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Abstract: In this paper we obtain a best approximations theorem for multi-valued mappings in G-convex
spaces. As applications, we derive results on the best approximations in hyperconvex and normed spaces.
The obtain results generalize many existing results in the literature.
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1. Introduction and Preliminaries

S. Park and H. Kim [1] introduced the notion of generalized convex space or G-convex space.
In G-convex space, many results were obtained in nonlinear analysis, see [2–25]. The aim of this paper
is to obtain the best approximation theorem in G-convex space. Our result generalize theorems of A.
Amini-Harandi and A. P. Farajzadeh [3] (Theorem 2.1), W. A. Kirk, B. Sims and G. X. Z. Yuan [15]
(Theorem 3.5), M. A. Khamsi [16], (Theorem 6), S. Park [18] (Theorem 5). Also we obtain that almost
quasi-convex and almost affine conditions is unnecessary in results of J. B. Prolla [21] and A. Carbone [7].

A multifunction Φ : X → Y is a map such that Φ(x) ⊆ Y for all x ∈ X. Let S ⊂ X, then
Φ(S) = ∪{Φ(s) : s ∈ S}. Let T ⊂ Y, denote

Φ−(T) = {s ∈ X : Φ(s) ∩ T 6= ∅} and Φ+(T) = {s ∈ X : Φ(s) ⊂ T}

as lower and upper inverses of T with respect to Φ respectively. A multifunction Φ : X → Y is upper
(lower) semi-continuous on X if for every open U ⊂ Y, the set Φ+(U) ( Φ−(U)) is open. A multifunction
Φ is continuous if it is upper and lower semi-continuous. A multifunction Φ with compact values is
continuous if Φ is a continuous multifunction in the Hausdorff distance.

Denote Int(S), Bd(S) and 〈S〉, the interior, boundary and the set of all nonempty finite subsets of
S respectively.

Let r ∈ R+ ∪ {0} and ∅ 6= S ⊂ X, we denote the r−parallel set of S by

S + r =
⋃
{B(s, r) : s ∈ S},
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where B(s, r) = {t ∈ X : d(s, t) ≤ r}.
For nonempty subsets S and T of X, we define

d(S, T) = inf{d(s, t) : s ∈ S, t ∈ T}.

We call a set K is metrically convex if for any x, y ∈ K and positive numbers pi and pj such that
d(x, y) ≤ pi + pj, there exists z ∈ K such that z ∈ B(x, pi) ∩ B(y, pj).

Denote ∆n, the standard n−simplex having vertices e1, e2, . . . , en+1, where ei is the ith unit vector in
Rn+1. A G-convex space (X, D; Ω) consists of a topological space X, a nonempty set D and a multifunction
Ω : 〈D〉 → X such that for each S ∈ 〈D〉 with the cardinality |S| = n + 1, there exists a continuous
function ϕS : ∆n → Ω(S), such that each J ∈ 〈S〉 implies ϕS(∆J) ⊂ Ω(J), where ∆J denotes the faces of
∆n corresponding to J ∈ 〈S〉. We write Ω(S) = ΩS for each S ∈ 〈D〉. Note that S may or may not be a
subset of ΩS. For (X, D; Ω) a subset K of X is called Ω−convex if for each S ∈ 〈D〉, S ⊂ K implies ΩS ⊂ K.
If D = X, then (X, D; Ω) announced as (X, Ω). For any K ⊂ X, the Ω−convex hull of K is denoted and
defined by

coΩK :=
⋃
{ΩS : S ∈ 〈K〉}.

A multifunction Φ : K → X is a KKM map if ΩS ⊂ Φ(S) for each S ∈ 〈K〉, where K is a Ω−convex
subset of X, see for example [25]. A multifunction Φ : K → X is called generalized KKM map if for each
S ∈ 〈K〉, there exists a function $ : S→ X such that Ω$(T) ⊂ Φ(T) for each T ∈ 〈S〉.

H. Kim and S. Park in [14] (Theorem 3), obtained an extension of KKM theorem of Ky Fan, see [12]
(Lemma 1) and [13] (Theorem 4).

Theorem 1. Let (X, D; Ω) be a G-convex space, S a nonempty set and Φ : S → X a multifunction with closed
(resp. open) values. If Φ is a generalized KKM map, then the class of its values has the finite intersection property
(More precisely, for each T ∈ 〈S〉, there exists and T′ ∈ 〈D〉 such that ΩT′ ∩

⋂
t∈T Φ(t) 6= ∅.

In this paper we use the following Corollary of Theorem 1.

Theorem 2. Let (X, Ω) be a G-convex space, S a nonempty set and Φ : S → X a generalized KKM map with
closed values. If there exists a nonempty compact subset L of X such that

⋂
t∈T Φ(t) ⊂ L for some T ∈ 〈S〉 then⋂

s∈S Φ(s) 6= ∅.

2. Main Results

In this section, by using Theorem 2, we prove a new best approximation theorem in G-convex spaces.

Theorem 3. Let Φ : S→ X be a continuous multi map with compact values such that

Φ(x) + r is Ω−convex for all x ∈ S, r ≥ 0 (1)

and g : S→ S is a continuous onto map, where (X, Ω) a G-convex space with metric d and S a nonempty Ω-convex
subset of X. If there exists a nonempty compact subset K of X such that⋂

y∈M
{x ∈ S : d(g(x), Φ(x)) ≤ d(g(y), Φ(x))} ⊂ K for some M ∈ 〈S〉, (2)

then there exists υ0 ∈ S such that

d(g(υ0), Φ(υ0)) = inf
x∈S

d(x, Φ(υ0)).
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If S is metrically convex and g(υ0) /∈ Φ(υ0), then υ0 ∈ Bd(S).

Proof. Define the multimaps H, T : S→ S by

H(x) = {y ∈ S : d(g(y), Φ(y)) ≤ d(g(x), Φ(y))} ,

T(x) = (g ◦ H)(x).

We have that T(x) is nonempty for each x ∈ S, because g(x) ∈ T(x) for each x ∈ S. We prove that T
is generalized KKM map. Suppose that there exists {x1, . . . , xn} ∈ 〈K〉 such that g−1(Ω{g(x1),...,g(xn)}) is
not a subset of H({x1, . . . , xn}). Then there exists z ∈ g−1(Ω{g(x1),...,g(xn)}) such that z /∈ H(xk) for every
k ∈ {1, . . . , n}. So, we have

d(g(z), Φ(z)) > d(g(xk), Φ(z)) for every k ∈ {1, . . . , n}.

Let
r = max

1≤k≤n
{d(g(xk), Φ(z))},

we have
g(xk) ∈ Φ(z) + r for all k ∈ {1, . . . , n}.

This implies that
Ω{g(x1),...,g(xn)} ⊂ coΩ(Φ(z) + r).

Since
z ∈ g−1(Ω{g(x1),...,g(xn)}),

we have
g(z) ∈ Ω{g(x1),...,g(xn)},

so,
g(z) ∈ coΩ(Φ(z) + r).

From condition (1) we obtain
g(z) ∈ Φ(z) + r.

So, exists u ∈ Φ(z) such that
d(g(z), u) ≤ r,

that is why
d(g(z), Φ(z)) ≤ d(g(z), u) ≤ r < d(g(z), Φ(z)).

This is a contradiction. Therefore, for each D ∈ 〈S〉 we have

g−1(Ωg(D)) ⊆ H(D).

Since g is onto map we have that

Ωg(D) ⊆ T(D) for each D ∈ 〈S〉.
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This implies that T is a generalized KKM map. Since maps Φ and g are continuous we get that T(x) is
closed for each x ∈ S. Hence, by condition (2) and Theorem 2, there exists υ0 ∈ S such that

d(g(υ0), Φ(υ0)) = inf
x∈S

d(x, Φ(υ0)).

If S is metrically convex and g(υ0) /∈ Φ(υ0) then υ0 ∈ Bd(S). Namely, if υ0 ∈ Int(S), then there exists
γ > 0 such that

BS(υ0, γ) = {x ∈ S : d(υ0, x) < γ} ⊂ S

and
γ < d(g(υ0), Φ(υ0)) ≤ d(x, Φ(υ0)) for all x ∈ BS(g(υ0), γ).

Let u0 ∈ Φ(υ0) such that d(g(υ0), Φ(υ0)) = d(g(υ0), u0). Then, if S is metrically convex, we obtain

BS(g(υ0), γ) ∩ BS(u0, d(g(υ0), Φ(υ0))− γ) 6= ∅.

Since
BS(u0, d(g(υ0), Φ(υ0)− γ) ⊂ Φ(υ0) + d(Φ(υ0), g(υ0))− γ,

we have
BS(g(υ0), γ) ∩ (Φ(υ0) + d(Φ(υ0), g(υ0))− γ) 6= ∅.

Let z ∈ S such that

z ∈ BS(g(υ0), γ) ∩ (Φ(υ0) + d(g(υ0), Φ(υ0)− γ),

we obtain
d(g(υ0), Φ(υ0)) ≤ d(z, Φ(υ0)) ≤ d(g(υ0), Φ(υ0))− γ < d(g(υ0), Φ(υ0)),

a contradiction. Therefore, υ0 ∈ Bd(S).

Next results follows from Theorem 3.

Corollary 1. Let Φ : S → X be a continuous multi map with compact values such that condition (1) is satisfied
and g : S→ S is a continuous onto map, where (X, Ω) a G-convex space with metric d and S a nonempty Ω-convex
set contained in compact subset of X. Then there exists υ0 ∈ K such that

d(g(υ0), Φ(υ0)) = inf
x∈S

d(x, Φ(υ0)).

If K is metrically convex and g(υ0) /∈ Φ(υ0), then υ0 ∈ Bd(S).

Corollary 2. Let the metric space (X, Ω) be a G-convex space with metric d, S a nonempty Ω−convex set contained
in compact subset of X, Φ : S→ X is a continuous multimap with compact values such that condition (1) is satisfied.
Then there exists υ0 ∈ K such that

d(υ0, Φ(υ0)) = inf
x∈S

d(x, Φ(υ0)).

If K is metrically convex and υ0 /∈ Φ(υ0) then υ0 ∈ Bd(S).

3. Some Applications

As some applications of our results, we give the versions of Fan’ best approximation theorem in
hyperconvex and normed spaces.
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Recall that a metric space (X, d) is called a hyperconvex metric space if for any class of elements xi of
X and any class pi ∈ R+ ∪ {0} with d(xi, xj) ≤ pi + pj, we have

⋂
i
B(xi, pi) 6= ∅.

Let U be a nonempty bounded subset of a hyperconvex metric space X, denote

coU =
⋂
{V : V is closed ball in X containing U}.

Denote U (X) = {U ⊂ X : U = coU}, the elements of this set are known as admissible subset of X.
Moreover, any hyperconvex metric space (X, d) is an G-convex space (X, Ω), with ΩU = coU for each
U ∈ 〈X〉. The r-parallel set of an admissible subset of a hyperconvex metric space is also an admissible set,
see R. Espínola and M. A. Khamsi [11] (Lemma 4. 10). In this case the condition (1) is satisfied.

Following Corollary 1, we obtained best approximation result for hyperconvex metric spaces due to
A. Amini-Harandi and A. P. Farajzadeh [3] (Theorem 2.1).

Corollary 3. Let (X, d) be hyperconvex metric space and S be a compact admissible subset of X. Suppose that
Φ : S→ U (X) continuous multimmap with compact values and g : S→ S is a continuous onto map. Then there
exists υ0 ∈ K such that

d(g(υ0), Φ(υ0)) = inf
x∈S

d(g(x), Φ(υ0)).

Moreover, if g(υ0) /∈ Φ(υ0) then υ0 ∈ Bd(S).

In view of Corollary 2, the result of G. X. Z. Yuan, [25] (Theorem 2. 11. 16) and for single-valued maps,
the result of M. A Khamsi, [16] (Lemma) are obtain as follows:

Corollary 4. Let Φ : K → X be a continuous multimap on a nonempty admissible compact set K to hyperconvex
metric space X. Then there exists an element υ0 in K such that

d(υ0, Φ(υ0)) = inf
x∈K

d(x, Φ(υ0)).

Corollary 5. Let φ : K → X be a continuous map on a nonempty admissible compact set K to hyperconvex metric
space X. Then there exists an element υ0 in K such that

d(υ0, φ(υ0)) = inf
x∈K

d(x, φ(υ0)).

If X is a normed linear space, then condition (1) in Theorem 3 is satisfied. So, from Theorem 3 we
obtain the next result for normed linear spaces.

Theorem 4. Let X be a normed linear space, S a nonempty convex set contained in compact subset of X, Φ : S→ X
is a continuous multimap with convex compact values and g : S→ S is a continuous onto map. Then there exists
υ0 ∈ S such that

||g(υ0)−Φ(υ0)|| = inf
x∈S

d(x, Φ(υ0)).

J. B. Prolla [21] and A. Carbone [7] obtained a form of Theorem 4 using almost affine and almost
quasi-convex maps in normed vector spaces.
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Definition 1. Let S a nonempty convex subset of a normed space X. A map g : S→ X is

(i) almost affine if for all x, y ∈ S and u ∈ S

||g(λx + (1− λ)y)− u|| ≤ λ||g(x)− u||+ (1− λ)||g(y)− u||,

for each λ with 0 < λ < 1.
(ii) almost quasi-convex if for all u ∈ S and r > 0, the set

{x ∈ K : ||g(x)− u|| < r} is convex.

Note that the mapping to be an almost quasi-convex is unnecessary in Theorem 4.

Corollary 6. Let X be a normed linear space, S a nonempty convex compact subset of X, φ : S→ X is a continuous
map and g : S→ S is a continuous, almost affine, onto map. Then there exists υ0 ∈ S such that

||g(υ0)− φ(υ0)|| = inf
x∈S

d(x, φ(υ0)).

Corollary 7. Let X be a normed linear space, S a nonempty convex compact subset of X, φ : S→ X is a continuous
map and g : S→ S is a continuous, almost quasi-convex, onto map. Then there exists υ0 ∈ S such that

||g(υ0)− φ(υ0)|| = inf
x∈S

d(x, φ(υ0)).

Example 1. Let X = R, S = [0, 1] and define maps φ : S→ S and g : S→ S by

φ(x) = x, g(x) = 4x− 4x2.

Then map g is not almost quasi-convex and results of J. B. Prolla [21] and A. Carbone [7] are not applicable. Note
that the maps φ and g satisfy all hypotheses of Theorem 4 and υ0 ∈ {0, 3

4}.
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