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1. Introduction

Let (S, ξ, ∗) be Menger k-normed space and let I be an open interval. Assume that for any function
Γ : I → S satisfying the differential inequality

ξ
∑n

j=0 aj(ν1)υ
(j)
1 (ν1)+h(ν1),··· ,∑n

j=0 ajaj(νk)υ
(j)
k (νk)+h(νk)

τ ≥ 1− ε

for all ν ∈ I and for some ε ≥ 0, there exists a solution γ0 : I → S of the differential equation

n

∑
j=0

aj(ν)υ
(j)
1 (ν) + h(ν) = 0

such that ξ
γ(ν1)−γ0(ν1),··· ,γ(νk)−γ0(νk)
τ ≥ 1− K(ε) for any ν ∈ I, where K(ε) is an expression of ε only.

Then, we say that the above differential equation has the Hyers–Ulam stability. If the above statement
is also true when we replace 1− ε by ϕ

ν1,··· ,νk
τ , where ϕ : Jk → O+ is a distribution function not

depending on γ and γ0 explicitly, then we say that the corresponding differential equation has
the Hyers–Ulam–Rassias stability (or the generalized Hyers–Ulam stability). We may apply these
terminologies for other differential equations. For more detailed definitions of the Hyers–Ulam stability
and the Hyers–Ulam–Rassias stability [1,2].

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of linear
differential equation [3,4]. Next, Takahasi, Miura and Miyajima, proved in [5–8] that the Hyers-Ulam
stability holds for the Banach space valued differential equation υ′(ν) = λυ(ν). Recently, Miura,
Miyajima and Takahasi also proved the Hyers-Ulam stability of linear differential equations of first
order, υ′(ν) + Ψ(ν)υ(ν) = 0, where Ψ(x) is a continuous function. In the following, Jung proved
the Hyers–Ulam stability of linear differential equations of other type (see [9–13]). In this paper,
for a continuous function Γ(ν, υ), we will adopt the idea of Cădariu and Radu [14,15] and prove
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the Hyers–Ulam–Rassias stability as well as the Hyers–Ulam stability of the differential equation of
the form

υ′(ν) = Γ(ν, υ(ν)) (1)

in the Menger k-normed spaces.

2. Preliminaries

Let Ξ+ be the set of distribution mappings, i.e., the set of all mappings ρ : R∪ {−∞, ∞} → [0, 1],
writing ρτ for ρ(τ), such that ρ is left continuous and increasing on R. O+ ⊆ Ξ+ includes all
mappings ρ ∈ Ξ+ for which `−ρ+∞ is one and `−ρτ is the left limit of the mapping ρ at the point τ,
i.e., `−ρτ = limσ→τ− ρσ.

In Ξ+, we define “ ≤ ” as follows:

ρ ≤ $ ⇐⇒ ρτ ≤ $τ

for each τ in R (partially ordered). Note that the function ϑ0 defined by

ϑu
s =

{
0, if s ≤ u,

1, if s > u,

is a element of Ξ+ and ϑ0 is the maximal element in this space (for more details, see [16–18]).

Definition 1. ([16,19]) A continuoustriangular norm (shortly, a ct-norm) is a continuous binary operation ∗
from I = [0, 1]2 to I such that

(a) ς ∗ τ = τ ∗ ς and ς ∗ (τ ∗ υ) = (ς ∗ τ) ∗ υ for all ς, τ, υ ∈ [0, 1];
(b) ς ∗ 1 = ς for all ς ∈ I;
(c) ς ∗ τ ≤ υ ∗ ι whenever ς ≤ υ and τ ≤ ι for all ς, τ, υ, ι ∈ I.

Some examples of the t-norms are as follows:

(1) ς ∗P τ = ςτ (: the product t-norm);
(2) ς ∗M τ = min{ς, τ} (: the minimum t-norm);
(3) ς ∗L τ = max{ς + τ − 1, 0} (: the Lukasiewicz t-norm).

Definition 2. ([20,21]) Suppose that ∗ is a ct-norm, S is a linear space and ξ is a mapping from Sk to O+.
In this case, the ordered tuple (S, ξ, ∗) is called a Menger k-normed linear space (in short, M-k-NLS) if the
following conditions are satisfied:

(ξ1) ξ
s1,...,sk
τ = ϑ0

τ for τ ≥ 0 if and only if s1, . . . , sn are linearly dependent;
(ξ2) ξ

s1,...,sk
τ is invariant under any permutation of s1, . . . , sk ∈ S;

(ξ3) ξ
αs1,...,sk
τ = ξ

s1,...,sk
τ
|α|

if α 6= 0;

(ξ4) ξ
s0+s1,s2,...,sk
τ+ς ≥ ξ

s0,s2,...,sk
ς ∗ ξ

s1,s2,...,sk
τ .

For more details see [22–28].

Example 1. Let (S, ‖., . . . , .‖) be a linear k-normed space. Then

ξ
s1,...,sk
τ =

{
0, if τ ≤ 0,

exp(−‖s1, . . . , sk‖/τ), if τ > 0,

define a Menger norm and the ordered tuple (S, ξ, ∗M) is a M-k-NLS.
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Note that, a [0, ∞]-valued metric is called a generalized metric.

Theorem 1 ([29]). Consider a complete generalized metric space (Σ, δ) and a strictly contractive function
Λ : Σ→ Σ with Lipschitz constant β < 1. So, for every given element σ ∈ Σ, either

δ(Λnσ, Λn+1σ) = ∞

for each n ∈ N or there is n0 ∈ N such that

(1) δ(Λnσ, Λn+1σ) < ∞, ∀n ≥ n0;
(2) the fixed point s∗ of Λ is the convergent point of sequence {Λnσ};
(3) in the set V = {s ∈ T | δ(Λn0 σ, s) < ∞}, s∗ is the unique fixed point of Λ;
(4) (1− β)δ(s, s∗) ≤ δ(s, Λs) for every s ∈ V.

3. Hyers–Ulam–Rassias Stability in M-k-NLS

Recently, Cădariu and Radu [14] applied the fixed point method to the investigation of the Jensen’s
functional equation. Using such an idea, they could present a proof for the Hyers–Ulam stability
of that equation (see [11,15,30]). In this section, by using the idea of Cădariu and Radu, we will
prove the Hyers–Ulam–Rassias stability of the differential Equation (1). Hereinafter we suppose that
∗ = ∗M =

∧
.

Theorem 2. Let p < q and ρ = q − p. Let J = [p, q] and choose m ∈ J. Consider the constants β with
0 < ρβ < 1. Let the continuous map Γ : J ×R→ R satisfies in the Lipschitz condition

ξ
Γ(ν1,υ1)−Γ(ν1,ϑ1),...,Γ(νk ,υk)−Γ(νk ,ϑk)
ρβt ≥ ξ

υ1−ϑ1,...,υk−ϑk
t (2)

for any νj ∈ J, υj, ϑj ∈ R, (j = 1, 2, ..., k) and t > 0. If a continuous differentiable function υ : J → R satisfies

ξ
υ(ν1)−υ(m)−

∫ ν1
m Γ(τ,υ(τ))dτ,...,υ(νk)−υ(m)−

∫ νk
m Γ(τ,υ(τ))dτ

t ≥ ϕ
ν1,..,νk
t (3)

for all νj ∈ J, (j = 1, 2, ..., k) and t > 0, where ϕ : Jk → O+ is a distribution function with

inf
ϑj∈[m,νj ]

ϕ
ϑ1,...,ϑk
t ≥ ϕ

ν1,...,νk
t (4)

for all νj ∈ J, (j = 1, 2, ..., k) and t > 0. So, there is a unique continuous map υ0 : J → R such that

υ0(ν) = υ(m) +
∫ ν

m
Γ(τ, υ0(τ))dτ (5)

(consequently, υ0 is a solution to (1)) and

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)
t ≥ ϕ

ν1,...,νk
(1−ρβ)t (6)

for all νj ∈ J, (j = 1, 2, ..., k) and t > 0.

Proof. We show the set of all continuous map σ : J → R by

Σ = {σ : J → R} (7)

and define the function δ on Σ,

δ(σ, $) = inf{M > 0 : ξ
σ(ν1)−$(ν1),...,σ(νk)−$(νk)
Mt ≥ ϕ

ν1,...,νk
t , ∀νj ∈ J, t > 0} (8)
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In [31], Miheţ and Radu proved that (Σ, δ) is a complete generalized metric space (see also [32]).
Now, we consider the linear map Λ : Σ→ Σ is defined by

(Λυ)(νj) = υ(m) +
∫ νj

m
Γ(τ, υ(τ))dτ (νj ∈ J) (9)

for all υ ∈ Σ.
We show that the strict contractivity of Λ. Assume that σ, $ ∈ Σ and ε = εσ,$ > 0 with δ(σ, $) ≤ ε,

so, we have

ξ
σ(ν1)−$(ν1),...,σ(νk)−$(νk)
εt ≥ ϕ

ν1,...,νk
t (10)

for any νj ∈ J, (j = 1, 2, ..., k) and t > 0.

Let, m = ξ1 < ξ2 < ... < ξk = νj, τj ∈ [ξ j, ξ j+1] and 4sj = ξ j − ξ j−1 =
νj−m

k , j = 1, 2, ..., k.
By using, (2), (3), (4), (8) and (10), we have

ξ
(Λσ)(ν1)−(Λ$)(ν1),...,(Λσ)(νk)−(Λ$)(νk)
ερβt

= ξ
∫ ν1

m {Γ(τ,σ(τ))−Γ(τ,$(τ))}dτ,...,
∫ νk

m {Γ(τ,σ(τ))−Γ(τ,$(τ))}dτ

ερβt

= ξ

lim
‖∆sj‖→0

∑k
j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj ,..., lim

‖∆sj‖→0
∑k

j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj

ερβt

= lim
‖∆sj‖→0

ξ
∑k

j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj ,...,∑k
j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj

ερβt

≥ lim
‖∆sj‖→0

∧
ξ

Γ(τj ,σ(τj))−Γ(τj ,$(τj)),...,Γ(τj ,σ(τj))−Γ(τj ,$(τj))(
ερβt
|∆sj |k

)
≥

∧
ξ

Γ(τj ,σ(τj))−Γ(τj ,$(τj)),...,Γ(τj ,σ(τj))−Γ(τj ,$(τj))
ερβt

ρ

≥ inf
τj∈[m,νj ]

ξ
σ(τj)−$(τj),...,σ(τj)−$(τj)
εt

≥ inf
τj∈[m,νj ]

ϕ
τ1,...,τk
t

≥ ϕ
ν1,...,νk
t

for all νj ∈ J, (j = 1, 2, ..., k) and t > 0. So, we have δ(Λσ, Λ$) ≤ ερβ. Hence, we can conclude
that δ(Λσ, Λ$) ≤ ρβδ(σ, $) for any σ, $ ∈ Σ, this shows, Λ is a strictly contractive mapping on Σ
with Lipschitz constant ρβ ∈ (0, 1). By using (3) and (9), we conclude that δ(Λυ, υ) ≤ 1 and so,
δ(Λn+1υ, Λnυ) ≤ (ρβ)n < ∞.

Theorem 1, implies that, so there is a unique continuous map υ0 : J → R such that

(1) A fixed point for Λ, is υ0, i.e.,
Λ(υ0) = (υ0). (11)

(2) δ(Λnυ, υ0)→ 0 as n→ ∞.
(3) δ(υ, υ0) ≤ 1

1−ρβ δ(υ, Λυ), which implies that

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)
t ≥ ϕ

ν1,...,νk
(1−ρβ)t

for all νj ∈ J, (j = 1, 2, ..., k) and t > 0.

In the last theorem, we have investigated the Hyers–Ulam–Rassias stability of the differential
Equation (1) in M-k-NLS defined on a bounded and closed interval. We will now prove the theorem for
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the case of unbounded intervals. More precisely, Theorem 2 is also true if J is replaced by an unbounded
interval such as (−∞, q], R, or [p, ∞) as we see in the following theorem.

Theorem 3. Let J be (−∞, q] or R or [p, ∞) in which p, q ∈ R. Put m = p for I = [p, ∞) or m = q for
J = (−∞, q], or if J = R, put m ∈ R being fixed. Consider the constant numbers ρ and β such that 0 < ρβ < 1
and continuous map Γ : J ×R → R holds (2) for all νj ∈ J and all υj, ϑj ∈ R. Let υ : J → R be continuous
differentiable and satisfies (3) for all νj ∈ J, in which ϕ : Jk ×∞→ (0, 1] be a distribution function satisfying
the condition (4) for any νi ∈ J, (j = 1, 2, ..., k), so there is a unique continuous map υ0 : J → R which satisfies
(5) and (6) for all νj ∈ J.

Proof. We prove for J = R only. Define Jn = [m− n, m + n], for every n ∈ N. (Put Jn = [q− n, q]
for J = (−∞, q] and Jn = [p, p + n] for J = [p, ∞).) Theorem 2 implies that there is a unique continuous
map υn : Jn → R such that

υn(ν) = υ(m) +
∫ ν

m
Γ(τ, υn(τ))dτ (12)

and

ξ
υn(ν1)−υ0(ν1),...,υn(νk)−υ0(νk)
t ≥ ϕ

ν1,...,νk
(1−ρβ)t (13)

for all νj ∈ Jn. The uniqueness of υn implies that if ν ∈ Jn, then

υn(ν) = υn+1(ν) = υn+2(ν) = ...., ∀ν ∈ R. (14)

Define

n(ν) =
∧
{n ∈ N | ν ∈ Jn}.

and υ0 : R→ R by

υ0(ν) = υn(ν)(ν). (15)

The continuity of υn implies that υ0 is continuous. We will now show that υ0 satisfies (5) and (6) for all
ν ∈ R. Let ν ∈ R, we select n(ν) ∈ N. So, we have ν ∈ Jn(ν). Using (12), (14) and (15) we have

υ0(ν) = υn(ν)(ν) = υ(m) +
∫ ν

m Γ(τ, υn(ν)(τ))dτ = υ(m) +
∫ ν

m Γ(τ, υ0(τ))dτ

and

υn(ν)(τ) = υn(τ)(τ) = υ0(τ).

Since ν ∈ Jn(ν) for every ν ∈ R, by (13) and (15) that

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)
t = ξ

υ(ν1)−υn(ν)(ν1),...,υ(νk)−υn(ν)(νk)

t

≥ ϕ
ν1,...,νk
(1−ρβ)t

for every νj ∈ R.
To prove uniqueness, consider another continuous map ϑ0 : R → R which holds in (5) and (6).

Let ν ∈ R, since υ0 |Jn(ν)
(= υn(ν)) and ϑ0 |Jn(ν)

both satisfy (5) and (6) for all ν ∈ Jn(ν), the uniqueness
of υn(ν) = υ0 |Jn(ν)

implies that

υ0(ν) = υ0 |Jn(ν) (ν) = ϑ0 |Jn(ν) (ν) = ϑ0(ν),
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as required.

4. Hyers-Ulam Stability in M-k-NLS

In the following theorem, we prove the Hyers–Ulam stability of the differential Equation (1)
defined on a finite and closed interval.

Theorem 4. Let m ∈ R, ρ > 0 and J = {ν ∈ R | m− ρ ≤ ν ≤ m + ρ}. Assume that Γ : J ×R → R is a
continuous map which satisfies (2) for every νj ∈ J, υj, ϑj ∈ R, (j = 1, 2, ..., k) and t > 0, where β is a constant
with 0 < ρβ < 1.

Let

ξ
υ(ν1)−υ(m)−

∫ ν1
m Γ(τ,υ(τ))dτ,...,υ(νk)−υ(m)−

∫ νk
m Γ(τ,υ(τ))dτ

t ≥ 1− ε (16)

for every νi ∈ J, (i = 1, ..., k), t > 0 and for some ε > 0 in which υ : J → R is a continuous differentiable map.
So, there is a unique continuous map υ0 : J → R satisfying (5) and

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)

t
1−ρβ

≥ 1− ε (17)

for every νj ∈ J, (j = 1, 2, ..., k) and t > 0.

Proof. We show the set of all continuous map σ : J → R by

Σ = {σ : J → R}

and define the function δ on Σ,

δ(σ, $) = inf{M > 0 : ξ
σ(ν1)−$(ν1),...,σ(νk)−$(νk)
Mt ≥ 1− ε, ∀νj ∈ J, t > 0}

In [31], Miheţ and Radu proved that (Σ, δ) is a complete generalized metric space (see also [32]).
Now, we consider the linear map Λ : Σ→ Σ is defined by

(Λυ)(νj) = υ(m) +
∫ νj

m
Γ(τ, υ(τ))dτ (νj ∈ J) (18)

for all υ ∈ Σ. We show that the strictly contractively of Λ. Assume that σ, $ ∈ Σ and η = ησ,$ > 0
with δ(σ, $) ≤ η, so, we have

ξ
σ(ν1)−$(ν1),...,σ(νk)−$(νk)
ηt ≥ 1− ε (19)

for any νj ∈ J(j = 1, ..., k), and t > 0. Let, m = ξ1 < ξ2 < ... < ξk = νj, τj ∈ [ξ j, ξ j+1] and

4sj = ξ j − ξ j−1 =
νj−m

k , j = 1, 2, ..., k. By using, (2), (3), (4), (8) and (10), we have
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ξ
(Λσ)(ν1)−(Λ$)(ν1),...,(Λσ)(νk)−(Λ$)(νk)
ηρβt

= ξ
∫ ν1

m {Γ(τ,σ(τ))−Γ(τ,$(τ))}dτ,...,
∫ νk

m {Γ(τ,σ(τ))−Γ(τ,$(τ))}dτ

ηρβt

= ξ

lim
‖∆s‖→0

∑k
j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj ,..., lim

‖∆sj‖→0
∑k

j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj

ηρβt

= lim
‖∆sj‖→0

ξ
∑k

j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj ,...,∑k
j=1{Γ(τj ,σ(τj))−Γ(τj ,$(τj))}∆sj

ηρβt

≥ lim
‖∆sj‖→0

∧
ξ

Γ(τj ,σ(τj))−Γ(τj ,$(τj)),...,Γ(τj ,σ(τj))−Γ(τj ,$(τj))(
ηρβt
|∆sj |k

)
≥

∧
ξ

Γ(τj ,σ(τj))−Γ(τj ,$(τj)),...,Γ(τj ,σ(τj))−Γ(τj ,$(τj))
ηρβt

ρ

≥ inf
τj∈[m,νj ]

ξ
σ(τj)−$(τj),...,σ(τj)−$(τj)
ηt

≥ 1− ε

for all νj ∈ J and t > 0. So, we have δ(Λσ, Λ$) ≤ ηρβ. Hence, we can conclude that δ(Λσ, Λ$) ≤ ρβδ(σ, $)

for any σ, $ ∈ Σ, this shows, Λ is a strictly contractive map on Σ and ρβ ∈ (0, 1) is Lipschitz constant.
By using definition δ(σ, $), we conclude that δ(Λυ, υ) ≤ 1 and so, δ(Λn+1υ, Λnυ) ≤ (ρβ)n < ∞.

Theorem 1, implies that, there is a unique continuous map υ0 : J → R such that

(1) A fixed point for Λ, is υ0, i.e.,
Λ(υ0) = υ0. (20)

(2) δ(Λnυ, υ0)→ 0 as n→ ∞.
(3) δ(υ, υ0) ≤ 1

1−ρβ δ(υ, Λυ), which implies that

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)

t
1−ρβ

≥ 1− ε

for all νj ∈ J and t > 0.

5. Examples

In this section, we show that there certainly exist functions υ(ν) which satisfy all the conditions
given in Theorems 2, 3 and 4.

Example 2. Consider 0 < β < 1. For a 0 < ε < 2β and ρ = 2β − ε, let J = [0, 2β − ε]. Let p(ν)
be a polynomial, and υ : J → R, a continuously differentiable map, satisfies

ξ
υ(ν1)−υ(m)−

∫ ν1
0 {βυ(τ)−P(τ)}dτ,...,υ(νk)−υ(m)−

∫ νk
0 {βυ(τ)−P(τ)}dτ

(t) ≥ exp(−|ν1, ..., νk|
t

)

for all νj ∈ J, and t > 0. If we set Γ(ν, υ) = βυ + P(ν) in which Γ defined here is of the form of that of the
Theorem 4 and satisfies (2) and

ϕ
ν1,...,νk
t =

{
exp(− |ν1,...,νk |

t ) t > 0,

0 t ≤ 0.

Moreover, we obtain

inf
ϑj∈[0,νj ]

ϕ
ϑ1,...,ϑk
t ≥ ϕ

ν1,...,νk
t
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for all νj ∈ J and t > 0. Using Theorem 2, implies that there is a unique continuous map υ0 : J → R such that

υ0(ν) = υ(0) +
∫ ν

0
{βυ0(τ)− P(τ)}dτ

and

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)
t ≥ exp(− |ν1, ..., νk|

(1− ρβ)t
)

for all νj ∈ J and t > 0.

Example 3. Consider p > 1, 0 < β < Lna, J = [p, ∞) and a polynomial P(ν). Let the continuously
differentiable map υ : J → R satisfies

ξ
υ(ν1)−υ(m)−

∫ ν1
0 {βυ(τ)−P(τ)}dτ,...,υ(νk)−υ(m)−

∫ νk
0 {βυ(τ)−P(τ)}dτ

(t) ≥ exp(− aν1,...,νk

t
)

for all νj ∈ J, and t > 0. If we set Γ(ν, υ) = βυ + P(ν) and

ϕ
ν1,...,νk
(t) =

{
exp(− aν1,...,νk

t ) t > 0,

0 t ≤ 0.

Moreover, we obtain

inf
ϑj∈[0,νj ]

ϕ
ϑ1,...,ϑk
t ≥ ϕ

ν1,...,νk
t

for all νj ∈ J and t > 0. Using Theorem 3, implies that there is a unique continuous function υ0 : J → R
such that

υ0(ν) = υ(0) +
∫ ν

0
{βυ0(τ)− P(τ)}dτ

and

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)
t ≥ exp(− aν1,...,νk

(ln a− ρβ)t
)

for all νj ∈ J and t > 0.

Example 4. Consider constants ρ, β > 0 such that 0 < ρβ < 1. Define J = {ν ∈ R | m− ρ ≤ ν ≤ m + ρ}
for some m ∈ R. Let P(ν) be a polynomial and let the continuously differentiable map υ : J → R satisfies

ξ
υ(ν1)−υ(m)−

∫ ν1
0 {βυ(τ)−P(τ)}dτ,...,υ(νk)−υ(m)−

∫ νk
0 {βυ(τ)−P(τ)}dτ

t ≥ 1− ε

for all υj ∈ J, and t > 0 with ε ≥ 0. Using Theorem 4, implies that, there is a unique continuous map
υ0 : J → R such that

υ0(ν) = υ(m) +
∫ ν

0
{βυ0(τ) + P(τ)}dτ

and

ξ
υ(ν1)−υ0(ν1),...,υ(νk)−υ0(νk)(

t
1−ρβ

) ≥ 1− ε,

for all νj ∈ J and t > 0.
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