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Abstract: The purpose of this paper is to present some new fixed point results in the generalized
metric spaces of Perov’s sense under a contractive condition of Hardy–Rogers type. The data
dependence of the fixed point set, the well-posedness of the fixed point problem and the Ulam–Hyers
stability are also studied.
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1. Introduction and Preliminaries

In 1964 Perov [1] extended the known Banach theorem from 1922 on spaces endowed with vector
valued metrics. The main motivation for introduction of metric spaces in the sense of the Perov type is
the problem of solving a system of ordinary differential equations.

Let Rm be known the Euclidean space, then Rm is an ordered vector space by the cone

C = {(c1, . . . , cm) : ci ≥ 0 for all i = 1, . . . , m}.

For more details see [2–7].
The concept of vector-valued metric was introduced by Perov [1] as follows:
Let X be a nonempty set. A mapping d̃ : X× X → Rm is called a vector-valued metric on X if the

following properties are satisfied:

(1) d̃(x, y) � 0 and d̃(x, y) = 0 if and only if x = y,
(2) d̃(x, y) = d̃(y, x),
(3) d̃(x, y) � d̃(x, z) + d̃(z, y),

for all x, y, z ∈ X, where 0 = (0, . . . , 0︸ ︷︷ ︸
m

)T .

A generalized metric space in Perov’s sense is the pair (X, d̃).
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According to ([8], proposition 2.1), it follows that the generalized metric in Perov’s sense d̃
has a form d̃ = (d1, . . . , dm)T where each di : X × X → [0, ∞), i ∈ {1, . . . , m} is a pseudometric
(i.e., di(x, x) = 0, di(x, y) = di(y, x) and di(x, y) ≤ di(x, z) + di(z, y)). This means that (X, d̃) is a
generalized metric space in Perov’s sense if and only if

d̃(x, y) = (d1(x, y), . . . , dm(x, y))T , for all x, y ∈ X.

Let Mm,m(R+) be the family of all square matrices of order m with positive elements. We denote
the zero and unit matrix by Θ and I respectively. We use the symbol AT for transpose matrix of A.
A matrix A converges to zero if An → Θ as n→ ∞.

We will use the following known result, see for example [9].

Theorem 1. Let A ∈Mm,m(R+). The following properties are equivalent:

(i) A matrix A converges to Θ as n→ ∞;
(ii) If λ ∈ C such that det(A− λI) = 0 then |λ| < 1;

(iii) The matrix I − A is regular and (I − A)−1 = I + A + A2 + · · · .

Let us note that Perov’s metric is a very particular case of the so-called K-metric (see [4] and
the references therein), which in turn was rediscovered by Huang and Zhang [3] under the name of
cone metric.

In 1973, Hardy and Rogers [10] gave a generalization of Reich fixed point theorem. Since then,
many authors used different Hardy–Rogers contractive type conditions in order to obtain fixed
point results.

Let (X, d) be a complete metric space. We will use the following notations:
P(X)—is the set of all nonempty subsets of X;
Pcl(X)—is the set of all nonempty closed subsets of X;
Pcp(X)—is the set of all nonempty compact subsets of X;
D : P(X)× P(X)→ R+, D(A, B) = in f {d(a, b) : a ∈ A, b ∈ B}-is the gap functional.
ρ : P(X)× P(X)→ R+ ∪ {+∞}, ρ(A, B) = sup{D(a, B) : a ∈ A}-is the excess functional.
H : P(X) × P(X) → R+ ∪ {+∞}, H(A, B) = max{ρ(A, B); ρ(B, A)}-is the

Pompeiu–Hausdorff functional.
Let T : X → P(X) be a multivalued operator and Y ⊆ X. Then:
f : X → Y is a selection for T : X → P(Y) if f (x) ∈ T(x), for each x ∈ X;
Graph(T) := {(x, y) ∈ X×Y | y ∈ T(x)}-is the graphic of T;
Fix(T) := {x ∈ X | x ∈ T(x)}-is the set of the fixed points of T;
We also denote by N the set of all natural numbers and by N∗ := N∪ {0}.
Let (X, d̃) be a generalized metric space in Perov’s sense. Here, if u, v ∈ Rm, u := (u1, . . . , um),

v := (v1, . . . , vm), then by u � v we mean uj ≤ vj, for each j ∈ {1, . . . , m}, while u ≺ v mean u � v
and uj 6= vj, for all j ∈ {1, . . . , m}. With B̃(x, a) we denote the open ball centered at x ∈ X with radius
a, i.e.,

B̃(x, a) := {y ∈ X|d̃(x, y) ≺ a},

where x := (x1, . . . , xm) and a := (a1, . . . , am).
For the following notations see [11–13].

Definition 1. Let (X, d) be a metric space. A mapping T : X → P(X) is a multi-valued weakly Picard
operator (or MWP) if for each y ∈ X and each z ∈ T(y) there exists a sequence (yn)n∈N such that:

(i) y0 = y, y1 = z;
(ii) yn+1 ∈ T(yn), for each n ∈ N;

(iii) the sequence (yn)n∈N is convergent and its limit is a fixed point of T.
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Remark 1. A sequence (yn)n∈N satisfying the conditions (i) and (ii) in Remark 1 is called a sequence of
successive approximations of T starting from (y, z) ∈ Graph(T).

If T : X → P(X) is an MWP operator, then we define T∞ : Graph(T)→ P(Fix(T)) by the formula
T∞(y, z) := {t ∈ Fix(T) | there exists a sequence of successive approximations of T starting from (y, z)
that converges to t}.

Definition 2. Let (X,d) be a metric space and T : X → P(X) be an MWP operator. Then T is called
c-multivalued weakly Picard operator (briefly c-MWP operator) if and only if there exists a selection f ∞ of T∞

such that:
d(x, f ∞(y, z)) ≤ cd(y, z), for all (y, z) ∈ Graph(T).

About of weakly Picard operators see example [12,13].
Also, for Ulam stability of some functional equations see [11,14–20].
The definition of Ulam–Hyers stability for multivalued operators is given in [11] as follows.

Definition 3. Let (X,d) be a metric space and T : X → P(X) be a multivalued operator. By definition, the fixed
point equation

x ∈ T(x) (1)

is Ulam–Hyers stable if there exists a real number c > 0 such that: for each ε > 0 and each solution y∗ of
the inequation

D(y, T(y)) ≤ ε (2)

there exists a solution x∗ of Equation (1) such that

d(y∗, x∗) ≤ cε.

Remark 2. ([11]) If T is a multivalued c-weakly Picard operator, then the fixed point Equation (1) is
Ulam–Hyers stable.

The purpose of this paper is to present some multivalued fixed point results in generalized metric
spaces in Perov’s sense using a contractive condition of Hardy–Rogers type. The data dependence of
the fixed point set, the well-posedness of the fixed point problem and the Ulam–Hyers stability are
also studied.

2. Main Results

First let us define some important notions for the case of generalized metric space in Perov’s sense.
D̃ : P(X) × P(X) → Rm

+, D̃(A, B) := (D1(A, B), . . . , Dm(A, B))T for given m ∈ N—is the gap
generalized functional.

ρ̃ : P(X) × P(X) → Rm
+
⋃{+∞}, ρ̃(A, B) := (ρ1(A, B), . . . , ρm(A, B))T , for given m ∈ N—the

excess generalized functional.
H̃ : P(X)× P(X)→ Rm

+ ∪ {+∞}, H̃(A, B) := (H1(A, B), . . . , Hm(A, B)))T , for given m ∈ N—the
Pompeiu–Hausdorff generalized functional.

Obvious, Di, ρi and Hi, for i ∈ {1, . . . , m} are pseudometrics.

Lemma 1. Let (X, d̃) be a generalized metric space in Perov’s sense, A, B ⊆ X and q > 1. Then for any a ∈ A
there exists b ∈ B such that:

d̃(a, b) � qH̃(A, B).

Proof. Since, d̃(a, b) � qH̃(A, B) if and only if d̃i(a, b) � qH̃i(A, B) for i ∈ {1, 2, . . . , m},
where d̃(a, b) = (d1(a, b), . . . , dm(a, b))T , H̃(A, B) = (H1(A, B), . . . , Hm(A, B))T , and di and Hi are
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pseudometrics for each i ∈ {1, . . . , m}, we as in the standard metric spaces obtain d̃i(a, b) �
qH̃i(A, B).

Lemma 2. Let (X, d̃) be a generalized metric space in Perov’s sense. Then D̃({x}, A) = 0m×1 if and only if
x ∈ Ā.

Proof. We must prove that Ā = {x ∈ X|D̃({x}, A) = 0m×1} . Then, if D̃({x}, A) = 0m×1 that means
Di({x}, A) = 0 with 0 ∈ R for each i ∈ {1, 2, . . . , m}. This is further equivalent as in the case of
standard metric spaces.

Lemma 3. Let A ∈ Mm,m(R+) be a matrix converges to zero. Then there exists Q > 1 such that for every
q ∈ (1, Q) we have that qA is converges to zero.

Proof. Since A is a matrix converges to zero, we have spectral radius ρ(A) < 1. Since qρ(A) =

ρ(qA) < 1 we can choose Q := 1
ρ(A)

> 1 and hence, the conclusion follows.

Let us give the definition of multivalued Hardy–Rogers type operators on generalized metric
space in Perov’s sense.

Definition 4. Let (X, d̃) be a generalized metric space in Perov’s sense and T : X → P(X) be a given
multivalued operator. If there exist A, B, C ∈Mm,m(R+) such that

H̃(T(x), T(y)) � Ad̃(x, y) + B[D̃(x, T(x)) + D̃(y, T(y))] + C[D̃(x, T(y)) + D̃(y, T(x))],

for all x, y ∈ R, we say that T is a Hardy–Rogers type operator.

The following theorem is one of the main results.

Theorem 2. Let (X, d̃) be a complete generalized metric space in Perov’ sense, T : X → Pcl(X) be a multivalued
Hardy–Rogers type operator. If there exist the matrices A, B, C ∈Mm,m(R+) such that:

(i) I − q(B + C) is nonsingular and (I − q(B + C))−1 ∈Mm,m(R+), for q ∈ (1, Q);
(ii) M = (I − q(B + C))−1q(A + B + C) converges to Θ.

Then T is a multivalued weakly Picard operator.

Proof. Let x0 ∈ X and x1 ∈ T(x0). If x0 = x1 we obtain the desired conclusion. Let x0 6= x1, x1 ∈ T(x0)

and q ∈ (1, Q), where Q is defined as in Lemma 3. Then, by Lemma 1 there exists x2 ∈ T(x1) such that:

d̃(x1, x2) � qH̃(T(x0), T(x1))

� qAd̃(x0, x1) + qB[D̃(x0, T(x0)) + D̃(x1, T(x1))] + qC[D̃(x0, T(x1)) + D̃(x1, T(x0))]

� qAd̃(x0, x1) + qB[d̃(x0, x1) + d̃(x1, x2)] + qC[d̃(x0, x2) + d̃(x1, x1)]

= q(A + B)d̃(x0, x1) + qB(d̃(x1, x2)) + qC[d̃(x0, x1) + d̃(x1, x2)]

= q(A + B + C)d̃(x0, x1) + q(B + C)d̃(x1, x2).

Then we have: [I − q(B + C)]d̃(x1, x2) � q(A + B + C)d̃(x0, x1).
We get the inequality

d̃(x1, x2) � [I − q(B + C)]−1q(A + B + C)d̃(x0, x1) = Md̃(x0, x1). (3)
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For the next step we have

d̃(x2, x3) � qH̃(T(x1), T(x2)) � qAd̃(x1, x2) + qB[D̃(x1, T(x1)) + D̃(x2, T(x2))]

+ qC[D̃(x1, T(x2)) + D̃(x2, T(x1))]

= qAd̃(x1, x2) + qB[d̃(x1, x2) + d̃(x2, x3)] + qC[d̃(x1, x3) + d̃(x2, x2)]

= q(A + B)d̃(x1, x2) + qB(d̃(x2, x3)) + qC[d̃(x1, x2) + d̃(x2, x3)]

= q(A + B + C)d̃(x1, x2) + q(B + C)d̃(x2, x3).

Then we have [I − q(B + C)]d̃(x2, x3) � q(A + B + C)d̃(x1, x2).
Using Equation (3) we obtain the inequality

d̃(x2, x3) � [I − q(B + C)]−1q(A + B + C)d̃(x1, x2) = Md̃(x1, x2) � M2d̃(x0, x1). (4)

Continuing this process we shall obtain a sequence (xn)n∈N ∈ X, with xn ∈ T(xn−1) such that

d̃(xn, xn+1) � Mnd̃(x0, x1), (5)

with M ∈Mm,m(R+) and n ∈ N.
We will prove next that (xn)n∈N is Cauchy, by estimating d̃(xn, xm), for every m, n ∈ N with

m > n.

d̃(xn, xm) � d̃(xn, xn+1) + d̃(xn+1, xn+2) + · · ·+ d̃(xm−1, xm)

� Mn(d̃(x0, x1)) + Mn+1(d̃(x0, x1)) + · · ·+ Mm−1(d̃(x0, x1))

� Mn(I + M + M2 + · · ·+ Mm−n−1 + · · · )d̃(x0, x1)

� Mn(I −M)−1d̃(x0, x1)).

Note that (I − M) is nonsingular since M is converges to Θ. This implies that the sequence
(xn)n∈N is Cauchy. Since (X, d̃) is complete we get that there exists x∗ ∈ X such that xn → x∗ as
n→ ∞.

Thus we have:
D̃(x∗, T(x∗)) = (D1(x∗, T(x∗)), . . . , Dm(x∗, T(x∗))).

Further, for all i ∈ {1, . . . , m}: Di(x∗, T(x∗)) ≤ di(x∗, xn+1) + Di(xn+1, T(x∗)).
We obtain that:

D̃(x∗, T(x∗))) � d̃((x∗, xn+1)) + H̃(T(xn), T(x∗))

� d̃((x∗, xn+1)) + qAd̃((xn, x∗)) + qB[D̃(xn, T(xn)) + D̃(x∗, T(x∗))]

+ qC[D̃(xn, T(x∗)) + D̃(x∗, T(xn))]

� q(A + C)d̃((xn, x∗)) + qB[d̃(xn, xn+1) + D̃(x∗, T(x∗))] + qCd̃(x∗, xn+1).

Then we get: D̃(x∗, T(x∗)) � (I − qB)−1[q(A + C)d̃((xn, x∗)) + qBd̃(xn, xn+1) + qCd̃(x∗, xn+1)].
Letting n → ∞ we get that D̃(x∗, T(x∗)) = 0m×1, then Di(x∗, T(x∗)) = 0 with 0 ∈ R, for any

i ∈ {1, 2, . . . , m}. By Lemma 2 we have x∗ ∈ T(x∗). Hence x∗ ∈ T(x∗). Then T is an MWP operator.

Our next result relates to the uniqueness of a fixed point for multivalued Hardy–Rogers type
mapping in the context of a generalized metric spaces of Perov’s type.

Theorem 3. Let (X, d̃) be a generalized metric space in Perov’s sense and T : X → Pcl(X) be a multivalued
Hardy–Rogers type operator. If there exists the matrices A, B, C ∈Mm,m(R+) such that all the conditions of
Theorem 2 satisfied and, additionally, I − q(A + 2C) is nonsingular and [I − q(A + 2C)]−1 ∈ Mm,m(R+),
q ∈ (1, Q), then T has a unique fixed point x∗.
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Proof. The existence of the fixed point is assured by Theorem 2. For uniqueness we suppose that there
exists y∗ ∈ X such that y∗ ∈ T(y∗) and y∗ 6= x∗.

Let q ∈ (1, Q), where Q is defined as in Lemma 3. Then we have:

d̃(x∗, y∗) � qH̃(T(x∗), T(y∗)) � qAd̃(x∗, y∗) + qB[D̃(x∗, T(x∗)) + D̃(y∗, T(y∗))]

+qC[D̃(x∗, T(y∗)) + D̃(y∗, T(x∗))] � qAd̃(x∗, y∗) + 2qCd̃(x∗, y∗).

This implies that [I − q(A + 2C)]d̃(x∗, y∗) � 0m×1. Since I − q(A + 2C) 6= Θ we get that
d̃(x∗, y∗) = 0m×1 that means di(x∗, y∗) = 0 with 0 ∈ R, for any i ∈ {1, 2, . . . , m}. Then x∗ = y∗.

The result we now state is an immediate set of consequences of Theorem 2.

Theorem 4. Let (X, d̃) be a complete generalized metric space in Perov’s sense, T : X → Pcl(X) be a
multivalued Hardy–Rogers type operator. Suppose that all the hypothesis of Theorem 2 are fulfilled. Then the
following statements are true:

(1) Fix(T) 6= ∅.
(2) There exists a sequence (xn)n∈N ∈ X such that xn+1 ∈ T(xn), for all n ∈ N and converge to a fixed

point of T.
(3) One has the estimation d̃(xn, x∗) � (I − q(B + C))−1[q(A + B + C)]nd̃(x0, x1), where x∗ ∈ Fix(T).

Proof. For proof of Equations (1) and (2) see the proof of Theorem 2. If in

d̃(xn, xm) � Mn(I −M)−1d̃(x0, x1)),

m tends to +∞ we get Equation (3), where M = (I − q(B + C))−1q(A + B + C).

Example 1. Let X = [0,+∞) endowed with the generalized metric d̃ : X × X → R2 defined by d̃(x, y) =(
|x− y|
|x− y|

)
. Let T : R→ Pcl(R) be an operator given by:

T(x) =


{1, x

4}, for x ∈ R, with x > 1;
{0, x

3}, for x ∈ R, with 0 < x ≤ 1;
{ 1

5 , 1
4}, otherwise .

Next we prove that weakly Hardy–Rogers type condition is true. Let A =

(
1
3 0
0 1

3

)
.

Case 1. For x > 1 we have:

H̃(T(x), T(y)) =
(

H1(T(x), T(y))
H2(T(x), T(y))

)
=

(max{ sup
x∈T(x)

d(x, T(y)), sup
y∈T(y)

d(y, T(x))}

max{ sup
x∈T(x)

d(x, T(y)), sup
y∈T(y)

d(y, T(x))}

)
=

=

(
max{inf{| x4 |, |

x
4 −

y
4 |}, inf{| y4 |, |

y
4 −

x
4 |}}

max{inf{| x4 |, |
x
4 −

y
4 |}, inf{| y4 |, |

y
4 −

x
4 |}}

)
=

(| x4 − y
4 |

| x4 −
y
4 |

)
=

=

(
1
4 0
0 1

4

)(
|x− y|
|x− y|

)
�
(

1
3 0
0 1

3

)(
|x− y|
|x− y|

)
= Ad̃(x, y).
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Case 2. For 0 < x ≤ 1 we have:

H̃(T(x), T(y)) =
(

H1(T(x), T(y))
H2(T(x), T(y))

)
=

(max{ sup
x∈T(x)

d(x, T(y)), sup
y∈T(y)

d(y, T(x))}

max{ sup
x∈T(x)

d(x, T(y)), sup
y∈T(y)

d(y, T(x))}

)
=

=

(
max{inf{| x3 |, |

x
3 −

y
3 |}, inf{| y3 |, |

y
3 −

x
3 |}}

max{inf{| x3 |, |
x
3 −

y
3 |}, inf{| y3 |, |

y
3 −

x
3 |}}

)
=

(| x3 − y
3 |

| x3 −
y
3 |

)
�

�
(

1
3 0
0 1

3

)(
|x− y|
|x− y|

)
= Ad̃(x, y).

Case 3. For other choices of x we have:

H̃(T(x), T(y)) =
(

H1(T(x), T(y))
H2(T(x), T(y))

)
=

( 1
5
1
5

)
�
(

1
3 0
0 1

3

)(
|x− y|
|x− y|

)
= Ad̃(x, y).

Thus, the weakly Hardy–Rogers type condition is accomplished for A =

(
1
3 0
0 1

3

)
and B = C = Θ or

B + C = Θ. Since all the hypothesis of the Theorem 2 hold we get that T has fixed points on X. Then T is an
MWP operator.

Next, let us give a common fixed point result.

Theorem 5. Let (X, d̃) be a complete generalized metric space in Perov’s sense and let T, G : X → Pcl(X) be
two multivalued Hardy–Rogers type operators. There exists the matrices A, B, C ∈Mm,m(R+) such that:

(i) I − q(B + C) is nonsingular and (I − q(B + C))−1 ∈Mm,m(R+), for q ∈ (1, Q);
(ii) I − q(A + 2C) is nonsingular and [I − q(A + 2C)]−1 ∈Mm,m(R+);

(iii) M = (I − q(B + C))−1q(A + B + C) converges to Θ.

Then:

(1) T and G have a common fixed point x∗ ∈ X;
(2) x∗ is a unique common fixed point of T and G.

Proof. (1) Let x0 ∈ X and x1 ∈ T(x0). If x0 = x1 we obtain the desired conclusion. Let x0 6= x1,
x1 ∈ T(x0) and q ∈ (1, Q), where Q is defined by Lemma 3. Then, by Lemma 1, there exists x2 ∈ T(x1)

such that we construct (xn)n∈N the sequence of successive approximations for T and G, defined by:

x2n+1 ∈ T(x2n), n = 0, 1, ...

x2n+2 ∈ G(x2n+1), n = 0, 1, . . .

Then we have

d̃(x2n, x2n+1) � qH̃(G(x2n−1), T(x2n))

� qAD̃(x2n−1, T(x2n) + qB[D̃(x2n, T(x2n)) + D̃(x2n−1, G(x2n−1))]

+ qC[D̃(x2n, G(x2n−1)) + D̃(x2n−1, T(x2n))]

= qAd̃(x2n−1, x2n) + qB[d̃(x2n, x2n+1) + d̃(x2n−1, x2n)] + qCd̃(x2n−1, x2n+1)

� qAd̃(x2n−1, x2n) + qB[d̃(x2n, x2n+1) + d̃(x2n−1, x2n)]

+ qC[d̃(x2n−1, x2n) + d̃(x2n, x2n+1)].
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Then, letting q→ 1 we have:

d̃(x2n, x2n+1) � (I − (B + C))−1(A + B + C)d̃(x2n−1, x2n) = Md̃(x2n−1, x2n).

Continuing the process we get

d̃(x2n+1, x2n+2) � qH̃(T(x2n), G(x2n+1))

� qAD̃(x2n, T(x2n+1) + qB[D̃(x2n, T(x2n)) + D̃(x2n+1, G(x2n+1))]

+ qC[d̃(x2n, G(x2n+1)) + d̃(x2n+1, T(x2n))]

= qAd̃(x2n, x2n+1) + B[d̃(x2n, x2n+1) + d̃(x2n+1, x2n+2)] + qCd̃(x2n, x2n+2)

� qAd̃(x2n, x2n+1) + qB[d̃(x2n, x2n+1) + qd̃(x2n+1, x2n+2)]

+ qC[d̃(x2n, x2n+1) + d̃(x2n+1, x2n+2)].

Then we have:

d̃(x2n+1, x2n+2) � (I − q(B + C))−1q(A + B + C)d̃(x2n, x2n+1) = Md̃(x2n, x2n+1).

Further we obtain that d̃(xn, xn+1) � Mnd̃(x0, x1) for each n ∈ N.
Following the same steps like in the proof of the Theorem 2 we estimate d̃(xn, xm), for every

m, n ∈ N with m > n.

d̃(xn, xm) � d̃(xn, xn+1) + d̃(xn+1, xn+2) + · · ·+ d̃(xm−1, xm)

� Mn(d̃(x0, x1)) + Mn+1(d̃(x0, x1)) + · · ·+ Mm−1(d̃(x0, x1))

� Mn(I + M + M2 + · · ·+ Mm−n−1 + · · · )d̃(x0, x1)

� Mn(I −M)−1d̃(x0, x1)).

Note that (I − M) is nonsingular since M is convergent to Θ. This implies that the sequence
(xn)n∈N is Cauchy. From the fact that (X, d̃) is complete we have that there exists x∗ ∈ X such that
d̃(xn, x∗) → 0m×1 as n → ∞. Then d̃i(xn, x∗) → 0 as n → ∞ with 0 ∈ R, for any i ∈ {1, 2, . . . , m} as
n→ ∞.

Next we prove that x∗ is a fixed point for T by esteeming D̃(T(x∗), x∗). Then we obtain:

D̃(T(x∗), x∗) � qD̃(T(x∗), x2n+2) + d̃(x2n+2, x∗)

� H̃(T(x∗), G(x2n+1)) + d̃(x2n+2, x∗)

� qAd̃(x∗, x2n+1) + qB[D̃(x∗, T(x∗)) + D̃(x2n+1, G(x2n+1))]

+ qC[D̃(x∗, G(x2n+1)) + D̃(x2n+1, T(x∗))] + d̃(x2n+2, x∗))

� (I − q(B + C))−1[qAd̃(x∗, x2n+1) + qBd̃(x2n+1, x2n+2)

+ qCd̃(x∗, x2n+2) + qCd̃(x2n+1, x∗) + d̃(x2n+2, x∗)].

Letting n → ∞ we get that D̃(T(x∗), x∗) = 0m×1, that means Di(T(x∗), x∗) = 0 as n → ∞, with
0 ∈ R, for any i ∈ {1, . . . , m}. By Lemma 2 obtain that x∗ ∈ T(x∗). Hence x∗ ∈ T(x∗), since T(x∗) is
closed. Similarly, we estimate D̃(G(x∗), x∗) and we found that x∗ is fixed point for G. Then x∗ is a
common fixed point for the operators T and G.

(2) We assume that there exist y∗ ∈ X another common fixed point of T and G. Then we have:

d̃(y∗, x∗) � qH̃(T(y∗), G(x∗)) � qAd̃(y∗, x∗) + qB[d̃(y∗, T(y∗)) + qd̃(x∗, G(x∗))]

+qC[D̃(y∗, G(x∗)) + D̃(x∗, T(y∗))] � q(A + 2C)d̃(y∗, x∗).
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Then we have: (I− q(A + 2C))d̃(y∗, x∗) � 0m×1. By the hypothesis (ii) we obtain that d̃(y∗, x∗) �
0m×1. Then di(y∗, x∗) � 0, for 0 ∈ R and i ∈ {1, . . . , m}. Result that y∗ = x∗. Then x∗ is the unique
common fixed point for T and G.

3. Ulam–Hyers Stability, Well-Posedness and Data Dependence of Fixed Point Problems

First, let us present the extension of Ulam–Hyers stability for fixed point inclusions for the case of
multivalued operators on generalized metric space in Perov’s sense.

Definition 5. Let (X, d̃) be a generalized metric space in Perov’s sense and T : X → P(X) be an operator.
By definition, the fixed point equation

x ∈ T(x) (6)

is Ulam–Hyers stable if there exists a real positive matrix N ∈Mm,m(R+) such that: for each ε > 0 and each
solution y∗ of the inequation

D̃(y, T(y)) � εIm×1 (7)

there exists a solution x∗ of Equation (6) such that

d̃(y∗, x∗) � NεIm×1.

Definition 6. The fixed point Equation (6) is well-posed if x∗ ∈ Fix(T) and xn ∈ X, n ∈ N, such that
D̃(xn, T(xn))→ 0m×1 as n→ ∞, then xn → x∗ as n→ ∞.

Theorem 6. Let (X, d̃) be a generalized metric space in Perov’s sense and T : X → Pcl(X) be a multivalued
Hardy–Rogers type operator defined in Definition (4). Then, for every nonsingular matrix I − q(A + B + 2C)
such that N = [I − q(A + B + 2C)]−1 ∈ Mm,m(R+), for q ∈ (1, Q), the fixed point Equation (6) is
Ulam–Hyers stable.

Proof. Since T : X → Pcl(X) is an MWP operator we get that {x∗} ∈ Fix(T). Let ε > 0 and w∗ ∈ X be
a solution of Equation (6), i.e., D̃(w∗, T(w∗)) ≤ εIm×1.

For q ∈ (1, Q), where Q is defined by Lemma 3 we get:

d̃(x∗, w∗) = D̃(T(x∗), w∗)

� H̃(T(x∗), T(w∗)) + D̃(T(w∗), w∗)

� qAd̃(x∗, w∗) + qB[D̃(x∗, T(w∗)) + d̃(w∗, w∗)] + qC[D̃(x∗, T(w∗)) + D̃(w∗, T(x∗))]

+ εIm×1

= q(A + B + 2C)d̃(x∗, w∗) + εIm×1.

Then we have: d̃(x∗, w∗) � [I − q(A + B + 2C)]−1εIm×1.

Using previous notation we obtain d̃(x∗, w∗) � NεIm×1.
Then, the fixed point Equation (6) is Ulam–Hyers stable.

Let us give the following results which assure the well-posedness with respect to the generalized
metric d̃.

Theorem 7. Let (X, d̃) be a generalized metric space in Perov’s sense and T : X → Pcl(X) be a multivalued
Hardy–Rogers type operator defined in Definition (4). Then, for every matrix nonsingular I − q(A + 2C) with
q ∈ (1, Q), such that the matrix N = [I − q(A + 2C)]−1q(I + B + C) ∈Mm,m(R+) is a matrix convergent
to Θ, for every matrices A, B, C ∈Mm,m(R+) the fixed point Equation (6) is well-posed.
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Proof. Let x∗ ∈ Fix(T) and let (xn∈N) ∈ X such that D̃(xn, T(xn)) → 0m×1 as n → ∞. Then for
vn ∈ T(xn) such that d̃(xn, vn) = D̃(xn, T(xn)), n ∈ N and q ∈ (1, Q), where Q is defined by Lemma 3,
we have:

d̃(xn, x∗) � d̃(xn, vn) + d̃(vn, x∗)

� d̃(xn, vn) + D̃(vn, T(x∗))

� D̃(xn, T(xn)) + H̃(T(xn), T(x∗))

� D̃(xn, T(xn)) + qAd̃(xn, x∗) + qB[D̃(xn, T(xn)) + D̃(x∗, T(x∗))]

+ qC[D̃(xn, T(x∗)) + D̃(x∗, T(xn))].

Then we have the inequality:

[I − q(A + C)]d̃(xn, x∗) � (I + qB)D̃(xn, T(xn)) + qCD̃(x∗, T(xn))

� (I + qB)D̃(xn, T(xn)) + qC[d̃(xn, x∗) + D̃(xn, T(xn))].

Then, by [I − q(A + 2C)]d̃(xn, x∗) � (I + q(B + C))D̃(xn, T(xn)) we obtain:

d̃(xn, x∗) � [I − q(A + 2C)]−1(I + q(B + C))D̃(xn, T(xn)).

Letting n→ ∞ in the above inequality we obtain: d̃(xn, x∗)→ 0m×1. That means di(xn, x∗)→ 0
as n→ ∞ with 0 ∈ R, for each i ∈ {1, . . . , m}. Then xn → x∗ as n→ ∞.

The following result is a well-posedness result for the common fixed point problem.

Theorem 8. Let (X, d̃) be a generalized metric space in Perov’s sense and T, G : X → Pcl(X) be a multivalued
Hardy–Rogers type operator defined in Definition (4). Then, if there exists a matrix nonsingular I − q(A + 2C)
such that (I − q(A + 2C))−1 ∈Mm,m(R+), with q ∈ (1, Q), for every matrices A, B, C ∈Mm,m(R+), then
the fixed point problem of T and G is well-posed.

Proof. From the Theorem 5 we know that T and G have a unique common fixed point x∗ ∈ X.
Let (xn)n∈N ∈ X be a sequence such that D̃(T(xn), xn) → 0m×1 or D̃(G(xn), xn) → 0m×1.
Let vn ∈ T(xn) such that d̃(xn, vn) = D̃(xn, G(xn)).

For q ∈ (1, Q), where Q is defined by Lemma 3, we have:

d̃(xn, x∗) � d̃(xn, vn) + d̃(vn, x∗) � D̃(xn, G(xn)) + qH̃(G(xn), T(x∗)).

H̃(G(xn), T(x∗)) � Ad̃(xn, x∗) + B[D̃(xn, G(xn)) + D̃(x∗, T(x∗))] + C[D̃(xn, T(x∗)) + D̃(x∗, G(xn))]

� Ad̃(xn, x∗) + B[D̃(xn, G(xn)) + d̃(x∗, x∗)] + C[d̃(xn, x∗) + D̃(x∗, G(xn))].

Using the triangle inequality we have:

d̃(xn, x∗) � D̃(xn, G(xn)) + D̃(G(xn), x∗)

� D̃(xn, G(xn)) + qAd̃(xn, x∗) + qB[D̃(xn, G(xn)) + d̃(x∗, x∗)]

+ qC[d̃(xn, x∗) + D̃(x∗, G(xn))].

Then we get: d̃(xn, x∗) � (I − q(A + 2C))−1q(I + B + C)D̃(xn, G(xn)).
Letting n→ ∞ in the above inequality, we obtain d̃(xn, x∗)→ 0m×1, that means di(xn, x∗))→ 0

as n→ ∞ with 0 ∈ R, for each i ∈ {1, . . . , m}. Then xn → x0 as n→ ∞.

Next, let us give a data dependence result.
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Theorem 9. Let (X, d̃) be a generalized metric space in Perov’s sense and T1, T2 : X → Pcl(X) be multivalued
operators which satisfy the following conditions:

(i) for A, B, C, M ∈ Mm,m(R+) with M = [I − q(B + C)]−1q(A + B + C) a matrix convergent to Θ
such that, for every x, y ∈ X with i ∈ {1, 2} and q ∈ (1, Q), we have:
H̃(Ti(x), Ti(y)) � qAd̃(x, y) + qB[D̃(x, Ti(x)) + D̃(y, Ti(y))] + qC[d̃(x, Ti(y)) + d̃(y, Ti(x))];

(ii) there exists η > 0 such that H̃(T1(x), T2(x)) � (I −M)−1η Im×1, for all x ∈ X.

Then for x∗1 ∈ T1(x∗1) there exist x∗2 ∈ T2(x∗2) such that d̃(x∗1 , x∗2) � (I −M)−1η Im×1; (respectively for
x∗2 ∈ T2(x∗2) there exist x∗1 ∈ T1(x∗1) such that d̃(x∗2 , x∗1) � (I −M)−1η Im×1)

Proof. As in the proof of Theorem 2 we construct a sequence of successive approximations (xn)n∈N ∈
X of T2 with x0 := x∗1 and x1 ∈ T2(x∗1) having property d̃(xn, xn+1) � Mnd̃(x0, x1), where M =

[I − q(B + C)]−1q(A + B + C), for q ∈ (1, Q), where Q is defined by Lemma 3.
If we consider that the sequence (xn)n∈N ∈ X converges to x∗2 we have x∗2 ∈ T2(x∗2). Moreover,

for each n, p ∈ N we have d̃(xn, xn+p) � Mn(I −M)−1d̃(x0, x1).
Letting p→ ∞ we get that d̃(xn, x∗2) � I(I −M)−1d̃(x0, x1).
Choosing n = 0 we get that d̃(x0, x∗2) � I(I −M)−1d̃(x0, x1) and using above notations we get

the conclusion: d̃(x∗1 , x∗2) � (I −M)−1η Im×1.

4. Conclusions

Our main purpose in this paper is to establish new generalizations of a contractive condition of
Hardy–Rogers type in metric spaces of Perov’s sense. Using a complete new approach in the definition
of Hardy–Rogers type contractive conditions for multivalued mappings in generalized metric spaces
of Perov’s type, we obtained results which generalize, extend, complement and enrich several recent
ones in the existing literature. The Ulam–Hyers stability, the well-posedness of the fixed point problem
and the data dependence of the fixed point set, are also studied.
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