Lock-MS with an efficient CFG to tree transformation and a dynamic-locking heuristics.

Fig 4 shows our analysis times compared to those required by the WCET analyzer

(AbsInt + IPET) in Otawa (owcet v1.2.0) [9]. The x axis shows the benchmarks, and the y axis

represents the attained WCET analysis speedup: execution time of the Otawa WCET analysis

assuming a conventional LRU instruction cache divided by execution time of DLock-MS on a

lockable instruction cache of the same size. This is shown for each optimization level, specified

on the right side. Benchmarks are ordered by the number of paths to explore in the tree-based

representation of the O3 optimization, to provide some insight of their complexity. For each

benchmark, we show with boxplots all experiments performed varying the cache size (see

Table 1). That is, each column shows a box whose limits indicate the first and third quartiles,

with a mark inside showing the median. Vertical lines outside the box show the variability out-

side these quartiles, and points beyond these lines indicate outlier values, i.e. results that are

statistically not relevant. Also, the horizontal line shows the unit speedup. Thus, the higher the

boxplots, the faster is our WCET analysis compared to that of Otawa.

Regarding the analysis time, we have restricted it to 10 minutes, so that any experiment tak-

ing more than such time is assumed to take exactly 10 minutes. When such cases appear in

Otawa, note that we are assuming an analysis time lower than it should be. With DLock-MS,

only one experiment takes more than 10 minutes. However, it is important to note that we are

able to provide safe WCET results before our WCET analysis/optimization is completed. That

is, when we stop our analysis at 10 minutes, we already have a safe WCET bound and the spe-

cific sets of contents to load at each locking point, although we cannot guarantee that it is the

optimal configuration, i.e. the one that provides the lowest WCET. So, assuming that experi-

ments cannot take more than 10 minutes benefits Otawa in the comparison.

From Fig 4 we see that boxes are just horizontal lines in many cases. For such benchmarks,

this means a very low speedup variability against cache size. Across all benchmarks and opti-

mization levels, DLock-MS is commonly around 10 times faster than Otawa, although certain

benchmarks may be especially difficult to analyze for each method. For instance, results above

104 correspond to analyses not completed by Otawa in 10 minutes. On the other hand, the few

slowdowns that appear are due to the existence of several paths with very similar or equal exe-

cution times, preventing the solver from discarding them early, as in the statemate O3 case.

Also, it must be taken into account that Otawa is faster than other approaches. For instance,

the required analysis time reported in other studies is more than 30 times longer than ours

[22].

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0229980

Although not shown in Fig 4, we have also studied the time DLock-MS spends on each part

of the analysis. In the experiments shown in this figure, our approach takes an average of 0.06

seconds to obtain the CFG and generate the tree structure and the ILP constraints, whereas the

ILP solver takes an average of 2.29 seconds to solve the problem.

Evaluation of effectiveness

Fig 5 shows the evaluation of the effectiveness of DLock-MS compared to the former Lock-MS

method. As above, results are presented by boxplots for each optimization level. Since DLock-

Fig 4. Comparison of WCET static analysis time of our approach (structure-based) and Otawa (Abstract Interpretation + IPET).

https://doi.org/10.1371/journal.pone.0229980.g004

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0229980.g004
https://doi.org/10.1371/journal.pone.0229980

MS extends Lock-MS essentially by supporting multiple loading and locking points, in general

its results should be equal or better. Specifically, WCETs are 2.2% better in average, including

the extra cost introduced by the locking points. Such overhead (a function call for each locking

point) supposes 2.1% of the WCET in average. Applying a one-sided Fisher Sign Test with a

confidence level of 0.99), a p-value of 2.2 � 10−16 is obtained, stating that DLock-MS performs

better than Lock-MS in terms of objective values.

Fig 5. Comparison of the WCETs of Lock-MS and DLock-MS, the lower the better. Lock-MS is the single-content dynamic locking method baseline,

and DLock-MS incudes our proposals to provide a multiple-content dynamic method. The data points forming the boxes correspond to the

configurations defined by the cartesian product of the parameter values in Table 1.

https://doi.org/10.1371/journal.pone.0229980.g005

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0229980.g005
https://doi.org/10.1371/journal.pone.0229980

Although improvements in Fig 5 may seem small, note that in many cases Lock-MS may

reach the best possible WCET (e.g. dijkstra), so improvements may be impossible. Also, adding

unnecessary loading and locking points may slightly increase the WCET, although this incre-

ment should be only noticeable for simple benchmarks (e.g. iir, janne_complex, binarysearch).

For more complex benchmarks (those on the right side), WCET improvements are clearer,

and the only problematic case is that of several regions loading the same contents, as in qurt.
Nevertheless, note that such situation is trivial to detect and avoid.

Additionally to the previous comparison, let us also evaluate the effectiveness of the lock-

able instruction cache when analyzed with DLock-MS. Since the WCET decreases linearly

with the instruction cache hit ratio, if our hit ratio in the WCET path is similar to that of a real

execution, we can ensure that our results are accurate enough. Moreover, in this way we avoid

that peculiarities of WCET analysis methods blur the actual goal, i.e. being slightly better than

the WCET bound of other methods is far less important than being close to the actual WCET

of a program. Furthermore, we compare our lockable instruction cache results to an LRU

instruction cache, in order to test that DLock-MS reaches an acceptable performance. For

obtaining actual hit ratios we use the Gem5 v2.0 simulator [30] configuring an equivalent pipe-

line with an LRU instruction cache of the same size. On the other hand we have obtained the

hit ratio of the locked instruction cache in the worst-case execution path when applying

DLock-MS. As above, results are presented by boxplots for each benchmark and optimization

level. Fig 6 shows that hit ratios in the worst-path with a lockable cache are comparable to

those with an LRU cache across all benchmarks and optimization levels, and the average is

always better for the dynamic locked cache (rightmost column). In fact, there are many cases

where the dynamic locked cache outperforms the LRU cache. This means that, for many

benchmarks, locking the right code is likely to perform as good or better than an LRU policy,

whose dynamism may evict content that will be used soon again. On the other hand, the

benchmarks whose LRU hit ratio is higher are mostly located on the right side of Fig 6. This is

consistent, since the natural dynamism of an LRU cache adapts its behavior to such larger and

more complex benchmarks, whereas a lockable cache, even with a dynamic locking heuristics,

has a more restricted behavior.

Impact of compiler optimization level

Most studies on real-time systems disable optimizations for an easier high-level/binary code

matching and, as far as we know, none of them has performed a thoroughly analysis regarding

how optimizations affect the worst-case execution time. Intuitively, optimization reduces the

average execution time, so in general it should also reduce the WCET. However, any optimiza-

tion that reduces the average execution time by increasing the execution time of uncommon

paths would increase the WCET if it is found through one of these uncommon paths. In this

section we study the impact on the WCET of the optimization levels in compilation. We focus

on the results for gcc 6.3.1, but results for gcc 4.8.4 (not shown) present almost identical

trends.

Fig 7 shows how the optimization level affects the WCET. The x axis shows the optimiza-

tion levels 1, 2 and 3, and the y axis represents the WCET relative to compiling without optimi-

zations (-O0). This is shown for each benchmark, plus the aggregated case on the right side,

presented with boxplots as above. Also, an horizontal line is shown to mark the baseline (the

WCET of the binary compiled without optimizations for each experiment) at y = 1. Thus, the

lower the boxplots, the lower (better) the WCET for the corresponding optimization.

The most important observation is that, in average, boxplots are around 0.3. This means

that, in general, the WCET of a given optimized code would be around one third of its WCET

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0229980

without optimizations. Hence, real-time systems should use optimized binaries. In average,

the best results are reached by O3, although each benchmark may have a specific behavior.

Another interesting detail is that the improvement of WCET is not (exclusively) due to the

size of the resulting binary code. O3 binaries are usually larger than those compiled with O1

and O2 (see Table 2), and nevertheless O3 binaries present a lower WCET. For instance the

size of O3 binary codes is around twice the size of O2 in fir2dim, fmref, g723_enc, iir, four

times in ludcmp, and six times in complex_updates, and nevertheless O3 results in a lower

WCET. This is especially interesting, since all experiments conducted stress the cache.

Fig 6. Comparison of the instruction cache hit ratios of our approach (hit ratio achieved throughout our analyzed WCET path) and an execution

simulation (hit ratio of an execution simulation with a conventional LRU instruction cache), the higher the better.

https://doi.org/10.1371/journal.pone.0229980.g006

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0229980.g006
https://doi.org/10.1371/journal.pone.0229980

However, such optimizations may also turn into slightly adverse effects for the WCET, as can

be seen in binarysearch, where O3 has around 7 times the size of O2.

Also, let us highlight an additional effect found in petrinet. As it can be seen, O2 and O3

present a WCET significantly worse than O1. This is due to the loop transformations per-

formed by these optimizations. Such transformations result in loop patterns with an inherent

overestimation in the WCET analysis process. Let us dig into this loop-pattern analysis prob-

lem. Depending on the source code and optimization level, the layout of basic blocks contain-

ing the loop head and body may be completely different. Fig 8 shows several loop patterns,

Fig 7. Effects of the compiler (gcc 6.3.1) optimization level on the WCET (the lower the better).

https://doi.org/10.1371/journal.pone.0229980.g007

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0229980.g007
https://doi.org/10.1371/journal.pone.0229980

where N is the maximum number of executions of the loop body, tagged by the programmer

in the source code of our experiments. In this figure, boxes with dashed borders represent one

or more basic blocks, whereas a continuous border represents a single basic block. The A pat-

tern is the basic do-while loop. There is only one exit and it is in the same basic block that

returns to the beginning of the loop. All basic blocks of this loop are executed N times at most.

The B pattern (while or for loop) has one exit only, in the entry basic block. If the loop body is

executed N times, its entry basic block must be executed N + 1 times. In other loop patterns,

like C, it can be difficult or impossible to known where is the head or the loop body, which

may even be interleaved with loop exit conditions, both distributed along several basic blocks.

Therefore, a safe approach implies assuming that all involved basic blocks may be executed

N + 1 times. This safe approach may actually be an overestimation. This is the case for the O2

and O3 binaries of petrinet in Fig 7. In O1, this benchmark contains 151 basic blocks (out of a

total of 161 in the benchmark) which are executed 2 times each one in the worst case, whereas

in O3 it is assumed that they can be executed up to 3 times. This raises the WCET bound to

around 3/2, as can be seen in Fig 7.

Conclusions

In this work we present DLock-MS, an extension of the WCET analysis method Lock-MS.

Our goal is to reduce the WCET analysis time of tasks in presence of a lockable instruction

cache. Our extension consist of two main improvements. The first one is an algorithm to trans-

form the CFG to a tree structure, required for using Lock-MS as a structure-based WCET anal-

ysis method. Such algorithm generates a tree whose associated ILP model can be easily solved

by following a reverse branch-and-bound approach. It performs such transformation in a sin-

gle pass and processing each alternative path a single time. The resulting tree has much less

paths to explore than the original CFG, which reduces the WCET analysis time without

sacrificing precision for a locked instruction cache. Our second improvement is a loop-based

dynamic locking heuristics, triggered on outer loops, that enables to obtain the optimal cache

contents for the WCET of each region, i.e. the configuration that minimizes the WCET of

each region. It has a very low complexity, reduces the WCET by exploiting more effectively the

Fig 8. Several loop patterns found in binary code.

https://doi.org/10.1371/journal.pone.0229980.g008

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 18 / 21

https://doi.org/10.1371/journal.pone.0229980.g008
https://doi.org/10.1371/journal.pone.0229980

temporal reuse, and reduces even more the WCET analysis time by isolating the WCET analy-

sis of each region.

Results show that DLock-MS is around 10 times faster than Otawa, a state of the art tool

based on AbsInt and IPET. This fast WCET analysis can be very significant in the design pro-

cess of a real-time system, and it can be an alternative to parametric WCET analysis. Moreover,

our analysis can be stopped before its completion, and in such case it still provides a safe WCET

and the configuration for the locked cache to guarantee it. That is, any solution of our model is

safe, and completion of the analysis guarantees the optimal (minimum) WCET of each region.

Also, we evaluate the effectiveness of DLock-MS, confirming that it reduces the WCET of

the former Lock-MS method, and compare the hit ratio of the locked cache to that of a conven-

tional LRU. Our results show very similar hit ratios in all benchmarks, with the lockable cache

offering better hit ratios on many of them. This is done with a very simple hardware.

Finally, we study the impact of the optimization levels on the WCET. Compilation without

optimizations (-O0) should be discarded, since it generates binaries with WCETs between 3

and 4 times worse than with optimizations. In general, O3 generates the binaries with the low-

est WCETs, but the other optimization levels are also very effective. However, aggressive opti-

mizations in certain benchmarks may result in a significant increment of the WCET. Such

optimizations may change the loop patterns so that the WCET analysis method may be forced

to assume additional loop iterations.

Restrictions

It is strictly prohibited to use, to investigate or to develop, in a direct or indirect way, any of

the scientific contributions of the authors contained in this work by any army or armed group

in the world, for military purposes and for any other use which is against human rights or the

environment, unless a written consent of all the authors of this work is obtained, or unless a

written consent of all the persons in the world is obtained.

Supporting information

S1 File.

(ZIP)

Author Contributions

Conceptualization: Clemente Rodrı́guez.

Formal analysis: Clemente Rodrı́guez.

Investigation: Alba Pedro-Zapater.

Software: Alba Pedro-Zapater.

Supervision: Juan Segarra, Vı́ctor Viñals.

Validation: Juan Segarra, Clemente Rodrı́guez.

Visualization: Alba Pedro-Zapater, Juan Segarra.

Writing – original draft: Alba Pedro-Zapater, Juan Segarra.

Writing – review & editing: Juan Segarra, Rubén Gran Tejero, Vı́ctor Viñals, Clemente

Rodrı́guez.

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229980.s001
https://doi.org/10.1371/journal.pone.0229980

References
1. Vestal S. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time

Assurance. In: Proceedings of the 28th IEEE International Real-Time Systems Symposium. RTSS’07.

Washington, DC, USA: IEEE Computer Society; 2007. p. 239–243. Available from: https://doi.org/10.

1109/RTSS.2007.35.

2. Bygde S, Ermedahl A, Lisper B. An Efficient Algorithm for Parametric WCET Calculation. In: Proceed-

ings of the 2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications. RTCSA’09. Washington, DC, USA: IEEE Computer Society; 2009. p. 13–21.

3. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, et al. The Worst-case Execution-

time Problem-Overview of Methods and Survey of Tools. ACM Trans Embed Comput Syst. 2008;

7(3):36:1–36:53. https://doi.org/10.1145/1347375.1347389

4. Aparicio LC, Segarra J, Rodrı́guez C, Villarroel JL, Viñals V. Avoiding the WCET Overestimation on

LRU Instruction Cache. In: Proc. 14th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA 08). Kaohsiung, Taiwan: IEEE Computer Society Press;

2008. p. 393–398.

5. Reineke J, Grund D, Berg C, Wilhelm R. Timing Predictability of Cache Replacement Policies. Real-

Time Systems. 2007; 37(2):99–122. https://doi.org/10.1007/s11241-007-9032-3

6. Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. Los Angeles, California: ACM Press,

New York, NY; 1977. p. 238–252.

7. Ferdinand C, Wilhelm R. Efficient and Precise Cache Behavior Prediction for Real-Time Systems.

Real-Time Systems. 1999; 17(2-3):131–181. https://doi.org/10.1023/A:1008186323068

8. Li YTS, Malik S, Wolfe A. Cache modeling for real-time software: beyond direct mapped instruction

caches. In: Proc. of the IEEE Real-Time Systems Symposium; 1996. p. 254–264.

9. Traces, Irit Lab, University of Toulouse. Otawa, Open Tool for Adaptive WCET Analyses;. Available

from: http://otawa.fr/.

10. Mittal S. A Survey of Techniques for Cache Locking. ACM Trans Des Autom Electron Syst. 2016; 21

(3):49:1–49:24. https://doi.org/10.1145/2858792

11. Puaut I, Decotigny D. Low-complexity Algorithms for Static Cache Locking in Multitasking Hard Real-

Time Systems. In: Proc. of the IEEE Real-Time Systems Symp.; 2002.

12. Martı́ Campoy A, Perles Ivars A, Rodrı́guez F, Busquets Mataix JV. Static Use Of Locking Caches Vs.

Dynamic Use Of Locking Caches For Real-Time Systems. In: Canadian Conference on Electrical and

Computer Engineering; 2003.

13. Aparicio LC, Segarra J, Rodrı́guez C, Viñals V. Improving the WCET computation in the presence of a

lockable instruction cache in multitasking real-time systems. Journal of Systems Architecture. 2011;

57(7):695–706. http://dx.doi.org/10.1016/j.sysarc.2010.08.008.

14. Puaut I. WCET-Centric Software-controlled Instruction Caches for Hard Real-Time Systems. In: Euro-

micro Conference on Real-Time Systems. Los Alamitos, CA, USA: IEEE Computer Society; 2006.

p. 217–226.

15. Aparicio LC, Segarra J, Rodrı́guez C, Viñals V. Combining prefetch with instruction cache locking in

multitasking real-time systems. In: Proceedings of the IEEE Int. Conf. on Embedded and Real-Time

Computing Systems and Applications. Macau SAR, China: IEEE Computer Society Press; 2010.

p. 319–328.

16. Segarra J, Rodrı́guez C, Gran R, Aparicio LC, Viñals V. A small and effective data cache for real-time

multitasking systems. In: IEEE Real-Time and Embedded Technology and Applications Symposium.

Beijing, China: IEEE Computer Society Press; 2012. p. 45–54.

17. Segarra J, Rodrı́guez C, Gran R, Aparicio LC, Viñals V. ACDC: Small, Predictable and High-Perfor-

mance Data Cache. ACM Trans Embed Comput Syst. 2015; 14(2):38:1–38:26. https://doi.org/10.1145/

2677093

18. Gran R, Segarra J, Rodrı́guez C, Aparicio LC, Viñals V. Optimizing a combined WCET-WCEC problem

in instruction fetching for real-time systems. Journal of Systems Architecture. 2013; 59(9):667–678.

http://dx.doi.org/10.1016/j.sysarc.2013.07.012.

19. Arnaud A, Puaut I. Dynamic Instruction Cache Locking in Hard Real-Time Systems. In: Proc. of the

14th International Conference on Real-Time and Network Systems (RTNS). Poitiers, France; 2006.

20. Martı́ Campoy A, Perles Ivars Á, Busquets Mataix JV. Static use of locking caches in multitask preemp-

tive real-time systems. In: IEEE Real-Time Embedded System Workshop; 2001.

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 20 / 21

https://doi.org/10.1109/RTSS.2007.35
https://doi.org/10.1109/RTSS.2007.35
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.1023/A:1008186323068
http://otawa.fr/
https://doi.org/10.1145/2858792
http://dx.doi.org/10.1016/j.sysarc.2010.08.008
https://doi.org/10.1145/2677093
https://doi.org/10.1145/2677093
http://dx.doi.org/10.1016/j.sysarc.2013.07.012
https://doi.org/10.1371/journal.pone.0229980

21. Ding H, Liang Y, Mitra T. Integrated Instruction Cache Analysis and Locking in Multitasking Real-time

Systems. In: Proceedings of the 50th Annual Design Automation Conference. DAC’13. New York, NY,

USA: ACM; 2013. p. 147:1–147:10. Available from: http://doi.acm.org/10.1145/2463209.2488916.

22. Zheng W, Wu H, Yang Q. WCET-Aware Dynamic I-Cache Locking for a Single Task. ACM Trans Archit

Code Optim. 2017; 14(1):4:1–4:26. https://doi.org/10.1145/3046683

23. Colin A, Puaut I. Worst Case Execution Time Analysis for a Processor with Branch Prediction. Real-

Time Systems. 2000; 18(2):249–274. https://doi.org/10.1023/A:1008149332687

24. Martı́ Campoy A, Tamura E, Sáez S, Rodrı́guez F, Busquets Mataix JV. On Using Locking Caches in

Embedded Real-Time Systems. In: ICESS; 2005. p. 150–159.

25. GNU ARM. GNU ARM Embedded Toolchain Version 6-2017-q2-update;. Available from: https://

developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads.

26. Bonenfant A, de Michiel M, Sainrat P. oRange: A tool for static loop bound analysis. In: Proceedings of

the Workshop on Resource Analysis; 2008.

27. Li H, Puaut I, Rohou E. Traceability of Flow Information: Reconciling Compiler Optimizations and

WCET Estimation. In: 22nd International Conference on Real-Time Networks and Systems, RTNS’14,

Versaille, France, October 8-10, 2014; 2014. p. 97.

28. Falk H, Altmeyer S, Hellinckx P, Lisper B, Puffitsch W, Rochange C, et al. TACLeBench: A Benchmark

Collection to Support Worst-Case Execution Time Research. In: Schoeberl M, editor. 16th International

Workshop on Worst-Case Execution Time Analysis (WCET 2016). vol. 55 of OpenAccess Series in

Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik; 2016.

p. 2:1–2:10.

29. Gustafsson J, Betts A, Ermedahl A, Lisper B. The Mälardalen WCET Benchmarks—Past, Present and

Future. In: Lisper B, editor. WCET2010. Brussels, Belgium; 2010. p. 137–147.

30. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, et al. The Gem5 Simulator. SIGARCH

Comput Archit News. 2011; 39(2):1–7. https://doi.org/10.1145/2024716.2024718

PLOS ONE Reducing the WCET and analysis time of systems with simple lockable instruction caches

PLOS ONE | https://doi.org/10.1371/journal.pone.0229980 March 19, 2020 21 / 21

http://doi.acm.org/10.1145/2463209.2488916
https://doi.org/10.1145/3046683
https://doi.org/10.1023/A:1008149332687
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1371/journal.pone.0229980

