

Article

On Best Approximations for Set-Valued Mappings in G-convex Spaces

Zoran D. Mitrović 1,2,* D, Azhar Hussain 3 D, Manuel de la Sen 4,* and Stojan Radenović 5

- Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- ² Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan; azhar.hussain@uos.edu.pk
- Institute of Research and Development of Processes IIDP, University of the Basque Country, Campus of Leioa, P.O. Box 48940, Leioa, 48940 Bizkaia, Spain
- Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia; radens@beotel.rs
- * Correspondence: zoran.mitrovic@tdtu.edu.vn (Z.D.M.); manuel.delasen@ehu.eus (M.d.l.S.)

Received: 8 January 2020; Accepted: 2 March 2020; Published: 4 March 2020

Abstract: In this paper we obtain a best approximations theorem for multi-valued mappings in \mathcal{G} -convex spaces. As applications, we derive results on the best approximations in hyperconvex and normed spaces. The obtain results generalize many existing results in the literature.

Keywords: *G*-convex space; hyperconvex space; KKM map; best approximations

1. Introduction and Preliminaries

S. Park and H. Kim [1] introduced the notion of generalized convex space or \mathcal{G} -convex space. In \mathcal{G} -convex space, many results were obtained in nonlinear analysis, see [2–25]. The aim of this paper is to obtain the best approximation theorem in \mathcal{G} -convex space. Our result generalize theorems of A. Amini-Harandi and A. P. Farajzadeh [3] (Theorem 2.1), W. A. Kirk, B. Sims and G. X. Z. Yuan [15] (Theorem 3.5), M. A. Khamsi [16], (Theorem 6), S. Park [18] (Theorem 5). Also we obtain that almost quasi-convex and almost affine conditions is unnecessary in results of J. B. Prolla [21] and A. Carbone [7].

A multifunction $\Phi: X \to Y$ is a map such that $\Phi(x) \subseteq Y$ for all $x \in X$. Let $S \subset X$, then $\Phi(S) = \bigcup \{\Phi(s) : s \in S\}$. Let $T \subset Y$, denote

$$\Phi^-(T) = \{ s \in X : \Phi(s) \cap T \neq \emptyset \} \text{ and } \Phi^+(T) = \{ s \in X : \Phi(s) \subset T \}$$

as lower and upper inverses of T with respect to Φ respectively. A multifunction $\Phi: X \to Y$ is upper (lower) semi-continuous on X if for every open $U \subset Y$, the set $\Phi^+(U)$ ($\Phi^-(U)$) is open. A multifunction Φ is continuous if it is upper and lower semi-continuous. A multifunction Φ with compact values is continuous if Φ is a continuous multifunction in the Hausdorff distance.

Denote Int(S), Bd(S) and $\langle S \rangle$, the interior, boundary and the set of all nonempty finite subsets of S respectively.

Let $r \in \mathbb{R}^+ \cup \{0\}$ and $\emptyset \neq S \subset X$, we denote the r-parallel set of S by

$$S+r=\bigcup\{B(s,r):s\in S\},$$

Mathematics **2020**, *8*, 347 2 of 7

where $B(s, r) = \{t \in X : d(s, t) \le r\}.$

For nonempty subsets *S* and *T* of *X*, we define

$$d(S,T) = \inf\{d(s,t) : s \in S, t \in T\}.$$

We call a set K is metrically convex if for any $x, y \in K$ and positive numbers p_i and p_j such that $d(x,y) \le p_i + p_j$, there exists $z \in K$ such that $z \in B(x,p_i) \cap B(y,p_j)$.

Denote Δ_n , the standard n-simplex having vertices e_1,e_2,\ldots,e_{n+1} , where e_i is the ith unit vector in \mathbb{R}^{n+1} . A \mathcal{G} -convex space $(X,D;\Omega)$ consists of a topological space X, a nonempty set D and a multifunction $\Omega:\langle D\rangle\to X$ such that for each $S\in\langle D\rangle$ with the cardinality |S|=n+1, there exists a continuous function $\varphi_S:\Delta_n\to\Omega(S)$, such that each $J\in\langle S\rangle$ implies $\varphi_S(\Delta_J)\subset\Omega(J)$, where Δ_J denotes the faces of Δ_n corresponding to $J\in\langle S\rangle$. We write $\Omega(S)=\Omega_S$ for each $S\in\langle D\rangle$. Note that S may or may not be a subset of Ω_S . For $(X,D;\Omega)$ a subset K of X is called Ω -convex if for each $S\in\langle D\rangle$, $S\subset K$ implies $\Omega_S\subset K$. If D=X, then $(X,D;\Omega)$ announced as (X,Ω) . For any $K\subset X$, the Ω -convex hull of K is denoted and defined by

$$co_{\Omega}K := \bigcup \{\Omega_S : S \in \langle K \rangle \}.$$

A multifunction $\Phi: K \to X$ is a KKM map if $\Omega_S \subset \Phi(S)$ for each $S \in \langle K \rangle$, where K is a Ω -convex subset of X, see for example [25]. A multifunction $\Phi: K \to X$ is called generalized KKM map if for each $S \in \langle K \rangle$, there exists a function $\varrho: S \to X$ such that $\Omega_{\varrho(T)} \subset \Phi(T)$ for each $T \in \langle S \rangle$.

H. Kim and S. Park in [14] (Theorem 3), obtained an extension of KKM theorem of Ky Fan, see [12] (Lemma 1) and [13] (Theorem 4).

Theorem 1. Let $(X, D; \Omega)$ be a \mathcal{G} -convex space, S a nonempty set and $\Phi: S \to X$ a multifunction with closed (resp. open) values. If Φ is a generalized KKM map, then the class of its values has the finite intersection property (More precisely, for each $T \in \langle S \rangle$, there exists and $T' \in \langle D \rangle$ such that $\Omega_{T'} \cap \bigcap_{t \in T} \Phi(t) \neq \emptyset$.

In this paper we use the following Corollary of Theorem 1.

Theorem 2. Let (X,Ω) be a \mathcal{G} -convex space, S a nonempty set and $\Phi: S \to X$ a generalized KKM map with closed values. If there exists a nonempty compact subset L of X such that $\bigcap_{t \in T} \Phi(t) \subset L$ for some $T \in \langle S \rangle$ then $\bigcap_{s \in S} \Phi(s) \neq \emptyset$.

2. Main Results

In this section, by using Theorem 2, we prove a new best approximation theorem in \mathcal{G} -convex spaces.

Theorem 3. Let $\Phi: S \to X$ be a continuous multi map with compact values such that

$$\Phi(x) + r \text{ is } \Omega - convex \text{ for all } x \in S, r \ge 0$$
(1)

and $g: S \to S$ is a continuous onto map, where (X, Ω) a G-convex space with metric d and S a nonempty Ω -convex subset of X. If there exists a nonempty compact subset K of X such that

$$\bigcap_{y \in M} \{x \in S : d(g(x), \Phi(x)) \le d(g(y), \Phi(x))\} \subset K \text{ for some } M \in \langle S \rangle,$$
 (2)

then there exists $v_0 \in S$ such that

$$d(g(v_0), \Phi(v_0)) = \inf_{x \in S} d(x, \Phi(v_0)).$$

Mathematics **2020**, *8*, 347 3 of 7

If S *is metrically convex and* $g(v_0) \notin \Phi(v_0)$ *, then* $v_0 \in Bd(S)$ *.*

Proof. Define the multimaps $H, T: S \rightarrow S$ by

$$H(x) = \{ y \in S : d(g(y), \Phi(y)) \le d(g(x), \Phi(y)) \},$$

$$T(x) = (g \circ H)(x).$$

We have that T(x) is nonempty for each $x \in S$, because $g(x) \in T(x)$ for each $x \in S$. We prove that T is generalized KKM map. Suppose that there exists $\{x_1, \ldots, x_n\} \in \langle K \rangle$ such that $g^{-1}(\Omega_{\{g(x_1), \ldots, g(x_n)\}})$ is not a subset of $H(\{x_1, \ldots, x_n\})$. Then there exists $z \in g^{-1}(\Omega_{\{g(x_1), \ldots, g(x_n)\}})$ such that $z \notin H(x_k)$ for every $k \in \{1, \ldots, n\}$. So, we have

$$d(g(z), \Phi(z)) > d(g(x_k), \Phi(z))$$
 for every $k \in \{1, \dots, n\}$.

Let

$$r = \max_{1 \le k \le n} \{d(g(x_k), \Phi(z))\},$$

we have

$$g(x_k) \in \Phi(z) + r \text{ for all } k \in \{1, ..., n\}.$$

This implies that

$$\Omega_{\{g(x_1),\dots,g(x_n)\}} \subset co_{\Omega}(\Phi(z)+r).$$

Since

$$z \in g^{-1}(\Omega_{\{g(x_1),...,g(x_n)\}}),$$

we have

$$g(z) \in \Omega_{\{g(x_1),\dots,g(x_n)\}}$$

so,

$$g(z) \in co_{\Omega}(\Phi(z) + r).$$

From condition (1) we obtain

$$g(z) \in \Phi(z) + r$$
.

So, exists $u \in \Phi(z)$ such that

$$d(g(z), u) \leq r$$
,

that is why

$$d(g(z),\Phi(z)) \le d(g(z),u) \le r < d(g(z),\Phi(z)).$$

This is a contradiction. Therefore, for each $D \in \langle S \rangle$ we have

$$g^{-1}(\Omega_{g(D)}) \subseteq H(D).$$

Since *g* is onto map we have that

$$\Omega_{g(D)} \subseteq T(D)$$
 for each $D \in \langle S \rangle$.

Mathematics **2020**, *8*, 347 4 of 7

This implies that T is a generalized KKM map. Since maps Φ and g are continuous we get that T(x) is closed for each $x \in S$. Hence, by condition (2) and Theorem 2, there exists $v_0 \in S$ such that

$$d(g(v_0), \Phi(v_0)) = \inf_{x \in S} d(x, \Phi(v_0)).$$

If *S* is metrically convex and $g(v_0) \notin \Phi(v_0)$ then $v_0 \in Bd(S)$. Namely, if $v_0 \in Int(S)$, then there exists $\gamma > 0$ such that

$$B_S(v_0,\gamma) = \{x \in S : d(v_0,x) < \gamma\} \subset S$$

and

$$\gamma < d(g(v_0), \Phi(v_0)) \le d(x, \Phi(v_0))$$
 for all $x \in B_S(g(v_0), \gamma)$.

Let $u_0 \in \Phi(v_0)$ such that $d(g(v_0), \Phi(v_0)) = d(g(v_0), u_0)$. Then, if S is metrically convex, we obtain

$$B_S(g(v_0), \gamma) \cap B_S(u_0, d(g(v_0), \Phi(v_0)) - \gamma) \neq \emptyset.$$

Since

$$B_S(u_0, d(g(v_0), \Phi(v_0) - \gamma) \subset \Phi(v_0) + d(\Phi(v_0), g(v_0)) - \gamma$$

we have

$$B_S(g(v_0), \gamma) \cap (\Phi(v_0) + d(\Phi(v_0), g(v_0)) - \gamma) \neq \emptyset.$$

Let $z \in S$ such that

$$z \in B_S(g(v_0), \gamma) \cap (\Phi(v_0) + d(g(v_0), \Phi(v_0) - \gamma),$$

we obtain

$$d(g(v_0), \Phi(v_0)) \le d(z, \Phi(v_0)) \le d(g(v_0), \Phi(v_0)) - \gamma < d(g(v_0), \Phi(v_0)),$$

a contradiction. Therefore, $v_0 \in Bd(S)$. \square

Next results follows from Theorem 3.

Corollary 1. Let $\Phi: S \to X$ be a continuous multi map with compact values such that condition (1) is satisfied and $g: S \to S$ is a continuous onto map, where (X, Ω) a \mathcal{G} -convex space with metric d and S a nonempty Ω -convex set contained in compact subset of X. Then there exists $v_0 \in K$ such that

$$d(g(v_0), \Phi(v_0)) = \inf_{x \in S} d(x, \Phi(v_0)).$$

If K is metrically convex and $g(v_0) \notin \Phi(v_0)$, then $v_0 \in Bd(S)$.

Corollary 2. Let the metric space (X,Ω) be a \mathcal{G} -convex space with metric d, S a nonempty Ω -convex set contained in compact subset of X, $\Phi:S\to X$ is a continuous multimap with compact values such that condition (1) is satisfied. Then there exists $v_0\in K$ such that

$$d(v_0, \Phi(v_0)) = \inf_{x \in S} d(x, \Phi(v_0)).$$

If K *is metrically convex and* $v_0 \notin \Phi(v_0)$ *then* $v_0 \in Bd(S)$.

3. Some Applications

As some applications of our results, we give the versions of Fan' best approximation theorem in hyperconvex and normed spaces.

Mathematics 2020, 8, 347 5 of 7

Recall that a metric space (X, d) is called a hyperconvex metric space if for any class of elements x_i of X and any class $p_i \in \mathbb{R}^+ \cup \{0\}$ with $d(x_i, x_i) \leq p_i + p_j$, we have

$$\bigcap_{i}\mathcal{B}(x_{i},p_{i})\neq\emptyset.$$

Let \mathcal{U} be a nonempty bounded subset of a hyperconvex metric space X, denote

$$co\mathcal{U} = \bigcap \{\mathcal{V} : \mathcal{V} \text{ is closed ball in } X \text{ containing } \mathcal{U} \}.$$

Denote $\mathscr{U}(X) = \{\mathcal{U} \subset X : \mathcal{U} = co\mathcal{U}\}\$, the elements of this set are known as admissible subset of X. Moreover, any hyperconvex metric space (X, d) is an \mathcal{G} -convex space (X, Ω) , with $\Omega_{\mathcal{U}} = co\mathcal{U}$ for each $\mathcal{U} \in \langle X \rangle$. The r-parallel set of an admissible subset of a hyperconvex metric space is also an admissible set, see R. Espínola and M. A. Khamsi [11] (Lemma 4. 10). In this case the condition (1) is satisfied.

Following Corollary 1, we obtained best approximation result for hyperconvex metric spaces due to A. Amini-Harandi and A. P. Farajzadeh [3] (Theorem 2.1).

Corollary 3. Let (X,d) be hyperconvex metric space and S be a compact admissible subset of X. Suppose that $\Phi: S \to \mathcal{U}(X)$ continuous multimmap with compact values and $g: S \to S$ is a continuous onto map. Then there exists $v_0 \in K$ such that

$$d(g(v_0), \Phi(v_0)) = \inf_{x \in S} d(g(x), \Phi(v_0)).$$

Moreover, if $g(v_0) \notin \Phi(v_0)$ *then* $v_0 \in Bd(S)$.

In view of Corollary 2, the result of G. X. Z. Yuan, [25] (Theorem 2. 11. 16) and for single-valued maps, the result of M. A Khamsi, [16] (Lemma) are obtain as follows:

Corollary 4. Let $\Phi: K \to X$ be a continuous multimap on a nonempty admissible compact set K to hyperconvex metric space X. Then there exists an element v_0 in K such that

$$d(v_0,\Phi(v_0))=\inf_{x\in K}d(x,\Phi(v_0)).$$

Corollary 5. Let $\phi: K \to X$ be a continuous map on a nonempty admissible compact set K to hyperconvex metric space X. Then there exists an element v_0 in K such that

$$d(v_0, \phi(v_0)) = \inf_{x \in K} d(x, \phi(v_0)).$$

If *X* is a normed linear space, then condition (1) in Theorem 3 is satisfied. So, from Theorem 3 we obtain the next result for normed linear spaces.

Theorem 4. Let X be a normed linear space, S a nonempty convex set contained in compact subset of X, $\Phi: S \to X$ is a continuous multimap with convex compact values and $g: S \to S$ is a continuous onto map. Then there exists $v_0 \in S$ such that

$$||g(v_0) - \Phi(v_0)|| = \inf_{x \in S} d(x, \Phi(v_0)).$$

J. B. Prolla [21] and A. Carbone [7] obtained a form of Theorem 4 using almost affine and almost quasi-convex maps in normed vector spaces.

Mathematics 2020, 8, 347 6 of 7

Definition 1. Let S a nonempty convex subset of a normed space X. A map $g: S \to X$ is

(i) almost affine if for all $x, y \in S$ and $u \in S$

$$||g(\lambda x + (1 - \lambda)y) - u|| \le \lambda ||g(x) - u|| + (1 - \lambda)||g(y) - u||,$$

for each λ *with* $0 < \lambda < 1$.

(ii) almost quasi-convex if for all $u \in S$ and r > 0, the set

$$\{x \in K : ||g(x) - u|| < r\}$$
 is convex.

Note that the mapping to be an almost quasi-convex is unnecessary in Theorem 4.

Corollary 6. Let X be a normed linear space, S a nonempty convex compact subset of X, $\phi: S \to X$ is a continuous map and $g: S \to S$ is a continuous, almost affine, onto map. Then there exists $v_0 \in S$ such that

$$||g(v_0) - \phi(v_0)|| = \inf_{x \in S} d(x, \phi(v_0)).$$

Corollary 7. Let X be a normed linear space, S a nonempty convex compact subset of X, $\phi: S \to X$ is a continuous map and $g: S \to S$ is a continuous, almost quasi-convex, onto map. Then there exists $v_0 \in S$ such that

$$||g(v_0) - \phi(v_0)|| = \inf_{x \in S} d(x, \phi(v_0)).$$

Example 1. Let $X = \mathbb{R}$, S = [0,1] and define maps $\phi : S \to S$ and $g : S \to S$ by

$$\phi(x) = x$$
, $g(x) = 4x - 4x^2$.

Then map g is not almost quasi-convex and results of J. B. Prolla [21] and A. Carbone [7] are not applicable. Note that the maps ϕ and g satisfy all hypotheses of Theorem 4 and $v_0 \in \{0, \frac{3}{4}\}$.

Author Contributions: Conceptualization, Z.D.M.; Investigation, Z.D.M., A.H., M.d.l.S. and S.R.; Methodology, S.R.; Software, Z.D.M.; Supervision, M.d.l.S. and S.R. All authors contributed equally in the preparation of this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Acknowledgments: The third author would like to thanks Basque Government for its support of this work through Grant IT1207-19.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Park, S.; Kim, H. Admissible classes of multifunction on generalized convex spaces. *Proc. Coll. Natur. Sci. Seoul National Univ.* **1993**, *18*, 1–21.
- 2. Kim, W.K. Equilibrium existence theorems in Hadamard manifolds. *Nonlinear Funct. Anal. Appl.* **2019**, 24, 327–337.
- 3. Amini-Harandi, A.; Farajzadeh, A.P. A best approximation theorem in hyperconvex spaces. *Nonlinear Anal.* **2008**, [CrossRef].
- 4. Mitrović, Z.D.; Arađelović, I.D. The condensing KKM maps and best approximations in hyperconvex spaces. *Analele Universitati Oradea Fasc. Matematica* **2019**, 2, 25–31.
- 5. Balaj, M. Intersection results and fixed point theorems in H-spaces. Rendic. Mat. Serie VII 2001, 21, 295–310.

Mathematics **2020**, *8*, 347 7 of 7

6. Balaj, M.; Lin, L.J. Alternative theorems and minimax inequalities in *G*-convex spaces. *Nonlinear Anal.* **2007**, *6*, 1474–1481. [CrossRef]

- 7. Carbone, A. An application of KKM-map principle. Intern. J. Math. Math. Sci. 1992, 15, 659–662. [CrossRef]
- 8. Delbosco, D. Some remarks on best approximation and fixed points. *Indian J. Pure Appl. Math.* **1999**, *30*, 745–748.
- 9. Ding, X.P. Generalized G-KKM Theorems in Generalized Convex Spaces and Their Applications. *J. Math. Anal. Appl.* **2002**, 266, 21–37. [CrossRef]
- 10. Ding, X.P.; Xia, F.Q. Equilibria of nonparacompact generalized games with image-majorized correspondences in G-convex spaces. *Nonlinear Anal.* **2004**, *56*, 831–849. [CrossRef]
- 11. Espínola R.; Khamsi, M.A. *Introduction to Hyperconvex Spaces*; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2001.
- 12. Fan, K. A generalization of Tychonoff's fixed point Theorem. Math. Ann. 1961, 142, 305–310. [CrossRef]
- 13. Fan, K. Some properties of convex sets related to fixed points theorems. Math. Ann. 1984, 266, 519–537. [CrossRef]
- 14. Kim, H.; Park, S. Generalized KKM maps, maximal elements and almost fixed points. *J. Korean Math. Soc.* **2007**, 44, 393–406. [CrossRef]
- 15. Kirk, W.A.; Sims, B.; G. Yuan, X.-Z. The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications. *Nonlinear Anal.* **2000**, *39*, 611–627. [CrossRef]
- 16. Khamsi, M.A. KKM and Ky Fan Theorems in Hyperconvex Metric Spaces. *J. Math. Anal. Appl.* **1996**, 204, 298–306. [CrossRef]
- 17. Park, S. Continuous selection theorems in generalized convex spaces. *Numer. Funct. Anal. Optim.* **1999**, 25, 567–583. [CrossRef]
- 18. Park, S. Fixed point theorems in hyperconvex metric spaces. *Nonlinear Anal.* **1999**, 37, 467–472. [CrossRef]
- 19. Park S.; Kim, H. Coincidence Theorems for Admissible Multifunctions on Generalized Convex Spaces. *J. Math. Anal. Appl.* **1996**, 197, 173–187. [CrossRef]
- 20. Park, S.; Kim, H. Foundations of the KKM theory on generalized convex spaces. *J. Math. Anal. Appl.* **1997**, 209, 551–571. [CrossRef]
- 21. Prolla, J.B. Fixed point theorems for set-valued mappings and existence of best approximations. *Numer. Funct. Anal. Optimiz.* **1983**, *5*, 449–455. [CrossRef]
- 22. Singh, S.; Watson, B.; Srivastava, P. Fixed Point Theory and Best Approximation: The KKM-map Principle; Kluwer Academic Press: Dordrecht, The Netherlands, 1997.
- 23. Sehgal, V.M.; Singh, S.P. A theorem on best approximation. *Numer. Funct. Anal. Optimiz.* **1989**, *10*, 181–184. [CrossRef]
- 24. Singh, S.P.; Watson, B. Best approximation and fixed point theorems. In *Proc. NATO-ASI on Approximation Theory, Wawelets, and Applications*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 285–294.
- 25. Yuan, G.X.Z. KKM Theory and Applications in Nonlinear Analysis, Pure and Applied Mathematics; Marcel Dekke: New York, NY, USA, 1999.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).