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RESUMEN 

 

Estudio bajo condiciones de almacenaje acelerado 

La oxidación de lípidos alimentarios es un proceso que conlleva tanto la degradación 

de componentes lipídicos mayoritarios y minoritarios, como la generación de una 

amplia variedad de compuestos, los cuales no solo pueden afectar negativamente al 

color, olor o sabor de los alimentos, sino que también pueden tener efectos tóxicos. Por 

estas razones, la búsqueda de estrategias para evitar, o al menos reducir, la oxidación 

lipídica ha despertado el interés de la industria alimentaria y de los investigadores 

durante años. En este contexto, el uso de aceites con mayor estabilidad oxidativa 

podría considerarse como una estrategia para limitar estas reacciones de oxidación. En 

este sentido, aunque la influencia de la composición en grupos acilo (componentes 

mayoritarios) de aceites comestibles sobre su estabilidad oxidativa está bien 

documentada, se conoce poco sobre cómo el conjunto de compuestos minoritarios del 

aceite podría influir en el proceso de oxidación de éste. En esta línea se planteó el 

primer objetivo de esta tesis doctoral, el cual consiste en analizar hasta qué punto el 

conjunto de compuestos minoritarios presentes de forma natural en aceite de soja 

comercial puede influir en su estabilidad oxidativa y en su proceso de oxidación 

bajo condiciones de almacenamiento acelerado. Para alcanzar este objetivo,  dos aceites 

de soja, uno virgen y otro refinado, con proporciones muy similares de los diferentes 

tipos de grupos acilo, pero diferentes en cuanto al perfil de componentes minoritarios, 

fueron sometidos a un proceso de almacenamiento acelerado a 70 ºC. El estudio de los 

componentes minoritarios del aceite se llevó a cabo mediante inmersión directa de una 

fibra de microextracción en fase sólida, seguida del análisis de los componentes 

extraídos mediante cromatografía de gases con detector de espectrometría de masas (ID 

MEFS-CG/EM). Dado que un factor crucial a la hora de estudiar los procesos de 

oxidación lipídica es la metodología, la técnica empleada fue la Resonancia Magnética 

Nuclear de Protón (RMN de 
1
H); ésta permite seguir, por un lado, la degradación de los 

grupos acilo del aceite, y por otro, la generación y posterior evolución de una amplia 

variedad de compuestos de oxidación, tanto primarios (hidroperóxidos) como 

secundarios tales como epóxidos, aldehídos, keto-dienos o compuestos con grupos 

alcohol. Una característica muy importante de esta técnica es que permite estudiar 
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simultáneamente todos estos aspectos sin que sea necesaria ninguna modificación de la 

muestra y prácticamente sin el uso de reactivos. 

Los resultados de este estudio demuestran que, aunque los aceites de soja virgen y 

refinado estudiados tienen composiciones similares en grupos acilo, los niveles más 

bajos de tocoferoles y esteroles presentes en el aceite virgen, junto con su mayor 

contenido de ácidos grasos libres, dan como resultado una menor estabilidad oxidativa y 

una degradación más rápida de éste en comparación con el aceite refinado bajo las 

condiciones analizadas. Por lo tanto, el conocimiento de la composición de aceites 

comestibles en componentes minoritarios podría resultar útil para establecer niveles de 

calidad, en relación con la estabilidad oxidativa y el contenido en compuestos 

bioactivos beneficiosos para la salud humana, dentro de aceites de un mismo origen 

botánico y con grados de insaturación similares. En este contexto, la metodología 

basada en ID MEFS-CG/EM podría constituir una herramienta útil. 

Otra estrategia comúnmente empleada para evitar o reducir la oxidación de lípidos, 

es la adición de compuestos con potencial capacidad antioxidante. En este sentido 

cabe señalar a los tocoferoles, debido a las propiedades antioxidantes que se les han 

atribuido clásicamente, y de hecho, son ampliamente empleados por la industria con 

este fin. La cantidad de estos compuestos que puede ser añadida a los aceites vegetales 

está regulada por la legislación europea, que permite la adición de -tocoferol (-T) y 

-tocoferol (-T) bajo el principio quantum satis, es decir sin límite establecido, a los 

aceites refinados, excepto los de oliva. Sin embargo, esta normativa contrasta con la 

información proporcionada por la literatura científica, según la cual, este tipo de 

compuestos pueden comportarse como prooxidantes en determinadas circunstancias. A 

esto hay que añadir que en muchos casos las metodologías utilizadas para evaluar el 

efecto de estos compuestos ofrecen una visión muy limitada del proceso de oxidación, y 

que además, la mayoría de los estudios sobre este tema se han realizado con aceites 

desprovistos de sus tocoferoles originales, y por tanto diferentes de los aceites 

comerciales. Teniendo en cuenta todo esto, se establecieron los objetivos 2 y 3. Éstos 

tienen como finalidad profundizar en el conocimiento del efecto de la adición de 

proporciones variables de -T (0,002, 0,02, 0,2, 2 y 5% en peso) y de -T (0,02, 0,2 y 

2% en peso) sobre la estabilidad oxidativa y el proceso de oxidación de aceite de 

soja comercial bajo condiciones de almacenamiento acelerado. Para ello se ha 

empleado la RMN de 
1
H, prestando atención tanto a la degradación de los grupos acilo 



Resumen /Abstract 

3 

 

como a la formación y posterior evolución de una amplia variedad de productos de 

oxidación. 

Los resultados obtenidos con esta metodología muestran que proporciones de -T 

entre el 0,02 y el 5%, y de 0,2 y 2% de -T reducen la estabilidad oxidativa del aceite de 

soja, más cuanto mayor es la concentración de tocoferol. Sin embargo, dicho efecto es 

más pronunciado para el -T. Esto se deduce de una mayor velocidad de degradación de 

los grupos acilo del aceite y de un aumento más rápido de la concentración de 

hidroperóxidos al aumentar la cantidad de tocoferol. A pesar de ello, un mayor grado de 

enriquecimiento con tocoferol provoca un aumento en el tiempo necesario para alcanzar 

la polimerización total del aceite, y este efecto es más marcado en el caso del -T. El 

enriquecimiento de aceite de soja con - o -T modifica el proceso de oxidación del 

mismo según aumenta la concentración de tocoferol, forzando la formación de (Z,E)-

hidroperóxidos, reduciendo y retrasando la de sus isómeros (E,E), que no aparecen hasta 

etapas más avanzadas del proceso de oxidación, de manera más marcada en el caso del 

-T. Esto tiene consecuencias directas en la naturaleza y proporciones relativas de los 

productos de oxidación secundarios originados a partir de los hidroperóxidos, de tal 

forma que, según aumenta el nivel de tocoferol añadido, se observa una mayor 

generación de compuestos con configuración (Z,E), como hidroxi-dienos conjugados y 

keto-dienos, e incluso aparecen compuestos no detectados generalmente bajo las 

condiciones de almacenaje acelerado estudiadas, tales como (Z, E)-2,4-alcadienales. 

A pesar de estas similitudes entre los efectos de - y -T sobre la evolución del 

aceite de soja, las diferentes intensidades con que cada uno de estos tocoferoles afecta a 

la velocidad de degradación de grupos acilo y a la generación y descomposición de 

hidroperóxidos, dan lugar a diferencias importantes en la tasa de generación de la 

mayoría de los productos de oxidación secundarios en los aceites enriquecidos con - y 

-T. Así, contrariamente al -T, el -T retrasa la aparición de la mayoría de los 

productos de oxidación secundarios en relación con el aceite sin enriquecer, más cuanto 

mayor es la proporción añadida, con la excepción de algunos epóxidos, que se detectan 

antes en el aceite con un 2% de -T que en el original. Estos resultados ponen de 

manifiesto la dificultad de definir el efecto de estos tocoferoles como antioxidante o 

prooxidante, ya que, aunque aceleran la degradación del aceite, más cuanto mayor es la 

concentración de tocoferol, la polimerización total se observa más tarde. 
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En vista de los efectos de - y -T en la oxidación de aceite de soja, y teniendo en 

cuenta que, tal y como se ha descrito en la literatura científica, ciertos aminoácidos 

podrían constituir una alternativa para reducir la oxidación de aceites, se planteó el 

objetivo 4. El propósito fue investigar el potencial efecto antioxidante de la L-lisina, 

un aminoácido esencial, en el proceso de oxidación de un aceite de soja refinado. 

Para lograr dicho objetivo, tanto el aceite de soja en su estado original como este mismo 

aceite enriquecido con lisina en un 1 ó 2% en peso se sometieron a calentamiento a 70 ° 

C en condiciones de agitación, y sus respectivas evoluciones fueron estudiadas 

mediante RMN de 
1
H. Se prestó atención tanto a la degradación de grupos acilo del 

aceite como a la generación y evolución de compuestos de oxidación. Además, también 

se analizó mediante RMN de 
1
H la evolución del principal tocoferol presente en el 

aceite de soja, -T, a lo largo del proceso de oxidación. 

Los resultados muestran que la adición de lisina retrasa considerablemente la 

degradación de los grupos acilo del aceite, así como la generación de compuestos de 

oxidación primarios y secundarios, a la vez que conserva durante más tiempo el 

contenido de γ-T del aceite. Todo esto alarga la vida útil del aceite de soja, de manera 

similar para los dos niveles de lisina probados. En las muestras enriquecidas con este 

aminoácido también se observó una disminución en la concentración máxima alcanzada 

por algunos tipos de productos de oxidación secundarios, especialmente en el caso de 

los bien conocidos tóxicos aldehídos oxigenados α,β-insaturados, probablemente debido 

a su reacción con la lisina.  

Cuando los procesos de oxidación de lípidos tienen lugar en presencia de 

aminoácidos, estos últimos pueden sufrir cambios en su estructura debido a reacciones 

de oxidación o a reacciones con compuestos procedentes de la oxidación lipídica, tales 

como hidroperóxidos, aldehídos o epóxidos, entre otros. No obstante, en la mayoría de 

los estudios llevados a cabo para evaluar la influencia de la presencia de aminoácidos en 

la oxidación de lípidos no se tiene en cuenta el efecto de este proceso en el aminoácido 

en sí. Teniendo en cuenta que el estudio de las posibles modificaciones de la lisina 

durante el proceso de oxidación del aceite de soja podría proporcionar información 

sobre el mecanismo de acción de este aminoácido, se abordó el objetivo 5. Para ello, se 

estudió el proceso de cooxidación de la lisina y del aceite de soja a lo largo de un 

tratamiento térmico a 70 ºC con agitación. El seguimiento de la evolución del aceite se 

llevó a cabo mediante RMN de 
1
H, mientras que para investigar los posibles cambios en 
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la lisina se emplearon la RMN de 
1
H y también cromatografía líquida acoplada a 

espectrometría de masas (CL/EM). Esta última técnica, debido a su mayor especificidad 

y sensibilidad comparada con la RMN de 
1
H, podría proporcionar más información 

acerca de las modificaciones sufridas por el aminoácido. 

Los resultados de este estudio confirman los del anterior con respecto al efecto de la 

lisina en el proceso de oxidación del aceite de soja. Con respecto a la lisina, el estudio 

de una serie de extractos acuosos obtenidos a lo largo del proceso de oxidación del 

aceite enriquecido con este aminoácido, muestra que las principales modificaciones de 

la lisina detectadas bajo estas condiciones se deben a la generación de aductos con 

diversos aldehídos. Los más abundantes y los primeros en detectarse fueron aquéllos 

formados por el extremo N de la lisina con n-alcanales de bajo peso molecular y 

malondialdehído, seguidos por los formados con aldehídos oxigenados -insaturados 

y con (E)-2-alquenales. Cabe destacar que es la primera vez que se pone de manifiesto 

la presencia de varios aductos de lisina con aldehídos de naturaleza variable en un 

sistema modelo lipídico complejo. De entre todos estos aductos, solamente el más 

abundante, N-formil-lisina, se detectó también por RMN de 
1
H. 

Estudio bajo condiciones de digestión in vitro 

La oxidación de lípidos, además de ocurrir durante el almacenamiento y/o procesado 

de alimentos, también puede darse durante la digestión. De hecho, tanto el desarrollo de 

oxidación, como el grado de lipólisis alcanzado durante este proceso, son factores que 

determinan la bioaccesibilidad de los nutrientes de origen lipídico. En este contexto, 

aunque se ha demostrado que la composición en grupos acilo de aceites vegetales 

influye en el grado de oxidación observado bajo condiciones de digestión in vitro, aún 

se sabe muy poco sobre el impacto de los componentes minoritarios que se encuentran 

presentes de forma natural en los aceites comerciales en las reacciones que ocurren 

durante la digestión. Teniendo esto en cuenta, se planteó el objetivo 6, en el que se 

analiza la influencia del conjunto de componentes minoritarios presentes 

naturalmente en aceite de soja comercial sobre su proceso de digestión in vitro, 

prestando atención a las reacciones de lipólisis y de oxidación. Para lograr el objetivo 

propuesto, dos aceites de soja, uno virgen y otro refinado, con grados de insaturación 

similares y diferentes perfiles de componentes minoritarios, se sometieron a un proceso 

de digestión in vitro. El estudio simultáneo de los procesos de lipólisis y de oxidación 

lipídica, y de la evolución del γ-T naturalmente presente en los aceites de soja se llevó a 
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cabo mediante RMN de 
1
H. Además, se empleó también la técnica de MEFS-CG/EM, 

aplicada al espacio de cabeza de las muestras, para obtener información adicional 

relativa a los procesos de oxidación, debido a su mayor sensibilidad y especificidad en 

relación con la RMN de 
1
H. Los resultados de este estudio muestran que, aunque en el 

grado de lipólisis no se observan diferencias entre los dos aceites estudiados, el menor 

contenido de tocoferoles y escualeno y el mayor nivel de ácidos grasos libres en el 

aceite virgen parecen favorecer un grado de oxidación ligeramente más alto durante la 

digestión del aceite de soja virgen que durante la del refinado. Esto se concluye a partir 

de la aparición de hidroperóxidos e hidroxidienos conjugados en el digestato del aceite 

virgen, pero no en el del refinado, y por una mayor generación de aldehídos volátiles en 

el primero. Además, también se observó una reducción algo mayor de la 

bioaccesibilidad de -T durante la digestión del aceite virgen. 

El grado de oxidación y la extensión del proceso de lipólisis durante los procesos de 

digestión in vitro también pueden verse afectados por el grado inicial de oxidación del 

aceite, así como por la presencia de otros nutrientes en el sistema, entre éstos las 

proteínas. Además, el estudio de la evolución de los diferentes tipos de productos de 

oxidación lipídica durante la digestión, así como de los parámetros que influyen en esta 

evolución, se consideran temas de especial interés debido a la potencial toxicidad de 

algunos de estos compuestos, los cuales podrían llegar a reaccionar con diferentes 

componentes de los tejidos del tracto gastrointestinal o incluso ser absorbidos. Teniendo 

en cuenta todo esto se abordaron los objetivos 7 y 8. El objetivo 7 está encaminado al 

estudio del comportamiento durante la digestión in vitro de aceites de soja virgen y 

refinado levemente oxidados, obtenidos mediante un tratamiento térmico a 70 ºC, 

mediante RMN de 
1
H y MEFS-CG/EM. El interés se centró en las reacciones de 

lipólisis, en la evolución del proceso de oxidación durante la digestión, y en evaluar el 

impacto de dos proporciones diferentes de ovoalbúmina, una proteína ampliamente 

utilizada en la industria alimentaria, en ambos procesos. Asimismo, se siguió por RMN 

de 
1
H la evolución del -T en los casos en que fue posible. Con respecto al objetivo 8, 

su propósito fue investigar la biodisponibilidad de los principales nutrientes 

lipídicos y compuestos de oxidación presentes en muestras de aceite de soja 

altamente oxidadas después de la digestión in vitro. Dichas muestras fueron 

obtenidas después de un proceso de almacenamiento acelerado prolongado a 70 ºC. El 

estudio se llevó a cabo mediante RMN de 
1
H, analizando el grado de lipólisis obtenido, 
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el desarrollo de oxidación durante la digestión, la evolución de diferentes clases de 

productos de oxidación presentes en las muestras estudiadas y la generación de 

compuestos de oxidación adicionales, si los hubiera. Además, se abordó el estudio de la 

influencia en todos estos procesos de la presencia de dos proporciones diferentes de 

ovoalbúmina. 

Los resultados obtenidos revelan que el grado de oxidación inicial del aceite de soja 

influye negativamente en la extensión de la lipólisis durante la digestión in vitro, 

reduciendo la biodisponibilidad de los principales nutrientes lipídicos, entre los que se 

incluyen algunos ácidos grasos esenciales como los ω-3. Esto podría deberse a la 

reacción de ciertos productos de oxidación con enzimas lipolíticas. Sin embargo, no se 

observa una gran diferencia entre las muestras con grado de oxidación inicial más alto o 

más bajo. Además, en el caso de los aceites altamente oxidados, se produce un mayor 

grado de oxidación a lo largo del proceso de digestión in vitro, evidenciable por la 

degradación de grupos acilo poliinsaturados, lo cual también contribuye a reducir su 

bioaccesibilidad. 

Con respecto a la evolución de los productos de oxidación, no todos muestran el 

mismo comportamiento durante la digestión. Así, mientras que la concentración de 

hidroperóxidos disminuye considerablemente, los epóxidos, keto-dienos, dihidroxi-

derivados y n-alcanales persisten en gran medida, mostrando algunos de ellos un 

incremento en su concentración después de la digestión. Entre éstos, los epóxidos son 

los compuestos de oxidación más abundantes presentes en los digestatos. Por el 

contrario, cuando los aceites sometidos a digestión in vitro presentan cantidades 

notables de aldehídos oxigenados -insaturados tóxicos, su concentración disminuye 

considerablemente, posiblemente debido a su reacción con proteínas que se encuentran 

en los jugos digestivos. A pesar de ello, parte de ellos sigue estando bioaccesible para su 

absorción. 

Si bien la menor proporción de ovoalbúmina probada no afecta significativamente a 

la evolución de los compuestos de oxidación o al grado de lipólisis, cuando la 

proporción de ovoalbúmina es alta, la lipólisis aumenta de forma importante en los 

aceites ligeramente oxidados, mejorando la bioaccesibilidad de los principales 

nutrientes lipídicos y también de -T. Sin embargo, este efecto es mucho menos 

pronunciado en las muestras con un alto grado de oxidación. No obstante, la presencia 

de una alta proporción de ovoalbúmina durante la digestión de aceites muy oxidados 
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mejora ligeramente la bioaccesibilidad de ciertos nutrientes lipídicos, ya que se reduce 

la extensión de las reacciones de oxidación, y provoca una reducción en los niveles de 

aldehídos tóxicos presentes en los digestatos. Estos resultados evidencian la importancia 

de consumir alimentos que posean una composición variada de nutrientes tales como 

proteínas, las cuales, debido a su acción durante la digestión, pueden reducir el nivel de 

compuestos tóxicos y facilitar el proceso de lipólisis. 
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ABSTRACT 
 

Study under accelerated storage conditions 

The oxidation of food lipids entails both the degradation of major and minor lipid 

nutrients, and the generation of a very broad range of oxidation compounds that not 

only can negatively affect the color, odour or flavour of food products, but also can 

have toxic effects. Therefore, the search for strategies to limit the occurrence of lipid 

oxidation has attracted the interest of food industry and researchers for years. In this 

respect, the use of oils with greater oxidative stability could be a means to limit 

oxidative reactions. In this context, although the influence of the composition in acyl 

groups of vegetable oils on their oxidation rate has been well documented, much less is 

known about the effect that the pool of minor components present in edible oils may 

have on their oxidative stability. In this context, the first objective of this doctoral 

thesis was raised. It was aimed at analyzing the influence of the minor components 

present in commercial soybean oil, considered as a whole, on its oxidative stability 

and its oxidation process under accelerated storage conditions. In order to fulfill this 

objective, two soybean oils, one virgin and the other refined, having very similar 

proportions of the different kinds of acyl groups but different profiles of minor 

components, were subjected to an accelerated storage process at 70ºC and their 

evolution analyzed throughout time. The analysis of the oil in minor components was 

performed by means of Direct Immersion Solid Phase Microextraction followed by Gas 

Chromatography/Mass Spectrometry (DI SPME-GC/MS). Given that a crucial issue 

when assessing lipid oxidation is the methodology employed, 
1
H

 
Nuclear Magnetic 

Resonance (
1
H NMR) was used to monitor on the one hand the degradation rate of oil 

acyl groups, and on the other the generation and further evolution of a wide variety of 

oxidation compounds, both primary (hydroperoxides) and secondary such as epoxides, 

keto-dienes, hydroxy-derivatives and aldehydes. One very important feature is that this 

technique allows one to study simultaneously all these subjects without any 

modification of the sample and without the use of reagents. 

The outcomes of this study reveal that, although both the virgin and the refined 

soybean oils have similar compositions in acyl groups, the lower levels of tocopherols 

and sterols found in the virgin oil, together with its higher free fatty acid content, result 

in a lower oxidative stability and in a faster oil degradation under the assayed conditions 
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when compared to the refined one. Therefore, the knowledge of the edible oil 

composition in minor components could be useful to establish quality levels, relative to 

oxidative stability and content in bioactive compounds beneficial for human health, 

within oils of the same botanical origin and similar unsaturation degrees. In this context, 

DI SPME-GC/MS could constitute a useful tool. 

A commonly employed strategy to avoid or at least reduce the occurrence of edible 

oil oxidation is the addition of compounds with potential antioxidant ability. In this 

regard tocopherols stand out due to their classically attributed antioxidant properties, 

and indeed they are widely employed by industry with this aim. The amount of these 

compounds that can be added as antioxidants to vegetable oils is regulated by the 

European legislation, which allows the addition of both -tocopherol (-T) and -

tocopherol (-T) to refined oils on the basis of the quantum satis principle, this is 

without an established limit, except for refined olive oils. This contrasts with the 

information provided by the scientific literature, according to which prooxidant effects 

of these compounds have been reported under certain conditions. To this, it must be 

added that, in many cases, the methodologies used to assess the effect of these 

compounds only provide a very limited view of the oxidation process, and that most of 

the studies regarding this issue have been conducted with oils devoid of their original 

tocopherols, which are different from commercial oils. Bearing all this in mind, 

objectives 2 and 3 were established. These were aimed at obtaining further knowledge 

about the effect of varying proportions of -T (0.002, 0.02, 0.2, 2 and 5% in weight) 

and of -T (0.02, 0.2 and 2% in weight) on the oxidative stability and the oxidation 

process of commercial soybean oil under accelerated storage conditions by means of 

1
H NMR, paying attention to both acyl group degradation and oxidation product 

formation and subsequent evolution. 

The results obtained show that -T proportions between 0.02 and 5% and -T levels 

of 0.2 and 2% reduce the oxidative stability of soybean oil, more as higher is the 

tocopherol concentration. However, the effect is more pronounced for -T. This has 

been proved through a higher rate of degradation of acyl groups and a more elevated 

pace of hydroperoxide concentration increase in line with tocopherol enrichment level. 

In spite of this, as the tocopherol concentration gets higher, an enlargement in the time 

needed to reach oil total polymerization is observed, more marked in the case of -T. 
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Both the - and the -T enrichments modify the oxidation pathway of soybean oil in 

line with tocopherol concentration, forcing the generation of increasing levels of (Z,E)-

hydroperoxides while reducing and postponing that of their (E,E)-counterparts to the 

most advanced stages of the oxidation process, more markedly in the case of -T. This 

has direct consequences in the nature and relative proportions of secondary oxidation 

products, in such a way that oxidation compounds with (Z,E)-isomerism such as 

conjugated hydroxy-dienes and (Z,E)-keto-dienes are also generated earlier and in 

higher concentration as the tocopherol level rises, and even (Z,E)-2,4-alkadienals, not 

usually detected under the accelerated storage conditions used, appear. 

Despite these similarities between the actions of - and -T on soybean oil evolution, 

the above mentioned variations in the intensity of the effects provoked by each of these 

tocopherols on the rates of acyl group degradation and of hydroperoxide generation and 

decomposition, lead to important differences in the generation rate of most secondary 

oxidation products in the oils enriched with - and -T. Thus, contrary to -T, -T 

delays the appearance of most secondary oxidation products compared to the non 

enriched oil, the higher the enrichment degree, with the exception of some epoxides, 

which are detected earlier than in the non-enriched oil. All these findings evidence the 

difficulty to define the effect of these tocopherols either as antioxidant or prooxidant 

since, although they accelerate oil degradation in line with tocopherol concentration, the 

oil total polymerization is observed later the higher the enrichment level. 

In view of the outcomes regarding the effect of - and -T on soybean oil oxidation, 

and taking into account that, on the basis of their described antioxidant ability on edible 

oils, amino acids could constitute an alternative to reduce edible oil oxidation, 

objective 4 was raised. The purpose was to investigate the potential antioxidant effect 

of L-lysine, an essential amino acid, on the oxidation process of a refined soybean 

oil. To achieve this objective, systems composed of soybean oil and 1% or 2% 

proportions of lysine were subjected to heating at 70º C under stirring conditions, and 

their evolution monitored by 
1
H NMR and compared with that of soybean oil. Attention 

was focused on oil acyl group degradation and oxidation compound generation and 

evolution. In addition, the progress throughout the oxidation process of the 

concentration of the main tocopherol present in soybean oil, -T, was also monitored by 

1
H NMR. 
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The results of this study show that the addition of lysine considerably delays the 

degradation of the oil acyl groups and the generation of both primary and secondary 

oxidation compounds, while preserving the oil content of γ-tocopherol, especially at the 

highest enrichment level. All this extends the shelf life of soybean oil to a similar 

degree for the two lysine levels tested. A diminution in the maximum concentration 

reached by some types of secondary oxidation products is also observed in the lysine-

enriched samples. This is particularly noticeable for aldehydes, whose concentration is 

markedly reduced, above all that of the toxic oxygenated α,β-unsaturated ones, probably 

due to their reaction with lysine. 

On another issue, when lipid oxidation processes take place in presence of amino 

acids, these latter can also undergo oxidation, or react with lipid oxidation products like 

hydroperoxides, aldehydes or epoxides among others, giving rise to a wide variety of 

compounds. Nonetheless, most of the studies focused on the effect of amino acids on 

lipid oxidation disregard the effect of this process on the amino acid itself. Considering 

that the knowledge of the modifications undergone by lysine in parallel with the 

soybean oil oxidation process could provide information about the mechanism of action 

of this amino acid, objective 5 was tackled. This involves the study of the cooxidation 

process of lysine and soybean oil throughout a thermal treatment at 70 ºC under 

stirring conditions. The evolution of the oil was monitored by 
1
H NMR, while that of 

lysine was investigated by 
1
H NMR and also by Liquid Chromatography followed by 

Mass Spectrometry (LC/MS), which due to its greater specificity and sensitivity in 

relation to 
1
H NMR, could provide more information about amino acid modifications. 

The results of this study confirm those of the previous one regarding lysine effect on 

soybean oil oxidation process. Concerning lysine evolution, the analysis by LC/MS of a 

series of aqueous extracts obtained from the oil containing lysine throughout the 

oxidation process reveals that, under the studied conditions, the main modifications of 

lysine detected are due to the generation of lysine-aldehyde adducts. The most abundant 

ones and the first to be detected were those formed at the reactive N position with low 

molecular weight n-alkanals and malondialdehyde, followed by the ones with 

oxygenated -unsaturated aldehydes and (E)-2-alkenals, this being the first time that 

several lysine adducts with aldehydes of varying nature have simultaneously been 

detected in a complex food model system. Of all these lysine-aldehyde adducts, only 

N-formyl-lysine, the most abundant one, was detected by 
1
H NMR. 
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Study under in vitro digestion conditions 

In addition to storage and processing, digestion could also lead to lipid oxidation. 

Thus, the occurrence of oxidation, together with the extent of lipolysis achieved during 

this process, are determining factors for the bioaccessibility of lipid nutrients. In this 

context, the composition in acyl groups of vegetable oils has been shown to have a great 

influence on the oxidation extent, but very little is known about the impact of naturally 

present oil minor components on the reactions occurring during digestion of edible 

oils having similar compositions in acyl groups. Bearing this in mind, in objective 6 the 

influence of the pool of minor components present in soybean oil on its in vitro 

digestion process was addressed, paying attention to lipolysis and oxidation reactions. 

To achieve the proposed goal, two commercial virgin and refined soybean oils, having 

similar unsaturation degrees and different minor component profiles, were submitted to 

a gastrointestinal in vitro digestion process. 
1
H NMR was used to study simultaneously 

the lipolysis extent, the occurrence of lipid oxidation and the evolution of the γ-T 

naturally present in the oil. In addition, headspace SPME-GC/MS was employed to 

obtain further information relative to the occurrence of oxidation, due to its higher 

sensitivity and specificity in relation to 
1
H NMR. The results arising from this study 

shows that, although no differences in the lipolysis extent were observed between the 

two oils subject of study, the lower content of tocopherols and squalene and the higher 

level of free fatty acids in the virgin oil seems to lead to a slightly greater oxidation 

extent during digestion than in the refined type. This is evidenced by the appearance of 

conjugated hydroperoxy- and hydroxy-dienes in the digestate of the virgin oil but not in 

that of the refined one, and by a greater generation of volatile aldehydes in the former. 

In addition, a somewhat greater reduction of -T bioaccessibility during digestion was 

also observed in the virgin oil. 

The extent of oxidation during the in vitro digestion of oils, as well as the lipolysis 

degree, can also be affected by the initial degree of oxidation of the oil and by the 

presence of other nutrients in the system, among them proteins. Moreover, the study of 

the evolution of different types of oxidation products during digestion, and of the 

parameters influencing this evolution, are considered relevant issues due to the potential 

toxicity of some of these compounds, which could react with different biological tissues 

of the gastrointestinal tract and/or be absorbed reaching other targets. Taking all this 

into account objectives 7 and 8 were outlined. Objective 7 tackles the study of the 
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behaviour of slightly oxidized virgin and refined soybean oils, coming from a 

thermal treatment at 70 ºC, during in vitro digestion by means of 
1
H NMR and SPME-

GC/MS. The main objectives were to analyze lipolysis extent and oxidation during 

digestion, and to assess the impact of two different proportions of ovalbumin, a protein 

widely employed by food industry, on both processes. At the same time -tocopherol 

fate was monitored, when possible, by 
1
H NMR. Regarding objective 8, its purpose was 

to investigate the bioaccessibility after in vitro digestion of major lipid nutrients 

and oxidation compounds present in highly oxidized soybean oil samples, obtained 

after a prolonged accelerated storage process at 70 ºC. This was assessed by means of 

1
H NMR, through the extent of lipolysis, the occurrence of oxidation during digestion, 

the fate of different classes of lipid oxidation products already present in the samples 

subject of study and the generation of additional oxidation compounds, if any. 

Moreover, the influence on all these processes of the presence of two different 

proportions of ovalbumin was tackled. 

The results obtained reveal that an initial oxidation degree in soybean oil negatively 

influences the lipolysis extent during in vitro digestion, reducing the bioaccessibility of 

the major lipid nutrients, which include some essential fatty acids like the -3 ones. 

This could be due to the reaction of certain oxidation products with lipolytic enzymes. 

However, great differences are not observed between samples with lower and higher 

initial oxidation degrees. Moreover, in the case of the highly oxidized oils, a greater 

extent of oxidation occurs throughout in vitro digestion, perceivable from the 

degradation of polyunsaturated acyl groups, which also contributes to reduce the 

bioaccessibility of of these latter.  

With regard to the evolution of oxidation products, not all of them exhibit the same 

behavior during digestion. Thus, while hydroperoxide concentration decreases 

considerably, epoxides, keto-dienes, dihydroxyderivatives and n-alkanals persist to a 

great extent, some of them showing a concentration increase after digestion. Among 

these, epoxides are the most abundant oxidation compounds found in the digestates. 

Conversely, when the very reactive and toxic oxygenated -unsaturated aldehydes are 

present in noticeable amounts in the oils subjected to digestion, their concentration 

markedly diminish, possibly to their reaction with proteins of the digestive juices. In 

spite of this, part of them remain bioaccessible for absorption. 
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While the lower ovalbumin proportion tested does not significantly affect lipolysis or 

oxidation or oxidation compound evolution, lipolysis is greatly enhanced when 

ovalbumin is added at a high level to slightly oxidized oils, improving the 

bioaccessibility of major lipid nutrients and also of -T. This effect is much less 

pronounced in the samples exhibiting a high oxidation degree. However, the presence of 

a high proportion of ovalbumin during the digestion of highly oxidized oils slightly 

improves lipid nutrient bioaccessibility by reducing the extent of oxidative reactions and 

causes a diminution in the levels of toxic aldehydes present in the digestates. These 

results evidence the importance of the intake of foods that contain a varied composition 

of nutrients like some proteins, due to their action during digestion, reducing the level 

of toxic compounds and increasing the lipolysis extent. 
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A  Area 

 

AG  Acyl groups 

 

AS  Accelerated storage 

 

Bp  Base peak 

 

CD-OH Conjugated dienes 

associated to hydroxides  

 

CD-OOH Conjugated dienes 

associated to 

hydroperoxides  

 

DG  Diglycerides 

 

DI   Direct immersion 

 

DJ Juices submitted to 

digestion conditions 

 

D2O  Deuterium oxide 

 

DVB/CAR/PDMS Divinylbenzene/ 

Carboxen/Polydimethylsiloxane  

 

FA   Fatty acids 

 

FDP-lysine  N-(3-formyl-3,4-

dehydropiperidino)lysine 

 

GC/MS  Gas Chromatography/ 

Mass Spectrometry 

 

GOL Glycerol 

 

HNA-lysine N-4-hydroxynonanoic 

acid-lysine 

 
1
H NMR Proton Nuclear Magnetic 

Resonance 

 

HPLC High Performance Liquid 

Chromatography 

 

4-HPNE 4-Hydroperoxy-(E)-2-

nonenal 

 

 

L Linoleic 

 

Ln Linolenic 

 

LBA Lipid bioaccessibility 

 

LC/MS Liquid 

Chromatography/Mass 

Spectrometry 

 

LYS  Lysine 

 

MDA  Malondialdehyde 

 

MG  Monoglycerides 

 

MU Monounsaturated 

 

MW  Molecular weight 

 

 

O  Oleic 

 

OP  Oxidation product 

 

RSO/RO Refined soybean oil 

 

S+M  Saturated plus modified 

acyl groups 

 

SO  Soybean oil 

 

SPME Solid Phase 

Microextraction 

 

TBARS  Thiobarbituric acid 

reactive substance assay 

 

TG  Triglycerides 

 

TMS   Tetramethylsilane 

 

U  Unsaturated acyl groups 

 

VSO/VO Virgin soybean oil 

 

α-T   Alpha-tocopherol 

 

γ-T   Gamma-tocopherol 
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1. Lipid oxidation: the need to seek solutions to avoid this deleterious process for 

the nutritional value and safety of food 

Foods are complex matrices that are composed of macronutrients like carbohydrates, 

proteins and/or lipids of diverse nature and of micronutrients like different kinds of 

vitamins, pigments or minerals. Among all these components, lipids have a special 

impact on food quality and safety, since their oxidation entails the degradation of their 

main and minor components and the generation of a very broad range of oxidation 

compounds that not only can negatively affect the colour, odour or flavour of food 

products, but also can have toxic effects (Esterbauer, 1993). 

The oxidation course and, in consequence, the nature, amount and relative 

proportions of the compounds generated can vary depending on different factors such as 

lipid composition, temperature, time, aeration, etc (Martínez‐Yusta et al., 2014). Thus, 

when oxidation occurs at low or medium temperatures, the degradation of lipids gives 

rise, in a first step, to the so-called primary oxidation compounds, which include 

hydroperoxides, and in some cases hydroxides, supporting conjugated diene systems 

with either (Z,E)- or (E,E)-isomerism. However, at high temperatures like the frying 

ones, studies performed by using 
1
H Nuclear Magnetic Resonance (

1
H NMR) reveal 

that hydroperoxides are not generated, or if they are so, their degradation rate is too fast 

for them to be detected with this technique (Guillén & Ruiz, 2008). From the 

breakdown of these primary oxidation products a wide variety of secondary ones can be 

generated, such as different kinds of aldehydes, epoxides, alcohols and ketones (Frankel 

et al., 1982, 1988, 1990). 

Among all these secondary products, aldehydes have been the most studied, and 

practically the only ones considered in most of the studies dealing with the monitoring 

of lipid oxidation (Carocho & Ferreira, 2013). Aldehyde determination constitutes a 

relevant issue, since this type of compounds not only can adversely affect the sensory 

properties and the acceptance of food, but also some kinds of aldehydes like the 

oxygenated α,β-unsaturated ones are well-known toxic compounds, due to their great 

ability to react with biological molecules like proteins and DNA (Guillén & 

Goicoechea, 2008). 

Another group of oxidation products that include potentially toxic compounds is that 

constituted by epoxides, even though they are hardly considered in oxidation studies. 
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Only over the last few years this type of compounds are receiving increasing attention 

from some researchers like Brühl and coworkers (2016), according to whom epoxidized 

fatty acids are suspicious to be linked with different diseases, such as cardiac failure or 

respiratory distress syndrome, among others. Moreover, very recently, the citotoxicity 

on HepG2 cells of epoxystearic acid, an oxidation product derived from oleic acid, has 

been reported (Liu et al., 2018). The toxicity of epoxy fatty acids has been considered to 

rely on the high reactivity that the oxirane ring confers to these molecules (Greeene et 

al., 2000), and some studies have suggested that they may even cause cancer (Wilson et 

al., 2002). Also in recent years, several authors are stressing the need to determine 

epoxides to accurately assess the extent of lipid oxidation (Grüneis & Pignitter, 2018; 

Schaich et al., 2017). In fact, monoepoxides have been found to be one of the major 

groups of oxidized compounds formed at frying temperatures (Velasco et al., 2004), and 

epoxides have also been detected in considerable amounts during the oxidation of 

sunflower oil under accelerated storage (AS) conditions (Goicoechea & Guillén, 2010). 

In addition to degradation of essential lipidic macronutrients and generation of 

deleterious products, oxidation can also provoke losses of minor lipidic nutrients 

considered to have bioactive properties like, for example, certain compounds with 

antioxidant ability such as tocopherols (Gottstein & Grosch, 1990; Wagner & Elmadfa, 

2000; Wagner et al., 2004). Therefore, the occurrence of lipid oxidation reactions can be 

determinant for the nutritional value, shelf life and safety of foods.  

For all the reasons commented above, the reduction of lipid oxidation has raised the 

interest not only of researchers but also of the food industry for decades. This has led to 

the search for strategies aimed at limiting the occurrence of oxidation reactions and 

alleviating their impact on the quality of lipidic food, especially edible oils, which make 

a great contribution to dietary lipids. In this respect, the use of oils with greater 

oxidative stability can constitute a medium to limit oxidative reactions. Concerning this 

issue, many works have been conducted where the influence of the composition in acyl 

groups of vegetable oils on their oxidation rate has been evidenced (Martínez-Yusta et 

al., 2014). However, less is known about the impact that the pool of minor components 

present in certain types of oils, which are the result of their botanical origin (Alberdi-

Cedeño et al., 2017; Johnson et al., 2015; Phillips et al., 2002) and also of their 

processing (Jung et al., 1989), can exert on their behaviour under oxidative conditions. 

Regarding this topic, studies are usually intended to address the effect of specific 
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individual compounds or groups of compounds that, in general, are exogenously added 

to oils devoid of their original minor components (Dolde & Wang, 2011; Jung & Min, 

1990; Koskas et al., 1984; Yoshida & Niki, 2003), so the extrapolation of the results 

obtained to commercial oils may not be entirely satisfactory. It must also be noticed 

that, aside from compounds with antioxidant ability, vegetable oils can also contain 

other minor components able to favour oxidation like, for example, free fatty acids 

(Waraho et al., 2011). Therefore, the separate analysis of the influence of different types 

of minor components on the oxidative stability of oils could not be enough to assess the 

impact that the group of minor components present in commercial oils could have on 

their behaviour under oxidative conditions. Having this in mind, it would be interesting 

to go deeper into the effect that the pool of minor components naturally present in 

edible oils, considered as a whole, could have on the oxidative stability and the 

behaviour under oxidative conditions of oils with similar compositions in acyl groups, 

as would be expected to be the case of oils of the same botanical origin. 

2. The use of compounds with antioxidant ability to reduce the occurrence of lipid 

oxidation 

A strategy to avoid, or at least reduce, the occurrence of lipid oxidation in edible oils 

is the addition of compounds with potential antioxidant ability. This latter practice has 

intensified over time due, firstly, to the existing trend of enriching food in 

polyunsaturated lipids, which are especially prone to oxidation, and secondly, to the 

general belief that there are compounds that act as antioxidants under any conditions 

and that the intensity of this effect can be increased in line with the enrichment level. In 

this regard, some of the compounds that have been subject of myriads of studies over 

years are tocopherols, the main compounds with antioxidant ability present in vegetable 

oils. 

2.1. The effect of tocopherols on lipid oxidation 

Among the four different tocopherols that can be found in vegetable oils (-, -, - 

and -), either -tocopherol (-T) or -tocopherol (-T) are the major ones depending 

on the type of oil (Alberdi-Cedeño et al., 2017; Gliszczynska-Swiglo et al., 2007), 

although -T has been considered to have greater activity at the biological level than -

T. This latter fact can be explained by the existence of an -T transfer protein in the 

liver highly selective for this compound that causes the excretion of other tocopherols as 
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bile, or by the urine (Birringer et al., 2002), resulting in an -T concentration in tissues 

10 fold higher than that of -T (Wolf, 2006). These two compounds, whose chemical 

structures can be observed in Figure 1, differ in the number of methyl groups attached 

to the chromanol ring, which also determines differences in their hydrogen donor ability 

(Gottstein & Grosch, 1990) and therefore in their effect on lipid oxidation (Huang et 

al.,1994). 

α-Tocopherol 

 

 

 

 

γ-Tocopherol 

 

 

 

 

Figure 1. Chemical structures of α- and γ-tocopherols. 

Due to their classically attributed antioxidant properties (Seppanen et al., 2010), 

tocopherols are commonly employed by industry with this aim. The amount of these 

compounds that can be added as antioxidants to vegetable oils is regulated by the 

European legislation, which allows the addition of both -T and -T to refined oils on 

the basis of the quantum satis principle (Commission Regulation 1129/2011), this is 

without an established limit, except for refined olive oils. However, this lack of 

restriction in the use of tocopherols, and concretely of -T, contrasts with that found 

when analyzing the extensive scientific literature regarding the effect of -T on the 

oxidative stability of lipids, since controversial results have been obtained concerning 

this issue. Indeed, the outcomes of multiple scientific works dealing with the 

antioxidant ability of -T, performed with various matrices like linoleic acid and its 

methyl ester (Cillard, et al., 1980; Koskas et al.,1984; Mäkinen et al., 2000; Morales et 

al., 2012; Terao & Matsushita, 1986), purified oil triglycerides (Blekas et al., 1995; 
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Dolde & Wang, 2011; Evans et al., 2002; Fuster et al.,1998; Huang et al., 1994; Isnardy 

et al., 2003, 2016; Jung & Min, 1990, 2015; Kulas & Ackman, 2001; Lampi et al., 

1999; Ohm et al., 2005), vegetable oils (Tabee et al., 2008; Wagner & Elmadfa, 2000), 

fish oils (Zuta et al., 2007), lard (King et al., 2011), oil-in-water emulsions (Dwyer et 

al., 2012; Heinonen et al., 1997; Huang et al., 1994;  Jayasinghe et al., 2013; Kamal-

Eldin & Budilarto, 2014; Osborn-Barnes & Akoh, 2003; Wagner et al., 2004; Winkler-

Moser et al., 2014), fried food systems (Neff et al., 2003; Nogala-Kalucka et al., 2005) 

and other types of food products like corn chips or avocado puree (Elez-Martínez et al., 

2007; Rogalski & Szterk, 2015), evidence the prooxidant effect of -T under certain 

circumstances, and especially depending on its concentration (Blekas et al., 1995; 

Cillard et al., 1980; Dolde & Wang, 2011; Huang et al., 1994; Isnardy et al., 2003; Jung 

& Min, 1990; King et al., 2011; Koskas et al., 1984; Terao & Matsushita, 1986; Wagner 

et al., 2004). Therefore, it is evident that an antioxidant effect of this compound should 

not be generally assumed. 

In this context, it is worthwhile noticing that some researchers have warned about the 

risk of altering the balance among the several antioxidants present in oils by increasing 

the concentration of only one of them (Kamal‐Eldin & Pickova, 2008). In the case of 

tocopherols, this could be due to the fact that the donation of an hydrogen atom to 

neutralize radicals derived from unsaturated lipid molecules could result in the 

generation of tocopheroxyl radicals, which are also able to give rise to the generation of 

lipid radicals under certain circumstances (Isnardy et al., 2003). However, when there 

are other compounds present in the medium able to regenerate tocopherols from 

tocopheroxyl radicals, the potential participation of these radicals in prooxidant 

reactions can be limited, what it would not be possible if they are in excess, leading to 

the promotion of further reactions of lipid oxidation (Kamal-Eldin & Appelqvist, 1996). 

Although as mentioned above, -T has been the most widely studied tocopherol, -T 

has also received quite attention. With respect to this tocopherol, it has been shown to 

exhibit a greater antioxidant efficiency in comparison with α-T (Gottstein & Grosch, 

1990; Wagner et al., 2004), together with a lower susceptibility to exert a prooxidant 

action (Gottstein & Grosch, 1990; Huang et al., 1994; King et al., 2011). In fact, among 

the studies performed to investigate the effect of γ-T on the oxidative stability of a wide 

range of lipidic systems like linoleic acid and/or methyl linoleate (Gottstein & Grosch, 

1990; Koskas et al., 1984), various types of purified vegetable oils (Fuster et al., 1998; 
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Huang et al., 1995; Isnardy et al., 2003; Jung & Min, 1990; Lampi et al., 1999), oil-in-

water emulsions (Heinonen et al., 1997; Huang et al., 1994), olive and linseed oils 

(Wagner & Elmadfa, 2000), margarine (Azizkhani et al., 2011), fish oil enriched salad 

dressing (Let et al., 2007) and lard (King et al., 2011), only a few of them have shown a 

prooxidant effect of -T in different types of purified oils (Huang et al., 1995; Isnardy et 

al., 2003; Jung & Min, 1990), as well as in linseed oil (Wagner & Elmadfa, 2000). 

As evidenced in the multiple studies mentioned, it is noteworthy and, to a certain 

extent, striking, that diverging results can be sometimes attributed to the methodology 

employed to monitor lipid oxidation, since the effect of any compound with antioxidant 

ability should be independent of the analytical tool employed to examine such effect. 

This evidences the unsuitability of some methodologies to assess accurately the real 

action of potential antioxidants like tocopherols. Indeed, some of the studies are based 

on the performance of non-specific classical methods, such as the peroxide value, the 

spectrophotometrical measurement of conjugated dienes (Cillard et al., 1980; Dolde & 

Wang, 2011; Isnardy et al., 2003; Jung & Min, 1990, Lampi et al., 1999), the p-

anisidine value to measure the concentration of certain aldehydes altogether (Isnardy et 

al., 2003; Lampi et al., 1999) or the thiobarbituric acid reactive substance (TBARS) 

assay (Zuta et al., 2007). In addition, although other techniques able to provide specific 

information about the nature of the oxidation products generated such as High 

Performance Liquid Chromatography (HPLC) have also been used to assess the effect 

of tocopherols on lipid oxidation, the studies are in general limited to certain individual 

hydroperoxides, hydroxy-dienes or keto-dienes (Banni et al., 1996; Koskas et al., 1984; 

Mäkinen et al., 2000). In the case of aldehydes, despite the great variety of these 

compounds that can be generated during lipid oxidation processes, their evolution is in 

some cases addressed by only examining the behaviour of hexanal (Heinonen et al., 

1997; Huang et al., 1994; Isnardy et al., 2003; Lampi et al., 1999; Ohm et al., 2005). 

Moreover, most studies exclude some of the most toxic oxidation products, as is the 

case of the oxygenated -unsaturated aldehydes (Guillén & Goicoechea, 2008). In 

addition to all the commented limitations, another factor that can affect the conclusions 

obtained from these studies is the use of only one type of oxidation marker, generally 

hydroperoxides or a reduced number of aldehydes. It must be taken into account that 

paying attention just to a very limited number of oxidation compounds could lead 

to misleading conclusions, since the whole oxidation process is not being monitored 
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with a broad perspective (Martínez-Yusta & Guillén, 2019). In fact, the limitations of 

the classical methodologies traditionally used to assess lipid oxidation have been 

highlighted by some researchers with extensive experience in this field (Frankel, 1993; 

Frankel & Meyer, 2000; Schaich et al., 2017). 

All the aforementioned demonstrates the need to employ approaches that provide 

a global view of the oxidation process by monitoring a broad range of compounds, 

in order to make an assessment of the effect of -T and -T on the oxidative stability of 

food lipids as accurate and complete as possible. In this regard, 
1
H NMR has been 

proved to be a powerful technique in the study of oils and fats, and it has significantly 

contributed to knowledge of the oxidation processes of oils and fats under very different 

conditions (Guillén & Ruiz, 2005; Guillén & Uriarte, 2009; Martínez‐Yusta et al., 

2014), providing insight not only into the degradation rate of the main oil and/or food 

lipids components (acyl groups), but also into the nature and concentration of a wide 

range of oxidation compounds, both primary and secondary, some of which are not 

usually determined by the methodologies generally employed to assess lipid oxidation. 

This evidences the great ability of 
1
H NMR to offer a comprehensive view of the 

oxidation course, without the need for chemical changes in the sample or the use of 

reagents. 

Considering all the above mentioned about the prooxidant potential, especially of -

T but also of -T, under certain conditions, and that their addition without an established 

limit is allowed in most refined edible oils, the concern arises about whether this 

practice could negatively affect oil stability and even human health. Moreover, given 

that some of the conclusions that can be extracted from the literature could result 

somehow contradictory, it would be of interest obtaining further knowledge about the 

effect of these two tocopherols on the oxidation process of edible oils. 

In this context, another worth mentioning issue, which could also affect the results 

obtained when studying the effect of tocopherols on the oxidative stability of oils, is the 

type of oil used. In this sense, it must be noticed that in the available scientific literature 

most of the studies deal with the effect of tocopherols on stripped oils, which are devoid 

of their original tocopherol content (Dolde & Wang, 2011; Fuster et al., 1998; Huang et 

al., 1995; Isnardy et al., 2003; Jung & Min, 1990; Lampi et al., 1999; Ohm et al., 2005). 

It is obvious that the varying levels and proportions of endogenous tocopherols and of 
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other minor compounds could condition the effect observed in oils when exogenous 

tocopherols are added, but it is also true that oils available for consumption are not 

subjected to any stage aimed at removing tocopherols. Hence, the study of the 

tocopherol enrichment using oils containing all their components would reflect better 

the reality of the food industry and of the consumers. Otherwise, it would be difficult to 

extrapolate the results obtained to real practice and erroneous conclusions could be 

obtained about the most appropriate level of tocopherols to improve the oxidative 

stability of edible oils. To exemplify the importance of considering the original 

tocopherol content of the oil in this type of studies, it is worthwhile mentioning the 

work conducted by Frankel and coworkers in 1959, where the oxidative stability of 

stripped soybean oil was found to be greater than that of the original oil. Having this in 

mind, it would be possible that the effect of the same tocopherol dose was different 

depending on whether it is added to a stripped or to a non-stripped oil. In this regard, 

little is known about the effect of tocopherols on the oxidative stability and the 

oxidation process of real, commercial edible oils. 

2.2. Amino acids as an alternative to other types of classical plant-derived 

compounds able to act as antioxidants 

The interest in developing strategies to minimize lipid oxidation has led to the search 

for multiple sources of compounds of varying nature able to act as antioxidants. The 

classical compounds with antioxidant ability most widely employed consist of 

micronutrients like phenolic compounds or carotenoids among others, which once 

added to food, are supposed to delay the advancement of oxidation reactions (Carocho 

& Ferreira, 2013). However, as discussed in section 2.1, some compounds with 

antioxidant ability like -T, but also others like carotenoids and even polyphenols, are 

surrounded by certain controversy due to their prooxidant effects under certain 

conditions (Eghbaliferiz & Iranshahi, 2016; Haila et al., 1996; Sakihama et al., 2002; 

Warner & Frankel, 1987). In this context, a great interest has been focused in the last 

decades on amino compounds like milk and soy proteins and a wide variety of protein 

hydrolysates of diverse origin, whose antioxidant ability has been proved in various 

food systems (Al-Shamsi et al., 2018; Bakota & Winkler-Moser, 2017; Cheetangdee & 

Benjakul, 2015; Elias et al., 2006; Hu et al., 2003; Singh et al., 2018). 
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With regard to the usefulness of free amino acids to reduce lipid oxidation, the 

antioxidant activity of several amino acids has been demonstrated for example in 

vegetable oils and oil-in-water emulsions (Ahmad et al., 1983; Hidalgo et al., 2006; 

Hwang & Winkler-Moser, 2017), even though prooxidative effects for some amino 

acids under certain conditions have also been reported (Ahmad et al., 1983; Marcuse, 

1962; Riisom et al., 1980). Although it is true that the structure of amino acids and the 

presence of additional functional groups can determine their ability to react not only 

with oxygen and/or lipid-derived radicals, but also with already formed oxidation 

compounds (Stadtman, 1993; Viljanen et al., 2005), the medium and the conditions 

under which oxidation takes place can also have a great influence on the amino acid 

behaviour towards oxidation. In fact, dissenting results regarding the effect of amino 

acids can be observed in different systems and even in the same system but under 

varying conditions (Marcuse, 1962; Yee & Shipe, 1982). This reveals the importance of 

carrying out studies using models as similar as possible to those under which it is 

intended to reduce lipid oxidation. 

As just stated, the functional groups present in certain amino acids affect their 

reactivity and the way these compounds act on the lipid oxidation course. In this sense, 

one of the amino acids that have been shown to exert antioxidant actions on food lipids 

is L-lysine (Ahmad, et al., 1983;  Hwang  &  Winkler-Moser,  2017). Regarding this 

amino acid, whose structure is shown in Figure 2, it contains a free amino group at the 

 N-position, considered to be very reactive, and 

it can take part in the chelation of transition 

metals (Ahmad al., 1983; Gutteridge et al., 

1981), scavenge free radicals or even regenerate 

antioxidants like tocopherols (Kamal-Eldin & 

Appelqvist 1996). What is more, this amino acid 

could also play a role as antioxidant when it 

reacts with carbonyl compounds derived from 

lipid oxidation, since some products of this type 

 

  

 

Figure 2. Chemical structure of L-Lysine 
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of reaction are said to slow down lipid oxidation (Alaiz et al., 1995a,b).  

Although several studies have been conducted on the effect of proteins, peptides or 

amino acids on lipid oxidation, (Filippenko & Gribova, 2011; Gopala Krishna & 

Prabhakar, 1994; Hidalgo et al., 2006; Karel et al., 1966; Marcuse, 1962; Riisom et al., 

1980,), similarly to that pointed out in section 2.1, the assessment of this action is based, 

in general, on classical methodologies that offer only a limited view of the oxidation 

process and fail to enable the advancement in the knowledge about the mechanism 

through which different amino acids might exert antioxidant effects. Among these, 

oxygen consumption, peroxide value measurement, spectrophotometrical determination 

of conjugated dienes or TBARS assay can be mentioned (Ahmad et al., 1983; Chen & 

Nawar, 1991; Farag et al., 1978; Filippenko & Gribova, 2011; Gopala Krishna & 

Prabhakar, 1994; Hidalgo et al., 2006a,b; Karel et al.,1966; Marcuse, 1962; Park et al., 

2005 Riisom et al.,1980). This issue becomes particularly important in the study of the 

antioxidant potential of amino acids, because some of them, like for example lysine, are 

able to react with certain lipid oxidation products (Gardner, 1979; Schaich, 2008; 

Shimozu et al., 2011; Uchida, 2015; Zamora & Hidalgo, 1994); this fact can somewhat 

alter the perception of lipid oxidation and then underestimate the extent of this process, 

especially if only one type of oxidation marker is used. Therefore, an accurate 

assessment of the effect of amino acids on lipid oxidation requires the monitoring of a 

wide range of oxidation products throughout a prolonged period under oxidative 

conditions. 

On another issue, when lipid oxidation processes take place in presence of amino 

acids, these latter can also undergo oxidation, and in fact, free radical transfer from 

lipids to proteins has been reported to occur early in lipid-protein cooxidation processes 

(Schaich & Karel, 1975, 1966, 1980; Schaich, 2008). In addition, as pointed out above, 

amino acids can react with lipid oxidation products like hydroperoxides (Gardner, 

1979), aldehydes (Hidalgo & Zamora, 2016; Shimozu et al., 2011; Schaich, 2008; 

Uchida, 2015) and epoxides (Gardner et al., 1985; Schaich, 2008), this provoking 

changes in their structure, crosslinking reactions and the generation of a wide variety of 

compounds (Hidalgo & Zamora, 2016; Schaich, 2008), among other effects. Moreover, 

the compounds derived from these reactions can in turn take part in other processes like 

for example polymerization ones (Davies, 2005; Zamora & Hidalgo, 2005). At this 

point, it is worthwhile noticing that the cooxidation of lipids and proteins constitutes a 
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relevant issue in the area of food science, since it can cause losses in the biological 

value of foods, as well as changes in some organoleptic features (Schaich, 2014). 

Lipid oxidation is a dynamic process, constantly changing and contributing new 

oxidants. In consequence, the mechanisms of action, and in case of taking place, the rate 

and type of reactions of amino acids with lipid oxidation products that are being 

generated, can change with the extent of oxidation. Thus, the analysis of how amino 

acids can be modified when they are involved in a cooxidation process with lipids 

constitutes a challenging task. In line with this, and with the aim of obtaining a global 

picture of the cooxidation process of lipids and amino acids, the oxidative modifications 

of amino acids, which represent the “other side of the coin” of these dynamic processes, 

constitute a very interesting subject that, due to its complexity, is often ignored despite 

the relevance of its consequences (Schaich, 2008). In this context, the study of the 

cooxidation process of amino acids and lipids with techniques that could provide a 

global perspective of the reactions taking place both in the oil and in the amino acid 

itself would be of great interest in order to advance within this field of knowledge.  

3. The oxidation process and lipolysis during in vitro digestion: relevant issues 

related to the health effects of dietary lipids and influenced by several factors 

The changes undergone by food lipids throughout the digestion process is an issue of 

great interest, since on the one hand they are sources of essential nutrients, and on the 

other because some lipids are very prone to oxidative degradation. Indeed, lipid 

digestion constitutes a critical step conditioning the bioaccessibility and health effects of 

dietary lipids. Thus, this physiological process not only determines the proportion of 

absorbable molecules, including essential fatty acids, but also it can promote lipid 

oxidation depending on the composition of the ingested products; this refers, among 

other factors, to lipid concentration (Li et al., 2011), the structure on which fatty acids 

are supported (triglycerides or partial glycerides), the length of the acyl group chains (Li 

et al., 2011; Zhu et al., 2013), the presence of free fatty acids (Golding & Wooster, 

2010) or the initial oxidation degree of the lipids (Nieva-Echevarría et al., 2017a,b). 

Actually, it has been evidenced that oxidation takes place during digestion (Larsson et 

al., 2012; Nieva-Echevarría, et al., 2017a,b; Steppeler et al., 2016), and that this can 

provoke losses not only of major lipidic nutrients like fatty acids (Nieva-Echevarría et 

al., 2017a,b), but also of certain micronutrients considered to be able to exert an 
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antioxidant action such as tocopherols (Kenmogne-Domguia et al., 2014), reducing the 

bioaccessibility of all of them. This evidences the relevance of the knowledge of the 

factors that can affect this process. In this sense, similarly to that observed under AS 

conditions, the lipid composition in acyl groups has a great influence on the oxidation 

extent during digestion. Thus, a higher degree of oxidation has been observed during the 

digestion process of linseed oil than in that of sunflower oil (Nieva-Echevarría et al., 

2017a,b), this latter being less unsaturated than the previous one. 

In the case of vegetable oils, in addition to their unsaturation degree, attention should 

also be given to the influence of their minor components on the reactions occurring 

during digestion, particularly on oxidation. Indeed, as commented in section 1, these 

have a noticeable impact on the oxidative stability of oils and on their behaviour under 

oxidative conditions (Choe & Min, 2006). Among them, tocopherols, phytosterols, free 

fatty acids or metal ions can be mentioned, which despite their low concentrations, can 

either increase the oxidative stability of oils, or on the contrary, reduce it. Therefore, 

similarly to that argued under AS conditions, the composition in minor components 

could also affect the processes taking place during digestion. Bearing all this in mind, 

the analysis of the influence of the pool of minor components present in vegetable oils, 

on their in vitro digestion process paying attention to lipolysis and oxidation reactions is 

considered to be an interesting research issue. 

Also in the context of lipid digestion, it is worth noticing that the presence of 

oxidation products of different nature in the food bolus, either generated in situ 

during digestion or arising from the diet, not only could impair to a certain extent the 

lipid digestive process by reducing lipolysis and, in consequence, the bioaccessibility of 

essential lipophilic nutrients (Márquez-Ruiz et al., 2008; Nieva-Echevarría et al., 

2017a,b; Nik et al., 2010; Sánchez-Muniz et al., 2000), but also could have negative 

consequences for human health. In this respect, it is widely known that some oxidation 

products, like is the case of oxygenated -unsaturated aldehydes, are very toxic 

compounds, (Guillén & Goicoechea, 2008). Moreover, although studied to a much 

lower extent than aldehydes, certain types of epoxides coming from both linoleic and 

oleic groups are also suspicious to have deleterious effects on human health (Brühl et 

al., 2016; Greene et al., 2000; Liu et al., 2018). Due to their reactivity, all these 

compounds could different modify biological components of the gastrointestinal 

mucosa (Kanazawa et al., 1988), and also be absorbed, thus reaching different targets 
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(Awada et al., 2012; Penumetcha et al., 2000; Wilson et al., 2002). Notwithstanding, in 

spite of the relevance of this topic, it could be said that very little is known about the 

evolution of oxidation products throughout digestion since, as far as we know, only a 

few studies have been carried out on this subject (Awada et al., 2012; Chalvardjian et 

al., 1962; Goicoechea et al., 2008; Kanazawa & Ashida, 1998a,b; Wilson et al., 2002), 

most of them focused on determining the absorbed fraction of only a few compounds 

(Awada et al., 2012; Wilson et al., 2002), so the information provided is very limited. 

Finally, another crucial factor that can influence the evolution of digested lipids in 

the gastrointestinal tract, particularly difficult to assess due to the countless options that 

can be formulated, is the presence of other nutrients, among them proteins. As 

reported by Nieva-Echevarría and coworkers (2017c), the presence of proteins during 

the in vitro digestion of slightly oxidized sunflower and linseed oils can affect the extent 

both of lipolysis and of oxidation occurring during this process, favouring and limiting, 

respectively, both types of reactions. Moreover, the antioxidant potential of proteins 

could be enhanced during digestion due to the hydrolytic processes taking place, which 

allow the release of peptides, whose antioxidant potential can be even higher than that 

of proteins (Elias et al., 2006). Notwithstanding, it must also be noticed that the impact 

of proteins on oxidation reactions also depends on their composition, since for example 

iron-containing proteins (heme proteins) could promote oxidation during digestion (Van 

Hecke et al., 2014). 

Regarding the methodologies to study lipid digestion, both in vivo and in vitro 

systems have been used (Kostewicz et al., 2014). However, due to practical and ethical 

reasons, in vitro models, with their intrinsic advantages and drawbacks, are widely 

employed, either in its dynamic (Larsson et al., 2016; Maestre et al., 2013) or static 

versions (Steppeler et al., 2016; Van Hecke et. al., 2014a,b, 2016); these in vitro 

digestion models have been shown to correlate well with the data obtained in vivo 

(Kostewicz et. al., 2014). In the context of in vitro methodologies, it is worth noticing 

the importance of simulating the complete digestion process including especially 

gastric and duodenal stages. In this respect, several studies dealing with lipid oxidation 

during digestion focus only on the gastric phase (Gobert et al., 2014; Lorrain et al., 

2012; Tirosh et al., 2015), disregarding the reactions occurring in the gut. 
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Among the existing techniques to monitor lipid hydrolysis during digestion, 
1
H NMR 

has several advantages over titration and chromatographic methods (Nieva-Echevarría 

et al., 2018), and it has been proved to be extremely useful to estimate at the same time 

the different types of glycerides generated and the proportion of absorbable molecules. 

Thus, based on 
1
H NMR analysis, several works have been recently conducted that have 

succeded in optimizing the methodology to simulate lipid digestion (Nieva-Echevarría 

et al., 2014, 2017a,b, 2018), based on the method of Versantvoort and coworkers 

(2005), achieving lipolysis degree close to those found in vivo (Golding & Wooster, 

2010). Moreover, 
1
H NMR allows one to monitor, simultaneously with lipolysis, the 

occurrence of lipid oxidation and the evolution of oxidation products already present in 

the samples (Nieva-Echevarría et al., 2017a,b). 

It is worthwhile noticing that the deeper knowledge about the reactions taking place 

throughout digestion, the better assessment of the transformations undergone by lipids 

before their absorption and of their potential effect on human health. However, the 

multitude of factors that can affect this process still makes the study of lipid digestion a 

very complex and challenging task. 

In summary, issues related to the importance of minor oil components in the 

oxidative stability of edible oils, as well as the in-depth study of the role played in the 

oxidation process of edible oils by some compounds to which antioxidant ability has 

been classically attributed and by others barely considered such as amino acids, will be 

the object of attention. Furthermore, the influence of several factors on the in vitro 

digestion of oils, considering both lipolysis and oxidation, will also be addressed. 

 

 



 

34 

 

 

 

 

AIMS AND 

OBJECTIVES 

 

 

 

 

 

 

 

 

 

 

 



Aims and objectives 

35 

 

The structure of this doctoral thesis relies on three main aims, some of them 

encompassing several objectives. 

AIM 1: STUDY OF THE INFLUENCE OF THE MINOR COMPOUNDS 

NATURALLY PRESENT IN COMMERCIAL SOYBEAN OIL ON ITS 

EVOLUTION UNDER ACCELERATED STORAGE CONDITIONS. 

This aim is based on the achievement of one only objective: Objective 1 

1. Analysis of the effect of the pool of minor components present in commercial virgin 

and refined soybean oils, determined by Direct Immersion SPME-GC/MS, on their 

evolution under accelerated storage conditions (70 ºC), monitored by 
1
H NMR 

(Manuscript 1) 

The consecution of this objective will give information about the influence that the 

minor components naturally present in oils of the same botanical origin with very 

similar composition in acyl groups can have on their evolution under oxidative 

conditions. This might contribute to establish criteria for the selection of vegetable oils 

with better oxidative stability among those from the same botanical source. 

 

AIM 2: ASSESSMENT OF THE EFFECT OF ADDING ALPHA-TOCOPHEROL, 

GAMMA-TOCOPHEROL OR L-LYSINE ON THE OXIDATIVE STABILITY 

AND THE OXIDATION PROCESS OF COMMERCIAL SOYBEAN OIL 

SUBMITTED TO ACCELERATED STORAGE CONDITIONS. 

For this purpose, the following objectives were established: 

2.1. Study of the effect of enriching a commercial soybean oil with different proportions 

of -tocopherol (0.002, 0.02, 0.2, 2 and 5% in weight) on its evolution under 

accelerated storage conditions at 70 ºC by means of 
1
H NMR, paying attention to 

both acyl group degradation and oxidation compound generation and evolution. 

(Manuscript 2) 
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2.2. Assessment by means of 
1
H NMR of the influence of different levels of γ-

tocopherol (0.02, 0.2 and 2% in weight) added to a commercial refined soybean oil on 

acyl group degradation and oxidation compound generation and further evolution 

throughout an accelerated storage process at 70 ºC, and comparison with that of -

tocopherol. (Manuscript 3) 

Up to now, the assessment of the effect of tocopherols on the oxidative stability of 

edible oils and on lipid oxidation processes has often been carried out on the basis of 

one type, or at most two, of oxidation markers, determined by means of classical 

methodologies that generally do not provide much information about how the 

oxidation process takes place, and that in some cases could lead to erroneous 

conclusions regarding the antioxidant ability of the tocopherols tested. Moreover, most 

of the studies on this issue have been performed with stripped oils, devoid of their 

original tocopherols, which are different from those commercially available. 

With the consecution of the two goals here proposed, conducted with commercial 

oils already containing tocopherols and other types of minor components, the effect of 

- and -tocopherols on soybean oil oxidation process will be analyzed in depth by 
1
H 

NMR. This will allow to establish relationships among the evolutions of different types 

of oxidation products, thus obtaining a global view of the oxidation course. Moreover, 

the differences in the mechanism of action of α- and γ-tocopherols will become 

evident, as well as their effect on soybean oil at different concentration levels. This 

could provide useful practical information relative to the suitability of these types of 

tocopherols to be used as antioxidants in commercial edible oils. It should also be 

mentioned that the European Union allows the addition of both - and -tocopherols to 

most refined oils on the basis of the quantum satis principle, this is without an 

established limit. In this sense, these studies will show if this rule could be considered 

adequate or if, on the contrary, it would be necessary to revise it. 
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2.3. Investigation of the effect of different proportions of L-lysine (1 and 2% in weight) 

on the evolution of a commercial refined soybean oil throughout a thermal treatment 

at 70 ºC by means of 
1
H NMR, paying attention to the evolution of oil acyl groups 

and -tocopherol, and to the generation of a wide range of oxidation products. 

(Manuscript 4) 

With the accomplishment of this goal, the action of L-lysine on the oxidation 

pathway of a commercial refined soybean oil will be assessed. Thanks to the global 

perspective of the oxidation processes that 
1
H NMR allows one to obtain, a wide vision 

of the influence of this amino acid on oil oxidation, not achieved before, will be 

obtained. This will be useful to advance in the knowledge of the antioxidant action of 

amino acids in lipid matrixes and will provide information about the potential of this 

type of dietary amino compounds as antioxidants in edible oils and maybe in other lipid 

systems. Moreover, this study will enable to compare the antioxidant ability of lysine 

with that of the tocopherols before mentioned. 

 

2.4. Study of the effect of the cooxidation of soybean oil and L-lysine, added in a 

proportion of a 2% in weight, on their respective evolutions throughout a thermal 

treatment at 70 ºC by combining 
1
H NMR and LC/MS analyses. (Manuscript 5) 

The simultaneous study of the cooxidation of L-lysine and soybean oil throughout 

the thermal treatment will provide some information about the potential modifications 

that this amino acid can suffer when it is involved in a dynamic oil oxidation process, 

and will make it possible to establish relationships between oil and amino acid 

evolutions. Therefore, this work might contribute to gaining further insight into the 

cooxidation process of lipids and amino acids, which is considered a relevant issue. In 

addition, the achievement of this objective will provide information about the potential 

of 
1
H NMR to study lysine modifications. 
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AIM 3: STUDY OF THE IN VITRO DIGESTION PROCESS OF COMMERCIAL 

SOYBEAN OIL AND OF THE INFLUENCE OF THE OIL COMPOSITION IN 

MINOR COMPONENTS, OF ITS INITIAL OXIDATIVE STATUS AND OF 

THE PRESENCE OF DIFFERENT PROPORTIONS OF OVALBUMIN ON 

LIPOLYSIS AND OXIDATION REACTIONS. 

The achievement of this aim relies on 3 objectives: 

3.1. Study of the influence of the minor components present in commercial virgin and 

refined soybean oils, determined by Direct Immersion SPME-GC/MS, on lipid 

bioaccessibility and oxidation during gastrointestinal in vitro digestion, studied by 
1
H 

NMR and SPME-GC/MS. (Manuscript 6) 

The achievement of this objective will provide knowledge about to what extent the 

pool of minor components present in soybean oil, and by extension in other vegetable 

oils, could affect some important reactions undergone by lipids during in vitro 

digestion: lipolysis and oxidation, and also about the bioaccessibility of compounds 

with antioxidant ability like -tocopherol, the most abundant tocopherol in soybean oil.  

Thus, the results of this study will show how the quality of edible oils, referred to 

their abundance in compounds able to exhibit antioxidant ability and to their 

concentration of free fatty acids, influences oil evolution during in vitro digestion and 

the bioaccessibility of compounds able to influence human health. 

The information extracted from this study could also be useful to identify which 

types of edible oils might be more suitable in order to both limit the occurrence of 

oxidative reactions during digestion and favour the preservation of their bioactive 

components. 

 

3.2. Analysis of the lipolysis extent, of -tocopherol fate and of oxidation compound 

evolution during the in vitro digestion of slightly oxidized virgin and refined 

soybean oils, and of the influence of two proportions of ovalbumin on these 

processes by combining 
1
H NMR and SPME-GC/MS analyses. (Manuscript 7) 

The consecution of this objective will provide information contributing to create a 

body of knowledge on the in vitro digestion process of edible oils with regard to the 

influence of lipid oxidation degree on some important reactions taking place during 



Aims and objectives 

39 

 

digestion and to the evolution of oxidation products. It will also shed light on the 

influence of different amounts of ovalbumin, a non-heme protein, on lipolysis, lipid 

oxidation and -tocopherol bioaccessibility, what could be useful in order to optimize 

lipidic macronutrients and micronutrients bioaccessibility. 

It should also be remembered the relevant role of the methodology used to carry out 

this study, since it provides results very difficult to obtain by other methods. 

 

3.3. Study by 
1
H NMR of the in vitro digestion of highly oxidized soybean oil, 

focusing on the bioaccessibility of major lipid nutrients and of some oxidation 

compounds, as well as of the influence of the presence of two different proportions 

of ovalbumin on this process. (Manuscript 8) 

The study of the evolution of different types of oxidation products during digestion, 

and of the parameters influencing this evolution, as well as of the effect that a high 

initial oil oxidation level can have on lipid hydrolysis and oxidation during digestion, 

can be considered issues of primary interest in furthering the intricate task of assessing 

how dietary lipids can affect human health. Furthermore, the analysis of the fate of the 

several kinds of lipid oxidation compounds throughout the in vitro digestion process 

will provide a very valuable knowledge about which classes of dietary lipid oxidation 

products could decompose in the gut versus which ones could remain, thus being 

available for absorption in the intestinal lumen and/or for reaction with biological 

components. 

Furthermore, the potential effect on health of many of the compounds present in the 

samples subject of study, and also of those able to be generated during digestion, 

increases the interest of studying the proposed issues. 
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Objective 1 - Manuscript 1: Assessment of soybean oil oxidative stability from 

rapid analysis of its minor component profile.  

 

1. Samples 

The samples subject of study were two commercial soybean oils, one of them virgin 

(VSO), and the other one refined (RSO). 

2. Characterization of the oils subject of study 

2.1. Analysis of the the main oil components (acyl groups) 

The molar percentages of the different types of oil acyl groups were determined by 

1
H NMR, as in previous works (Guillén and Ruiz, 2003; Guillén and Uriarte, 2009, 

2012). 

2.2. Analysis of the minor oil components 

Extraction of the minor oil components was performed by means of Direct 

Immersion Solid-Phase Microextraction (DI-SPME), following the methodology 

described by Alberdi-Cedeñoand coworkers (2017a). To this aim, a fiber of 65 μm 

StableFlex polydimethylsiloxane/divinylbenzene (PDMS/DVB), acquired from Supelco 

(Bellefonte, PA, U.S.), was immersed directly into 6 ml of edible oil at room 

temperature for 45 minutes. The thermal desorption process of the extracted oil 

components and their subsequent separation was carried out in a gas chromatograph 

equipped with a mass spectrometry detector (GC/MS) in the same way described in the 

above mentioned work. 

Identification of most of the extracted components was made by comparison of their 

retention times and mass spectra with those of commercial standards acquired from 

Sigma-Aldrich (St. Louis, MO, USA) and Larodan Fine Chemicals AB (Malmo, 

Sweden). Others were identified by matching of their mass spectra with spectra from a 

commercial library by more than 85% (W9N08, Wiley ver. 9.0 and NIST ver. 8.0 

library) and also with those obtained from the literature. 

Aim 1- STUDY OF THE INFLUENCE OF THE MINOR 

COMPOUNDS NATURALLY PRESENT IN COMMERCIAL 

SOYBEAN OIL ON ITS EVOLUTION UNDER ACCELERATED 

STORAGE CONDITIONS. 
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Semi-quantification was based on arbitrary units of the base peak ion area counts 

divided by 10
5
. The base peaks of the several compounds identified, together with their 

respective molecular weights, are displayed in Table S1 (see supplementary material of 

manuscript 1). All the determinations were carried out in duplicate in order to obtain a 

mean value with the corresponding standard deviation for each of the components 

studied.  

3. Accelerated storage (AS) process 

10 g portions of each oil sample were poured into plastic Petri dishes of 80 mm 

diameter for each of the days monitored throughout the AS process. These were heated 

at 70º C in a convection oven with circulating air but without forced convection, 

simulating AS conditions. The evolution of the samples was followed by 
1
H NMR until 

their total polymerization 

4. Monitoring by 
1
H NMR of the evolution of VSO and RSO throughout the AS 

process  

4.1. Operating conditions 

The 
1
H NMR spectra of the starting oils and of the corresponding aliquots taken 

throughout the AS process were acquired using a Bruker Avance 400 spectrometer 

operating at 400 MHz. The weight of each aliquot was approximately 0.16 g. These 

were mixed in a 5 mm diameter tube with 400 µl of deuterated chloroform that 

contained 0.2% of non deuterated chloroform and a small amount (0.03%) of 

tetramethylsilane (TMS) as internal references. The acquisition parameters used were: 

spectral width 5000 Hz, relaxation delay 3 s, number of scans 64, acquisition time 3.744 

s and pulse width 90º, with a total acquisition time of 8 min 55 s. The relaxation delay 

and acquisition time selected allow the complete relaxation of the protons, the signal 

areas thus being proportional to the number of protons that generate them, making 

possible their use for quantitative purposes. The experiments were carried out at 25 ºC, 

as in previous works (Guillén & Ruiz, 2003, 2005). Each sample was analyzed in 

duplicate, in order to obtain a mean value for the concentration of each of the studied 

components.  

 

4.2. Identification of some components 

The identification of the oil acyl groups and of the products formed throughout the AS 

process was carried out on the basis of the signal assignment shown in Table S2 (see 
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supplementary material of manuscript 1), made from bibliographic data and with the aid 

of several standard compounds. These were: (E)-2-hexenal, (E)-2-heptenal, (E)-2-

decenal, (E,E)-2,4-hexadienal, (E,E)-2,4-heptadienal, (E,E)-2,4-decadienal, 4,5-epoxy-

(E)-2-decenal and 12,13-epoxy-9(Z)-octadecenoic acid methyl ester (isoleukotoxin 

methyl ester), acquired from Sigma-Aldrich, 4-hydroxy-(E)-2-nonenal, 4-hydroperoxy-

(E)-2-nonenal, trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, purchased from 

Cayman Chemical (Ann Arbor, MI, USA) and cis-(12,13)-epoxy-9(Z),15(Z)-

octadecadienoic acid, acquired from Cymit Quimica (Barcelona, Spain). 

4.3. Quantitative data derived from 
1
H NMR spectra 

The molar percentages of the several kinds of oil acyl groups were estimated 

throughout the AS process as in previous studies (Guillén and Uriarte, 2012), by means 

of the following equations:  

Ln% = 100(AH/3AI); 

L% = 100(2AG/3AI); 

O% (or MU%) = 100(AE/3AI)-Ln%-L%, 

where AH and AG are the areas of the signals of bis-allylic protons of linolenic and 

linoleic groups, respectively (signals “H” and “G” in Table S2 of manuscript 1); given 

that their respective signals overlap to a certain extent, the total area corresponding to 

each of them was calculated using pure trilinolein and trilinolenin (Sigma-Aldrich) as 

references. AI, in turn, is the area of the signal of the protons at sn-1 and sn-3 positions 

in the glycerol backbone of triglycerides, while AE corresponds to that of mono-allylic 

protons (signals “I” and “E”, respectively, in Table S2 of manuscript 1). 

The molar percentage of saturated acyl groups can be obtained by difference. 

The concentrations of the different types of oxidation products were estimated as 

millimoles per mole of triglyceride (mmol/mol TG). The general equation to carry out 

this determination was the following: 

[OP] = [(AOP/n)/(AI/4)]*1000, 

where AOP is the area of the signal selected for the quantification of each oxidation 

product (OP) and n the number of protons that generate the signal.   
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Objective 2.1 - Manuscript 2: Prooxidant effect of -tocopherol on soybean oil.  

Objective 2.1 - Manuscript 2: Prooxidant effect of α-tocopherol on soybean oil. 

Global monitoring of its oxidation process under accelerated storage conditions 

by 
1
H nuclear magnetic resonance. 

1. Samples 

The starting oil was a soybean oil (SO) purchased from a local supermarket. 

Subsequently several samples of this oil enriched with α-T were prepared by adding 

0.002, 0.02, 0.2, 2 and 5% in weight of α-T to the oil, and given the following 

designations: SO + 0.002, SO + 0.02, SO + 0.2, SO + 2 and SO + 5, respectively. α-

Tocopherol with a purity of 98.2% was purchased from Sigma-Aldrich (St. Louis, MO, 

USA). 

The molar percentages of the different types of oil acyl groups were determined 

by 
1
H NMR, as in previous works (Guillén and Ruiz, 2003, Guillén and Uriarte, 2009). 

These were 6.6 ± 0.4 for linolenic, 42.8 ± 0.4 for linoleic, 32.4 ± 1.0 for oleic and 

18.2 ± 1.9 for saturated groups. 

The average concentrations of the four tocopherols, in mg/kg, estimated by using a 

DI-SPME-CG/MS methodology previously developed in our laboratory (Alberdi-

Cedeño et al., 2017) were the following: 130.0 for α-T, 781.7 for γ-T, 316.1 for δ-T and 

21.9 for β-T. 

2. AS process 

Regarding the AS process, it is the same as that described in section 3. of the 

experimental design of objective 1. 

3. Monitoring by 
1
H NMR of the evolution of SO and of the SO enriched with 

different proportions of α-T  

3.1. Operating conditions 

Operating conditions were the same as those described in the section 4.1. of 

manuscript 1. 

 

AIM 2: ASSESSMENT OF THE EFFECT OF ADDING ALPHA-TOCOPHEROL, 

GAMMA-TOCOPHEROL OR L-LYSINE ON THE OXIDATIVE STABILITY 

AND THE OXIDATION PROCESS OF COMMERCIAL SOYBEAN OIL 

SUBMITTED TO ACCELERATED STORAGE CONDITIONS. 

 

https://www.sciencedirect.com/topics/chemistry/soybean-oil
https://www.sciencedirect.com/topics/food-science/supermarket
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sample
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/weight
https://www.sciencedirect.com/topics/chemistry/alpha-tocopherol
https://www.sciencedirect.com/topics/chemistry/alpha-tocopherol
https://www.sciencedirect.com/topics/chemistry/acyl-group
https://www.sciencedirect.com/science/article/pii/S0308814617317375#b0080
https://www.sciencedirect.com/science/article/pii/S0308814617317375#b0090
https://www.sciencedirect.com/topics/chemistry/tocopherol
https://www.sciencedirect.com/science/article/pii/S0308814617317375#b0010
https://www.sciencedirect.com/science/article/pii/S0308814617317375#b0010
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3.2. Identification of oil components 

The identification of the various oil components was made on the basis of the signals 

assignments shown in Table S1 of manuscript 2. For this purpose, several standard 

compounds were used; these were (E)-2-hexenal, (E)-2-heptenal, (E)-2-decenal, (E,E)-

2,4-hexadienal, (E,E)-2,4-heptadienal, (E,E)-2,4-decadienal, (E)-2-penten-1-ol and 1-

hexanol, acquired from Sigma-Aldrich, and 4-hydroperoxy-(E)-2-nonenal, 4-hydroxy-

(E)-2-nonenal and 4,5-epoxy-(E)-2-decenal, purchased from Cayman Chemical (Ann 

Arbor, MI, USA). 

3.3. Quantitative data estimated from 
1
H NMR spectra  

The molar percentages of the several kinds of acyl groups throughout the oils 

thermodegradative process were estimated as in previous studies (Guillén & Uriarte, 

2012) employing the equations described in section 4.3. of the experimental design of 

objective 1. Some of the -T signals (Baker & Myers, 1991) partially overlap with 

some signals of triglycerides, so their contribution was subtracted when determining the 

molar percentages of oil acyl groups. 

The concentrations of the different types of oxidation products generated were 

estimated as mmol/mol TG, as described in the section 4.3. of manuscript 1. 

4. Statistic and kinetic studies 

The Microsoft Office Excel 2007 software was used to find equations that fit heating 

time and the concentrations of saturated+modified acyl groups, of hydroperoxides and 

of the conjugated dienes associated to them, in all the studied samples. 

Objective 2.2 - Manuscript 3: A thorough insight into the complex effect of 

gamma-tocopherol on the oxidation process of soybean oil by means of 
1
H 

Nuclear Magnetic Resonance. Comparison with alpha-tocopherol. 

1. Samples 

The samples subject of study were two refined soybean oils (RSO), of the same 

brand but from two batches, and those prepared by adding different proportions by 

weight of γ-T to one oil and of -T to the other. The designations of the samples were 

the following: RSO1 (0% of γ-T added), RSO1+0.02γT (0.02%), RSO1+0.2γT (0.2%), 

RSO1+2γT (2%), RSO2 (0% of -T added), RSO2+0.2T (0.2%) and RSO2+2T 

https://www.sciencedirect.com/science/article/pii/S0308814617317375#s0150
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/caiman
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(2%). γ-T with a purity ≥ 90% and α-T with a purity of 98.2% were acquired from Eisai 

Food & Chemical Co. Lltd (Tokyo, Japan) and from Sigma-Aldrich, respectively. 

Furthermore, γ-T with a purity of 98% was also purchased from Sigma-Aldrich to 

conduct a complementary assay aimed at checking if γ-T purity could have any 

influence on the results obtained. 

2. AS process 

This was carried out in the same way as that described in section 3 of the 

experimental design of objective 1.  

3. Monitoring by 
1
H NMR of the evolution of RSO and of the RSO oil samples 

enriched with different proportions of either γ-T or -T  

3.1. Operating conditions 

Operating conditions were the same as those described in the section 4.1. of objective 

1. 

3.2. Identification of some components 

The identification of the oil acyl groups and of the products formed throughout the 

AS process was carried out on the basis of the signal assignment shown in Table S1 of 

manuscript 3, made from bibliographic data and with the aid of several standard 

compounds.  

3.3. Quantitative data derived from 
1
H NMR spectra 

The molar percentages of the several kinds of acyl groups throughout the oils 

thermodegradative process were estimated as indicated in section 3.3. of the 

experimental design of objective 2. 

The concentrations of the different types of oxidation products generated were 

estimated as as millimoles per mole of triglyceride mmol/mol TG, as described in the 

section 4.3. of objective 1. 

4. Statistical analysis 

The significance of the differences in the concentrations of the different kinds of 

oxidation products was determined between samples RSO1 and in RSO1+0.02T by t-

student test at p< 0.05, using SPSS Statistics 24 software (IBM, NY, USA). 
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Objective 2.3 - Manuscript 4: The potential of lysine to extend the shelf life of 

soybean oil evidenced by 
1
H Nuclear Magnetic Resonance.  

1. Samples 

The oil employed was a refined soybean oil (RSO). Each one of the samples enriched 

with L-lysine (RSO+LYS) was prepared by adding either 1% or 2% (RSO+LYS1 or 

RSO+LYS2) by weight of lysine. 

L-lysine with a purity ≥ 98% was purchased from Cymit Quimica (Barcelona, 

Spain). 

2. Oxidation process  

10 g samples of RSO and of the RSO+LYS oils were prepared in several beakers of 

6.5 cm diameter (250 ml), one per day of sampling. These were placed in a multiple 

magnetic stirrer with calefaction and heated at 70º C. Aliquots were taken periodically 

from each respective beaker throughout the oil oxidation process for their study by 
1
H 

NMR. The evolution of the samples was monitored until the stirring magnet stopped 

rotating due to the polymerization of the oil. The oxidation process was carried out in 

duplicate in order to obtain average values for all the studied compounds.  

3. Monitoring by 
1
H NMR of the evolution of RSO and of the lysine-enriched oils 

throughout the oxidation process 

3.1. Operating conditions 

Operating conditions were the same as those described in the section 4.1. of 

manuscript 1. 

3.2. Identification of some compounds 

The identification of the oil acyl groups, of -tocopherol and of the oxidation 

products formed throughout the oxidation process was carried out on the basis of the 

signal assignment shown in Table S1 (see supplementary material of manuscript 4). 

3.3. Quantitative data estimated from the 
1
H NMR spectra 

The molar percentages of the several kinds of oil acyl groups throughout the 

oxidation process were estimated as in previous studies (Guillén & Uriarte, 2012), 

employing the equations described in section 4.3. of the experimental design of 

manuscript 1. 
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The concentrations of -T and of the different types of oxidation products generated 

were estimated as mmol/mol TG, in the way described in the supplementary material of 

manuscript 4.  

 

Objective 2.4 - Manuscript 5: Study of the effect of the cooxidation of soybean oil 

and lysine on their respective evolutions: a combined assessment by 
1
H NMR 

and LC/MS. 

1. Samples 

The samples subject of study were a refined soybean oil (RSO) purchased from a 

multinational company and the same oil enriched with 2% by weight of L-lysine 

(RSO+2LYS).  

The L-lysine used had a purity ≥ 98% and was purchased from Sigma-Aldrich. The 

molar percentages of the different types of oil acyl groups were determined by 
1
H 

NMR, as in previous works (Guillén & Uriarte, 2012). These were 6.3±0.1 for linolenic, 

49.5±0.1 for linoleic, 25.5±0.3 for oleic and 18.7±0.3 for saturated groups. Samples of 

RSO and of RSO+2LYS (8 g of oil in all cases) were put in beakers of 5 cm diameter, 

one per day of sampling. Due to the difficulty of uniformly distributing lysine into the 

oil, RSO+2LYS samples were prepared by directly weighing 8 g of RSO in each beaker 

and then adding 2% by weight of lysine. 

2. Oxidation process  

Samples of RSO and of RSO+2LYS (8 g of oil in all cases) were placed on a 

multiple magnetic stirrer heated at 70 ºC and stirred at 180 rpm with magnets of 4.5 cm 

long. Samples submitted to oxidative conditions for different periods were taken 

throughout the oxidation process for their study. Their evolution was monitored until 

the stirring magnet stopped rotating due to the polymerization of the oil.  

3. Monitoring by 
1
H NMR of the evolution of RSO and of RSO+2LYS samples 

throughout the oxidation process 

The 
1
H NMR spectra both of the original RSO and RSO+2LYS samples and of these 

samples after being submitted to oxidative conditions over different periods of time 

were acquired using a Bruker Avance 400 spectrometer operating at 400 MHz, as in 
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previous works (Guillén & Uriarte, 2012). Operating conditions were the same as those 

described in the section 4.1. of objective 1. 

The determination of the oil acyl groups and of some of their derived products 

formed throughout the oxidation process was carried out from the 
1
H NMR spectra 

signal assignments shown in Table S1 (see supplementary material of manuscript 5).  

The molar percentages of the several kinds of oil acyl groups throughout the 

oxidation process were estimated as in previous studies (Guillén & Uriarte, 2012) 

following the procedure described in section 4.3. of the experimental design of objective 

1. The concentrations of the different types of oxidation products generated were 

estimated as mmol/mol TG, as described in the section 4.3. of objective 1. 

4. Extraction of lysine and some of its derivatives from the RSO+2LYS sample 

after being submitted for different periods of time to oxidative conditions 

Lysine and some of its derivatives formed during the oxidation process were 

extracted from the corresponding RSO+2LYS sample as follows: 0.16 g of each sample 

were poured into a 1.5 ml Eppendorf microtube and mixed with 800 l of the extraction 

solvent. Several deuterated solvents were tested to extract the amino acid and its 

derivatives from the system and to study their recovery by means of 
1
H NMR: water, 

water with different methanol percentages, methanol and acid water (0.5 M of HCl, pH 

close to 1.5). The best extraction efficiency was achieved using acid water, so this was 

the solvent chosen. After adding the solvent, each Eppendorf microtube was shaken for 

10 min with an automatic tube stirrer and then centrifuged for another 10 min. The 

aqueous phase was taken out with a pipette, filtered through a 0.45 µm filter (GL 

Science Inc., Tokyo, Japan) using a 1 ml syringe (Terumo corporation, Tokyo, Japan) 

and poured into another Eppendorf microtube. The extracts were analyzed both by 

LC/MS and by 
1
H NMR. It must be pointed out that milliQ water was used to obtain the 

extracts intended for the LC/MS analysis, while deuterated water was used for 
1
H NMR. 

4.1. Study of the extracts by LC/MS 

The aqueous extracts obtained from the RSO+2LYS sample throughout the oxidation 

process were studied by LC/MS. However, due to analytical requirements, in this case it 

was necessary to add milliQ water to these extracts before their analysis in order to 

make the pH less acid (near 2.0).  

https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&sqi=2&ved=0ahUKEwizzNexjIPVAhWBTbwKHaOaCWwQFgg7MAQ&url=https%3A%2F%2Fes.wiktionary.org%2Fwiki%2F%25CE%25BC&usg=AFQjCNH5pnTo4ay9Id7KNO-QF9oKn3mNJQ
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The LC/MS chromatograms of the aqueous extracts of RSO+2LYS sample were 

obtained using a Waters Xevo TQD LC/MS equipment. Sample volumes of 10 μl each 

were injected into an Imtakt, WAA24 Intrada Amino Acid column (100 mm x 2 mm x 3 

μm). A discontinuous gradient of solvent A (H2O containing 0.1% formic acid) and 

solvent B (acetonitrile containing 0.1% formic acid) was used as follows: 20% B at 0 

min, 75% B at 7 min and 99% B at 7.1 min. Mass spectrometric analysis was performed 

in TIC mode using positive ion chemical ionization (cone potentials 20 V and 35 V). 

The identification of lysine derivatives was achieved, on the one hand, by comparing 

the mass spectra of the compounds detected in the TIC chromatograms obtained with 

cone potentials 20 V and 35 V with those of lysine adducts obtained in the laboratory by 

making react lysine with n-alkanals (formaldehyde, propanal, butanal, hexanal, 

heptanal, octanal and nonanal), as in the study conducted by Kawai and coworkers 

(2006). For this purpose, lysine (50 mM) was incubated with 50 mM of each alkanal in 

the presence of H2O2 (50 mM) in 50 mM sodium phosphate buffer (pH 7.2) at 37 °C. 

Furthermore, bibliographic data were also used to tentatively identify some of the 

compounds present in the aqueous extracts. 

All the identified lysine derivatives were quantified by measuring the area of their 

corresponding mass spectra base peaks in the chromatograms obtained with cone 

potential 20 V. The quantifications were made for them to be useful for comparisons 

between the samples, not to achieve absolute concentrations of each of the compounds 

formed. 

The evolutions of lysine and their derivatives were monitored only up to the 22
nd

 day 

of the oxidation process; afterwards, the oil polymerization degree impaired the 

extraction of lysine and lysine derivatives in the aqueous phase, so it was not possible to 

obtain extracts directly comparable to the previous ones.  

4.2. Study of the extracts by 
1
H NMR 

The aqueous extracts obtained from the RSO+2LYS sample throughout the oxidation 

process were also studied by 
1
H NMR. The procedure followed was the same as for the 

lipid samples (see section 3) but, in this case, 600l of the aqueous extract were taken 

directly from the Eppendorf microtube (see section 4) and placed in a NMR tube for 

analysis. 

https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&sqi=2&ved=0ahUKEwizzNexjIPVAhWBTbwKHaOaCWwQFgg7MAQ&url=https%3A%2F%2Fes.wiktionary.org%2Fwiki%2F%25CE%25BC&usg=AFQjCNH5pnTo4ay9Id7KNO-QF9oKn3mNJQ
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Identification of the compounds in these extracts was made from the assignment of 

the 
1
H NMR spectral signals obtained taking as reference standard compounds. To this 

aim L-lysine, Nε-formyl-lysine, N-acetyl-lysine and Nε-acetyl-lysine were purchased 

from Cymit Quimica. The chemical shifts, multiplicities and assignments of their 

signals are given in Table S2 (see supplementary material of manuscript 5).  

The quantification of lysine and its derivatives by 
1
H NMR constitutes one of the 

goals of this work, so the procedure developed for this purpose is described in the 

“Results and discussion” section of manuscript 5. 
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Objective 3.1 - Manuscript 6: Influence of minor components on lipid 

bioaccessibility and oxidation during in vitro digestion of soybean oil. 

 

1. Samples subject of study  

The samples subject of study were two commercial soybean oils: one of them virgin 

(VO) and the other refined (RO).  

2. In vitro digestion  

Samples (0.5 g) of the two oils were digested following the same procedure as in 

previous works (Nieva-Echevarría et al., 2017a) based on the static in vitro 

gastrointestinal model developed by Versantvoort and coworkers (2005) and slightly 

modified in our laboratory in order to reach a higher level of lipolysis (Nieva-

Echevarría et al., 2016).
 
This involves a three-step procedure to simulate digestive 

processes in the mouth, stomach and small intestine, by sequentially adding the 

corresponding digestive juices (saliva, gastric juice, duodenal juice and bile), whose 

composition is given in Table S1 (see supporting information of manuscript 6). The 

digestion experiment started by adding 6 mL of saliva to each of the oil samples. After 5 

min of incubation, 12 mL of gastric juice were added and the mixture was rotated head-

over-heels at 40 rpm for 2 h at 37±2ºC. 1 hour after starting the gastric digestion, pH 

was set between 2 and 3 with HCl (37%), simulating the gradual acidification of the 

chyme occurring in vivo. After 2 h of gastric digestion, 2 mL of sodium bicarbonate 

solution (1 M), 12 mL of duodenal juice and 6 mL of bile juice were added. 

Subsequently, pH was set between 6 and 7, and the mixture was rotated again at 40 rpm 

and incubated at 37±2ºC for 4 h. 

All the reagents and enzymes for the preparation of digestive juices were acquired 

from Sigma-Aldrich: α-amylase from Aspergillus oryzae (10065, ~30 U/mg); pepsin 

from porcine gastric mucosa (P7125, ≥400 U/mg protein); amano lipase A from 

Aspergillus niger (534781, ≥120,000 U/g); pancreatin from porcine pancreas (P1750); 

AIM 3: STUDY OF THE IN VITRO DIGESTION PROCESS OF COMMERCIAL 

SOYBEAN OIL AND OF THE INFLUENCE OF THE OIL COMPOSITION IN 

MINOR COMPONENTS, OF ITS INITIAL OXIDATIVE STATUS AND OF THE 

PRESENCE OF DIFFERENT PROPORTIONS OF OVALBUMIN ON 

LIPOLYSIS AND OXIDATION REACTIONS. 
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lipase type II crude from porcine pancreas (L3126, 100-500 U/mg protein (using olive 

oil, 30 min incubation)) and bovine bile extract (B3883). Two digestion experiments, 

each including duplicate samples of the two oils, were performed. Blank samples 

corresponding to the mixture of juices submitted to digestive conditions were also taken 

for further analysis. 

3. Lipid extraction of the digestates  

Lipids of the digestates were extracted using dichloromethane (CH2Cl2) as solvent 

(HPLC grade, Sigma-Aldrich) and following the methodology employed by Nieva-

Echevarría and coworkers (2015), slightly modified in a later study (Nieva-Echevarría 

et al., 2017a). This involves a three-stage liquid-liquid extraction process with 20 ml of 

CH2Cl2 each. Afterwards, to ensure a complete protonation of fatty acids and/or the 

dissociation of the potential salts formed, the remaining water phase was acidified to pH 

2 with HCl (37%) and a second extraction was carried out, also in three steps. 

4. Analysis by 
1
H NMR 

4.1. Operating conditions 

The 
1
H NMR spectra of the starting oils (VO and RO) and of the lipid extracts of 

their digestates (DVO and DRO) were acquired in quadruplicate using a Bruker Avance 

400 spectrometer operating at 400 MHz. For this purpose, the above-mentioned lipid 

samples (approximately 0.16 g) were dissolved in 400 μl of deuterated chloroform, 

which contained TMS as internal reference (Cortec, Paris, France). The acquisition 

conditions were the same as those indicated in section 4.1 of the experimental design of 

objective 1. 

4.2. Identification of some oil components  

The identification of -T and of the oxidation products formed throughout digestion 

was carried out on the basis of the signal assignments shown in Table S2 (see 

supporting information of manuscript 6), made from bibliographic data and with the aid 

of standard compounds. These were -T, acquired from Sigma-Aldrich, and cis-(12,13)-

epoxy-9(Z),15(Z)-octadecadienoic acid, acquired from Cymit Quimica (Barcelona, 

Spain).   
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4.3. Quantification from 
1
H NMR spectral data  

4.3.1. Concerning the various types of glycerides  

The molar percentages of triglycerides (TG%), diglycerides (1,2-DG% and 1,3-

DG%), monoglycerides (2-MG% and 1-MG%) and glycerol (Gol%) in relation to the 

total of glyceryl structures present in the lipid samples were determined using the 

equations developed and validated in previous studies (Nieva-Echevarría et al., 2014, 

2015). All these equations are given as supporting information of manuscript 6 (see 

equations [S1-S10]). Lipid bioaccessibility (LBA), another parameter concerning 

lipolysis extent, was calculated by using equations [S11] and [S12]. 

4.3.2. Concerning lipid composition  

The molar percentages of linolenic (Ln%), linoleic (L%), oleic (O%), and saturated 

plus modified (S+M%) acyl groups (AG) or fatty acids (FA), in relation to the total 

moles of AG+FA (NTAG+FA) present in the various lipid samples were estimated as in a 

previous study (Nieva-Echevarría et al., 2017a) by using the following equations: 

NTAG+FA=Pc*AF/2  

U%=100*(Pc*AE/4)/NTAG+FA  

Ln%=100*(Pc*AH/4)/NTAG+FA  

L%=100*(Pc*AG/2)/NTAG+FA  

O%=U%–L%–Ln%  

(S+M)%=100–U%   

where AF, AE, AH and AG are the areas of signals F, E, H and G indicated in Table S1. It 

must be noted that due to partial overlapping of signals H and G, a previous correction 

of both areas must be carried out to properly assess the area corresponding to each one 

of them. For this purpose, trilinolenin and trilinolein were used as references. 

4.3.3. Concerning oxidation compounds and -T  

The concentrations of (Z,E)- and (E,E)-conjugated dienic systems supported on 

chains having either hydroperoxy or hydroxy groups, and of epoxides, expressed as 

millimoles per mole of AG+FA present (mmol/mol AG+FA), were also estimated as in 

a previous study (Nieva-Echevarría et al., 2017a) by using the following equation: 
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 [OP] = [(AOP/n)/(AF/2)]*1000 

where AOP is the area of the signal selected for the quantification of each oxidation 

product (OP), shown in Table S1, and n the number of protons that generate each signal.  

This same approach was used to estimate the concentration of -T: 

[-T] = [AT/(AF/2)]*1000 

5. Study of oxidation during in vitro digestion by Solid Phase Microextraction 

followed by Gas Chromatography/Mass Spectrometry (SPME-GC/MS) 

5.1. SPME-GC/MS analysis 

The extraction of the volatile components of the several samples (0.5 g in a 10 ml 

screw-cap vial) was accomplished automatically by using a CombiPAL autosampler 

(Agilent Technologies, Santa Clara, CA, USA). ), in the same way as in previous works 

(Nieva-Echevarria et al 2017a).Given that the nature of the samples subjected to the 

digestion process (oil samples) is very different from that of the digested ones (basically 

aqueous samples), it is necessary to prepare mixtures of the non-digested oil samples 

with the digestive juices submitted to the digestion process, in the same proportions as 

in the digestates; this enables one to accurately assess the changes occurring throughout 

the in vitro digestion process. Therefore, the samples subject of study, which were 

analyzed in duplicate, were the following: 

i)  the digestates of the two types of soybean oil samples (DVO and DRO) 

ii)  the juices submitted to digestion conditions (DJ); and 

iii)  the mixtures made up of starting oil samples and juices submitted to digestion 

conditions (VO+DJ and RO+DJ).  

The fiber used, coated with Divinylbenzene/Carboxen/Polydimethylsiloxane 

(DVB/CAR/PDMS, 50/30 m film thickness, 1 cm long), was acquired from Supelco 

(Sigma-Aldrich); this was inserted into the headspace of the sample and was maintained 

for 55 min at 50 ºC, after a pre-equilibration time of 5 min. The fiber containing the 

extracted components was desorbed for 10 min in the injection port (splitless mode with 

5 min purge time) of a 7890A gas chromatograph equipped with a 5975C inert MSD 

with Triple Axis Detector (Agilent Technologies) and a computer operating with the 

ChemStation program.  
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The column used was a fused-silica capillary column (60 m long x 0.25 mm inner 

diameter x 0.25 m film thickness, from Agilent J&W Advanced Capillary GC 

Columns), coated with a non-polar stationary phase (HP-5MS, 5% phenyl methyl 

siloxane). The operating conditions were as follows: the oven temperature was set 

initially at 50º C (5 min hold) and increased to 290 ºC at 4 ºC/ min (2 min hold); the 

temperatures of the ion source and of the quadrupole mass analyser were kept at 230 ºC 

and 150 ºC respectively; helium was used as carrier gas at a pressure of 18.611 psi; 

injector temperature was held at 250 ºC; mass spectra were recorded at an ionization 

energy of 70 eV, and the data acquisition mode employed was scan. In order to avoid 

carry-over problems between samples, after each run the fiber was submitted to heating 

at 250 ºC for 20 min in the Fiber Cleaning and Conditioning Station of the CombiPAL 

autosampler. 

A reference sample of known composition was periodically analyzed in order to 

verify not only the extraction efficiency and repeatability of the SPME fiber but also the 

performance of the equipment. 

5.2. Identification of the compounds present in the headspace of the samples 

Most of the components were identified by using commercial standards, acquired 

from Sigma-Aldrich. These were: pentanal (base peak: 86), hexanal (100), heptanal 

(114), octanal (128), nonanal (142), (E)-2-pentenal (84), (E)-2-hexenal (98), (E)-2-

heptenal (112), (E)-2-octenal (126), (E)-2-nonenal (140), (Z,E)-2,4-heptadienal (110), 

(E,E)-2,4-heptadienal (110), (Z,E)-2,4-nonadienal (138), (E,E)-2,4-nonadienal (138), 

(Z,E)-2,4-decadienal (152), (E,E)-2,4-decadienal (152) and 2-pentyl-furan (138). 

When standards were not available, matching of the mass spectra with those obtained 

from scientific literature or from a commercial library at higher than 85% (Wiley 

W9N08, Mass Spectral Database of the National Institute of Standards and Technology 

(NIST)), was taken as identification criterion. 

5.3. Semi-quantification of the compounds present in the headspace of the samples 

This was based on the area counts of the base peak (Bp) of the mass spectrum of 

each compound divided by 10
6
. When the Bp of a compound overlapped with the same 

ion peak of the mass spectrum of another compound, an alternative ion peak was 

selected for the semi-quantification of the former. The area counts thus determined are 

useful for the comparison of the abundance of each compound in the different samples. 
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6. Statistical analysis  

The significance of the differences on the several determinations made among the 

samples was determined by one-way variance analysis (ANOVA) followed by Tukey b 

test at p < 0.05, using SPSS Statistics 24 software (IBM). 

 

Objective 3.2 - Manuscript 7: The key role of ovalbumin in lipid bioaccessibility 

and oxidation product profile during the in vitro digestion of slightly oxidized 

soybean oil.  

 

1. Samples subject of study  

The samples subject of study were two slightly oxidized commercial soybean oils: 

one virgin (VSx) and the other refined (RSx). In order to obtain these slightly oxidized 

oils, 10 g of each of them were weighed in glass Petri dishes of 80 mm diameter and 

placed in a convection at 70 ºC with circulating air for 4 and 5 days in the case of the 

virgin and the refined oils, respectively.  

In addition, samples were prepared by mixing each of these two slightly oxidized oils 

with two different proportions of ovalbumin; 0.26 g of ovalbumin per g of oil in the 

samples with the low level of ovalbumin (LO) and 2.6 g of ovalbumin per g of oil in the 

ones with the high ovalbumin proportion (HO). Food grade ovalbumin was acquired 

from a protein manufacturer (Apasa SA, Astigarraga, Spain). 

2. In vitro digestion 

Samples (0.5 g) of the two oils were digested following the same procedure as in 

previous works (Nieva-Echevarría et al., 2017a,b), as described in section 2. of the 

experimental design of objective 3.1. 

3. Lipid extraction of the digestates 

Lipids of the digestates were extracted as indicated in section 3. of the experimental 

design of objective 3.1. Given that in the case of the samples with a high proportion of 

ovalbumin a strong emulsion is formed, the extraction was performed with the aid of a 

centrifuge in order to break up this emulsion. For this purpose, a Sigma 3K30 

centrifugal machine working at 10,000 rpm was used (Sigma Laboratory Centrifuges, 

Germany), each extraction step lasting 10 min. This same extraction procedure was used 

for all the samples, without any differences in extraction efficiencies achieved when 

using either centrifugation or extraction with separating funnels in the case of the 
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samples without ovalbumin and those with a low proportion of this protein. All the 

dichloromethane extracts of each sample were mixed and the solvent was eliminated by 

means of a rotary evaporator under reduced pressure at room temperature, in order to 

avoid lipid oxidation. Afterwards, these extracts were stored at -80 ºC until their 

analysis. 

4. Analysis by 
1
H NMR 

4.1. Operating conditions 

The 
1
H NMR spectra of all the samples were acquired in quadruplicate using a 

Bruker Avance 400 spectrometer as indicated in section 4.1 of the experimental design 

of objective 3.1. 

4.2. Identification of some oil components 

The identification of the oil acyl groups, of partial glycerides, of -T and of the 

oxidation products present in the various samples was carried out on the basis of the 

signal assignments shown in Table S1 (see supplementary material of manuscript 7), 

made from bibliographic data and with the aid of several standard compounds. These 

were: -T, acquired from Sigma-Aldrich, and cis-(12,13)-epoxy-9(Z),15(Z)-

octadecadienoic acid, acquired from Cymit Quimica (Barcelona, Spain). 

4.3. Quantification from 
1
H NMR spectral data 

4.3.1. Concerning the various types of glycerides 

It was made as indicated in section 4.3.1. of the experimental design of objective 3.1. 

4.3.2. Concerning lipid composition 

The concentrations of linolenic (Ln) and linoleic (L) acyl groups and fatty acids were 

estimated in mmol/mol AG+FA present both in the starting oils and in the lipid extracts 

of the digested samples, by using the following equations:  

[Ln] = [(AH/4)/(AF/2)]*1000 

[L] = [(AG/2)/(AF/2)]*1000 

where AH and AG are the areas of signals H and G indicated in Table S1. It must be 

noted that due to partial overlapping of signals H and G, a previous correction of both 

areas must be carried out to properly assess the area corresponding to each one of them. 

For this purpose, trilinolenin and trilinolein were used as references. 
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4.3.3. Concerning oxidation compounds  

The concentrations of the different types of oxidation products, either present in the 

starting samples or generated throughout digestion, expressed as mmol/mol AG+FA, 

were also estimated as in a previous study (Nieva-Echevarría et al., 2017c) in the same 

way described in section 4.3.3. of the experimental design of objective 3.1. In the case 

of the samples digested with a high proportion of ovalbumin, signals due to components 

coming from this protein are perceived in the 
1
H NMR spectra of their corresponding 

digestates, which overlap with those of some oil components. Therefore, some 

corrections must be made, especially in the case of epoxides. For this purpose, 

ovalbumin was added to the digestive juices after undergoing the digestion process and 

this mixture was extracted in the same way as the rest of digested samples; the relative 

areas of the different ovalbumin signals can be determined from the corresponding 
1
H 

NMR spectrum, free of lipids. This enables one to subtract the area of the signals 

overlapping with those of lipid components in the spectra of the extracts obtained from 

the digested oil samples taking as a reference the signals that do not overlap with one 

another (see Figure S1 in the supplementary material of manuscript 7). It is worth 

noticing that while some signals coming from ovalbumin also overlap with those of bis-

allylic protons (signals “H+G”), their area is very small in relation to that of the latter, 

and so can be ignored. 

4.3.4. Concerning -T 

The concentration of -T was estimated from signal “g” (see Table S1 of manuscript 

7), in the same way described in section 4.3.3. of the experimental design of objective 

3.1. 

5. Study by SPME-GC/MS of the headspace composition of the digestates 

5.1. SPME procedure 

The extraction of the volatile components of the several digestates was made in the 

same conditions and following the same procedure as that described in section 5.1 of the 

experimental design of objective 3.1. 

5.2. GC/MS study 

5.2.1. Operating conditions 

The GC/MS operating conditions were the same as those above stated in section 5.1 

of the experimental design of objective 3.1. 
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5.2.2. Identification of the compounds present in the headspace of the samples 

Most of the components were identified by using commercial standards, acquired 

from Sigma-Aldrich. See section 5.2. of the experimental design of objective 3.1. 

5.2.3. Semi-quantification of the compounds present in the headspace of the 

samples 

The semi-quantification of the components was performed as indicated in section 5.3 of 

the experimental design of objective 3.1 

6. Statistical analysis  

The significance of the differences on the several determinations made among the 

samples were determined by one-way variance analysis (ANOVA) followed by Tukey b 

test at p < 0.05, using SPSS Statistics 24 software (IBM). 

 

Objective 3.3 - Manuscript 8: 
1
H NMR study of the in vitro digestion of highly 

oxidized soybean oil, focusing on the bioaccessibility of major lipid nutrients 

and of some oxidation compounds. Effect of the presence of ovalbumin. 

 

1. Samples subject of study  

The samples subject of study were two soybean oils, one virgin and the other one 

refined, both in an advanced degree of oxidation, containing both primary and a wide 

variety of secondary oxidation products. In order to obtain these samples, 10 g of both 

the virgin and the refined oils were weighed in glass Petri dishes of 80 mm diameter and 

submitted to an accelerated storage process at 70 ºC in a convection oven for 8 and 9 

days, respectively. 

In addition, samples were prepared by mixing each one of the highly oxidized oils 

with ovalbumin, acquired from a protein manufacturer. Two different proportions of 

ovalbumin were tested: 0.26 g of ovalbumin per g of oil and 2.6 g of ovalbumin per g of 

oil. Food grade ovalbumin was acquired from a protein manufacturer (Apasa SA). 

2. In vitro gastrointestinal digestion 

All the samples above mentioned (0.5 g of oil in all cases) were digested as described 

in section 2. of the experimental design of objective 3.1. 

3. Lipid extraction of the digestates 

The lipid extraction of all the samples was performed in the same way as stated in 

section 3. of the experimental design of objective 3.2. 
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4. Analysis by 
1
H NMR 

4.1. Operating conditions 

The 
1
H NMR spectra of all the samples were acquired in quadruplicate using a 

Bruker Avance 400 spectrometer as indicated in section 4.1 of the experimental design 

of objective 3.1. 

4.2. Identification of some compounds 

The identification of the different types of oxidation products present in the various 

samples was carried out on the basis of the proton signal assignments shown in Table 

S2 (see supplementary material of manuscript 8), made from bibliographic data and 

with the aid of several standard compounds, also given in the supplementary material. 

4.3. Quantification from 
1
H NMR spectral data 

4.3.1. Concerning the various types of glycerides 

It was made as indicated in section 4.3.1. of the experimental section of objective 

3.1. 

4.3.2. Concerning lipid composition 

It was made as indicated in section 4.3.2. of the experimental section of objective 

3.2. 

4.3.3. Concerning oxidation compounds 

The concentrations of the different types of oxidation compounds present both in the 

starting oils and in the extracts of the digested samples, expressed in mmol/mol 

AG+FA, were also estimated as in a previous study (Nieva-Echevarría et al., 2017a) in 

the same way described in section 4.3.3. of the experimental section of objective 3.2. 

5. Statistical analysis  

The significance of the differences on the several determinations made among the 

samples was determined by one-way variance analysis (ANOVA) followed by Tukey b 

test at p < 0.05, using SPSS Statistics 24 software (IBM). 
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ABSTRACT  

In this work the effect of minor soybean oil components on its oxidative stability is 

tackled. To this aim, two soybean oils, one virgin and the other refined, both with very 

similar compositions in acyl groups, but differing in their minor component profile, 

were subjected to an accelerated storage process at 70 ºC. They were characterized by 

means of 
1
H Nuclear Magnetic Resonance (

1
H NMR) and Direct Immersion Solid-

Phase Microextraction coupled to Gas Chromatography-Mass Spectrometry (DI SPME-

GC/MS), while their evolution under oxidative conditions was monitored by 
1
H NMR. 

The lower levels of tocols and sterols found in the virgin oil, together with its higher 

free fatty acid content, result in a lower oxidative stability when compared to the refined 

one. This is deduced from slower degradation of acyl groups and later generation of 

hydroperoxides, epoxides and aldehydes in the former oil. These findings reveal that 

virgin soybean oil quality is not necessarily higher than that of the refined type, and that 

a simple, fast analysis of minor components by DI SPME-GC/MS would enable one to 

establish quality levels within oils of the same botanical origin both in terms of 

composition in potentially bioactive compounds and of oxidative stability. 

 

KEYWORDS: soybean oil, oxidative stability, 
1
H nuclear magnetic resonance, direct 

immersion SPME, minor components, hydroperoxides, epoxides, aldehydes 
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1. INTRODUCTION 

As is well known, highly unsaturated vegetable oils are particularly prone to 

oxidation; this process not only entails the loss of essential lipidic nutrients and the 

generation of potentially toxic compounds, but also the development of undesirable 

flavours which may provoke consumer rejection (Esterbauer, 1993; Guillén and 

Goicoechea, 2008). For a long time this has motivated the search for different types of 

strategies which avoid, or at least reduce, oxidative reactions in this type of foodstuffs. 

Related to this, it is widely recognized that minor oil component composition depends 

on botanical origin (Alberdi-Cedeño et al., 2017a) and on processing (Jung et al., 1989), 

both of which have a crucial effect on oxidative stability (Chen et al., 2011; Choe and 

Min, 2006; Kamal‐Eldin, 2006). Thus, the simplistic assumption that oils of a higher 

unsaturation degree are more prone to oxidation may lead to erroneous conclusions if 

the influence of minor components is not taken into account (Nagy et al., 2016). 

Minor oil components include not only several types of compounds with antioxidant 

ability like tocopherols, tocotrienols and other phenolic compounds, squalene, sterols or 

cyclic dipeptides (Alberdi-Cedeño et al., 2017b; Dessi et al., 2002; Kamal‐Eldin and 

Appelqvist, 1996; Seppanen et al., 2010; Siger et al., 2008; Yoshida and Niki, 2003), 

but also other compounds reported to increase the susceptibility of oils to oxidation, 

such as free fatty acids (Choe, 2008). In this context, it must be pointed out that 

although most seed oils are usually subjected to a refining process before being destined 

for human consumption, some can also be consumed without being refined, which is to 

say as either virgin or cold-pressed oils. Therefore, bearing in mind that oil refining 

processes can reduce the concentration of tocopherols, tocotrienols, sterols, carotenoids 

and free fatty acids (Ferrari et al., 1996; Jung et al., 1989; Verleyen et al., 2002), it is 

possible to find commercial vegetable oils with very similar compositions in main 

components (acyl groups) but which differ in minor ones. Despite this, the possibility of 

considering the minor component profile as an indicator of the oxidative stability of 

edible oils seems to have been little exploited. Regarding this issue, some studies have 

been conducted in very recent years aimed at finding relationships between the 

composition of a wide range of vegetable oils and their resistence to oxidation (Ayyildiz 

et al., 2015; Bozan and Temelli, 2008; Castelo‐Branco et al., 2016; Redondo-Cuevas et 

al., 2018; Yang et al., 2013). In these works, in general, attention is paid to both fatty 

acid composition and minor components like polyphenols, sterols, tocols, -carotene, 
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lutein or chlorophyll, and oxidative stability is assessed by determining induction 

periods through the Rancimat method at temperatures of 110 or 120 ºC. However, in the 

study carried out by Yang et al. (2013) composition in main components was not 

analyzed, even though oils of the same botanical origin can display significant 

variations in their acyl groups profile due for example to climatic and cultivar effects 

(Brignoli et al., 1976; Zhang et al., 2012), which can also affect their oxidative stability. 

Of the various classes of minor oil components, tocopherols deserve special attention 

due to their complex effect on oxidative stability of lipids (Dolde and Wang, 2011; 

Frankel et al., 1959; Kamal‐Eldin and Appelqvist, 1996); this could contribute to 

explaining the lack of correlation between the abundance of this type of compounds and 

the oxidative stability of oils observed in some studies (Ayyildiz et al., 2015; Bozan and 

Temelli, 2008). In this respect, Zaunschirm et al. (2018) reported that more elevated 

ratios between the sum of - and -tocopherol concentrations and the concentration of 

-tocopherol seemed to be related to a lower oxidation rate. To date, notwithstanding, 

understanding the effect of tocopherols on the oxidative stability of edible oils remains a 

challenge. 

Another subject of further consideration when analyzing the above-mentioned 

studies should be the selection of the Rancimat test to assess oil oxidative stability, 

since the limitations of this method were already discussed some years ago by Frankel 

(1993). Thus, although according to some authors (Farhoosh and Moosavi, 2007), it can 

be useful to act as a “screening” test to identify oils with lower stability under frying 

conditions, the only oxidation products considered are volatile organic acids, mainly 

formic acid; this represents an extreme over-simplification of the oxidation process, 

during which myriads of compounds, many of them non-volatile, can be generated 

(Frankel et al., 1977a, b). In addition, two additional factors must also be taken into 

account when performing oxidative stability tests at high temperatures: on the one hand, 

that the reactions taking place under these conditions may be different from those 

occurring at lower temperatures, as during the storage of oils, and on the other, that the 

action mechanism of antioxidants can also vary depending on temperature (Kamal-

Eldin, 2006). In fact, Nagy et al. (2016) reported that incorporation into correlation 

models of data regarding lipid oxidation progress under accelerated storage conditions 

at 60 ºC (coming from peroxide value, conjugated dienes and trienes, TBARs and p-

anisidine values analyses) yielded somewhat higher correlations than those obtained by 



Results and Discussion – Manuscript 1 

67 

 

determining only the oil stability index (OSI) at 120 ºC. Moreover, measurement of the 

induction period led to highly surprising conclusions concerning the stability of corn 

and soybean oils (Castelo-Branco et al., 2016), which was found to be similar to that of 

cold-pressed olive oil (Läubi and Bruttel, 1986), even though the oxidative stability of 

this latter has been shown to be considerably higher than that of the former oils, both 

under accelerated storage conditions (Guillén and Ruiz, 2005a, b) and at frying 

temperature (Guillén and Ruiz, 2008).  

In the light of all the above, this work aims to study the influence of the composition 

in minor components of two commercially available soybean oils, one virgin and the 

other refined, on their oxidative stability. For this purpose, the composition in acyl 

groups of the two selected oils was analyzed by means of 
1
H Nuclear Magnetic 

Resonance (
1
H NMR). As far as the study of the minor oil component profile was 

concerned, this was accomplished by means of Direct Immersion Solid-Phase 

Microextraction followed by Gas Chromatography/Mass Spectrometry (DI-SPME-

CGMS). This methodology has the extraordinary advantage of providing information 

about different groups of minor components simultaneously and rapidly with no 

modification of the sample, unlike the several types of laborious methodologies and 

analytical techniques employed in other studies to obtain data about the various kinds of 

minor components. Next, the oils subject of study were submitted to an accelerated 

storage (AS) process at 70 ºC and their respective behaviours were studied by means of 

1
H NMR. To this aim, the evolution throughout the AS process of the different types of 

oil acyl groups together with the generation of various groups of specific oxidation 

products, both primary and secondary, were monitored. 

Given that a detailed analysis of the oxidation products that are generated in soybean 

oil subjected to AS conditions can be found in previous papers (Martin-Rubio et al., 

2018a, b), this study focuses its interest on only certain groups of oxidation products 

that can be considered representative enough to achieve the main goal of this work: 

hydroperoxides, epoxides and aldehydes. For the same reason, the differences between 

the evolutions of both types of oils will be the main subject of discussion. 
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2. MATERIALS AND METHODS 

2.1. Samples 

The samples subject of study were two commercial soybean oils, one of them virgin 

(VSO), and the other one refined (RSO). 

2.2. Characterization of the oils subject of study 

2.2.1. Analysis of the oil main components (acyl groups) 

The molar percentages of the different types of oil acyl groups were determined by 

1
H NMR, as in previous works (Guillén and Ruiz, 2003; Guillén and Uriarte, 2009, 

2012). 

2.2.2. Analysis of the minor oil components 

Extraction of the minor oil components was performed by means of Solid-Phase 

Microextraction, following the methodology described by Alberdi-Cedeño et al. 

(2017a). To this aim, a fiber of 65 μm StableFlex polydimethylsiloxane/divinylbenzene 

(PDMS/DVB), acquired from Supelco (Bellefonte, PA, U.S.), was immersed directly 

into 6 ml of edible oil at room temperature for 45 minutes. The thermal desorption 

process of the extracted oil components and their subsequent separation was carried out 

in a gas chromatograph equipped with a mass spectrometry detector (GC/MS) in the 

same way described in the above mentioned work. 

Identification of most of the extracted components was made by comparison of their 

retention times and mass spectra with those of commercial standards acquired from 

Sigma-Aldrich (St. Louis, MO, USA) and Larodan Fine Chemicals AB (Malmo, 

Sweden). Others were identified by matching of their mass spectra with spectra from a 

commercial library by more than 85% (W9N08, Wiley ver. 9.0 and NIST ver. 8.0 

library) and also with those obtained from the literature. 

Semi-quantification was based on arbitrary units of the base peak ion area counts 

divided by 10
5
. The base peaks of the several compounds identified, together with their 

respective molecular weights, are displayed in Table S1 (see supplementary material). 

All the determinations were carried out in duplicate in order to obtain a mean value with 

the corresponding standard deviation for each of the components studied. 

2.3. Accelerated storage (AS) process 

10 g portions of each oil sample were poured into plastic Petri dishes of 80 mm 

diameter for each of the days monitored throughout the AS process. These were heated 

at 70º C in a convection oven with circulating air but without forced convection, 
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simulating AS conditions. The evolution of the samples was followed by 
1
H NMR until 

their total polymerization, when it was no longer possible to take an aliquot sufficiently 

fluid to be analyzed. The AS process was carried out in duplicate with all the studied 

samples. 

2.4. Monitoring by 
1
H NMR of the evolution of VSO and RSO throughout the AS 

process  

2.4.1. Operating conditions 

The 
1
H NMR spectra of all the samples taken throughout the AS process were 

acquired using a Bruker Avance 400 spectrometer operating at 400 MHz, the weight of 

each sample being approximately 0.16 g. These were mixed in a 5 mm diameter tube 

with 400 µl of deuterated chloroform containing 0.2% of non deuterated chloroform and 

a small amount (0.03%) of tetramethylsilane as internal reference. The acquisition 

parameters used were the same as in previous studies (Guillén and Ruiz, 2003, 2005a). 

The experiments were carried out at 25 ºC. 

2.4.2. Identification of some components 

The identification of the oil acyl groups and of the products formed throughout the 

AS process was carried out on the basis of the signal assignment shown in Table S2 (see 

supplementary material), made from bibliographic data and with the aid of several 

standard compounds. These were: (E)-2-hexenal, (E)-2-heptenal, (E)-2-decenal, (E,E)-

2,4-hexadienal, (E,E)-2,4-heptadienal, (E,E)-2,4-decadienal, 4,5-epoxy-(E)-2-decenal 

and 12,13-epoxy-9(Z)-octadecenoic acid methyl ester (isoleukotoxin methyl ester), 

acquired from Sigma-Aldrich, 4-hydroxy-(E)-2-nonenal, 4-hydroperoxy-(E)-2-nonenal, 

trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, purchased from Cayman Chemical 

(Ann Arbor, MI, USA) and cis-(12,13)-epoxy-9(Z),15(Z)-octadecadienoic acid, 

acquired from Cymit Quimica (Barcelona, Spain). 

2.4.3. Quantitative data derived from 
1
H NMR spectra 

The molar percentages of the several kinds of oil acyl groups were estimated 

throughout the AS process as in previous studies (Guillén and Uriarte, 2012), by means 

of the following equations: Ln% = 100(AH/3AI); L% = 100(2AG/3AI); O% (or MU%) = 

100(AE/3AI)-Ln%-L%, where AH and AG are the areas of the signals of bis-allylic 

protons of linolenic and linoleic groups, respectively (signals “H” and “G” in Table S2); 

given that their respective signals overlap to a certain extent, the total area 

corresponding to each of them was calculated using pure trilinolein and trilinolenin 
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(Sigma-Aldrich) as references. AI, in turn, is the area of the signal of the protons at sn-1 

and sn-3 positions in the glycerol backbone of triglycerides, while AE corresponds to 

that of mono-allylic protons (signals “I” and “E”, respectively, in Table S2). The molar 

percentage of saturated acyl groups can be obtained by difference. 

The concentrations of the different types of oxidation products were estimated as 

millimoles per mol of triglyceride (mmol/mol TG). The general equation to carry out 

this determination was the following: [OP] = [(AOP/n)/(AI/4)]*1000, where AOP is the 

area of the signal selected for the quantification of each oxidation product (OP) and n 

the number of protons that generate the signal. It must be pointed out that for the 

determination of the so-called major epoxides (see section 3.2.2.2), signals between 

2.87 and 3.17 ppm approximately have been considered together. As Table S2 shows, 

some of the compounds that could give these signals contribute with two protons 

(signals “e1”, “e2”, “e3” and “f1”) but others with only one (signals “e4”, “e5”, “e6”, 

“f2” and “f3”). However, given that the conditions of this study make it impossible to 

elucidate exactly which ones of all these types of compounds are present, it is assumed 

that the signal at approximately 2.9 ppm corresponds mainly to epoxides contributing 

with two protons and the one at 3.1 ppm to epoxy-compounds contributing with only 

one. It must also be noticed that to estimate the area of the epoxy-compounds giving 

signal at 2.9 ppm, it is necessary to subtract the area corresponding to the side-band of 

the bis-allylic protons signal (signals “H” and “G” in Table S2). 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of VSO and RSO 

3.1.1. Composition in main components determined by 
1
H NMR 

The molar percentages of the different kinds of acyl groups in the two types of 

soybean oil were the following: 5.3 ± 0.7 for linolenic, 43.7 ± 0.5 for linoleic, 31.9 ± 0.7 

for oleic and 19.1 ± 0.5 for saturated groups in the case of VSO, and 4.8 ± 0.1 for 

linolenic, 45.8 ± 0.8 for linoleic, 32.2 ± 0.5 for oleic and 17.2 ± 1.2 for saturated groups 

in the case of RSO.  

These data reveal that both types of soybean oils display very similar proportions of 

acyl groups, so it is reasonable to assume that the differences in their respective 

oxidative stabilities will be due to their composition in minor components. 

3.1.2. Composition in minor components determined by DI-SPME-GC/MS 
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The methodology used here for the determination of minor oil components allows 

one to compare the amounts and relative proportions of several types of compounds in 

different oils. Figure 1 shows the abundances of the main minor components that are 

expected to influence the oxidative stability of soybean oil. In addition to tocopherols 

(-, -, - and -), other components that might also have an impact on the resistance of 

soybean oil to oxidation are, on the one hand, -tocotrienol, squalene and sterols due to 

their potential antioxidant abilities (Dessi et al., 2002; Kamal‐Eldin and Appelqvist, 

1996; Seppanen et al., 2010; Singh, 2013; Yoshida and Niki, 2003), and on the other 

free fatty acids, which unlike the previously mentioned compounds, could favour lipid 

oxidation (Choe, 2008). 

Data in Figure 1 show that, contrary to what might be expected bearing in mind the 

denomination of the studied oils, the refined one (RSO) contains higher concentrations 

of practically all the compounds considered to have antioxidant ability than the virgin 

does. Thus, RSO exhibits a higher level of tocols, among which tocopherols account for 

the highest proportion by far. Nonetheless, the tocopherol profile is the same in both 

cases, γ-tocopherol being most abundant, followed by - and -tocopherols, in line with 

data reported in other studies (Cerretani et al., 2009). It is worth noticing the presence of 

-tocotrienol, also attributed antioxidant ability (Seppanen et al., 2010), not detected in 

other studies concerning soybean oil (Cerretani et al., 2009; Rao and Perkins, 1972), as 

well as of - and -tocomonoenols; this type of compounds has been found in very few 

vegetable oils, especially palm oil (Ng et al., 2004) but also in roasted pumpkin seed oil 

(Butinar et al., 2011). 

Regarding sterol content, including desmethylsterols but also less commonly found 

4,4’-dimethyl sterols like - and -amyrin, this is also higher in RSO than in VSO-

sitosterol being the most abundant, in agreement with the findings of other authors 

(Phillips et al., 2002). Squalene concentration, instead, is basically the same in both oils. 

Despite these results appearing somewhat surprising, considering that refining of 

soybean oil can deplete the level of certain minor components (Jung et al., 1989), it 

must be taken into account that several factors other than the refining process can also 

affect the minor oil component composition. Thus, as pointed out by Chu and Lin 

(1993), the tocopherol content of soybean oil can also be influenced by the state of the 

soybean or its content in damaged beans, together with storage conditions and length. In 

addition, soybean variety and climatic factors can also affect soybean oil composition 
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(Erickson, 2015) Moreover, regarding the refining process, it is worth mentioning that 

alternatives have more recently been sought to reduce as far as possible the impact of 

refining on the beneficial components of oils (Fine et al., 2016). 

 

 

Figure 1. Bar graphics representing the abundance, expressed as arbitrary area units of 

the base peak of each compound (see Table S1) extracted from the total ion 

chromatograms obtained by DI-SPME/GC-MS, divided by 10
5
, in VSO and RSO of: 

tocols, sterols, squalene and free fatty acids. All the figures reported are mean values. 

T: tocopherol; Tm: tocomonoenol; Ttr: tocotrienol; Camp: campesterol; Stig: 

stigmasterol; S: sitosterol; Br: brassicasterol; Egn: ergostanol; Egtn: ergostenol; Stign: 

stigmastanol; Av: avenasterol; Cycl: cycloartenol; A: amyrin; Sq: squalene; Unsat: 

sum of oleic, linoleic and linolenic acids. 
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By contrast, Figure 1 shows that the amount of free fatty acids, both saturated and 

unsaturated, is higher in ASV than in RSO, which is in agreement with the removal of 

this type of minor oil components during the refining process (Jung et al., 1989). 

With regard to phenolic compounds other than the tocols above mentioned, which are 

considered important antioxidants in other plant-derived foodstuffs, their content in 

soybean oil is low (Castello-Branco et al., 2016; Siger et al., 2008; Tuberoso et al., 

2007), so although data about this type of compounds are not provided, it is not 

expected that they greatly affect the oxidative stability of this tpe of oil. 

3.2. Study by 
1
H NMR of the evolution under AS conditions of VSO and RSO  

As stated above, in order to assess the influence of the composition in minor 

components on the evolution of the studied oils, the degradation of the various types of 

oil acyl groups, together with the generation of different groups of oxidation products 

were monitored by 
1
H NMR. The evolution of some spectral regions where changes 

occur throughout the AS process of RSO can be observed in Figure 2. 

3.2.1. Evolution of the different types of oil acyl groups 

The evolutions of the different kinds of oil acyl groups (linolenic, linoleic and 

diunsaturated -6, monounsaturated and saturated+modified), expressed in molar 

percentages, are represented versus time in days in Figure 3A. This graph shows that the 

molar percentages of all the types of unsaturated groups, especially those of the 

polyunsaturated ones (linolenic and linoleic), decrease with time both in VSO and in 

RSO, this diminution being slow during a first stage, but very quick afterwards. In 

consequence, the molar percentage of saturated+modified (S+M) groups increases 

accordingly. When comparing the evolution of the two studied soybean oils, it is 

observed that the first phase of acyl group degradation is longer in RSO than in VSO, 

since S+M groups molar percentage does not begin to increase at the fastest rate until 

day 8 in RSO versus day 6 in VSO. This results in a slower degradation of the former 

and in a longer total oil polymerization process (13 days against 10 in VSO). 
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Figure 2. 
1
H NMR spectrum of sample RSO before being subjected to the oxidation process, together with the enlargements 

of some spectral regions where changes occur throughout time. Letters agree with those in Table S2, considering that “e” 

includes signals “e1-e6”, “f” signals “f1-f3” and “h” signals “h1+h2”. The plots corresponding to the same 
1
H NMR spectral 

region are presented at a fixed value of absolute intensity, for them to be valid for comparative purposes. 
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Figure 3. Evolution throughout the accelerated storage process in VSO and RSO 

of: A) the molar percentages of linolenic, linoleic and diunsaturated -6, 

monounsaturated and saturated+modified acyl groups; and B) the concentrations, 

in mmol/mol TG, of hydroperoxides and their associated conjugated (Z,E)- and 

(E,E)-dienes. All the figures reported are mean values. 

 

3.2.2 Formation and evolution of oxidation products 

3.2.2.1. Evolution of the concentration of hydroperoxides and of their associated 

conjugated (Z,E)- and (E,E)-hydroperoxy-dienes 

1
H NMR analysis allows one to determine both total hydroperoxides and those with 

(Z,E)- and (E,E)-conjugated dienes. The evolution of all of them will be discussed 

below. 

The evolution of the concentration of total hydroperoxides, which can be estimated 

from signal “a” (see Table S2 and Figure 2), is shown in Figure 3B. The first noticeable 
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feature is that in VSO hydroperoxides are already detectable after the first day under AS 

conditions, while in RSO these are not observed until day 2, indicating lower oxidative 

stability of the virgin oil. In line with acyl group evolution, hydroperoxide concentration 

in both oils increase slowly over 4 and 6 days in VSO and RSO, respectively, but then 

the growing rate becomes much higher until the maximum is reached after 6 days in 

VSO and 8 days in RSO. In view of these results, it becomes clear that oxidation 

proceeds faster in VSO than in RSO. 

Hydroperoxides generated in oils under AS conditions usually support conjugated 

diene systems with either (Z,E)- and (E,E)-isomerism that, as indicated above, can be 

monitored separately by measuring their corresponding signals (see Table S2, signals 

“b” and “c”, respectively). The evolution of these signals throughout the AS process can 

be observed in Figure 2, while the progress of their estimated concentrations in the two 

oils studied is shown in Figure 3B. This latter reveals that, in line with total 

hydroperoxide evolution, the emergence of both types of CD-OOH occurs earlier in 

VSO than in RSO. In addition, a similar trend is observed in both cases, (Z,E)- and 

(E,E)-CD-OOH being detected in similar proportions during the first days of the AS 

process; then the generation of (E,E)-isomers predominates over that of the (Z,E) until 

the maximum level of both types of CD-OOH is reached, coinciding with the peak level 

of total hydroperoxides. 

3.2.2.2. Epoxides 

Epoxides constitute a relevant group of secondary lipid oxidation products, due to 

their notable concentration (Goicoechea and Guillén, 2010; Martin-Rubio et al., 2018a, 

b) and to their potential toxicity (Greene et al., 2000; Liu et al., 2018), despite which 

they receive little attention in oxidation studies.  

Table S2, which compiles some of these compounds, shows that only (E)-

epoxystearates (letter “d”) and (E)-epoxy-keto-enes (letters “g” and “h”) generate 

signals isolated from those of the rest of epoxides. This makes identification and 

determination of specific types of epoxides by 
1
H NMR difficult. Despite this, an 

estimation of their overall amount can be made, which can be useful to assess the 

contribution of this type of oxidation products to the total of compounds generated. The 

evolution of their corresponding signals with time can be observed in Figure 2 (letters 

“d”, “e”, “f”, “g” and “h”), while the progress of their estimated concentrations 

throughout the AS process is displayed in Figure 4, in mmol/mol TG. As pointed out in 
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section 2.4.3, most of the potential epoxides considered, designated as “major 

epoxides”, give their signals between 2.87 and 3.17 ppm approximately (see Table S2 

and Figure 2) and, according to the data compiled in Table S2, they are supposed to 

include (Z)-epoxystearates derived from oleic groups, as well as different types of 

epoxy-compounds coming from polyunsaturated groups; some of these latter possibly 

support other functional groups like, for example, hydroperoxy- or hydroxy-ones. 

Figure 4. Evolution throughout the accelerated storage process of the 

concentrations, in mmol/mol TG, of the different types of epoxides in 

VSO and RSO. All the figures reported are mean values. 

 

With regard to major epoxides it is worth noticing that a part of this type of epoxides, 

possibly monoepoxides from linolenic and/or linoleic groups, were present in the fresh 

refined soybean oil, this is before being subjected to the heating process. This is 

deduced from the observation of signal “e” in Figure 2. Thus, in the absence of epoxides 

this signal resembles that of the other side-band (see signal “sb”); however, in the case 

of RSO it is clear that there are additional compounds contributing to signal “e”, since 

its intensity is higher than that of the side-band. 
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Figure 4A reveals that, as might be expected from the evolution of hydroperoxides in 

the two oils studied, the appearance of major epoxides in VSO occurs before their 

concentration begins to increase in RSO. 

Apart from the aforementioned major epoxides, other types of epoxides, present in 

considerable lower concentrations, have also been tentatively identified; these are 

epoxy-keto-enes and (E)-epoxystearates, derived from polyunsaturated and oleic 

groups, respectively; their corresponding evolutions are shown in Figure 4B. As in the 

case of major epoxides, it can be observed that both types of compounds are detected 

later in RSO than in VSO, the pattern of generation being the same in the two oils. 

Regarding epoxy-keto-enes, these compounds appear later than the major epoxides 

which suggests that they might derive from other oxidation products generated at an 

earlier stage and not directly from hydroperoxides. As far as (E)-epoxystearates are 

concerned, their evolution is in line with that of monounsaturated groups (see Figure 

3A), whose degradation takes longer than that of the polyunsaturated ones. 

3.2.2.3. Aldehydes 

Due to the reactivity and toxicity of some aldehydes, such as oxygenated -

unsaturated (Guillén and Goicoechea, 2008), this type of compounds constitute an 

important group of oxidation products. However, the estimation of their concentration is 

usually based on the determination of only a few of them, being malondialdehyde, 

measured through the TBARs assay, the sole target of many studies (Barriuso et al., 

2013; Shahidi and Zhong, 2005). The progress of the 
1
H NMR signals of the different 

kinds of aldehydes throughout the AS process in the refined oil can be observed in 

Figure 2 (signals “i” to “n”), and the evolutions of their respective concentrations in the 

two studied oils, in mmol/mol TG, in Figure 5. As shown in this figure, aldehydes are 

also generated earlier in VSO than in RSO (after 6 and 8 days under AS conditions, 

respectively). Moreover, while all the different kinds of aldehydes are detected at the 

same time in VSO, the aldehyde appearance process in RSO is staggered in such a way 

that 4-hydroxy-(E)-2-alkenals, 4,5-epoxy-2-alkenals and (E,E)-2,4-alkadienals are 

detected one day later than the first ones detected (n-alkanals, (E)-2-alkenals and 4-

hydroperoxy-(E)-2-alkenals). This indicates a lower generation rate of this type of 

oxidation products in RSO. With regard to the evolution with time of the several groups 

of aldehydes, this is the same in both oils. 
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Figure 5. Evolution throughout the accelerated storage process of the 

concentrations, in mmol/mol TG, of the different types of aldehydes in 

VSO and RSO. All the figures reported are mean values. 

 

3.3. Final remarks 

The analysis of the evolution of the two oils studied evidences the lower oxidative 

stability of the virgin soybean oil when compared to the refined one. Therefore, 

although it has been considered as a general rule that virgin oils show longer induction 

periods than the refined ones due to their higher concentrations of minor antioxidant 

compounds (Chaiyasit et al., 2007), this observation should not be linked to the 

designation of the oil as virgin or refined, but will only depend on its composition in 

both acyl groups and minor components. In fact, in similar results to these, Redondo-

Cuevas et al. (2018) found that refined sunflower and rapeseed oils showed greater 

resistence to oxidation than did their respective virgin cold-pressed counterparts on the 

basis of longer induction periods determined by the Rancimat method. In the same vein, 

Wroniak et al. (2008) also reported that cold-pressed oils were less stable in Rancimat 
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test in comparison with oils after full refining. However, the factors contributing to 

these observations were not discussed in detail. 

It is also worth noticing that, although a higher concentration of tocopherols seems to 

contribute to a higher oxidative stability in the soybean oils here studied, this apparently 

logical relationship should not be directly extrapolated to other types of vegetable oils 

with a tocopherol profile where -tocopherol and not -tocopherol, was the major one. 

This assertion is based on the conclusions of many works which suggest that increasing 

concentrations of -tocopherol might result in a lower oxidative stability (Dolde and 

Wang, 2011; Frankel et al., 1959; Jung and Min, 1990). Indeed, Redondo-Cuevas et al. 

(2018) found that the concentration of total tocopherols showed a negative correlation 

with oxidative stability. 

 

4. CONCLUSIONS 

The findings of this study reveal to what extent the composition in minor components 

of two soybean oils with very similar compositions in acyl groups can affect their 

oxidative stability and evolution under AS conditions. In this respect, it has been shown 

that oxidation proceeds more slowly in the oil which has the highest concentrations of 

tocols and sterols, and is poorer in free fatty acids. This is deduced from a slower 

degradation of oil acyl groups and from a later and, in some cases, more gradual 

generation of oxidation products. 

Contrary to what the denomination of the two soybean oils studied might suggest, the 

virgin one is lower in tocopherol and sterol content. Therefore, it should not be 

generally assumed that the content of virgin soybean oils in minor components 

considered to be beneficial for human health is higher than that of the refined ones, thus 

confirming recent findings of other authors. However, the higher concentration of 

components with antioxidant ability in the refined oil seems to contrast with the initial 

presence of epoxides in the same oil; this arises the convenience of analyzing the causes 

of the occurrence of this type of oxidation products in fresh oils. 

Finally, this work shows that a simple analysis of the composition in minor 

components of commercial oils by means of direct immersion SPME followed by 

GC/MS would make it possible to establish different categories or quality levels within 

oils of the same botanical origin, in terms not only of composition in potentially 

bioactive compounds but also of oxidative stability. Thus, the establishment of 
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parameters indicative of this quality, not considered until now, might be valuable for oil 

producers, who could add value to their products, for consumers andt also for food 

industry, which would have a means to identify oils with different oxidative stabilities. 
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Table S1. Minor components found in the soybean oils studied together with their 

respective molecular weight (MW) and their base peak (BP). The asterisked 

compounds were acquired commercially and used as standards for identification 

purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§Linoleic, oleic and linolenic acids peaks overlapped in 

the chromatograms. Thus, in order to quantify these 

compounds altogether, ion 55 was taken since it is 

common to all these unsaturated fatty acids. 

  

Compound MW BP 

Tocols  

 -Tocopherol * 402 402 

-Tocopherol * 416 416 

-Tocopherol * 416 416 

-tocomonoenol 414 414 

-Tocopherol * 430 165 

-tocotrienol * 410 151 

-tocomonoenol 428 428 

 

 

 Sterols  

 Brassicasterol * 398 314 

Campesterol * 400 400 

Ergostanol 402 215 

Stigmasterol * 412 412 

-Ergostenol 400 400 

-Sitosterol * 414 414 

Stigmastanol * 416 416 

Δ5-Avenasterol * 412 314 

Δ7-Avenasterol 412 285 

Cycloartenol 426 69 

-Amyrin 426 218 

-Amyrin 426 218 

 

 

 Squalene  * 410 69 

 

 

 Free fatty acids  

 Palmitic acid * 256 73 

§Linoleic acid * 280 55 

§Oleic Acid *
 
 282 55 

§Linolenic acid *
 
 278 55 
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Table S2. Chemical shifts, multiplicities and assignments of the 
1
H NMR signals in 

CDCl3 of the main types of triglyceride (TG) protons, and of some oxidation 

compounds, present in the different soybean oil samples, before and throughout the 

oxidation process. 

Signal 
Chemical shift 

(ppm) 

Multi- 

plicity 

Functional group 

Type of protons Compound 

Main acyl groups
a
 

A 0.88 t -CH3 saturated and 

monounsaturated ω-9  

acyl groups 

 0.89 t -CH3 linoleic acyl groups 

B 0.97 t -CH3 linolenic acyl groups 

C 1.19-1.42 m* -(CH2)n- acyl groups 

D 1.61 m -OCO-CH2-CH2- acyl groups in TG  

E 1.94-2.14 m** -CH2-CH=CH- unsaturated acyl 

groups 

F 2.26-2.36 dt -OCO-CH2- acyl groups in TG  

G 2.77 t =HC-CH2-CH= linoleic acyl groups 

H 2.80 t =HC-CH2-CH= linolenic acyl groups 

I 4.22 dd,dd ROCH2-CH(OR’)-

CH2OR’’ 

glyceryl groups 

J 5.27 m ROCH2-CH(OR’)-

CH2OR’’ 

glyceryl groups 

K 5.28-5.46 m -CH=CH- acyl groups 

Oxidation compounds 

Hydroperoxides
b
 

a 8.3-9.0 bs -OOH monohydroperoxide 

group 

Conjugated dienic systems
b
 

- 

- 

- 

b 

5.47 

5.76 

6.06 

6.27 

ddm 

dtm 

ddtd 

ddm 

-CH=CH-CH=CH- (Z,E)-conjugated 

double bonds 

associated with 

hydroperoxy group  

in octadecadienoic 

acyl groups
c 

     

- 

- 

- 

5.51 

5.56 

6.00 

dtm 

ddm 

ddtd 

-CH=CH-CH=CH- (E,E)-conjugated 

double bonds 

associated with 
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c 6.58 dddd hydroperoxy group  

in octadecadienoic 

acyl groups 

     

Epoxides 

Epoxy-derivatives 

d 2.63
d
 m -CHOHC- (E)-9,10-

epoxystearate 

e1 2.88
d
 m -CHOHC- (Z)-9,10-

epoxystearate 

e2 2.9
e
 m -CHOHC- monoepoxy-

octadecenoate 

groups 

   -CHOHC-CH2-CHOHC- diepoxides 

e3 2.94*** m -CHOHC- (Z)-(12,13)-epoxy-

9(Z),15(Z)-

octadecadienoic 

acid 

f1 3.10
e
 m -CHOHC-CH2-CHOHC- diepoxides 

Epoxy-keto-derivatives 

e4 2.89
f
/2.90

g
 td

h
/m

i
 -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

e5 2.91
f
 td -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

g 3.20
f,g

 dd -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

   -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

   -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

   -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

h1 3.52
f
 dd -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

h2 3.53
f
 dd -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

Epoxy-hydroxy-derivatives 

e6 2.93
h
 dt -CHOHC-CHOH-

CH=CH- 

threo-11-hydroxy-

(E)-12,13-epoxy-
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(Z)-9-octadecenoate 

f2 3.09
i
/3.097

j
 dd -CHOHC-CH=CH-

CHOH- 

9-hydroxy-(E)-

12,13-epoxy-(E)-

10-octadecenoate 

Epoxy-hydroperoxy-derivatives 

f3 3.11
i
 dd -CHOHC-CH=CH-

CHOOH- 

9-hydroperoxy-(E)-

12,13-epoxy-(E)-

10-octadecenoate
k
 

Aldehydes 

i 9.49
l
 d −CHO (E)-2-alkenals 

j 9.52
l
 d −CHO (E,E)-2,4-

alkadienals 

k 9.55
l
 d −CHO 4,5-epoxy-2-

alkenals 

l 9.57
l
 d −CHO 4-hydroxy-(E)-2-

alkenals 

m 9.58
l
 d −CHO 4-hydroperoxy-(E)-

2-alkenals 

n 9.75
l
 t -CHO n-alkanals 

t: triplet; m: mutiplet; d: doublet; bs: broad signal; *Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***Assignment made with the aid of 

standard compounds 
a
Assignments taken from Guillén, M. D., Ruiz, A. (2003). Journal of the Science of 

Food and Agriculture, 83, 338–346. 
b
Data taken from Goicoechea, E.,Guillén, M. D. (2010). Journal of Agricultural and 

Food Chemistry, 58, 6234-6245. 
c
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Chan, H. W. S., Levett, G. (1977). Lipids, 12, 99-104.
 

d
Data taken from Du, G., Tekin, A., Hammond, E. G., Woo, L. K. (2004). Journal of 

the American Oil Chemists’ Society, 81, 477–80. 
e
Data taken from Aerts, H. A. J., Jacobs, P. A. (2004). Journal of the American Oil 

Chemists’ Society, 81, 841-846. 
f
Data taken from Lin, D., Zhang, J., Sayre, L. M. (2007). The Journal of Organic 

Chemistry, 72, 9471-9480. 
g
Data taken from Gardner, H. W., Kleiman, R., Weisleder, D. (1974). Lipids, 9, 696-

706. 
h
Data taken from Garssen, G. J., Veldink, G. A., Vliegenthart, J. F., Boldingh, J. 

(1976). The FEBS Journal, 62, 33-36. 
i
Data taken from Gardner, H. W., Weisleder, D., Kleiman, R. (1978). Lipids, 13, 246-

252. 
j
Data taken from Van Os Cornelis, P. A., Vliegenthart, J. F. G., Crawford, C. 

G.,Gardner, H. W. (1982). Biochimica et Biophysica Acta, 713, 173-176. 
k
-Ketols (hydroxy-keto-derivatives) could also contribute to this signal (Gardner et 

al., 1974). 
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l
Data taken from Guillén, M. D., Ruiz, A. (2004). European Journal of Lipid Science 

and Technology, 106, 680–687. 
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ABSTRACT  

The effect of adding -tocopherol in proportions ranging from 0.002 to 5% in weight 

on the oxidative stability of soybean oil was studied. For the first time, the oxidation 

process under accelerated storage conditions including evolution of the molar 

percentages of the several types of oil acyl groups, and formation and evolution of 

various kinds of oxidation products comprising hydroperoxides, hydroxy-dienes and 

other alcohols, epoxides, aldehydes and keto-dienes, was followed by 
1
H nuclear 

magnetic resonance. It is proved that, except in the lowest proportion, -tocopherol not 

only exerts a prooxidant effect on soybean oil but also modifies its oxidation pathway, 

affecting the oxidation products generation rate, their nature, relative proportions and 

concentrations. It is noticeable that the highest -tocopherol concentrations induce the 

generation of some toxic compounds at earlier stages of the thermoxidation process and 

sometimes in higher concentration, such as certain oxygenated ,-unsaturated 

aldehydes and monoepoxides derived from linoleic groups. 

 

Chemical compounds studied in this article: -Tocopherol (PubChem CID: 2116); 

(E)-2-Hexenal (PubChem CID: 2116); (E,E)-2,4-Decadienal (PubChem CID: 5283349); 

4-Hydroxy-(E)-2-nonenal (PubChem CID: 1693); (E)-9,10-epoxystearate (PubChem 

CID: 12235226) 

 

KEYWORDS: -tocopherol, soybean oil, 
1
H nuclear magnetic resonance, oxidation, 

prooxidant, hydroperoxides, conjugated hydroperoxydienes, conjugated hydroxy-

dienes, epoxides, aldehydes, keto-dienes, alcohols 
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1. INTRODUCTION 

Vitamin E, in particular α-tocopherol (-T), is employed by industry due to its 

classically attributed antioxidant properties and beneficial effects on human health. As 

far as vegetable oils are concerned, European legislation allows the addition of -T on 

the basis of the quantum satis principle (Commission Regulation 1129/2011), this is 

without an established limit, to refined oils, except for refined olive oils. This contrasts 

with the body of knowledge provided by many scientific studies, where controversial 

results have been obtained concerning not only the antioxidant ability of α-T (Seppanen, 

Song & Csallany, 2010), but also its effect on human health (Brigelius-Flohé, 2009). 

Many studies have been carried out on the effect of -T on the oxidative stability of 

lipids, but dissenting results are observed depending on the test system, the α-T 

concentration, the temperature and the methodology chosen to assess the antioxidant 

ability, among other factors (Seppanen et al., 2010). Thus, whereas some authors have 

reported an antioxidant effect of -T in methyl linoleate (Mäkinen, Kamal‐Eldin, Lampi 

& Hopia, 2000), in rapeseed oil triacylglycerols (Lampi, Kataja, Kamal-Eldin & Vieno, 

1999; Ohm, Stöckmann & Schwarz, 2005) or in olive oil (Wagner & Elmadfa, 2000), 

others have observed a prooxidant action of α-T, for example, on purified rapeseed oil 

(Isnardy, Wagner & Elmadfa, 2003) and on linoleic acid (Cillard, Cillard, Cormier & 

Girre, 1980). Moreover, other works have shown both an antioxidant and a prooxidant 

effect depending on the -T concentration in linoleic acid (Koskas, Cillard & Cillard, 

1984), in purified soybean oil (Jung & Min, 1990) and in stripped corn oil (Dolde & 

Wang, 2011). 

Some of these studies are based on the performance of non-specific classical 

methods, such as the peroxide value or the spectrophotometrical measurement of 

conjugated dienes (Cillard et al., 1980; Dolde & Wang, 2011; Isnardy et al., 2003; Jung 

& Min, 1990, Lampi et al., 1999), or the p-anisidine value to measure the concentration 

of certain aldehydes altogether (Isnardy et al., 2003; Lampi et al., 1999). Other works, 

by contrast, deal with the determination, by means of high performance liquid 

chromatography (HPLC), of specific oxidation compounds such as certain individual 

hydroperoxides, hydroxy-dienes or keto-dienes (Banni et al., 1996; Koskas et al., 1984; 

Mäkinen et al., 2000). Aldehydes have also been the subject of research but, in general, 

only a few of them have been considered, or even only hexanal (Ohm et al., 2005). 

Therefore, the information provided by these studies is very limited and, in most of the 
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cases, excludes some of the most toxic oxidation products such as oxygenated ,-

unsaturated aldehydes (Guillén & Goicoechea, 2008). 

Controversial results about the antioxidative effect of -T can also be found at the 

biological level. In this respect, the dual effect (anti- and pro-oxidant) of -T has been 

shown, for example, in LDL (Schneider, 2005). Moreover, -T has also been associated 

with enhanced tumor formation in vivo when taken in high doses (Toth & Patil, 1983). 

All the above mentioned serves to evidence the importance of making an assessment 

of the effect of -T on the oxidative stability of food lipids as accurate and complete as 

possible. Therefore, taking all this into account, the goal of this work was to monitor, by 

means of 
1
H nuclear magnetic resonance (

1
H NMR), the effect of the addition of 

different amounts of -T on the entire thermoxidative process of soybean oil carried out 

at 70º C, simulating accelerated storage conditions. 
1
H NMR, which has been proved to 

be extremely useful for the study of the behaviour of lipids under diverse oxidative 

conditions (Martínez‐Yusta, Goicoechea & Guillén, 2014), allows one to follow both 

the evolution of the different types of oil acyl groups and the formation of a wide range 

of oxidation products. Thus, this work covers the monitoring both of hydroperoxides 

and their associated conjugated dienes as well as of other types of oxidation compounds 

including conjugated hydroxy-dienes and keto-dienes, epoxides, aldehydes and 

alcohols, some of which are toxic (Greene, Williamson, Newman, Morisseau & 

Hammoc, 2000; Guillén & Goicoechea, 2008). The analysis of all these data will 

contribute to elucidate to what extent -T in the proportions tested affects the oxidation 

pathway of soybean oil. 

 

2. MATERIALS AND METHODS 

2.1. Samples 

The starting oil was a soybean oil (SO) purchased from a local supermarket. The 

average concentrations of the four tocopherols, in mg/kg, estimated by using a SPME-

CG/MS methodology previously developed in our laboratory (Alberdi-Cedeño, 

Ibargoitia, Cristillo, Sopelana & Guillén, 2017) were the following: 130.0 for α-T, 781.7 

for -T, 316.1 for -T and 21.9 for -T. 

Subsequently several samples of this oil enriched with α-T were prepared by adding 

0.002, 0.02, 0.2, 2 and 5% in weight of α-T to the oil, and given the following 
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designations: SO+0.002, SO+0.02, SO+0.2, SO+2 and SO+5, respectively. α-

Tocopherol with a purity of 98.2% was purchased from Sigma-Aldrich (St. Louis, MO, 

USA). 

The molar percentages of the different types of oil acyl groups were determined by 

1
H NMR, as in previous works (Guillén & Ruiz, 2003; Guillén & Uriarte, 2009, 2012). 

These were 6.6 ± 0.4 for linolenic, 42.8 ± 0.4 for linoleic, 32.4 ± 1.0 for oleic and 18.2 ± 

1.9 for saturated groups. 

2.2. Thermal treatment 

10 g portions of each SO sample were poured into plastic Petri dishes of 80 mm 

diameter. These were placed in a convection oven and heated at 70º C with circulating 

air but without forced convection, simulating accelerated storage conditions. Aliquots 

were taken every day for their study by 
1
H NMR. The evolution of the samples was 

monitored until their total polymerization, when it is no longer possible to take a 

sufficiently fluid sample to be analyzed. The heating experiments were carried out in 

duplicate with all the studied samples.  

2.3. Monitoring by 
1
H NMR of the evolution of SO and of the SO enriched with 

different proportions of α-T  

2.3.1. Operating conditions 

The 
1
H NMR spectra of the starting oils and of the corresponding aliquots taken 

throughout the accelerated storage conditions were acquired using a Bruker Avance 400 

spectrometer operating at 400 MHz. The weight of each aliquot was approximately 0.16 

g. These were mixed in a 5 mm diameter tube with 400 µl of deuterated chloroform that 

contained 0.2% of non deuterated chloroform and a small amount (0.03%) of 

tetramethylsilane as internal references. The acquisition parameters used were: spectral 

width 5000 Hz, relaxation delay 3 s, number of scans 64, acquisition time 3.744 s and 

pulse width 90º, with a total acquisition time of 8 min 55 s. The relaxation delay and 

acquisition time selected allow the complete relaxation of the protons, the signal areas 

thus being proportional to the number of protons that generate them, making possible 

their use for quantitative purposes. The experiments were carried out at 25 ºC, as in 

previous works (Guillén & Ruiz, 2003, 2005). Each sample was analyzed in duplicate, 

in order to obtain a mean value for the concentration of each of the studied components. 

In Figures 1 and 3, the plots corresponding to the same 
1
H NMR spectral region in each 
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sample have been drawn at a fixed value of absolute intensity to be valid for 

comparative purposes. 

2.3.2. Identification of oil components 

The identification of the various oil components was made on the basis of the signals 

assignments shown in Table S1. For this purpose, several standard compounds were 

used; these were (E)-2-hexenal, (E)-2-heptenal, (E)-2-decenal, (E,E)-2,4-hexadienal, 

(E,E)-2,4-heptadienal, (E,E)-2,4-decadienal, (E)-2-penten-1-ol and 1-hexanol, acquired 

from Sigma-Aldrich (St. Louis, MO, USA), and 4-hydroperoxy-(E)-2-nonenal, 4-

hydroxy-(E)-2-nonenal and 4,5-epoxy-(E)-2-decenal, purchased from Cayman 

Chemical (Ann Arbor, MI, USA). 

2.3.3. Quantitative data estimated from 
1
H NMR spectra 

The molar percentages of the several kinds of acyl groups throughout the oils 

thermodegradative process were estimated as in previous studies (Guillén & Uriarte, 

2012). For this purpose, trilinolein and trilinolenin, acquired from Sigma-Aldrich, were 

used. It must be noticed that, mainly in samples SO+2 and SO+5, the signals of the -T 

added are detectable in their 

H NMR spectra during part of the accelerated storage 

period. Taking into account that some of these signals (Baker & Myers, 1991) partially 

overlap with some signals of triglycerides, their contribution was subtracted when 

determining the molar percentages of oil acyl groups. 

The concentrations of the different types of oxidation products generated were 

estimated as millimol per mol of triglyceride (mmol/mol TG). The general equation to 

carry out this determination was the following: [OP] = [(AOP/n)/(ATG/4)]*1000, where 

AOP is the area of the signal selected for the quantification of each oxidation product 

(OP), n the number of protons that generate the signal and ATG the area of the protons at 

sn-1 and sn-3 positions in the glycerol backbone of TG (signal “I” in Table S1). 

2.4. Statistic and kinetic studies 

The Microsoft Office Excel 2007 software was used to find equations that fit heating 

time and the concentrations of saturated+modified acyl groups, of hydroperoxides and 

of the conjugated dienes associated to them, in all the studied samples. 
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3. RESULTS AND DISCUSSION 

The evolution of the thermoxidation process of soybean oil, enriched or not with 

different levels of -T, was followed from the beginning of the process to its total 

polymerization. Attention was focused both on acyl group degradation and on new 

compound formation and evolution. 

It must be pointed out that the oxidation process of the sample with 0.002% of -T 

added (SO+0.002) was the same as that of the non-enriched oil (SO), so this enrichment 

level does not modify the oxidative stability of the original soybean oil. This could be 

explained because this addition level involves only a small increase in the -T 

concentration of the oil (of approximately 20 mg/kg against the 130.0 mg/kg already 

existing). For this reason, this sample will not be taken into account when discussing the 

effect of the -T addition to SO. 

3.1. Effect of -T on the evolution of the different types of oil acyl groups 

As it is known, accelerated storage conditions produce the degradation of the acyl 

groups of edible oils (Guillén & Ruiz, 2005), and the most unsaturated ones are the 

most affected, almost eventually disappearing at the advanced stages of the process. 

Figure 1 shows, as example, the 
1
H NMR spectrum of SO oil before being subjected to 

the accelerated storage process (day 0), together with the enlargements of some spectral 

regions where changes occur throughout the thermoxidation process and their evolution 

with time. It can be observed that, after 10 days under accelerated storage conditions, 

signal “H”, due to bis-allylic protons of linolenic groups (see Table S1), has completely 

disappeared and that the intensity of signal “G”, due to bis-allylic protons of linoleic 

and diunsaturated -6 groups, is very low. 

The molar percentages of the different kinds of acyl groups (linolenic, linoleic and 

diunsaturated -6, monounsaturated and saturated+modified) are represented versus 

time in days in Figure 2a. It can be observed that, as a consequence of the degradation 

of the unsaturated groups, the molar percentage of saturated+modified (S+M) groups 

increases in all the samples and, to some extent, the evolution of this latter parameter 

globally summarizes the evolution of the degradation rate of acyl groups in the 

accelerated storage process of the several samples. 
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Although the thermodegradation processes of all the samples evolve overall as above 

mentioned, clear differences are observed among them. These concern the time at which 

acyl groups begin to degrade and the rate at which the degradation proceeds once it has 

started. The first is associated with the oxidative stability of the sample, and the second 

with the evolution of its oxidation process. 

Figure 1. 
1
H NMR spectrum of sample SO before being subjected to the accelerated 

storage process, together with the enlargements of some spectral regions where changes 

occur throughout the accelerated storage process and their evolution with time. Letters 

agree with those in Table S1.  

https://www.sciencedirect.com/science/article/pii/S0308814617317375#s0150
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3.1.1. Time at which the degradation of acyl groups begins 

This information can be obtained from the detailed analysis of the evolution of the 

molar percentage of the S+M groups versus time in the several samples, represented in 

Figure 2a. Table 1 shows the estimated rates at which the molar percentage of these 

groups increases in each sample during different periods of time under the above 

mentioned accelerated storage conditions. These rates d(S+M)%/dt are given by the 

slopes of the straight parts of the lines that fit S+M molar percentage and heating time; 

likewise, the correlation coefficients (R) between the experimental data and those of the 

corresponding fitted equations are also given.  

Table 1 evidences that in SO sample the molar percentage of S+M remains constant 

during the first day under accelerated storage conditions. However, in the samples 

enriched with -T, the molar percentage of S+M increases since the beginning of the 

accelerated storage time due to the degradation of some of the polyunsaturated acyl 

groups (see Figure 2a). These results prove that the enrichment of the oil with -T in the 

proportions before mentioned (0.02, 0.2, 2 and 5%), provokes a reduction of its 

oxidative stability; that is, -T acts as prooxidant under the conditions of this study.  

3.1.2. Evolution of the oxidation process once it has begun 

Regarding the evolution of the oxidation process once it has been initiated, data in 

Table 1 indicate that its rate also depends on the -T enrichment level. As this table 

shows, in all samples the process can be approximately divided into two periods with 

different degradation rates until total polymerization is reached. The first one is very 

short for SO, (from days 1 to 4) and the rate of degradation (0.74%/day) is also the 

lowest of all. As the level of -T enrichment of the sample increases, the duration of 

this period becomes longer and the rate of the process is faster, ranging from 0.93%/day 

in SO+0.02 to 3.96%/day in SO+5. This means that in the sample having the highest 

level of -T the initial rate of oxidation is considerably higher than in the samples with 

lower -T concentrations. 

The second period has a similar duration in most of the samples, except for the most 

-T-enriched one (SO+5), where it is longer. Moreover, in the samples with the highest 

-T concentrations (SO+2 and SO+5) total polymerization is reached after 12 and 20 

days, respectively. It must be noticed that in this second period SO sample exhibits the 
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highest degradation rate (8.91%/day), whereas SO+5 sample has the lowest one (2.39 

%/day), this being the reason why this latter reaches total polymerization after 20 days. 

In summary, the total polymerization of the samples, which entails almost the total 

disappearance of the polyunsaturated acyl groups, is produced faster in SO and in the 

samples having lower -T levels, than in those richer in -T. However, the onset of 

oxidation is faster in the -T-enriched samples than in SO, and the degradation rate in 

the first period of the oxidation process increases with -T concentration. 

3.2. Formation and evolution of oxidation products. Influence of the -T 

enrichment. 

3.2.1. Hydroperoxides 

The thermodegradation of unsaturated acyl groups gives rise to the formation of 

hydroperoxides in all the samples studied. This can be observed by the appearance in 

their 
1
H NMR spectra of signals due to the proton of the hydroperoxy group (signal “a” 

in Figure 1 and Table S1) and to the protons of conjugated dienes associated to them, 

which can exhibit either (Z,E)- or (E,E)-conjugated isomerism (signals “d” and “c”, 

respectively, in Figure 3a and Table S1). Figure 2b shows the evolutions of the molar 

concentrations of total hydroperoxides and of those having (Z,E)- and (E,E)-conjugated 

dienes separately, expressed in mmol/mol TG. 

3.2.1.1. Evolution of the concentration of total hydroperoxides 

Figures 1 (signal “a”) and 2b reveal that, in SO, hydroperoxides are detected after 

one day under accelerated storage conditions and their concentration rises with time 

until it reaches a maximum on the 7
th

 day, after which it decreases sharply. Figure 2b 

also shows that the increasing rate of hydroperoxides concentration is not constant over 

time, but two periods with different formation rates can be noticed, that of the first one 

(from days 1 to 4) being lower. These periods, expressed in days, and the corresponding 

paces of increase of hydroperoxides concentration are shown in Table S2. 

In the -T-enriched samples, hydroperoxides are detected at the same time as in SO 

(see Figure 2b); however, as Table S2 shows, their concentration increases at a higher 

rate as -T concentration rises (from 6.03 mmol.mol TG
-1

/day in SO to 67.05 mmol.mol 

TG
-1

/day in SO+5). Actually, both Figure 2b and Table S2 reveal that, in the samples 

with the lowest -T enrichment levels (0.02 and 0.2%), two periods with different 

hydroperoxides concentration increasing rates are noticed, while in those with higher -
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T levels the pace at which hydroperoxides concentration grows can be considered 

constant over time. Moreover, the maximum concentration reached is also higher as 

more elevated the -T enrichment degree is (from 134.36 mmol/mol TG in sample SO 

to 285.08 mmol/mol TG in SO+5). These findings confirm that the addition of -T 

reduces the oxidative stability of the SO oil, thus exhibiting a prooxidant effect. An 

increase in the concentration of hydroperoxides due to the addition of -T has also been 

reported by other authors in the oxidation processes of purified soybean oil (Jung & 

Min, 1990) and of purified rapeseed oil triacylglycerols (Isnardy et al., 2003). 

The amount of α-T added not only influences the generation kinetics of 

hydroperoxides and their maximum concentration, but also their decomposition since, 

as Figure 2b shows, this begins earlier in the -T-enriched oils. It is noticeable that, in 

SO+5 sample, the concentration of hydroperoxides remains high between days 4 and 7. 

This seems to agree with the hydroperoxide stabilization observed by Mäkinen, Kamal-

Eldin, Lampi and Hopia (2001) during the oxidation of methyl linoleate in the presence 

of -T. 

3.2.1.2. Evolution of conjugated (Z,E)- and (E,E)-hydroperoxydienes 

All the above commented refers to (Z,E)- and (E,E)-hydroperoxides jointly. 

However, the evolution of both kinds of hydroperoxides, which can be measured from 

signals “d” and “c”, respectively (see Figure 3a and Table S1), is not the same (see 

Figure 2b). 

As Figure 2b shows, in SO and SO+0.02, the formation rates of conjugated (Z,E)- 

and (E,E)-hydroperoxydienes ((Z,E)- and (E,E)-CD-OOH, respectively) are initially 

similar for a short period of time, after which the concentration of (E,E)-CD-OOH 

becomes higher than that of the (Z,E)-ones. Notwithstanding, the two kinds of 

hydroperoxides reach their maximum concentration at the same time in both samples 

(after 7 days under accelerated storage conditions). The growing rates of the molar 

concentrations of both (Z,E)- and (E,E)-CD-OOH in all the studied samples are given in 

Table S3. 

It can be seen in Figure 2b and Table S3 that, as the -T concentration increases, so 

does the formation rate of (Z,E)-CD-OOH in comparison with that of the (E,E)-ones, 

reaching their maximum earlier; this is considerably higher in the samples with the 

highest -T concentrations (SO+2 and SO+5). Moreover, in these latter, both a 

diminution in the formation rate of (E,E)-CD-OOH and a decrease in their maximum 
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concentration are observed in comparison with the samples with lower -T levels, the 

more pronounced the higher the -T concentration is. These results, which coincide 

with those observed by other authors in methyl linoleate in the presence of high -T 

concentrations (Mäkinen & Hopia, 2000; Mäkinen et al., 2001), could be explained by 

an inhibition of the isomerization of (Z,E)- to (E,E)-hydroperoxides, due to the ability of 

-T to donate a hydrogen atom to (Z,E)-peroxyl radicals before they have time to 

rearrange to the more thermodynamically stable (E,E)-hydroperoxides (Banni et al., 

1996; Mäkinen & Hopia, 2000). 

3.2.2. Formation of conjugated (Z,E)-hydroxy-dienes  

The formation of conjugated (Z,E)-hydroxy-dienes has been observed by 
1
H NMR in 

the oxidation process of sunflower oil at room temperature with limited oxygen (Guillén 

& Goicoechea, 2009), but not in the thermodegradative processes of vegetable oils 

carried out at 70 ºC (Martínez-Yusta et al., 2014), probably due to their low 

concentration. However, a detailed analysis of the 
1
H NMR spectra of SO sample 

throughout the accelerated storage process, allows one to notice the appearance of very 

small signals that could be assigned to (Z,E)-hydroxy-dienes ((Z,E)-CD-OH) (signal “b” 

in Figure 3a and Table S1). The intensity of these signals clearly increases in the 

samples with the highest -T concentration (SO+2 and SO+5). According to some 

authors, this increase in the concentration of (Z,E)-CD-OH seems to be due to the 

ability of -T to donate an hydrogen atom to alkoxyl radicals (Hopia, Huang & Frankel, 

1996). 

The enlargements of Figure 2b, which show the evolution of the molar concentration 

of these compounds in all the studied samples, in mmol/mol TG, reveal that, although 

the addition of -T to SO anticipates the detection of (Z,E)-CD-OH from day 3 to day 2, 

their evolution with time is hardly affected in the samples with lower proportions of -T 

added (SO+0.02 and SO+0.2). However, both the maximum concentration of (Z,E)-CD-

OH and their existence period increase as the -T amount rises. 

It is worth pointing out that the increase in the concentration of hydroxy-dienes could 

have health implications, since this type of compounds have not only been related with 

some pathologies such as atherosclerosis (Ramsden et al., 2012), but have also been  

considered potential precursors of reactive cytotoxic aldehydes in biological systems 

(Schneider, Porter & Brash, 2004). 
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Figure 2. Evolution throughout the accelerated storage process, in each one of the 

studied soybean oil samples, of: a) the molar percentages oflinolenic, linoleic and 

diunsaturated ω-6, monounsaturated and saturated + modified acyl groups; b) the 

concentrations, in mmol/mol TG, of hydroperoxides and their associated conjugated 

(Z,E)- and (E,E)-dienes, and of conjugated (Z,E)-hydroxy-dienes. All the figures 

reported are mean values. 

 

https://www.sciencedirect.com/topics/chemistry/soybean-oil
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/linolenic-acid
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/linoleic-acid
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/monounsaturated-fat
https://www.sciencedirect.com/topics/chemistry/acyl-group
https://www.sciencedirect.com/topics/chemistry/hydroperoxide
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3.2.3. Formation of epoxides 

As was the case of other vegetable oils subjected to the same conditions as in this study 

(Martínez-Yusta et al., 2014), the formation of mono- and possibly di-epoxides was 

observed in the samples here studied. The appearance and further evolution with time of 

the signals due to this type of compounds in the oil without -T added (SO) can be 

observed in Figure 1 (see signals “e”, “f”+g” and “h”). Figure 4a, in turn, shows the 

evolution of the concentrations of the various types of epoxides detected in the different 

samples, in mmol/mol TG. 

3.2.3.1. Monoepoxides other than (E)-epoxystearates 

This type of monoepoxides, which give signals around 2.9 ppm (see Table S1), 

comprises monoepoxides coming from linoleic and linolenic acyl groups (signal “g”), 

as well as (Z)-epoxystearates (signal “f”), derived from oleic groups. However, 

considering that polyunsaturated groups (linoleic and linolenic) are, by far, those which 

degrade at a faster rate (see Figure 2a), it can be assumed, at least during the first stages 

of the accelerated storage process, that the monoepoxides formed are those coming from 

these groups. 

Figure 4a shows that the evolution of the concentration of this type of monoepoxides 

is very similar in all the samples, in the sense that it always exhibits an increase with 

heating time. However, some differences are observed in the samples with -T added 

when compared with SO. 

Overall, as the -T concentration gets higher, the time at which these monoepoxides 

are detected decreases (from day 5 in SO to day 2 in SO+5), and their initial 

concentration increases. Furthermore, in the samples with the highest -T amounts 

(SO+2 and SO+5) monoepoxides seem to stabilize, to a certain extent (between days 5 

and 7 in SO+2 and between 7 and 10 in SO+5), to rise again until the end of the 

accelerated storage process. An increase in the maximum concentration reached at the 

end of the accelerated storage process is also observed in the most enriched samples 

(SO+2 and SO+5). 

3.2.3.2. (E)-Epoxystearates 

These monoepoxides derive specifically from oleic groups and, as can be observed in 

Figure 1 (see signal “e”), they are detected in SO after 7 days under accelerated storage 

conditions, later than the rest of monoepoxides. 
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The addition of α-T to SO affects the evolution of the concentration of (E)-

epoxystearates differently depending on the -T amount. Actually, as Figure 4a shows, 

the formation rate of (E)-epoxystearates increases with -T concentration until a certain 

enrichment level (0.2%), above which the generation of this type of compounds 

becomes slower. The maximum concentrations, reached in all cases at the end of the 

accelerated storage process, are quite similar in all the -T-enriched samples (see Figure 

4a). However, if the same point of the process is considered for all the samples, the 

concentration of (E)-epoxystearates is always lower in those having the highest -T 

levels (SO+2 and SO+5). It is also worth noticing that, in these two latter, the 

emergence of (E)-epoxystearates and the subsequent increase in their concentration 

almost parallels both the decrease in the molar percentage of oleic groups (see Figure 

2a) and the second rise in the concentration of the other type of monoepoxides 

mentioned in section 3.2.3.1. This could suggest that the late increase observed in the 

concentration of monoepoxides other than (E)-epoxystearates could be related to the 

generation of (Z)-epoxystearates, also derived from the degradation of oleic groups. 

3.2.3.3. Diepoxides 

In previous works, the determination of diepoxides has been made on the basis of the 

signal assignement made by Aerts and Jacobs (2004), according to whom this type of 

compounds give signals at 2.9 and 3.1 ppm. However, recent findings of our research 

group (unpublished results) show that, under certain conditions, the signal at 3.1 ppm is 

not accompanied by another one of the same intensity at 2.9 ppm. In addition, the 

signals observed in the 
1
H NMR spectra recorded throughout the accelerated storage 

process of the studied soybean oil neither match exactly the ones reported by other 

authors for diepoxides. Thus, according to Xia, Budge and Lumsden (2016), diepoxides 

separated by a methylene group give three multiplets at 3.00, 3.09 and 3.14 ppm. 

However, the one appearing at 3.00 ppm has not been observed either in this study or in 

any of those performed previously under the same oxidative conditions (Goicoechea & 

Guillén, 2010). This lack of agreement might be due to the fact that diepoxides formed 

under the conditions of our study could be different from those reported in the literature, 

and therefore, give different signals. It must be noticed that, as Xia and coworkers 

themselves (2016) have commented on, the epoxides formed during the oxidation 

process of vegetable oils and those resulting from epoxidation reactions using hydrogen 

peroxide and formic acid, could lead to the formation of different types of epoxides. 
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Actually, some researchers (Byrdwell and Neff, 2001) have indicated that epoxides can 

form at different points of the acyl group moiety, leading to the formation of a wide 

range of mono- and di-epoxides, whose chemical shifts, as far as we know, have not 

been described yet. Therefore, we will tentatively assign the signal at 3.1 ppm to 

diepoxides, even though the contribution of other oxidation products supporting epoxy 

groups should not be discarded (see Table S1). 

In SO sample, as Figure 4a shows, diepoxides are detected at the same time as 

monoepoxides other than (E)-epoxystearates (after 5 days under accelerated storage 

conditions), and in similar concentration, measured from signal “h” (see Figure 1 and 

Table S1). These reach a maximum the 9
th

 day, to decrease thereafter.  

In the -T-enriched samples, in general, the formation of diepoxides takes place 

earlier than in SO (see Figure 4a). However, their maximum concentration, quite similar 

in all the samples, is reached more quickly in the oils with lower -T concentrations 

than in those with higher -T levels. This means that, once diepoxides have emerged, 

the increasing rate of their concentration tends to diminish with -T amount. 

In summary, it could be said that the addition of -T to SO, above all when the 

enrichment level is high, induces an earlier formation of both diepoxides and 

monoepoxides other than (E)-epoxystearates. However, as the -T concentration 

increases, the generation of the latter seems to be favoured over that of the former. This 

fact deserves particular attention since some monoepoxides derived from linoleic 

groups, such as leukotoxin and isoleukotoxin, are well-known toxic compounds, 

precursors of toxic diols (Greene et al., 2000). 

The formation of higher concentrations of certain epoxides in the samples with the 

highest -T concentrations could be related to an enhancement of some reactions 

mediated by alkoxyl radicals, such as cyclization to epoxides (Schaich, 2013).  
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Figure 3. Evolution throughout several days of the accelerated storage process, 

in all the studied samples, of the 
1
H NMR spectral signals of: a) conjugated 

(Z,E)- and (E,E)-hydroperoxydienes (signals “d” and “c”, respectively) and 

conjugated (Z,E)-hydroxy-dienes (signal “b”); b) aldehydes: n-alkanals (signal 

“s”), 4-hydroperoxy-(E)-2-alkenals (signal “q”), 4-hydroxy-(E)-2-alkenals 

(signal “p”), 4,5-epoxy-2-alkenals (signal “o”), (E,E)-2,4-alkadienals (signal 

“n”), (E)-2-alkenals (signal “m”), and (Z,E)-2,4-alkadienals (signal “r”); and c) 

conjugated (Z,E)- and (E,E)-keto-dienes (signals “l” and “k”, respectively). 

Letters agree with those in Table S1. 

https://www.sciencedirect.com/topics/chemistry/aldehydes
https://www.sciencedirect.com/science/article/pii/S0308814617317375#s0150
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Figure 4. Evolution throughout the accelerated storage process, in each one of the 

studied soybean oil samples, of the concentrations, expressed in mmol/mol TG, of the 

different types of: a) epoxides; and b) aldehydes. All the figures reported are mean 

values   

https://www.sciencedirect.com/topics/chemistry/soybean-oil
https://www.sciencedirect.com/topics/chemistry/epoxide
https://www.sciencedirect.com/topics/chemistry/aldehydes
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3.2.4. Formation of aldehydes 

Aldehydes constitute an important group of secondary oxidation products, since 

some of them, especially the oxygenated -unsaturated ones, are well-known for their 

reactivity and toxicity (Guillén & Goicoechea, 2008). Figure 3b shows the appearance 

and evolution throughout the accelerated storage process (up to 8 days) of aldehydic 

signals (signals “m-s” in Table S1) in the 
1
H NMR spectra of the several samples. The 

evolution of the concentrations of the different kinds of aldehydes throughout the 

accelerated storage process, in mmol/mol TG, can be observed in Figure 4b. 

As both Figures 3b and 4b show, in SO all the various kinds of aldehydes are 

detected after 6 days of heating. As the concentration of α-T increases, the formation of 

some kinds of aldehydes begins earlier than in SO, that of others is delayed and the 

generation of aldehydes which are not detected in SO takes place. 

Among the several kinds of aldehydes detected, n-alkanals and (E)-2-alkenals are the 

most abundantly generated in all the samples (see Figure 4b1), and their concentrations, 

in general, increase over time. The appearance time of these two types of aldehydes 

(between day 5 in sample SO+0.2 and day 7 in SO+5) and their maximum 

concentrations are not greatly affected by the level of -T enrichment. However, these 

latter are reached later in the samples with the greatest -T levels (SO+2 and SO+5). 

These findings could explain the results obtained by Huang, Frankel and German 

(1994), who found that, despite increasing -T concentrations caused a rise in 

hydroperoxide generation, the ability to inhibit hexanal (n-alkanal) formation improved. 

(E,E)-2,4-Alkadienals are formed in lower concentrations than the previous ones, 

which agrees with observations made regarding sunflower oil subjected to the same 

conditions as in this work (Goicoechea & Guillén, 2010; Guillén & Ruiz, 2005). As in 

the case of n-alkanals and (E)-2-alkenals, the increase in the amount of added-T up to 

a proportion of 2% does not exert a marked effect either on the onset or on the 

maximum concentration of this type of aldehydes. However, in sample SO+5, although 

the maximum concentration is also very similar to that observed in the rest of the 

samples, both a delay in the time at which these aldehydes are detected (day 8) and an 

increase in the time needed to reach the maximum concentration can be observed in 

Figure 4b2. 

Among the different types of aldehydes detected, the oxygenated -unsaturated 

ones (4,5-epoxy-alkenals, 4-hydroxy-(E)-2-alkenals and 4-hydroperoxy-(E)-2-alkenals) 
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deserve special attention due to their toxicity, as pointed out above. 4,5-epoxy-alkenals 

are considered to derive from (E,E)-2,4-alkadienals (Gassenmeier & Schieberle, 1994) 

and, in fact, the concentration of the former is initially lower than that of the latter in all 

the samples (see Figures 3b and 4b2); however, as the concentration of 4,5-epoxy-

alkenals approximates its maximum, that of (E,E)-2,4-alkadienals drops. 

It is worth highlighting that the formation of 4-hydroperoxy- and 4-hydroxy-(E)-2-

alkenals is greatly affected by the -T concentration, in such a way that, as Figures 3b 

and 4b2 show, the higher the -T enrichment level, the earlier their appearance. It must 

also be noticed that in the samples with the highest -T concentrations (SO+2 and 

SO+5), these two kinds of aldehydes are formed at the same time; this contrasts with the 

rest of the samples and with the mechanism for the generation of 4-hydroxy-(E)-2-

alkenals proposed by Gardner and Hamberg (1993), according to whom these latter can 

proceed from 4-hydroperoxy-(E)-2-alkenals. Moreover, a slight increase in the 

concentration of 4-hydroxy- relative to 4-hydroperoxy-(E)-2-alkenals can be observed 

in the most -T-enriched samples, especially in SO+5.  

Finally, the appearance of (Z,E)-2,4-alkadienals together with 4-hydroperoxy- and 4-

hydroxy-(E)-2-alkenals, in the samples with the highest -T concentrations (see signal 

“r” in Figure 3b) must be noted. This type of aldehydes had not been detected 

previously by 
1
H NMR in vegetable oils subjected to the same heating conditions as in 

this study (Guillén & Ruiz, 2005; Martínez-Yusta et al., 2014). An increase in the 

concentration of volatile unsaturated aldehydes with (Z,E)-configuration due to the 

addition of -T was also reported by Kulas, Olsen and Ackman (2002) in fish oil stored 

at 30 ºC. 

3.2.5. Formation of conjugated keto-dienes 

The thermoxidation of the soybean oil here studied also gives rise to the formation of 

oxidation products tentatively identified as conjugated keto-dienes, which can exhibit 

both (Z,E)- and (E,E)-isomerism (Banni et al., 1996). As can be observed in Table S1, 

(Z,E)-keto-octadecadienoic derivatives give signals centered between 7.43 and 7.50 

ppm and the (E,E)-ones at 7.13 ppm. The evolution of these signals throughout the 

accelerated storage process in the different samples can be observed in Figure 3c and 

the progress of their corresponding concentrations, in mmol/mol TG, in Figure 5a. 

Figure 3c reveals that, in sample SO, both (Z,E)- and (E,E)-keto-dienes are detected 

after 7 days of heating (signals “l” and “k”, respectively). Unlike the signals of (E,E)-
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keto-dienes, those of the (Z,E)-ones disappear quickly with time. These findings agree 

with those of Mäkinen and Hopia (2000), who also found that (E,E)-keto-dienes were 

those predominantly formed during the decomposition of methyl linoleate 

hydroperoxides. 

The enrichment of SO oil with α-T affects the evolutions of both types of keto-dienes 

differently. With regard to (Z,E)-keto-dienes, Figures 3c and 5a show that, as the α-T 

concentration increases, this type of compounds appears earlier. However, in the case of 

(E,E)-keto-dienes, their formation begins sooner as the -T concentration increases up 

to a determined α-T addition level (0.2%), above which their onset is considerably 

delayed in comparison with that of (Z,E)-keto-dienes, in such a way that, in SO+5, 

(E,E)-keto-dienes are not detected until the 9
th

 day. 

In relation to the maximum concentration reached in the different samples, it can be 

said that while that of (E,E)-keto-dienes is scarcely affected by the -T enrichment 

level, that of the (Z,E)-ones increases with the -T amount, to the point that, unlike the 

rest of the samples, the concentration of (Z,E)-keto-dienes in SO+5 remarkably exceeds 

that of the (E,E)-ones. This trend agrees with the findings of Mäkinen and Hopia 

(2000), who also observed a prevalent formation of (Z,E)-keto-dienes during the 

decomposition of methyl linoleate hydroperoxides in presence of -T. 

3.2.6. Formation of alcohols 

The formation of other types of alcohols than the hydroxy-dienes described in 

section 3.2.2 is observed at a more advanced stage of the accelerated storage process in 

all the studied samples; these include primary alcohols as well as certain diols, 

tentatively identified as leukotoxin- and/or isoleukotoxin-diols. These latter, which 

derive from linoleic groups monoepoxides, deserve special attention since they have 

been shown to have negative effects in vitro and in animal studies (Markaverich et al, 

2005). 

The evolution of the 
1
H NMR signals of these two kinds of alcohols throughout the 

accelerated storage process of sample SO can be observed in Figure 1 (signals “i” and 

“j”), while the evolution of their concentrations in all the studied samples is shown in 

Figure 5b, in mmol/mol TG. This reveals that both primary alcohols and diols are 

detected simultaneously in all the samples, but their increasing concentration rate is 

always higher for the latter. 
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As Figure 5b shows, the enrichment of SO oil with -T slightly accelerates the onset 

of this type of compounds in the samples with a proportion of added-T higher than 

0.02% (from day 6 to 5). However, in the oils with the highest -T levels (SO+2 and 

SO+5), a clear reduction in the increasing rate of the concentration of diols and, above 

all, of primary alcohols is observed, especially in SO+5. In this latter, a slightly higher 

proportion of diols relative to primary alcohols than in the rest of the samples is also 

noticed. 

3.2.7. Relationship between the evolution of hydroperoxides and those of other 

oxidation products in the different samples studied 

In the samples with the lowest -T enrichment levels (SO+0.02 and SO+0.2), an 

acceleration in the generation of both (Z,E)- and (E,E)-hydroperoxides in relation to SO 

occurs (see Figure 2b). This is reflected in the evolution of epoxides, aldehydes, keto-

dienes and alcohols, which are generally detected earlier than in SO. 

However, when the -T concentrations are higher, (Z,E)- and (E,E)-hydroperoxides 

are affected differently and not all the oxidation products evolve similarly. This is 

especially noticeable in the evolutions both of (Z,E)- and (E,E)-keto-dienes, and of 

(Z,E)-hydroxy-dienes, which go in line with that of their precursor hydroperoxides, but 

it can also be observed in the case of aldehydes.  

On the one hand, both the earlier formation of 4-hydroperoxy- and 4-hydroxy-(E)-2-

alkenals, and the appearance of (Z,E)-2,4-alkadienals in the samples with the highest -

T concentration coincide with a high concentration of (Z,E)-hydroperoxides. Moreover, 

in the case of (Z,E)-2,4-alkadienals, their evolution with time also goes in parallel to 

that of (Z,E)-hydroperoxides (see Figure 2b). On the other hand, the delay in the 

generation of n-alkanals, (E)-2-alkenals, (E,E)-2,4-alkadienals and 4,5-epoxy-2-

alkenals, and the slower increase of their concentration in comparison with the samples 

having lower -T levels, seem to go in accordance with the later formation and increase 

of (E,E)-hydroperoxides observed in these samples. 
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Figure 5. Evolution throughout the accelerated storage process, in each one of the 

studied soybean oil samples, of the concentrations, expressed in mmol/mol TG, of the 

different types of: a) conjugated keto-dienes, and; b) alcohols. All the figures reported 

are mean values.  

https://www.sciencedirect.com/topics/chemistry/soybean-oil
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4. CONCLUSIONS 

As far as we know, this is the first time that a so exhaustive study on the influence of a 

broad range of -T enrichment levels on the entire oxidation process occurring in a 

vegetable oil under accelerated storage conditions, involving the simultaneous 

monitoring of a wide variety of oxidation products, has been made. 

Under the conditions of this study, the addition of -T to soybean oil in all the 

proportions here tested, except that of 0.002%, which causes no change detectable by 
1
H 

NMR, provokes an earlier start of the oxidation process, reducing the oxidative stability 

of the oil and thus showing a clear prooxidant effect. However, the time needed to reach 

total polymerization becomes longer in the samples with the highest -T concentrations. 

It has also been proved that the enrichment of SO with -T affects differently the 

formation of the several oxidation products depending on the -T level, modifying the 

oxidation pathway at high doses. Actually, high proportions of -T markedly promote 

the generation of (Z,E)-hydroperoxides and of other oxidation products with (Z,E)-

configuration, such as (Z,E)-hydroxy-dienes, (Z,E)-keto-dienes and (Z,E)-2,4-

alkadienals, these latter not usually detected in the oxidation process of edible oils under 

the same conditions as in this study. 

In particular, attention should be paid to those toxic compounds whose formation 

occurs earlier and, in some cases, more profusely, the higher the -T concentration, 

such as some toxic oxygenated-unsaturated aldehydes and monoepoxides derived 

from linoleic groups. 

It is also worth noticing that, despite epoxides are not usually considered in oxidation 

processes, they markedly contribute to the total of products formed. 

These results evidence that assessing the performance of -T as antioxidant or 

prooxidant using only one compound as oxidation marker, or by means of the classical 

nonspecific methodologies used in many studies, can lead to erroneous conclusions. In 

addition, this type of studies should be conducted with real oil samples, already 

containing varying concentrations of tocopherols and other minor components that 

undoubtedly will affect the behaviour of -T. Otherwise, the results obtained could 

hardly be considered of practical interest. 
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Finally, the findings of this work highlight the need to revise the European regulations 

to limit the addition of -T to products intended for human consumption since, as in the 

vegetable oil here studied, the supplementation with -T can have a negative effect both 

on the oxidative stability of the oil and even potentially on human health. 

 

ACKNOWLEDGEMENTS 

This work was supported by the Spanish Ministry of Economy and Competitiveness 

(MINECO AGL 2015-65450-R), by the Basque Government (IT916-16) and by the 

University of Basque Country UPV/EHU (UFI-11/21). A. S. Martin-Rubio thanks the 

MINECO for a predoctoral contract. 

 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

 

REFERENCES 

Aerts, H. A., & Jacobs, P. A. (2004). Epoxide yield determination of oils and fatty acid 

methyl esters using 
1
 H NMR. Journal of the American Oil Chemists' Society, 81, 

841-846. 

Alberdi-Cedeño, J., Ibargoitia, M. L., Cristillo, G., Sopelana, P., & Guillén, M. D. 

(2017).  A new methodology capable of characterizing most volatile and less volatile 

minor edible oils components in a single chromatographic run without solvents or 

reagents. Detection of new components. Food Chemistry, 221, 1135-1144. 

Baker, J. K., & Myers, C. W. (1991). One-dimensional and two-dimensional 
1
H- and 

13
C-nuclear magnetic resonance (NMR) analysis of vitamin E raw materials or 

analytical reference standards. Pharmaceutical Research, 8, 763-770. 

Banni, S., Contini, M. S., Angioni, E., Deiana, M., Dessi, M. A., Melis, M. P., & 

Corongiu, F. P. (1996). A novel approach to study linoleic acid autoxidation: 

importance of simultaneous detection of the substrate and its derivative oxidation 

products. Free Radical Research, 25, 43-53. 

Brigelius-Flohé, R. (2009). Vitamin E: the shrew waiting to be tamed. Free Radical 

Biology and Medicine, 46, 543-554. 



Results and Discussion – Manuscript 2 

118 

 

Byrdwell, W. C., & Neff., W. E. (2001). Autoxidation products of normal and 

genetically modified canola oil varieties determined using liquid chromatography 

with mass spectrometric detection. Journal of Chromatography A, 905, 85-102. 

Cillard, J., Cillard, P., Cormier, M., & Girre, L. (1980). α-Tocopherol prooxidant effect 

in aqueous media: increased autoxidation rate of linoleic acid. Journal of the 

American Oil Chemists’ Society, 57, 252-255. 

Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II 

to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by 

establishing a Union list of food additives. Official Journal of the European Union, 

12.11.2011, L 295/1-177. 

Dolde, D., & Wang, T. (2011). Oxidation of corn oils with spiked tocols. Journal of the 

American Oil Chemists' Society, 88, 1759-1765. 

Gardner, H. W., & Hamberg, M. (1993). Oxygenation of (3Z)-nonenal to (2E)-4-

hydroxy-2-nonenal in the broad bean (Vicia faba L.). Journal of Biological 

Chemistry, 268, 6971–6977. 

Gassenmeier, K., & Schieberle, P. (1994). Formation of the intense flavor compound 

trans-4,5-epoxy-(E)-2-decenal in thermally treated fats. Journal of the American Oil 

Chemists’ Society, 71, 1315–1319. 

Goicoechea, E., & Guillén, M. D. (2010). Analysis of hydroperoxides, aldehydes and 

epoxides by 
1
H nuclear magnetic resonance in sunflower oil oxidized at 70 and 100 

C. Journal of Agricultural and Food Chemistry, 58, 6234-6245. 

Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau, C., & Hammoc, B. D. 

(2000). Metabolism of monoepoxides of methyl linoleate: Bioactivation and 

detoxification. Archives of Biochemistry and Biophysics, 376, 420-432. 

Guillén, M. D., & Goicoechea, E. (2008). Toxic oxygenated α, β-unsaturated aldehydes 

and their study in foods: a review. Critical Reviews in Food Science and Nutrition, 

48, 119-136. 

Guillén, M. D., & Goicoechea, E. (2009). Oxidation of corn oil at room temperature: 

Primary and secondary oxidation products and determination of their concentration 

in the oil liquid matrix from 
1
H nuclear magnetic resonance data. Food Chemistry, 

116, 183-192. 



Results and Discussion – Manuscript 2 

119 

 

Guillén, M. D., & Ruiz, A. (2003). Rapid simultaneous determination by proton NMR 

of unsaturation and composition of acyl groups. European Journal of Lipid Science 

and Technology, 105, 688–696. 

Guillén, M. D., & Ruiz, A. (2005). Oxidation process of oils with high content of 

linoleic acyl groups and formation of toxic hydroperoxy- and hydroxyalkenals. A 

study by 
1
H nuclear magnetic resonance. Journal of the Science of Food and 

Agriculture, 85, 2413–2420. 

Guillén, M. D., & Uriarte, P. S. (2009). Contribution to further understanding of the 

evolution of sunflower oil submitted to frying temperature in a domestic fryer: Study 

by 
1
H nuclear magnetic resonance. Journal of Agricultural and Food Chemistry, 57, 

7790–7799. 

Guillén, M. D., & Uriarte, P. S. (2012). Study by 
1
H NMR spectroscopy of the 

evolution of extra virgin olive oil composition submitted to frying temperature in an 

industrial fryer for a prolonged period of time. Food Chemistry, 134, 162-172. 

Hopia, A., Huang, S. W., & Frankel, E. N. (1996). Effect of α-tocopherol and Trolox on 

the decomposition of methyl linoleate hydroperoxides. Lipids, 31, 357-365. 

Huang, S. W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of alpha-and 

gamma-tocopherols in bulk oils and in oil-in-water emulsions. Journal of 

Agricultural and Food Chemistry, 42, 2108-2114. 

Isnardy, B., Wagner, K.-H., & Elmadfa, I. (2003). Effects of α-, γ-, and δ- tocopherols 

on the autoxidation of purified rapeseed oil triacylglycerols in a system containing 

low oxygen. Journal of Agricultural and Food Chemistry, 51, 7775–7780. 

Jung, M.Y., & Min, D.B. (1990). Effects of α-, γ-, and δ-tocopherols on oxidative 

stability of soybean oil. Journal of Food Science, 55, 1464-1465. 

Koskas, J. P., Cillard, J., & Cillard, P. (1984). Autoxidation of linoleic acid and 

behavior of its hydroperoxides with and without tocopherols. Journal of the 

American Oil Chemists' Society, 61, 1466-1469. 

Kulas, E., Olsen, E., & Ackman, R. G. (2002). Effect of α-, γ-, and δ-tocopherol on the 

distribution of volatile secondary oxidation products in fish oil. European Journal of 

Lipid Science and Technology, 104, 520-529. 

Lampi, A.-M., Kataja, L., Kamal-Eldin, A., & Vieno, P. (1999). Antioxidant activities 

of α-and γ-tocopherols in the oxidation of rapeseed oil triacylglycerols. Journal of 

the American Oil Chemists' Society, 76, 749-755. 



Results and Discussion – Manuscript 2 

120 

 

Mäkinen, E. M., & Hopia, A. I. (2000). Effects of α-tocopherol and ascorbyl palmitate 

on the isomerization and decomposition of methyl linoleate hydroperoxides. Lipids, 

35, 1215-1223. 

Mäkinen, M., Kamal‐Eldin, A., Lampi, A. M., & Hopia, A. (2000). Effects of α- and γ-

tocopherols on formation of hydroperoxides and two decomposition products from 

methyl linoleate. Journal of the American Oil Chemists' Society, 77, 801-806. 

Mäkinen, M., Kamal-Eldin, A., Lampi, A. M., & Hopia, A. (2001). α-, γ- and δ-

Tocopherols as inhibitors of isomerization and decomposition of cis, trans methyl 

linoleate hydroperoxides. European Journal of Lipid Science and Technology, 103, 

286-291. 

Markaverich, B. M., Crowley, J. R., Alejandro, M. A., Shoulars, K., Casajuna, N., 

Mani, S., & Sharp, J. (2005). Leukotoxin diols from ground corncob bedding disrupt 

estrous cyclicity in rats and stimulate MCF-7 breast cancer cell proliferation. 

Environmental Health Perspectives, 113, 1698-1704. 

Martínez-Yusta, A., Goicoechea, E., & Guillén, M. D. (2014). A review of thermo-

oxidative degradation of food lipids studied by 
1
H NMR spectroscopy: Influence of 

degradative conditions and food lipid nature. Comprehensive Reviews in Food 

Science and Food Safety, 13, 838-859. 

Ohm, V. A.; Stöckmann, H., & Schwarz, K. (2005). The more-The better? Estimating 

the inhibitory activity of alpha-tocopherol towards lipid oxidation. Journal of Plant 

Physiology, 162, 785-789. 

Ramsden, C. E., Ringel, A., Feldstein, A. E., Tahae, A. Y., MacIntosh, B. A., Hibbelna, 

J. R., Majchrzak-Hong, S. F., Faurot, K. R., Rapoport, S. I., Cheone, Y., Chung, Y.-

M., Berkd, M., & Manng, J. D. (2012). Lowering dietary linoleic acid reduces 

bioactive oxidized linoleic acid metabolites in humans. Prostaglandins, Leukotrienes 

and Essential Fatty Acids, 87, 135-141. 

Schaich, K. M. (2013). Challenges in elucidating lipid oxidation mechanisms: When, 

where, and how do products arise?. In A. Logan, U. Nienaber, & X. (S) Pan (Eds.), 

Lipid Oxidation. Challenges in Food Systems (pp. 1-52). Urbana: AOCS Press. 

Schneider, C. (2005). Chemistry and biology of vitamin E. Molecular Nutrition & Food 

Research, 49, 7-30. 



Results and Discussion – Manuscript 2 

121 

 

Schneider, C., Porter N. A., & Brash, A. R. (2004). Autoxidative transformation of 

chiral omega-6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-

nonenal. Chemical Research in Toxicology, 17, 937–941. 

Seppanen, C. M., Song, Q., & Csallany, A. S. (2010). The antioxidant functions of 

tocopherol and tocotrienol homologues in oils, fats, and food systems. Journal of the 

American Oil Chemists' Society, 87, 469-481. 

Toth, B., & Patil, K. (1983). Enhancing effect of vitamin E on murine intestinal 

tumerogenesis by 1,2-dimethylhydrazine dihydrochloride. Journal of the National 

Cancer Institute, 70, 1107-1111. 

Wagner, K. H., & Elmadfa, I. (2000). Effects of tocopherols and their mixtures on the 

oxidative stability of olive oil and linseed oil under heating. European Journal of 

Lipid Science and Technology, 102, 624-629. 

Xia, W., Budge, S. M., & Lumsden, M. D. (2016). 
1
H-NMR characterization of 

epoxides derived from polyunsaturated fatty acids. Journal of the American Oil 

Chemists' Society, 93, 467-478. 

 



 

122 

 

 

SUPPLEMENTARY MATERIAL OF MANUSCRIPT 2 

____________________________________________________________________ 

PROOXIDANT EFFECT OF -TOCOPHEROL ON 

SOYBEAN OIL. GLOBAL MONITORING OF ITS 

OXIDATION PROCESS UNDER ACCELERATED 

STORAGE CONDITIONS BY 
1
H NUCLEAR MAGNETIC 

RESONANCE 

____________________________________________________________________ 

 

A.S. Martin-Rubio; P. Sopelana; M.L. Ibargoitia; María D. Guillén 

 

 



Results and Discussion – Supplementary material Manuscript 2 

123 

 

Table S1. Chemical shifts, multiplicities and assignments of the 
1
H NMR signals in 

CDCl3 of the main types of triglycerides (TG) protons, and of some oxidation 

compounds, present in the different soybean oil samples, before and throughout the 

accelerated storage process. The signal letters agree with those given in Figures 1 and 3. 

Signal 
Chemical 

shift (ppm) 

Multi- 

plicity 

Functional group 

Type of protons Compound 

Main acyl groups
a
 

A 0.88 t -CH3 saturated and 

monounsaturated ω-

9  

acyl groups 

 0.89 t -CH3 linoleic acyl groups 

B 0.97 t -CH3 linolenic acyl groups 

C 1.19-1.42 m* -(CH2)n- acyl groups 

D 1.61 m -OCO-CH2-CH2- acyl groups in TG  

E 1.94-2.14 m** -CH2-CH=CH- unsaturated acyl 

groups 

F 2.26-2.36 dt -OCO-CH2- acyl groups in TG  

G 2.77 t =HC-CH2-CH= linoleic acyl groups 

H 2.80 t =HC-CH2-CH= linolenic acyl groups 

I 4.22 dd,dd ROCH2-CH(OR’)-CH2OR’’ glyceryl groups 

J 5.27 m ROCH2-CH(OR’)-CH2OR’’ glyceryl groups 

K 5.28-5.46 m -CH=CH- acyl groups 

Oxidation compounds 

Hydroperoxides
b
 

a 8.3-8.9 bs -OOH monohydroperoxide 

group 

Conjugated dienic systems
b,c

 

- 

- 

- 

b 

5.44 

5.66 

5.97 

6.49 

ddd 

dd 

t 

dd 

-CH=CH-CH=CH- (Z,E)-conjugated double 

bonds 

associated with hydroxy 

group  

in octadecadienoic acyl 

groups
d
 

     

- 

- 

- 

c 

5.47 

5.76 

6.06 

6.27 

ddm 

dtm 

ddtd 

ddm 

-CH=CH-CH=CH- (E,E)-conjugated double 

bonds 

associated with 

hydroperoxy group  



Results and Discussion – Supplementary material Manuscript 2 

124 

 

in octadecadienoic acyl 

groups 

     

- 

- 

- 

d 

5.51 

5.56 

6.00 

6.58 

dtm 

ddm 

ddtd 

dddd 

-CH=CH-CH=CH- (Z,E)-conjugated double 

bonds 

associated with 

hydroperoxy group  

in octadecadienoic acyl 

groups
e
 

     

Epoxides 

e 2.63
f
 m −CHOHC− (E)-9,10-epoxystearate 

f 2.88
f
 m -CHOHC− (Z)-9,10-epoxystearate 

g 2.9
g,h

 m -CHOHC- monoepoxy-

octadecenoate/-

octadecadienoate groups 

h 3.1
i,j

 m
i
/dd

j
 -CHOHC- diepoxides / (E)-12,13-

epoxy-9-hydroperoxy-

(E)-10-octadecenoate 

Alcohols 

i 3.45
k
 m −CHOH−CHOH− 9,10-dihydroxy-12-

octadecenoate 

(leukotoxindiol) 

    12,13-dihydroxy-9-

octadecenoate 

(isoleukotoxindiol) 

j 3.62 t −CH2OH− primary alcohols*** 

Keto-dienes 

k 7.13
l
 dm -CO−CH=CH−CH=CH- (E,E)-conjugated double 

bonds 

associated with a keto 

group  

in octadecadienoic acyl 

groups 

l 7.50
l
/7.43

m
 dd

l
/ddd

m
 -CO−CH=CH−CH=CH- (Z,E)-conjugated double 

bonds 

associated with a keto 

group  

in octadecadienoic acyl 

groups 

 7.49
l
/7.47

m
 ddd -CO−CH=CH−CH=CH- (E,Z)-conjugated double 

bonds 

associated with a keto 

group  

in octadecadienoic acyl 

groups 



Results and Discussion – Supplementary material Manuscript 2 

125 

 

Aldehydes 

m 9.49
n
 d −CHO (E)-2-alkenals 

n 9.52
n
 d −CHO (E,E)-2,4-alkadienals 

o 9.55
n
 d −CHO 4,5-epoxy-2-alkenals 

p 9.57
n
 d −CHO 4-hydroxy-(E)-2-

alkenals 

q 9.58
n
 d −CHO 4-hydroperoxy-

(E)-2-alkenals 

r 9.60
o
 d -CHO (Z,E)-2,4-

alkadienals 

s 9.75
n
 t -CHO n-alkanals 

t: triplet; m: mutiplet; d: doublet; bs: broad signal; *Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***Assignment made on the basis of 

standard compounds 
a
Assignments taken from Guillén, M. D., & Ruiz, A. (2003). Journal of the Science of 

Food and Agriculture, 83, 338–346. 
b
Data taken from Goicoechea, E., & Guillén, M. D. (2010). Journal of Agricultural and 

Food Chemistry, 58, 6234-6245 (hydroperoxides and conjugated hydroperoxydienes). 
c
Data taken from Dong, M., Oda, Y., & Hirota, M. (2000). Bioscience, Biotechnology, 

and Biochemistry, 64, 882-886 (conjugated (Z,E)-hydroxydienes). 
d
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Kuklev, D. V., Christie, W. W., Durand, T., Rossi, J. C., Vidal, 

J. P., Kasyanov, S. P., Akulin, V. N., & Bezuglov, V. V. (1997). Chemistry and Physics 

of Lipids, 85, 125-134.
 

e
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 
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Table S2. Rates of increase of hydroperoxides concentration in the different samples 

throughout the accelerated storage process, given by the slopes of the straight parts of 

the lines in Figure 2b, expressed in mmol.mol TG
-1

/day, together with the correlation 

coefficients between the experimental data and those of the fitted equations, the 

maximum concentration observed in each sample, in mmol/mol TG, and the day when it 

is reached. 

Sample Days   slope Days   slope Maximum 

Day - 

Concentration 

SO 0-4 6.0250 (R=0.9837) 4-7 37.7342 (R=0.9992) 7 – 134.36 

SO+0.02 0-4 9.8089 (R=0.9852) 4-6 76.1630 (R=0.9999) 6 – 192.15 

SO+0.2 0-4 33.2942 (R=0.9960) 4-5 86.1699 (R=1.0000) 5 – 217.50 

SO+2 0-4 59.8299 (R=0.9807)   5 – 274.16 

SO+5 0-4 67.0543 (R=0.9908)   5 – 285.08 

 

Table S3. Rates of increase of the concentrations of conjugated (Z,E)- and (E,E)-dienes 

associated to hydroperoxides in the different samples throughout the accelerated storage 

process, given by the slopes of the straight parts of the lines in Figure 2b, expressed in 

mmol.mol TG
-1

/day, together with the correlation coefficients between the experimental 

data and those of the fitted equations, the maximum concentration observed in each 

sample, in mmol/mol TG, and the day when it is reached. 

Sample  Days slope Days slope 

Maximum 

Day - 

Concentration 

SO (Z,E) 0-4 3.7710 (R=0.9928) 4-7 7.8784 (R=0.9919) 7 – 38.20 

 (E,E) 0-4 4.3806 (R=0.9837) 4-7 24.8250 (R=0.9860) 7 – 88.83 

       

SO+0.02 (Z,E) 0-4 5.2691 (R=0.9887) 4-6 23.7145 (R=0.9819) 6 – 69.49 

 (E,E) 0-4 6.1410 (R=0.9895) 4-6 37.8748 (R=0.9960) 6 – 100.27 

       

SO+0.2 (Z,E) 0-3 21.6181 (R=0.9932)   3 – 62.49 

 (E,E) 0-3 8.3716 (R=0.9509) 3-5 35.912 (R=0.9516) 5 – 97.32 

       

SO+2 (Z,E) 0-4 59.3107 (R=0.9971)   5 – 235.22 

 (E,E) 1-5 5.0653 (R=0.9959) 5-7 29.1958 (R=0.9974) 7 – 78.67 

       

SO+5 (Z,E) 0-4 69.2604 (R=0.9947)   5 – 275.21 

 (E,E) 4-7 6.7172 (R=0.9823) 7-10 12.2485 (R=0.9972) 11 – 57.81 
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ABSTRACT 

The effect of -tocopherol in proportions between 0.02 and 2% by weight on the 

accelerated storage process of refined soybean oil is studied by 
1
H NMR, and compared 

with that of -tocopherol. Whereas the lowest -tocopherol enrichment level does not 

affect oil evolution, at higher concentrations both - and -tocopherols initially 

accelerate acyl groups degradation and hydroperoxides generation, more as higher is the 

tocopherol concentration, this effect being less marked for -tocopherol. However, after 

this initial stage, the rates of acyl groups degradation and hydroperoxides formation 

decrease with tocopherol concentration. Furthermore, in the case of -tocopherol, the 

higher the enrichment degree, the later hydroperoxides decomposition occurs, so that, 

unlike -tocopherol, -tocopherol delays the generation of most secondary oxidation 

products (aldehydes, (E,E)-keto-dienes, epoxy-keto-enes, (E)-epoxystearates and 

alcohols) with the exception of some epoxides. Similarly to -tocopherol, -tocopherol 

modifies the oil oxidation pathway at the highest addition level, promoting the 

formation of compounds with (Z,E)-isomerism, although less noticeably than -

tocopherol. 

 

Chemical compounds studied in this article: -Tocopherol (PubChem CID: 2116); -

Tocopherol (PubChem CID: 92729); (E)-2-Hexenal (PubChem CID: 2116); (E,E)-2,4-

Decadienal (PubChem CID: 5283349); 4-Hydroxy-(E)-2-nonenal (PubChem CID: 

1693); (E)-9,10-epoxystearate (PubChem CID: 12235226) 

 

KEYWORDS: -tocopherol, -tocopherol, soybean oil, oxidation evolution, 
1
H nuclear 

magnetic resonance, primary oxidation compounds, secondary oxidation compounds. 



Results and Discussion –Manuscript 3 

129 

 

1. INTRODUCTION 

Gamma-tocopherol (-T) is the most abundant tocol in certain vegetable oils such as 

rapeseed, corn, sesame, linseed, camelina or soybean (Alberdi-Cedeño, Ibargoitia, 

Cristillo, Sopelana & Guillén, 2017; Schwartz, Ollilainen, Piironen & Lampi, 2008). 

Although itis not considered so biologically active as alpha-tocopherol (-T) 

(Schneider, 2005), this compound seems to have certain advantages over -T with 

regard to its antioxidant ability. Thus, some studies have shown greater antioxidant 

efficiency of -T in comparison with -T (Gottstein & Grosch, 1990; Wagner, Isnardy 

& Elmadfa, 2004) and the susceptibility of -T to exhibit a prooxidant action is 

considered much lower than that of -T (Gottstein & Grosch, 1990; Huang, Frankel & 

German, 1994; King, Min & Min, 2011). 

The effect of γ-T on the oxidative stability of lipids has been studied not only in 

linoleic acid and/or methyl linoleate (Gottstein & Grosch, 1990; Koskas, Cillard & 

Cillard, 1984), but also in more complex matrices such as various types of purified oils 

like corn (Huang, Frankel & German, 1995), soybean (Jung & Min, 1990), rapeseed 

(Isnardy, Wagner & Elmadfa, 2003; Lampi, Kataja, Kamal-Eldin & Vieno, 1999) and 

sunflower (Fuster, Lampi, Hopia & Kamal-Eldin, 1998), oil-in-water emulsions 

(Heinonen, Haila, Lampi & Piironen, 1997; Huang et al., 1994), olive and linseed oils 

(Wagner & Elmadfa, 2000), margarine (Azizkhani, Kamkar & Nejad, 2011), fish oil 

enriched salad dressing (Let, Jacobsen & Meyer, 2007) and lard (King et al., 2011). 

Most of these studies reveal an antioxidant action of -T across a wide range of 

enrichment levels (between 0.00015 and 0.2%), at temperatures comprised between 25 

and 120 ºC, and the assessment of the -T effect has been carried out by using, in 

general, classical nonspecific methods to evaluate lipid oxidation; among these, 

headspace oxygen content, conjugated dienes or p-anisidine value can be mentioned. 

Moreover, some authors have determined specific hydroperoxides by HPLC (Koskas et 

al., 1984) or some volatile aldehydes like hexanal, either by gas chromatography/mass 

spectrometry (Huang et al., 1994; Isnardy et al., 2003; Let et al., 2007) or by HPLC 

(Heinonen et al., 1997; Lampi et al., 1999). Among these works, only a few of them 

have shown a prooxidant effect of -T in purified oils like rapeseed (Isnardy et al., 

2003), soybean (Jung & Min, 1990) and corn (Huang et al., 1995), as well as in linseed 

oil (Wagner & Elmadfa, 2000), at concentrations ranging from 0.01 to 0.5%. This 

contrasts with the wide body of scientific knowledge that has proved the prooxidant 
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effect of -T on various types of lipidic matrices (Cillard, Cillard, Cormier & Girre, 

1980; Dolde & Wang, 2011; Isnardy et al., 2003; Martin-Rubio, Sopelana, Ibargoitia & 

Guillén, 2018). 

As far as the use of γ-T as an antioxidant additive is concerned, European Union 

legislation allows its addition to refined vegetable oils on a quantum satis basis 

(Commission Regulation 1129/2011), without an established limit, except for refined 

olive oils. Therefore, it is also important that studies on the effect of -T are performed 

with real oils, which is to say with all their original components. Otherwise, it would be 

difficult to extrapolate the results obtained to real practice. 

Bearing in mind all the above, the main objective of this work is to study the effect 

of adding varying proportions of -T on the oxidation process of soybean oil both to 

contribute to understanding the action mechanism of -T and compare it with that of -

T, as well as to assess the suitability of -T to improve the oxidative stability of 

commercial oils. For this purpose, the entire oxidation process of a commercial refined 

soybean oil was carried out under accelerated storage conditions at 70º C and monitored 

by means of 
1
H Nuclear Magnetic Resonance (

1
H NMR), with attention paid to acyl 

groups degradation and to the formation of a wide range of oxidation products. 
1
H NMR 

has been proved to be a powerful technique in the study of oils and fats, and since the 

early 2000 important progress has been made in the field of lipids due to the 

employment of this analytical tool. On the one hand, 
1
H NMR has made it possible to 

characterize in a simple and fast way different types of food lipids like vegetable and 

fish oils (Guillén & Ruiz, 2003; Hidalgo & Zamora, 2003; Sacchi et al., 1998; Tyl, 

Brecker & Wagner, 2008), margarine (Schripsema, 2008; Sopelana, Arizabaleta, 

Ibargoitia & Guillén, 2013), fish lipids (Vidal, Manzanos, Goicoechea & Guillén, 2012) 

or milk fat (Belloque & Ramos, 1999), giving qualitative and quantitative information 

of both main and minor components. Moreover, great progress has been made lately in 

the analysis of minor compounds of vegetable oils due to the use of 
1
H NMR in 

multisupression mode, which provides enhanced sensitivity (Ruiz-Aracama, 

Goicoechea & Guillén, 2017). On the other hand, 
1
H NMR has significantly contributed 

to knowledge of the oxidation processes of oils and fats under very different conditions 

(Guillén & Ruiz, 2005; Guillén & Uriarte, 2009; Martínez‐Yusta, Goicoechea & 

Guillén, 2014; Nieva-Echevarría, Goicoechea, Manzanos & Guillén, 2016), providing 

insight not only into the degradation rate of the main oil and/or food lipids components 
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(acyl groups), but also into the nature and concentration of a wide range of oxidation 

compounds, both primary and secondary, some of which are not usually determined by 

the methodologies generally employed to assess lipid oxidation. These studies have 

revealed that many other products apart from hydroperoxides and aldehydes are 

generated during lipid oxidation processes and that, among these, epoxides make a great 

contribution (Martin-Rubio, Sopelana, Ibargoitia & Guillén, 2018). All of which 

evidences the great ability of 
1
H NMR to offer a comprehensive view of the oxidation 

course. 

 

2. MATERIALS AND METHODS 

2.1. Samples 

The samples subject of study were two refined soybean oils (RSO), of the same 

brand but from two batches, and those prepared by adding different proportions by 

weight of γ-T to one oil and of -T to the other. The designations of the samples were 

the following: RSO1 (0% of γ-T added), RSO1+0.02γT (0.02%), RSO1+0.2γT (0.2%), 

RSO1+2γT (2%), RSO2 (0% of -T added), RSO2+0.2T (0.2%) and RSO2+2T 

(2%). γ-T with a purity ≥ 90% and α-T with a purity of 98.2% were acquired from Eisai 

Food & Chemical Co. Lltd (Tokyo, Japan) and from Sigma-Aldrich (St. Louis, MO, 

USA), respectively. Furthermore, γ-T with a purity of 98% was also purchased from 

Sigma-Aldrich to conduct a complementary assay aimed at checking if γ-T purity could 

have any influence on the results obtained. 

The molar percentages of the different types of acyl groups in the studied oils were 

determined by 
1
H NMR, as in previous works (Guillén & Ruiz, 2003; Guillén & 

Uriarte, 2009, 2012). These were 5.2±0.1 for linolenic, 47.2±0.2 for linoleic, 29.9±0.2 

for oleic and 17.7±0.0 for saturated groups in the case of RSO1, and 5.2±0.0 for 

linolenic, 43.7±0.1 for linoleic, 33.6±0.7 for oleic and 17.1±0.6 for saturated groups in 

the case of RSO2. 

2.2. Accelerated storage (AS) process 

10 g portions of each oil sample were poured into plastic Petri dishes of 80 mm 

diameter for each of the days monitored throughout the AS process. These were heated 

at 70º C in a convection oven with circulating air but without forced convection, 

simulating AS conditions. The evolution of the samples was followed by 
1
H NMR until 

their total polymerization, when it no longer became possible to take an aliquot that was 
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sufficiently fluid to be analyzed. The AS process was carried out in duplicate with all 

the studied samples. 

2.3. Monitoring by 
1
H NMR of the evolution of RSO and of the RSO oil samples 

enriched with different proportions of either γ-T or -T  

2.3.1. Operating conditions 

The 
1
H NMR spectra of all the samples taken throughout the AS process were 

acquired using a Bruker Avance 400 spectrometer operating at 400 MHz, the weight of 

each sample being approximately 0.16 g. These were mixed in a 5 mm diameter tube 

with 400 µl of deuterated chloroform containing 0.2% of non deuterated chloroform and 

a small amount (0.03%) of tetramethylsilane as internal references. As in previous 

studies (Guillén & Ruiz, 2003, 2005), the acquisition parameters used were: spectral 

width 5000 Hz, relaxation delay 3 s, number of scans 64, acquisition time 3.744 s, and 

pulse width 90º, with a total acquisition time of 12 min 54 s. The relaxation delay and 

acquisition time selected allow the complete relaxation of the protons, the signal areas 

thus being proportional to the number of protons that generate them, making possible 

their use for quantitative purposes. The experiments were carried out at 25 ºC. 

2.3.2. Identification of some components 

The identification of the oil acyl groups and of the products formed throughout the 

AS process was carried out on the basis of the signal assignment shown in Table S1, 

made from bibliographic data and with the aid of several standard compounds. These 

were (E)-2-hexenal, (E)-2-heptenal, (E)-2-decenal, (E,E)-2,4-hexadienal, (E,E)-2,4-

heptadienal, (E,E)-2,4-decadienal, 4,5-epoxy-(E)-2-decenal and 12,13-epoxy-9(Z)-

octadecenoic acid methyl ester (isoleukotoxin methyl ester), acquired from Sigma-

Aldrich, 4-hydroxy-(E)-2-nonenal, 4-hydroperoxy-(E)-2-nonenal, 9,10-dihydroxy-

12(Z)-octadecenoic acid (leukotoxin diol), 12,13-dihydroxy-9(Z)-octadecenoic acid 

(isoleukotoxin diol), trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, 9-keto-

10(E),12(E)-octadecadienoic acid and 12R-hydroxy-9(Z)-octadecenoic acid methyl 

ester (ricinoleic acid methyl ester), purchased from Cayman Chemical (Ann Arbor, MI, 

USA). 

2.3.3. Quantitative data derived from 
1
H NMR spectra 

The molar percentages of the several kinds of oil acyl groups were estimated 

throughout the AS process, as in previous studies (Guillén & Uriarte, 2012), by means 

of the following equations: 
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Ln% = 100(AH/3AI),  

L% = 100(2AG/3AI),  

O% (or MU%) = 100(AE/3AI)-Ln%-L%, 

where AH and AG are the areas of the signals of bis-allylic protons of linolenic and 

linoleic groups, respectively (signals “H” and “G” in Figure 1 and Table S1); given that 

their respective signals overlap to a certain extent, the total area corresponding to each 

of these groups was calculated using pure trilinolein and trilinolenin (Sigma-Aldrich) as 

references. AI, in turn, is the area of the protons at sn-1 and sn-3 positions in the 

glycerol backbone of triglycerides, while AE is that corresponding to mono-allylic 

protons (signals “I” and “E”, respectively, in Figure 1 and Table S1). The molar 

percentage of saturated acyl groups can be obtained by difference. 

 

It must be noted that in the samples with the highest tocopherol levels (RSO1+2T 

and RSO2+2T) the signals of -T and of -T are detectable in their 

H NMR spectra 

during part of the AS period (see Figure 1, signals “u1”, “u2”, “v” and “w” for -T). 

Considering that some of these signals partially overlap with some of triglycerides (see 

Table S1), their area was subtracted when determining the molar percentages of oil acyl 

groups; nevertheless, the results were very similar to those obtained without making this 

correction. 

The concentrations of the different types of oxidation products were estimated as 

millimol per mol of triglyceride (mmol/mol TG). The general equation to carry out this 

determination was the following: [OP] = [(AOP/n)/(AI/4)]*1000, where AOP is the area 

of the signal selected for the quantification of each oxidation product (OP), n the 

number of protons that generate the signal. It must be pointed out that, for the 

determination of the so-called major epoxides (see section 3.2.3.1), signals between 

2.87 and 3.17 ppm approximately have been considered together. As Table S1 shows, 

some of the compounds that could give these signals contribute with two protons 

(signals “f1”, “f2” and “g1”) but others with only one (signals “f3”, “f4”, “f5”, “g2” and 

“g3”). However, given that, under the conditions of this study, it is impossible to 

elucidate exactly which ones of all these types of compounds are present, it has been 

assumed that the signal at approximately 2.9 ppm corresponds mainly to epoxides 

contributing with two protons and the one at 3.1 ppm to epoxy-compounds contributing 

with only one. 
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2.4. Statistical analysis 

The significance of the differences in the concentrations of the different kinds of 

oxidation products was determined between samples RSO1 and in RSO1+0.02T by t-

student test at p< 0.05, using SPSS Statistics 24 software (IBM, NY, USA). 

 

3. RESULTS AND DISCUSSION 

As stated above, the study focuses on the effect of adding varying proportions of γ-T 

on both the evolution of RSO acyl groups and the formation of a wide array of 

oxidation products under AS conditions, and its comparison with that of -T. Figure 1, 

which shows the evolution of the 
1
H NMR spectrum of RSO1 enriched with 2% of γ-T 

(RSO1+2T) throughout the AS process, evidences the diminution with time of the 

spectral signals specific of unsaturated acyl groups (B, E, G+H and K), as well as the 

generation and further evolution of new signals corresponding to different types of 

oxidation products, which will be discussed in detail later. 

3.1. Effect of the -T enrichment of RSO on the evolution of the different types of 

oil acyl groups, and comparison with that of -T 

As expected, during the AS process the degradation of polyunsaturated acyl groups 

(linolenic and linoleic) takes place, linolenic groups completely disappearing by the end 

of the AS process. By contrast, the molar percentage of monounsaturated groups 

exhibits only a slight decline, occurring at the most advanced stages of the process. 

Their estimated evolution can be observed in Figure 2A. As a result of the degradation 

of unsaturated acyl groups, the molar percentage of the saturated+modified (S+M) ones 

increases with time, so the evolution of these latter can summarize the overall decrease 

of the former. Figure 2A reveals that during the first 3 days no noticeable changes in the 

molar percentage of S+M groups are perceived. However, from this point onwards two 

main stages can be distinguished, their duration varying from one sample to another  
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Figure 1. 
1
H NMR spectrum of sample RSO1+2γT before being subjected to the accelerated 

storage process, together with the enlargements of some spectral regions where changes occur 

throughout this process and their evolution with time. Letters agree with those in Table S1, 

considering that “f” includes signals “f1-f5”, “g” signals “g1-g3” and “j” signals “j1+j2”. The 

plots corresponding to the same 
1
H NMR spectral region are presented at a fixed value of 

absolute intensity, for them to be valid for comparative purposes.  
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 In sample RSO1 the increasing rate of the molar percentage of S+M groups in the 

first stage (from days 3 to 7) is considerably lower than in the second one (from day 7 

onwards). The addition of a proportion of 0.02% of -T has virtually no impact on acyl 

groups evolution but, as the -T concentration increases, the first stage is lengthened and 

the rising pace of S+M groups is accelerated in comparison with the reference oil. The 

opposite is observed in the second stage, when the growing rate of S+M groups is 

reduced compared to the non-enriched oil as -T concentration gets higher. This leads to 

a considerable enlargement of the process in RSO1+2T and to a delay of its total 

polymerization. 

In agreement with the findings of a previous work (Martin-Rubio et al., 2018), when 

-T is added to RSO2 (see Figure 2B), an acceleration in the degradation of 

polyunsaturated groups is also observed in the earlier stage of the AS process. However, 

a diminution of the growing rate of S+M groups in relation to the reference oil is 

noticed during the second stage, the more pronounced the greater the -T concentration. 

Therefore, it could be considered that, to a certain extent, the action of both types of 

tocopherols on RSO acyl groups exhibits a similar tendency, although with different 

intensities. 

3.2. Effect of γ-T on the formation and evolution of oxidation products coming 

from acyl groups degradation and comparison with -T 

3.2.1. Hydroperoxides (primary oxidation products) 

Given that the analysis by 
1
H NMR allows one to determine both total 

hydroperoxides and those with (Z,E)- and (E,E)-conjugated dienes, the evolution of all 

of them will be discussed consecutively. 
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Figure 2. Evolution throughout the accelerated storage process of the molar percentages of linolenic, linoleic and diunsaturated -6, 

monounsaturated and saturated+modified acyl groups, and of the concentrations, in mmol/mol TG, of hydroperoxides and their associated conjugated 

(Z,E)- and (E,E)-dienes, as well as of conjugated (Z,E)-hydroxy-dienes in: A) the samples with varying proportions of γ-T and their reference oil 

(RSO1); B) the samples with varying proportions of -T and their reference oil (RSO2). All the figures reported are mean values. 
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3.2.1.1. Hydroperoxides giving signals between 8.3 and 9.0 ppm 

The progress of the concentration of hydroperoxides, estimated from signal “a” (see 

Table S1), is shown in Figure 2A. Figure 1, in turn, displays the evolution of 

hydroperoxides signals over time in sample RSO1+2T. 

Figure 2A shows that, in line with acyl groups evolution, both the original oil and 

sample RSO1+0.02T exhibit the same behaviour. Thus, in both cases, hydroperoxides 

are detected after 3 days under AS conditions and in similar concentrations, and the 

rates of increase of these throughout time are also comparable. Hydroperoxides 

concentration rises slowly at first (from days 2 to 6) and then sharply until the 

maximum is reached. 

However, in the samples having higher -T concentrations hydroperoxides appear 

earlier and at first their formation occurs more quickly than in the oils with lower -T 

levels. Therefore, the addition of -T in proportions higher than 0.02% slightly reduces 

the oxidative stability of RSO1; this agrees with the findings of other authors (Huang et 

al., 1995; Jung & Min, 1990), who also observed that -T promoted the formation of 

hydroperoxides in purified corn and soybean oils under heating conditions (55-60 ºC), 

at levels of 0.5 and 0.1%, respectively. By contrast, after this first stage of the AS 

process, the growing pace of hydroperoxides concentration in RSO1+0.2T and 

RSO1+2T samples becomes slower than in the reference oil, in line with increased -T 

level. Actually, in RSO1+2T hydroperoxides concentration rises practically at the same 

rate from the beginning until the maximum is reached. Furthermore, hydroperoxides 

decomposition also takes longer in RSO1+2T than in the rest of the samples. 

Comparison with the evolution in the samples enriched with -T. As Figure 2B 

shows, the addition of -T also accelerates the formation of hydroperoxides and their 

initial concentration surge, in step with -T concentration, although to a greater extent 

than -T. In fact, unlike in the case of -T, the maximum concentration of 

hydroperoxides is reached earlier in the -T-enriched samples than in the reference oil, 

and it is considerably higher in RSO2+2T than in the rest of the oils studied. All these 

findings confirm that, under the conditions of this study, -T exerts a more prooxidant 

action on RSO than -T. 

Regarding the samples with the highest tocopherol enrichment level (2%), it must 

also be noticed that hydroperoxides decomposition proceeds more slowly for -T than 
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for -T. This agrees with the results of Kamal‐Eldin, Lampi and Hopia (2001), who also 

observed that γ-T inhibited methyl linoleate hydroperoxides decomposition more 

efficiently than α-T did. 

The differences observed between the effect of both tocopherols on hydroperoxides 

evolution and concentration could be related to the structural differences existing 

between them, which make γ-T a less potent hydrogen donor (Gottstein & Grosch, 

1990), so less prone to participate in prooxidant reactions than -T. Actually, whereas 

-T signals disappear after 6 days under AS conditions, those of -T are still detectable 

after 12 days, what suggests that -T reacts and then degrades faster than -T. 

3.2.1.2. Conjugated (Z,E)- and (E,E)-hydroperoxy-dienes ((Z,E)- and (E,E)-CD-

OOH) 

As mentioned above, (Z,E)- and (E,E)-hydroperoxides can be monitored separately, 

by measuring their corresponding signals over time (see Table S1, signals “d” and “c”, 

respectively). The evolution of these latter in sample RSO1+2T can be observed in 

Figure 1. Figure 2A, which shows the estimated progress of their concentrations in the 

-T-enriched samples and in their reference oil, reveals that both in RSO1 and in 

RSO1+0.02T (Z,E)- and (E,E)-CD-OOH are detected at the same time and in similar 

concentrations. However, as the AS process advances, the (E,E)-isomers predominate 

over the (Z,E)-ones until the maximum of both types of CD-OOH is reached. 

As -T concentration rises over the 0.02% enrichment level, the generation of (Z,E)-

CD-OOH accelerates and their concentration increases compared with the reference oil, 

to the extent that in RSO1+2T exceeds that of (E,E)-CD-OOH, being considerably 

higher than in the rest of the samples. In addition, at this high -T level, a delay in the 

generation and subsequent concentration increase of (E,E)-CD-OOH in relation to the 

(Z,E)-ones is observed. 

As Figure 2B shows, the addition of -T to RSO2 also promotes the generation of 

(Z,E)-CD-OOH, although to a much higher extent than -T. Actually, unlike -T, the 

maximum concentration of (Z,E)-CD-OOH in the -T-enriched samples is reached 

more quickly than in the original oil, and in RSO2+2T it attains a much higher level 

than in the rest of the samples studied, including those with -T added. 

Regarding (E,E)-CD-OOH, as in RSO1+2T (see Figure 2A), a delay in the 

generation of this type of hydroperoxides in relation to the (Z,E)-ones is noticed in the 
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sample with the highest -T concentration. All the results concerning the effect of -T 

on hydroperoxides evolution match well with the findings of another previous study 

(Martin-Rubio et al., 2018). 

3.2.2. Conjugated (Z,E)-hydroxy-dienes  

In addition to hydroperoxy-dienes, the formation of (Z,E)-hydroxy-dienes is also 

observed during the AS process of RSO1 and of the corresponding -T-enriched 

samples. As Figure 2A reveals, this type of compounds is generated at very low levels 

in the samples with -T proportions lower than 2%, although in RSO1+0.2T these are 

detected something earlier. However, in RSO1+2T (see also Figure 1, signal “b”) a rise 

in their concentration and in their existence period (from days 5 to 16) occurs in 

comparison with the other oils. 

According to some authors (Hopia, Huang & Frankel, 1996), the increased formation 

of (Z,E)-hydroxy-dienes in the presence of -T can be explained by its ability to donate 

an H atom to alkoxyl radicals, and this could also occur for -T. 

In agreement with previous findings (Martin-Rubio et al., 2018), the formation of 

hydroxy-dienes is also favoured when adding -T to RSO2 (Figure 2B), but this effect 

is more marked than in the case of -T. This seems again to point to a higher hydrogen 

donating ability of -T against -T. It is worth noticing that, in line with the evolution of 

(Z,E)-CD-OOH, in RSO2+2T the maximum concentration of (Z,E)-OH-dienes is 

higher and their existence period shorter than in RSO1+2T. 

3.2.3. Epoxides 

Epoxides constitute a relevant group of oxidation products due to their concentration 

and to the potential toxicity of some of them such as leukotoxin and isoleukotoxin, 

which are monoepoxides derived from linoleic groups (Greene, Williamson, Newman, 

Morisseau & Hammoc, 2000); despite this, they do not usually receive much attention 

in oxidation studies. Regarding the monitoring of epoxides formation by 
1
H NMR, it is 

worth noticing that, as Table S1 shows, (E)-epoxystearates (signal “e”), coming from 

oleic groups, are the only ones to give a signal clearly distinguishable from those of the 

rest of epoxides considered. Actually, the identification, and consequently the 

determination of epoxides by 
1
H NMR, presents a challenge, since not only can 

epoxides form at different points of the acyl group chain (Byrdwell & Neff, 2001), but 

they can also be accompanied by other functional groups like hydroxy-, hydroperoxy- 
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or keto-, giving rise to a very wide variety of epoxy-compounds, some of which are 

compiled in Table S1. Taking all this into account, most of the epoxides other than (E)-

epoxystearates have been considered as a whole, irrespective of the number of epoxy 

groups or of the presence of other functional groups. Only two types of tentatively 

identified epoxy-keto-ene compounds (see Table S1) have been determined separately, 

as described in section 3.2.3.2. 

The estimated progress of the concentrations of the different types of epoxides 

during the AS process in all the -T-enriched samples and in their corresponding 

reference oil is presented in Figure 3A. Figure 1, in turn, shows the evolution of their 

signals (“e”, “f”, “g”, “h” e “i”) in sample RSO1+2T. 

3.2.3.1. Major epoxides (epoxides other than (E)-epoxystearates and those 

tentatively identified as epoxy-keto-enes) 

As Figure 3A reveals, in RSO1 and in RSO1+0.02T, these major epoxides are 

distinguishable from the 7
th

 day onwards and their concentration progressively 

increases, reaching very similar concentrations in both samples. 

As the -T level rises, the formation of these epoxides begins somewhat earlier but at 

a lower rate, attaining a higher concentration at the end of the AS process due to its 

longer duration.  

3.2.3.2. Epoxy-keto-enes 

The concentrations of these tentatively identified compounds, divided into (E)- and 

(Z)-isomers, have been estimated assuming that signal “h” (see Figure 1) could be due 

to protons of the four epoxy-keto-octadecenoates included in Table S1, and that signal 

“i” is due exclusively to the (Z)-isomers (see signals “i1” and “i2” in Table S1). 

Therefore, the amount of the (E)-isomers has been calculated by difference. 

As Figure 3A shows, in RSO1 and in RSO1+0.02T epoxy-keto-enes are generated 

later and in lower concentrations than the major epoxides mentioned in section 3.2.3.1, 

especially the (Z)-isomers. It is also observed that -T in proportions greater than 0.02% 

delays their formation, more markedly in the oil with the highest -T concentration, just 

the opposite that happens in the formation of the so-called major epoxides. This 

indicates that the generation routes of both kinds of epoxides are different. 
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Figure 3. Evolution throughout the accelerated storage process of the concentrations, in mmol/mol TG, of the different types of epoxides in: 

A) the samples with varying proportions of γ-T and their reference oil (RSO1); B) the samples with varying proportions of -T and their 

reference oil (RSO2). All the figures reported are mean values. 
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3.2.3.3. (E)-Epoxystearates 

It can be noticed in Figure 3A that (E)-epoxystearates, coming from oleic groups, are 

also detected later than the major epoxides and, in agreement with the evolution of 

monounsaturated groups (see Figure 2A), -T levels above 0.02% delay their 

generation, above all in the most enriched oil. 

3.2.3.4. Comparison with -T 

Regarding major epoxides, as Figure 3B reveals, the addition of -T speeds up their 

emergence, in step with greater -T concentration, and considerably more markedly 

than in the -T-enriched oils, reflecting the different effect of both tocopherols on 

hydroperoxides generation and decomposition rates in the various samples. 

The generation of epoxy-keto-enes and of (E)-epoxystearates is also accelerated in 

the samples with -T added (see Figure 3B), what contrasts with that observed in the -

T-enriched samples (see Figure 3A).  

3.2.4. Aldehydes 

Aldehydes make up a wide and important group of oxidation compounds due to the 

reactivity and toxicity of some of them, such as the oxygenated -unsaturated ones, 

considered to be involved in the development of degenerative diseases (Guillén & 

Goicoechea, 2008). The estimated evolution of the concentrations of the different types 

of aldehydes detected in all the -T-enriched samples and in their reference oil is given 

in Figure 4A. In addition, Figure 1 shows the generation and evolution of aldehydic 

signals in sample RSO1+2T (letters “n” to “t”). 

Figure 4A demonstrates that aldehydes emerge at the same time in RSO1 and in 

RSO1+0.02T but, as the -T concentration increases, aldehydes are detected later. This 

coincides to a certain extent with the findings of Huang and coworkers (1994), who 

reported a greater ability of -T in inhibiting hexanal formation in stripped corn oil at 

higher concentration. It can also be observed that in RSO1 and in the oils with -T-

enrichment levels lower than 2% the first aldehydes detected are n-alkanals, (E)-2-

alkenals and 4-hydroperoxy-(E)-2-alkenals, while 4-hydroxy-(E)-2-alkenals, (E,E)-2,4-

alkadienals and 4,5-epoxy-2-alkenals are observable the following day. However, in 

RSO1+2T 4-hydroxy-(E)-2-alkenals also appear in the first place, as well as (Z,E)-2,4-

alkadienals, these latter present in very low concentration (see the enlargement in Figure 

4A and Figure 1, signal “s”) and absent in the rest of the samples. 
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The relative abundances and evolution of the different types of aldehydes are, in 

general, the same as those observed in previous works carried out under these same 

conditions (Goicoechea & Guillén, 2010; Martin-Rubio et al., 2018). Nevertheless, in 

the most -T-enriched sample the concentration of 4-hydroxy-(E)-2-alkenals is very 

similar to that of 4-hydroperoxy-(E)-2-alkenals for a few days after their emergence 

(from days 9 to 13); this contrasts with the evolution observed in the rest of the samples, 

where the former are detected later and initially in lower concentration than the latter. 

(Z,E)-2,4-alkadienals, in turn, evolve somewhat differently than the rest of aldehydes, 

given that they disappear before the end of the AS period. 

As for the maximum concentrations reached by the several kinds of aldehydes, they 

seem to be in accordance with both their earlier or later onset and the length of the AS 

period in each of the samples and, overall, substantial differences are not observed 

among them. 

By contrast with oils enriched with -T, -T accelerates the appearance of aldehydes 

in relation to the original oil, the higher the -T concentration gets (see Figure 4B).  

Nevertheless, it could be thought that the appearance of different types of aldehydes 

in the samples enriched with any of the two tested tocopherols is closely related to the 

concentration in the system of the different kinds of CD-OOH. This can be deduced 

from the results obtained in the samples with the highest tocopherol enrichment level 

because in this case the formation rate of (Z,E)-CD-OOH and (E,E)-CD-OOH is fairly 

different, as Figures 2A and 2B show.  

Thus, in the case of RSO2+2T, the first aldehydes detected are the oxygenated -

unsaturated 4-hydroxy-(E)-2-alkenals and 4-hydroperoxy-(E)-2-alkenals, as well as 

(Z,E)-2,4-alkadienals. This occurs when (Z,E)-CD-OOH have reached their maximum 

concentration (day 5, see Figures 2B and 4B) whereas the level of (E,E)-CD-OOH is 

very small. Later, when the (E,E)-CD-OOH concentration has attained a value near its 

maximum, n-alkanals and ()-2-alkenals also become visible (day 7, see Figures 2B and 

4B). This fact could suggest that the first cited aldehydes might come from (Z,E)-CD-

OOH whereas (E,E)-CD-OOH might be the precursors of the second ones. These results 

are in agreement with the findings of a previous work where even a higher enrichment 

level of -T was studied (Martin-Rubio et al., 2018). 

Likewise, in sample RSO1+2T 4-hydroxy-(E)-2-alkenals, 4-hydroperoxy-(E)-2-

alkenals and (Z,E)-2,4-alkadienals are also among the first formed aldehydes. These are 
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detected when (Z,E)-CD-OOH have reached their peak concentration (see day 9 in 

Figures 2A and 4A). At the same time n-alkanals and ()-2-alkenals also appear in the 

system, coinciding with the time when the (E,E)-CD-OOH concentration has reached a 

certain value. 

These results suggest that the time at which some of the secondary oxidation products 

such as aldehydes are formed is determined by the concentration in the system of the 

CD-OOH from which they come, this being why the appearance of aldehydes occurs in 

the samples highly enriched with -T before it does in the oils highly enriched with -T. 

3.2.5. Compounds with keto-dienic systems 

The estimated progress of the concentrations of compounds with (Z,E)- and (E,E)-

keto-dienes in the -T-enriched oils and in their respective reference is shown in Figure 

5A; in addition, the evolution of their signals in sample RSO1+2T can be observed in 

Figure 1 (signal “m” for (Z,E) (and E,Z)- and “l” for (E,E)-keto-dienes). As Figure 5A 

reveals, keto-dienes are detected in RSO1 and RSO1+0.02T one day later than 

aldehydes, the (E,E)-ones being in higher concentration than the (Z,E)-ones throughout 

the entire AS process. They both reach their maximum concentrations simultaneously 

but, unlike (E,E)-keto-dienes, the (Z,E)-ones almost disappear before the end of the AS 

process. 

In the samples with higher -T concentrations keto-dienes evolution is in line with 

that of (Z,E)- and (E,E)-CD-OOH in each of these samples (see Figure 2A). This is 

especially noticeable in RSO1+2T, where the concentration of (Z,E)-keto-dienes 

reaches considerably higher levels than in the rest of the samples and their duration is 

longer, while the formation of the (E,E)-ones is markedly retarded compared to the 

reference oil. 

Regarding the samples enriched with -T (see Figure 5B), and also in agreement 

with both (Z,E)- and (E,E)-CD-OOH evolutions (see Figure 2B), the higher the α-T 

concentration, the earlier the generation of (Z,E)-keto-dienes and the later the generation 

of the (E,E)-ones in relation to the former. All these findings agree with those of a 

previous study (Martin-Rubio et al., 2018).  
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Figure 4. Evolution throughout the accelerated storage process of the concentrations, in mmol/mol TG, of the different types of aldehydes 

in: A) the samples with varying proportions of γ-T and their reference oil (RSO1); B) the samples with varying proportions of -T and their 

reference oil (RSO2). All the figures reported are mean values 
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3.2.6. Alcohols 

Alcohols other than those exhibiting conjugated dienes might also be generated as a 

consequence of the RSO oxidation progress. These can include compounds with only 

one hydroxy group, as well as dihydroxy-derivatives; it is worth noticing that the 

hydrolysis of some of these latter could give leukotoxin- and/or isoleukotoxin-diols, 

which are considered to have negative effects in vitro and in animal studies 

(Markaverich et al., 2005). 

It is known that some dihydroxy-derivatives could give signals at around 3.42-3.45 

ppm (see Table S1, signals “j1+j2”), and indeed the appearance of a signal near this 

chemical shift is observed during the AS process of sample RSO1 and of those enriched 

with -T (see Figure 1 for RSO1+2T, signal “j”). In addition, the AS process of all 

these samples gives rise to the emergence of another signal at 3.62 ppm (see Figure 1 

for RSO1+2T, signal “k”), which could also be due to compounds supporting hydroxy  

groups (see Table S1). 

The evolution of the concentrations of this type of compounds are shown in Figure 

5A. This reveals that in all the samples the compounds giving signal “j” are detected 

earlier than the ones originating signal “k”, their respective progressions being similar 

in RSO1 and in RSO1+0.02T. At this point, it is worth mentioning that significant 

differences were not found between the concentrations of the various kinds of oxidation 

products in these two samples. 

In the oils with γ-T proportions higher than 0.02% a delay in the formation of 

compounds giving signals “j” and “k” is observed, more as higher is the γ-T amount, 

while the opposite effect is observed in the case of -T (see Figure 5B). However, in 

both kinds of samples, the addition of tocopherol at the highest level provokes a 

reduction in the growing rate of the concentration of these compounds, more marked for 

-T. 

Finally, it must be noticed that, in the complementary study mentioned in section 2.1, 

carried out with -T of higher purity at the highest enrichment level (2%) (data not 

shown), the same effect on RSO evolution was observed, so any influence of the purity 

of the -T used on the results obtained can be discarded. 

 

.
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Figure 5. Evolution throughout the accelerated storage process of the concentrations, in mmol/mol TG, of the different types of conjugated keto-dienes 

and of the different types of hydroxy-derivatives in: A) the samples with varying proportions of γ-T and their reference oil (RSO1); B) the samples 

with varying proportions of -T and their reference oil (RSO2). All the figures reported are mean values. 
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4. CONCLUSIONS 

As far as we know, this is the first time that the action of -T on the oxidation 

process of a real edible oil has been studied in a global way by 
1
H NMR and compared 

with that of -T. 

Although under the conditions of this study the enrichment of refined soybean oil 

with 0.2% and 2% of either -T or -T accelerates the formation of (Z,E)-

hydroperoxides, the rate of generation is considerably higher in the case of -T. By 

contrast, a high tocopherol enrichment level (2%) slows down and reduces the 

formation of (E,E)-hydroperoxides. In addition, both hydroperoxides decomposition and 

polymerization proceed more slowly in the sample with 2% -T added than in the one 

with 2% -T.  

The differences between the effect of -T and -T on hydroperoxides evolution 

cause, in turn, noticeable divergences in the generation of secondary oxidation products, 

which is delayed in most cases in the samples enriched with more than 0.02% -T, and 

accelerated in those with -T added.  

Irrespective of the type of tocopherol, the 2% enrichment level modifies the oil 

oxidation pathway, promoting the generation of certain types of compounds such as 

(Z,E)-hydroperoxides, (Z,E)-hydroxy-dienes, (Z,E)-keto-dienes, and (Z,E)-2,4-

alkadienals, these latter not usually observed by 
1
H NMR under these same conditions 

in the absence of such high levels of tocopherols. To this should be added that not all 

the various classes of oxidation products are affected in the same way by the tocopherol 

enrichment. Therefore, this work strengthens and confirms the importance of 

monitoring the whole oxidation process and considering different types of oxidation 

compounds, in order to obtain sound results and gain further insight into the effect and 

action mechanisms of potentially antioxidant compounds. 

Due to the complex effect of -T on the generation of oxidation products, it seems 

difficult to define their action on the oil oxidation process as antioxidant or prooxidant. 

Notwithstanding, it can be stated that, under the conditions of this study, -T is more 

prooxidant than -T. The acceleration in the generation of hydroperoxides and of some 

epoxides when -T is in high concentration should be considered when regulating the 

addition of this compound to edible oils. 
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Table S1. Chemical shifts, multiplicities and assignments of the 
1
H NMR signals in 

CDCl3 of the main types of triglyceride (TG) protons and of some oxidation compounds 

present in the different soybean oil samples, before and throughout the accelerated 

storage process. The signal letters agree with those given in Figure 1. 

Signal 
Chemical shift 

(ppm) 

Multi- 

plicity 

Functional group 

Type of protons Compound 

Main acyl groups
a
 

A 0.88 t -CH3 saturated and 

monounsaturated ω-9  

acyl groups 

 0.89 t -CH3 linoleic acyl groups 

B 0.97 t -CH3 linolenic acyl groups 

C 1.19-1.42 m* -(CH2)n- acyl groups 

D 1.61 m -OCO-CH2-CH2- acyl groups in TG  

E 1.94-2.14 m** -CH2-CH=CH- unsaturated acyl groups 

F 2.26-2.36 dt -OCO-CH2- acyl groups in TG  

G 2.77 t =HC-CH2-CH= linoleic acyl groups 

H 2.80 t =HC-CH2-CH= linolenic acyl groups 

I 4.22 dd,dd ROCH2-CH(OR’)-

CH2OR’’ 

glyceryl groups 

J 5.27 m ROCH2-CH(OR’)-CH2OR’’ glyceryl groups 

K 5.28-5.46 m -CH=CH- acyl groups 

Oxidation compounds 

Hydroperoxides
b
 

a 8.3-9.0 bs -OOH monohydroperoxide 

group 

Conjugated dienic systems
b,c

 

- 

- 

- 

b 

5.44 

5.66 

5.97 

6.49 

ddd 

dd 

t 

dd 

-CH=CH-CH=CH- (Z,E)-conjugated 

double bonds 

associated with 

hydroxy group  

in octadecadienoic acyl 

groups
d
 

     

- 

- 

5.47 

5.76 

ddm 

dtm 

-CH=CH-CH=CH- (E,E)-conjugated 

double bonds 
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- 

c 

6.06 

6.27 

ddtd 

ddm 

associated with 

hydroperoxy group  

in octadecadienoic acyl 

groups 

     

- 

- 

- 

d 

5.51 

5.56 

6.00 

6.58 

dtm 

ddm 

ddtd 

dddd 

-CH=CH-CH=CH- (Z,E)-conjugated 

double bonds 

associated with 

hydroperoxy group  

in octadecadienoic acyl 

groups
e
 

     

Epoxides 

Epoxy-derivatives 

e 2.63
f
 m -CHOHC- (E)-9,10-epoxystearate 

f1 2.88
f
 m -CHOHC- (Z)-9,10-epoxystearate 

f2 2.9
g,h

 m -CHOHC- monoepoxy-

octadecenoate/-

octadecadienoate 

groups 

   -CHOHC-CH2-CHOHC- diepoxides 

g1 3.10
g
 m -CHOHC-CH2-CHOHC- diepoxides 

Epoxy-keto-derivatives 

f3 2.89
i
/2.90

j
 td

i
/m

j
 -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

f4 2.91
i
 td -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

h 3.20
i,j

 dd -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

   -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

   -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

   -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-

keto-(E)-11-

octadecenoate 

i1 3.52
i
 dd -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-

keto-(E)-10-

octadecenoate 

i2 3.53
i
 dd -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-

keto-(E)-11-
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octadecenoate 

Epoxy-hydroxy-derivatives 

f5 2.93
k
 dt -CHOHC-CHOH-CH=CH- threo-11-hydroxy-(E)-

12,13-epoxy-(Z)-9-

octadecenoate 

g2 3.09
l
/3.097

m
 dd -CHOHC-CH=CH-CHOH- 9-hydroxy-(E)-12,13-

epoxy-(E)-10-

octadecenoate 

Epoxy-hydroperoxy-derivatives 

g3 3.11
l
 dd -CHOHC-CH=CH-

CHOOH- 

9-hydroperoxy-(E)-

12,13-epoxy-(E)-10-

octadecenoate
n
 

Alcohols 

j1 3.45
o,p

/3.48-3.41
q
 m

o,q
/bs

p
 -CHOH-CHOH- 9,10-dihydroxy-12-

octadecenoate 

(leukotoxin diol, 

methyl ester) 

j2 3.45
o
/3.42

p
 m

o
/bs

p
 -CHOH-CHOH- 12,13-dihydroxy-9-

octadecenoate 

(isoleukotoxin diol, 

methyl ester) 

k 3.62*** m -CHOH- 12R-hydroxy-9(Z)-

octadecenoate 

Keto-dienes 

l 7.13*** dm -CO−CH=CH−CH=CH- (E,E)-conjugated 

double bonds 

associated with a keto 

group in 

octadecadienoic acyl 

groups
r 
 

m 7.50
r
/7.43

s
 dd

r
/ddd

s
 -CO−CH=CH−CH=CH- (Z,E)-conjugated 

double bonds 

associated with a keto 

group in 

octadecadienoic acyl 

groups 

 7.49
r
/7.47

s
 ddd -CO−CH=CH−CH=CH- (E,Z)-conjugated 

double bonds 

associated with a keto 

group in 

octadecadienoic acyl 

groups 

Aldehydes 

n 9.49
t
 d −CHO (E)-2-alkenals 

o 9.52
t
 d −CHO (E,E)-2,4-alkadienals 



Results and Discussion – Supplementary Material Manuscript 3 

159 

 

p 9.55
t
 d −CHO 4,5-epoxy-2-alkenals 

q 9.57
t
 d −CHO 4-hydroxy-(E)-2-

alkenals 

r 9.58
t
 d −CHO 4-hydroperoxy-(E)-2-

alkenals 

s 9.60
u
 d -CHO (Z,E)-2,4-alkadienals 

t 9.75
t
 t -CHO n-alkanals 

-Tocopherol 

u1 2.095*** s 

 

-tocopherol
v
 

u2 2.123*** s 

 

-tocopherol
v
 

v 2.652*** m 

 

-tocopherol
v
 

w 6.362*** s 

 

-tocopherol
v
 

t: triplet; m: mutiplet; d: doublet; bs: broad signal; s: singlet; *Overlapping of multiplets 

of methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***Assignment made with the aid of 

standard compounds 
a
Assignments taken from Guillén, M. D., & Ruiz, A. (2003). Journal of the Science of 

Food and Agriculture, 83, 338–346. 
b
Data taken from Goicoechea, E., & Guillén, M. D. (2010). Journal of Agricultural and 

Food Chemistry, 58, 6234-6245 (hydroperoxides and conjugated (Z,E)- and (E,E)-

hydroperoxy-dienes). 
c
Data taken from Dong, M., Oda, Y., & Hirota, M. (2000). Bioscience, Biotechnology 

and Biochemistry, 64, 882-886 (conjugated (Z,E)-hydroxy-dienes). 
d
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Kuklev, D. V., Christie, W. W., Durand, T., Rossi, J. C., Vidal, 

J. P., Kasyanov, S. P., Akulin, V. N., & Bezuglov, V. V. (1997). Chemistry and Physics 

of Lipids, 85, 125-134.
 

e
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Chan, H. W. S., & Levett, G. (1977). Lipids, 12, 99-104.
 

f
Data taken from Du, G., Tekin, A., Hammond, E. G., & Woo, L. K. (2004). Journal of 

the American Oil Chemists’ Society, 81, 477–80. 
g
Data taken from Aerts, H. A. J., & Jacobs, P. A. (2004). Journal of the American Oil 

Chemists’ Society, 81, 841-846 (monoepoxy-octadecenoates and diepoxides). 
h
Data taken from Cui, P. H., Duke, R. K., & Duke, C. C. (2008). Chemistry and Physics 

of Lipids, 152, 122-130 (monoepoxy-octadecadienoates). 
i
Data taken from Lin, D., Zhang, J., & Sayre, L. M. (2007). The Journal of Organic 

Chemistry, 72, 9471-9480. 
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j
Data taken from Gardner, H. W., Kleiman, R., & Weisleder, D. (1974). Lipids, 9, 696-

706. 
k
Data taken from Garssen, G. J., Veldink, G. A., Vliegenthart, J. F., & Boldingh, J. 

(1976). The FEBS Journal, 62, 33-36. 
l
Data taken from Gardner, H. W., Weisleder, D., & Kleiman, R. (1978). Lipids, 13, 246-

252. 
m

Data taken from Van Os Cornelis, P. A., Vliegenthart, J. F. G., Crawford, C. G., & 

Gardner, H. W. (1982). Biochimica et Biophysica Acta, 713, 173-176. 
n
-Ketols (hydroxy-keto-derivatives) could also contribute to this signal, according to 

data from Gardner et al. (1974). 
o
Data taken from Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau C., & 

Hammoc B. D. (2000). Archives of Biochemistry and Biophysics, 376, 420-43. 
p
Data taken from Yang, J., Morton, M. D., Hill, D. W., & Grant, D. F. (2006). Chemistry 

and Physics of Lipids, 140, 75-87.
 

q
Data taken from Nilewski, C., Chapelain, C. L., Wolfrum, S., & Carreira, E. M. (2015). 

Organic Letters, 17, 5602-5605.
 

r
Assignment (“l”) and data (“m”) taken from Dufour, C., & Loonis, M. (2005). Chemistry 

and Physics of Lipids, 138, 60-68. 
s
Data taken from Kuklev et al. (1997).

 

t
Data taken from Guillén, M. D., & Ruiz, A. (2004). European Journal of Lipid Science 

and Technology, 106, 680–687. 
u
Data taken from Guillén, M. D., & Uriarte, P. S. (2012). Food Chemistry, 134, 162-172. 

v
Assignments taken from Baker, J. K., & Myers, C. W. (1991). Pharmaceutical 

Research, 8, 763-770. 
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ABSTRACT 

The effect of 1% and 2% proportions of L-lysine on the oxidation process of soybean 

oil, performed at 70 ºC under stirring conditions, has been studied by 
1
H Nuclear 

Magnetic Resonance. This technique allows one to monitor the generation and further 

evolution of a wide variety of oxidation products (hydroperoxides, epoxides, aldehydes, 

keto-dienes and hydroxy-derivatives), providing a comprehensive view of the oxidation 

process. The addition of lysine considerably delays the degradation of the oil acyl 

groups and the generation of both primary and secondary oxidation compounds, while 

preserving the oil content of -tocopherol for longer, especially at the highest 

enrichment level. A diminution in the maximum concentration reached by some types 

of secondary oxidation products is also observed in the lysine-enriched samples. This is 

particularly noticeable for aldehydes, whose concentration is markedly reduced, above 

all that of the toxic oxygenated -unsaturated ones, probably due to their reaction 

with lysine. Therefore, the ability of lysine to extend the shelf life of soybean oil is 

proved in this work, as well as its feasibility as a potential antioxidant for use in lipidic 

foods. These findings could also contribute to a better understanding of the antioxidant 

effect of proteins. 

 

KEYWORDS: soybean oil, L-lysine, antioxidant, 
1
H nuclear magnetic resonance, 

oxidation products 
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1. INTRODUCTION 

In recent times, dietary components with antioxidant ability have raised great interest 

in the field of food science and nutrition, not only among researchers but also in the 

food industry, due to the potential of this type of compounds to reduce food lipid 

oxidation and to their generally accepted benefits for human health. This is the case of 

polyphenols and tocopherols, as well as of other vegetable components that have 

contributed to forge the conviction that a high consumption of fruits, vegetables or 

plant-derived foods contributes to a healthy diet (Khan, Afaq, & Mukhtar, 2008; 

Shahidi & de Camargo, 2016). However, some of these compounds like for example -

tocopherol, carotenoids and even polyphenols are surrounded by certain controversy 

due to their prooxidant effects in various systems (Carocho & Ferreira, 2013; Halliwell, 

2007; Martin-Rubio, Sopelana, Ibargoitia, & Guillén, 2018). In this context, another 

class of dietary components with antioxidant potential are amino acids, some of which 

are essential nutrients; despite this, there are not many studies dealing with this issue, 

and comparatively more interest has been focused on proteins and peptides 

(Samaranayaka & Li-Chan, 2011).  

Regarding the antioxidant activity of amino acids, this has been demonstrated in 

various methyl linoleate systems (Gopala Krishna & Prabhakar, 1994; Karel, 

Tannenbaum, Wallace, & Maloney, 1966; Marcuse, 1962), oil-in-water emulsions 

(Filippenko & Gribova, 2011; Riisom, Sims, & Fioriti, 1980), soybean oil (Hwang & 

Winkler-Moser, 2017), refined olive oil (Hidalgo, León, & Zamora, 2006), safflower 

and bint oils (Ahmad, Al-Hakim, Adel, & Shehata, 1983) or milk fat (Chen & Nawar, 

1991). Notwithstanding, it must be noticed that prooxidative effects for some amino 

acids under certain conditions have also been reported (Ahmad et al., 1983; Farag, 

Osman, Hallabo, & Nasr., 1978; Marcuse, 1962; Park, Murakami, & Matsumura, 2005; 

Riisom et al., 1980). In short, although the antioxidant ability of proteins seems to be 

generally accepted (Elias & Decker, 2010), few is known about the specific action of 

amino acids on lipid oxidation under varying conditions and with regard to different 

types of oxidation products. 

In the above mentioned studies the antioxidant effect of amino acids were assessed, 

in general terms, by determining oxygen consumption, hydroperoxides, conjugated 

dienes and/or secondary oxidation products; these latter have been determined mainly 

by means of the thiobarbituric acid assay (TBARs), but also by analyzing specific 
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aldehydes like propanal, pentanal and hexanal in the headspace of the samples. Hwang 

and Winkler-Moser (2017) also made use of a more advanced technique, 
1
H Nuclear 

Magnetic Resonance, when studying the effect of several amino acids on the behaviour 

of soybean oil at frying temperature, to determine the loss of olefinic and bis-allylic 

protons after some hours of heating at 180 ºC. However, it could generally be said that 

the methodologies employed to assess the antioxidant action of amino acids offer only a 

partial view of the oxidation process. 

It must also be noticed that despite several mechanisms have been described to 

explain the antioxidant action of amino acids and proteins (Elias & Decker, 2010), the 

specific effect of the different types of amino acids on the course of lipid oxidation 

processes needs further investigation. Actually, in line with the observations of Park et 

al. (2005), this specific knowledge could be very useful not only to design antioxidant 

peptides, but also to develop particular applications of free amino acids for lipid 

preservation. Moreover, the potential of free amino acids as antioxidants in foods and 

edible oils might tackle some inconveniences stemming from the allergenic potential of 

some proteins and peptides. 

Taking into account all the aforementioned, this work focuses on the effect of L-

lysine, an essential amino acid, on the oxidation process of soybean oil; lysine contains 

a reactive amino group at the end of its side chain that enables its interaction with other 

components present in the system, and its antioxidant potential has been shown in some 

studies (Ahmad et al., 1983; Karel et al., 1966; Riisom et al., 1980). To this end, both 

refined soybean oil and this same oil containing either 1% or 2% by weight of lysine 

were heated at 70 ºC under continuous stirring in order to achieve a homogeneous 

distribution of the amino acid in the oil. The evolution of the oil was monitored by 
1
H 

Nuclear Magnetic Resonance (
1
H NMR), paying special attention to both acyl groups 

degradation and the generation of a wide range of oxidation products; this technique 

allows one to obtain a global picture of the oxidation process, thus overcoming some of 

the disadvantages of the methodologies most frequently used to monitor lipid oxidation 

processes, which only provide a limited, and in some instances misleading, view of the 

oxidation course. 

The results of this work will provide information about the antioxidant potential of 

lysine in lipid food systems, thus opening up new possibilities to extend the shelf life of 

oils or lipid food systems. In addition, nutritional benefits might also derived from the 
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use of lysine in case of its final ingestion took place. It must be noticed that not only 

lysine has multiple health benefits (Singh, 2016) but also adverse effects due to the 

consumption of lysine doses up to 6 g/day and even more have not been observed in 

humans (VKM, 2016). 

 

2. MATERIALS AND METHODS 

2.1. Samples 

The oil employed was a refined soybean oil (RSO). Each one of the samples enriched 

with L-lysine (RSO+LYS) was prepared by adding either 1% or 2% by weight of lysine 

to 10 g of this oil in separate beakers; the oils with lysine added were designated as 

RSO+LYS1 (1% of lysine) and RSO+LYS2 (2% of lysine). L-lysine with a purity ≥ 

98% was purchased from Cymit Quimica (Barcelona, Spain). 

The molar percentages of the different types of oil acyl groups were determined by 

1
H NMR, as in previous works (Guillén & Ruiz, 2003; Guillén & Uriarte, 2012). These 

were 5.2±0.1 for linolenic, 47.2±0.2 for linoleic, 29.9±0.2 for oleic and 17.7±0.0 for 

saturated groups. 

2.2. Oxidation process  

10 g samples of RSO and of the RSO+LYS oils were prepared in several beakers of 

6.5 cm diameter (250 ml), one per day of sampling. These were placed in a multiple 

magnetic stirrer with calefaction and heated at approximately 70º C. Aliquots were 

taken periodically from each respective beaker throughout the oil oxidation process for 

their study by 
1
H NMR. The evolution of the samples was monitored until the stirring 

magnet stopped rotating due to the polymerization of the oil. The oxidation process was 

carried out in duplicate in order to obtain average values for all the studied compounds.  

2.3. Monitoring by 
1
H NMR of the evolution of RSO and of the lysine-enriched oils 

throughout the oxidation process 

2.3.1. Operating conditions 

The 
1
H NMR spectra of the starting oils and of the corresponding aliquots taken 

throughout the oxidation process were acquired using a Bruker Avance 400 

spectrometer operating at 400 MHz. The weight of each aliquot was approximately 0.16 

g. These were mixed in a 5 mm diameter tube with 400 l of deuterated chloroform that 
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contained 0.2% of non deuterated chloroform and a small amount (0.03%) of 

tetramethylsilane as internal references. The acquisition parameters used were: spectral 

width 5000 Hz, relaxation delay 3 s, number of scans 64, acquisition time 3.744 s and 

pulse width 90º, with a total acquisition time of 8 min 55 s. The relaxation delay and 

acquisition time selected allow the complete relaxation of the protons, the signal areas 

thus being proportional to the number of protons that generate them, making possible 

their use for quantitative purposes. The experiments were carried out at 25 ºC, as in 

previous works (Guillén & Ruiz, 2003; Guillén & Uriarte, 2012). 

2.3.2. Identification of some compounds 

The identification of the oil acyl groups, of -tocopherol and of the oxidation 

products formed throughout the oxidation process was carried out on the basis of the 

signal assignment shown in Table S1 (see supplementary material), made from 

bibliographic data and with the aid of several standard compounds. In this latter case, 

the spectra of the commercial standards mentioned in the supplementary material were 

acquired, both alone and after being mixed with oil samples in order to know their exact 

chemical shifts and multiplicities in the system subject of study. 

2.3.3. Quantitative data estimated from the 
1
H NMR spectra 

The molar percentages of the several kinds of oil acyl groups throughout the 

oxidation process were estimated as in previous studies (Guillén & Uriarte, 2012). For 

this purpose, trilinolein and trilinolenin, acquired from Sigma-Aldrich, were used as 

references.  

The concentrations of -tocopherol and of the different types of oxidation products 

generated were estimated as millimoles per mole of triglyceride (mmol/mol TG), in the 

way described in the supplementary material. 

 

3. RESULTS AND DISCUSSION 

As mentioned above, the evolution of the oxidation process of the several oils was 

monitored by 
1
H NMR, paying attention to acyl groups and -tocoperol degradation, as 

well as to new compounds formation. The appearance and further evolution of signals 

due to oxidation products in the 
1
H NMR spectrum of the oil with the highest lysine 

level (RSO+LYS2) can be observed in Figure 1.  
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Figure 1. 
1
H NMR spectrum of sample RSO+LYS2 before being subjected to the 

oxidation process, together with the enlargements of some spectral regions where 

changes occur throughout time. Letters agree with those in Table S1, considering that 

“f” includes signals “f1-f6”, “g” signals “g1-g3” and “j” signals “j1+j2”. The plots 

corresponding to the same 
1
H NMR spectral region are presented at a fixed value of 

absolute intensity, for them to be valid for comparative purposes. 
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3.1. Effect of lysine on the evolution of oil acyl groups 

The evolutions of the different kinds of oil acyl groups, expressed in molar 

percentages, are represented versus time in days in Figure 2A. This graph shows that the 

molar percentages of unsaturated groups decrease with time in RSO, especially those of 

the polyunsaturated ones (linolenic and linoleic); this diminution is slow during a first 

stage, but very quick afterwards. In consequence, the molar percentage of 

saturated+modified (S+M) groups increases accordingly. The addition of lysine to the 

oil delays this process, in line with increasing lysine concentration, by enlarging the first 

phase of acyl groups degradation from approximately 4 days in RSO to 11 in 

RSO+LYS1 and 14 in RSO+LYS2. Moreover, the enrichment of RSO with 1% of 

lysine considerably extends the oil total polymerization process from 7 to 15 days, 

while the addition of 2% lysine lengthens this process by only two more days. 

3.2. Effect of lysine on the evolution of -tocopherol 

-Tocopherol (-T) is the most abundant tocol in soybean oil (Alberdi-Cedeño, 

Ibargoitia, Cristillo, Sopelana, & Guillén, 2017) and, as Figure 1 shows, it can be 

detected by 
1
H NMR (see signal “t”) during part of the oxidation process. Given that 

tocopherols are considered important components with antioxidant ability in soybean 

oil, the evolution of -T throughout the oxidation course was monitored in order to 

assess if the lysine enrichment could affect its consumption rate. Figure 2B, which 

shows the progress of the -T concentration with time reveals that increased lysine 

levels reduce the rate of -T degradation. This suggests that, when lysine is added to 

RSO, it prevents -T from being consumed in antioxidant reactions. Therefore, the 

addition of lysine not only exerts an antioxidant action regarding acyl groups 

degradation, but also preserves the -T oil content. A slower degradation of -T in the 

presence of lysine was also observed by Hwang and Winkler-Moser (2017) in soybean 

oil at frying temperature. 
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Figure 2. Evolution throughout the oxidation process, in the reference oil (RSO) and in 

the samples enriched with lysine (RSO+LYS), of: A) the molar percentages of linolenic, 

linoleic and diunsaturated -6, monounsaturated and saturated+modified acyl groups; 

B) the concentration, in mmol/mol TG, of -tocopherol; and C) the concentrations, in 

mmol/mol TG, of hydroperoxides and their associated conjugated (Z,E)- and (E,E)-

dienes ((Z,E)- and (E,E)-CD-OOH), and of conjugated (Z,E)-hydroxy-dienes ((Z,E)-

CD-OH). All the figures reported are mean values.  
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3.3. Influence of the lysine enrichment on the formation and evolution of oxidation 

products 

3.3.1. Evolution of the concentration of hydroperoxides 

Hydroperoxides generation takes place when thermodegradation of unsaturated acyl 

groups occurs. The evolutions of the concentrations of hydroperoxide groups and of 

their associated (Z,E)- and (E,E)-conjugated dienes can be observed in Figure 2C, while 

the progress of their respective signals in sample RSO+LYS2 is shown in Figure 1 (see 

letter “a” for hydroperoxide groups, and letters “d” and “c” for (Z,E)- and (E,E)-

conjugated dienes, respectively). 

3.3.1.1. Hydroperoxides giving signals between 8.3 and 9.0 ppm 

Figure 2C shows that in RSO hydroperoxides concentration increases rapidly and at 

a practically constant rate from days 1 to 5, when acyl groups degradation is already 

considerable (see Figure 2A); then, it exhibits a sharp drop. In the lysine-enriched 

samples hydroperoxides are detected at the same time as in the reference oil, namely 

after 2 days under oxidative conditions, although in concentrations that decrease in line 

with lysine enrichment. In addition, and in agreement with acyl groups degradation, 

hydroperoxides concentration rises much more slowly in the oils with lysine added than 

in the non-enriched oil, particularly in RSO+LYS2, where a certain stabilization in the 

level of hydroperoxides is observed between days 9 and 13. 

These findings, which evidence the ability of lysine to retard the oxidation of RSO, 

are in agreement with the antioxidant effect of lysine reported by other authors in 

soybean oil at frying temperature (Hwang & Winkler-Moser, 2017) and in other types 

of vegetable oils (Ahmad et al., 1983). Notwithstanding, the maximum concentrations 

of hydroperoxides are higher in the oils with lysine added than in the original oil. Given 

that when these maximum levels are reached, the extent of acyl groups degradation, 

especially of the linoleic ones, is lower in the oils containing lysine than in RSO (see 

Figure 2A), it might be thought that the slower progress of the oxidation process in the 

former could result in a greater accumulation of hydroperoxides before their 

decomposition occurs. 
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3.3.1.2. Conjugated (Z,E)- and (E,E)-hydroperoxy-dienes 

As mentioned above, the progress of (Z,E)- and (E,E)-hydroperoxy-dienes ((Z,E)- 

and (E,E)-CD-OOH) can be followed separately from the evolutions of signals “d” and 

“c”, respectively (see Figure 1). 

As can be observed in Figure 2C, the addition of lysine slows down the concentration 

increase of both (Z,E)- and (E,E)-CD-OOH, as in the case of hydroperoxide groups. 

However, it does not affect either their respective evolutions with time or their relative 

proportions. However, in line with hydroperoxide groups, the maximum concentrations 

reached by both types of conjugated dienes are somewhat higher in the lysine-enriched 

oils. 

3.3.2. Conjugated (Z,E)-hydroxy-dienes 

The presence of small signals that could be tentatively assigned to (Z,E)-hydroxy-

dienes ((Z,E)-CD-OH) was detected in some of the spectra corresponding to the oils 

enriched with lysine, but not in those of the original oil; this is shown for sample 

RSO+LYS2 in Figure 1 (signal “b”). As can be observed in Figure 2C, this type of 

compounds could be monitored over more days in RSO+LYS2 than in RSO+LYS1, and 

their maximum concentration is also higher in the oil with the highest lysine 

concentration (RSO+LYS2). It is also worthwhile noticing that, especially in this latter 

sample, the period when (Z,E)-CD-OH exhibit their main concentration increase 

coincides approximately with the time interval when hydroperoxides concentration is 

stabilized to a certain extent. This might be partly explained by the findings of Ishino et 

al. (2008), according to whom hydroperoxides can be reduced to alkyl-hydroxides due 

to their involvement in the formation of adducts between lysine and saturated aldehydes 

generated during the oil oxidation process, even before this type of aldehydes can be 

detected by 
1
H NMR. 

3.3.3. Epoxides 

As can be observed in Figure 1, the unoxidized refined soybean oil exhibits a signal 

(letter “f”) that could be tentatively assigned in part to compounds supporting epoxy 

groups, which overlap with the side-band of the bis-allylic protons signal (see Table 

S1). However, not only does the intensity of this signal increase throughout the 

oxidation course, but also new signals that could also be tentatively attributed to 

epoxides are generated over time. Table S1, which compiles some of these compounds, 

shows that only (E)-epoxystearates (letter “e”) and (E)-epoxy-keto-enes (letters “h” and 
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“i”), coming probably from oleic and polyunsaturated groups respectively, generate 

signals isolated from those of the rest of epoxides. The evolution of the signals given by 

this kind of oxidation products can be observed in Figure 1 (letters “e”, “f”, “g”, “h” and 

“i”), while the progress of their concentrations is shown in Figure 3. 

 

Figure 3. Evolution throughout the oxidation process, in the reference oil (RSO) and in 

the samples enriched with lysine (RSO+LYS), of the concentration, in mmol/mol TG, 

of different types of epoxides. All the figures reported are mean values. 

 

3.3.3.1. Major epoxides 

As mentioned in the supplementary maerial, the epoxides considered under this 

designation give their signals between 2.87 and 3.17 ppm approximately (see Table S1), 

and they have been estimated as a whole. As was the case of hydroperoxides evolution 

(see Figure 2C), the addition of lysine to RSO caused a remarkable delay in the 

generation of these major epoxides (see Figure 3), above all in RSO+LYS2. In addition, 
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the maximum concentration attained by this kind of compounds diminishes with lysine 

concentration. This latter finding can be considered of interest since some epoxides 

derived from linoleic groups that might be present among these major epoxides can 

exhibit toxic effects (Greene, Williamson, Newman, Morisseau, & Hammoc, 2000). 

3.3.3.2. Other minor epoxides: (E)-epoxystearates and epoxy-keto-enes 

As in the case of the so-called major epoxides, the generation of (E)-epoxystearates 

from oleic groups also takes place later in the samples containing lysine than in the 

original oil, their onset being concomitant with the degradation of oleic groups in all 

cases (see Figure 2A). The maximum concentration of (E)-epoxystearates also 

decreases with the lysine enrichment level, in agreement with the lower degradation 

extent of oleic groups. 

In general terms, the same can be said of the tentatively identified epoxy-keto-enes, 

derived from polyunsaturated groups. 

3.3.4. Aldehydes 

The generation and evolution of the 
1
H NMR signals of this type of secondary 

oxidation products, very relevant due to the toxicity of some of them (Guillén & 

Goicoechea, 2008), is shown in Figure 4A, where all the plots have been drawn at a 

fixed value of absolute intensity to be valid for comparative purposes. The progress of 

their concentrations, in turn, can be observed in the graphs displayed in Figure 4B. As 

Figure 4A reveals, the addition of lysine noticeably delays the time when the first 

aldehydic signals are spotted in the 
1
H NMR spectra from day 5 in RSO to days 12 and 

14 in RSO+LYS1 and RSO+LYS2, respectively. Moreover, it must be highlighted that, 

unlike that observed for other oxidation compounds commented above, differences in 

the appearance rate and in the relative concentrations of the various types of aldehydes 

are observed in the lysine-enriched samples in comparison with the original oil. 

Actually, as Figure 4A shows, in RSO all the different types of aldehydes appear 

suddenly after 5 days under oxidative conditions. By contrast, in RSO+LYS samples the 

process of aldehydes generation is more progressive, since n-alkanals (letter “s”) and 

(E)-2-alkenals (letter “n”) in RSO+ YS1, and n-alkanals in RSO+LYS2 are the first 

groups of aldehydes detected, while the remaining ones appear later. 

Regarding the evolution of the concentration of the different types of aldehydes, it 

can be observed in Figures 4A and 4B that in RSO 4-hydroperoxy+4-hydroxy-(E)-2-

alkenals (quantified together, as mentioned in the supplementary material), (E)-2-
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alkenals and n-alkanals are the most abundantly generated aldehydes. In addition, (E,E)-

2,4-alkadienals and 4,5-epoxy-2-alkenals are also formed, although in lower 

concentrations than those previously mentioned. 

 

Figure 4. Evolution throughout the oxidation process, in the reference oil (RSO) and 

in the samples enriched with lysine (RSO+LYS), of: A) the 
1
H NMR spectral signals 

of aldehydes: n-alkanals (signal “s”, see Table S1), 4-hydroperoxy-(E)-2-alkenals 

(signal “r”), (E)-2-alkenals (signal “n”), 4-hydroxy-(E)-2-alkenals (signal “q”), 4,5-

epoxy-2-alkenals (signal “p”) and (E,E)-2,4-alkadienals (signal “o”); and B) the 

concentrations, in mmol/mol TG, of the different types of aldehydes. All the figures 

reported are mean values.  
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As far as the lysine-enriched samples are concerned, it is noticeable that the 

concentrations of all the different kinds of oxygenated -unsaturated aldehydes (4-

hydroperoxy-+4-hydroxy-(E)-2-alkenals and 4,5-epoxy-2-alkenals), considered the 

most toxic ones (Guillén & Goicoechea, 2008), are notably lower than in the original 

oil, especially in RSO+LYS2. A decrease in the level of the rest of -unsaturated 

aldehydes, above all of (E)-2-alkenals, is also observed in the oils with lysine added, but 

to a lower extent than in the case of the oxygenated ones. By contrast, the concentration 

of n-alkanals does not seem to be affected by the addition of lysine. 

Taking into account that the ability of lysine to react with aldehydes is well-known 

(Uchida, 2015), and that the oxygenated -unsaturated ones (4-hydroperoxy-, 4-

hydroxy- and 4,5-epoxy-2-alkenals) are considered among the most reactive (Guillén & 

Goicoechea, 2008), the markedly decreased concentration of these latter could be due to 

their reaction with lysine. Actually, the ability of this type of aldehydes to form adducts 

with lysine has been proved in several works (Shimozu, Hirano, Shibata, Shibata, & 

Uchida, 2011; Uchida, 2015; Zamora & Hidalgo, 1994).  

3.3.5. Conjugated keto-dienes 

As in observations made in a previous work (Martin-Rubio et al., 2018), conjugated 

keto-dienes with (Z,E)- and (E,E)-isomerism are also formed throughout the oxidation 

process of the studied oils. These secondary oxidation compounds have been identified 

according to the data given in Table S1. Figure 5A shows the evolution of their 

concentrations in all the oils studied, whereas the progress of their signals in 

RSO+ YS2 sample can be observed in Figure 1 (see letters “m” and “l”). As Figure 5A 

reveals, in RSO the generation of (Z,E)- and (E,E)-keto-dienes is detected after 5 days 

under oxidative conditions, their maximum concentrations being observed this same 

day. Similarly to that commented on epoxides and aldehydes, the addition of lysine to 

RSO delays the appearance of keto-dienes, more so the higher the lysine concentration; 

however, it does not practically affect either their maximum concentrations or their 

relative proportions. Notwithstanding, in the lysine-enriched samples the keto-dienes 

concentration increase and its subsequent decrease happens more slowly than in RSO, 

especially in the oil with the highest lysine level; this results in higher concentrations of 

this type of compounds at the end of the oxidation process in the samples with lysine 

added. This finding exemplifies the importance of monitoring the entire oxidation 
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process, as the determination of the concentration of certain compounds at only specific 

points or at the end of the oxidation process could lead to erroneous conclusions. 

 

Figure 5. Evolution throughout the oxidation process, in the reference oil (RSO) and in 

the samples enriched with lysine (RSO+LYS), of the concentrations, in mmol/mol TG, 

of: A) keto-dienes; and B) alcohols. All the figures reported are mean values. 

 

3.3.6. Compounds with alcohol groups 

This type of compounds have been considered separately from the hydroxy-

derivatives supporting conjugated dienes discussed in section 3.3.2, and signals that 

could be tentatively associated to their occurrence have been detected in the oils studied. 

Considering data in Table S1, it has been assumed that both monohydroxy- and 

dihydroxy-derivatives could have been generated throughout the RSO oxidation 

process, since signals coinciding with those designed with letters “j” (3.43 ppm) and “k” 

(3.62 ppm) have been detected. The evolution of these signals in the RSO+LYS2 oil can 

be observed in Figure 1 and the progress of their concentrations in all the studied oils in 

the graphs of Figure 5B; this latter shows that in RSO both types of compounds are 
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detected simultaneously after 5 days under oxidative conditions. The presence of lysine 

not only postpones considerably the emergence of this type of secondary oxidation 

products, particularly in RSO+LYS2, but similarly to that observed for keto-dienes (see 

Figure 5A), in the case of the tentatively identified dihydroxy-derivatives (signal at 3.43 

ppm) it also slows down their concentration increase with time. It is worth pointing out 

that in the lysine-enriched oils the concentration of these latter ones are lower than in 

the reference oil. This might be related to the reduction observed in major epoxides in 

these same samples (see Figure 3), since these may include linoleic monoepoxides 

precursors of some dihydroxy-derivatives like leukotoxin- and isoleukotoxin-diols. 

4. CONCLUSIONS 

As far as we know, this is the first time that such a detailed study has been conducted 

on the effect of an amino acid on the oxidation process of an edible oil, determining a 

wide range of oxidation products by 
1
H NMR. 

The results obtained evidence that the enrichment of refined soybean oil with lysine 

in proportions of 1 and 2% in weight has a clear antioxidant effect under the conditions 

of this study, even though the rise in lysine proportion from 1 to 2% does not greatly 

affect either the oil oxidative stability or the time needed to reach total polymerization. 

Thus, although the addition of lysine does not postpone hydroperoxides emergence, it 

noticeably delays the degradation of oil acyl groups and the rate of hydroperoxides 

concentration increase, in such a way that the generation of secondary oxidation 

compounds is detected considerably later than in the non-enriched oil. All this extends 

considerably the oil shelf life, while preserving the oil content of -T, considered a 

bioactive and beneficial compound. 

It is also noticeable that as the lysine level gets higher, the concentration of major 

epoxides, epoxy-keto-enes, (E)-epoxystearates, dihydroxy-derivatives and, above all, of 

-unsaturated aldehydes, is reduced. While the diminution in the level of toxic 

oxygenated -unsaturated aldehydes might be due to their reaction with lysine, to the 

best of our knowledge, the influence of lysine on the concentration of other secondary 

oxidation products had not been reported before in a food system. 

The outcomes of this work not only prove the feasibility of lysine as a potential 

antioxidant for use in lipidic food systems but also they could help in adjusting the 

addition of exogenous antioxidants to foodstuffs containing this amino acid. Thus, 

lysine could constitute an alternative to other antioxidants, either synthetic or natural, 
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whose use is surrounded by controversies regarding either their impact on human health 

or their prooxidant potential under certain conditions. Moreover, the knowledge derived 

from this work might also contribute to go deeper into the antioxidant effect of proteins 

and peptides. 
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Table S1. Chemical shifts, multiplicities and assignments of the 
1
H NMR signals in 

CDCl3 of the main types of triglyceride (TG) protons, of some oxidation compounds and 

of -tocopherol, present in the different soybean oil samples, before and throughout the 

oxidation process. 

Signal 
Chemical 

shift (ppm) 
Multi- 
plicity 

Functional group 

Type of protons Compound 

Main acyl groups
a 

A 0.88 t -CH3 saturated and 

monounsaturated ω-9  
acyl groups 

 0.89 t -CH3 linoleic acyl groups 

B 0.97 t -CH3 linolenic acyl groups 

C 1.19-1.42 m* -(CH2)n- acyl groups 

D 1.61 m -OCO-CH2-CH2- acyl groups in TG  

E 1.94-2.14 m** -CH2-CH=CH- unsaturated acyl groups 

F 2.26-2.36 dt -OCO-CH2- acyl groups in TG  

G 2.77 t =HC-CH2-CH= linoleic acyl groups 

H 2.80 t =HC-CH2-CH= linolenic acyl groups 

I 4.22 dd,dd ROCH2-CH(OR’)-CH2OR’’ glyceryl groups 

J 5.27 m ROCH2-CH(OR’)-CH2OR’’ glyceryl groups 

K 5.28-5.46 m -CH=CH- acyl groups 

Oxidation compounds 

Hydroperoxides
b 

a 8.3-9.0 bs -OOH monohydroperoxide group 

Conjugated dienic systems
b,c 

- 
- 
- 
b 

5.44 
5.66 
5.97 
6.49 

ddd 
dd 
t 

dd 

-CH=CH-CH=CH- (Z,E)-conjugated double 

bonds 
associated with hydroxy 

group  
in octadecadienoic acyl 

groups
d 

     
- 
- 
- 
c 

5.47 
5.76 
6.06 
6.27 

ddm 
dtm 
ddtd 
ddm 

-CH=CH-CH=CH- (E,E)-conjugated double 

bonds 
associated with 

hydroperoxy group  
in octadecadienoic acyl 

groups 
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- 
- 
- 
d 

5.51 
5.56 
6.00 
6.58 

dtm 
ddm 
ddtd 
dddd 

-CH=CH-CH=CH- (Z,E)-conjugated double 

bonds 
associated with 

hydroperoxy group  
in octadecadienoic acyl 

groups
e 

     

Epoxides 

Epoxy-derivatives 

e 2.63
f m -CHOHC- (E)-9,10-epoxystearate 

f1 2.88
f m -CHOHC- (Z)-9,10-epoxystearate 

f2 2.9
g m -CHOHC- monoepoxy-octadecenoate 

groups 

   -CHOHC-CH2-CHOHC- diepoxides 

f3 2.94*** m -CHOHC- (Z)-(12,13)-epoxy-

9(Z),15(Z)-octadecadienoic 

acid 
g1 3.10

g m -CHOHC-CH2-CHOHC- diepoxides 

Epoxy-keto-derivatives 

f4 2.89
h
/2.90

i td
h
/m

i -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 
f5 2.91

h td -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 
h 3.20

h,i dd -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 

   -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 

   -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 

   -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 
i1 3.52

h dd -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 
i2 3.53

h dd -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 
Epoxy-hydroxy-derivatives 

f6 2.93
j dt -CHOHC-CHOH-CH=CH- threo-11-hydroxy-(E)-

12,13-epoxy-(Z)-9-

octadecenoate 
g2 3.09

k
/3.097

l dd -CHOHC-CH=CH-CHOH- 9-hydroxy-(E)-12,13-

epoxy-(E)-10-

octadecenoate 
Epoxy-hydroperoxy-derivatives 

g3 3.11
k dd -CHOHC-CH=CH-

CHOOH- 
9-hydroperoxy-(E)-12,13-

epoxy-(E)-10-

octadecenoate
m 

Alcohols 
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j1 3.45
n,o

/3.48-

3.41
p 

m
n,p

/bs
o -CHOH-CHOH- 9,10-dihydroxy-12-

octadecenoate (leukotoxin 

diol, methyl ester) 
j2 3.45

n
/3.42

o m
n
/bs

o -CHOH-CHOH- 12,13-dihydroxy-9-

octadecenoate 

(isoleukotoxin diol, methyl 

ester) 
k 3.62*** m -CHOH- 12R-hydroxy-9(Z)-

octadecenoate 
Keto-dienes 

l 7.13*** dm -CO−CH=CH−CH=CH- (E,E)-conjugated double 

bonds associated with a 

keto group in 

octadecadienoic acyl 

groups
q 

m 7.50
q
/7.43

r dd
q
/ddd

r -CO−CH=CH−CH=CH- (Z,E)-conjugated double 

bonds associated with a 

keto group in 

octadecadienoic acyl 

groups 

 7.49
q
/7.47

r ddd -CO−CH=CH−CH=CH- (E,Z)-conjugated double 

bonds associated with a 

keto group in 

octadecadienoic acyl 

groups 

Aldehydes 

n 9.49
s d −CHO (E)-2-alkenals 

o 9.52
s d −CHO (E,E)-2,4-alkadienals 

p 9.55
s d −CHO 4,5-epoxy-2-alkenals 

q 9.57
s d −CHO 4-hydroxy-(E)-2-alkenals 

r 9.58
s d −CHO 4-hydroperoxy-(E)-2-

alkenals 
s 9.75

s t -CHO n-alkanals 

-Tocopherol
t 

t 6.362*** s 

 

 

t: triplet; m: multiplet; d: doublet; bs: broad signal; *Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***Assignment made with the aid of 

standard compounds 
a
Assignments taken from Guillén, M. D., & Ruiz, A. (2003). Journal of the Science of 

Food and Agriculture, 83, 338-346. 
b
Data taken from Goicoechea, E., & Guillén, M. D. (2010). Journal of Agricultural and 

Food Chemistry, 58, 6234-6245 (hydroperoxides and conjugated (Z,E)- and (E,E)-

hydroperoxy-dienes). 
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c
Data taken from Dong, M., Oda, Y., & Hirota, M. (2000). Bioscience, Biotechnology 

and Biochemistry, 64, 882-886 (conjugated (Z,E)-hydroxy-dienes). 
d
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Kuklev, D. V., Christie, W. W., Durand, T., Rossi, J. C., Vidal, 

J. P., Kasyanov, S. P., Akulin, V. N., & Bezuglov, V. V. (1997). Chemistry and Physics 

of Lipids, 85, 125-134.
 

e
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Chan, H. W. S., & Levett, G. (1977). Lipids, 12, 99-104.
 

f
Data taken from Du, G., Tekin, A., Hammond, E. G., & Woo, L. K. (2004). Journal of 

the American Oil Chemists’ Society, 81, 477-80. 
g
Data taken from Aerts, H. A. J., & Jacobs, P. A. (2004). Journal of the American Oil 

Chemists’ Society, 81, 841-846 (monoepoxy-octadecenoates and diepoxides). 
h
Data taken from Lin, D., Zhang, J., & Sayre, L. M. (2007). The Journal of Organic 

Chemistry, 72, 9471-9480. 
i
Data taken from Gardner, H. W., Kleiman, R., & Weisleder, D. (1974). Lipids, 9, 696-

706. 
j
Data taken from Garssen, G. J., Veldink, G. A., Vliegenthart, J. F., & Boldingh, J. 

(1976). The FEBS Journal, 62, 33-36. 
k
Data taken from Gardner, H. W., Weisleder, D., & Kleiman, R. (1978). Lipids, 13, 246-

252. 
l
Data taken from Van Os Cornelis, P. A., Vliegenthart, J. F. G., Crawford, C. G., & 

Gardner, H. W. (1982). Biochimica et Biophysica Acta, 713, 173-176. 
m
-Ketols (hydroxy-keto-derivatives) could also contribute to this signal (Gardner et al., 

1974). 
n
Data taken from Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau C., & 

Hammoc B. D. (2000). Archives of Biochemistry and Biophysics, 376, 420-43. 
o
Data taken from Yang, J., Morton, M. D., Hill, D. W., & Grant, D. F. (2006). Chemistry 

and Physics of Lipids, 140, 75-87.
 

p
Data taken from Nilewski, C., Chapelain, C. L., Wolfrum, S., & Carreira, E. M. (2015). 

Organic Letters, 17, 5602-5605.
 

q
Data taken from Dufour, C., & Loonis, M. (2005). Chemistry and Physics of Lipids, 138, 

60-68. 
r
Data taken from Kuklev et al. (1997).

 

s
Data taken from Guillén, M. D., & Ruiz, A. (2004). European Journal of Lipid Science 

and Technology, 106, 680-687. 
t
Assignment taken from Baker, J. K., & Myers, C. W. (1991). Pharmaceutical Research, 

8, 763-770. 
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Standard compounds used for the identification of various oil components by 
1
H NMR 

-Tocopherol, (E)-2-hexenal, (E)-2-heptenal, (E)-2-decenal, (E,E)-2,4-hexadienal, (E,E)-

2,4-heptadienal, (E,E)-2,4-decadienal, 4,5-epoxy-(E)-2-decenal and 12,13-epoxy-9(Z)-

octadecenoic acid methyl ester (isoleukotoxin methyl ester), acquired from Sigma-

Aldrich; 4-hydroxy-(E)-2-nonenal, 4-hydroperoxy-(E)-2-nonenal, 9,10-dihydroxy-12(Z)-

octadecenoic acid (leukotoxin diol), 12,13-dihydroxy-9(Z)-octadecenoic acid 

(isoleukotoxin diol), trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, 9-keto-

10(E),12(E)-octadecadienoic acid and 12R-hydroxy-9(Z)-octadecenoic acid methyl ester 

(ricinoleic acid methyl ester), purchased from Cayman Chemical (Ann Arbor, MI, USA); 

and cis-(12,13)-epoxy-9(Z),15(Z)-octadecadienoic acid, acquired from Cymit Quimica, 

were used for the identification of some signals present in the spectra of the samples 

subject of study. 

 

Quantification of -tocopherol and of the different types of oxidation products from 
1
H 

NMR spectral data 

The concentrations of -tocopherol and of the different types of oxidation products 

generated throughout the oil oxidation process were estimated as millimoles per mole of 

triglyceride (mmol/mol TG) by using the following equations: 

[-T] = [AT/(ATG/4)]*1000 

[OP] = [(AOP/n)/(ATG/4)]*1000, 

where AT and AOP are the areas of the signals selected for the quantification of -T and 

of each oxidation product (OP), respectively (see Table S1), n the number of protons that 

generate each signal and ATG the area of the protons at sn-1 and sn-3 positions in the 

glycerol backbone of TG (signal “I” in Table S1). 

To estimate the concentration of the so-called major epoxides (see section 3.3.3.1), 

signals between 2.87 and 3.17 ppm approximately were taken together, assuming that the 

signal at approximately 2.9 ppm corresponds mainly to epoxides contributing with two 

protons and the one at 3.1 ppm to epoxy-compounds contributing with only one (see 

Table S1). In the case of the signal at approximately 2.9 ppm, the overlapped area due to 

the side band of bis-allylic protons signals (G and H) must be subtracted. 

4-Hydroperoxy- and 4-hydroxy-(E)-2-alkenals have been quantified together in order to 

accurately compare their concentrations in all the samples, because in sample 

RSO+LYS2 it is very difficult to determine each one of these kinds of aldehydes 

separately, due to the almost total overlap of their signals (see Figure 4A, letters “r” and 

“q”, respectively). 

 



 

188 

 

 

 

Manuscript 5 

____________________________________________________________________ 

STUDY OF THE EFFECT OF THE COOXIDATION OF 

SOYBEAN OIL AND LYSINE ON THEIR RESPECTIVE 

EVOLUTIONS: A COMBINED ASSESSMENT BY 
1
H NMR 

AND LC/MS 

____________________________________________________________________ 

 

A.S. Martin-Rubio; P. Sopelana; F. Nakashima; T. Shibata; K. Uchida; M. 

D. Guillén. 

 

 

 

 

 

 

 

 

 

 

 

Submitted for publication 



Results and Discussion – Manuscript 5 

189 

 

ABSTRACT  

The objective of this work was to analyze the evolution of a system consisting of 

soybean oil with a 2% of L-lysine under heating at 70 ºC and stirring conditions, 

analyzing how the cooxidation of the oil and of the amino acid affects their respective 

evolutions, trying to obtain information about the action mechanism of lysine on 

soybean oil oxidation. The study of the oil progress by 
1
H Nuclear Magnetic Resonance 

(
1
H NMR), shows that lysine delays oil degradation and oxidation products generation 

in comparison with a reference oil without lysine. Regarding lysine evolution, the 

analysis by 
1
H NMR and Liquid Chromatography/Mass Spectrometry of a series of 

aqueous extracts obtained from the studied system over time reveals the generation of 

lysine adducts, most of them at the -position, with n-alkanals, malondialdehyde, (E)-2-

alkenals and oxygenated -unsaturated aldehydes. However, this does not seem 

enough to explain the antioxidant action of lysine. 

 

Chemical compounds studied in this article: L-Lysine (PubChem CID: 5962); (E,E)-

2,4-Decadienal (PubChem CID: 5283349); 4-Hydroxy-(E)-2-nonenal (PubChem CID: 

1693); 4-Hydroperoxy-(E)-2-nonenal (PubChem CID: 6435432); (E)-9,10-

epoxystearate (PubChem CID: 12235226); N-Formyl-lysine (PubChem CID: 70923); 

N-Acetyl-lysine (PubChem CID: 92832); N-Hexanoyl-lysine (PubChem CID: 

76128638); N-(2-Propenal)-lysine (PubChem CID: 6439214); N-Acetyl-lysine 

(PubChem CID: 92907) 

 

KEYWORDS: soybean oil, L-lysine, antioxidant, 
1
H Nuclear Magnetic Resonance, 

Liquid Chromatography/Mass Spectrometry, hydroperoxides, aldehydes, epoxides, 

lysine adducts 
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1. INTRODUCTION 

The antioxidant ability of proteins and peptides (Elias, Kellerby & Decker, 2008) has 

long generated great interest among food scientists, especially in the last two decades 

when numerous studies have been conducted to investigate the potential of protein 

hydrolysates of diverse origin as antioxidants in food systems (Elias, Bridgewater, 

Vachet, Waraho, McClements & Decker, 2006; Elias et al., 2008; Jónsdóttir, 

Geirsdóttir, Hamaguchi, Jamnik, Kristinsson & Undeland, 2016). In this context, the 

monitoring of lipid oxidation is usually carried out by means of classical methodologies 

such as peroxide value, conjugated dienes and/or TBARs, in some cases combined with 

the determination of volatile aldehydes like propanal or hexanal. However, in most of 

the studies a global view of the oxidation process is not achieved and this hinders the 

intricate task of delving into antioxidant mechanisms. 

It is also noteworthy that most of these studies mainly focus on the evolution of the 

lipid matrix, and little attention is given to the changes provoked in amino acids. In fact, 

only a reduced number of the multiple works dealing with the antioxidant effect of 

proteins or amino acids on food systems combine the simultaneous monitoring of both 

the lipid oxidation process and the modifications suffered by amino acids (Elias et al., 

2006; Jónsdóttir et al., 2016). Among these latter, the formation of carbonyl groups 

from basic amino acids, the oxidation of free thiols to give disulfide bridges or the 

hydroxylation of aromatic amino acids should be mentioned. Protein oxidation can also 

lead to cleavage of the polypeptide chain and to formation of cross-linked protein 

aggregates (Stadtman & Levine, 2003). Furthermore, functional groups of proteins can 

react with lipid oxidation products like hydroperoxides or aldehydes (Gardner, 1979; 

Uchida, 2003). 

Various mechanisms have been proposed to explain the antioxidant action of 

proteins, such as binding of metal ions (Ahmad, Al-Hakim, Adel & Shehata, 1983; Xu, 

Zheng, Zhu, Li & Zhou, 2018) or free radical scavenging ability (Xu et al., 2018), 

among others. However, the specific pathways through which amino acid residues or 

free amino acids are able to affect the course of lipid oxidation require further 

investigation for a better understanding of their antioxidant effect. 

Another issue worth mentioning is related to the potential of amino acids as 

antioxidants in food systems. Unlike what can happen in proteins, where certain 

antioxidant amino acids can be buried into the protein structure, free amino acids are 
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directly available to take part in different types of reactions and this might enhance their 

antioxidant action. Despite this, studies aimed at investigating the effect of free amino 

acids on the oxidative stability of food lipids are comparatively less abundant than those 

concerning proteins and their hydrolysates (Ahmad et al., 1983; Filippenko & Gribova, 

2011; Hwang & Winkler-Moser, 2017; Martin-Rubio, Sopelana & Guillén, 2019). 

Taking into account all the above, this work addresses the effect of L-lysine on the 

oxidation process of soybean oil, analyzing how the cooxidation of the oil and of the 

amino acid affects their respective evolutions. Given that the antioxidant effect of lysine 

on soybean oil has already been proved in a previous work (Martin-Rubio et al., 2019) 

interest has been focused on the evolution of the amino acid; notwithstanding, the 

progress of the oil during oxidation has also been monitored in order to establish 

relationships between both processes. It must be noticed that oxidation of amino acids 

and proteins is awakening increasing awareness due to its biological and health 

implications. 

To achieve the aims of this study, refined soybean oil and the same oil containing a 

2% in weight of lysine were heated under continuous stirring in a magnetic stirrer at 70 

ºC. The oil progress was monitored by 
1
H Nuclear Magnetic Resonance

 
(
1
H NMR), 

while the changes in lysine were studied by Liquid Chromatography followed by Mass 

Spectrometry (LC/MS) and also by 
1
H NMR, in order to explore the potential of this 

latter technique to follow the evolution of lysine under oxidative conditions. Thus, the 

outcomes of this work might contribute to gaining further insight into the cooxidation of 

lipids and amino acids, and to some extent of lipids and proteins; for this purpose a food 

system which would be feasible in the context of human nutrition has been studied from 

a dual perspective: oil and amino acid, since it is expected that there is a relationship 

between both evolutions, which might provide information about the action mechanism 

of lysine on soybean oil. 

2. MATERIALS AND METHODS 

2.1. Samples 

The original samples were refined soybean oil (RSO) purchased from a multinational 

company and the same oil enriched with 2% by weight of L-lysine (RSO+2LYS). The 

molar percentages of the different types of oil acyl groups were determined by 
1
H 

NMR, as in previous works (Guillén & Uriarte, 2012). These were 6.3±0.1 for linolenic, 
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49.5±0.1 for linoleic, 25.5±0.3 for oleic and 18.7±0.3 for saturated groups. The L-lysine 

used had a purity ≥ 98% and was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Due to the difficulty of uniformly distributing lysine into the oil, RSO+2LYS samples 

were prepared by directly weighing 8 g of RSO in a beaker and then adding 2% by 

weight of lysine. 

2.2. Oxidation process  

Samples of RSO and of RSO+2LYS (8 g of oil in all cases) were prepared in beakers 

of 5 cm diameter, one per day of sampling, placed on a multiple magnetic stirrer heated 

at around 70 ºC and stirred at 180 rpm with magnets of 4.5 cm long. Samples submitted 

to oxidative conditions for different periods were taken throughout the oxidation 

process for their study. Their evolution was monitored until the stirring magnet stopped 

rotating due to the polymerization of the oil. The oxidation process was carried out in 

duplicate in order to obtain average values for all the compounds studied. 

2.2.1. Monitoring by 
1
H NMR of the evolution of RSO and of RSO+2LYS samples 

throughout the oxidation process 

The 
1
H NMR spectra both of the original RSO and RSO+2LYS samples and of these 

samples after their being submitted to oxidative conditions over different periods of 

time were acquired using a Bruker Avance 400 spectrometer operating at 400 MHz, 

following the same procedure as in previous works (Guillén & Uriarte, 2012). 

Experimental details and information about acquisition parameters are given in the 

supplementary material.  

The identification of the oil acyl groups and of some of their derived products 

formed throughout the oxidation process was carried out from the 
1
H NMR spectra 

signal assignments shown in Table S1 (see supplementary material). This contains 

bibliographic data and data coming from several standard compounds, also indicated in 

the supplementary material.  

Furthermore, the molar percentage of the several kinds of oil acyl groups throughout 

the oxidation process were estimated from these 
1
H NMR spectra, as in previous studies 

(Guillén & Uriarte, 2012). For this purpose, trilinolein and trilinolenin, acquired from 

Sigma-Aldrich, were used. The concentrations of the oxidation products generated were 

estimated as described in the supplementary material.  
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2.2.2. Extraction of lysine and some of its derivatives from the RSO+2LYS sample 

after being submitted for different periods of time to oxidative conditions 

Lysine and some of its derivatives formed during the oxidation process were 

extracted from the corresponding RSO+2LYS sample as follows; 0.16 g of each sample 

were poured into a 1.5 ml Eppendorf microtube and mixed with 800 l of the extraction 

solvent. Several deuterated solvents were tested to extract the amino acid and its 

derivatives from the system and to study their recovery by means of 
1
H NMR: water, 

water with different methanol percentages, methanol and acid water (0.5 M of HCl, pH 

close to 1.5). The best extraction efficiency was achieved using acid water, so this was 

the solvent chosen. After adding the solvent, each Eppendorf microtube was shaken for 

10 min with an automatic tube stirrer and then centrifuged for another 10 min. The 

aqueous phase was taken out with a pipette, filtered through a 0.45 µm filter (GL 

Science Inc., Tokyo, Japan) using a 1 ml syringe (Terumo corporation, Tokyo, Japan) 

and poured into another Eppendorf microtube. The extracts were analyzed both by 
1
H 

NMR and by LC/MS. It must be pointed out that milliQ water was used to obtain the 

extracts intended for the LC/MS analysis, while deuterated water was used for 
1
H NMR. 

2.2.2.1. Study of the extracts by LC/MS 

The aqueous extracts obtained from the RSO+2LYS sample throughout the oxidation 

process were studied by LC/MS. However, due to analytical requirements, in this case it 

was necessary to add milliQ water to these extracts before their analysis in order to 

make the pH less acid (near 2.0). The LC/MS analysis conditions, together with the 

procedures followed for the identification and quantification of lysine and its derivatives 

are given in the supplementary material. 

The evolutions of lysine and their derivatives were monitored only up to the 22
nd

 day 

of the oxidation process; afterwards, the oil polymerization degree impaired the 

extraction of lysine and lysine derivatives in the aqueous phase, so it was not possible to 

obtain extracts directly comparable to the previous ones.  

2.2.2.2. Study of the extracts by 
1
H NMR 

The aqueous extracts obtained from the RSO+2LYS sample throughout the oxidation 

process were also studied by 
1
H NMR. The procedure followed was the same as for the 

https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&sqi=2&ved=0ahUKEwizzNexjIPVAhWBTbwKHaOaCWwQFgg7MAQ&url=https%3A%2F%2Fes.wiktionary.org%2Fwiki%2F%25CE%25BC&usg=AFQjCNH5pnTo4ay9Id7KNO-QF9oKn3mNJQ
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lipid samples but, in this case, 600 l of the aqueous extract were taken directly from 

the Eppendorf microtube (see section 2.2.2) and placed in a NMR tube for analysis. 

Identification of the compounds in these extracts was made from the assignment of 

the 
1
H NMR spectral signals obtained by means of standard compounds. To this aim L-

lysine, Nε-formyl-lysine, N-acetyl-lysine and Nε-acetyl-lysine were purchased from 

Cymit Quimica. The chemical shifts, multiplicities and assignments of their signals are 

given in Table S2 (supplementary material).  

The quantification of lysine and its derivatives by 
1
H NMR constitutes one of the 

goals of this work, so the procedure developed for this purpose will be described below, 

in the Results and Discussion section. 

3. RESULTS AND DISCUSSION 

3.1. Effect of the presence of lysine on soybean oil evolution. Monitoring by 
1
H 

NMR. 

Given that a more exhaustive analysis of the effect of different lysine proportions on 

the evolution of refined soybean oil under very similar conditions to those in this study 

was performed before (Martin-Rubio et al., 2019). Therefore, in the present work a less 

detailed discussion will be carried out; however, it is considered necessary to include 

these data in order to relate oil evolution to that of lysine. 

3.1.1. Effect on the degradation rate of polyunsaturated acyl groups 

The degradation of soybean oil can be estimated from the evolution of the molar 

percentages of the two types of polyunsaturated acyl groups present in this oil (linolenic 

and linoleic), determined from 
1
H NMR spectral data, which is represented versus time 

in days in Figure 1A. As this graph shows, the evolution of polyunsaturated groups 

splits into two very distinct stages, characterized by markedly different degradation 

rates. Regardless of the stage considered, the molar percentages of both kinds of acyl 

groups diminish at a higher rate in RSO than in RSO+2LYS sample. This indicates that 

lysine provokes an important slowdown in oil degradation, in such a way that when 2% 

of lysine is added to the oil it is not until day 22 that a sudden decrease of the molar 

percentages of polyunsaturated groups occurs, whereas in RSO this takes place after 10 

days. It is also noticeable that the degradation extent of linoleic groups at the end of the 

oxidation process in the lysine-enriched sample is somewhat lower than in the original 

https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&sqi=2&ved=0ahUKEwizzNexjIPVAhWBTbwKHaOaCWwQFgg7MAQ&url=https%3A%2F%2Fes.wiktionary.org%2Fwiki%2F%25CE%25BC&usg=AFQjCNH5pnTo4ay9Id7KNO-QF9oKn3mNJQ
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oil. These results indicate that lysine exerts a clear antioxidant effect and it is to be 

expected that this will also affect the formation of soybean oil oxidation derived 

compounds such as hydroperoxides, epoxides and aldehydes. 

3.1.2. Effect on hydroperoxide formation  

As a consequence of acyl group degradation, hydroperoxides giving 
1
H NMR signals 

between 8.3 and 9.0 ppm (see Table S1) are generated. The evolution of the 

concentration of these hydroperoxides and of their associated (Z,E)- and (E,E)-

conjugated dienes, expressed in mmol/mol TG, is shown in Figure 1B. This shows that, 

in agreement with observations made in the degradation of linolenic and linoleic acyl 

groups (see Figure 1A), hydroperoxide concentration rises at a much higher rate in RSO 

than in RSO+2LYS, reaching in the first case its maximum concentration on day 12 

(247 mmol/mol TG) and on day 23 in the second (210 mmol/mol TG). 

A comparison of the evolution of hydroperoxide concentration in the sample 

containing lysine and in the reference oil suggests that lysine could be acting as a free 

radical scavenger, in line with the findings of Xu, Zheng, Zhu, Li and Zhou (2018). 

According to this hypothesis, it might interact with radicals coming from 

polyunsaturated acyl groups and/or from the earliest formed hydroperoxides, thus 

limiting the propagation stage of the radicalary reaction to the point when it no longer 

seems possible to slow down the oxidation course and hydroperoxide accumulation 

occurs. Indeed, in the extensive review of the reactions between proteins and oxidized 

lipids carried out by Schaich in 2008, it is stated that radical transfer from lipids to 

proteins occurs early in lipid oxidation and this provokes an antioxidant effect on lipids. 

If hydroperoxides with (Z,E)- and (E,E)-hydroperoxy-dienes ((Z,E)- and (E,E)-CD-

OOH) are monitored separately from their respective signals “d” and “c”(see Table S1), 

it can be observed in Figure 1B that, in agreement with findings for total 

hydroperoxides, the addition of lysine delays the concentration increase of both types of 

CD-OOH. However, it does not affect either their respective evolutions with time, 

maximum concentrations or relative proportions when compared to the reference oil. 
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Figure 1. Evolution throughout the oxidation process, in the reference oil (RSO) and 

in the sample with lysine added (RSO+2LYS), of: A) the molar percentages of 

linolenic and linoleic acyl groups; B) the concentrations, in mmol/mol TG, of 

hydroperoxides and their associated conjugated (Z,E)- and (E,E)-dienes ((Z,E)- and 

(E,E)-CD-OOH), and of conjugated (Z,E)- and (E,E)-hydroxy-dienes ((Z,E)- and 

(E,E)-CD-OH); and C) the concentrations, in mmol/mol TG, of epoxides. All the 

figures reported are mean values. 
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3.1.3. Effect on epoxide formation 

The addition of 2% of lysine to RSO delays the appearance of the different types of 

epoxides monitored to a remarkable extent. This can be observed in Figure 1C, which 

displays the respective evolutions of the concentrations of: i) the so-called major 

epoxides, which include various classes of epoxides giving signals at 2.9 and 3.1 ppm 

approximately (see Table S1); ii) (Z)- and (E)-epoxy-keto-enes, presumably derived 

from polyunsaturated groups (see signals “i”, “j1” and “j2” in Table S1), and; iii) (E)-

epoxystearates, generated from oleic groups (see signal “f” in Table S1). Moreover, the 

concentration increase of major epoxides over time is also somewhat slower in 

RSO+2LYS sample, in such a way that the maximum reached in this system (44.92 

mmol/mol TG) is slightly lower than in the original oil (53.66 mmol/mol TG). 

3.1.4. Effect on aldehyde formation and on evolution of their concentration 

The appearance and evolution of aldehyde signals in the 
1
H NMR oil spectra is 

shown in Figure 2A and the evolution of their concentrations, expressed in mmol/mol 

TG, in the graphs displayed in Figure 2B.  

The addition of lysine to soybean oil affects aldehyde evolution somewhat differently 

than the rest of oxidation products above mentioned. Although, as can be observed in 

Figure 2A, the addition of lysine to RSO notably delays the time at which the first 

aldehydic signals are spotted in the 
1
H NMR spectra (from day 8 in RSO to day 21 in 

RSO+2LYS), it also causes a pronounced reduction in the concentration of the different 

types of oxygenated -unsaturated aldehydes (letters “m”, “n” and “o” in Figure 2A). 

A diminution in the level of (E)-2-alkenals (see Figure 2B) is also observed in the oil 

containing lysine, although not so striking as in the case of the aldehydes previously 

mentioned. Therefore, given that the ability of lysine to react with aldehydes is well-

known (Uchida, 2003), the marked decrease observed in the concentration of aldehydes, 

especially in the case of the most reactive ones like 4-hydroperoxy- and 4-hydroxy-(E)-

2-alkenals (Guillén & Goicoechea, 2008), could be due to their reaction with lysine. 

It is worth noticing that, unlike unsaturated aldehydes, the concentration of n-

alkanals does not decline but rather slightly increases in the sample containing lysine in 

comparison with the reference oil (see Figure 2B). In this sense, saturated aldehydes 

could proceed from pyrrolization reactions of lysine with epoxy-alkenals like 4,5-

epoxy-decenal (Zamora & Hidalgo, 1995). Notwithstanding, the occurrence of other 
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types of reactions leading to the generation of saturated aldehydes should not be 

discarded either. 

Finally, it only remains to add, in relation to aldehyde formation and the evolution of 

their concentration, that in the oxidation of RSO a singlet at near 8 ppm appears in the 

1
H NMR spectrum, simultaneous to the appearance of aldehyde proton signals, whose 

intensity increases parallel to that of aldehydes. This singlet has been tentatively 

attributed to the proton of the hemiacetal group formed from aldehydes (Sacchi et al., 

1996). It is noteworthy that this signal does not appear in the RSO+2LYS spectra, 

maybe because the presence of lysine could provoke competitive reactions with 

aldehydes that hinder the formation of hemiacetals. 

3.1.5. Effect on conjugated (Z,E)-and (E,E)-hydroxy-dienes formation  

In RSO+2LYS submitted to oxidative conditions, between days 14 and 22, very 

small signals that could be tentatively assigned to (Z,E)- and (E,E)-hydroxy-dienes 

((Z,E)- and (E,E)-CD-OH, signals “b” and “e” in Table S1) appear. However, these 

signals are not perceived in any of the spectra of RSO. As can be observed in the 

enlargement of Figure 1B, the maximum concentrations of (Z,E)- and (E,E)-CD-OH are 

reached after 21 and 22 days under oxidative conditions, respectively. Therefore, the 

formation of hydroxy-dienes could be due to the ability of lysine to reduce 

hydroperoxides to more stable hydroxides, and this would contribute to its global 

antioxidant effect, since this reaction avoids to a certain extent the decomposition of 

hydroperoxides to give other types of reactive oxidation products. 
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Figure 2. Evolution throughout the oxidation process, in the reference oil (RSO) and 

in the sample with lysine added (RSO+2LYS), of: A) the 
1
H NMR spectral signals of 

aldehydes: n-alkanals (signal “p”), 4-hydroperoxy-(E)-2-alkenals (signal “o”), (E)-2-

alkenals (signal “k”), 4-hydroxy-(E)-2-alkenals (signal “n”), 4,5-epoxy-2-alkenals 

(signal “m”) and (E,E)-2,4-alkadienals (signal “l”); and B) their respective 

concentrations, in mmol/mol TG, given as mean values. Letters in Figure A) agree 

with those in Table S1, and all the plots have been drawn at a fixed value of absolute 

intensity to be valid for comparative purposes. 4-OOH: 4-hydroperoxy. 
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3.2. Analysis of the changes that lysine might undergo or the reactions in which it 

could be involved during the oxidation process of RSO+2LYS sample 

The evolution of lysine in RSO+2LYS sample throughout the oxidation process, as 

above mentioned, has been tackled through the study by LC/MS and 
1
H NMR of the 

aqueous extracts of RSO+2LYS sample obtained throughout the oxidation process.  

3.2.1. Decrease in lysine concentration  

This was monitored by LC/MS through the measurement of the abundance of its 

mass spectrum base peak in the several aqueous extracts until day 22, since beyond this 

sampling time the state of the sample did not allow one to obtain extracts under 

comparable conditions (see section 2.2.2.2). As Figure 3A shows, the abundance of 

lysine decreases only slightly during most of the oil oxidation process until day 22, 

when it exhibits a sharp decrease. This coincides with the moment when oil degradation 

becomes very fast, in such a way that hydroperoxides are close to their maximum 

concentration and the levels of all the secondary oxidation products monitored begin to 

increase (see Figures 1 and 2). 

3.2.2. Metal chelation reactions 

Lysine has been shown to exhibit ability to bind metals (Sadler, Tucker & Viles, 

1994; Xu et al., 2018). Regarding this issue, changes in the 
1
H NMR spectrum of lysine 

might occur due to its hypothetical interaction with metals present in the system, since 

according to some authors (Sadler et al., 1994; Selvakannan, Mandal, Phadtare, 

Pasricha & Sastry, 2003) this can provoke the broadening of some 
1
H NMR lysine 

signals. However, as can be observed from Figure 4A, which shows the 
1
H NMR 

spectrum of the aqueous extract of RSO+2LYS sample before heating (day 0) and its 

evolution throughout the oxidation process, this is not observed in our work. Hence, a 

metal-binding effect of lysine cannot be inferred from this study. 
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Figure 3. Evolution of the abundances of the base peaks of lysine and of each of the lysine 

adducts with n-alkanals in the aqueous extracts of the RSO+2LYS oil sample obtained 

throughout the oxidation process, determined by LC/MS. All the figures reported are mean 

values. 

 

3.2.3. Oxidation reactions yielding α-aminoadipic semialdehyde 

In the presence of reactive oxygen species and transition metals such as iron and 

copper, an oxidative deamination of lysine can occur, leading to the formation of α-

aminoadipic semialdehyde (AAS) (Akagawa et al., 2006). Although this compound has 

been regarded as one of the most abundant carbonyl products of metal-catalyzed 

oxidation of proteins in food and biological systems (Requena, Chao, Levine & 

Stadtman, 2001), it has not been detected either by LC/MS or by 
1
H NMR in this study. 

This could be due, among other factors, to the oxidative conditions used in our 

investigation. 

 



Results and Discussion – Manuscript 5 

202 

 

 

Figure 4. A) 
1
H NMR spectrum of the aqueous extract of RSO+2LYS sample before 

being heated (day 0) and its evolution throughout the oxidation process. Letters agree 

with those in Table S2. All the plots have been drawn at a fixed value of absolute 

intensity to be valid for comparative purposes. B) Evolution of the ratio between the 

molar concentrations of formyl-lysine and lysine, determined by 
1
H NMR, in the 

aqueous extracts of the RSO+2LYS sample obtained throughout the oxidation process. 

All the figures reported are mean values.  
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3.2.4. Reactions with lipid oxidation products 

In addition to other oxidative changes, the simultaneous oxidation of lipids and 

amino acids can induce the reaction of the latter with lipid oxidation products. Among 

these the available scientific literature mainly concerns on reactions with aldehydes of 

varying natures and, to a much lesser extent, with hydroperoxides, whereas only very 

few studies can be found concerning other types of oxidation products, as will be 

commented below. 

3.2.4.1. Reaction with hydroperoxides 

Although there are several studies dealing with the reaction of hydroperoxides with 

proteins (Hidalgo & Kinsella, 1989; Wu, Hou, Zhang, Kong & Hua, 2009), to the best 

of our knowledge, little is known about the structure of the products that can be 

generated as a consequence of such reactions. In this regard, the ability of lysine to react 

with linoleic group hydroperoxides, giving rise to an amide-type adduct designated as 

N-hexanoyl-lysine, has been suggested by some researchers (Kato et al., 1999). This 

compound, was detected by LC/MS in the aqueous extract of the RSO+2LYS sample 

after 7 days under oxidative conditions, and its abundance exhibits an increase with 

time (see Figure 3B), especially at the end of the monitoring period. However, as far as 

we know, the exact mechanism leading to the generation of this compound from 

hydroperoxides has not been described. 

Despite the lack of information related to compounds resulting from the reaction of 

hydroperoxides and lysine, it has been reported that this type of oxidation products can 

mediate covalent modifications of lysine by saturated aldehydes, giving rise to N-

alkanoyl (amide type) lysine adducts while hydroperoxides are reduced to alkyl-

hydroxides (Ishino et al., 2008). Indeed, hydroxy-dienes have been detected throughout 

the oxidation process of the sample containing lysine (see section 3.1.6) though not in 

the oxidation of RSO. 

3.2.4.2. Reaction with epoxides 

Even when epoxides are considered very reactive and toxic compounds (Schaich, 

2008), little is known about their reactions with proteins or amino acids. In this regard, 

Pokorny, Klein and Koren (1966) observed the binding of 9,10-epoxystearic acid to 

albumin, but the structure of the compound generated was not identified. However, in 

later studies the formation of aminols derived from this type of reactions was reported 
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by Lederer (1996). With respect to lysine, its reaction with long chain epoxy-keto-ene 

fatty acids exhibiting a 4,5-epoxy-1-keto-2-pentene system to give long chain pyrrole 

fatty esters has also been observed (Hidalgo & Zamora, 1995). 

Although neither the just mentioned types of pyrrole derivatives nor aminols have 

been identified by any of the analytical techniques used in this work, as Figure 1C 

shows, a slightly lower level of epoxides was noticed at the end of the oxidation process 

in RSO+2LYS sample than in RSO. Therefore, while this could be in part attributable to 

the later detection of epoxides in the oil enriched with lysine and to their slower 

increase with time before total oil polymerization is reached, the possible reaction of 

epoxides with lysine should not be discarded.  

3.2.4.3. Reaction with saturated aldehydes 

Aldehydes are by far the most extensively studied of all the different types of lipid 

oxidation compounds in terms of their reactivity towards proteins, peptides and amino 

acids, and indeed the ability of lysine to take part in such reactions, has already been 

described (Ishino et al., 2008; Schaich, 2008; Uchida, 2003). 

Some lysine adducts with saturated aldehydes were identified by means of LC/MS in 

the aqueous extracts of RSO+2LYS sample from day 7 onwards. This finding would 

support the involvement of hydroperoxides in the generation of this type of adducts, 

mentioned in section 3.2.4.1, and their role in the generation of hydroxy-dienes (see 

section 3.1.6). Actually, the maximum concentrations of both hydroxy-dienes and 

lysine-alkanal adducts are observed at the same time (see Figures 1B and 3). 

The identification of this type of adducts, all of them of the amide type, was carried 

out, as described in the supplementary material, by comparison of their mass spectra 

with those of the n-alkanals adducts synthesized in the laboratory. Their respective 

retention times, base peaks and rupture ions are shown in Table S3, together with the 

corresponding mass spectra (see supplementary material). It can be observed that, 

although both adducts at the N and N positions were detected, the former were more 

numerous than the latter, what evidences the higher reactivity of the Nposition. 

Regarding the N-adducts, the mass spectra obtained with cone potential 35 V (see 

Table S3) exhibit three rupture fragments characteristic of lysine: 84 (loss of the -NH2 

group and of the -COOH group at the -position), 130 (loss of -NH2 at -position) and 

147 (molecular weight of lysine+1) (Shibata et al., 2011). In addition, another 
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distinctive fragment is also observed (underlined in Table S3), which coincides with the 

molecular weight of the corresponding adduct subtracting the amino and the carboxylic 

groups supported on the -carbon; this is not observed in the N-adducts, where the 

only fragment found in the spectra obtained with cone potential 35 V, apart from that of 

the base peak, is that with m/z 84. 

Evolutions of the abundances of the mass spectra base peaks of each of the above 

mentioned derivatives during RSO+2LYS sample oxidation are shown in Figure 3 

(Figures 3B, 3C and 3D). As can be observed from these graphs, the abundances of the 

several lysine adducts increase with time; this growth is particularly noticeable at the 

end of the oxidation process (between days 21 and 22), when lysine concentration 

shows a steep decline (see Figure 3A), and it takes place alongside generation of most 

aldehydes in RSO+2LYS sample (see Figure 2A). Among the former, the one due to the 

reaction of lysine with formaldehyde (Nε-formyl-lysine) exhibits the highest abundance 

(see Figure 3B), followed by lysine adducts with acetaldehyde (Nε-acetyl-lysine), 

propanal (Nε-propanoyl-lysine) and hexanal (Nε-hexanoyl-lysine). These findings reveal 

either that the adducts with the lowest molecular weight aldehydes are the most 

profusely generated, in agreement with Benedetti and Comporti (1987), or that these are 

more water-soluble, and so better extracted, than those having a higher number of 

carbon atoms; notwithstanding, both factors might even simultaneously influence the 

results obtained.  

Regarding N-hexanoyl-lysine, it is worth noticing that, as commented in section 

3.2.4.1, this compound might also derive from the direct reaction of lysine with 

hydroperoxides (Kato et al., 1999). However, considering that the abundance of this 

adduct only increases considerably at the end of the monitoring period (see Figure 3B), 

it seems more plausible to think of hexanal as the compound mainly involved in the 

generation of this type of adducts (Ishino et al., 2008). 

Furthermore, Nε-lysine adducts with butanal, pentanal and octanal were also 

detected, though in lower abundances than those of the previously mentioned 

compounds (see Figure 3C). It is worth noticing that of the volatile aldehydes generated 

throughout the oxidation process of soybean oil (data not shown) nonanal is in higher 

abundance than octanal, though adducts with the former have not been detected; this 

reinforces all the aforementioned regarding the influence of both aldehyde reactivity 

and water solubility of the adducts on the results obtained. 
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Finally, as mentioned above, N-adducts were also detected from day 7 to day 21, 

but in very small abundances (see Figure 3D). 

All the previously mentioned adducts except that with octanal (see Figure 3C) were 

detected from day 7 onwards although saturated aldehydes were not noticed by 
1
H 

NMR in RSO+2LYS sample until day 21 (see Figure 2A). In this sense, it must be taken 

into account that, despite not being detected by 
1
H NMR, aldehydes in small 

concentrations can be present in RSO+2LYS sample, either coming from oxidation 

reactions in the earliest stage of hydroperoxide decomposition or as components of the 

starting soybean oil.  

As described before, the aqueous extracts of RSO+2LYS sample were also studied 

by 
1
H NMR and the corresponding spectra are shown in Figure 4A, where the presence 

of various signals can be observed, most of them due to lysine (see Table S2). It is 

noteworthy that while LC/MS analysis of the aqueous extracts revealed the presence of 

various lysine adducts with n-alkanals (see Figures 3B-3D), most of them seem to be in 

too low concentrations to be detected by 
1
H NMR, which is a less sensitive technique. 

Thus, according to the signal assignments displayed in Table S2, only Nε-formyl-lysine, 

the most abundant adduct detected by LC/MS, could be identified from day 21 onwards 

(see signals  A’ and  C’). 

With the aim of monitoring the evolution of Nε-formyl-lysine relative to lysine, the 

ratio between the moles of Nε-formyl-lysine and lysine at each sampling point was 

calculated from the areas of signals  A’ and LC, respectively (see Figure 4A and Table 

S2). The equations employed to make this calculation were the following: 

NLys = kALC/2; NNε-formyl-lysine = kA A’, 

where N is the number of moles of each compound, k the proportionality constant 

between the area of the 
1
H NMR signal and the number of protons that generate it, and 

ALC and A A’ the respective areas of signals  C and  A’. 

The evolution of this ratio throughout the RSO+2LYS sample oxidation process, 

which is shown in Figure 4B, reveals that, as the process advances, the proportion of 

Nε-formyl-lysine relative to lysine increases, especially between days 22 and 25, the 

time when oxidation proceeds at the fastest rate (see Figures 1 and 2). Precisely, day 22 

is when all the N-alkanal adducts including N-formyl-lysine exhibit the greatest 

abundance increase (see Figures 3B and 3C). 
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If the results obtained from the analysis of the aqueous extracts of RSO+2LYS 

sample are compared with those coming from the oil phase, it appears striking that, 

despite the generation of several adducts between lysine and n-alkanals, the final 

concentration of this type of aldehydes in RSO+2LYS sample is not lower than in the 

non-enriched oil (see Figure 2B). In this sense, considering that the adducts generated 

between lysine and n-alkanals of low molecular weight like formaldehyde, acetaldehyde 

or propanal are the most abundant, it could be thought that lysine mainly forms adducts 

with very volatile aldehydes which may tend to escape from the liquid oil matrix in 

sample RSO. Therefore, it might be thought that this type of aldehydes would make a 

minor contribution to the total of n-alkanals detected in RSO. However, as mentioned in 

section 3.1.5, other factors might also be involved in the results observed 

3.2.4.4. Reaction with more reactive aldehydes 

Unlike saturated, unsaturated aldehydes and dialdehydes have more reactive sites in 

their molecules, so a greater variety of reactions can take place between lysine and this 

type of aldehydes. These include the formation of Schiff bases and Michael additions 

among others (Schaich, 2008). Depending on the extent of the reactions, even more 

complex products can be generated, like different types of polymers (Zamora, Alaiz & 

Hidalgo, 2000). 

In this regard, LC/MS analysis of the aqueous extracts revealed the presence of new 

compounds, dissimilar to the aforementioned n-alkanal adducts, above all in the latter 

stages of oxidation (mainly days 21 and 22). Their appearance coincides with the time 

when the concentration of aldehydes is noticeable in the 
1
H NMR spectra of 

RSO+2LYS sample, and with a marked lower concentration of -unsaturated 

aldehydes in comparison with the reference RSO oil (see Figure S1). Some of these 

compounds have been tentatively identified by taking into account bibliographic data 

concerning the molecular weight and mass spectrum of lysine adducts with different 

types of unsaturated aldehydes, as indicated in the supplementary material. The 

potential aldehyde involved in each of the adducts, their respective detection day, 

structures, mass spectra base peaks and rupture ions, together with the bibliographic 

references used for their tentative identification, are shown in Table 1; their full mass 

spectra are also given in the supplementary material. According to the data provided by 

the TICs obtained with cone potential 20 V, compounds included in Table 1 exhibit as 

their base peak an ion with a mass matching the molecular weight of certain lysine 
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adducts described in bibliography plus 1, and in some cases one or more fragments 

characteristic of lysine (147 and/or 130). In addition, the spectra obtained with cone 

potential 35 V show further ions that were useful in tentatively identifying some of the 

adducts. In summary, 7 adducts were identified: 2 coming from malondialdehyde 

(MDA), 2 from (E)-2-alkenals and 3 from oxygenated -unsaturated aldehydes. 

Among these kinds of aldehydes, (E)-2-alkenals and the oxygenated -unsaturated 

type are detected in considerable concentrations during the oxidation process of RSO 

oil, but their concentrations are markedly reduced in the presence of lysine, this being 

especially noticeable in the latter case (see Figures 2B and S1). 

Adducts with MDA. When it comes to MDA, a very reactive bifunctional aldehyde 

(Uchida, 2003), although this compound is not specifically detected under the 

conditions of this study, it is generated in the peroxidation of polyunsaturated acyl 

groups or fatty acids. However, detailed studies have evidenced that it is mainly 

generated from polyunsaturated groups with three or more double bonds, while the 

linoleic ones, which are the most abundant in soybean oil, are considered weak 

precursors for MDA (Esterbauer, Schaur & Zollner, 1991). Thus, although MDA would 

not be expected to be generated in very large amounts from soybean oil due to its 

relatively low level of triunsaturated acyl groups, it is a very reactive molecule, and in 

fact this is evidenced in this work. With regard to the MDA adducts here found, the one 

with base peak m/z 201 (see Table 1) might correspond to the Schiff base-type N-(2-

propenal)lysine, while the compound with m/z 329 has been tentatively identified as an 

N,N'-disubstituted 1-amino-3-iminopropene lysine derivative, resulting from the 

reaction of MDA with two lysine molecules (Uchida, 2003). Regarding N-(2-

propenal)lysine, it must be noticed that Shimozu, Hirano, Shibata, Shibata and Uchida 

(2011) also identified this compound as one of the reaction products of lysine with 4-

hydroperoxy-(E)-2-nonenal (4-HPNE). According to these authors, it is possible that 

HPNE is first converted to MDA in the presence of lysine, which would then react with 

lysine. 

Adducts with (E)-2-alkenals. Regarding the two adducts between lysine and (E)-2-

alkenals (see Table 1), the one with base peak 259 would match with a Michael adduct 

of lysine with (E)-2-heptenal. Michael addition is in fact considered by some authors 

(Meynier, Rampon, Dalgalarrondo & Genot, 2004) to be the most likely pathway for the 

formation of adducts between lysine and (E)-2-alkenals. Lysine adducts with (E)-2-
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heptenal were also found by Globisch, Schindler, Kreßler and Henle (2014) during the 

incubation at 37 ºC of lysine with peanut protein; however, the adducts observed by 

these authors were mainly due to the addition of two molecules of (E)-2-heptenal to 

lysine, which differ from that tentatively reported here. This suggests that the conditions 

used in the above mentioned study, concerning for example aldehyde proportion relative 

to amino acid, might have led to different adducts.  

As for the compound with base peak 241, only detected at the end of the oxidation 

process (day 22) and in low abundance, this has been tentatively identified as N-(3-

formyl-3,4-dehydropiperidino)lysine (FDP-lysine), which is a product derived from the 

reaction of lysine with two molecules of acrolein (2-propenal) (Uchida, 2003). Although 

the molecular weight of this compound also matches that of a Schiff base type adduct of 

lysine with (E)-2-heptenal, this reaction can be reversed under acid conditions and 

indeed these exist in the extracts analyzed. 

Adducts with oxygenated α,β-unsaturated aldehydes. With respect to the three 

adducts presumably coming from the reaction of lysine with oxygenated α,β-

unsaturated aldehydes (see Table 1), the ones with base peaks 319 and 301 coincide 

with the only two specific adducts between lysine and 4-HPNE reported to date 

(Shimozu et al., 2011). The first, N-4-hydroxynonanoic acid-lysine (HNA-lysine), has 

been suggested as resulting from an initial Michael adduct that undergoes an 

intramolecular oxidation of the aldehyde group to the carboxyl group catalyzed by the 

hydroperoxide; the second, N-4-hydroxy-(2Z)-nonenoyl-lysine, is an amide-type 

adduct, similar to those formed with n-alkanals. With regard to the adduct with base 

peak 303, this could arise from 4-hydroxy-(E)-2-nonenal (4-HNE) as a result of a 

Michael addition and further stabilization by cyclization to an hemiacetal. Globisch, 

Kaden and Henle (2015) also analysed the occurrence of lysine adducts with 4-HNE in 

protein from toasted peanuts after a previous hydrolysis process, but in that case the 

compound detected was a 2-pentylpyrrol derivative. 
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Table 1. Lysine adducts with aldehydes different from n-alkanals tentatively identified by LC/MS in the aqueous extracts of RSO+LYS sample 

obtained throughout the oxidation process, together with their detection day, structure, mass spectra base peaks (BP) and other fragments of their 

mass spectra. LYS: lysine. The underlined ions are characteristic of each adduct. 

    
   Cone 20 V   Cone 35 V 

 

Reaction with 
Detection 

day 
Compound Structure BP 

Other 

fragments 
BP 

Other 

fragments 
References 

MDA 
        

 

 

 
14 

N,N'-disubstituted 1-

amino-3-

iminopropene 

LYS derivative 
 

329 147 329 84 Uchida, 2003 

 
21 N-(2-Propenal)-LYS  

 

201 
 

84 130, 201, 138 Uchida, 2003 

(E)-2-Alkenals  
        

 

Heptenal  
21 

(E)-2-Heptenal-LYS 

Michael adduct 
 

259 
 

259 130, 196 Meynier et al., 2004 

 

 

Acrolein 

 

 

 

  

 

 

22 FDP-LYS  

 

241 130 241 195, 84, 96, 130 Uchida, 2003 
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Oxygenated α,β-unsaturated aldehydes 
    

 

4-HPNE 14 

Nε-4-

Hydroxynonanoic 

acid-LYS (HNA-

LYS) 
 

319 
 

319 130 Shimozu et al, 2011 

4-HPNE 21 
Nε-4-Hydroxy-(2Z)-

nonenoyl-LYS 
 

301 147, 130 147 84, 130, 301 Shimozu et al, 2011 

4-HNE  21 

4-HNE-LYS Michael 

adduct stabilized as 

hemiacetal 
 

303 147,130 303 84, 130 Uchida, 2003 

Adduct with an unidentified aldehyde 
      

 
22 

Nε-2-Hexyl-pyrrole-

LYS  

 

281  
 

197  281, 84, 236, 134  Miyashita et al., 2014 
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Table 1. Continuation 
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Figure 5, which shows the evolution of the abundances of the mass spectra base 

peaks of each of the aforementioned adducts during the oxidation process, reveal that 

those detected in the first place were the N,N'-disubstituted 1-amino-3-iminopropene 

lysine derivative, coming from MDA and the most abundant throughout the oxidation 

process, and HNA-lysine, generated from 4-HPNE. As was the case of adducts of lysine 

with n-alkanals (see section 3.2.4.3), most of the adducts with -unsaturated 

aldehydes were detected by LC/MS before these aldehydes were noticed in the 
1
H NMR 

spectra of RSO+2LYS sample (see Figure 2A). It is also worth noting that although, 

according to that commented above, MDA would not be the most likely aldehyde to be 

generated in the greatest quantity in RSO+2LYS oil oxidation, perhaps as a result of its 

high reactivity the 1-amino-3-iminopropene lysine derivative is that exhibiting the most 

increased abundance. 

When it comes to the lysine adducts with (E)-2-alkenals and oxygenated -

unsaturated aldehydes, it is worth noticing that, although these two groups of aldehydes 

are among the most abundantly detected by 
1
H NMR during oxidation of RSO oil (see 

Figure 2B), Figure 5 shows that the adducts with oxygenated -unsaturated aldehydes 

are more numerous, and in general more abundant, than those with (E)-2-alkenals, 

especially those coming from 4-HPNE; these outcomes seem to reflect the greater 

reactivity of the oxygenated -unsaturated aldehydes and, in fact, a great decrease in 

their concentration is noticed in the sample containing lysine in comparison with the 

reference oil. 

Another remarkable feature is the great decrease in oxygenated -unsaturated 

aldehyde concentration observed by 
1
H NMR (see Figure 2) when compared to the 

abundance of lysine adducts with this type of aldehydes determined by LC/MS (see 

Figure 5). In this regard, it should be noticed that the adducts detected by this latter 

technique are only those generated between lysine and volatile aldehydes, but lysine 

adducts with aldehydes supported on acyl groups would not be taken into account. 
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Figure 5. Evolution of the abundance of the base peaks of the different adducts 

between lysine and other aldehydes different from n-alkanals in the aqueous extracts 

of the RSO+2LYS sample obtained throughout the oxidation process, determined by 

LC/MS. All the figures reported are mean values. 

 

3.2.4.5. Pyrrolization reactions 

Some oxidation products can lead to the generation of compounds with a pyrrolic 

structure when reacting with proteins and amino acids. This is the case of some 

oxygenated -unsaturated aldehydes such as 4,5-epoxy-2-alkenals and 4-hydroxy-(E)-

2-alkenals (Globisch et al., 2015; Zamora et al., 2000), and also of long chain epoxy-

keto-enes with a 4,5-epoxy-1-oxo-2-pentene system, as commented in section 3.2.4.2. 

Depending on the mechanism involved in the formation of this type of compounds, this 

process can be accompanied by the concomitant generation of saturated aldehydes 

(Hidalgo & Zamora, 1995). Among the compounds detected in the LC/MS 
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chromatograms of the aqueous extracts obtained from RSO+2LYS sample throughout 

oxidation, a compound with a pyrrolic structure has also been tentatively identified in 

the light of its mass spectrum, considering data from Miyashita and coworkers (2014): 

N-2-hexyl-pyrrole (see Table 1 and Figure 5). As far as we know, this compound has 

not been previously described either in food or in biological systems, and its precursor 

remains unknown. Actually, although it has been considered to derive from the reaction 

of lysine with an aldehyde, another type of oxidation product should not be discarded. 

The spectrum and the structure of this compound is displayed in the supplementary 

material. 

3.2.4.6. Polymerization reactions 

In addition to all the issues above commented, it is remarkable that, although not 

measured, a change in colour from yellow to dark orange took place during the 

oxidation process of RSO+2LYS sample. Part of these coloured compounds remained 

in the lipid phase and another part passed to the acid aqueous extract. Therefore, 

considering that the reaction between lipid oxidation compounds and amino acids can 

lead to the formation of coloured polymers (Zamora & Hidalgo, 2005), polymerization 

reactions might have taken place despite the resulting products not being detected under 

the conditions of this study.  

This hypothetical formation of coloured polymers could help to explain some of the 

observations made in this work such as: i) the lower degradation extent of linoleic acyl 

groups in presence of lysine in comparison with the reference oil when total oil 

polymerization is reached (see Figure 1A), since polymers in which lysine is involved 

might be contributing to oil polymerization, so the oil would totally polymerize with a 

lower linoleic degradation extent; ii) the apparently low abundance of lysine adducts 

with unsaturated aldehydes found by LC/MS in contrast to the high reduction of the 

concentration of this kind of aldehydes in the oil, since especially -unsaturated 

aldehydes can be involved in polycondensation reactions leading to colour development 

to a greater extent than the saturated ones (Burton, McWeeny & Biltcliffe, 1963); and 

iii) the apparently low decrease in lysine abundance throughout most of the oil 

oxidation process (see Figure 3A), since lysine might eventually cleave from the 

polymer, thus restoring the lysine content (Zamora & Hidalgo, 2005). 
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3.3. Analysis of the potential role of lysine-aldehyde adducts on the antioxidant 

effect observed 

According to Alaiz, Zamora and Hidalgo (1996), some of the products coming from 

the reaction of lysine with aldehydes such as (E)-2-octenal or 4,5-epoxy-alkenals can 

exhibit antioxidant activity in soybean oil, so it could be thought that the lysine adducts 

identified might contribute to the lower oxidation rate of the oil containing lysine. 

However, it must be taken into account, that this type of studies are performed by 

adding the previously formed compound to the oil. Secondly, the compounds identified 

in this work do not match with those for which antioxidant ability is claimed, and in 

fact, N-alkanoyl-lysine adducts, which are practically the only ones detected during the 

time period when lysine shows its antioxidant effect (the first twenty days), have not 

been reported to exhibit antioxidant ability. Therefore, a mechanism other than just the 

reaction of lysine with aldehydes seems to come into play. In this sense, Alaiz and 

coworkers themselves (Alaiz, Hidalgo & Zamora, 1997) pointed out that proteins 

modified by oxidized lipids are able to exert an antioxidant action on edible oils at the 

same time as they are being produced, independently of the reactions occurring with 

oxidation products. 

4. CONCLUSIONS 

As far as we know, this is the first time that such a detailed study has been conducted 

on how the cooxidation of an edible oil and an amino acid affects both the evolution of 

the oil components and of the amino acid itself by combining 
1
H NMR and LC/MS. 

This study confirms the findings of a previous work, evidencing that the addition of 

2% of lysine to refined soybean oil exerts a clear antioxidant effect by noticeably 

retarding oil acyl group degradation and the generation of primary oxidation 

compounds. Consequently, all the secondary oxidation products appear later in the oil 

with added lysine, where a remarkable reduction in the concentration of toxic 

oxygenated -unsaturated aldehydes is also noticed. 

Regarding lysine evolution, the main lysine derivatives identified by means of the 

techniques used were adducts of lysine and different types of aldehydes generated 

throughout the oil oxidation process. This does not mean that other lysine derivatives 

were not generated, but those described here were the only ones that could be identified 

in the aqueous extracts subject of study.  
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The most abundant lysine adducts are those with low molecular weight n-alkanals 

and MDA, followed by the ones with -unsaturated aldehydes like 4-HPNE and (E)-

2-alkenals, and to a lesser degree, 4-HNE; this latter group of aldehydes, especially the 

oxygenated ones, are those exhibiting the greatest concentration decrease in the oil with 

lysine added. To the best of our knowledge, this is the first time that several lysine 

adducts with aldehydes of varying nature, including the recently identified specific 

HPNE adducts, have simultaneously been detected in a complex food model system. 

Although the ability of lysine to trap very reactive aldehydes could constitute a 

detoxification mechanism in food systems, it should not be forgotten that this reaction 

implies a reduction in the biological availability of this essential amino acid. 

As it was hypothesized in the Introduction section, a relationship between the 

evolution of lysine and that of the oil has been observed in this work. However, the 

formation of adducts between lysine and aldehydes, which is the most outstanding 

finding, does not seem sufficient to explain the antioxidant effect observed, so further 

studies would be needed to unravel the specific action mechanism of this amino acid. 

Finally, the outcomes of this work may serve to highlight the need to perform the 

studies about the cooxidation of lipids and proteins in food systems under conditions as 

similar as possible to those existing during food processing and storage, since this is 

crucial to select appropriate markers of the reaction between amino acids and lipid 

oxidation products. 
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Monitoring by 
1
H NMR of the evolution of RSO and of RSO+2LYS samples 

throughout the oxidation process: experimental details and information about 

acquisition parameters 

The weight of each sample aliquot was approximately 0.16 g. These were mixed in a 5 

mm diameter tube with 400 l of deuterated chloroform that contained 0.2% of non 

deuterated chloroform and a small amount (0.03%) of tetramethylsilane as internal 

references. 

The acquisition parameters used were: spectral width 5000 Hz, relaxation delay 3s, 

number of scans 64, acquisition time 3.744 s and pulse width 90º, with a total 

acquisition time of 8 min 55 s. The relaxation delay and acquisition time selected allow 

the complete relaxation of the protons, the signal areas thus being proportional to the 

number of protons that generate them, making it possible to use them for quantitative 

purposes. The experiments were carried out at 25 ºC, as in previous works (Guillén, M. 

D., & Ruiz, A. (2003). European Journal of Lipid Science and Technology, 105, 688-

696). 

 

Standard compounds used for the identification of oxidation products by 
1
H NMR in 

the oil samples 

The standard compounds used for the identification of some oxidation products from 

the 
1
H NMR spectra were the following: (E)-2-hexenal, (E)-2-heptenal, (E)-2-decenal, 

(E,E)-2,4-hexadienal, (E,E)-2,4-heptadienal, (E,E)-2,4-decadienal and 4,5-epoxy-(E)-2-

decenal, acquired from Sigma-Aldrich, 4-hydroxy-(E)-2-nonenal, 4-hydroperoxy-(E)-2-

nonenal and trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, purchased from 

Cayman Chemical (Ann Arbor, MI, USA), and cis-(12,13)-epoxy-9(Z),15(Z)-

octadecadienoic acid, acquired from Cymit Quimica (Barcelona, Spain). 

 

Quantification of oxidation products from 
1
H NMR spectral data in the oil samples 

The concentrations of the oxidation products generated from lipid oxidation in sample 

RSO and in the oil phase of RSO+2LYS sample through the oxidation process were 

estimated as millimoles per mol of triglyceride (mmol/mol TG). The general equation to 

carry out this latter determination was the following:  
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OP] = [(AOP/n)/(ATG/4)]*1000, 

where AOP is the area of the signal selected for the quantification of each oxidation 

product (OP), n the number of protons that generate the signal and ATG the area of the 

protons at sn-1 and sn-3 positions in the glycerol backbone of TG (signal “I” in Table 

S1). 

To estimate the concentration of the so-called major epoxides (see section 3.1.3), 

signals between 2.87 and 3.17 ppm approximately were taken together, assuming that 

the signal at approximately 2.9 ppm corresponds mainly to epoxides contributing with 

two protons and the one at 3.1 ppm to epoxy-compounds contributing with only one 

(see Table S1). In the case of the signal at approximately 2.9 ppm, the overlapped area 

due to the side band of bis-allylic protons signals (G and H) must be subtracted. 

 

Monitoring by LC/MS of the evolution of lysine in the aqueous extracts obtained from 

the RSO+2LYS sample throughout the oxidation process: analysis conditions and 

procedures followed for the identification and quantification of lysine and its 

derivatives 

The LC/MS chromatograms of the aqueous extracts of RSO+2LYS sample were 

obtained using a Waters Xevo TQD LC/MS equipment. Sample volumes of 10 μl each 

were injected into an Imtakt, WAA24 Intrada Amino Acid column (100 mm x 2 mm x 3 

μm). A discontinuous gradient of solvent A (H2O containing 0.1% formic acid) and 

solvent B (acetonitrile containing 0.1% formic acid) was used as follows: 20% B at 0 

min, 75% B at 7 min and 99% B at 7.1 min. Mass spectrometric analysis was performed 

in TIC mode using positive ion chemical ionization (cone potentials 20 V and 35 V). 

The identification of lysine derivatives was achieved, on the one hand, by comparing 

the mass spectra of the compounds detected in the TIC chromatograms obtained with 

cone potentials 20 V and 35 V with those of lysine adducts obtained in the laboratory by 

making react lysine with n-alkanals (formaldehyde, propanal, butanal, hexanal, 

heptanal, octanal and nonanal), as in the study conducted by Kawai, Fujii, Okada, 

Tsuchie, Uchida and Osawa (2006)
1
. For this purpose, lysine (50 mM) was incubated 

with 50 mM of each alkanal in the presence of H2O2 (50 mM) in 50 mM sodium 
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phosphate buffer (pH 7.2) at 37 °C. Furthermore, bibliographic data were also used to 

tentatively identify some of the compounds present in the aqueous extracts. 

All the identified lysine derivatives were quantified by measuring the area of their 

corresponding mass spectra base peaks in the chromatograms obtained with cone 

potential 20 V. The quantifications were made for them to be useful for comparisons 

between the samples, not to achieve absolute concentrations of each of the compounds 

formed. 

1
Kawai, Y., Fujii, H., Okada, M., Tsuchie, Y., Uchida, K., & Osawa, T. (2006). Formation of 

N-(succinyl) lysine in vivo: a novel marker for docosahexaenoic acid-derived protein 

modification. Journal of Lipid Research, 47, 1386-1398. https//doi.org/ 10.1194/jlr.M600091-

JLR200 

 

 

Table S1. Chemical shifts, multiplicities and assignments of the 
1
H NMR signals in 

CDCl3 of the main types of triglyceride (TG) protons, and of some oxidation 

compounds, present in the different soybean oil samples, before and throughout the 

oxidation process. 

Signal 
Chemical 

shift (ppm) 

Multi- 

plicity 

Functional group 

Type of protons Compound 

Main acyl groups
a
 

A 0.88 t -CH3 saturated and 

monounsaturated ω-9  

acyl groups 

 0.89 t -CH3 linoleic acyl groups 

B 0.97 t -CH3 linolenic acyl groups 

C 1.19-1.42 m* -(CH2)n- acyl groups 

D 1.61 m -OCO-CH2-CH2- acyl groups in TG  

E 1.94-2.14 m** -CH2-CH=CH- unsaturated acyl groups 

F 2.26-2.36 dt -OCO-CH2- acyl groups in TG  

G 2.77 t =HC-CH2-CH= linoleic acyl groups 

H 2.80 t =HC-CH2-CH= linolenic acyl groups 

I 4.22 dd,dd ROCH2-CH(OR’)-

CH2OR’’ 

glyceryl groups 
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J 5.27 m ROCH2-CH(OR’)-

CH2OR’’ 

glyceryl groups 

K 5.28-5.46 m -CH=CH- acyl groups 

Oxidation compounds 

Hydroperoxides
b
 

a 8.3-9.0 bs -OOH monohydroperoxide group 

Conjugated dienic systems
b,c,d

 

- 

- 

- 

b 

5.44 

5.66 

5.97 

6.49 

ddd 

dd 

t 

dd 

-CH=CH-CH=CH- (Z,E)-conjugated double 

bonds 

associated with hydroxy group  

in octadecadienoic acyl 

groups
e
 

     

- 

- 

- 

c 

5.47 

5.76 

6.06 

6.27 

ddm 

dtm 

ddtd 

ddm 

-CH=CH-CH=CH- (E,E)-conjugated double 

bonds 

associated with hydroperoxy 

group in octadecadienoic acyl 

groups 

     

- 

- 

- 

d 

5.51 

5.56 

6.00 

6.58 

dtm 

ddm 

ddtd 

dddd 

-CH=CH-CH=CH- (Z,E)-conjugated double 

bonds 

associated with hydroperoxy 

group in octadecadienoic acyl 

groups
f
 

     

- 5.58 dd –CH=CH–CH=CH– (E,E)-conjugated double 

bonds associated with 

hydroxy group (OH) in 

octadecadienoic acyl groups 

- 5.71 dd  

- 6.03 dd  

e 6.18 dd  

Epoxides 

Epoxy-derivatives 

f 2.63
g
 m -CHOHC- (E)-9,10-epoxystearate 

g1 2.88
g
 m -CHOHC- (Z)-9,10-epoxystearate 

g2 2.9
h
 m -CHOHC- monoepoxy-octadecenoate 

groups 

   -CHOHC-CH2-CHOHC- diepoxides 

g3 2.94*** m -CHOHC- (Z)-(12,13)-epoxy-9(Z),15(Z)-

octadecadienoic acid 

h1 3.10
h
 m -CHOHC-CH2-CHOHC- diepoxides 

Epoxy-keto-derivatives 

g4 2.89
i
/2.90

j
 td

i
/m

j
 -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-keto-(E)-

11-octadecenoate 

g5 2.91
i
 td -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-keto-(E)-

10-octadecenoate 
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i 3.20
i,j

 dd -CO-CH=CH-CHOHC- (E)-9,10-epoxy-13-keto-(E)-

11-octadecenoate 

   -CHOHC-CH=CH-CO- (E)-12,13-epoxy-9-keto-(E)-

10-octadecenoate 

   -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-keto-(E)-

10-octadecenoate 

   -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-keto-(E)-

11-octadecenoate 

j1 3.52
i
 dd -CHOHC-CH=CH-CO- (Z)-12,13-epoxy-9-keto-(E)-

10-octadecenoate 

j2 3.53
i
 dd -CO-CH=CH-CHOHC- (Z)-9,10-epoxy-13-keto-(E)-

11-octadecenoate 

Epoxy-hydroxy-derivatives 

g6 2.93
k
 dt -CHOHC-CHOH-

CH=CH- 

threo-11-hydroxy-(E)-12,13-

epoxy-(Z)-9-octadecenoate 

h2 3.09
l
/3.097

m
 dd -CHOHC-CH=CH-

CHOH- 

9-hydroxy-(E)-12,13-epoxy-

(E)-10-octadecenoate 

Epoxy-hydroperoxy-derivatives 

h3 3.11
l
 dd -CHOHC-CH=CH-

CHOOH- 

9-hydroperoxy-(E)-12,13-

epoxy-(E)-10-octadecenoate
n
 

Aldehydes 

k 9.49
o
 d −CHO (E)-2-alkenals 

l 9.52
o
 d −CHO (E,E)-2,4-alkadienals 

m 9.55
o
 d −CHO 4,5-epoxy-2-alkenals 

n 9.57
o
 d −CHO 4-hydroxy-(E)-2-alkenals 

o 9.58
o
 d −CHO 4-hydroperoxy-(E)-2-alkenals 

p 9.75
o
 t -CHO n-alkanals 

t: triplet; m: mutiplet; d: doublet; bs: broad signal; *Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***Assignment made with the aid of 

standard compounds 
a
Assignments taken from Guillén, M. D., & Ruiz, A. (2003). Journal of the Science of 

Food and Agriculture, 83, 338-346. 
b
Data taken from Goicoechea, E., & Guillén, M. D. (2010). Journal of Agricultural and 

Food Chemistry, 58, 6234-6245 (hydroperoxides and conjugated (Z,E)- and (E,E)-

hydroperoxy-dienes). 
c
Data taken from Dong, M., Oda, Y., & Hirota, M. (2000). Bioscience, Biotechnology 

and Biochemistry, 64, 882-886 (conjugated (Z,E)-hydroxy-dienes). 
d
Data taken from Tassignon, P., De Waard, P., De Rijk, T., Tournois, H., de Wit, D., & 

De Buyck, L. (1994). Chemistry and Physics of Lipids, 71, 187-196 (conjugated (E,E)-

hydroxy-dienes). 
e
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Kuklev, D. V., Christie, W. W., Durand, T., Rossi, J. C., Vidal, 
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J. P., Kasyanov, S. P., Akulin, V. N., & Bezuglov, V. V. (1997). Chemistry and Physics 

of Lipids, 85, 125-134.
 

f
The chemical shifts of the (Z,E)- and (E,Z)-isomers are practically indistinguishable, 

according to data from Chan, H. W. S., & Levett, G. (1977). Lipids, 12, 99-104.
 

g
Data taken from Du, G., Tekin, A., Hammond, E. G., & Woo, L. K. (2004). Journal of 

the American Oil Chemists’ Society, 81, 477-480. 
h
Data taken from Aerts, H. A. J., & Jacobs, P. A. (2004). Journal of the American Oil 

Chemists’ Society, 81, 841-846 (monoepoxy-octadecenoates and diepoxides). 
i
Data taken from Lin, D., Zhang, J., & Sayre, L. M. (2007). The Journal of Organic 

Chemistry, 72, 9471-9480. 
j
Data taken from Gardner, H. W., Kleiman, R., & Weisleder, D. (1974). Lipids, 9, 696-

706. 
k
Data taken from Garssen, G. J., Veldink, G. A., Vliegenthart, J. F., & Boldingh, J. 

(1976). The FEBS Journal, 62, 33-36. 
l
Data taken from Gardner, H. W., Weisleder, D., & Kleiman, R. (1978). Lipids, 13, 246-

252. 
m

Data taken from Van Os Cornelis, P. A., Vliegenthart, J. F. G., Crawford, C. G., & 

Gardner, H. W. (1982). Biochimica et Biophysica Acta, 713, 173-176. 
n
-Ketols (hydroxy-keto-derivatives) could also contribute to this signal (Gardner et al., 

1974). 
o
Data taken from Guillén, M. D., & Ruiz, A. (2004). European Journal of Lipid Science 

and Technology, 106, 680-687. 

  



Results and Discussion – Supplementary Material Manuscript 5 

229 

 

Table S2. Chemical shifts of L-lysine, N-formyl-lysine, N-acetyl-lysine and N-

acetyl-lysine in deuterated acid water (0.5 M HCl, pH close to 1.5), obtained from 

reference compounds. 

Signal Chemical shift
1
 Multiplicity

2
 

Type of protons Compound 

L-Lysine and Nε-Lysine adducts 

LA' 7.86 s -NεH-CHO 
Nε-formyl-

lysine 

LB 3.95 t -CαH lysine 

LB' 3.94 t -CαH 
Nε-formyl-

lysine 

LB'' 3.93 t -CαH 
Nε-acetyl-

lysine 

LC' 3.09 t -Nε-CH2- 
Nε-formyl-

lysine 

LC'' 3.04 t -Nε-CH2- 
Nε-acetyl-

lysine 

LC 2.85 t -Nε-CH2- lysine 

LD 1.93 - 1.74 m -Nε-CH2-CH2-CH2-CH2-Cα lysine 

LD' 1.90 -1.71 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nε-formyl-

lysine 

LD'' 1.87 - 1.69 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nε-acetyl-

lysine 

LG'' 1.84 s -NεH-CO-CH3 
Nε-acetyl-

lysine 

LE 1.61 - 1.52 m -Nε-CH2-CH2-CH2-CH2-Cα lysine 

LE' 1.46 - 1.37 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nε-formyl-

lysine 

LE'' 1.45 - 1.36 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nε-acetyl-

lysine 

LF 1.46 - 1.26 m -Nε-CH2-CH2-CH2-CH2-Cα lysine 

LF' 1.38 - 1.19 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nε-formyl-

lysine 

LF'' 1.37 - 1.17 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nε-acetyl-

lysine 

Nα-Lysine adducts 

LB''' 4.19 - 4.14 m -CαH 
Nα-acetyl-

lysine 

LC''' 2.86 - 2.78 t -Nε-CH2- 
Nα-acetyl-

lysine 

LG''' 1.87 s -NαH-CO-CH3 
Nα-acetyl-

lysine 

LD''' 1.79 - 1.56 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nα-acetyl-

lysine 
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LE''' 1.57 – 1.47 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nα-acetyl-

lysine 

LF''' 1.37 – 1.22 m -Nε-CH2-CH2-CH2-CH2-Cα 
Nα-acetyl-

lysine 
1
 The chemical shifts of the lysine derivatives have been established taking those of 

lysine as reference 
2
 s: singlet; t: triplet; m: mutiplet 

 

 

Table S3. Lysine adducts with n-alkanals identified by LC/MS in the aqueous extracts 

of RSO+2LYS sample throughout the oxidation process, together with their retention 

times (RT), mass spectra base peaks (BP) and other fragments of their mass spectra. 

  
Cone 20 V Cone 35 V 

RT (min) Compound
1
 BP

2
 Other 

fragments 

BP Other fragments
3
 

1:94 Nε-octanoyl-lysine 273 147 273 84, 210, 130, 147 

2:26 Nε-hexanol-lysine 245 147 245 84, 182, 147, 130 

2:36 Nε-pentanoyl-lysine 231 147 231 84, 168, 147, 130 

2:53 Nε-butiryl-lysine 217 147 84 217, 147, 154, 130 

2:71 Nε-propanoyl-lysine 203 
 

140 203, 84, 130, 147 

2:91 Nε-acetyl-lysine 189 
 

126 84, 189, 147, 130 

2:99 Nε-formyl-lysine 175 112 112 175, 84, 130, 147 

3:45 Nα-propanoyl-lysine 203 
 

84 203 

3:71 Nα-acetyl-lysine 189 
 

84 189 

3:73 Nα-formyl-lysine 175 
 

175 84 
1
 Nε-: adducts formed at the  position; N-: adducts formed at the  position. 

2
 The base peak corresponds to the molecular weight of the compound plus 1. 

3
 The underlined ion is characteristic of each N-adduct. 
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MASS SPECTRA AND STRUCTURES OF LYSINE AND OF THE TENTATIVELY 

IDENTIFIED LYSINE ADDUCTS 

Lysine

m/z: 147 

m/z

130

OH

O

m/z

84

m/z

130m/z

84

m/z

112

Nε-Formyl-LYS 

m/z: 175 

Nε-Acetyl-LYS 

m/z: 189

m/z

84

m/z

126

84

130

147

130

147

Cone potential 20 V 

Cone potential 35 V 
84

84

Cone potential 20 V 

Cone potential 35 V 

Cone potential 20 V 

Cone potential 35 V 

175

112

112

130

175

189

126

126

189
84

ALKANAL- Nε LYSINE ADDUCTS

147

147130

m/z

m/z

m/z
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Nε-Propanoyl-LYS 

m/z: 203

m/z

147

m/z

130m/z

84

m/z

140

Nε-Butiryl-LYS 

m/z: 217

Nε-Pentanoyl-LYS 

m/z: 231

m/z

84

m/z

154
m/z

147

m/z

147

m/z

130m/z

84

m/z

168

Cone potential 20 V 

Cone potential 35 V 

Cone potential 20 V 

Cone potential 35 V 

Cone potential 20 V 

Cone potential 35 V 

84

140

203

140 203

147

84

154

217

147

84

217

147

130

168

84

147130

231

231

147130

130

m/z

m/z

m/z
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Nε-Hexanoyl-LYS 

m/z: 245

Nε-Octanoyl-LYS 

m/z: 273

m/z

182 m/z

147

m/z

130m/z

84

m/z

210 m/z

147

m/z

130m/z

84

Cone potential 20 V 

Cone potential 35 V 

Cone potential 20 V 

Cone potential 35 V 

210

84

273

147130

273

84

130

147

182

245

147130

147

245

m/z

m/z
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ALKANAL- Nα LYSINE ADDUCTS 
 

 
 

 

 

  

Nα-Formyl-LYS 
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84

Nα-Acetyl-LYS 
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84
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Cone potential 35 V 
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MDA-LYSINE ADDUCTS 
 

 
 

 

 

 

 

  

1-Amino-3-iminopropene-LYS 

derivative

m/z: 329

N-(2-Propenal)-LYS
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138
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O
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(E)-2-ALKENALS-LYSINE ADDUCTS 
 

 
 

 

 

 

 

  

(E)-2-Heptenal-LYS 

Michael adduct

m/z: 259 

FDP-LYS

m/z: 241 

Cone potential 20 V 

Cone potential 20 V 

Cone potential 35 V 

Cone potential 35 V 
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OXYGENATED α,β-UNSATURATED ALDEHYDES-LYSINE ADDUCTS 
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PYRROLE-TYPE LYSINE ADDUCT 
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ABSTRACT 

BACKGROUND: Minor components of edible oils could influence their evolution 

during in vitro digestion. This might affect the bioaccessibility of lipid nutrients and 

the safety of the ingested food. Bearing this in mind, the evolution of virgin and 

refined soybean oils, which are very similar in acyl group composition, has been 

studied throughout in vitro digestion using 
1
H nuclear magnetic resonance (NMR) 

and solid-phase microextraction-gas chromatography /mass spectrometry, focusing 

on lipolysis and oxidation reactions. The fate of -tocopherol, the main antioxidant 

present in soybean oil, has also been analyzed with 
1
HNMR 

RESULTS: There were no noticeable differences in lipolysis between the two oils that 

were studied. The extent of oxidation during digestion, which was very low in both 

cases, was slightly higher in the virgin type, which showed lower tocopherols and 

squalene concentrations than the refined one, together with a considerable abundance 

of free fatty acids. This can be deduced both from the appearance after digestion of 

conjugated hydroperoxy- and hydroxy-dienes only in the virgin oil, and from its 

higher levels of volatile aldehydes and 2-pentyl-furan. Under in vitro digestion 

conditions, the formation of epoxides seemed to be favored over other oxidation 

products. Finally, although some soybean oil essential nutrients like polyunsaturated 

fatty acids exhibited no significant degradation after digestion, -tocopherol 

concentration diminished during this process, especially in the virgin oil. 

CONCLUSION: Although the minor component composition of the soybean oils did 

not affect lipolysis during in vitro digestion, it influenced the extent of their 

oxidation and -tocopherol bioaccessibility. 

 

Keywords: soybean oil, -tocopherol, in vitro digestion, lipolysis, oxidation, 
1
H NMR, 

SPME-GC/MS 
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1. INTRODUCTION  

The behaviour of lipids throughout the digestion process is of great interest as on the 

one hand food lipids provide essential nutrients and on the other because some lipids are 

very prone to oxidative degradation, which can affect both nutritional quality and safety 

of food
1.

 In this context, attention can be paid to several matters occurring 

simultaneously in the gastrointestinal tract, such as lipid hydrolytic processes and 

oxidation reactions among others. The lipid hydrolysis degree reached, directly related 

with the bioaccessibility of lipophilic nutrients
2
, can be affected by several factors 

which include: lipid concentration
3
, the structure on which fatty acids are supported 

(triglycerides or partial glycerides), the length of the acyl group chains
3,4

, the presence 

of free fatty acids
5
 or the initial oxidation degree of the lipids

6,7
. Regarding oxidation 

reactions, their occurrence during the digestion process has been assessed by several 

authors, and their extent is also determined by various factors, like lipid and sample 

composition, initial oxidative status or food fat content
6-10

. As a consequence of lipid 

oxidation, not only can the bioaccessibility of lipid nutrients like some essential 

polyunsaturated fatty acids and certain compounds considered as antioxidants be 

reduced, but also toxic oxidation compounds can be generated
1
. These latter can exert 

their negative effects directly on the gastrointestinal tract, affecting the functionality of 

some biological compounds such as gastrointestinal detoxifying enzymes
11

, and even 

throughout the body upon absorption. In the case of vegetable oils, which make a great 

contribution to the food lipids ingested, attention should also be given to their minor 

components, since these have an important influence on their oxidative stability and 

their behaviour under oxidative conditions
12

; amongst them, tocopherols, phytosterols, 

free fatty acids or metal ions can be mentioned. Their concentrations and relative 

proportions vary depending on the oil botanical origin
13

, but also on oil refining and 

deodorization processes
14

. Actually, these latter operations can bring about virgin and 

refined oils of the same botanical origin with slightly different contents and proportions 

of minor compounds which can either increase the oxidative stability of bulk oils or 

emulsions, or on the contrary, reduce it, as reported in the case of free fatty acids
12,15

. 

Although there are many studies about the effect of minor components on oil oxidative 

stability
6,17

, as far as we know, there is limited understanding of the influence that they 

can have on the reactions occurring during gastrointestinal digestion. In this regard, 

some studies have been conducted on the impact of tocopherols on lipid oxidation 
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during the in vitro digestion of rapeseed oil-in-water emulsions
18

, and also of rapeseed
19

 

and cod liver
8
 oils. However, these works have been performed either enriching 

commercial oils with -tocopherol or comparing the behaviour of commercial and 

tocopherol-stripped oils, which is a different approach from that here proposed. Keeping 

all of the above in mind, the present work aims to study whether the pool of minor 

components present in commercial edible virgin and refined soybean oils, such as 

tocopherols and free fatty acids, can affect the hydrolytic processes and/or the 

occurrence of oxidation during in vitro digestion. Therefore, instead of focusing on one 

only specific compound or group of compounds, either antioxidant or prooxidant, this 

work takes into consideration all the minor components as a whole, thus offering a more 

realistic approach to the study of the edible oils digestion process. In addition, the 

influence of the digestion process on the stability and bioaccessibility of -tocopherol 

(-T), one of the main antioxidants present in soybean oil
13

, has also been tackled. The 

techniques employed were Proton Nuclear Magnetic Resonance (
1
H NMR) and Solid-

Phase Microextraction followed by Gas Chromatography/Mass Spectrometry (SPME-

GC/MS). 
1
H NMR allows one to study simultaneously the lipolysis extent, the 

occurrence of oxidation reactions and the evolution of -T throughout in vitro digestion, 

providing a global picture of this process. SPME-GC/MS, in turn, constitutes a 

complementary and very useful tool that, thanks to its higher sensitivity and specificity, 

gives information about changes in volatile compounds that could not be detected by 
1
H 

NMR.  

2. MATERIALS AND METHODS  

2.1. Samples subject of study  

The samples subject of study were two commercial soybean oils: one of them virgin 

(VO) and the other refined (RO). Aside from minor differences in the molar proportions 

of the different kinds of acyl groups (see Table 1), the main divergence between these 

two oils consists in their content of minor components; the corresponding abundances, 

obtained by means of Direct Immersion (DI) SPME-GC/MS, following the 

methodology described by Alberdi-Cedeño, Ibargoitia, Cristillo, Sopelana and 

Guillén,
13

 are shown in Table 2; some fragments of these total ion chromatograms can 

be observed in Figure S1 (see supporting information). As Table 2 shows, the 

concentrations of all the tocopherols and of squalene, another component attributed with 
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antioxidant ability,
20

 are higher in RO than in VO. Free fatty acids, instead, are only 

detected in the virgin oil. 

Table 1. Molar percentages of the several kinds of acyl groups and fatty acids in 

relation to the total of acyl groups plus fatty acids present in virgin and refined soybean 

oil samples before (VO and RO) and after (DVO and DRO) in vitro digestion. Different 

letters within each column indicate a significant difference among the samples (p < 

0.05). Ln: linolenic; L: linoleic; O: oleic; S+M: saturated plus modified. 

 

 

 

 

 

Different letters within each column indicate a significant difference among 

the samples (P < 0.05). Ln: linolenic; L: linoleic; O: oleic; S+ M: saturated 

plus modified; AG+FA: acyl groups+fatty acids 

 

Table 2. Abundances, expressed as arbitrary area units of the mass spectrum base 

peak (BP) of each compound extracted from the total ion chromatograms obtained by 

DI-SPME/GC-MS, divided by 10
6
, of the main minor components expected to 

influence the evolution of the studied soybean oils during in vitro digestion, together 

with their respective molecular weights (MW). The asterisked compounds were 

acquired commercially and used as standards for identification purposes. All the 

values are given as the mean of two determinations ± standard deviation.  

 

 

nd: not detected 

§This total includes linoleic*, oleic* and linolenic* acids, whose mass 

spectra base peaks are 67, 55 and 79, respectively. However, given that all 

of them overlap, ion 55, which is common to all these unsaturated fatty 

acids, has been taken in order to quantify them altogether. 

 Ln L O S+M 

VO 5.51 ± 0.15b 44.69 ± 2.33a 32.47 ± 0.14a 17.33 ± 2.60a 

DVO 5.39 ± 0.12ab 44.24 ± 2.65a 32.27 ± 0.49a 18.09 ± 2.61a 

RO 4.90 ± 0.44ab 47.61 ± 1.07a 32.09 ± 0.53a 15.39 ± 1.89a 

DRO 4.76 ± 0.40a 46.97 ± 1.43a 31.94 ± 1.27a 16.33 ± 1.76a 

Compounds (MW) BP VSO RSO 

FREE FATTY ACIDS    

Total free fatty acids§ 55 166.2 ± 7.3 nd 

TOCOPHEROLS  

δ-Tocopherol (402)* 402 25.8 ± 2.3 34.9 ± 0.0 

β-Tocopherol (416)* 416 1.9 ± 0.2 2.5 ± 2.0 

γ-Tocopherol (416)* 416 67.5 ± 5.4 106.0 ± 2.0 

α-Tocopherol (430)* 165 11.3 ± 0.9 14.9 ± 0.4 

HYDROCARBONS    

Squalene (410)* 69 24.5 ± 1.5 33.2 ± 0.7 
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2.2. In vitro digestion  

Samples (0.5 g) of the two oils were digested following the same procedure as in 

previous works,
6,7

 based on the static in vitro gastrointestinal model developed by 

Versantvoort, Oomen, Van de Kamp, Rompelberg and Sips,
21

 and slightly modified in 

our laboratory in order to reach a higher level of lipolysis.
22

 This involves a three-step 

procedure to simulate digestive processes in the mouth, stomach, and small intestine, by 

sequentially adding the corresponding digestive juices (saliva, gastric juice, duodenal 

juice and bile), whose composition is given in Table S1 (see supporting information). 

The digestion experiment started by adding 6 mL of saliva to each of the oil samples. 

After 5 min of incubation, 12 mL of gastric juice were added and the mixture was 

rotated head-over-heels at 40 rpm for 2 h at 37±2ºC. 1 hour after starting the gastric 

digestion, pH was set between 2 and 3 with HCl (37%), simulating the gradual 

acidification of the chyme occurring in vivo. After 2 h of gastric digestion, 2 mL of 

sodium bicarbonate solution (1 M), 12 mL of duodenal juice and 6 mL of bile juice 

were added. Subsequently, pH was set between 6 and 7, and the mixture was rotated 

again at 40 rpm and incubated at 37±2ºC for 4 h. All the reagents and enzymes for the 

preparation of digestive juices were acquired from Sigma-Aldrich (St. Louis, MO, 

USA): α-amylase from Aspergillus oryzae (10065, ~30 U/mg); pepsin from porcine 

gastric mucosa (P7125, ≥400 U/mg protein); amano lipase A from Aspergillus niger 

(534781, ≥120,000 U/g); pancreatin from porcine pancreas (P1750); lipase type II crude 

from porcine pancreas (L3126, 100-500 U/mg protein (using olive oil, 30 min 

incubation)) and bovine bile extract (B3883). Two digestion experiments, each 

including duplicate samples of the two oils, were performed. Blank samples 

corresponding to the mixture of juices submitted to digestive conditions were also taken 

for further analysis.  

2.3. Lipid extraction of the digestates  

Lipids of the digestates were extracted using dichloromethane as solvent (HPLC 

grade, Sigma-Aldrich) and following the methodology employed by Nieva-Echevarría, 

Goicoechea, Manzanos and Guillén,
23

 slightly modified in a later study.
7
  

2.4. Analysis by 
1
H NMR 2.4.1. Operating conditions 

The 
1
H NMR spectra of the starting oils (VO and RO) and of the lipid extracts of 

their digestates (DVO and DRO) were acquired in quadruplicate using a Bruker Avance 

400 spectrometer operating at 400 MHz. For this purpose, the above-mentioned lipid 
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samples (approximately 0.16 g) were dissolved in 400 μl of deuterated chloroform, 

which contained tetramethylsilane (TMS) as internal reference (Cortec, Paris, France). 

The acquisition conditions were the same used in previous studies.
24

 

2.4.2. Identification of some oil components  

The identification of the oil acyl groups, of -T and of the oxidation products formed 

throughout digestion was carried out on the basis of the signal assignments shown in 

Table S2 (see supporting information), made from bibliographic data and with the aid of 

standard compounds. These were -T, acquired from Sigma-Aldrich, and cis-(12,13)-

epoxy-9(Z),15(Z)-octadecadienoic acid, acquired from Cymit Quimica (Barcelona, 

Spain).  

2.4.3. Quantification from 
1
H NMR spectral data  

2.4.3.1. Concerning the various types of glycerides  

The molar percentages of triglycerides (TG%), diglycerides (1,2-DG% and 1,3-

DG%), monoglycerides (2-MG% and 1-MG%) and glycerol (Gol%) in relation to the 

total of glyceryl structures present in the lipid samples were determined using the 

equations developed and validated in previous studies.
23,25

 All these equations are given 

as supporting information (see equations [S1-S10]). Lipid bioaccessibility (LBA), 

another parameter concerning lipolysis extent, was calculated by using equations [S11] 

and [S12].  

2.4.3.2. Concerning lipid composition  

The molar percentages of linolenic (Ln%), linoleic (L%), oleic (O%), and saturated 

plus modified (S+M%) acyl groups (AG) or fatty acids (FA), in relation to the total 

moles of AG+FA present in the various lipid samples were estimated as in a previous 

study
7
 by using equations [S13-S16]. In addition, the unsaturation degree of the studied 

oils was estimated by determining the area of olefinic protons (from signal “T” in Table 

S2) relative to that of the sum of all kinds of saturated protons (from signals “A”-“H” in 

Table S2).  

2.4.3.3. Concerning oxidation compounds and -T  

The concentrations of (Z,E)- and (E,E)-conjugated dienic systems supported on 

chains having either hydroperoxy or hydroxy groups, and of epoxides, expressed as 

millimoles per mole of  
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AG+FA present (mmol/mol AG+FA), were also estimated as in a previous study7 by 

using equation [S17]. This same approach was used to estimate the concentration of -T 

(equation [S18]).  

2.5. Study by SPME-GC/MS  

The extraction of the volatile components of the several samples (0.5 g in a 10 ml 

screw-cap vial) was accomplished automatically by using a CombiPAL autosampler 

(Agilent Technologies, Santa Clara, CA, USA). Given that the nature of the samples 

subjected to the digestion process (oil samples) is very different from that of the 

digested ones (basically aqueous samples), it is necessary to prepare mixtures of the 

non-digested oil samples with the digestive juices submitted to the digestion process, in 

the same proportions as in the digestates; this enables one to accurately assess the 

changes occurring throughout the in vitro digestion process. Therefore, the samples 

subject of study, which were analyzed in duplicate, were the following: i) the digestates 

of the two types of soybean oil samples (DVO and DRO); ii) the juices submitted to 

digestion conditions (DJ); and iii) the mixtures made up of starting oil samples and 

juices submitted to digestion conditions (VO+DJ and RO+DJ). The fiber used, coated 

with Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS, 50/30 m 

film thickness, 1 cm long), was acquired from Supelco (Sigma-Aldrich); this was 

inserted into the headspace of the sample and was maintained for 55 min at 50 ºC, after 

a pre-equilibration time of 5 min. The fiber containing the extracted components was 

desorbed for 10 min in the injection port (splitless mode with 5 min purge time) of a 

7890A gas chromatograph equipped with a 5975C inert MSD with Triple Axis Detector 

(Agilent Technologies) and a computer operating with the ChemStation program. The 

column used, the operating conditions and the identification and semi-quantification 

procedures of the selected compounds were the same as in previous works.
6,7

 With this 

aim, several commercial standards were used, acquired from Sigma-Aldrich (see 

supporting information).  

2.6. Statistical analysis  

The significance of the differences on the several determinations made among the 

samples was determined by one-way variance analysis (ANOVA) followed by Tukey b 

test at p < 0.05, using SPSS Statistics 24 software (IBM, NY, USA). 
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3. RESULTS AND DISCUSSION  

This section will describe the results regarding the extent of lipolysis, the occurrence 

of lipid oxidation and the evolution of -T during the in vitro digestion of the samples 

subject of study.  

3.1. Extent of lipolysis reached through the in vitro digestion of RO and VO oils 

As Figure 1 reveals, the main glycerides present in the spectrum of RO oil are TG 

(signals “O” and “S”, see Table S2), together with a much lower proportion of 1,2-DG 

(signal “J”); and the same is true for the virgin oil (VO), as deduced from Table 3, 

which shows the molar percentages of the several kinds of glycerides, including Gol, in 

the studied samples before and after digestion. After digestion, a decrease in the TG 

signals is observed in the 
1
H NMR spectrum of DRO sample (see Figure 1), 

concomitant with both a great increase in the signals of 1,2-DG (“J”, “P” and “R”) and 

the appearance of new signals due to 2-MG (signals “K” and “Q”), 1-MG (signals “I”, 

“ ” and “N”, this latter partially overlapped with “O”) and 1,3-DG (signal “M”, also 

overlapped with “O”). In agreement with that observed in Figure 1, Table 3 shows that 

the percentage of TG decreases sharply after digestion, its value being very similar in 

DVO and DRO samples (near 22%). Therefore, despite the presence of free fatty acids 

in VO might have affected lipolysis extent,
5
 significant differences have not been 

noticed between the two studied oils. In addition to TG, the most abundant glycerides in 

the digested samples were 2-MG and 1,2-DG, while 1-MG and 1,3-DG, especially the 

latter, were in much lower proportions. According to some authors, the presence of 

these minor glycerides is probably a result of isomerization reactions of 2-MG
26

 and 

1,2-DG,
27

 respectively. Finally, Gol, resulting from the complete hydrolysis of the 

different types of glycerides, is also present in a considerable proportion in the 

digestates, at a percentage of around 30% in both samples. These results are very similar 

to those reported in previous works.
6,7

 To obtain a more biological approach to the 

results regarding the extent of lipolysis, lipid bioaccessibility parameter (LBA) can be 

employed. This indicates the proportion of absorbable molecules (FA and MG) with 

respect to the sum of AG+FA.
28

 As Table 3 reveals, both in DVO and in DRO LBA 

reaches values near a 65% after digestion; these are of a similar order to those observed 

previously in digested sunflower and flaxseed oils.
6,7
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Figure 1. 
1
H NMR spectra of the original refined oil (RO) and of the corresponding 

lipid extract obtained after the in vitro digestion process (DRO). The signal letters agree 

with those in Table S2. 

 



 

 

 

 

Table 3. Molar percentages of triglycerides (TG%), diglycerides (1,2-DG% and 1,3-DG%), monoglycerides (2-MG% and 1-MG%) and 

glycerol (Gol%) in relation to the total number of glyceryl structures present in the samples, together with Lipid bioaccessibility (LBA) 

parameter, in virgin and refined soybean oil samples, before (VO and RO) and after (DVO and DRO) in vitro digestion. Different letters 

within each column indicate a significant difference among the samples (p < 0.05). 

 

 

 

  

 

–, not detected; nd, not determined. 

Different letters within each column indicate a significant difference among the samples (P < 0.05). 

 

 

 

 TG% 1,2-DG% 1,3-DG% 2-MG% 1-MG% Gol% LBA 

VO 99.56 ± 0.26b 0.26 ± 0.01a - - - 0.18 ± 0.07a 0.27 ± 0.06a 

DVO 22.80 ± 6.59a 14.52 ± 3.41b 3.13 ± 1.06a 23.24 ± 6.02a 6.12 ± 1.77a 30.20 ± 3.56b 65.44 ± 9.55b 

RO 99.39 ± 0.06b 0.62 ± 0.03a - - - - 0.23 ± 0.04a 

DRO 21.47 ± 8.11a 15.36 ± 1.94b 3.81 ± 1.48a 24.35 ± 7.27a 4.60 ± 0.41a 30.41 ± 4.48b 65.75 ± 10.38b 
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3.2. Assessment of lipid oxidation through in vitro digestion by 
1
H NMR  

In addition to lipolysis, which as mentioned above, is crucial for the bioaccessibility 

of lipophilic nutrients like some essential fatty acids, another process that can also affect 

the just mentioned issue, as well as the generation of directly bioaccessible toxic 

compounds is lipid oxidation. For this reason, in this section 
1
H NMR has been used to 

assess the extent of lipid oxidation during in vitro digestion, both monitoring the 

changes in the proportions of the several kinds of AG or FA and observing the 

generation, or in case concentration changes, of primary and/or secondary oxidation 

products.  

3.2.1. Changes in the proportions of the several kinds of AG+FA  

The molar percentages of the several kinds of AG+FA in the lipid extracts obtained 

from the digested oil samples are shown in Table 1, together with those corresponding 

to the starting oils. In general, comparing them before and after the in vitro digestion, no 

significant changes are observed either in the virgin or in the refined oil. 

3.2.2. Generation and concentration changes of primary and/or secondary 

oxidation products  

Although VO and RO were acquired as fresh oils, in RO sample the tentative 

presence of epoxides was noticed in its 
1
H NMR spectrum (see Figure 2, signal “c”, 

partially overlapping with the left side band of bis-allylic protons signal, “H+G”); the 

corresponding concentration is given in Table 4, in mmol/mol AG+FA. As Figure 2 

reveals, after the in vitro digestion of VO, the occurrence of oxidation is evidenced by 

the appearance in the 
1
H NMR spectrum of DVO of small signals related to (Z,E)-

conjugated dienes associated to both hydroperoxides ((Z,E)-CD-OOH) and hydroxy-

compounds ((Z,E)-CD-OH) (signals “b” and “a”, respectively), the concentration of the 

latter being slightly higher (see Table 4). These results agree with those of other authors 

who have also reported the generation of hydroperoxides after the in vitro digestion of 

other types of highly unsaturated oils like sunflower,
6
 flaxseed

7
 and cod liver.8 

Regarding (Z,E)-CD-OH, their formation has also been observed in sunflower oil under 

conditions of low temperature and reduced oxygen availability,
29

 as is the case of the 

simulated digestion process. Unlike DVO, the generation of conjugated diene systems 

was not detected in DRO sample. These findings suggest an influence of the 

composition in minor components of these two oils on their evolution during digestion, 

which makes VO more prone to oxidation than RO. This observation is reinforced by 



Results and Discussion –Manuscript 6 

251 

 

the fact that the unsaturation degree of the refined oil is slightly higher than that of the 

virgin one (ratios of saturated to unsaturated protons of 9.88 in RO and of 10.29 in VO), 

since according to this, RO would oxidize somewhat easier than VO. Actually, as can 

be observed in Table 2, not only the concentration of -T but also those of the rest of 

tocopherols were lower in VO, while that of free fatty acids was higher. Regarding these 

latter compounds, it must be noticed that they are more prone to oxidation than TG
30

 

and, in addition, they can act as pro-oxidants.
15

 In fact, a negative effect of free fatty 

acids on the oxidative stability of soybean oil was reported by Mistry and Min.
31

 

Concerning the epoxides initially present in RO sample, a significant increment in their 

concentration was monitored after digestion, as seen in Figure 2 and Table 4. Moreover, 

the generation of this type of oxidation compounds also took place in the virgin soybean 

oil (see also Figure 2 and Table 4). Although the exact identity of the epoxides detected 

remains unknown, it could be reasonably assumed that monoepoxides of linolenic 

groups, the most prone to oxidation amongst those present in soybean oil, might be 

generating this signal (see signal “c3” in Table S2).  

 

 

Figure 2. Enlargements of some regions of the 
1
H NMR spectra of the original VO 

and RO, and of their corresponding lipid extracts obtained after the in vitro digestion 

process (DVO and DRO). The signal letters agree with those in Table S2, 

considering that ‘c’ includes signals ‘c1‐c4’. The plots corresponding to the same 1H 

NMR spectral region are presented at a fixed value of absolute intensity, for them to 

be valid for comparative purposes. 

  

https://onlinelibrary.wiley.com/doi/full/10.1002/jsfa.9734#support-information-section
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Table 4. Concentration of the several kinds of oxidation compounds, expressed in 

mmol mol−1 AG+FA present in the virgin and refined oil samples, before (VO and 

RO) and after (DVO and DRO) in vitro digestion. 

–, not detected; nd, not determined. Different letters within each column indicate a 

significant difference among the samples (P < 0.05). 

 

3.3. Assessment of lipid oxidation through the in vitro digestion by SPME-GC/MS 

By employing SPME-GC/MS, specific oxidation products present in very low 

concentrations, not detectable by 
1
H NMR, can be monitored, thus providing valuable 

information about the occurrence of oxidation, especially when this is low. Among all 

the volatile compounds, interest was focused on aldehydes and 2-pentyl-furan, well-

known oxidation markers. The compounds detected in the starting samples and in their 

corresponding digestates, as well as in the digestive juices submitted to digestion, 

together with their abundances, are displayed in Figure 3. The data corresponding to the 

total abundance of each group of aldehydes are also shown in this figure. As can be 

observed, only a small number of aldehydes are present in the headspace of the 

reference samples of the two studied oils (VO+DJ and RO+DJ), among which (E)-2-

butenal, mainly coming from digestive juices (see Figure 3B), and some n-alkanals like 

pentanal and hexanal (Figure 3A), stand out. In addition, some aldehydes that seem to 

come exclusively from soybean oil oxidation were also detected; these are (E)-2-

heptenal (Figure 3B), generated from linoleic acyl groups degradation and, only in the 

case of VO+DJ sample, (Z,E)- and (E,E)-heptadienals (Figure 3C), mainly derived from 

linolenic groups.
32

 After the digestion process, the abundances of all the above 

mentioned aldehydes increase in DVO. However, in DRO only the abundances of 

hexanal and (E)-2-heptenal rise after digestion, and to a lower extent than in DVO, 

while those of pentanal and (E)-2-butenal decrease. The diminution of these two latter 

aldehydes could be due to their reaction with proteinaceous components of the digestive 

juices during digestion.
33

   

 (Z,E)-Hydroperoxy-dienes (Z,E)-Hydroxy-dienes Epoxides 

VO - - - 

DVO 0.09 ± 0.04 0.30 ± 0.01 1.40 ± 0.32a 

RO - - 3.41 ± 0.26b 

DRO - - 5.62 ± 1.11c 
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Figure 3. Bar graphics representing the abundance, expressed as arbitrary area units of 

the mass spectrum base peak of each compound (see supporting information) extracted 

from the total ion chromatograms obtained by SPME/GC-MS, divided by 10
6
, of n-

alkanals (3A), (E)-2-alkenals (3B), 2,4-alkadienals (3C) and 2-pentyl-furan (3D) in: the 

digestive juices subjected to digestion conditions (DJ), the original virgin and refined 

oils mixed with the digested juices (VO+DJ and RO+DJ) and the digestates of the 

virgin and refined oils (DVO and DRO), together with the total abundance of each 

group of aldehydes. Abbreviations employed: pentanal (P), hexanal (Hx), (E)-2-butenal 

(2B), (E)-2-pentenal (2P), (E)-2-heptenal (2Hp), (Z,E)-2,4-heptadienal (ZE-H), (E,E)-

2,4-heptadienal (EE-H), (E,E)-2,4-nonadienal (EE-N), (Z,E)-2,4-decadienal (ZE-D), 

(E,E)-2,4-decadienal (EE-D) and 2-pentyl-furan (Pf). 
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This does not mean that other aldehydes than pentanal and (E)-2-butenal are not able 

to react with the amino acid residues of proteins, but that, in such a case, their 

generation rate might surpass that of the reaction. Furthermore, the generation of (E)-2-

pentenal (Figure 3B) in DVO and of different types of 2,4-alkadienals in both oils 

(Figure 3C) was also noted. All the above mentioned confirms that a slight extent of 

lipid oxidation takes place during the digestion of both virgin and refined soybean oils 

that, in accordance with the results obtained by 
1
H NMR (see Table 4 and Figure 2), is 

somewhat higher in the virgin one; this can be clearly deduced from the general 

increases observed both in the total amount of each group of aldehydes and in the 

concentration of 2-pentyl-furan, also present in the starting oils (Figure 3D). Therefore, 

while analysis by 
1
H NMR does not allow one to notice the generation of aldehydes, 

this is evidenced by SPME-GC/MS, thus proving the usefulness of this technique in 

detecting very low levels of oxidation. At this point, it is worth pointing out that, when 

using in vitro digestion models like the one described in this work, the amount of 

oxygen, especially at the intestinal step, could be higher than that present in vivo, which 

might affect the extent of oxidation observed during digestion. However, few data are 

available relating not only to the levels of oxygen existing in the gastrointestinal tract 

and the factors influencing this oxygen content, but also to the influence of this 

parameter on lipid oxidation during digestion, as shown in the very recent review 

carried out by Nieva-Echevarría, Goicoechea and Guillén.
10

 In any event, given that the 

conditions were the same for all the samples studied, this issue is not expected to 

influence the results of this work regarding the difference observed between the virgin 

and the refined soybean oils.  

3.4. Evolution of γ-T during the in vitro digestion process  

The occurrence of lipid oxidation affects the concentration of antioxidants in oils, 

since they degrade as a consequence of their involvement in reactions aimed at 

counteracting reactive oxygen species and/or free radicals.
34

 Hence, considering that the 

development of oxidation reactions has been observed during the in vitro digestion of 

the studied oils, and that -T is the most abundant antioxidant in soybean oil (see Table 

2), its concentration has been determined, by means of 
1
H NMR, before and after 

digestion; this will allow an assessment of to what extent the oxidation undergone by 

soybean oil during digestion can influence its -T content. The first worthwhile issue is 

that, by contrast with what might be expected from bibliographic data on refined and 
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virgin oils,
14

 the concentration of γ-T was lower in VO (0.52±0.05 mmol/mol AG+FA) 

than in RO (0.88±0.09 mmol/mol AG+FA), what is in agreement with the data obtained 

by means of DI-SPME/GC-MS (see Table 2). After digestion, only 0.11±0.01 

mmol/mol AG+FA of γ-T remained in DVO and 0.30±0.06 mmol/mol AG+FA in 

DRO; these values, which account for about one fifth and one third of the γ-T initial 

concentration in the case of DVO and DRO, respectively, suggest a faint greater 

decrease of γ-T during the digestion of the virgin oil. The reduction in the intensity of 

the -T signal can be observed in Figure 2. These outcomes suggest that, as might be 

expected, the slightly higher oxidation degree observed during the in vitro digestion of 

the virgin oil is translated into a somewhat greater reduction of -T concentration in this 

oil, and consequently in its bioaccessibility. A degradation of tocopherols during in 

vitro digestion was also observed by Kenmogne-Domguia, Moisan, Viau, Genot and 

Meynier
35

 in oil-in-water emulsions. 

4. CONCLUSIONS  

As far as we know, this is the first time that the evolutions of two commercial edible 

oils with practically the same composition in acyl groups but with different minor 

components profiles have been studied simultaneously during in vitro digestion. 

Although this process does not induce a significant degradation of polyunsaturated 

groups assessed by 
1
H NMR, the analysis of both non-volatile and volatile oxidation 

products reveals that a certain degree of oxidation occurs, which seems to be influenced 

by oil composition in minor components. Thus, although differences in the lipolysis 

extent of the two studied oils are not observed, the lower concentration of tocopherols, 

and maybe of squalene, together with the presence of a considerable abundance of free 

fatty acids in the virgin soybean oil, are translated into a lower oxidative stability of this 

oil; this can be deduced from the generation of very small concentrations of 

hydroperoxy- and hydroxy-dienes in the virgin oil, as well as from higher 

concentrations of volatile aldehydes and 2-pentyl-furan. Moreover, the outcomes of this 

work suggest that, under gastrointestinal conditions, epoxidation reactions seem to be 

favoured over other types of oxidative reactions, since epoxides are generated in higher 

concentrations than other types of oxidation products. Therefore, these findings restate 

the importance not only of monitoring the generation of epoxides to accurately assess 

the extent of lipid oxidation, but also the need to delve into their generation pathways. It 

must also be noticed that although, as commented above, polyunsaturated groups hardly 
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exhibit variations after digestion, the concentration, and consequently, the 

bioaccessibility of -T are reduced during this process; this is especially noticeable in 

the virgin soybean oil, whose oxidative stability is lower than that of the refined one 

under in vitro digestion conditions. This serves to highlight the importance of the 

oxidative stability of the dietary lipids, not only to limit oxidative reactions in the 

gastrointestinal tract that can negatively affect food safety, but also to preserve their 

minor components with antioxidant potential.  
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Figure S1. Fragments of the total ion chromatograms obtained by Direct Immersion 

SPME-GC/MS, according to the methodology described in the work of Alberdi-

Cedeño, Ibargoitia, Cristillo, Sopelana and Guillén (Food Chem. 221: 1135-1144, 

2017), of the virgin and refined oils (VO and RO, respectively). The indicated peaks in 

Figure S1A correspond to squalene (Sq), δ-tocopherol (δ-T), β-tocopherol (β-T), γ-

tocopherol (γ-T) and α-tocopherol (α-T). The indicated broad peak in VO in Figure S1B 

corresponds to a mixture of linolenic, linoleic and oleic acids present in this oil. 
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Table S1. Composition and pH values of the juices employed in the in vitro digestion 

model employed in this study. 

Components Saliva 
Gastric 

juice  

Duodenal 

juice  

Bile 

juice  

KCl (mmol/L) 

NaCl (mmol/L) 

NaHCO3 (mmol/L) 

NaH2PO4 (mmol/L) 

NH4Cl (mmol/L) 

KH2PO4 (mmol/L) 

Na2SO4 (mmol/L) 

KSCN (mmol/L) 

MgCl2 (mmol/L) 

CaCl2*2H2O (mmol/L) 

HCl (37%) (mL/L) 

Urea (mmol/L) 

Glucose (mmol/L) 

Glucuronic acid (mmol/L) 

Uric acid (mmol/L) 

Glucoseamine hydrochloride (mmol/L) 

Bovine serum albumin (g/L) 

Mucin (g/L) 

A. oryzae -amylase (g/L) 

A. niger lipase (U/mL) 

Pepsin (g/L) 

Pancreatin (g/L) 

Lipase type II from porcine pancreas 

(g/L) 

Bovine bile extract (g/L) 

12.02 

5.10 

20.17 

7.40 

- 

- 

4.79 

2.06 

- 

- 

- 

3.33 

- 

- 

0.09 

- 

- 

0.025 

0.29 

- 

- 

- 

- 

- 

11.06 

47.09 

- 

0.22 

5.72 

- 

- 

- 

- 

2.72 

6.50 

1.42 

3.61 

0.10 

- 

1.53 

1.00 

3.00 

- 

100 

2.50 

- 

- 

- 

7.57 

119.98 

40.33 

- 

- 

0.59 

- 

- 

0.53 

1.36 

0.18 

1.67 

- 

- 

- 

- 

1.00 

- 

- 

- 

- 

9.00 

1.50 

- 

5.05 

89.99 

68.86 

- 

- 

- 

- 

- 

- 

1.51 

0.15 

4.16 

- 

- 

- 

- 

1.80 

- 

- 

- 

- 

- 

- 

18.75 

pH 6.8±0.2 1.6±0.3 8.1±0.2 8.2±0.2 
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Table S1. Chemical shift assignments and multiplicities of the 
1
H NMR signals in 

CDCl3 of the main protons of glycerides, fatty acids and some oxidation compounds 

present in the samples before and after in vitro digestion. TG: triglycerides; DG: 

diglycerides; MG: monoglycerides. The signal letters agree with those given in Figures 

2 and 3. 

Signal 

Chemical 

shift 

(ppm) 

Multipl

icity 

Functional group 

Type of protons Compound 

Main acyl groups (AG) and fatty acids (FA)
a,b

 

A 0.88 t –CH3 saturated and 

monounsaturated ω-9 

AG and FA 

 0.89 t –CH3 linoleic AG and FA 

B 0.97 t –CH3 linolenic AG and FA 

C 1.19–1.42 m
*
 –(CH2)n– AG and FA 

D 1.61 m –OCO–CH2–CH2– AG in TG 

1.62 m –OCO–CH2–CH2– AG in 1,2-DG 

1.63 m –OCO–CH2–CH2–, COOH–

CH2–CH2– 

AG in 1,3-DG, 1-MG 

and FA 

1.64 m –OCO–CH2–CH2– AG in 2-MG 

E 1.92–2.15 m
**

 –CH2–CH=CH– AG and FA 

F 2.26–2.36 dt –OCO–CH2– AG in TG 

2.33 m –OCO–CH2– AG in 1,2-DG 

2.35 t –OCO–CH2–, COOH–CH2– AG in 1,3-DG, 1-MG 

and FA 

2.38 t –OCO–CH2– AG in 2-MG 

G 2.77 t =HC–CH2–CH= Linoleic AG and FA 

H 2.80 t =HC–CH2–CH= Linolenic AG and FA 

I 3.65 ddd ROCH2–CHOH–CH2OH glyceryl group in 1-

MG 

J 3.73 m
***

 ROCH2–CH(OR’)–CH2OH glyceryl group in 1,2-

DG 

K 3.84 m
***

 HOCH2–CH(OR)–CH2OH glyceryl group in 2-

MG 

L 3.94 m ROCH2–CHOH–CH2OH glyceryl group in 1-

MG 

M 4.05–4.21 m ROCH2–CHOH–CH2OR’ glyceryl group in 1,3-

DG 

N 4.18 ddd ROCH2–CHOH–CH2OH glyceryl group in 1-

MG 

O 4.22 dd,dd ROCH2–CH(OR’)–

CH2OR’’ 

glyceryl group in TG 

P 4.28 ddd ROCH2–CH(OR’)–CH2OH glyceryl group in 1,2-

DG 
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Q 4.93 m HOCH2–CH(OR)–CH2OH glyceryl group in 2-

MG 

R 5.08 m ROCH2–CH(OR’)–CH2OH glyceryl group in 1,2-

DG 

S 5.27 m ROCH2–CH(OR’)–

CH2OR’’ 

glyceryl group in TG 

T 5.28–5.46 m –CH=CH– AG and FA 

Signals related to oxidation compounds 

Conjugated dienic systems
c,d

 

– 5.44 ddd –CH=CH–CH=CH– (Z,E)-conjugated 

double bonds 

associated with 

hydroxy group (OH) 

in octadecadienoic 

AG and FA 

- 5.66 dd 

- 5.97 t 

a 6.49 dd 

     

- 5.51 dtm –CH=CH–CH=CH– (Z,E)-conjugated 

double bonds 

associated with 

hydroperoxy group 

(OOH) in 

octadecadienoic AG 

and FA 

- 5.56 ddm 

- 6.00 ddtd 

b 6.58 dddd 

Epoxides 

Epoxy-derivatives    

c1 2.88
e
 m -CHOHC- (Z)-9,10-epoxystearate 

c2 2.9
f
  -CHOHC- monoepoxy-

octadecenoate groups 

c3 2.94
****

 m -CHOHC- (Z)-(12,13)-epoxy-

9(Z),15(Z)-

octadecadienoic acid 

Epoxy-hydroxy-derivatives   

c4 2.93
g
 dt -CHOHC-CHOH-CH=CH- threo-11-hydroxy-(E)-

12,13-epoxy-(Z)-9-

octadecenoate 

     

 -Tocopherol  

d 6.36
****

 s 

 

-tocopherol
h
 

 

Abbreviations: t: triplet; m: multiplet; d: doublet.
 

*Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***This signal shows different 

https://www.sciencedirect.com/topics/chemistry/double-bond
https://www.sciencedirect.com/topics/chemistry/carbonyl-group
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multiplicity if the spectrum is acquired from the pure compound or taking part in the 

mixture; ****Assignment made with the aid of standard compounds. 
a
Assignments of AG in TG taken from Guillén, M. D., & Ruiz, A. (2003). Journal of the 

Science of Food and Agriculture, 83, 338–346. 
b
Assignments of AG in partial glycerides (DG and MG) and of FA taken from Nieva-

Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2014). Food 

Research International, 66, 379-387. 
c
Data taken from Goicoechea, E., & Guillén, M. D. (2010). Journal of Agricultural and 

Food Chemistry, 58, 6234-6245 (conjugated (Z,E)- and (E,E)-hydroperoxy-dienes). 
d
Data taken from Dong, M., Oda, Y., & Hirota, M. (2000). Bioscience, Biotechnology 

and Biochemistry, 64, 882-886 (conjugated (Z,E)-hydroxy-dienes). 
e
Data taken from Du, G., Tekin, A., Hammond, E. G., & Woo, L. K. (2004). Journal of 

the American Oil Chemists’ Society, 81, 477–80. 
f
Data taken from Aerts, H. A. J., & Jacobs, P. A. (2004). Journal of the American Oil 

Chemists’ Society, 81, 841-846. 
g
Data taken from Garssen, G. J., Veldink, G. A., Vliegenthart, J. F., & Boldingh, J. 

(1976). The FEBS Journal, 62, 33-36. 
h
Assignment taken from Baker, J. K., & Myers, C. W. (1991). Pharmaceutical 

Research, 8, 763-770. 
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Quantification from 
1
H NMR spectral data of several compounds present in the 

starting samples and/or in the lipid extracts of the digestates, and of Lipid 

Bioaccessibility 

Bearing in mind that the area of each 
1
H NMR spectral signal is proportional to the 

number of protons that generate it, and that the proportionality constant is the same for 

all kinds of protons, the area of some spectral signals can be employed to quantify a 

wide variety of compounds, as detailed below. 

A. Lipolytic products and lipid bioaccessibility 

The number of moles (N) of fatty acids and all the glycerides present in the lipid 

samples were expressed as follows:  

N2-MG=Pc*AK/4         [eq. S1] 

N1-MG=Pc*AL         [eq. S2] 

N1,2-DG=Pc*(AI+J-2AL)/2       [eq. S3]  

NTG=Pc*(2A4.26-4.38-AI+J+2AL)/4      [eq. S4] 

N1,3-DG=Pc*(A4.04-4.38-2A4.26-4.38-2AL)/5     [eq. S5] 

NFA=(Pc*AF-6NTG-4N1,2-DG-4N1,3-DG-2N1-MG-2N2-MG)/2   [eq. S6] 

NGol=(NFA-N1,2-DG-N1,3-DG-2N2-MG-2N1-MG)/3     [eq. S7]  

where Pc is the proportionality constant existing between the area of the 
1
H NMR 

signals and the number of protons that generate them, AK, AL, AI+J and AF are the 

areas of the corresponding signals indicated in Table S2 and Figure 1, and A4.26-4.38 

and A4.04-4.38 represent the areas of the signals between 4.26 and 4.38 ppm, and 

between 4.04 and 4.38 ppm, respectively. 

Using these equations, the molar percentages of the different kinds of glycerides in 

relation to the total number of moles of glyceryl structures present (NTGS) were 

determined as follows: 

NTGS=NTG+N1,2-DG+N1,3-DG+N2-MG+N1-MG+NGol    [eq. S8] 

G%=100NG/NTGS         [eq. S9] 

 

where G is each kind of glyceride (TG, 1,2-DG, 1,3-DG, 2-MG and 1-MG) and NG 

the respective number of moles. 

 

Gol%=100NGol/NTGS       [eq. S10] 

Likewise, the Lipid Bioaccessibility parameter was calculated as follows: 

LBA%=100(N1-MG+N2-MG+NFA)/NTAG+FA     [eq. S11] 

NTAG+FA=Pc*AF/2        [eq. S12] 
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where NTAG+FA is the total number of moles of AG plus FA present. 

B. Molar percentages of the several kinds of acyl groups (AG) and fatty acids (FA) 

The molar percentages of linolenic (Ln%), linoleic (L%), oleic (O%) and saturated 

plus modified (S+M%) AG or FA, in relation to the total number of moles of AG 

plus FA (NTAG+FA) present in the starting oils and in the lipid extracts of the 

corresponding digestates were estimated as follows: 

Ln%=100*(Pc*AH/4)/NTAG+FA      [eq. S13] 

L%=100*(Pc*AG/2)/NTAG+FA      [eq. S14] 

O%=U%–L%–Ln%       [eq. S15] 

(S+M)%=100–U%        [eq. S16] 

where AE, AH and AG are the areas of signals E, H and G indicated in Table S2 and 

Figure 1. It must be noted that due to partial overlapping of signals H and G, a 

previous correction of both areas must be undertaken to properly assess the area 

corresponding to each one of them. For this purpose, trilinolein and trilinolenin, 

acquired from Sigma-Aldrich, were used as references. 

C. Oxidation compounds and -tocopherol 

The concentration of the several kinds of oxidation compounds, as well as that of -

tocopherol, expressed as millimoles per mole of the sum of AG+FA present, was 

estimated by using the following equations: 

[OP] = [(AOP/n)/(AF/2)]*1000      [eq. S17] 

[-T] = [AT/(AF/2)]*1000       [eq. S18] 

 

where AOP and AT are the areas of the signals selected for the quantification of each 

oxidation product (OP) and of -T, respectively (see Table S2), and n the number of 

protons that generate each signal. In the case of epoxides (signals “c1-c4” in Table 

S2), the overlapped area due to the side band of bis-allylic protons signals G and H 

must be subtracted. Although the epoxy-compounds given in Table S1 can contribute 

to signal “c” either with one (“c4”) or with two protons (“c1-c3”), it has been 

assumed that all contribute with two protons. 

 

Standard compounds used for the identification of volatile compounds by SPME-

GC/MS 

 

Pentanal (base peak: 86), hexanal (100), (E)-2-pentenal (84), (E)-2-heptenal (112), 

(Z,E)-2,4-heptadienal (110), (E,E)-2,4-heptadienal (110), (E,E)-2,4-nonadienal (138), 

(Z,E)-2,4-decadienal (152), (E,E)-2,4-decadienal (152) and 2-pentyl-furan (138). 
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ABSTRACT  

The behaviour of slightly oxidized virgin and refined soybean oils during in vitro 

digestion was studied by 
1
H Nuclear Magnetic Resonance (

1
H NMR) and Solid Phase 

Microextraction-Gas Chromatography/Mass Spectrometry. The main objectives were to 

analyze lipolysis extent and oxidation during digestion, and to assess the impact of two 

different proportions of ovalbumin on both processes. At the same time -tocopherol 

fate was monitored, when possible, by 
1
H NMR. The results reveal that the initial 

oxidation degree of the oils negatively influences the lipolysis extent, reducing the 

bioaccessibility of the major oil components, which include some essential fatty acids. 

Although the low ovalbumin proportion tested does not significantly affect lipolysis, 

this is greatly enhanced when ovalbumin is added at a high level, improving lipid 

bioaccessibility. It has also been shown that oxidation does not seem to have occurred to 

a great enough extent during digestion for it to be detected from polyunsaturated acyl 

group degradation. Moreover, the changes observed in the oxidation product profile of 

the starting oils after digestion can be considered to be due mainly to the transformation 

of the initially present hydroperoxides, whose concentration diminishes in the digested 

samples to give hydroxy-dienes, epoxides and aldehydes. In presence of a high 

ovalbumin proportion, hydroperoxide reduction to hydroxy-dienes is favoured and 

lower levels of aldehydes and epoxides are observed. This latter could be due to a 

diminution in their generation and/or to their reaction with ovalbumin. A high 

proportion of this protein in the system also increases -tocopherol bioaccessibility. 
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1. INTRODUCTION 

Knowledge of the processes undergone by food components during digestion 

represents a great challenge due to their health-related implications and to the multitude 

of factors that can influence the course of such processes. In this regard, lipids deserve 

special attention since they are vehicles of both major and minor essential nutrients that 

are exposed to different types of reactions along the gastrointestinal tract. These may 

include hydrolysis, oxidation or interactions with other food components,
1-4

 which will 

finally determine not only the bioaccessibility of these nutrients but also the nature of 

the compounds present in the food bolus. 

With regard to oxidation reactions, their occurrence throughout the digestion process 

has been demonstrated by several authors.
5-8

 As a consequence, the nutritional quality 

and safety of food can be adversely affected, since not only losses of essential lipophilic 

nutrients like polyunsaturated fatty acids or certain antioxidants can occur,
3,6,9

 but also 

compounds with negative biological implications, such as oxygenated -unsaturated 

aldehydes,
10

 could be generated
5
. In this context, the unsaturation degree of lipids and 

their oxidation extent have been found to affect the oxidation progress throughout 

digestion.
3,6,7,9 

Another element that can influence the evolution of digested lipids in the 

gastrointestinal tract is the presence of other nutrients, among them proteins. In this 

sense, Nieva-Echevarría, Goicoechea and Guillén
4
 investigated the effect of two 

proteins (ovalbumin and soy protein isolate) on the in vitro digestion process of slightly 

oxidized sunflower and flaxseed oils, using quite a high proportion of proteins to lipids, 

in order to simulate the ratio that might exist between these two types of nutrients in a 

model food system. It was observed that the presence of protein during the in vitro 

digestion of edible oils affects the extent of lipolysis and of oxidation reactions taking 

place during this process; this can be explained both by the emulsifying properties of 

this type of compounds
11

 and by the antioxidant ability of proteins and peptides,
12

 

which might favour and limit, respectively, both types of reactions. However, the 

impact of proteins on oxidation reactions also depends on their composition, since iron-

containing proteins (heme proteins) could promote oxidation during digestion.
13

 

Bearing in mind all the above, and with the aim of contributing towards building a 

solid body of knowledge concerning the complex process of lipid digestion, which is 

directly relevant to the health effects of dietary lipids, the study under in vitro digestion 
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conditions of slightly oxidized virgin and refined soybean oils was tackled in this work. 

These oils were selected as examples of linoleic-rich vegetable oils but, unlike the 

sunflower oil previously studied,
6
 with a certain proportion of linolenic acyl groups and 

a different profile in minor components when compared with the latter.
14

 The main 

difference between these two oils in their unoxidized state laid in their composition in 

minor components
15

. In this context, the fate during in vitro digestion of -tocopherol 

(-T), the main tocopherol present in soybean oil,
14

 was monitored when possible. The 

use of slightly oxidized oils will show the extent to which their initial lipid degradation 

status can affect the progress of lipolysis and oxidation during in vitro digestion. In 

addition, the influence on these processes of the presence of two fairly different 

proportions of ovalbumin, a non-heme protein widely employed as an ingredient in 

many food formulations, was also addressed. 

The techniques employed were Proton Nuclear Magnetic Resonance (
1
H NMR) and 

Solid Phase Microextraction followed by Gas Chromatography/Mass Spectrometry 

(SPME-GC/MS). 
1
H NMR allows one to study simultaneously the lipolysis degree, the 

oxidation extent and the evolution of -T through the in vitro digestion of the selected 

oils. This technique is able to provide information about oxidation products that can be 

either bound or unbound to acyl groups. SPME-GC/MS, in turn, constitutes a 

complementary and very useful tool that, thanks to its higher sensitivity and specificity, 

makes it possible to obtain further information in relation to the occurrence of oxidation 

and even to confirm the results obtained by using 
1
H NMR. 

2. MATERIALS AND METHODS  

2.1. Samples subjected to in vitro digestion 

The samples subjected to in vitro digestion were two slightly oxidized commercial 

soybean oils: one virgin (VSx) and the other refined (RSx). They were obtained after 

submitting the corresponding fresh oils to accelerated storage conditions, as in previous 

works.
16,17

 To this aim, 10 g of each of the fresh oils were weighed in glass Petri dishes 

of 80 mm diameter and placed in a convection oven (Memmert GmbH+Co, Schwabach, 

Germany) at 70ºC with circulating air for 4 and 5 days in the case of the virgin and the 

refined oils respectively, in order to obtain oils with a similar oxidation degree. 

In addition, samples were prepared by mixing each of these two slightly oxidized oils 

with two different proportions of ovalbumin; 0.26 g of ovalbumin per g of oil in the 

samples with the low level of ovalbumin (VSx+LO and RSx+LO) and 2.6 g of 
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ovalbumin per g of oil in the ones with the high ovalbumin proportion (VSx+HO and 

RSx+HO), this latter corresponding to a dose previously used in another study.
4
 Food 

grade ovalbumin was acquired from a protein manufacturer (Apasa SA, Astigarraga, 

Spain). 

2.2. In vitro digestion 

Samples (0.5 g) of the two oils, both in the absence and in presence of ovalbumin, 

were digested following the same procedure as in previous works,
6,7

 based on the static 

in vitro gastrointestinal model developed by Versantvoort, Oomen, Van de Kamp, 

Rompelberg and Sips
18

 and slightly modified in our laboratory in order to reach a higher 

level of lipolysis.
19

 This in vitro digestion model involves a three-step procedure to 

simulate digestive processes in the mouth, stomach, and small intestine, by sequentially 

adding the corresponding digestive juices. More details about the in vitro digestion 

procedure can be found in the supplementary material. 

All the reagents used were acquired from Sigma-Aldrich (St. Louis, MO, USA). Two 

digestion experiments, each including duplicate samples of the two studied oils, were 

performed. Blank samples corresponding to the mixture of juices submitted to digestive 

conditions were also taken for further analysis. 

2.3. Lipid extraction of the digestates 

Lipids of the digestates were extracted using dichloromethane as solvent (HPLC 

grade, Sigma-Aldrich) and following the same methodology as in previous studies,
20

 

which involves a three-stage liquid-liquid extraction process with 20 ml of 

dichloromethane each. Afterwards, to ensure a complete protonation of fatty acids 

and/or the dissociation of the potential salts formed, the remaining water phase was 

acidified to pH 2 with HCl (37%) and a second extraction was carried out, also in three 

steps.
6,7

 Given that in the case of the samples with a high proportion of ovalbumin a 

strong emulsion is formed when mixing the digested sample with the extraction solvent, 

which makes it difficult to separate the aqueous and lipid phases, the extraction was 

performed with the aid of a centrifuge in order to break up this emulsion. For this 

purpose, a Sigma 3K30 centrifugal machine working at 10,000 rpm was used (Sigma 

Laboratory Centrifuges, Germany), each extraction step lasting 10 min. This same 

extraction procedure was used for all the samples, without any differences in extraction 

efficiencies achieved when using either centrifugation or extraction with separating 

funnels in the case of the samples without ovalbumin and with a low proportion of this 
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protein. All the dichloromethane extracts of each sample were mixed and the solvent 

was eliminated by means of a rotary evaporator under reduced pressure at room 

temperature, in order to avoid lipid oxidation. Afterwards, these extracts were stored at -

80 ºC until their analysis. 

2.4. Analysis by 
1
H NMR 

2.4.1. Operating conditions 

The 
1
H NMR spectra of the starting oils (VSx and RSx), of the lipid extracts of their 

corresponding digestates (DVSx and DRSx), and of the extracts obtained from the 

digestates of the oil samples containing a low proportion of ovalbumin (D(VSx+LO) 

and D(RSx+LO)), and a high proportion of this protein (D(VSx+HO) and D(RSx+HO)) 

were acquired in quadruplicate using a Bruker Avance 400 spectrometer operating at 

400 MHz. For this purpose, the above-mentioned lipid samples (approximately 0.16 g) 

were dissolved in 400 µl of deuterated chloroform, which contained tetramethylsilane 

(TMS) as internal reference (Cortec, Paris, France). The acquisition conditions were the 

same as those used in previous studies.
21,22

 

2.4.2. Identification of some lipid components 

The identification of the oil acyl groups, of partial glycerides, of -T and of the 

oxidation products present in the various samples was carried out on the basis of the 

signal assignments shown in Table S1 (see supplementary material), made from 

bibliographic data and with the aid of several standard compounds. These were: -T, 

acquired from Sigma-Aldrich, and cis-(12,13)-epoxy-9(Z),15(Z)-octadecadienoic acid, 

acquired from Cymit Quimica (Barcelona, Spain). 

2.4.3. Quantification from 
1
H NMR spectral data 

Bearing in mind that the area of each 
1
H NMR spectral signal is proportional to the 

number of protons that generate it, and that the proportionality constant is the same for 

all kinds of protons, the area of some spectral signals can be employed to quantify: i) 

the molar percentages of the different types of glycerides; ii) the molar concentrations 

of linolenic and linoleic acyl groups+fatty acids, referring to the total of acyl 

groups+fatty acids; iii) the molar concentration of -T, referring to the total of acyl 

groups+fatty acids; and iv) the molar concentrations of several oxidation compounds 

present in the starting oils and/or in the lipid extracts of the digestates, referring to the 

total of acyl groups+fatty acids, following the procedures indicated below. 
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Various types of glycerides and glycerol. The molar percentages of triglycerides 

(TG%), diglycerides (1,2-DG% and 1,3-DG%), monoglycerides (2-MG%  and 1-MG%) 

and glycerol in relation to the total number of glyceryl structures present in the lipid 

samples were determined using the equations developed and validated in previous 

studies.
20,23

 All these equations are given as supplementary material (see equations [S1-

S10]). 

Another parameter relating to lipolysis extent can also be determined from the data 

relative to the different types of glycerides, namely lipid bioaccessibility (LBA). This 

takes into account only the molecules that are directly absorbable, monoglycerides and 

fatty acids, in relation to the total number of acyl groups+fatty acids present in the 

sample. This parameter was calculated by using equations [S11 and S12]. 

Lipid composition. The concentrations of linolenic and linoleic acyl groups+fatty acids 

were estimated in millimoles per mole of the sum of acyl groups+fatty acids (mmol/mol 

AG+FA), both in the starting oils and in the lipid extracts of the digested samples, by 

using equations [S13 and S14]. 

Oxidation compounds. The molar concentrations of the different types of oxidation 

products present in the starting oils and in the lipid extracts of the digested samples, 

referring to the total of acyl groups+fatty acids and expressed as mmol/mol AG+FA, 

were also estimated as in a previous study
4
 by using equation [S15]. 

It must be noticed that, as shown in Figure S1 for D(VSx+HO) (see supplementary 

material), in the case of the samples digested with a high ovalbumin proportion, signals 

coming from the protein used are perceived in the 
1
H NMR spectra of their 

corresponding digestates. Some of these overlap with the signals used to estimate both 

the concentration of epoxides giving signal at 2.9 ppm (see signals “e1-e4” in Table S1) 

and the molar percentages of 1,3-DG and TG (see signals “M” and “O”, respectively), 

so their contribution must be subtracted, especially in the case of epoxides. For this 

purpose, ovalbumin was added to the digestive juices after undergoing the digestion 

process and this mixture was extracted in the same way as the rest of digested samples; 

the relative areas of the different ovalbumin signals can be determined from the 

corresponding 
1
H NMR spectrum, free of lipids. This enables one to subtract the area of 

the signals overlapping with those of lipid components in the spectra of the extracts 

obtained from the digested oil samples taking as a reference the signals that do not 

overlap with one another (see Figure S1). It is worth noticing that while some signals 
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coming from ovalbumin also overlap with those of bis-allylic protons (signals “H+G”), 

their area is very small in relation to that of the latter, and so can be ignored. 

-T. The concentration of -T was estimated from signal “h” (see Table S1), in the same 

way as described for oxidation compounds (see equation [S16]). 

2.5. Study of oxidation during in vitro digestion by Solid Phase Microextraction 

followed by Gas Chromatography/Mass Spectrometry 

2.5.1. Solid Phase Microextraction (SPME) 

The extraction of the volatile components of the several digestates (0.5 g in 10 ml 

screw-cap vials) was carried out automatically by using a CombiPAL autosampler 

(Agilent Technologies, Santa Clara, CA, USA), in the same way as in previous 

works.
4,6,7

  

Given that the nature of the samples subjected to the digestion process (oil samples) 

is very different from that of the digestates (with a basically aqueous matrix), it is 

necessary to prepare mixtures of the non-digested oils with the digestive juices after 

being submitted to the digestion process, in the same proportions as in the digestates; 

this enables one to make an adequate assessment by SPME-GC/MS of the changes 

taking place throughout the in vitro digestion process. Therefore, the samples subject of 

study, which were analyzed in duplicate, were the following: i) the digestates both of 

the slightly oxidized soybean oil samples (DVSx and DRSx), and of the slightly 

oxidized oil samples plus ovalbumin at the two levels of concentration (D(VSx+LO), 

D(RSx+LO), D(VSx+HO) and D(RSx+HO)); ii) the digestive juices after being 

submitted to digestion conditions (DJ); and iii) the mixtures made up of the starting oils 

and DJ (VSx+DJ and RSx+DJ). 

The fiber used, coated with Divinylbenzene/Carboxen/Polydimethylsiloxane 

(DVB/CAR/PDMS, 50/30 m film thickness, 1 cm long), was acquired from Supelco 

(Sigma-Aldrich); this was inserted into the headspace of the sample and was maintained 

for 55 min at 50 ºC, after a pre-equilibration time of 5 min. 

2.5.2. Gas chromatography/Mass Spectrometry (GC/MS) study 

Operating conditions. The fiber containing the extracted components was desorbed for 

10 min in the injection port (splitless mode with 5 min purge time) of a 7890A gas 

chromatograph equipped with a 5975C inert MSD with Triple Axis Detector (Agilent 

Technologies) and a computer operating with the ChemStation program. The column 

used was a fused-silica capillary column (60 m long x 0.25 mm inner diameter x 0.25 
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m film thickness, from Agilent J&W Advanced Capillary GC Columns), coated with a 

non-polar stationary phase (HP-5MS, 5% phenyl methyl siloxane). The operating 

conditions were as follows: the oven temperature was set initially at 50º C (5 min hold) 

and increased to 290 ºC at 4 ºC/ min (2 min hold); the temperatures of the ion source 

and of the quadrupole mass analyser were kept at 230 ºC and 150 ºC respectively; 

helium was used as carrier gas at a pressure of 18.611 psi; injector temperature was held 

at 250 ºC; mass spectra were recorded at an ionization energy of 70 eV, and the data 

acquisition mode employed was scan. In order to avoid carry-over problems between 

samples, after each run the fiber was submitted to heating at 250 ºC for 20 min in the 

Fiber Cleaning and Conditioning Station of the CombiPAL autosampler. 

A reference sample of known composition was periodically analyzed in order to 

verify not only the extraction efficiency and repeatability of the SPME fiber but also the 

performance of the equipment. 

Identification of the compounds present in the headspace of the samples. Most of the 

components were identified by using commercial standards, acquired from Sigma-

Aldrich. These were: pentanal (base peak: 86), hexanal (100), heptanal (114), octanal 

(128), nonanal (142), (E)-2-pentenal (84), (E)-2-hexenal (98), (E)-2-heptenal (112), (E)-

2-octenal (126), (E)-2-nonenal (140), (Z,E)-2,4-heptadienal (110), (E,E)-2,4-heptadienal 

(110), (Z,E)-2,4-nonadienal (138), (E,E)-2,4-nonadienal (138), (Z,E)-2,4-decadienal 

(152), (E,E)-2,4-decadienal (152) and 2-pentyl-furan (138). 

When standards were not available, matching of the mass spectra with those obtained 

from scientific literature or from a commercial library at higher than 85% (Wiley 

W9N08, Mass Spectral Database of the National Institute of Standards and Technology 

(NIST)), was taken as identification criterion. 

Semi-quantification of the compounds present in the headspace of the samples. This 

was based on the area counts of the base peak (Bp) of the mass spectrum of each 

compound divided by 10
6
. When the Bp of a compound overlapped with the same ion 

peak of the mass spectrum of another compound, an alternative ion peak was selected 

for the semi-quantification of the former. The area counts thus determined are useful for 

the comparison of the abundance of each compound in the different samples. 

2.6. Statistical analysis  
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The significance of the differences between the various determinations made among 

the samples was determined by one-way variance analysis (ANOVA) followed by 

Tukey b test at p < 0.05, using SPSS Statistics 24 software (IBM, NY, USA). 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of the starting oil samples 

As mentioned in section 2.1, the samples selected for the study were two slightly 

oxidized soybean oils: one virgin and the other refined. The concentrations of their 

polyunsaturated acyl groups (linolenic and linoleic), and of some oxidation compounds, 

all of them determined by 
1
H NMR and expressed in mmol/mol AG+FA, are given in 

Tables 1 and 2, respectively. Table 2 reveals that both oils have a low oxidation level, 

their concentration of hydroperoxides (signals “c” and “b” in Figure 1) being very low, 

with values of 11.16 ± 0.22 mmol/mol AG+FA in the virgin oil and 11.97 ± 1.21 

mmol/mol AG+FA in the refined one. Both samples also have small concentrations of 

epoxides (see signal “e” in Figure 1) and aldehydes are not detected in the 
1
H NMR 

spectra of any of these oils. A small amount of hydroxy (Z,E)-conjugated dienes can 

also be noticed in the virgin oil (signal “a” in Figure 1). The concentrations of 

tocopherols and squalene are higher in the oxidized refined oil than in the oxidized 

virgin oil, and the opposite is true for free fatty acids (see Table S2 in the supplementary 

material).  
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Table 1. Concentrations of polyunsaturated AG+FA, expressed as mmol/mol AG+FA, 

in the slightly oxidized virgin and refined soybean oil samples, before (VSx and RSx) 

and after in vitro digestion in the absence of ovalbumin (DVSx and DRSx), with a low 

proportion of ovalbumin added (D(VSx+LO) and D(RSx+LO)) and with a high 

proportion of ovalbumin (D(VSx+HO) and D(RSx+HO)). Different letters within each 

column indicate a significant difference among the samples corresponding to the same 

type of oil (virgin or refined) (p < 0.05). AG+FA: acyl groups+fatty acids. 

 

 

 

 

 

 

 

3.2.1. Lipolysis in the samples digested without ovalbumin 

As one would expect, the main glyceride structures present in the non-digested oils 

were TG, together with a much lower proportion of 1,2-DG. This can be observed in 

Table 3, which shows the molar percentages of the several kinds of glycerides and of 

glycerol, in all the studied samples before and after digestion, in relation to the total 

number of glyceryl structures. As this table reveals, the molar percentage of TG greatly 

diminishes after digestion, reaching values of 30.47 and 31.38% in the digested virgin 

and refined oil samples, respectively. These figures are of a similar order to those 

obtained in earlier works conducted with slightly oxidized samples of other highly 

unsaturated oils like sunflower
6
 and flaxseed;

7
 and the same can be said of the relative 

proportions of the different types of partial glycerides generated during the lipolytic 

process. Of these, 2-MG and 1,2-DG are the most abundant, while the molar 

percentages of 1-MG and 1,3-DG are much lower. 

3.2. Extent of lipolysis through the in vitro digestion 

However, the TG molar percentages in the digested samples are higher than those 

found when the same unoxidized soybean oils were digested, which were close to 

22%.
15

 The lower hydrolysis extent found in the oxidized oils, which is in agreement 

with the findings of other authors,
24,25

 could be explained by decreased lipase activity  

 
Linolenic Linoleic 

VSx 51.4 ±1.7a 431.3 ± 2.9a 

DVSx 49.8 ± 3.2a 424.9 ± 12.5a 

D(VSx+LO) 50.0 ± 1.0a 422.7 ± 8.4a 

D(VSx+HO) 50.7 ± 2.6a 426.1 ± 3.6a 

         
RSx 44.3 ± 1.8a 459.5 ± 12.7a 

DRSx 42.5 ± 3.0a 451.4 ± 13.3a 

D(RSx+LO) 42.7 ± 2.8a 452.3 ± 0.7a 

D(RSx+HO) 43.8 ± 2.1a 454.2 ± 2.2a 
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Table 2. Concentrations of the several kinds of oxidation compounds, expressed in mmol/mol of acyl groups+fatty acids, present in the virgin 

and refined slightly oxidized soybean oil samples, before (VSx and RSx) and after in vitro digestion in the absence of ovalbumin (DVSx and 

DRSx), with a low proportion of ovalbumin added (D(VSx+LO) and D(RSx+LO)) and with a high proportion of ovalbumin (D(VSx+HO) and 

D(RSx+HO)). Different letters within each column indicate a significant difference among the samples corresponding to the same type of oil 

(virgin or refined) (p < 0.05). CD-OOH: conjugated hydroperoxy-dienes; CD-OH: conjugated hydroxy-dienes. 
 

-: not detected 

 

 
(Z,E)-CD-

OOH 

(E,E)-CD-

OOH 

Total CD-

OOH 

(Z,E)-CD-

OH 

(E,E)-CD-

OH 

Total CD-

OH 
Epoxides n-Alkanals 

VSx 5.19 ± 0.31c 5.97 ± 0.13c 11.16 ± 0.22c 1.16 ± 0.29a - 1.16 ± 0.29a 1.42 ± 0.05a - 

DVSx 3.60 ± 0.28b 2.64 ± 0.26b 6.24 ± 0.38b 1.54 ± 0.09b 1.99 ± 0.15a 3.53 ± 0.19b 5.03 ± 1.23b 0.71 ± 0.21b 

D(VSx+LO) 3.62 ± 0.39b 2.55 ± 0.34b 6.17 ± 0.70b 1.84 ± 0.05b 2.03 ± 0.10a 3.87 ± 0.15b 4.93 ± 0.98b 0.49 ± 0.11b 

D(VSx+HO) 1.74 ± 0.41a 0.82 ± 0.09a 2.56 ± 0.49a 4.19 ± 0.38c 3.79 ± 0.33b 7.97 ± 0.44c 3.83 ± 0.29b 0.28 ± 0.04a 

         

RSx 5.87 ± 0.63c 6.09 ± 0.62c 11.97 ± 1.21c - - - 3.63 ± 0.14a - 

DRSx 4.67 ± 0.80bc 2.53 ± 0.18b 7.20 ± 0.95b 1.42 ± 0.15a 2.10 ± 0.36a 3.52 ± 0.44a 6.95 ± 0.69c 0.58 ± 0.07b 

D(RSx+LO) 4.37 ± 0.04b 2.48 ± 0.12b 6.85 ± 0.17b 1.63 ± 0.19a 2.54 ± 0.18a 4.16 ± 0.26a 6.53 ± 0.41c 0.52 ± 0.11b 

D(RSx+HO) 1.68 ± 0.13a 1.05 ± 0.14a 2.73 ± 0.21a 4.16 ± 0.48b 3.92 ± 0.41b 8.08 ± 0.89b 5.54 ± 0.55b 0.23 ± 0.04a 
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due to the incipient oxidation level of the samples. In fact, it has been reported that 

hydroperoxides, present in the oxidized oil samples of this work (see section 3.1), could 

react with amino acid residues of proteins,
26,27

 which could lead to a decrease in their 

functionality in the case of enzymes. Thus, decreased activity of several digestive 

enzymes, including porcine pancreatic lipase, which is the main lipase used in this 

study, due to their interaction with lipid hydroperoxides has been reported by some 

researchers.
28-30

 In addition, other authors
31

 have described that the presence of dimers 

and polymers generated due to lipid oxidation impairs TG hydrolysis by negatively 

affecting the activity of pancreatic lipase; however, this type of oxidation products has 

not been determined in the present work. 

The lower lipolysis degree achieved in the digestates of the oxidized oil samples here 

studied when compared with those of their respective fresh oil samples
15

 is also noticed 

in the lower molar percentage of glycerol in the former (23.12 and 20.14% in the virgin 

and in the refined oil samples, respectively) than in the latter (near 30%). 

3.2.2. Lipolysis in the samples containing ovalbumin 

The addition of a low proportion of ovalbumin (0.26 g ovalbumin per g of oil) to the 

slightly oxidized soybean oil samples does not cause significant variations in the 

lipolytic process, as can be seen in Table 3. However, in the samples containing a high 

level of this protein (2.6 g per g of oil), a very high lipolysis degree is achieved; this can 

be observed in Table 3, which shows percentages of remaining TG of 5.26% and 7.27% 

in the digestates of the virgin and the refined oil samples, respectively. The great 

increment observed in lipolysis could be due to the emulsifying effect of the ovalbumin 

added,
32

 possibly increased during in vitro digestion due to proteolysis;
33

 this is 

expected to improve the dispersion of the oil into the aqueous phase and to reduce the 

oil droplets size, thus increasing the lipid area exposed to the action of lipases. 

It must also be highlighted that the lipolysis extent in the samples digested with a 

high ovalbumin proportion was considerably higher even than that achieved after the in 

vitro digestion of the same unoxidized soybean oils.
15

 Therefore, in the light of these 

findings, one could conclude that the presence of this high level of ovalbumin clearly 

favours lipid digestion by improving lipolysis and, in consequence, the bioaccessibility 

of some lipophilic nutrients. These outcomes confirm those results observed in previous 

works concerning the effect of the same ovalbumin proportion here tested on the 

lipolysis degree of slightly oxidized sunflower and flaxseed oils.
4,6,7
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Another noteworthy fact about the samples digested with a high proportion of 

ovalbumin is the important surge in the molar percentage of 2-MG in comparison with 

the rest of the digested samples. This reveals that, despite the high extent of TG 

hydrolysis observed in these samples, the increased lipolytic process does not seem to 

go beyond 2-MG; consequently, a great increase in glycerol molar percentage is not 

observed (see Table 3). The buffer capacity of ovalbumin might be involved in this 

finding, since it has been reported that a more alkaline pH in aqueous media can restrict 

the isomerization reactions of 2-MG to 1-MG;
34

 this would limit the MG hydrolysis to 

give rise to glycerol and fatty acids, since pancreatic lipase acts specifically on 1-MG.
35

 

In this sense, it is worth mentioning that a higher pH was found during the gastric stage 

of the in vitro digestion process of the samples with a high proportion of ovalbumin in 

comparison with the rest of the samples. This potential influence of pH, coupled with 

the higher hydrolysis of TG, and by extension, of 1,2-DG, might explain the 

accumulation of 2-MG; however, the influence of other factors should not be discarded 

either. This high proportion of 2-MG could in turn also contribute towards favouring the 

lipolytic process to a certain extent since, according to some authors,
36

 monoglycerides 

are highly surface-active products that can help to decrease the mean droplet diameter. 

With respect to the molar percentages of 1,2-DG and 1,3-DG, these are somewhat 

higher and lower, respectively, than in the samples digested without ovalbumin and 

with a small proportion of this protein. These outcomes might be a consequence of the 

enhanced lipolysis degree reached when digestion is performed in presence of a high 

ovalbumin level. 

3.3. Lipid bioaccessibility 

Of the parameters employed to evaluate the extent of lipolysis, lipid bioaccessibility 

(LBA) can be considered of particular interest, since it indicates the proportion of 

absorbable molecules (fatty acids and MG) with respect to the sum of acyl groups+fatty 

acids.
3
 While the addition of a low proportion of ovalbumin does not affect this 

parameter (see Table 3), when a high level of ovalbumin is present in the medium, LBA 

increases considerably, reaching values of 81.50% and 77.79% in the digestates of the 

virgin and of the refined oil samples, respectively. This indicates that the presence of 

this high proportion of protein can improve the absorption of dietary lipids, mainly due 

to the greatly increased 2-MG molar percentage. 

3.4. Assessment by 
1
H NMR of lipid oxidation during in vitro digestion 
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3.4.1. Study of the changes undergone by polyunsaturated acyl groups+fatty acids 

throughout in vitro digestion 

The molar concentrations of the polyunsaturated groups in relation to the total of acyl 

groups+fatty acids in all the digested samples are shown in Table 1, together with those 

corresponding to the starting oils. Comparing the data before and after the in vitro 

digestion process, both in the absence and in presence of the two different ovalbumin 

proportions, statistically significant changes are not noticed. This reveals that, despite 

the initial oxidative degradation of the soybean oils here studied, oxidation occurrence 

during in vitro digestion cannot be inferred from acyl group degradation. However, this 

does not mean that some oxidation, undetectable through variations in the 

concentrations of polyunsaturated groups determined from 
1
H NMR spectral data, has 

not taken place. 

3.4.2. Study of the changes in the oxidation product profile caused by in vitro 

digestion 

Evolution of hydroperoxide concentration. The in vitro digestion process causes a 

diminution in the concentration of hydroperoxides initially present in the oil samples, 

monitored through their associated conjugated dienes, this being more pronounced for 

the hydroperoxy-(E,E)-isomers than for the (Z,E)-ones (see Figure 1 and Table 2). This 

does not necessarily mean that hydroperoxides are not generated during in vitro 

digestion, but that the rate of transformation overtakes that of formation. The same is 

observed when the samples are digested in presence of ovalbumin. However, while a 

low proportion of this protein does not significantly affect the hydroperoxide levels 

found after digestion, a more pronounced decline in the concentration of conjugated 

(Z,E)-, and especially of (E,E)-hydroperoxy-dienes occurs in the samples digested with 

a high ovalbumin proportion in comparison with the rest of digested samples. At this 

point, it is worth noticing that conflicting results can be found about the stability and 

evolution of hydroperoxides in the gastrointestinal tract, as discussed by Márquez-Ruiz 

and coworkers.
24

 Thus, according to some authors,
37,38

 hydroperoxides decompose in  

the stomach giving rise to other oxidation products, while other researchers have proved 

that hydroperoxides can reach the intestine and then be absorbed.
39

 In our case, although 

hydroperoxide concentration diminishes during digestion, some part of them remains in 

the digestates. 
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Table 3. Molar percentages of triglycerides (TG%), diglycerides (1,2-DG% and 1,3-DG%), monoglycerides (2-MG%  and 1-MG%) and glycerol 

(Gol%) in relation to the total number of glyceryl structures present in the lipid samples, together with lipid bioaccessibility (LBA) parameter, in 

the slightly oxidized virgin and refined soybean oil samples, before (VSx and RSx) and after in vitro digestion in the absence of ovalbumin 

(DVSx and DRSx), with a low proportion of ovalbumin added (D(VSx+LO) and D(RSx+LO)), and with a high proportion of ovalbumin 

(D(VSx+HO) and D(RSx+HO)). Different letters within each column indicate a significant difference among the samples corresponding to the 

same type of oil (virgin or refined) (p < 0.05). 

-: not detected; nd: not determined 

  

 TG% 1,2-DG% 1,3-DG% 2-MG% 1-MG% Gol% LBA 

VSx 99.50 ± 0.05c 0.29 ± 0.02a - - - nd nd 

DVSx 30.47 ± 4.11b 14.15 ± 2.25b 3.01 ± 1.42b 22.84 ± 3.53a 6.41 ± 0.60b 23.12 ± 4.31a 58.09 ± 6.49a 

D(VSx+LO) 29.56 ± 3.00b 15.35 ± 1.34bc 2.98 ± 0.68b 22.96 ± 2.34a 4.31 ± 1.24a  24.84 ± 1.86a 58.22 ± 3.93a 

D(VSx+HO) 5.26 ± 0.08a 17.86 ± 0.14cd 1.99 ± 0.25a 39.17 ± 1.69b 6.75 ± 0.87b 28.97 ± 0.78a 81.50 ± 0.01b 

        

RSx 99.40 ± 0.08c 0.62 ± 0.03a - - - nd nd 

DRSx 31.38 ± 4.51b 14.70 ± 1.40bc 4.26 ± 1.17b 22.67 ± 1.23a 6.86 ± 0.88b 20.14 ± 5.20a 55.98 ± 5.94a 

D(RSx+LO) 30.80 ± 3.391b 16.29 ± 1.50bc 4.11 ± 1.84b 23.77 ± 1.69a 4.92 ± 0.67ab 20.10 ± 5.33a 55.60 ± 5.45a 

D(RSx+HO) 7.27 ± 0.03a 20.88 ± 0.12d 1.53 ± 0.01a 38.37 ± 0.16b 5.32 ± 0.04ab 26.63 ± 0.28a 77.79 ± 0.12b 
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Figure 1. Enlargements of some regions of the 
1
H NMR spectra of the slightly oxidized 

virgin and refined oils (VSx and RSx), and of the lipid extracts obtained after their in 

vitro digestion process in the absence of ovalbumin (DVSx and DRSx), as well as in the 

presence of a low (D(VSx+LO) and D(RSx+LO)) and a high proportion of ovalbumin 

(D(VSx+HO) and D(RSx+HO)). The signal letters agree with those in Table S1, 

considering that “e” includes signals “e1-e4” and “f” signals “f1+f2”. Signals marked 

with an asterisk are considered to come from the ovalbumin sample used. The plots 

corresponding to the same 
1
H NMR spectral region are presented at a fixed value of 

absolute intensity, for them to be valid for comparative purposes. 
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Formation of conjugated hydroxy-dienes. The generation of both conjugated (Z,E)- 

and (E,E)-hydroxy-dienes during digestion is observed in all the studied samples (see 

Figure 1, signals “a” and “d”, and Table 2). This suggests that a small part of the 

hydroperoxides present in the starting oils is reduced to hydroxy-dienes during 

digestion. Actually, the reduction of hydroperoxides to hydroxides throughout this 

process has also been reported previously both in vitro
6
 and in vivo.

37-39
 While an 

increase of a similar order is observed in the concentration of conjugated hydroxy-

dienes in the digestates of oils without or with a low proportion of ovalbumin, this 

increase is noticeably greater in the digestate of the oil with a high ovalbumin level. 

This confirms previous findings
4
 and evidences the reducing effect of this protein. 

Generation of epoxides. The concentration of epoxides exhibits an increment after 

digestion in all the studied samples (see Table 2), of a similar order in both types of 

soybean oils. This is due to an increase in the levels of the epoxides initially present in 

the starting oils, but also to the formation of other types of compounds, also tentatively 

identified as epoxides, which give signal “f” (see Figure 1). Therefore, although 

hydroperoxides and aldehydes are generally employed to assess the occurrence of lipid 

oxidation under diverse conditions including gastrointestinal ones,
8,9

 epoxides should 

not be ignored as oxidation markers; this reinforces previous findings of this research 

group, since the generation of epoxides under in vitro digestion conditions had also 

been observed in slightly oxidized flaxseed oil.
7
 

In line with all the above mentioned, the generation of epoxides during digestion 

does not seem to be influenced by a low ovalbumin concentration. However, a less 

pronounced increment of the level of epoxides is noticed when a high proportion of 

ovalbumin is present in the system (see Table 2). 

Generation of aldehydes. As could be expected, taking into account that a depletion in 

hydroperoxide concentration is observed in the digested samples, aldehydes are 

generated during digestion. This is evidenced by the appearance of signals of n-alkanals 

in the spectra of all the digested samples (see signal “g” in Figure 1); their estimated 

concentrations are displayed in Table 2. The generation of n-alkanals during the in vitro 

digestion of slightly oxidized flaxseed oil was also reported in a previous study.
7
 

Although the concentration of aldehydes found after digestion is not significantly 

affected by the low ovalbumin proportion tested, similarly to that commented on 

epoxides, lower levels of saturated aldehydes are observed after the digestion of the 
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samples containing a high ovalbumin proportion. It is worthwhile mentioning that, as 

Table 2 shows, in all cases aldehydes are present in lower concentrations than epoxides. 

In summary, the in vitro digestion of the slightly oxidized soybean oils and of these oils 

with a low ovalbumin level provokes very similar changes in the oxidation product 

profile of the starting oils. By contrast, when this protein is present in a high 

concentration, the reduction of hydroperoxides to hydroxy-dienes seems to be favoured 

over other reactions leading to the generation of epoxides and aldehydes. However, 

taking into account that not only hydroperoxides but also epoxides and saturated 

aldehydes can react with some amino acid residues of proteins,
26,27,40

 a potential 

reaction of all these compounds with the amino acid residues of ovalbumin should not 

be ruled out as contributing to their lower concentration increase in comparison with the 

rest of digested samples. 

3.5. Assessment of lipid oxidation through in vitro digestion by SPME-GC/MS 

The SPME-GC/MS analysis of the samples provides information about specific 

volatile compounds that can reveal the occurrence of different types of reactions, 

including oxidation. Among the several classes of volatile compounds present in the 

studied oils, interest was focused on aldehydes and 2-pentyl-furan. The compounds 

detected in the various digested samples and their respective abundances, expressed as 

arbitrary area units of the mass spectra base peak (see section 2.5.2), are displayed in 

Figure 2, together with the data related to the reference samples prepared from the 

starting oils (see section 2.5.1), and to the digestive juices after being submitted to 

digestion conditions. The total abundances of each group of aldehydes are shown in 

Table 4. 

As Figure 2 shows, the reference samples already contain aldehydes, both saturated 

(n-alkanals) and unsaturated ((E)-2-alkenals and 2,4-alkadienals). Among n-alkanals, 

hexanal (Hx) stands out both in the virgin and in the refined oils due to its high level 

(Figures 2A and 2B, respectively), probably as a consequence of some linoleic group 

oxidation
41

. Regarding (E)-2-alkenals and 2,4-alkadienals, the most abundant ones 

(apart from (E)-2-butenal, 2B, coming basically from the digestive juices) are (E)-2-

octenal (2O), (E)-2-heptenal (2Hp), (E,E)-2,4-nonadienal (EE-N) and (E,E)-2,4-

decadienal (EE-D), mainly arising from the degradation of linoleic groups, as well as 

2,4-heptadienals (ZE-H and EE-H), generated due to linolenic acyl group oxidation
41

. In 

addition to aldehydes, 2-pentyl-furan was also present in the samples studied. 
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When it comes to the digested samples, it can be observed in Figure 2 that both in the 

samples digested without ovalbumin and with a low proportion of this protein, 

concentration of most n-alkanals increases significantly after in vitro digestion. 

However, for hexanal and nonanal (in this latter case only in the refined oil) the increase 

is less pronounced in the samples with a low ovalbumin level. By contrast, when a high 

ovalbumin proportion is present in the system, hexanal is the only n-alkanal that 

exhibits a concentration increase after digestion, while the rest either remain unchanged 

or show a decrease in relation to the non-digested samples (see Figure 2). In fact, the 

total concentration of saturated aldehydes in the samples digested with a high 

ovalbumin proportion is lower than in the rest of digested samples (see Table 4). These 

findings follow the lines of those above obtained by 
1
H NMR. 

With regard to unsaturated aldehydes, the concentration of most (E)-2-alkenals and 

of all 2,4-alkadienals also increases after digestion in the samples digested without 

ovalbumin (see Figure 2), although the global concentration increment of each group of 

unsaturated aldehydes is not as marked as in the case of the saturated ones (see Table 4). 

It must be highlighted that although 
1
H NMR analysis does not allow one to notice the 

generation of unsaturated aldehydes, it is evidenced by SPME-GC/MS; this might be 

explained by their lower abundance in comparison with that of n-alkanals in the 

digested samples (see Table 4). 

The same trend is observed in the samples digested with a low proportion of 

ovalbumin, where, as in the case of some n-alkanals, the overall increases of both types 

of unsaturated aldehydes are not so generally marked as in the samples digested without 

ovalbumin (see Table 4). However, in contrast to these findings, in the samples digested 

with a high ovalbumin proportion, the concentrations of (E)-2-alkenals and 2,4-

alkadienals generally diminishes after digestion (see Figure 2 and Table 4); this 

reinforces the idea noted above that reactions between aldehydes and ovalbumin take 

place during digestion. In this respect, the reaction of (E)-2-alkenals with proteins is a 

well documented issue.
42

 A reduction in aldehyde concentration during the in vitro 

digestion of other types of slightly oxidized highly unsaturated oils in presence of a high 

protein proportion was also observed in a previous work
4
, but in that case data 

concerning the non-digested samples were not reported, so a direct comparison between 

these and the samples digested in presence of protein could not be made. 
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Figure 2. Bar graphics representing the abundance, expressed as arbitrary area units of the mass spectrum base peak of each compound (see section 2.5.2) 

extracted from the Total Ion Chromatograms obtained by SPME/GC-MS, divided by 10
6
, of n-alkanals, (E)-2-alkenals, 2,4-alkadienals and 2-pentyl-furan in: 

the digestive juices subjected to digestion conditions (DJ), the slightly oxidized virgin (A) and refined (B) oils mixed with the DJ (VSx+DJ and RSx+DJ), the 

slightly oxidized virgin and refined oils digested in the absence of ovalbumin (DVSx and DRSx), with a low proportion of ovalbumin (D(VSx+LO) and 

D(RSx+LO)) and with a high proportion of ovalbumin (D(VSx+HO) and D(RSx+HO)). Different letters within the bars relative to the same compound 

indicate a significant difference among the samples (p < 0.05). Abbreviations employed: pentanal (P), hexanal (Hx), heptanal (Hp), octanal (O), nonanal (N), 

(E)-2-butenal (2B), (E)-2-pentenal (2P), (E)-2-hexenal (2Hx), (E)-2-heptenal (2Hp), (E)-2-octenal (2O), (E)-2-nonenal (2N), (Z,E)-2,4-heptadienal (ZE-H), 

(E,E)-2,4-heptadienal (EE-H), (Z,E)-2,4-nonadienal (ZE-N), (E,E)-2,4-nonadienal (EE-N), (Z,E)-2,4-decadienal (ZE-D), (E,E)-2,4-decadienal (EE-D) and 2-

pentyl-furan (Pf).                                                                                                                                                         .  
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Comparing the effect of the high proportion of ovalbumin on the concentration of the 

various classes of aldehydes after digestion, and taking as a reference their respective 

levels in the samples digested without ovalbumin, it is noticeable that, in general, a 

more pronounced decrease is observed for the unsaturated aldehydes (see Table 4); this 

seems to agree with the greater reactivity that could be expected from this type of 

aldehydes in comparison with the saturated ones. Thus, the level of each aldehyde after 

the digestion process will depend on the balance between its generation and its ability to 

react with the proteins present in the medium. 

In line with observations made for aldehyde evolution, the concentration of 2-pentyl-

furan also increases after digestion, to a similar extent in the samples digested without 

ovalbumin and with a low ovalbumin proportion (see Figure 2). However, in agreement 

with previous findings,
4
 the level of this compound is considerably lower in the samples 

digested with a high proportion of ovalbumin. Taking into account that, as far as we 

know, the ability of 2-pentyl-furan to react with proteins has not been described, this 

might be interpreted as that the presence of a high proportion of ovalbumin has exerted 

a certain antioxidant effect during digestion. 

Table 4. Total abundances of n-alkanals, (E)-2-alkenals and 2,4-alkadienals in: the 

digestive juices subjected to digestion conditions (DJ), the slightly oxidized virgin and 

refined oils mixed with DJ (VSx+DJ and RSx+DJ), and the slightly oxidized virgin and 

refined oils digested in the absence of ovalbumin (DVSx and DRSx), with a low 

proportion of ovalbumin added (D(VSx+LO) and D(RSx+LO)) and with a high 

proportion of ovalbumin (D(VSx+HO) and D(RSx+HO)). Different letters within each 

column indicate a significant difference among the samples corresponding to the same 

type of oil (virgin or refined) (p < 0.05). 

-: not detected 

  n-Alkanals (E)-2-Alkenals 2,4-Alkadienals 

DJ 9.1 ± 0.4a 18.0 ± 4.9a - 

  
  

VSx+DJ 55.4 ± 4.2b 52.3 ± 2.2b 22.3 ± 2.3b 

DVSx 195.0 ± 18.9d 90.1 ± 3.7c 60.7 ± 4.0c 

D(VSx+LO) 167.1 ± 20.8d 66.7 ± 7.3b 56.1 ± 5.0c 

D(VSx+HO) 96.2 ± 6.8c 20.1 ± 3.5a 12.1 ± 0.8a 

RSx+DJ 45.4 ± 2.3b 39.7 ± 5.1b 18.3 ± 1.1b 

DRSx 217.0 ± 22.3e 79.8 ± 3.7d 56.7 ± 3.8d 

D(RSx+LO) 158.2 ± 2.5d 64.7 ±2.7c 49.5 ± 1.1c 

D(RSx+HO) 88.5 ± 3.8c 11.3 ± 0.8a 10.2 ± 0.6a 
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3.6. Evolution of γ-tocopherol during the in vitro digestion process monitored by 
1
H 

NMR 

The main tocopherol in soybean oil is γ-T.
14

 However, in these oxidized oils its 

presence could only be detected by 
1
H NMR in the refined one (see signal “h” in Figure 

1, due to one of the protons present in the γ-T chromanol ring), its concentration being 

low: 0.63±0.06 mmol/mol AG+FA. After digestion, γ-T is only detected in the 
1
H NMR 

spectrum of the sample digested with a high proportion of ovalbumin, although in a 

very low concentration (0.07±0.01 mmol/mol AG+FA). This finding indicates, on the 

one hand, that, in agreement with previous results,
15

 the bioaccessibility of -T 

diminishes during in vitro digestion, and on the other that the presence of a high 

proportion of ovalbumin in the system preserves the -T content of the starting oil to a 

certain extent, possibly due to a decrease in oxidative reactions. 

3.7. Final remarks 

In order to make an approximate assessment of the overall oxidation extent during 

the in vitro digestion of the two types of slightly oxidized soybean oils studied, the total 

amounts of oxidation products considered to be supported on long acyl group or fatty 

acid chains (hydroperoxides, hydroxy-dienes and epoxides), were compared before and 

after this process. According to these data, increments in the total concentration of the 

considered oxidation products of about 1 and 2 mmol/mol AG+FA in the case of the 

virgin and the refined oil samples, respectively, were observed after digestion. This 

suggests that, despite significant variations in acyl groups not being noticed after 

digestion (see Table 1), some oxidation seems to have taken place during this process.  

Although a clear development of oxidative reactions was noticed during the in vitro 

digestion of slightly oxidized flaxseed oil in a previous works,
7
 it must be taken into 

account that it is more prone to oxidation than soybean oil simply due to its composition 

in acyl groups,
43

 although their composition in minor components might also have some 

influence. However, the results found after the in vitro digestion of slightly oxidized 

sunflower oil
6
 are not very different from those here observed. 

It is worth noticing that the small differences in the minor component profile of the 

slightly oxidized virgin and refined soybean oils relative to tocopherol, squalene and 

free fatty acid contents (see Table S2) do not seem to be enough to provoke noticeable 

variations in their behaviour under in vitro digestion conditions. 
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4. CONCLUSIONS 

The results of this work reveal that the initial oxidation degree of the soybean oil 

samples studied leads to a lower lipolysis extent in comparison with non-oxidized oils 

studied before, reducing the bioaccessibility of the oil major components, which include 

some essential fatty acids like -3 ones. This lipolysis degree is not significantly 

affected by the lowest proportion of ovalbumin tested; however, the addition of a high 

ovalbumin level greatly enhances the action of lipolytic enzymes, improving lipid 

bioaccessibility. 

Regarding oxidation, this does not seem to have occurred to a great enough extent for 

it to be detected from polyunsaturated acyl group degradation. Moreover, although the 

slight increase in the total concentration of oxidation products considered to be 

supported on acyl group or fatty acid chains after digestion might indicate some 

oxidation occurrence, the changes observed in the oxidation product profile of the 

digested samples seem to be mainly due to the transformation of the hydroperoxides 

initially present in the oils, to give hydroxy-dienes, epoxides and aldehydes. The fact 

that after digestion epoxides exhibit a greater concentration increase than aldehydes 

evidences that the assessment of lipid oxidation should not be based on only one group 

of oxidation products, but would require the determination of as many types of 

oxidation compounds as possible, among which epoxides should be included. While the 

presence of a low ovalbumin proportion during digestion does not significantly affect 

oxidation compound evolution, a high level of this protein favours the reduction of 

hydroperoxides to hydroxy-dienes over other type of reactions leading to the generation 

of epoxides and aldehydes. Notwithstanding, the decrease observed in the 

concentrations of hydroperoxides, epoxides and aldehydes might also be influenced by 

their reaction with the protein, and indeed, it has been evidenced by SPME-GC/MS in 

the case of aldehydes. 

Therefore, it is evident that ovalbumin, and possibly other proteins, can play a key 

role in the digestion of lipids, especially in those showing a slight oxidation degree, 

increasing their absorbable fraction. In addition, the presence of a high proportion of 

ovalbumin not only increases -T bioaccessibility, but also contributes to reducing the 

concentration in the gastrointestinal tract of certain types of oxidation products that 

could exert negative effects, such as aldehydes and epoxides. 
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Some details of the in vitro digestion procedure 

The digestion experiment started by adding 6 mL of saliva to each of the oil samples. 

After 5 min of incubation, 12 mL of gastric juice were added and the mixture was 

rotated head-over-heels at 40 rpm for 2 h at 37±2ºC. 1 hour after starting the gastric 

digestion, pH was set between 2 and 3 with HCl (37%), simulating the gradual 

acidification of the chyme occurring in vivo. After 2 h of gastric digestion, 2 mL of 

sodium bicarbonate solution (1 M), 12 mL of duodenal juice and 6 mL of bile juice 

were added. Subsequently, pH was set between 6 and 7, and the mixture was rotated 

again at 40 rpm and incubated at 37±2ºC for 4 h. 

The enzymes used for the preparation of digestive juices, acquired from Sigma-Aldrich 

(St. Louis, MO, USA), were the following: α-amylase from Aspergillus oryzae (10065, 

~30 U/mg); pepsin from porcine gastric mucosa (P7125, ≥400 U/mg protein); amano 

lipase A from Aspergillus niger (534781, ≥120,000 U/g); pancreatin from porcine 

pancreas (P1750) and lipase type II crude from porcine pancreas (L3126, 100-500 U/mg 

protein (using olive oil, 30 min incubation)). 
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Table S1. Chemical shift assignments and multiplicities of the 
1
H NMR signals in 

CDCl3 of the main protons of glycerides, fatty acids, some oxidation compounds and -

tocopherol, present in the samples before and after in vitro digestion. TG: triglycerides; 

DG: diglycerides; MG: monoglycerides. The signal letters agree with those given in 

Figures 1 and S1. 

Signal Chemical 

shift (ppm) 
Multipli

city 
Functional group 

Type of protons Compound 

Main acyl groups (AG) and fatty acids (FA)
a,b 

A 0.88 t –CH3 saturated and 

monounsaturated ω-9 AG 

and FA 
 0.89 t –CH3 linoleic AG and FA 

B 0.97 t –CH3 linolenic AG and FA 

C 1.19–1.42 m
* –(CH2)n– AG and FA 

D 1.61 m –OCO–CH2–CH2– AG in TG 

1.62 m –OCO–CH2–CH2– AG in 1,2-DG 

1.63 m –OCO–CH2–CH2–, 

COOH–CH2–CH2– 
AG in 1,3-DG, 1-MG and 

FA 
1.64 m –OCO–CH2–CH2– AG in 2-MG 

E 1.92–2.15 m
** –CH2–CH=CH– AG and FA 

F 2.26–2.36 dt –OCO–CH2– AG in TG 

2.33 m –OCO–CH2– AG in 1,2-DG 

2.35 t –OCO–CH2–, COOH–

CH2– 
AG in 1,3-DG, 1-MG and 

FA 
2.38 t –OCO–CH2– AG in 2-MG 

G 2.77 t =HC–CH2–CH= Linoleic AG and FA 

H 2.80 t =HC–CH2–CH= Linolenic AG and FA 

I 3.65 ddd ROCH2–CHOH–CH2OH glyceryl group in 1-MG 

J 3.73 m
*** ROCH2–CH(OR’)–CH2OH glyceryl group in 1,2-DG 

K 3.84 m
*** HOCH2–CH(OR)–CH2OH glyceryl group in 2-MG 

L 3.94 m ROCH2–CHOH–CH2OH glyceryl group in 1-MG 

M 4.05–4.21 m ROCH2–CHOH–CH2OR’ glyceryl group in 1,3-DG 

N 4.18 ddd ROCH2–CHOH–CH2OH glyceryl group in 1-MG 

O 4.22 dd,dd ROCH2–CH(OR’)–

CH2OR’’ 
glyceryl group in TG 

P 4.28 ddd ROCH2–CH(OR’)–CH2OH glyceryl group in 1,2-DG 

Q 4.93 m HOCH2–CH(OR)–CH2OH glyceryl group in 2-MG 

R 5.08 m ROCH2–CH(OR’)–CH2OH glyceryl group in 1,2-DG 

S 5.27 m ROCH2–CH(OR’)–

CH2OR’’ 
glyceryl group in TG 

T 5.28–5.46 m –CH=CH– AG and FA 

Oxidation compounds 
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Conjugated dienic systems
c,d,e 

– 5.44 ddd –CH=CH–CH=CH– (Z,E)-conjugated 

double bonds 

associated with 

hydroxy group (OH) 

in octadecadienoic 

AG and FA 

- 5.66 dd 

- 5.97 t 

a 6.49 dd 

     

- 5.47 ddm –CH=CH–CH=CH– (E,E)-conjugated 

double bonds 

associated with 

hydroperoxy group 

(OOH) in 

octadecadienoic AG 

and FA 

- 5.76 dtm 

- 6.06 ddtd 

b 6.27 ddm 

     

- 5.51 dtm –CH=CH–CH=CH– (Z,E)-conjugated 

double bonds 

associated with 

hydroperoxy group 

(OOH) in 

octadecadienoic AG 

and FA 

- 5.56 ddm 

- 6.00 ddtd 

c 6.58 dddd 

     

- 5.58 dd –CH=CH–CH=CH– (E,E)-conjugated 

double bonds 

associated with 

hydroxy group (OH) 

in octadecadienoic 

AG and FA 

- 5.71 dd 

- 6.03 dd 

d 6.18 dd 

Epoxides 

Epoxy-derivatives    

e1 2.88
f m -CHOHC- (Z)-9,10-

epoxystearate 
e2 2.9

g  -CHOHC- monoepoxy-

octadecenoate 

groups 
e3 2.94

**** m -CHOHC- (Z)-12,13-epoxy-

9(Z),15(Z)-

octadecadienoic acid 
Epoxy-hydroxy-derivatives   

e4 2.93
h dt -CHOHC-CHOH-CH=CH- threo-11-hydroxy-

(E)-12,13-epoxy-

(Z)-9-octadecenoate 
f1 3.09

i
/3.097

j dd -CHOHC-CH=CH-CHOH- 9-hydroxy-(E)-

12,13-epoxy-(E)-10-

octadecenoate 
Epoxy-hydroperoxy-derivatives 

f2 3.11
i dd -CHOHC-CH=CH-CHOOH- 9-hydroperoxy-(E)-

12,13-epoxy-(E)-10-

octadecenoate
k 
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Aldehydes    

g 9.75
l t -CHO n-alkanals 

     

-Tocopherol
m 

h 6.36
**** s 

 

 

Abbreviations: t: triplet; m: multiplet; d: doublet.
 

*Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in relation 

to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***This signal shows different multiplicity 

if the spectrum is acquired from the pure compound or taking part in the mixture; 

****Assignment made with the aid of standard compounds. 
a
Assignments of AG in TG taken from M. D. Guillén and A. Ruiz, J. Sci. Food Agric., 

2003, 83, 338-346. 
b
Assignments of AG in partial glycerides (DG and MG) and of FA taken from B. Nieva-

Echevarría, E. Goicoechea, M. J. Manzanos and M. D. Guillén, Food Res. Int., 2014, 

66, 379-387. 
c
Data taken from E. Goicoechea and M. D. Guillén, J. Agric. Food Chem., 2010, 58, 

6234-6245 (conjugated (Z,E)- and (E,E)-hydroperoxy-dienes). 
d
Data taken from M. Dong, Y. Oda and M. Hirota, Biosci., Biotech. Biochem., 2000, 64, 

882-886 (conjugated (Z,E)-hydroxy-dienes). 
e
Data taken from P. Tassignon, P. De Waard, T. De Rijk, H. Tournois, D. de Wit and L. 

De Buyck, Chem. Phys. Lipids, 1994, 71, 187-196 (conjugated (E,E)-hydroxy-dienes).
 

f
Data taken from G. Du, A. Tekin, E. G. Hammond and L. K. Woo, J. Am. Oil Chem. 

Soc., 2004, 81, 477-480. 
g
Data taken from H. A. J. Aerts and P. A. Jacobs, J. Am. Oil Chem. Soc., 2004, 81, 841-

846. 
h
Data taken from G. J. Garssen, G. A. Veldink, J. F. Vliegenthart and J. Boldingh, FEBS 

J., 1976, 62, 33-36. 
i
Data taken from H. W. Gardner, D. Weisleder and R. Kleiman, Lipids, 1978, 13, 246-

252. 
j
Data taken from P. A. Van Os Cornelis, J. F. G. Vliegenthart, C. G. Crawford and H. W. 

Gardner, Biochim. Biophys. Acta, 1982, 713, 173-176. 
k
-Ketols (hydroxy-keto-derivatives) could also contribute to this signal (H. W. Gardner, 

R. Kleiman and D. Weisleder, Lipids, 1974, 9, 696-706). 
l
Data taken from M. D. Guillén and A. Ruiz. Eur. J. Lipid Sci. Technol., 2004, 106, 680-

687. 
m

Assignment taken from J. K. Baker and C. W. Myers. Pharm. Res., 1991, 8, 763-770. 

 

https://www.sciencedirect.com/topics/chemistry/double-bond
https://www.sciencedirect.com/topics/chemistry/carbonyl-group
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Quantification from 
1
H NMR spectral data of several compounds present in the 

starting oil samples and/or in the lipid extracts of the digestates, and of Lipid 

Bioaccessibility 

A. Lipolytic products and Lipid Bioaccessibility 

The number of moles (N) of all the glycerides and fatty acids present in the lipid samples 

were expressed as follows:  

N2-MG=Pc*AK/4         [eq. S1] 

N1-MG=Pc*AL         [eq. S2] 

N1,2-DG=Pc*(AI+J-2AL)/2       [eq. S3]  

NTG=Pc*(2A4.26-4.38-AI+J+2AL)/4      [eq. S4] 

N1,3-DG=Pc*(A4.04-4.38-2A4.26-4.38-2AL)/5     [eq. S5] 

NFA=Pc*(AF-6NTG-4N1,2-DG-4N1,3-DG-2N1-MG-2N2-MG)/2   [eq. S6] 

NGol=(NFA-N1,2-DG-N1,3-DG-2N2-MG-2N1-MG)/3     [eq. S7]  

where Pc is the proportionality existing between the area of the 
1
H NMR signals and 

the number of protons that generate them, AK, AL, AI+J and AF are the areas of the 

corresponding signals indicated in Table S1, and A4.26-4.38 and A4.04-4.38 represent the 

areas of the signals between 4.26 and 4.38 ppm, and between 4.04 and 4.38 ppm, 

respectively (see Figure S1). Gol: glycerol. 

Using these equations, the molar percentages of the different kinds of glycerides in 

relation to the total number of moles of glyceryl structures present (NTGS) were 

determined as follows: 

NTGS=NTG+N1,2-DG+N1,3-DG+N2-MG+N1-MG+NGol    [eq. S8] 

G%=100NG/NTGS         [eq. S9] 

 

where G is each kind of glyceride (TG, 1,2-DG, 1,3-DG, 2-MG and 1-MG) and NG 

the respective number of moles. 

 

Gol%=100NGol/NTGS       [eq. S10] 

Likewise, the Lipid Bioaccessibility parameter was calculated as follows: 

LBA%=100(N1-MG+N2-MG+NFA)/NTAG+FA     [eq. S11] 

NTAG+FA=Pc*AF/2        [eq. S12] 

 

where NTAG+FA is the total number of moles of AG plus FA present. 
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B. Polyunsaturated acyl groups and fatty acids  

The concentrations of linolenic (Ln) and linoleic (L) AG and FA, expressed as 

millimoles per mole of the sum of AG+FA present in either the starting oils or the 

lipid extracts of the digested samples were estimated by using the following 

equations: 

[Ln] = [(AH/4)/(AF/2)]*1000      [eq. S13] 

[L] = [(AG/2)/(AF/2)]*1000      [eq. S14] 

 

where AH and AG are the areas of signals H and G indicated in Table S1. It must be 

noted that due to partial overlapping of signals H and G, a previous correction of 

both areas must be carried out to properly assess the area corresponding to each one 

of them. For this purpose, trilinolenin and trilinolein were used as references. 

 

Finally, it should be pointed out that signal F is due to methylenic protons bonded to 

carbon atoms in alpha position in relation to carbonyl/carboxyl groups of AG and 

FA, modified or not, as well as to carbonyl groups of other compounds formed 

during oxidation such as aldehydes. However, as the oxidation level of both the non-

digested and the in vitro digested samples is very low, the inclusion in this signal of 

methylenic protons in alpha position in relation to carbonyl groups different from 

those of AG and FA does not affect the calculations in which AF is included, because 

the concentration of aldehydes is negligible in relation with that of AG+FA. 

C. Oxidation compounds and -tocopherol 

The concentration of the several kinds of oxidation compounds, as well as that of -

tocopherol, expressed as millimoles per mol of the sum of AG+FA present, was 

estimated by using the following equations: 

[OP] = [(AOP/n)/(AF/2)]*1000      [eq. S15] 

[-T] = [(AT/n)/(AF/2)]*1000      [eq. S16] 

 

where AOP and AT are the areas of the signals selected for the quantification of each 

oxidation product (OP) and of -T, shown in Table S1, and n the number of protons 

that generate each signal. In the case of the epoxides giving signal at approximately 

2.9 ppm (signals “e1-e4” in Table S1), the overlapped area due to the side band of 

bis-allylic protons signals G and H must be subtracted. Although the epoxy-
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compounds included in signal “e” can contribute with two (“e1-e3”) or one (“e4”) 

protons, it has been assumed that all contribute with two protons. This type of 

epoxides has been quantified together with those giving signal at approximately 3.1 

ppm (see signals “f1+f2” in Table S1). 

 

 

 

 

Figure S1. Enlargement of some spectral regions of the 
1
H NMR spectra of the lipid 

extracts of: the digestive juices subjected to digestion conditions (DJ); the digestive 

juices subjected to digestion conditions mixed with ovalbumin at the high proportion 

tested (DJ+HO); and the slightly oxidized virgin soybean oil digested in presence of the 

high ovalbumin proportion (D(VSx+HO)). The signal letters agree with those in Table 

S1, considering that signal “e” includes signals “e1 to e4”. Signals marked with an 

asterisk are considered to come from the ovalbumin sample used. 

DJ

DJ+HO

D(VSx+HO)

P

O

O+N+M

*
*

*

* *

*
*

*

ppm

e

4.3 4.2 4.1 2.93.0 2.8 2.7

H+G
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Levels of some minor components in the oxidized oils studied, determined by Direct 

Immersion Solid Phase Microextraction followed by Gas Chromatography/Mass 

Spectrometry (DI SPME-GC/MS), according to the methodology described by J. 

Alberdi-Cedeño, M. L. Ibargoitia, G. Cristillo, P. Sopelana and M. D. Guillén, Food 

Chem., 2017, 221, 1135-1144. 

 

Table S2. Abundances, expressed as arbitrary area units of the mass spectrum 

base peak (BP) of each compound, extracted from the total ion chromatograms 

obtained by DI SPME-GC/MS, divided by 10
6
, of the main minor components of 

the studied soybean oils, together with their respective molecular weights (MW). 

-: not detected 

†This total includes linoleic, oleic and linolenic acids, whose mass spectra base 

peaks are 67, 55 and 79, respectively. However, given that all of them overlap, 

ion 55, common to all these fatty acids, has been used to quantify them 

altogether. 

‡Standard compounds were acquired commercially and used for identification 

purposes. 

 

 

  

Compounds (MW) BP VSx RSx 

Free fatty acids    

Total free fatty acids† 55 136.8 ± 19.9 - 

Tocopherols  

δ-Tocopherol (402)‡ 402 11.0 ± 0.4 15.8 ± 1.3 

β-Tocopherol (416)‡ 416 0.5 ± 0.1 1.2 ± 0.1 

γ-Tocopherol (416)‡ 416 8.4 ± 1.1 34.7 ± 4.7 

α-Tocopherol (430)‡ 165 0.3 ± 0.1 0.5 ± 0.1 

Hydrocarbons    

Squalene (410)‡ 69 22.9 ± 1.7 31.5 ± 0.1 
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ABSTRACT 

The bioaccessibility after in vitro digestion of major lipid nutrients and oxidation 

compounds present in highly oxidized soybean oils was studied by 
1
H NMR, focusing 

attention on lipolysis extent, oxidation occurrence and fate of oxidation compounds. 

Moreover, the effect of two ovalbumin proportions on these processes was also 

addressed. Lipid bioaccessibility is negatively affected by both high initial oil oxidation 

level and by the occurrence of oxidation during digestion, which cause a reduction in 

lipolysis and in the concentration of polyunsaturated groups. While hydroperoxide 

concentration decreases considerably during digestion, epoxides, keto-dienes, 

dihydroxyderivatives and n-alkanals persist to a great extent, some of them showing 

increased concentration after digestion. Conversely, -unsaturated aldehydes, 

especially the very reactive and toxic oxygenated ones, diminish, probably due to their 

reaction with proteins of the digestive fluids. While a low ovalbumin proportion hardly 

affects lipolysis and oxidation during digestion, at a high level it slightly increases 

lipolysis, diminishes oxidation and reduces the levels of oxidation compounds, 

especially of aldehydes.  

 

Keywords: in vitro digestion, 
1
H NMR, bioaccessibility, oxidation, lipolysis, 

hydroperoxides, hydroxy-dienes, epoxides, aldehydes, keto-dienes, hydroxy-derivatives 
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1. INTRODUCTION 

The storage and processing of edible oils and fats can lead to their oxidation, which 

entails the degradation of main and minor lipid components, and the subsequent 

generation of a very broad range of oxidation products that can adversely affect food 

quality and safety (Esterbauer, 1993). The oxidation process, and thus the nature, 

amount and relative proportions of the compounds generated, can vary depending on 

different factors such as lipid composition, temperature, time or aeration, among others 

(Martínez-Yusta, Goicoechea & Guillén, 2014). Thus, when oxidation occurs at low or 

medium temperatures, lipid degradation, in an initial stage, gives rise to hydroperoxides. 

The breakdown of these primary oxidation products may generate a wide variety of 

compounds, such as different kinds of aldehydes, epoxides, ketones or alcohols. It is 

worth noticing that although most oxidized lipids in foods are expected to come from 

high temperature processes, as is the case, for example, of frying oils and fats 

(Kalogeropoulos, Salta, Chiou & Andrikopoulos, 2007; Marmesat, Velasco & 

Dobarganes, 2008), exposure to oxidation products can also be produced through non-

heated vegetable oils widely consumed in different parts of the world like soybean, 

olive and sunflower (Brühl, Weisshaar & Matthäus, 2016; Martin-Rubio, Sopelana & 

Guillén, 2019). Therefore, a wide variety of oxidation products could be ingested 

through diet and reach the gastrointestinal tract, where they might react with different 

biological components, especially of the mucosa (Kanazawa, Ashida, Minamoto, Danno 

& Natake, 1988), and also be absorbed, thus reaching different targets. Actually, the in 

vivo and/or in vitro absorption of hydroperoxy-, hydroxy- and epoxy-fatty acids, as well 

as of 4-hydroxy-(E)-2-alkenals has already been described (Awada et al., 2012; 

Penumetcha, Khan & Parthasarathy, 2000; Wilson, Fernie, Scrimgeour, Lyall, Smyth & 

Riemersma, 2002). 

In this context, the fate of the several types of oxidation products that can be present 

in dietary lipids and their bioaccessibility during digestion deserve interest due to the 

toxicity of some of them; among these, oxygenated -unsaturated aldehydes (Guillén 

& Goicoechea, 2008) and certain monoepoxides coming from both linoleic (Greene, 

Williamson, Newman, Morisseau & Hammock, 2000) and oleic groups (Liu, Cheng, Li, 

Wang & Liu, 2018) can be cited. However, while the toxic effect of the above 

mentioned types of aldehydes is well known, the impact of epoxides on human health 

needs further research; according to Brühl and coworkers (2016), epoxidized fatty acids 
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are suspected of being linked with different diseases, such as cardiac failure or 

respiratory distress syndrome, among others. 

Notwithstanding, in spite of the relevance of this topic, it could be said that very little 

is known about the evolution of oxidation products during digestion. In addition, in 

some cases dissenting results can be found, for example, relative to the persistence of 

hydroperoxides in the gastrointestinal tract (Kanazawa & Ashida, 1998; Nakatsugawa & 

Kaneda, 1983). With regard to secondary oxidation compounds, some studies have been 

conducted to assess the fate of aldehydes (Awada et al., 2012; Goicoechea et al., 2008; 

Goicoechea, Brandon, Blokland & Guillén, 2011) and of some epoxides (Chalvardjian, 

Morris & Holman, 1962; Wilson et al., 2002). Nevertheless, most of these works 

focused on determining the absorbed fraction of only a few compounds like 4-hydroxy-

(E)-2-hexenal (Awada et al., 2012) and some 
13

C-labelled monoepoxy- and diepoxy-

triglycerides (Wilson et al., 2002), so the information provided is very limited. 

With all the above in mind, the molecular processes of oxidized lipids occurring in 

digestion, the fate of lipid oxidation compounds which may impact on human health, 

and the influence of a high lipid oxidation degree on the bioaccessibility of this type of 

food components, will be addressed. To this aim, the evolution during in vitro digestion 

of highly oxidized virgin and refined soybean oils, coming from a prolonged accelerated 

storage process and containing a wide variety of oxidation products will be studied. 

Attention will focus on the bioaccessibility of both some oil components and oxidation 

products, which will be assessed by analyzing the extent of lipolysis, the occurrence of 

oxidation during digestion, the fate of different classes of lipid oxidation products 

already present in the samples subject of study and the generation of additional 

oxidation compounds, if any. 

Furthermore, taking into account that the presence of other nutrients like proteins can 

modify both hydrolysis extent and the occurrence of oxidation during in vitro digestion 

(Nieva-Echevarría, Goicoechea & Guillén, 2017a), the effect of two different 

proportions of ovalbumin during digestion will also be addressed. The technique 

employed to accomplish the goals of this work was 
1
H NMR, which permits one to 

study lipolysis extent as well as the advance and/or the occurrence of oxidation during 

the digestion process, in a global way. 

The study of the evolution of lipids and their oxidation products during digestion, 

and of the parameters influencing this evolution can be considered an issue of primary 
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interest in furthering the intricate task of assessing how dietary lipids can affect human 

health. Indeed, some authors have already highlighted the need to deepen our 

knowledge about which classes of dietary lipid oxidation products decompose in the gut 

versus which ones survive transit to intestines, thus being available for absorption in the 

intestinal lumen (Márquez-Ruiz, García-Martínez, & Holgado, 2008; Schaich, Xie & 

Bogusz, 2017). 

2. MATERIALS AND METHODS 

2.1. Samples subject of study  

The samples subject of study were two soybean oils, one virgin and the other one 

refined, both in an advanced degree of oxidation, containing both primary and a wide 

variety of secondary oxidation products. In order to obtain these samples, 10 g of both 

the virgin and the refined oils were weighed in glass Petri dishes of 80 mm diameter and 

submitted to an accelerated storage process at 70 ºC in a convection oven with aeration 

(Memmert GmbH+Co, Schwabach, Germany) for 8 and 9 days, respectively, in order to 

obtain samples with a similar oxidation degree; these were designated as VSX and 

RSX. 

In addition, samples were prepared by mixing each one of the highly oxidized oils 

with food grade ovalbumin, acquired from a protein manufacturer (Apasa SA, 

Astigarraga, Spain). Two different proportions of ovalbumin were tested: 0.26 g per g 

of oil (low level of ovalbumin: LO) and 2.6 g per g of oil (high ovalbumin proportion: 

HO). The virgin oil samples were designated as VSX+LO and VSX+HO, and those 

prepared from the refined oil RSX+LO and RSX+HO. 

2.2. In vitro gastrointestinal digestion 

All the samples above mentioned (0.5 g of oil in all cases) were digested following 

the same procedure as in previous works (Nieva-Echevarría, Goicoechea, Manzanos & 

Guillén, 2017b; Nieva-Echevarría, Goicoechea & Guillén, 2017c), based on the static in 

vitro gastrointestinal model developed by Versantvoort, Oomen, Van de Kamp, 

Rompelberg and Sips (2005) and slightly modified in our laboratory in order to reach a 

higher level of lipolysis (Nieva-Echevarría, Goicoechea, Manzanos & Guillén, 2016). 

This in vitro digestion model involves a three-step procedure to simulate digestive 

processes in the mouth, stomach, and small intestine, by adding sequentially the 

corresponding digestive juices, whose composition is given in Table S1 (see 
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supplementary material). More details of the above procedure are also given in the 

supplementary material. 

All the reagents used were acquired from Sigma-Aldrich. Two digestion 

experiments, each including duplicate samples of all the oil systems studied, were 

performed. Blank samples corresponding to the juices submitted to digestive conditions 

were also taken for further analysis. 

2.3. Lipid extraction of the digestates 

Lipids of the digestates were extracted using dichloromethane as solvent (CH2Cl2, 

HPLC grade, Sigma-Aldrich) and following the same methodology as in previous 

studies (Nieva-Echevarría et al., 2017b,c). Given that a strong emulsion is formed when 

mixing the digested sample with the extraction solvent in the case of the samples with a 

high proportion of ovalbumin, making it difficult to separate the aqueous and lipid 

phases, this extraction was performed with the aid of a centrifuge in order to break up 

this emulsion. For this purpose, a Sigma 3K30 centrifugal machine working at 10,000 

rpm was used (Sigma Laboratory Centrifuges, Germany), each extraction step lasting 10 

min. All the CH2Cl2 extracts of each sample were mixed and the solvent was eliminated 

by means of a rotary evaporator under reduced pressure at room temperature, in order to 

avoid lipid oxidation. Afterwards, these extracts were stored at -80 ºC until their 

analysis. 

In order to verify that the methodology used was suitable to efficiently extract the 

different types of oxidation products present in the undigested oils, it must be noted that 

samples of the starting oxidized oils were mixed with the digestive juices submitted to 

the digestion process, and then extracted following the same procedure mentioned 

above, complete recoveries being achieved in all cases. 

2.4. Analysis by 
1
H NMR 

2.4.1. Operating conditions 

The 
1
H NMR spectra of the starting oils (VSX and RSX) and of the lipid extracts of 

the oil samples digested without ovalbumin (DVSX and DRSX), with a low proportion 

of ovalbumin (D(VSX +LO) and D(RSX+LO)) and with a high proportion of this 

protein (D(VSX+HO) and D(RSX+HO)) were acquired in quadruplicate using a Bruker 

Avance 400 spectrometer operating at 400 MHz. For this purpose, the above-mentioned 

lipid samples (approximately 0.16 g) were dissolved in 400 µl of deuterated chloroform 

that contained tetramethylsilane (TMS) as internal reference (Cortec, Paris, France). 
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The acquisition conditions were the same as those used in previous studies (Guillén & 

Ruiz, 2003; Guillén & Uriarte, 2009). 

2.4.2. Identification of some compounds 

The identification of the different types of oxidation products present in the various 

samples was carried out on the basis of the proton signal assignments shown in Table 

S2 (see supplementary material), made from bibliographic data and with the aid of 

several standard compounds, also given in the supplementary material. 

2.4.3. Quantification from 
1
H NMR spectral data 

Bearing in mind that the area of each 
1
H NMR spectral signal is proportional to the 

number of protons that generate it, and that the proportionality constant is the same for 

all kinds of protons, the area of some spectral signals was used to quantify: i) the molar 

percentages of the different types of glycerides and of glycerol; ii) the molar 

concentrations of linolenic and linoleic acyl groups+fatty acids referring to the total of 

acyl groups+fatty acids; and iii) the molar concentrations of the several classes of 

oxidation compounds present in the starting oils and in the lipid extracts of the various 

digested samples, referring to the total of acyl groups+fatty acids. 

Concerning the various types of glycerides and glycerol. The molar percentages of 

triglycerides (TG%), diglycerides (1,2-DG% and 1,3-DG%), monoglycerides (2-MG% 

and 1-MG%) and glycerol (Gol%) in relation to the total number of glyceryl structures 

present in the lipid samples were determined using the equations developed and 

validated in previous studies (Nieva-Echevarría, Goicoechea, Manzanos & Guillén, 

2014; Nieva-Echevarría, Goicoechea, Manzanos & Guillén, 2015). All these equations 

are given as supplementary material (see equations [S1-S10]). The chemical shift 

assignments and multiplicities of the 
1
H NMR signals in CDCl3 of the main protons of 

glycerides and fatty acids are displayed in Table S2. 

From the data relative to the different types of glycerides, another parameter related 

to lipolysis extent can also be determined: lipid bioaccessibility (LBA), which takes into 

account only the molecules that are directly absorbable: MG and fatty acids (FA), in 

relation to the total number of acyl groups+fatty acids (AG+FA) present in the sample. 

This parameter was calculated by using equations [S11 and S12]. 

Concerning lipid composition. The concentrations of linolenic (Ln) and linoleic (L) 

AG+FA were estimated in millimoles per mole of the sum of AG+FA (mmol/mol 
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AG+FA) present both in the starting oils and in the lipid extracts of the various digested 

samples, by using equations [S13 and S14]. 

Concerning oxidation compounds. The concentrations of the different types of 

oxidation compounds present both in the starting oils and in the extracts of the digested 

samples, expressed in mmol/mol AG+FA, were also estimated as in a previous study 

(Nieva-Echevarría et al., 2017a) by using equation [S15]. In the case of the samples 

digested with a high ovalbumin proportion, signals attributable to the ovalbumin 

samples are perceived in the 
1
H NMR spectra of their corresponding digestates, which 

overlap with those of some oil components (see Figure 1). Therefore, some corrections 

must be made, following the procedure described in the supplementary material. 

2.5. Statistical analysis  

The significance of the differences on the several determinations made among the 

samples was determined by one-way variance analysis (ANOVA) followed by Tukey b 

test at p < 0.05, using SPSS Statistics 24 software (IBM, NY, USA). 

 

3. RESULTS AND DISCUSSION 

3.1. Composition of the starting oil samples 

Despite having been submitted to a prolonged accelerated storage process (see 

section 2.1), the oils subject of study (VSX and RSX) still contain polyunsaturated acyl 

groups (linoleic and linolenic) able to undergo oxidation during the in vitro digestion 

process; their respective concentrations are given in Table 1, expressed in mmol/mol 

AG+FA. In relation to the glyceryl structures in which acyl groups are supported, TG 

account for by far the highest proportion, even though very low molar percentages of 

1,2-DG are also noticed in both samples; this can be observed in Table 2. 

As a consequence of the previous thermoxidation process, VSX and RSX oils 

contain a wide variety of oxidation products; these are detailed in Table 3, together with 

their concentrations, expressed in mmol/mol TG. In addition, the enlargements of 

several 
1
H NMR spectral regions of these samples where the signals of the various types 

of oxidation compounds appear are displayed in Figure 1. As Table 3 shows, both oils 

contain hydroperoxides supporting conjugated (Z,E)- and (E,E)-dienes (see signals “c” 

and “b”, respectively, in Figure 1), the latter in higher concentrations than the former. 

Together with hydroperoxides, several kinds of secondary oxidation products are 

found in samples VSX and RSX, of which epoxides constitute the major group. These 
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latter include several types of compounds, such as the tentatively identified (E)-

epoxystearates, derived from oleic groups (see signal “d” in Figure 1). In addition, other 

epoxides giving signals either at 2.9 ppm or/and at 3.1 ppm (see signals “e” and “f”, 

respectively, in Figure 1), are also present in the starting oils, the latter being the most 

abundant. Regarding signal “e”, this could be due to (Z)-epoxystearates coming from 

oleic AG+FA (see signal “e1” in Table S2), to (E)-epoxy-keto-enes derived from 

linoleic groups (see signals “e4” and “e5” in Table S2), which also give another 

detectable signal (see signal “g” in Table S2 and Figure 1), and/or to other types of 

epoxy-compounds coming from polyunsaturated AG+FA (see signals “e2”, “e3” and 

“e6” in Table S2). As far as signal “f” is concerned, some of the compounds 

contributing to it could be epoxy-hydroperoxy-enes coming from linoleic AG+FA (see 

signal “f3” in Table S2), since (E)-12,13-epoxy-9-hydroperoxy-10(E)-octadecenoate 

gives, among other signals, one double doublet at 3.11 ppm and another one at 5.85 

ppm (Gardner, Weisleder & Kleiman, 1978), and signals that might match this latter are 

also observed in the spectra of samples VSX and RSX (see signal “i” in Figure 1); 

however, in our case, more than one isomer might be present, which would give rise to 

a more complex pattern of signals. 

In addition, small amounts of (Z,E)- and (E,E)-keto-dienes (signals “m” and “l” in 

Figure 1) were present in SVX and RSX oils, as well as of other types of compounds 

tentatively identified as hydroxy-derivatives. The signals given by these latter appear 

very close to those of epoxides (see Figure 1, signals “j” and “k”), and they could be 

tentatively attributed to dihydroxy-derivatives like leukotoxin and/or isoleukotoxin 

diols, and to monohydroxy-derivatives, respectively (see Table S2), or to very closely 

related compounds. 

Finally, samples VSX and RSX also exhibit several classes of aldehydes (see Table 

3), among which 4-hydroperoxy-(E)-2-alkenals, 4-hydroxy-(E)-2-alkenals and (E)-2-

alkenals, (signals “r”, “q” and “n”, respectively, in Figure 1) are the most abundant, 

followed by n-alkanals, (E,E)-2,4-alkadienals and 4,5-epoxy-2-alkenals (signals “s”, “o” 

and “p”). 

It must be noticed that other oxidation compounds additional to the aforementioned 

ones will certainly be present in the starting oils, but they cannot be identified for the 

moment. 
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Table 1. Molar concentrations of the two kinds of polyunsaturated acyl groups+fatty 

acids, referring to the total of acyl groups+fatty acids present in the highly oxidized 

virgin and refined soybean oil samples, before (VSX and RSX) and after in vitro 

digestion in the absence of ovalbumin (DVSX and DRSX), with a low proportion of 

ovalbumin added (D(VSX+LO) and D(RSX+LO)), and with a high proportion of this 

protein (D(VSX+HO) and D(RSX+HO)). Different letters within each column indicate 

a significant difference among the samples corresponding to the same type of oil (p < 

0.05).  

 

 

 

 

 

 

 

 

 

 

3.2. In vitro bioaccessibility of some compounds initially present in samples VSX 

and RSX after digestion 

In this subsection the in vitro bioaccessibility of several types of compounds present 

in the starting oil samples is assessed. This will be influenced, among other factors, by 

the extent of lipolysis reached after the in vitro digestion process, which determines the 

fraction of bioaccessible glycerides and fatty acids, and also by other molecular 

processes taking place during digestion. Of these, the occurrence of oxidation could be 

cited; this can lead to the degradation of unsaturated acyl groups, together with other 

transformations undergone by the oxidation compounds either initially present in the 

samples, or newly formed during digestion, which determine the oxidation product 

profile of the digestates. Therefore, all the above mentioned issues (lipolysis, 

polyunsaturated acyl group degradation and changes in the oxidation compound profile 

after digestion) will be addressed. 

 

 Linolenic Linoleic 

VSX 10.24 ± 0.44b 174.41 ± 2.34c 

DVSX 7.03 ± 0.97a 148.38 ± 9.45a 

D(VSX+LO) 7.14 ± 0.63a 147.76 ± 2.90a 

D(VSX+HO) 7.59 ± 0.58a 161.73 ± 3.59b 

   

RSX 7.10 ± 0.46b 167.73 ± 5.86b 

DRSX 3.94 ± 1.07a 134.13 ± 9.32a 

D(RSX+LO) 3.51 ± 0.42a 134.84 ± 3.62a 

D(RSX+HO) 6.93 ± 0.68b 159.11 ± 7.50b 



 

316 

 

Table 2. Molar percentages of triglycerides (TG%), diglycerides (1,2-DG% and 1,3-DG%), monoglycerides (2-MG%  and 1-MG%) and 

glycerol (Gol%) in relation to the total number of glyceryl structures present in the oxidized virgin and refined soybean oil samples, together 

with lipid bioaccessibility (LBA) parameter, before (VSX and RSX) and after in vitro digestion in the absence of ovalbumin (DVSX and DRSX), 

with a low proportion of ovalbumin added (D(VSX+LO) and D(RSX+LO)), and with a high proportion of this protein (D(VSX+HO) and 

D(RSX+HO)). Different letters within each column indicate a significant difference among the samples corresponding to the same type of oil (p 

< 0.05). 

 

 

 

 

 

 

 

 

-: not detected; nd: not determined 

  

 TG% 1,2-DG% 1,3-DG% 2-MG% 1-MG% Gol% LBA 

VSX 99.01 ± 0.18b 0.50 ± 0.00a - - - nd nd 

DVSX 35.62 ± 0.60a 13.23 ± 1.76b 3.46 ± 1.09a 19.02 ± 1.35a 8.25 ± 0.85b 20.43 ± 2.61a 53.26 ± 2.34a 

D(VSX+LO) 34.26 ± 0.88a 14.74 ± 0.76bc 2.78 ± 0.92a 21.90 ± 2.60a 7.26 ± 0.2b 18.39 ± 3.83a 53.39 ± 0.64a 

D(VSX+HO) 30.21 ± 3.60a 16.58 ± 0.22c 2.96 ± 0.94a 28.90 ± 2.59b 5.59 ± 0.65a 15.77 ± 0.37a 56.77 ± 2.94a 

        

RSX 99.08 ± 0.08d 0.90 ± 0.06a - - - nd nd 

DRSX 35.02 ± 0.47c 13.23 ± 1.18b 2.98 ± 0.29a 20.92 ± 1.04a 7.27 ± 1.47a 20.59 ± 1.50a 54.18 ± 0.51a 

D(RSX+LO) 
34.09 ± 0.11b 14.34 ± 0.55b 2.51 ± 0.02a 

23.95 ± 

1.87ab 
7.44 ± 0.22a 17.68 ± 1.40a 54.68 ± 0.50a 

D(RSX+HO) 31.51 ± 0.49a 17.01 ± 1.59c 3.22 ± 1.35a 27.16 ± 0.75c 4.35 ± 1.16b 16.74 ± 1.86a 55.13 ± 0.81a 
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3.2.1. Lipolysis extent 

3.2.1.1. In the samples digested without ovalbumin 

As can be observed in Table 2, the percentage of TG remaining after the in vitro 

digestion process is very similar in samples DVSX and DRSX (around 35%) and the 

same can be said of the molar percentages of partial glycerides that either appear or 

exhibit an increase after digestion. This is the case of 2-MG, the most abundant ones 

after TG, with molar percentages between 19 and 21%, and 1,2-DG, in proportions of 

13%. Furthermore, glycerol was released from the total hydrolysis of glyceride 

structures, reaching percentages of around 20% in both samples. 1-MG and 1,3-DG, 

stated as coming from the isomerization of 2-MG (Mattson & Volpenhein, 1966) and 

1,2-DG (De Groot, 1972), respectively, were in lower proportions, especially the latter 

(around 7-8% and 3%, respectively). This distribution of the different types of 

glycerides matches well with that observed in previous works conducted with both fresh 

and slightly oxidized oils (Nieva-Echevarría et al., 2017b,c; Martin‐Rubio et al., 2019). 

However, on the basis of the TG and glycerol percentages found in samples DVSX and 

DRSX (around 35 and 20%, respectively), it could be said that the overall lipolysis 

extent is lower than that observed after the in vitro digestion of the same unoxidized 

virgin and refined soybean oils (around 22% for TG and 30% for glycerol) 

(Martin‐Rubio et al., 2019), thus reinforcing previous works (Nieva-Echevarría et al., 

2017b,c). 

However, something that attracts attention is that the lipolysis extent in samples 

DVSX and DRSX is only somewhat lower than that found in another study performed 

with these same virgin and refined soybean oils but with a lower oxidation degree 

(unpublished results). In that study, lower concentrations of hydroperoxides and 

practically no secondary oxidation products were detected by 

H NMR. Therefore, 

despite the advanced oxidation degree of the samples of this study in comparison with 

that of the previous ones, the differences in the lipolysis extent between these two 

groups of samples are not very marked. 

At this point, it must be mentioned that although it seems to be generally assumed 

that oxidation products can negatively affect the functionality of proteins, and thus the 

activity of enzymes, there are, as far as we know, only a few works in which the impact 

of specific oxidation products on the activity of digestive enzymes has been studied 
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(Gamage & Matsushita, 1973; Gamage, Mori & Matsushita, 1973; Matsushita & 

Kobayashi, 1970; Matsushita, Kobayashi & Nitta, 1970; Matsushita, 1975). Moreover, 

of all the cited studies, only the one carried out by Matsushita in 1975 includes 

pancreatic lipase. This researcher, who studied the effect of linoleic acid primary and 

secondary oxidation products separately, and also the effect of safflower oil TG 

hydroperoxides on the activity of RNAse, trypsin, pepsin and pancreatic lipase, showed 

that some enzymes were more inactivated by primary than by secondary oxidation 

products, and vice versa. In this regard, it is worth pointing out that pancreatic lipase 

was hardly inhibited by linoleic acid secondary oxidation products, and something more 

by safflower oil TG hydroperoxides. Moreover, only a small difference between the 

inhibition degrees caused by concentrations of TG hydroperoxides of 1 and 10 mol/ml 

of lipase solution was observed. However, in the case of linoleic acid hydroperoxides, 

the lipase inhibition extent was considerably higher and, although the difference 

between the effects of a lower and a higher hydroperoxide concentration on lipase 

activity were more marked than that observed for safflower TG hydroperoxides, these 

were not proportional to their concentration either. Notwithstanding, it must be noticed 

that all these effects were observed after 20 min of incubation at 37 ºC, which is a much 

shorter time than that corresponding to the in vitro digestion process here studied. 

In addition to the susceptibility of each enzyme to inactivation by specific oxidation 

products, another factor that could affect enzyme performance is the polarity of the 

system, which is higher in more oxidized samples due to the presence of a greater 

amount of compounds supporting oxygenated groups, which could facilitate lipolysis 

(Sánchez-Muniz, Benedí, Bastida, Olivero-David & González-Muñoz, 2011). In this 

sense, according to Arroyo, Sánchez-Muniz, Cuesta, Sinisterra and Sánchez-Montero 

(1997), the polar compounds formed during lipid thermal treatment could act as 

surfactants favouring the formation of a microemulsion, and in turn, the action of 

pancreatic lipase. 

Therefore, all the above mentioned, which includes opposing effects that could be 

counteracting one another during digestion, could help to explain to some extent the 

small differences in lipolysis degree observed between the highly oxidized oils studied 

in this work and the slightly oxidized ones studied previously (unpublished results). 

3.2.1.2. In the samples digested with different proportions of ovalbumin  
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As Table 2 shows, the presence of a low ovalbumin level hardly affects the molar 

percentages of the several kinds of glycerides when compared to the samples digested 

without ovalbumin, although a slight increment in the 2-MG molar percentage and a 

small glycerol proportion decrease are noticed. This could be due, at least in part, to a 

reduction in isomerization reactions of 2-MG to 1-MG, which are considered necessary 

to achieve complete lipolysis due to the specificity of pancreatic lipase (Mattson & 

Volpenhein, 1964). Notwithstanding, given that both 2-MG and 1-MG are absorbable 

molecules, the small changes observed do not affect lipid bioaccessibility (see LBA 

parameter in Table 2). 

However, when ovalbumin is present in a high proportion, lipolysis is enhanced to a 

certain extent (see samples D(VSX+HO) and D(RSX+HO) in comparison with DVSX 

and DRSX in Table 2); this is evidenced by a decreased amount of remaining TG and 

increased molar percentages of 1,2-DG and especially of 2-MG. The more pronounced 

TG hydrolysis might be explained by the emulsifying ability of ovalbumin and its 

hydrolysis products (Chen, Chi, Zhao & Xu, 2012; Mine, Noutomi & Haga, 1991), 

which would diminish the size of the oil droplets, increasing the lipid area exposed to 

the lipases present in the aqueous phase (Li, Hu & McClements, 2011). In addition, the 

potential reaction of some oxidation products with ovalbumin instead of with lipases, 

might also contribute to somewhat improving lipolysis extent. Regarding the increment 

in 1,2-DG and 2-MG proportions mentioned, which is accompanied by a decrease in the 

molar percentages of 1-MG and glycerol (see Table 2), this might be due to a buffering 

effect of the high proportion of ovalbumin. This could give rise to a more elevated pH 

during the gastric step of the in vitro digestion than in the rest of digested samples, 

causing a reduction in the isomerization reactions of 1,2-DG and 2-MG (Mattson & 

Volpenhein, 1964), and consequently in the hydrolysis of 1-MG to glycerol. Moreover, 

any change in the pH existing during digestion might also affect both the activity of 

digestive enzymes and their inactivation degree by oxidation products (Matsushita & 

Kobayashi, 1970), since variations in pH can provoke changes in the conformational 

structure of proteins, modifying the surface exposed groups susceptible to reacting with 

the compounds present in the surrounding medium (Gamage, Mori & Matsushita, 

1973). As far as LBA is concerned, data in Table 2 reveals that, in agreement with that 

observed in the proportions of the different kinds of glycerides and of glycerol, only 
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small increases are found in this parameter when a high proportion of ovalbumin is 

present in the system. 

The small effect of this high concentration of ovalbumin on the molar percentages of 

TG and on LBA found after digestion contrasts with the great increase in both parameters 

observed in presence of the same proportion of ovalbumin during the in vitro digestion 

of less oxidized soybean oil samples (unpublished results) (from approximately 31% of 

TG to less than 8%, and from 56-58% to around 80% in the case of LBA), and also of 

slightly oxidized sunflower and linseed oils (Nieva-Echevarría et al., 2017a). In this 

regard, although as commented above, a high proportion of ovalbumin could exert an 

emulsifying effect throughout digestion, the same effect might also favour the reaction 

of the oxidation products present in the oil with active sites of the lipases, thus 

counteracting to a certain extent the potential increase in their activity due to a reduction 

in droplet size. In addition, the emulsifying ability of ovalbumin could also be 

negatively influenced by the potential reaction of oxidation products either with 

ovalbumin and/or with proteases like trypsin and pepsin, which can hydrolyze 

ovalbumin and increase its emulsifying properties (Chen et al., 2012). Another 

possibility could be that the polymerization degree of the samples also hindered the 

emulsifying effect of ovalbumin. Either way, although the potential influence of all 

these factors, and of others not considered, makes it difficult to explain the results 

observed, their comparison with the outcomes of the previous study carried out with 

slightly oxidized soybean oil samples (unpublished results) suggests that the high 

oxidation degree of the oils here studied causes a loss in the efficiency of ovalbumin in 

improving lipolysis. 

3.2.2. Assessment of oxidation occurrence during digestion through the monitoring 

of polyunsaturated group degradation 

Given that polyunsaturated groups are the most prone to oxidation, their 

concentrations, expressed in mmol/mol AG+FA, were also determined after the in vitro 

digestion process; the corresponding values are displayed in Table 1 (see samples 

DVSX and DRSX), together with those of the undigested oils. This reveals clear and 

important diminutions in the concentrations of linolenic and linoleic AG+FA after 

digestion, more pronounced for linolenic (reduction of more than 30% after digestion) 

than for linoleic groups (15-20% of reduction after digestion). 
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While the presence of a low ovalbumin proportion in the samples subjected to 

digestion does not affect the evolution of polyunsaturated AG+FA during this process, a 

less pronounced decrease in their concentrations is observed in the samples digested 

with a high ovalbumin proportion than in the rest of digested samples, (see Table 1), 

thus reinforcing previous results obtained with other types of slightly oxidized oils 

(Nieva-Echevarría et al., 2017a). This suggests that, at the higher concentration tested, 

ovalbumin seems to exert an antioxidant effect during digestion, and indeed the 

antioxidant ability of ovalbumin and its hydrolysates has already been described 

(Abeyrathne, Lee, Jo, Nam & Ahn, 2014). 

These results contrast with the findings relative to the digestion of these same 

soybean oils but with a lower degree of oxidation (unpublished results), where 

significant variations in the concentrations of polyunsaturated acyl groups were not 

observed after digestion, either in the absence or in presence of the same two ovalbumin 

proportions here tested. This reveals that oxidation occurs to a greater extent when the 

initial oxidative status of the oil samples is greater. 

3.2.3. Changes in the oxidation compound profile after digestion 

The concentration of the different kinds of oxidation products in DVSX and DRSX 

samples are shown in Table 3, and the changes, or in some cases appearance, of their 

corresponding 
1
H NMR spectral signals, in Figure 1. 

3.2.3.1. In the samples digested without ovalbumin 

Evolution of hydroperoxides, monitored through their associated conjugated dienes. 

The concentration of both (Z,E)- and (E,E)-hydroperoxy-dienes decreases after 

digestion (see signals “c” and “b”, respectively, in Figure 1 and Table 3), the diminution 

being more pronounced for the (E,E)-isomers than for their (Z,E)-counterparts. This 

means that part of the hydroperoxides evolve during in vitro digestion, even though a 

potential reaction with proteins present in the digestive juices should not be discarded 

(Gardner, 1979). However, these findings do not indicate that hydroperoxide generation 

has not occurred during digestion, but that their rate of transformation is higher than that 

of formation, if any. 

Generation of hydroxy-dienes. In addition to the drop in the initial hydroperoxide 

levels, the appearance of very small signals of conjugated (Z,E)-dienes supporting 

hydroxy-groups (signal “a” in Figure 1), probably coming from the reduction of 

hydroperoxides, can also be noticed in the spectra of the lipid extracts of DVSX and 
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DRSX samples. Although the generation of (E,E)-hydroxy-dienes has also been noticed 

after the in vitro digestion of slightly oxidized sunflower (Nieva-Echevarría et al., 

2017b) and slightly oxidized soybean oils (unpublished results), the existence of 

overlapping signals in the same spectral region in the samples of this study does not 

allow one to evaluate the concentration of this type of compounds. The generation of 

linoleic acid hydroxides after administering linoleic acid hydroperoxides intragastrically 

to rats was also observed by Kanazawa and Ashida (1998). 

Changes in epoxide profile. Regarding (E)-epoxystearates, Figure 1 shows that a slight 

shifting of its signal (“d”) to lower fields in relation to the undigested oils occurs in the 

1
H NMR spectra of the extracts of samples DVSX and DRSX; this causes its partial 

overlap with the signals of bis-allylic protons (“H+G”, see Table S2), making it 

somewhat difficult to accurately estimate the concentration of this type of epoxides; for 

this reason, they have not been quantified. 

With respect to the epoxides giving signal “e”, a very small decrease in their 

concentration can be observed after digestion (see samples DVSX and DRSX in Table 

3). This finding contrasts to a certain extent with that found in previous works 

performed with fresh virgin and refined soybean oils (Martin-Rubio et al., 2019), where 

the generation of this type of epoxides was noticed after digestion. This difference 

might be explained because, although epoxide generation could take place during the in 

vitro digestion of SVX and RSX oils, some of the epoxides already present in these 

samples could give rise to other types of compounds, in such a way that the rate of 

transformation could be higher than that of potential formation. Among these 

transformations, it would be possible that the epoxy group react with amino acid 

residues of proteins present in the digestive fluids (Gardner, 1979; Schaich, 2008). 

As far as epoxides giving signal “f” are concerned, their concentration decreases 

after digestion to a greater extent than that of the above mentioned (see Table 3). This 

seems to be due, at least in part, to the drop in the concentration of the tentatively 

identified epoxy-hydroperoxy-enes, deducible from the reduction in the intensity of 

signal “i” (see Figure 1). This could be due to their evolution bringing about other 

compounds, including their reaction with protein amino acid residues, since this class of 

compounds bears two reactive groups (epoxy and hydroperoxy). 

When it comes to (E)-epoxy-keto-enes, their concentration significantly increases 

after digestion in a statistically significant way (see Figure 1, signals “g” and “h”, and 
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Table 3). Taking into account that 12,13(E)-epoxy-9-hydroperoxy-10(E)-octadecenoic 

acid could be an intermediate in the formation of 12,13(E)-epoxy-9-keto-10(E)-

octadecenoic (Gardner & Kleiman, 1981), part of the epoxy-hydroperoxy-enes initially 

present in the samples might have given rise to epoxy-keto-enes, thus contributing to 

the increased concentration of these latter. Notwithstanding, epoxy-keto-enes could also 

proceed directly from hydroperoxy-dienes, since the epoxyketo-ene derivative has been 

reported to be a major product of the decomposition of linoleic acid hydroperoxides 

under acidic conditions (Gardner, Weisleder & Nelson, 1984), which exist during the 

gastric stage of the in vitro digestion process. In this regard, Kanazawa and Ashida 

(1998) also described the generation of epoxy-keto-enes coming from the 

decomposition of linoleic acid hydroperoxides in the stomach of rats, although the 

compounds found by these authors were different from those detected here. 

Changes in the concentration of keto-dienes. As Table 3 reveals, this type of 

compounds exhibits a concentration increase in samples DVSX and DRSX, probably 

due to their generation from the hydroperoxides initially present. 

Changes in the concentration of compounds tentatively considered as hydroxy-

derivatives. As Table 3 shows, the concentration of the compounds tentatively identified 

as dihydroxy-derivatives (giving signal “j”) hardly varies after digestion, exhibiting 

only a very small decrease. These outcomes contrast to some extent with those posed by 

some authors, according to whom diols could be generated from epoxy compounds 

under acidic conditions in gastric medium (Giuffrida, Destaillats, Robert, Skibsted & 

Dionisi, 2004). Taking into account that these diols might come from linoleic 

monoepoxides, this finding would match with the scarce variations observed after 

digestion in the levels of epoxides giving signal “e”. 

Regarding the other type of tentative hydroxy-derivatives detected in samples VSX 

and RSX, giving signal “k” (see Table 3), it was not possible to estimate their 

concentration in samples DVSX and DRSX, since this signal (see Figure 1) overlaps 

with that of 1-MG (see signal “I” in Table S2), much more abundant in the digested 

samples. 

Changes in the concentration of aldehydes. Both Figure 1 and Table 3 show 

significant increments in the concentration of n-alkanals after digestion. Along the same 

lines, the generation of saturated aldehydes was also observed in previous works carried 

out with slightly oxidized samples both of linseed oil (Nieva-Echevarría et al., 2017c) 



Results and Discussion – Manuscript 8 

324 

 

and of virgin and refined soybean oils (unpublished results). Similarly, the generation of 

hexanal was noticed by Kanazawa and Ashida (1998) after administering linoleic acid 

hydroperoxides intragastrically to rats. By contrast, the concentrations of the rest of 

aldehydes decrease, this diminution being very sharp for the sum of 4-hydroperoxy- and 

4-hydroxy-(E)-2-alkenals, and for 4,5-epoxy-2-alkenals, less pronounced for (E)-2-

alkenals and practically null for (E,E)-2,4-alkadienals. This decline in the levels of most 

unsaturated aldehydes could be due to their reaction with proteins (Uchida, 2003), 

which are present in the digestive juices. This possibility has also been pointed out by 

other authors (Steppeler, Haugen, Rødbotten & Kirkhus, 2016; Van Hecke, Vossen, 

Bussche, Raes, Van Hecke and De Smet, 2014) regarding 4-hydroxy-(E)-2-alkenals, 

and in fact, the greatest concentration diminution is observed for the oxygenated -

unsaturated aldehydes (4-hydroperoxy-(E)-2-alkenals, 4-hydroxy-(E)-2-alkenals and 

4,5-epoxy-2-alkenals), which are the most reactive among those detected, although they 

are still present in the digestates. This latter finding agrees with those of Goicoechea 

and coworkers (2008, 2011), who analyzed the fate of volatile aldehydes during the in 

vitro digestion of a mixture of thermodegraded sunflower oil and a standard meal, 

observing that part of them, including the oxygenated -unsaturated ones, were 

detectable after this process.  

In this context, the expected lower reactivity of n-alkanals in comparison with that of 

-unsaturated aldehydes, together with a potentially greater generation during 

digestion, could contribute to explaining why saturated aldehydes are the only ones 

showing increased concentration after digestion. In this same line, the levels of the rest 

of aldehyde groups in samples DVSX and DRSX will be the result of the balance 

between their generation and their reaction with other compounds such as proteins 

present in the medium. Therefore, taking into account that reactions between aldehydes 

and amino acids residues can occur in a system containing proteins (Schaich, 2008; 

Uchida, 2203), the degree of oxidation can be easily underestimated if it is assessed 

through the measurement of aldehyde concentration. 
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-: not detected; nd: not determined 

 
Virgin oil samples  Refined oil samples 

 
VSX DVSX D(VSX+LO) D(VSX+HO)  RSX DRSX D(RSX+LO) D(RSX+HO) 

Hydroperoxy-conjugated dienes 
   

     

(Z,E)-Hydroperoxy-dienes 15.24 ± 0.46a 8.83 ± 1.04b 8.32 ± 0.67b 6.90± 0.78a  11.98 ± 1.99b 9.07 ± 0.95a 8.88 ± 1.76a 7.46± 0.71a 

(E,E)-Hydroperoxy-dienes 23.84 ± 0.0.64b 12.53 ± 1.32a 12.15 ± 2.66a 9.74 ± 0.87a  24.44 ± 1.61b 12.09 ± 0.93a 11.29 ± 1.12a 11.03 ± 1.31a 

Total hydroperoxy-dienes 39.08 ± 1.10c 21.36 ± 2.36b 20.47 ± 3.33b 16.64 ± 1.66a  36.42 ± 3.59b 21.15 ± 1.89a 20.18 ± 2.87a 18.49 ± 2.02a 

Hydroxy-conjugated dienes 
 

     

(Z,E)-Hydroxy-dienes - 2.35 ± 0.38a 2.42 ± 0.34a 5.03 ± 1.09b  - 2.04 ± 0.40a 2.47 ± 0.31a 4.55 ± 0.66b 

(E,E)-Hydroxy-dienes - nd nd nd  - nd nd nd 

Epoxides 
    

     

(E)-Epoxystearates 0.85 ± 0.04 nd nd nd  1.05 ± 0.04 nd nd nd 

Giving signal “e” 11.31 ± 1.09a 10.60 ± 0.42a 10.69 ± 0.62a 11.01 ± 0.57a  14.32 ± 0.52a 12.59 ± 0.47a 12.70 ± 1.19a 13.02 ± 0.74a 

Giving signal “f” 25.79 ± 2.06b 20.42 ± 2.29a 20.40 ± 1.68a 20.18 ± 1.65a  32.40 ± 0.98b 24.84 ± 3.01a 24.39 ± 0.47a 23.60 ± 2.06a 

(E)-Epoxy-keto-enes 1.58 ± 0.68a 3.04 ± 0.20b 2.91 ± 0.34b 2.66 ± 0.13b  1.65 ± 0.18a 3.73 ± 0.44c 3.77 ± 0.27c 3.00 ± 0.09b 

Keto-dienes 
    

     

(Z,E)-Keto-dienes 2.02 ± 0.19a 3.79 ± 0.57b 3.55 ± 0.46b 2.98 ± 0.55b  1.63 ± 0.10a 3.31 ± 0.40b 3.20 ± 0.25b 2.80 ± 0.54b 

(E,E)-Keto-dienes 3.97 ± 0.13a 5.42 ± 0.72b 5.15 ± 0.45b 4.81 ± 0.24b  4.31 ± 0.28a 5.68 ± 1.02a 5.41 ± 0.86a 4.95 ± 0.66a 

Potential hydroxy-derivatives 
   

     

Giving signal “j” 2.65 ± 0.17b 2.36± 0.32ab 2.27 ± 0.27ab 1.89 ± 0.27a  3.25 ± 0.27b 3.16 ± 0.59b 3.10 ± 0.14b 1.99 ± 0.39a 

Giving signal “k” 1.85 ± 0.12 nd nd nd  2.13 ± 0.19 nd nd nd 

Aldehydes 
    

     

n-Alkanals 1.59 ± 0.16a 4.27 ± 0.53c 3.75 ± 0.72bc 3.15 ± 0.29b  2.25 ± 0.15a 4.71 ± 0.87b 4.50 ± 1.10b 3.55 ± 0.51ab 

4-OOH-+4-OH-(E)-2-

alkenals 
7.48 ± 0.30c 2.24 ± 0.34b 1.78 ± 0.16b 1.24 ± 0.18a  9.01 ± 0.58b 2.25 ± 0.14a 2.16 ± 0.64a 1.76 ± 0.30a 

4,5-Epoxy-2-alkenals 0.62 ± 0.06b 0.42 ± 0.10a 0.34 ± 0.10a -  0.87 ± 0.23b 0.38 ± 0.17a 0.34 ± 0.16a - 

(E,E)-2,4-Alkadienals 0.91 ± 0.11b 0.90 ± 0.10b 0.92 ± 0.02b 0.64 ± 0.11a  0.99 ± 0.18 a 0.91 ± 0.19a 0.89 ± 0.14a 0.70 ± 0.15a 

(E)-2-Alkenals 3.23 ± 0.21d 2.63 ± 0.53c 1.79 ± 0.20b 0.80 ± 0.16a  3.95 ± 0.19d 2.36 ± 0.30c 1.77 ± 0.24b 1.11 ± 0.18a 

Table 3. Concentration of the several kinds of oxidation compounds, expressed in mmol/mol acyl groups+fatty acids present in the oxidized virgin 

and refined soybean oil samples, before (VSX and RSX) and after in vitro digestion in the absence of ovalbumin (DVSX and DRSX), with a low 

proportion of ovalbumin added (D(VSX+LO) and D(RSX+LO)), and with a high proportion of this protein (D(VSX+HO) and D(RSX+HO)). 

Different letters within each row indicate a significant difference among the samples corresponding to the same type of oil (p < 0.05). 4-OOH: 4-

hydroperoxy; 4-OH: 4-hydroxy. 
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Figure 1. Enlargements of some regions of the 
1
H NMR spectra of the highly oxidized 

virgin and refined oils (VSX and RSX), and of the lipid extracts obtained after their in 

vitro digestion process in the absence of ovalbumin (DVSX and DRSX), as well as in 

the presence of a low (D(VSX+LO) and D(RSX+LO)) and a high proportion of 

ovalbumin (D(VSX+HO) and D(RSX+HO)). The signal letters agree with those in 

Table S1, considering that “e” includes signals “e1-e6” and “f” signals “f1-f3”. Signals 

marked with an asterisk are considered to come from the ovalbumin sample used. The 

plots corresponding to the same 
1
H NMR spectral region are presented at a fixed value 

of absolute intensity, for them to be valid for comparative purposes. 

 

3.2.3.2. In the samples digested with different proportions of ovalbumin 

As shown in Table 3, the presence of a low ovalbumin proportion during digestion 

does not provoke significant changes in the concentration of most of the oxidation 

products present in the digestates when compared with the samples digested without 

ovalbumin, except for (E)-2-alkenals, which show a significant decrease. 
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Notwithstanding, slightly lower levels of the rest of aldehydes, as well as of 

hydroperoxy-dienes and keto-dienes, together with somewhat higher concentrations of 

(Z,E)-hydroxy-dienes, are perceived. 

When ovalbumin is present in a high concentration in the samples subjected to 

digestion, a greater reduction in hydroperoxy-diene levels, along with a significant 

increase in the concentrations of (Z,E)-hydroxy-dienes, are noticed (see Table 3, 

samples D(VSX+HO) and D(RSX+HO)). This suggests that, as ovalbumin 

concentration increases, the formation of hydroxy-dienes is favoured over other types of 

reactions, thus reinforcing previous findings (Nieva-Echevarría et al., 2017a). Table 3 

also reveals that while the levels of the epoxides giving signals “e” and “f” are not 

noticeably modified by the presence of a high proportion of ovalbumin, the 

concentration increments observed after digestion for (E)-epoxy-keto-enes, keto-dienes 

and n-alkanals are slightly smaller than in the rest of digested samples. Regarding the 

various groups of unsaturated aldehydes, their respective levels decrease to a greater 

extent than in the rest of digested samples, and even (E,E)-2,4-alkadienals show a 

concentration decline in samples D(VSX+HO) and D(RSX+HO). Finally, a drop is also 

noticed in the concentration of potential dihydroxy-derivatives in comparison with the 

samples digested without ovalbumin. 

The lower concentrations of some oxidation products observed in the samples 

digested with a high ovalbumin proportion might be due to their reaction with this 

protein, but also to a smaller transformation of hydroperoxides into other types of 

oxidation products in favour of hydroxy-diene formation. In addition, considering that, 

on the basis of polyunsaturated group evolution (see section 3.2.2), a lower oxidation 

degree seems to have taken place in these samples, this could also contribute to the 

lower levels of some oxidation compounds. 

3.5. Some remarks about the relevance of the presence of oxidation products in the 

gastrointestinal tract 

In the light of the outcomes of this work, it is evident that a large proportion of the 

oxidation products present in the highly oxidized oils here studied, including 

hydroperoxides, remains after the in vitro digestion process. The bioaccessibility of all 

these compounds will depend on whether they are supported or not on absorbable 

molecules. Notwithstanding, irrespective of whether they are absorbed or not, their 

presence in the gastrointestinal tract could negatively affect human health, since damage 
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of the intestinal barrier due to reactions with oxidation compounds can trigger the 

development of various pathologies (Catalioto, Maggi & Giuliani, 2011). In this regard, 

hydroperoxides have been shown to induce oxidative damage and cell death in the 

colon, and this has been suggested to contribute to an enhanced risk of colon cancer 

(Udilova, Jurek, Marian, Gille, Schulte-Hermann & Nohl, 2003). In addition, the 

inhibition of gastrointestinal detoxifying enzymes by their reaction with aldehydes can 

favour a greater absorption of certain oxidation products (Márquez-Ruiz et al., 2008), 

with the consequent impact on the systemic oxidative stress level. 

This work also evidences that, of all various classes of oxidation compounds studied, 

epoxides are in the highest proportion after digestion. This finding is in line with the 

results of Chalvardjian and coworkers (1962), who reported that the epoxy group 

survived the digestive system, and with those of Wilson and coworkers (2002), who 

observed that 
13

C-labelled epoxides were absorbed intact. This can be considered a 

relevant issue, since among these epoxides, toxic monoepoxides of linoleic groups like 

leukotoxin and isoleukotoxin (Greene et al., 2000), as well as (Z)-epoxystearic acid, 

which has also been recently attributed toxic effects (Liu et al., 2018), could be present. 

Moreover, epoxides are considered in general as very reactive compounds (Schaich, 

2008) that might affect the functionality of different types of biomolecules, and 

depending on their absorption extent, their deleterious effects could go beyond the 

intestine and reach other targets. Nevertheless, it must also be noticed that the reactivity 

of epoxides does not seem to be as high as that of oxygenated -unsaturated 

aldehydes, since these latter exhibit, in general, a greater concentration decrease after 

digestion. These results offer a new perspective on the relevance of the various classes 

of oxidation products coming from dietary sources in biological damage and on the 

assessment of the health risks derived from them; thus, although some types of 

aldehydes are very reactive and toxic compounds (Guillén & Goicoechea, 2008), a great 

proportion of them seems to react with components of the digestive fluids, while in 

contrast, a considerable proportion of epoxides and also of other types of oxidation 

products are still present after the digestion process. 

 

4. CONCLUSIONS 

The extent of lipolysis, and in consequence lipid bioaccessibility, is negatively 

affected by the high oxidation level of the samples subject of study. In addition, the 
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degradation of polyunsaturated acyl groups during digestion due to oxidation also 

contributes to a reduction in the amount of bioaccessible lipid nutrients. Regarding the 

changes in the oxidation product profile of the starting oils after in vitro digestion, it has 

been shown that hydroperoxides exhibit a concentration decrease, either due to their 

evolution to give rise to other types of oxidation products, and/or to their reaction with 

components of the digestive juices. By contrast, other compounds like epoxides, keto-

dienes and dihydroxyderivatives persist to a greater extent after digestion, and some of 

them even show an increase in concentration. When it comes to aldehydes, while the 

concentration of n-alkanals increases during digestion, those of the different groups of 

-unsaturated aldehydes exhibit decreases of variable magnitude, these being 

especially marked for the very reactive and toxic oxygenated ones. This could be 

probably due to their reaction with enzymes and/or other proteins present in the 

digestive fluids; notwithstanding, part of them are still present in the digestates. 

All this evidences that the reactions occurring through the in vitro digestion process 

are very complex, and entail generation, evolution and/or reaction of lipid primary and 

secondary oxidation products, thus showing the difficulty of adequately assessing the 

oxidation extent when proteins able to react with oxidation compounds are present in 

the system. This issue evidences the importance of selecting oxidation markers 

appropriate to the composition of the system subject of study. 

The addition of a low proportion of ovalbumin has little effect on lipolysis and 

polyunsaturated acyl group degradation during digestion. However, when this protein is 

present at a high level, a slight increment in lipolysis and a lower oxidation degree are 

noticed during digestion, all this resulting in a small increase in the bioaccessibility of 

polyunsaturated fatty acids. Moreover, as the concentration of ovalbumin in the system 

increases, an enhancement in the reduction of hydroperoxides to their corresponding 

hydroxides, together with a diminution in the levels of (E)-epoxy-keto-enes, keto-

dienes, dihydroxy-derivatives and especially of aldehydes, are observed. As a 

consequence, reduced concentration of some toxic compounds like oxygenated -

unsaturated aldehydes are noticed in the samples digested with a high ovalbumin 

proportion. This diminution in the concentration of oxidation compounds could be due 

to the lower oxidation extent observed in these samples and/or to their reaction with the 

ovalbumin present in the system. It is worth noticing that the reactions between 

aldehydes and proteins like ovalbumin, which can be considered of the Maillard-type, 
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could act as a detoxifying mechanism in the context of a food system. However, it must 

also be taken into account that the involvement of essential amino acid residues like for 

example lysine in these reactions, and the diminution in the susceptibility to be 

hydrolyzed of the so modified proteins, could lead to a decrease in their digestibility and 

in their nutritional value. 

This knowledge could be useful in order to obtain a more global view of which type 

of oxidation compounds can remain or be generated during digestion and then be 

available for absorption or for reacting with components of the gastrointestinal tract; 

this would allow a better assessment of the impact on human health of dietary oxidation 

products. 
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Table S1. Composition and pH values of the juices employed in the in vitro digestion 

model employed in this study. 

Components Saliva 
Gastric 

juice  

Duodenal 

juice  

Bile 

juice  

KCl (mmol/L) 

NaCl (mmol/L) 

NaHCO3 (mmol/L) 

NaH2PO4 (mmol/L) 

NH4Cl (mmol/L) 

KH2PO4 (mmol/L) 

Na2SO4 (mmol/L) 

KSCN (mmol/L) 

MgCl2 (mmol/L) 

CaCl2*2H2O (mmol/L) 

HCl (37%) (mL/L) 

Urea (mmol/L) 

Glucose (mmol/L) 

Glucuronic acid (mmol/L) 

Uric acid (mmol/L) 

Glucoseamine hydrochloride (mmol/L) 

Bovine serum albumin (g/L) 

Mucin (g/L) 

Aspergillus oryzae -amylase (g/L) 

Aspergillus niger lipase (U/mL) 

Pepsin (g/L) 

Pancreatin (g/L) 

Lipase type II from porcine pancreas 

(g/L) 

Bovine bile extract (g/L) 

12.02 

5.10 

20.17 

7.40 

- 

- 

4.79 

2.06 

- 

- 

- 

3.33 

- 

- 

0.09 

- 

- 

0.025 

0.29 

- 

- 

- 

- 

- 

11.06 

47.09 

- 

0.22 

5.72 

- 

- 

- 

- 

2.72 

6.50 

1.42 

3.61 

0.10 

- 

1.53 

1.00 

3.00 

- 

100 

2.50 

- 

- 

- 

7.57 

119.98 

40.33 

- 

- 

0.59 

- 

- 

0.53 

1.36 

0.18 

1.67 

- 

- 

- 

- 

1.00 

- 

- 

- 

- 

9.00 

1.50 

- 

5.05 

89.99 

68.86 

- 

- 

- 

- 

- 

- 

1.51 

0.15 

4.16 

- 

- 

- 

- 

1.80 

- 

- 

- 

- 

- 

- 

18.75 

pH 6.8±0.2 1.6±0.3 8.1±0.2 8.2±0.2 

 

Some details of the in vitro digestion procedure used 

The digestion experiment started by adding 6 mL of saliva to each of the oil samples. 

After 5 min of incubation, 12 mL of gastric juice were added and the mixture was 

rotated head-over-heels at 40 rpm for 2 h at 37±2ºC. 1 hour after starting the gastric 

digestion, pH was set between 2 and 3 with HCl (37%), simulating the gradual 

acidification of the chyme occurring in vivo. After 2 h of gastric digestion, 2 mL of 

sodium bicarbonate solution (1 M), 12 mL of duodenal juice and 6 mL of bile juice 

were added. Subsequently, pH was set between 6 and 7, and the mixture was rotated 

again at 40 rpm and incubated at 37±2ºC for 4 h. 
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Table S2. Chemical shift assignments and multiplicities of the 
1
H NMR signals in 

CDCl3 of the main protons of glycerides, fatty acids and some oxidation compounds 

present in the samples before and after in vitro digestion. TG: triglycerides; DG: 

diglycerides; MG: monoglycerides. The signal letters agree with those given in Figures 

1 and S1. 

Signal Chemical 

shift (ppm) 
Multiplicity Functional group 

Type of protons Compound 

Main acyl groups (AG) and fatty acids (FA)
a,b 

A 0.88 t –CH3 saturated and 

monounsaturated ω-9 AG 

and FA 
 0.89 t –CH3 linoleic AG and FA 

B 0.97 t –CH3 linolenic AG and FA 

C 1.19–1.42 m
* –(CH2)n– AG and FA 

D 1.61 m –OCO–CH2–CH2– AG in TG 

1.62 m –OCO–CH2–CH2– AG in 1,2-DG 

1.63 m –OCO–CH2–CH2–, 

COOH–CH2–CH2– 
AG in 1,3-DG, 1-MG and 

FA 
1.64 m –OCO–CH2–CH2– AG in 2-MG 

E 1.92–2.15 m
** –CH2–CH=CH– AG and FA 

F 2.26–2.36 dt –OCO–CH2– AG in TG 

2.33 m –OCO–CH2– AG in 1,2-DG 

2.35 t –OCO–CH2–, 

COOH–CH2– 
AG in 1,3-DG, 1-MG and 

FA 
2.38 t –OCO–CH2– AG in 2-MG 

G 2.77 t =HC–CH2–CH= Linoleic AG and FA 

H 2.80 t =HC–CH2–CH= Linolenic AG and FA 

I 3.65 ddd ROCH2–CHOH–

CH2OH 
glyceryl group in 1-MG 

J 3.73 m
*** ROCH2–CH(OR’)–

CH2OH 
glyceryl group in 1,2-DG 

K 3.84 m
*** HOCH2–CH(OR)–

CH2OH 
glyceryl group in 2-MG 

L 3.94 m ROCH2–CHOH–

CH2OH 
glyceryl group in 1-MG 

M 4.05–4.21 m ROCH2–CHOH–

CH2OR’ 
glyceryl group in 1,3-DG 

N 4.18 ddd ROCH2–CHOH–

CH2OH 
glyceryl group in 1-MG 

O 4.22 dd,dd ROCH2–CH(OR’)–

CH2OR’’ 
glyceryl group in TG 

P 4.28 ddd ROCH2–CH(OR’)–

CH2OH 
glyceryl group in 1,2-DG 

Q 4.93 m HOCH2–CH(OR)–

CH2OH 
glyceryl group in 2-MG 

R 5.08 m ROCH2–CH(OR’)–

CH2OH 
glyceryl group in 1,2-DG 
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S 5.27 m ROCH2–CH(OR’)–

CH2OR’’ 
glyceryl group in TG 

T 5.28–5.46 m –CH=CH– AG and FA 

Signals related to oxidation compounds 

Conjugated dienic systems
c,d 

– 5.44 ddd –CH=CH–CH=CH– (Z,E)-conjugated double 

bonds associated with 

hydroxy group (OH) in 

octadecadienoic AG and 

FA 

- 5.66 dd 

- 5.97 t 

a 6.49 dd 

     

- 5.47 ddm –CH=CH–CH=CH– (E,E)-conjugated double 

bonds associated with 

hydroperoxy group (OOH) 

in octadecadienoic AG and 

FA 

- 5.76 dtm 

- 6.06 ddtd 

b 6.27 ddm 

     

- 5.51 dtm –CH=CH–CH=CH– (Z,E)-conjugated double 

bonds associated with 

hydroperoxy group (OOH) 

in octadecadienoic AG and 

FA 

- 5.56 ddm 

- 6.00 ddtd 

c 6.58 dddd 

Epoxides 

Epoxy-derivatives 

d 2.63
e m -CHOHC- (E)-9,10-epoxystearate 

e1 2.88
e m -CHOHC- (Z)-9,10-epoxystearate 

e2 2.9
f m -CHOHC- monoepoxy-octadecenoate 

groups 

   -CHOHC-CH2-

CHOHC- 
diepoxides 

e3 2.94*** m -CHOHC- (Z)-(12,13)-epoxy-

9(Z),15(Z)-octadecadienoic 

acid 
f1 3.10

f m -CHOHC-CH2-

CHOHC- 
diepoxides 

Epoxy-keto-derivatives 

e4 2.89
g
/2.90

h td
g
/m

h -CO-CH=CH-

CHOHC- 
(E)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 
e5 2.91

g td -CHOHC-CH=CH-

CO- 
(E)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 
g 3.20

g,h dd -CO-CH=CH-

CHOHC- 
(E)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 

   -CHOHC-CH=CH-

CO- 
(E)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 
h 6.38

g d  (E)-9,10-epoxy-13-keto-

(E)-11-octadecenoate 

    (E)-12,13-epoxy-9-keto-

(E)-10-octadecenoate 
Epoxy-hydroxy-derivatives 
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e6 2.93
i dt -CHOHC-CHOH-

CH=CH- 
threo-11-hydroxy-(E)-

12,13-epoxy-(Z)-9-

octadecenoate 
f2 3.09

j
/3.097

k dd -CHOHC-CH=CH-

CHOH- 
9-hydroxy-(E)-12,13-

epoxy-(E)-10-

octadecenoate 
Epoxy-hydroperoxy-derivatives 

f3 3.11
j dd -CHOHC-CH=CH-

CHOOH- 
9-hydroperoxy-(E)-12,13-

epoxy-(E)-10-

octadecenoate
l 

i 5.85
j dd -CHOHC-CH=CH-

CHOOH- 
9-hydroperoxy-(E)-12,13-

epoxy-(E)-10-

octadecenoate 
Hydroxy-derivatives 

j1 3.45
m,n

/3.48-

3.41
o 

m
m,o

/bs
n -CHOH-CHOH- 9,10-dihydroxy-12-

octadecenoate (leukotoxin 

diol, methyl ester) 
j2 3.45

m
/3.42

n m
m
/bs

n -CHOH-CHOH- 12,13-dihydroxy-9-

octadecenoate 

(isoleukotoxin diol, methyl 

ester) 
k 3.62*** m -CHOH- 12(R)-hydroxy-9(Z)-

octadecenoate 
Keto-dienes    

l 7.14*** dm -

CO−CH=CH−CH=C

H- 

9-keto-10(E),12(E)-

octadecadienoic acid 

m 7.50
p
/7.43

q dd
q
/ddd

r -

CO−CH=CH−CH=C

H- 

(Z,E)-conjugated double 

bonds associated with a 

keto group in 

octadecadienoic acyl 

groups 

 7.49
p
/7.47

q ddd -

CO−CH=CH−CH=C

H- 

(E,Z)-conjugated double 

bonds associated with a 

keto group in 

octadecadienoic acyl 

groups 
Aldehydes    

n 9.49
r d −CHO (E)-2-alkenals 

o 9.52
r d −CHO (E,E)-2,4-alkadienals 

p 9.55
r d −CHO 4,5-epoxy-2-alkenals 

q 9.57
r d −CHO 4-hydroxy-(E)-2-alkenals 

r 9.59
s d −CHO 4-hydroperoxy-(E)-2-

alkenals 
s 9.75

r t -CHO n-alkanals 

Abbreviations: t: triplet; m: multiplet; d: doublet.
 

*Overlapping of multiplets of 

methylenic protons in the different acyl groups either in β-position, or further, in 

relation to double bonds, or in γ-position, or further, in relation to the carbonyl group; 

**Overlapping of multiplets of the α-methylenic protons in relation to a single double 

bond of the different unsaturated acyl groups; ***This signal shows different 

https://www.sciencedirect.com/topics/chemistry/double-bond
https://www.sciencedirect.com/topics/chemistry/carbonyl-group
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multiplicity if the spectrum is acquired from the pure compound or taking part in the 

mixture; ****Assignment made with the aid of standard compounds. 
a
Assignments of AG in TG taken from Guillén, M. D., & Ruiz, A. (2003). Journal of the 

Science of Food and Agriculture, 83, 338-346. 
b
Assignments of AG in partial glycerides (DG and MG) and of FA taken from Nieva-

Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2014). Food 

Research International, 66, 379-387. 
c
Data taken from E. Goicoechea and M. D. Guillén. J. Agric. Food Chem., 2010, 58, 

6234-6245 (conjugated (Z,E)- and (E,E)-hydroperoxy-dienes). 
d
Data taken from Dong, M., Oda, Y., & Hirota, M. (2000). Bioscience, Biotechnology 

and Biochemistry, 64, 882-886 (conjugated (Z,E)-hydroxy-dienes). 
e
Data taken from Du, G., Tekin, A., Hammond, E. G., & Woo, L. K. (2004). Journal of 

the American Oil Chemists’ Society, 81, 477-480. 
f
Data taken from Aerts, H. A. J., & Jacobs, P. A. (2004). Journal of the American Oil 

Chemists’ Society, 81, 841-846 (monoepoxy-octadecenoates and diepoxides). 
g
Data taken from Lin, D., Zhang, J., & Sayre, L. M. (2007). The Journal of Organic 

Chemistry, 72, 9471-9480. 
h
Data taken from Gardner, H. W., Kleiman, R., & Weisleder, D. (1974). Lipids, 9, 696-

706. 
i
Data taken from Garssen, G. J., Veldink, G. A., Vliegenthart, J. F., & Boldingh, J. 

(1976). The FEBS Journal, 62, 33-36. 
j
Data taken from Gardner, H. W., Weisleder, D., & Kleiman, R. (1978). Lipids, 13, 246-

252. 
k
Data taken from Van Os Cornelis, P. A., Vliegenthart, J. F. G., Crawford, C. G., & 

Gardner, H. W. (1982). Biochimica et Biophysica Acta, 713, 173-176. 
l
-Ketols (hydroxy-keto-derivatives) could also contribute to this signal (Gardner et al., 

1974). 
m

Data taken from Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau C., & 

Hammoc B. D. (2000). Archives of Biochemistry and Biophysics, 376, 420-43. 
n
Data taken from Yang, J., Morton, M. D., Hill, D. W., & Grant, D. F. (2006). Chemistry 

and Physics of Lipids, 140, 75-87.
 

o
Data taken from Nilewski, C., Chapelain, C. L., Wolfrum, S., & Carreira, E. M. (2015). 

Organic Letters, 17, 5602-5605.
 

p
Data taken from Dufour, C., & Loonis, M. (2005). Chemistry and Physics of Lipids, 138, 

60-68. 
q
Data taken from Kuklev et al. (1997).

 

r
Data taken from Guillén, M. D., & Ruiz, A. (2004). European Journal of Lipid Science 

and Technology, 106, 680-687. 
s
Data taken from Guillén, M. D., & Uriarte, P. S. (2009). Journal of Agricultural and 

Food Chemistry, 57, 7790-7799. 

Standard compounds for the identification of some of the oxidation products present 

in the various samples studied 

 

(E)-2-Hexenal, (E)-2-heptenal, (E)-2-decenal, (E,E)-2,4-hexadienal, (E,E)-2,4-

heptadienal, (E,E)-2,4-decadienal, 4,5-epoxy-(E)-2-decenal and 12,13-epoxy-9(Z)-

octadecenoic acid methyl ester (isoleukotoxin methyl ester), acquired from Sigma-

Aldrich, 4-hydroxy-(E)-2-nonenal, 4-hydroperoxy-(E)-2-nonenal, 9,10-dihydroxy-

12(Z)-octadecenoic acid (leukotoxin diol), 12,13-dihydroxy-9(Z)-octadecenoic acid 
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(isoleukotoxin diol), trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, 9-keto-

10(E),12(E)-octadecadienoic acid and 12R-hydroxy-9(Z)-octadecenoic acid methyl 

ester (ricinoleic acid methyl ester), purchased from Cayman Chemical (Ann Arbor, MI, 

USA), and cis-(12,13)-epoxy-9(Z),15(Z)-octadecadienoic acid and (±)-cis-9,10-

epoxyoctadecanoic acid methyl ester, acquired from Cymit Quimica (Barcelona, Spain). 

 

Quantification from 
1
H NMR spectral data of several compounds present in the 

starting samples and/or in the lipid extracts of the digestates and of Lipid 

Bioaccessibility 

A. Lipolytic products and Lipid Bioaccessibility 

The number of moles (N) of fatty acids and all the glycerides present in the lipid samples 

were expressed as follows:  

N2-MG=Pc*AK/4         [eq. S1] 

N1-MG=Pc*AL         [eq. S2] 

N1,2-DG=Pc*(AI+J-2AL)/2       [eq. S3]  

NTG=Pc*(2A4.26-4.38-AI+J+2AL)/4      [eq. S4] 

N1,3-DG=Pc*(A4.04-4.38-2A4.26-4.38-2AL)/5     [eq. S5] 

NFA=(Pc*AF-6NTG-4N1,2-DG-4N1,3-DG-2N1-MG-2N2-MG)/2   [eq. S6] 

NGol=(NFA-N1,2-DG-N1,3-DG-2N2-MG-2N1-MG)/3     [eq. S7]  

where Pc is the proportionality existing between the area of the 
1
H NMR signals and 

the number of protons that generate them, AK, AL, AI+J and AF are the areas of the 

corresponding signals indicated in Table S1, and A4.26-4.38 and A4.04-4.38 represent the 

areas of the signals between 4.26 and 4.38 ppm, and between 4.04 and 4.38 ppm, 

respectively (see Figure S1).  

Using these equations, the molar percentages of the different kinds of glycerides in 

relation to the total number of moles of glyceryl structures present (NTGS) were 

determined as follows: 

NTGS=NTG+N1,2-DG+N1,3-DG+N2-MG+N1-MG+NGol    [eq. S8] 

G%=100NG/NTGS         [eq. S9] 

 

where G is each kind of glyceride (TG, 1,2-DG, 1,3-DG, 2-MG and 1-MG) and NG 

the number of moles of each kind of glyceride. 

 

Gol%=100NGol/NTGS       [eq. S10] 

Likewise, the Lipid Bioaccessibility parameter was calculated as follows: 

LBA%=100(N1-MG+N2-MG+NFA)/NTAG+FA     [eq. S11] 
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NTAG+FA=Pc*AF/2        [eq. S12] 

 

where NTAG+FA is the total number of moles of AG plus FA present. 

B Molar concentrations of polyunsaturated acyl groups and fatty acids  

The concentrations of linolenic (Ln) and linoleic (L) acyl groups and fatty acids, 

expressed as millimoles per mole of the sum of AG+FA present in either the starting 

oils or the lipid extracts of the digested samples were estimated by using the 

following equations: 

[Ln] = [(AH/4)/(AF/2)]*1000      [eq. S13] 

[L] = [(AG/2)/(AF/2)]*1000      [eq. S14] 

 

where AH and AG are the areas of signals H and G indicated in Table S1. It must be 

noted that due to partial overlapping of signals H and G, a previous correction of 

both areas must be undertaken to properly assess the area corresponding to each one 

of them. For this purpose, trilinolenin and trilinolein were used as references. 

 

Finally, it should be pointed out that signal F is due to methylenic protons bonded to 

carbon atoms in alpha position in relation to carbonyl/carboxyl groups of AG and 

FA, modified or not, as well as to carbonyl groups of other compounds formed in the 

oxidation such as aldehydes, (E)-epoxy-keto-enes and keto-dienes. However, despite 

the high oxidation level of the studied samples, the inclusion in this signal of 

methylenic protons in alpha position in relation to carbonyl groups different from 

that of AG and FA does not affect the calculations before mentioned, in which AF is 

included, because the concentration of oxidation products is negligible in relation 

with that of AG+FA. 

C. Oxidation compounds 

The concentration of the several kinds of oxidation compounds, expressed as 

millimoles per mol of the sum of AG+FA present, was estimated by using the 

following equation: 

[OP] = [(AOP/n)/(AF/2)]*1000      [eq. S15] 

 

where AOP is the area of the signal selected for the quantification of each oxidation 

product (OP), shown in Table S1. In the case of epoxides (signals “e1-e6” in Table 

S1), the overlapped area due to the side band of bis-allylic protons signals G and H 

must be subtracted. Although the epoxy-compounds given in Table S1 can contribute 

to signal “e” either with one (“e4-e6”) or with two protons (“e1-e3”), it has been 

assumed that all contribute with two protons. 

4-Hydroperoxy- and 4-hydroxy-(E)-2-alkenals have been quantified together in order 

to accurately compare their concentrations before and after in vitro digestion, 

because in the digested samples it is very difficult to determine each one of these 
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kinds of aldehydes separately, due to the almost total overlap of their signals (see 

Figure 1, letters “r” and “q”, respectively). 

 

Particularities of the quantification of some compounds in the samples digested with 

ovalbumin 

As shown in Figure S1 for D(RSX+HO), in the 
1
H NMR spectra of the extracts 

obtained from the samples digested with a high proportion of ovalbumin, some 

signals attributed to this latter overlap with the signals used to estimate both the 

molar concentration of epoxides giving signal at 2.9 ppm (see signals “e1-e6” in 

Table S2) and the molar percentages of 1,3-DG and TG (see signals “M” and “O”, 

respectively), so their contribution must be subtracted, especially in the case of 

epoxides. For this purpose, ovalbumin was added to the digestive juices after 

undergoing the digestion process and this mixture was extracted in the same way as 

the rest of digested samples; the relative areas of the different ovalbumin signals can 

be determined from the corresponding 
1
H NMR spectrum, free of lipids. This enables 

one to subtract the area of the signals overlapping with those of lipid components in 

the spectra of the extracts obtained from the digested oil samples taking as a 

reference the signals that do not overlap with one another (see Figure S1). It is worth 

noticing that while some signals coming from ovalbumin sample also overlap with 

those of bis-allylic protons (signals “H+G”), their area is very small in relation to that 

of the latter, and so can be ignored. 

 

 

 
Figure S1. Enlargement of some spectral regions of the 

1
H NMR spectra of the lipid 

extracts of: the digested fluids subjected to digestion conditions (DJ); the digestive fluids 

subjected to digestion conditions mixed with ovalbumin at the highest proportion tested 

(DJ+HO); the lipid extract of the digestate of sample D(RSX+HO). The signal letters agree 

with those in Table S2, considering that signal “e” includes signals “e1 to e6”. 
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Aim 1 - STUDY OF THE INFLUENCE OF THE MINOR COMPOUNDS 

NATURALLY PRESENT IN COMMERCIAL SOYBEAN OIL ON ITS 

EVOLUTION UNDER ACCELERATED STORAGE CONDITIONS. 

1. Analysis of the effect of the pool of minor components present in commercial virgin 

and refined soybean oils, determined by Direct Immersion SPME-GC/MS, on their 

evolution under accelerated storage conditions (70 ºC), monitored by 
1
H NMR 

(Manuscript 1) 

 

As before commented, the effect of minor soybean oil components on its oxidative 

stability is considered a subject of interest. To analyze this effect, two commercial 

soybean oils, one virgin and the other refined, were subjected to an accelerated storage 

process at 70 ºC. The composition of the oils was studied by means of 
1
H NMR and DI 

SPME-GC/MS, and their evolution under oxidative conditions was monitored by 
1
H 

NMR. 

Composition in main and minor components of the studied soybean oils. 

The analysis by 
1
H NMR reveals that both the virgin and the refined soybean oils 

have very similar molar proportions of the different types of acyl groups, linoleic being 

the most abundant ones, followed by oleic, saturated and linolenic ones. 

As determined by DI SPME-GC/MS, their content in tocopherols and sterols, 

considered as compounds with antioxidant ability, is higher in the refined oil than in the 

virgin type. By contrast, this latter is richer in free fatty acids, which are compounds 

especially prone to oxidation.  

Study by 
1
H NMR of the evolution of the oils under accelerated storage conditions 

The evolution of the oils was analyzed through the degradation of unsaturated acyl 

groups and the generation of both primary and secondary oxidation products. 

The molar percentages of all the types of unsaturated groups, especially those of the 

polyunsaturated ones (linolenic and linoleic), decrease with time in both oils, this 

diminution being slow during a first stage, but very quick afterwards. The first stage of 

acyl group degradation is slightly longer in the refined than in the virgin oil (8 and 6 

days, respectively), what entails a slower degradation of the refined oil. 

Hydroperoxides, which are the first oxidation compounds to be detected, appear one 

day later in the refined oil (day 2) than in the virgin one (day 1). Their evolution with 
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time follows the line of acyl groups, in such a way that their faster concentration 

increase begins earlier in the virgin oil and the maximum is also reached before in this 

latter (after 6 days versus 8 days in the refined oil), to decrease thereafter. 

As a consequence of hydroperoxide decomposition, a wide variety of secondary 

oxidation products are generated, among which epoxides derived from polyunsaturated 

and from oleic groups, and aldehydes (n-alkanals, (E)-2-alkenals, 4-hydroperoxy-(E)-2-

alkenals, 4-hydroxy-(E)-2-alkenals, 4,5-epoxy-2-alkenals and (E,E)-2,4-alkadienals) can 

be mentioned. In accordance with hydroperoxide evolution, all these types of 

compounds are detected later in the refined oil, their evolution throughout time being 

similar in both oils. 

All these results evidence that the oxidative stability of the refined soybean oil is 

higher than that of the virgin one, and this can be attributed to both its greater content of 

tocopherols and sterols, and to its lower level of free fatty acids. 

 

Aim 2 - ASSESSMENT OF THE EFFECT OF ADDING ALPHA-

TOCOPHEROL, GAMMA-TOCOPHEROL OR L-LYSINE ON THE 

OXIDATIVE STABILITY AND THE OXIDATION PROCESS OF 

COMMERCIAL SOYBEAN OIL SUBMITTED TO ACCELERATED 

STORAGE CONDITIONS 

2.1. Study of the effect of enriching a commercial soybean oil with different proportions 

of -tocopherol (0.002, 0.02, 0.2, 2 and 5% in weight) on its evolution under 

accelerated storage conditions at 70 ºC by means of 
1
H NMR, paying attention to 

both acyl group degradation and oxidation compound generation and evolution. 

(Manuscript 2) 

One of the strategies most commonly used to reduce the oxidation of edible oils is the 

addition of compounds with antioxidant ability. In this context, the current legislation 

allows the addition of -tocopherol (-T) to most refined oils under the quantum satis 

principle, this is without an established limit, despite prooxidant effects of -T have 

been reported on different types of lipids under certain circumstances. In addition to 

this, it must be noticed that little is known about the effect of the -T enrichment on the 

oxidation process of commercial edible oils, with all their original components. For 
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these reasons, the effect of adding -T in proportions ranging from 0.002 to 5% in 

weight to a commercial soybean oil on its evolution under accelerated storage 

conditions at 70 ºC was studied by 
1
H NMR, which allows one to obtain a wide vision 

of the oxidation process. To this aim, the oil acyl group degradation rate and the 

generation of both primary and secondary oxidation products were monitored, including 

hydroperoxides, epoxides, aldehydes, keto-dienes, compounds with conjugated 

hydroxy-dienes and other hydroxy-derivatives different from these latter. 

Unsaturated oil acyl group degradation 

In the reference oil, without -T added, unsaturated acyl group degradation occurs 

slowly during a first stage of the accelerated storage process; this is followed by a 

second one, in which the acyl group degradation rate turns considerably faster. 

While the lowest -T proportion tested (0.002%) does not affect acyl group 

evolution, as the -T concentration increases, the difference between the speeds at 

which acyl groups degrade during the first and the second stage of the oxidation course 

becomes smaller, to the point that in the sample with a 5% of -T added, the acyl group 

degradation pace can be considered almost constant throughout the entire oxidation 

process. This results in an enlargement of the time necessary to reach oil total 

polymerization, especially noticeable in the oil with the highest -T level (5%), where 

this process takes 20 days against 10 in the non-enriched oil. 

Generation of hydroperoxides supporting conjugated diene systems (primary 

oxidation products) 

In line with that commented on acyl groups, above the 0.002% proportion, increasing 

-T enrichment levels progressively accelerate the hydroperoxide concentration 

increase and shorten the time to reach its maximum. Moreover, in the oils with the 

highest -T levels (2 and 5%) hydroperoxides reach higher concentrations than in the 

rest of studied oils. However, the subsequent decrease of hydroperoxide concentration 

takes longer as the -T amount rises. 

Furthermore, the -T enrichment modifies the oxidation pathway of soybean oil in 

relation to the non-enriched oil, promoting the generation of (Z,E)-hydroperoxides 

while delaying and reducing that of their (E,E)-counterparts in line with -T 

concentration, to the point that, at the highest -T level (5%), the former are basically 

the only ones detected during a large part of the oxidation process. This contrasts with 
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the evolution of (Z,E)-and (E,E)-hydroperoxides usually observed under the accelerated 

storage conditions here used, under which the proportions of both types of 

hydroperoxides are similar for an initial period of time, after which the concentration of 

(E,E)-hydroperoxides becomes higher than that of the (Z,E)-ones, both of them reaching 

their maximum at the same time. 

In view of the findings relative to acyl group and hydroperoxide evolution, it can be 

said that, except in the lowest proportion tested, -tocopherol reduces the oxidative 

stability of the oil and accelerates its oxidation process. However, the time needed to 

reach total polymerization is longer in the samples with the highest -T concentrations. 

Generation of secondary oxidation products 

As it could be expected from the effect of the -T enrichment on hydroperoxide 

evolution, the higher the -T concentration, the earlier the appearance of secondary 

oxidation products. However, due to the different effect of -T on (Z,E)- and (E,E)-

hydroperoxides as the enrichment degree grows, not all oxidation compounds are 

affected in the same way by the different -T addition levels. Thus, in agreement with 

that observed for (Z,E)-hydroperoxides, as the -T concentration gets higher an earlier 

generation of (Z,E)-hydroxy-dienes is observed, together with an increase in their level 

in the samples with the highest -T proportions (2 and 5%).  

Regarding epoxides, although increasing levels of -T provoke a faster generation of 

this type of compounds, as the -T concentration rises, a progressive delay in the 

appearance of (E)-epoxystearates, derived from oleic groups, is observed when 

compared with the non-enriched oil.  

Similarly to that commented for the rest of oxidation compounds, as the 

concentration of α-T increases, the formation of aldehydes begins earlier. However, in 

parallel to the changes provoked by the α-T enrichment in (Z,E)- and (E,E)-

hydroperoxide evolutions, variations in the aldehyde generation pattern are also noticed. 

Thus, while in the non-enriched oil the toxic 4-hydroxy-(E)-2-alkenals are generated at 

a lower rate than other kinds of aldehydes such as n-alkanals, (E)-2-alkenals and 4-

hydroperoxy-(E)-2-alkenals, as the -T concentration increases, 4-hydroxy-(E)-2-

alkenals appear earlier, together with 4-hydroperoxy-(E)-2-alkenals, while the 

appearance of the rest of aldehydes is postponed, more as higher is the -T 
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concentration. Moreover, a group of aldehydes not usually detected under the conditions 

of this study also appear in the samples with 2 and 5% of -T: (Z,E)-2,4-alkadienals. 

The changes caused by the different -T levels in the evolution of hydroperoxides 

can be considered to be well reflected in the evolution of (Z,E)- and (E,E)-keto-dienes. 

Thus, as in the case of hydroperoxides, as -T concentration increases, an earlier and 

more profuse generation of (Z,E)-keto-dienes is noticed, together with a delay in the 

generation of (E,E)-keto-dienes in comparison with the (Z,E)-ones. 

Similarly to comments on other types of oxidation products, the generation of 

hydroxy-derivatives different from those supporting conjugated hydroxy-dienes is 

accelerated as -T level increases. Nonetheless, in the oils with the highest -T levels 

(2 and 5%) a reduction in their concentration increasing rate is observed. 

All the above mentioned reveals that, at levels between 0.02 and 5%, the -T 

enrichment of soybean oil accelerates the appearance of secondary oxidation products, 

more as higher is the -T concentration; among these, toxic or potentially toxic 

compounds are present, such as oxygenated -unsaturated aldehydes and certain 

monoepoxides. 

 

2.2. Assessment by means of 
1
H NMR of the influence of different levels of γ-

tocopherol (0.02, 0.2 and 2% in weight) added to a commercial refined soybean oil on 

acyl group evolution and oxidation compound generation throughout an accelerated 

storage process at 70 ºC, and comparison with that of -tocopherol. 

(Manuscript 3) 

 

To go deeper into the effect of different types of tocopherols on the oxidative stability 

of edible oils and to analyze possible differences between their respective behaviours, 

the influence of the addition of γ-tocopherol (-T) in proportions between 0.02 and 2% 

in weight, on the oxidation process of a commercial refined soybean under accelerated 

storage conditions was studied by 
1
H NMR and compared with that of -T at levels of 

0.2 and 2%. 

Effect of the -T enrichment on the evolution of the soybean oil acyl groups and 

comparison with that of -T 

https://www.sciencedirect.com/topics/food-science/soybean-oil
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Unlike that observed previously for -T, the addition of a 0.02% proportion of -T to 

soybean oil does not provoke changes detectable by 
1
H NMR in the evolution of the oil 

acyl groups. However, similarly to that observed for -T, although not so markedly, as 

the -T concentration increases over this level, the rate of acyl group degradation 

increases in comparison with that of the non-enriched refined soybean oil. In addition, 

the initial period in which acyl group degradation proceeds at a lower rate is lengthened 

with -T concentration, what leads to a considerable enlargement of the oil total 

polymerization process in the oil with the highest -T level (2%). 

Effect of γ-T on the evolution of hydroperoxides and their associated conjugated 

dienes and comparison with that of -T 

As could be expected from acyl group evolution, and also similarly to that observed 

for -T, the addition of -T to refined soybean oil in proportions higher than 0.02% 

provokes a faster generation of hydroperoxides and an acceleration in their 

concentration increase rate, greater as higher is the -T level. However, the effect is not 

so pronounced as in the case of -T. Moreover, as described for -T, -T modifies the 

oxidation pathway of soybean oil as it concentration increases, promoting the formation 

of (Z,E)-hydroperoxides over that of the (E,E)-ones, although less noticeably than -T. 

Despite the above mentioned similarities between the effects of - and -T on 

hydroperoxides, some differences can also be found between the actions of both 

tocopherols. Thus, contrary to -T, in the samples with the highest -T enrichment 

levels (0.2 and 2%) the maximum hydroperoxide concentration is reached later than in 

the reference oil. Furthermore, hydroperoxide decomposition also takes longer in the oil 

with the highest -T amount (2%) than in the rest of the samples, the magnitude of this 

effect being greater than in the case of -T. 

Effect of the -T enrichment on the generation of secondary oxidation products 

and comparison with that of -T 

The effect of both - and -T on the nature, relative proportions and generation rate 

of secondary oxidation products is determined by the influence of the enrichment levels 

tested on the evolution of hydroperoxides. Thus, when added at refined soybean oil, and 

under accelerated storage conditions, increasing levels of both tocopherols cause an 

earlier appearance and an increase in the concentration of conjugated (Z,E)-hydroxy-
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dienes but, in line with the differences observed between the effects of both tocopherols 

on hydroperoxide evolution, at the 2% enrichment level, the increase in hydroxy-diene 

concentration is more marked and their existence period shorter in the -T than in the -

T enriched sample. 

Within the broad group of oxidation products designated as epoxides, a distinction 

was made between major epoxides and other minor epoxides, found in lower 

concentrations than the previous ones. Major epoxides encompass those epoxides giving 

1
H NMR signals at 2.9 and 3.1 ppm, which could derive from all the types of 

unsaturated acyl groups, while the minor ones include (E)-epoxystearates, derived from 

oleic groups, and epoxy-keto-enes, which presumably come exclusively from 

polyunsaturated groups. Not all the various classes of compounds included in this group 

are affected similarly by the -T enrichment. Thus, while the so-called major epoxides 

are detected earlier in the oil with the highest -T level than in the non-enriched oil, a 

delay in the appearance of epoxy-keto-enes and (E)-epoxystearates is observed as the -

T proportion is increased over 0.02%. In contrast, an acceleration in the appearance of 

all the various types of epoxides is observed when refined soybean oil is enriched with 

increasing amounts of -T. 

Regarding aldehydes, the -T enrichment above the 0.02% proportion provokes a 

delay in aldehyde formation, in line with -T concentration. By contrast, the addition of 

-T accelerates the appearance of aldehydes in relation to the non-enriched oil, the 

higher the -T concentration gets. Nonetheless, despite these differences between the 

effects of both tocopherols on aldehyde generation rate, there are also some features 

common to the action of both. Thus, unlike that observed in the rest of the oils, in the 

samples with the highest level of either - or -T, 4-hydroxy-(E)-2-alkenals are detected 

at the same time than 4-hydroperoxy-(E)-2-alkenals, and the generation of (Z,E)-2,4-

alkadienals is noticed. 

The effect of the -T enrichment on the evolutions of (Z,E)- and (E,E)-keto-dienes 

follows the line of that on their respective hydroperoxide precursors. Thus, in the 

sample with the highest -T concentration (Z,E)-keto-dienes reach higher levels than in 

the rest of the samples and they are detectable for a longer time, while the formation of 

the (E,E)-ones is markedly retarded compared to the non-enriched oil. As for the 

samples enriched with -T, the higher the α-T concentration, the earlier the generation 
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of (Z,E)-keto-dienes and the later the generation of the (E,E)-ones in relation to the 

former.  

Finally, in the oils with γ-T proportions higher than 0.02% a delay is observed in the 

formation of compounds tentatively identified as mono- and di-hydroxy-derivatives 

different from those supporting conjugated hydroxy-dienes, more marked the higher the 

γ-T amount added. However, the opposite effect is observed in the case of the -T 

enrichment. 

All the aforementioned reveals that both similarities and differences exist between 

the actions of - and γ-T. Thus, although both tocopherols reduce the oxidative stability 

and accelerate the degradation of refined soybean oil, the effect is less marked in the 

case of -T. However, important variations in the effect of both tocopherols are 

observed concerning the generation of most secondary oxidation products, which, in 

general, is accelerated and retarded by the - and the γ-T enrichment, respectively. 

Furthermore, in the oil with the highest proportion of added γ-T (2%), the total oil 

polymerization process is considerably extended when compared with the rest of the 

samples. These findings evidence the complex effect of tocopherols on the generation of 

oxidation products, and the difficulty to define their action on the oil oxidation process 

as either antioxidant or prooxidant. 

 

2.3. Investigation of the effect of different proportions of L-lysine (1 and 2% in weight) 

on the evolution of a commercial refined soybean oil throughout a thermal treatment 

at 70 ºC by means of 
1
H NMR, paying attention to the evolution of oil acyl groups 

and -tocopherol, and to the generation of a wide range of oxidation products. 

(Manuscript 4) 

Taking into account that the antioxidant ability of amino acids on edible oils has 

been described, and that they could constitute an alternative to other types of 

compounds considered to be able to act as antioxidants, the effect of 1 and 2% 

proportions of L-lysine on the oxidation process of a refined soybean oil, performed at 

70 ºC under stirring conditions, was studied by 
1
H NMR. Attention was focused on oil 

acyl group degradation and oxidation compound generation. In addition, the evolution 

of -T throughout the oxidation process was also monitored by 
1
H NMR. 
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Effect of lysine on the evolution of oil acyl groups and -T 

The addition of lysine to the oil reduces the degradation rate of unsaturated acyl 

groups, extending the duration of the first stage of the acyl group degradation process 

from 4 days in the reference oil to 11 and 14 days in the samples with 1 and 2% of 

lysine, respectively. This causes an enlargement of the time required to reach the oil 

total polymerization from 7 days in the oil without lysine to 15 and 17 days in those 

enriched with 1 and 2% of lysine, respectively. 

The oil enrichment with lysine also decreases the diminution rate of -T 

concentration, more in the oil with a 2% of lysine added that in that with a 1%.  

Influence of the lysine enrichment on the generation and further evolution of 

oxidation products 

With regard to primary oxidation products, in the lysine-enriched samples 

hydroperoxides and their associated (Z,E)- and (E,E)-conjugated dienes are detected at 

the same time as in the reference oil (after 2 days under oxidative conditions), although 

in concentrations that decrease in line with lysine enrichment. In addition, as it could be 

expected from acyl group evolution in the different samples, hydroperoxide 

concentration rises much more slowly in the oils with lysine added than in the non-

enriched oil.  

Unlike that observed in the case of - and -T, the addition of lysine at any of the 

levels tested does not modify either the relative proportions of (Z,E)- and (E,E)-

hydroperoxides or their respective evolutions in comparison with the reference oil. 

However, small 
1
H NMR signals that could be assigned to conjugated (Z,E)-hydroxy-

dienes were found in the spectra of the oils enriched with lysine during part of the 

oxidation process, in general before hydroperoxides reached their maximum 

concentration, but not in those of the original oil. This type of compounds were detected 

for a longer period and in a slightly higher concentration in the oil with a 2% of lysine. 

Regarding secondary oxidation products, the addition of lysine to the oil causes a 

remarkable delay in the appearance of all the different types of epoxides (major 

epoxides, epoxy-keto-enes and (E)-epoxystearates) from day 5 in the reference oil to 

days 13 and 15-16 in those with 1 and 2% proportions of lysine, respectively. In 

addition, a reduction in the maximum concentration reached by most of them 

throughout the oxidation process is observed, especially at the 2% level. 
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Similarly to that observed for epoxides, the appearance of aldehydes is also delayed 

in the lysine-enriched samples, from day 5 in the non-enriched oil to days 12 and 14 in 

those containing a 1 and 2% of lysine, respectively. However, unlike in the case of 

epoxides, differences in the appearance rate and in the relative concentrations of the 

various types of aldehydes are observed in the lysine-enriched samples in comparison 

with the reference oil. Thus, in the former the concentrations of all the different kinds of 

toxic oxygenated -unsaturated aldehydes (4-hydroperoxy-(E)-2-alkenals, 4-hydroxy-

(E)-2-alkenals and 4,5-epoxy-alkenals) are notably lower than in the original oil, 

especially in presence of the highest lysine proportion, probably due to their reaction 

with lysine. 

The lysine enrichment at the two concentration levels tested also delays the 

appearance of both (Z,E)- and (E,E)-keto-dienes, to a similar extent than in the case of 

epoxides and aldehdyes.  

In agreement with all the aforementioned, the presence of lysine also postpones 

considerably the emergence of compounds tentatively identified as mono- and 

dihydroxy-derivatives, particularly in the oil with a 2% of lysine added. 

Therefore, in view of all the above mentioned, it could be said that the addition of 

lysine at the levels tested delays considerably the degradation of refined soybean oil, 

preserving its content in major and some minor nutrients for longer, and extending its 

shelf-life. In addition, the presence of lysine reduces the concentration of some toxic 

oxidation compounds in the oil, especially of oxygenated -unsaturated aldehdyes. 

2.4. Study of the effect of the cooxidation of soybean oil and L-lysine, added in a 

proportion of a 2% in weight, on their respective evolutions throughout a thermal 

treatment at 70 ºC by combining 
1
H NMR and LC/MS analyses. 

(Manuscript 5) 

 

In an attempt to go further into the cooxidation process of lipids and amino acids, 

and into the mechanism through which lysine could delay the oxidation process of 

soybean oil, another refined soybean oil was enriched with lysine in a proportion of 2% 

in weight and subjected to an oxidation process at 70 ºC under stirring conditions. Its 

evolution was compared to that of the same oil without lysine. Although the evolution 

of the oil was analyzed, interest was especially focused on studying the effect of 

oxidation on the amino acid with the aim of establishing relationships between both 
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types of processes. The progress of the oil throughout the oxidation process was 

monitored by 
1
H NMR, and that of the amino acid by both 

1
H NMR and LC/MS, in this 

case after a previous extraction process. The evolutions of lysine and their derivatives 

were monitored by LC/MS only up to the 22nd day of the oxidation process since, from 

this point onwards, the oil polymerization degree impaired the extraction of lysine and 

lysine derivatives in the aqueous phase. 

Effect of the lysine enrichment on the oxidation process of the oil, analyzed by 
1
H 

NMR 

The outcomes of the analysis of the evolution of the oil acyl groups and of the 

generation and further evolution of hydroperoxides, hydroxy-dienes, epoxides, 

aldehydes and keto-dienes agree with that observed previously with another type of 

refined soybean oil enriched with 1 and 2% proportions of lysine, thus reinforcing 

previous results. An enlargement of the oil total polymerization process from 13 days in 

the non-enriched oil to 25 days in presence of lysine was observed. 

Analysis of the changes that lysine might undergo and the reactions in which it 

could be involved during its cooxidation process with soybean oil 

- Decrease in lysine concentration. The abundance of lysine, monitored by LC/MS, 

decreases slightly during most of the oil oxidation process until day 22, when it exhibits 

a sharp decrease. This coincides with the moment when lipid hydroperoxides are close 

to their maximum concentration and the levels of all the secondary oxidation products 

monitored begin to increase. 

- Reactions with lipid oxidation products. According to the scientific literature, lysine 

could react with several types of oxidation products such as hydroperoxides, epoxides 

and aldehydes. With regard to a potential reaction of lysine with hydroperoxides, the 

generation of hydroxy-dienes detected by 
1
H NMR throughout the oxidation process of 

the oil containing lysine, but not in the non-enriched oil, could be indicating the 

paticipation of hydroperoxides in covalent modifications of lysine by saturated 

aldehydes. This reaction would give rise to N-alkanoyl (amide type) lysine adducts, 

while hydroperoxides would be reduced to alkyl-hydroxides. 

The reaction of lysine with epoxides might also have taken place considerig the 

slightly lower level of this type of compounds found by 
1
H NMR at the end of the 

oxidation process in the lysine-enriched oil. 



Summary of results 

357 

 

Notwithstanding, the clearest evidence of the reaction of lysine with lipid oxidation 

products is the detection of several adducts of lysine with different aldehydes. Thus, 

lysine adducts with saturated aldehydes were tentatively identified by means of LC/MS 

in the aqueous extracts obtained throughout the oxidation process from the oil 

containing lysine, in concentrations that, in general, increase with time. Although both 

adducts at the N and N positions were detected, the former were more numerous than 

the latter, what evidences the higher reactivity of the Nposition. Among this type of 

adducts, the one due to the reaction of lysine with formaldehyde (Nε-formyl-lysine) was 

the most abundant, followed by lysine adducts with acetaldehyde (Nε-acetyl-lysine), 

propanal (Nε-propanoyl-lysine) and hexanal (Nε-hexanoyl-lysine). Furthermore, Nε-

lysine adducts with butanal, pentanal and octanal were also detected, although in lower 

abundances than those of the previously mentioned compounds. Of all these lysine-

alkanal adducts detected by LC/MS, only the most abundant one, Nε-formyl-lysine, 

could be identified by 
1
H NMR, from day 21 onwards, probably due to the lower 

sensitivity of this technique in comparison with the previous one. 

In addition to the adducts with n-alkanals, 7 adducts of lysine with other types of 

aldehydes considered more reactive than the former were tentatively identified from 

days 14 to 22. Two of them were considered to come from malondialdehyde (N-(2-

propenal)lysine and N,N'-disubstituted 1-amino-3-iminopropene lysine derivative), 2 

from (E)-2-alkenals (Michael adduct of lysine with (E)-2-heptenal and FDP-lysine) and 

3 from oxygenated -unsaturated aldehydes (HNA-lysine, N-4- hydroxy-(2Z)-

nonenoyl-lysine and 4-HNE-LYS Michael adduct stabilized as hemiacetal). Of all the 

kinds of aldehydes involved in the mentioned adducts, (E)-2-alkenals and the 

oxygenated -unsaturated type exhibit markedly reduced concentrations in the oil 

containing lysine when compared to the reference oil, this being especially noticeable in 

the latter case. 

- Pyrrolization reactions. Also by means of LC/MS, another compound with a pyrrolic 

structure (N-2-hexyl-pyrrole) was tentatively identified at the end of the oxidation 

process. It was supposed to come from the reaction of lysine with an unidentified 

aldehyde of the oil, but other possibilities should not be discarded either. 

- Polymerization reactions. Given that a change in colour from yellow to dark orange 

took place during the oxidation process of the oil containing lysine, and that coloured 
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polymers could be generated from the reaction between lipid oxidation compounds and 

amino acids, polymerization reactions might also have taken place, despite the resulting 

products not being detected in this study. In fact, the oil with lysine added totally 

polymerized with a lower degradation degree than the original oil, evidenced by a 

higher molar percentage of linoleic acyl groups. 

In summary, although lysine could take part in various types of reactions under 

oxidative conditions in presence of lipids, only its reaction with aldehydes has been 

evidenced in this work, which reinforces observations made from the oil evolution 

relative to the reduction in the concentration of certain types of aldehydes. It must be 

noticed that, although some products coming from the reaction of lysine with -

unsaturated aldehydes have been reported to exhibit antioxidant activity in soybean oil, 

the compounds identified in this work do not match with those for which antioxidant 

ability is claimed. In addition, a retardation in the oil oxidation process is already 

evident before these adducts are detected. Therefore, other mechanisms seem to be 

involved in the effect observed. 

 

Aim 3 - STUDY OF THE IN VITRO DIGESTION PROCESS OF COMMERCIAL 

SOYBEAN OIL AND OF THE INFLUENCE OF THE OIL COMPOSITION IN 

MINOR COMPONENTS, OF ITS INITIAL OXIDATIVE STATUS AND OF 

THE PRESENCE OF DIFFERENT PROPORTIONS OF OVALBUMIN ON 

LIPOLYSIS AND OXIDATION REACTIONS. 

3.1. Study of the influence of minor components present in commercial virgin and 

refined soybean oils, determined by Direct Immersion SPME-GC/MS, on lipid 

bioaccessibility and oxidation during gastrointestinal in vitro digestion, studied by 
1
H 

NMR and SPME-GC/MS. 

(Manuscript 6) 

 

Another process that could lead to the oxidation of food lipids is digestion. In fact, 

the occurrence of oxidation and the extent of lipolysis achieved during this process are 

determining factors for the bioaccessibility of dietary lipids, and the knowledge of the 

factors affecting these types of reactions a crucial issue to advance in the field of lipid 

nutrient bioaccessibility. In this context, it was considered of interest to assess whether 

the composition in minor components of commercial edible oils can affect the course of 
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these processes. To this aim, the evolution of virgin and refined soybean oils throughout 

a gastrointestinal in vitro digestion process was studied by 
1
H NMR and SPME-GC/MS, 

paying attention to both lipolysis and oxidation reactions. In addition, the fate during 

digestion of -tocopherol, the main tocopherol present in soybean oil, was also analyzed 

by 
1
H NMR. 

Characterization of the samples 

The 
1
H NMR analysis of the oils reveals that the two studied soybean oils have very 

similar molar proportions of the different types of acyl groups. 

Regarding minor components, determined by DI-SPME-GC/MS, higher 

concentrations of all tocopherols and of squalene, all of them compounds attributed with 

antioxidant ability, are found in the refined oil compared to the virgin type. In contrast, 

free fatty acids, which show a high tendence to oxidize, are only detected in the latter.  

Extent of lipolysis reached throughout in vitro digestion, monitored by 
1
H NMR 

Despite the differences in minor components between the virgin and the refined 

soybean oils, significant differences between the lipolysis extent of the two oils were 

not observed. Thus, in both cases molar proportions of triglycerides, 2-monoglycerides, 

1,2-diglycerides, 1-monoglycerides, 1,3-diglycerides and glycerol of around 22%, 24%, 

15%, 5%, 3.5% and 30%, respectively, were found after digestion.  

Assessment of lipid oxidation throughout in vitro digestion 

The occurrence of oxidation during digestion was assessed, on the one hand, by 

means of 
1
H NMR, through the study both of unsaturated acyl group degradation and of 

the generation of oxidation compounds. 

The analysis of the molar percentages of the different kinds of oil acyl groups+fatty 

acids did not show significant changes either in the virgin or in the refined oil after 

being submitted to in vitro digestion. However, the study of the oxidation product 

profile reveals that some oxidation takes place during digestion, especially in the virgin 

oil, evidenced by the appearance of (Z,E)-conjugated hydroperoxy- and hydroxy-dienes. 

In contrast, this type of compounds are not detected in the case of the refined oil.  

The study by SPME-GC/MS of the volatile compounds present in the digestates, 

focused on aldehydes and 2-pentyl-furan, shows that in agreement with the results 

obtained by 
1
H NMR, some lipid oxidation occurs during the digestion process of the 

virgin oil, since the abundances of all the aldehydes present in the headspace of the non-

digested reference sample (n-alkanals, (E)-2-alkenals and 2,4-alkadienals), and also of 
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2-pentyl-furan, increase after digestion. In the case of the refined oil, aldehyde and 2-

pentyl-furan generation is also noticed after digestion, but to a lesser extent than in the 

virgin oil. 

Evolution of γ-T during the in vitro digestion process, monitored by 
1
H NMR 

A reduction in the concentration of -T, and consequently in its bioaccessibility, was 

observed after digestion in the two studied oils. However, this was somewhat more 

pronounced in the case of the virgin oil, what might be related to the slightly higher 

oxidation extent found after digestion in this oil when compared to the refined one. 

In view of all the above, it could be said that the lower tocopherol and squalene 

concentrations of the virgin oil, together with its considerable abundance of free fatty 

acids in comparison with the refined oil, result in a slightly lower oxidative stability 

during in vitro in the former. 

 

3.2. Analysis of the lipolysis extent, of -tocopherol fate and of oxidation compound 

evolution during the in vitro digestion of slightly oxidized virgin and refined 

soybean oils, and of the influence of two proportions of ovalbumin on these 

processes by combining 
1
H NMR and SPME-GC/MS analyses.  

(Manuscript 7) 

 

Continuing with the study of the factors that could exert an influence on the digestion 

process of soybean oil and on the bioaccessibility of some of their components, the 

behaviour of slightly oxidized virgin and refined soybean oils, coming from a thermal 

treatment at 70 ºC, during in vitro digestion was studied by 
1
H NMR and SPME-

GC/MS. The main objectives were to analyze lipolysis extent and oxidation during 

digestion, and to assess the impact of two different proportions of ovalbumin on both 

processes. At the same time -tocopherol fate was monitored, when possible, by 
1
H 

NMR.  

Starting oil samples composition 

The 
1
H NMR analysis of the starting oils reveals that they contain noticeable 

concentrations of linolenic groups and much higher levels of linoleic ones. These oils 

exhibit low levels of hydroperoxides supporting (Z,E)- and (E,E)-conjugated dienes, 

together with some epoxides. Moreover, a small amount of (Z,E)-conjugated hydroxy 

dienes is also noticed in the virgin oil  
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Extent of lipolysis throughout the in vitro digestion 

- In the samples digested without ovalbumin. The lipolysis extent achieved after 

digestion in the slightly oxidized oils here studied was found to be lower than that 

observed in the digestates of the same fresh oils. This is evidenced by a higher 

proportion of triglycerides (around 31% versus 22% in the case of the unoxidized oils) 

and also by a lower proportion of glycerol (around 22% versus near 30% in the fresh 

oils). The lower hydrolysis extent in these oxidized oils could be due to the reaction of 

some oxidation products with amino acid residues of lipases, this leading to a decrease 

in their functionality and to a reduction in the bioaccessibility of the major oil 

components. 

- In the samples digested with different proportions of ovalbumin. While the addition 

of a low proportion of ovalbumin to the slightly oxidized oils studied does not cause 

significant variations in the lipolytic process occurred during in vitro digestion, the 

presence of a high level of this protein greatly enhances lipolysis degree, provoking a 

marked decrease in the triglyceride molar percentage (from around 31% to 5-7%) and 

a notable surge in that of 2-monoglycerides. This, in turn, improves the 

bioaccessibility of lipophilic nutrients. 

Assessment of lipid oxidation during in vitro digestion by 
1
H NMR through 

polyunsaturated acyl group evolution and oxidation compound profile analysis 

The molar concentrations of polyunsaturated acyl groups are not significantly 

affected by the in vitro digestion process, either in the absence or in presence of the two 

ovalbumin proportions tested, so the occurrence of oxidation cannot be inferred from 

acyl group degradation. 

Regarding the evolution and/or generation of oxidation compounds, a diminution in 

the concentration of hydroperoxides, monitored through the evolution of their 

associated (Z,E)- and (E,E)-hydroperoxy-dienes, is observed after digestion, being this 

more pronounced for the (E,E)-isomers. While statistically significant differences were 

not found between the samples digested in the absence and in presence of a low 

proportion of ovalbumin, a more pronounced decline in the concentration of 

hydroperoxy-dienes occurs in the samples digested with a high ovalbumin proportion.  

Both in the oils digested in the absence and in presence of a low proportion of 

ovalbumin, and to a similar extent, the generation of conjugated (Z,E)- and (E,E)-

hydroxy-dienes is observed after in vitro digestion, probably coming from the reduction 
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of hydroperoxides. This increase in hydroxy-diene concentration is greater in the 

samples digested with a high ovalbumin amount. 

In addition to conjugated hydroxy-dienes, the formation of epoxides and of n-

alkanals also occur after the in vitro digestion of all the studied samples. However, 

while no significant differences were found between the oils digested without 

ovalbumin and with a low proportion of this protein, in general smaller increments in 

the concentration of both classes of compounds were found in the samples digested with 

a high ovalbumin proportion. 

In view of all the above mentioned, it appears that when ovalbumin is present in a 

high concentration during digestion, the reduction of hydroperoxides to hydroxy-dienes 

seems to be favoured over other reactions leading to the generation of epoxides and 

saturated aldehydes. However, a potential reaction of all these compounds with the 

amino acid residues of ovalbumin might also contribute to their lower concentration 

increase in comparison with the rest of digested samples. 

Assessment of lipid oxidation throughout in vitro digestion by SPME-GC/MS 

Although not detectable by 
1
H NMR, the study of the starting oils by SPME-GC/MS 

shows that both the virgin and the refined oils contain several classes of aldehydes (n-

alkanals, (E)-2-alkenals and 2,4-alkadienals), as well as 2-pentyl-furan. 

Both in the samples digested without ovalbumin and with a low proportion of this 

protein, concentration of most n-alkanals increases significantly after in vitro digestion. 

However, when a high ovalbumin proportion is present in the system, most saturated 

aldehydes either remain unchanged or show a decrease in relation to the non-digested 

samples. 

With regard to unsaturated aldehydes, the concentration of most (E)-2-alkenals and 

of all 2,4-alkadienals also increases after digestion in the samples digested without 

ovalbumin, although to a lesser extent than in the case of the saturated ones. The same 

is true for the samples digested with a low proportion of ovalbumin, where the overall 

increases of both types of unsaturated aldehydes, in general, are not so marked as in the 

samples digested without ovalbumin. By contrast, in the samples digested with a high 

ovalbumin proportion, the concentrations of (E)-2-alkenals and 2,4-alkadienals 

generally diminishes after digestion, this reinforcing the idea that reactions between 

aldehydes and ovalbumin take place during digestion. 
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The concentration of 2-pentyl-furan also increases after digestion, to a similar extent 

in the samples without ovalbumin and with a low proportion of this protein. 

Nevertheless, the increase observed in the concentration of this compound is 

considerably lower in the samples digested with a high proportion of ovalbumin than in 

the rest of digested samples, which might be interpreted as a certain antioxidant effect 

of this high ovalbumin level during digestion. 

Analysis of the volution of γ-tocopherol during the in vitro digestion process by 
1
H 

NMR 

The presence of γ-T could only be detected by 
1
H NMR in the refined oil and, after 

digestion, only a small concentration of this compound was found in the sample 

digested with a high proportion of ovalbumin, possibly due to a decrease in oxidative 

reactions. 

All these results evidence that a high proportion of ovalbumin could play a key and 

beneficial role during the digestion of slightly oxidized oils by increasing their 

absorbable fraction and -T bioaccessibility, and also by contributing to reducing the 

concentration in the gastrointestinal tract of certain types of oxidation products, such as 

certain aldehydes and epoxides, either by reducing their generation and/or by reacting 

with them. These types of compounds could negatively affect the lipolytic process and 

even human health. 

 

3.3. Study by 
1
H NMR of the in vitro digestion of highly oxidized soybean oil, 

focusing on the bioaccessibility of major lipid nutrients and of some oxidation 

compounds, as well as of the influence of the presence of two different proportions 

of ovalbumin on this process.  

(Manuscript 8) 

 

The study of the evolution during digestion of different types of oxidation products 

present in oxidized oils, and of the parameters influencing this evolution, as well as the 

analysis of the effect that the presence of such compounds can have on lipid hydrolysis, 

are considered relevant issues due to their potential health implications. For this reason, 

the bioaccessibility after in vitro digestion of lipid nutrients and oxidation compounds 

present in highly oxidized virgin and refined soybean oils, obtained after a prolonged 

accelerated storage process at 70 ºC, was assessed by 
1
H NMR. Moreover, the effect of 
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two ovalbumin proportions on lipolysis, oxidation occurrence and fate of oxidation 

compounds was also addressed.  

Starting oil samples composition 

The oils subject of study contain polyunsaturated acyl groups (linoleic and linolenic), 

supported basically on triglycerides, and exhibit a wide variety of oxidation products: 

hydroperoxides with conjugated (Z,E)- and (E,E)-dienes, tentatively identified (E)-

epoxystearates, other epoxides giving 
1
H NMR signals either at 2.9 or/and at 3.1 ppm 

including (E)-epoxy-keto-enes, (Z,E)- and (E,E)-keto-dienes, tentatively identified 

mono- and dihydroxy-derivatives and several classes of aldehydes (n-alkanals, (E)-2-

alkenals, (E,E)-2,4-alkadienals, 4-hydroperoxy-(E)-2-alkenals, 4-hydroxy-(E)-2-

alkenals and 4,5-epoxy-alkenals). 

In vitro bioaccessibility of some compounds initially present in the samples after 

being digested 

The in vitro bioaccessibility of the compounds present in the starting oil samples will 

be influenced, among other factors, by the extent of lipolysis reached after the in vitro 

digestion process, by the occurrence of oxidation, which can lead to the degradation of 

unsaturated acyl groups, and by the transformations undergone by the oxidation 

compounds either initially present in the samples or newly formed during digestion. 

- Lipolysis extent. The lipolysis extent of the highly oxidized virgin and refined soybean 

oils here studied is lower than that observed after the in vitro digestion of these same 

oils when they are unoxidized and when they exhibit a lower oxidation degree. 

However, the differences between the slightly and the highly oxidized oils are not very 

marked. This could be due to several factors such as the ability of the various proteins 

present in the digestive juices, including enzymes, to react with oxidation products, the 

susceptibility of lipases to be inactivated by different classes of oxidation compounds, 

or the polarity of the system, among others. 

Although the presence of a low ovalbumin level during digestion hardly affects 

lipolysis, the presence of a high proportion of this protein slightly enhances lipolysis, 

since a decrease is observed in the amount of remaining triglycerides from 

approximately 35% in the samples digested without ovalbumin to 31% in those 

digested with a high ovalbumin level. This is accompanied by an increment of the 

molar proportions of 1,2-diglycerides, and especially of 2-monoglycerides. The small 

effect of this high concentration of ovalbumin on lipid bioaccessibility, which only 
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increases from around 54% in the samples digested without ovalbumin to 55-57% in 

those containing a high ovalbumin level, contrasts with that observed in less oxidized 

soybean oil samples, where this parameter rises from approximately 57% to around 

80%. This suggests that the high oxidation degree of the oils causes a loss in the 

efficiency of ovalbumin in improving lipolysis. 

- Assessment of oxidation occurrence during digestion through polyunsaturated 

group degradation. Clear and important diminutions in the concentrations of 

linolenic and linoleic acyl groups+fatty acids occur after digestion, more pronounced 

for linolenic than for linoleic groups, which evidence the occurrence of oxidation 

reactions during digestion. 

While the presence of a low ovalbumin proportion in the system does not have a 

noticeable impact on the evolution of polyunsaturated acyl groups+fatty acids during 

digestion, the addition of ovalbumin at a high level leads to a less pronounced 

decrease in the concentrations of polyunsaturated acyl groups+fatty acids when 

compared to the rest of digested samples. This suggests that a high concentration of 

ovalbumin during digestion could exert an antioxidant effect. 

- Changes in the oxidation compound profile after digestion. Similarly to that 

observed in the less oxidized oils studied previously, the concentrations of (Z,E)- and 

especially of (E,E)-hydroperoxy-dienes decrease after digestion and the generation of 

(Z,E)-hydroxy-dienes is noticed. 

Regarding epoxides, while the concentration of those giving signal at 2.9 ppm 

drops only slightly after digestion, the level of those with signal at 3.1 ppm decreases 

to a greater extent. In contrast, the concentration of (E)-epoxy-keto-enes rises 

significantly after digestion.  

An increase after digestion is also observed for keto-diene levels, possibly due to 

their generation from the initially present hydroperoxides. In contrast, the 

concentration of the tentatively identified dihydroxy-derivatives decreases very 

slightly after digestion. 

When it comes to aldehydes, significant increments in the concentration of n-

alkanals take place after digestion. Conversely, the concentrations of -unsaturated 

aldehydes decrease, this diminution being very sharp for the most reactive and toxic 

aldehydes among those detected, which are the oxygenated ones (4-hydroperoxy-(E)-
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2-alkenals, 4-hydroxy-(E)-2-alkenals and 4,5-epoxy-2-alkenals), less pronounced for 

(E)-2-alkenals and practically null for (E,E)-2,4-alkadienals. 

The presence of a low ovalbumin proportion during digestion does not provoke 

significant changes in the concentration of most of the oxidation products present in 

the digestates. Notwithstanding, slightly lower levels of aldehydes, as well as of 

hydroperoxy-dienes and keto-dienes, together with somewhat higher concentrations 

of (Z,E)-hydroxy-dienes, are perceived. 

When ovalbumin is present in a high concentration in the samples subjected to 

digestion, a greater reduction in hydroperoxy-diene levels, along with a significant 

increase in the concentrations of (Z,E)-hydroxy-dienes, are noticed. This reinforces 

previous outcomes obtained with less oxidized oils. Moreover, while the levels of the 

epoxides giving signals at 2.9 and 3.1 ppm are not noticeably modified by the 

presence of a high proportion of ovalbumin, slightly smaller concentration 

increments are observed after digestion for (E)-epoxy-keto-enes, keto-dienes and n-

alkanals than in the rest of digested samples. Regarding the various groups of 

unsaturated aldehydes, their respective levels decrease to a greater extent than in the 

rest of samples, and even (E,E)-2,4-alkadienals show a concentration decline after 

digestion. A drop is also noticed in the concentration of potential dihydroxy-

derivatives in comparison with the samples digested without ovalbumin. 

Similarly to that commented in the case of the digestion of the slightly oxidized 

oils studied previously, the lower concentrations of some oxidation products 

observed in the samples digested with a high ovalbumin proportion, like for example 

-unsaturated aldehdyes, might be due to their reaction with this protein. However, 

the lower concentrations observed for some types of oxidation products could also be 

due to an antioxidant effect of ovalbumin, evidenced by a smaller decrease in the 

concentrations of polyunsaturated acyl groups in these samples. 

It is worth noticing that, among all the oxidation products identified by 
1
H NMR 

after the in vitro digestion of all the highly oxidized soybean oil samples studied, 

epoxides are those present in higher concentrations. Therefore, the potential effect of 

the presence of this type of compounds in the digestates should be further 

investigated. 
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Aim 1 - STUDY OF THE INFLUENCE OF THE MINOR COMPOUNDS 

NATURALLY PRESENT IN COMMERCIAL SOYBEAN OIL ON ITS 

EVOLUTION UNDER ACCELERATED STORAGE CONDITIONS 

1.1. Contrary to what the denomination of the two studied soybean oils might suggest, 

the virgin oil has a lower content of tocols and sterols than the refined one. 

Therefore, it should not be generally assumed that virgin oils are better sources of 

minor components considered to be beneficial for human health than refined ones. 

1.2. The presence of a higher concentration of tocopherols and of a lower amount of 

free fatty acids is associated to a higher oxidative stability under accelerated storage 

conditions in soybean oils having similar proportions of the different kinds of acyl 

groups. 

1.3. A simple analysis of the composition in minor components of commercial oils by 

means of DI SPME followed by GC/MS would make it possible to establish 

different categories or quality levels in relation to oxidative stability and content in 

some bioactive compounds considered beneficial for human health within oils of 

the same botanical origin and similar unsaturation level. 

1.4. Despite all edible oils of the same botanical origin must meet certain requirements 

established in the food legislation, it is evident that differences exist among them 

that can be associated with higher or lower quality levels. Therefore, the 

establishment of parameters indicative of this quality, not considered until now, 

could be valuable for consumers and also for oil producers and food industry. 

 

Aim 2 - ASSESSMENT OF THE EFFECT OF ADDING ALPHA-

TOCOPHEROL, GAMMA-TOCOPHEROL OR L-LYSINE ON THE 

OXIDATIVE STABILITY AND THE OXIDATION PROCESS OF 

COMMERCIAL SOYBEAN OIL SUBMITTED TO ACCELERATED 

STORAGE CONDITIONS 

2.1. To the best of our knowledge, the methodology used, based on 
1
H NMR 

spectroscopy and partially developed in this work, is the only one that allows 

studying the oxidation process of edible oils through the degradation of acyl groups 

and the formation of primary and secondary oxidation compounds simultaneously 

and in a simple way. It does not require either chemical changes of the sample or 
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the use of reagents. In addition, this methodology has been proved to be extremely 

useful to assess the real effect of the addition of compounds up to now described as 

either antioxidants or prooxidants. 

2.2. In relation to the effect of -T 

2.2.1. The addition of -T to soybean oil at a very low level (0.002% in weight) does 

not affect either its oxidative stability or its oxidation process under accelerated 

storage conditions monitored by 
1
H NMR. 

2.2.2. The addition of -T proportions ranging from 0.02 to 5%to soybean oil 

submitted to accelerated storage conditions reduces its oxidative stability, more 

the higher -T concentration. This effect has been proved through a higher rate 

of degradation of acyl groups, a more elevated pace of hydroperoxide 

concentration increase and an earlier appearance of secondary oxidation 

products, including some toxic compounds such as oxygenated-unsaturated 

aldehydes. In spite of this, as the -T concentration gets higher, an enlargement 

in the time needed to reach oil total polymerization is observed. 

2.2.3. The -T enrichment modifies the oxidation pathway of soybean oil forcing the 

almost exclusive generation of (Z,E)-hydroperoxides as the -T level rises, 

while postponing that of their (E,E)-counterparts to the most advanced stages of 

the oxidation process and reducing their levels. This has direct consequences in 

the nature and relative proportions of secondary oxidation products, in such a 

way that oxidation compounds with (Z,E)-isomerism such as conjugated 

hydroxy-dienes and (Z,E)-keto-dienes are also generated earlier and in higher 

concentrations that go in line with the -T level. Even (Z,E)-2,4-alkadienals 

appear, not usually detected under the accelerated storage conditions used. 

2.2.4. The parallelism observed between the effect of increasing -T levels on (Z,E)- 

and (E,E)-hydroperoxides and on the generation sequence of the various types of 

aldehydes suggest a potential relationship between each type of hydroperoxides 

and specific groups of aldehydes, not described previously. 

2.3. In relation to the effect of -T 

2.3.1. Unlike that observed for -T, the addition of a low level of -T (0.02%) does not 

provoke an effect detectable by 
1
H NMR, either on the oxidative stability or on 

the oxidation process of refined soybean oil. 
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2.3.2. The enrichment of refined soybean oil with -T at higher levels reduces its 

oxidative stability under the accelerated conditions here tested, and  modifies the 

oxidation process in relation to the non-enriched oil, more the higher the -T 

concentration. 

2.3.3. Similarly to -T, increasing levels of -T speed up the degradation of acyl groups 

and the surge of (Z,E)-hydroperoxide concentration, while the generation of the 

(E,E)-isomers is delayed, but to a lower extent than -T. 

2.3.4. As the -T level rises, an extension of the time necessary to reach oil total 

polymerization is observed, this effect being considerably more pronounced than 

in the case of -T. This leads to important differences in the generation rate of 

secondary oxidation products in the oils enriched with each tocopherol since, 

contrary to -T, -T delays the appearance of most secondary oxidation products 

more the higher the enrichment degree, with the exception of some epoxides, 

which are detected earlier than in the non-enriched oil. 

2.3.5. The same effect of the various tocopherols on the oxidative stability of edible oils 

should not be assumed, since small structural variations can lead to significant 

differences in their respective actions on the oxidation process under accelerated 

storage conditions. 

2.3.6. The results obtained evidence the difficulty to define the performance of - and -

T on soybean oil oxidation under accelerated storage conditions, either as 

antioxidant or prooxidant since, on the one hand, they reduce the oxidative 

stability of the oil, and on the other they extend the time needed to reach the oil 

total polymerization. 

2.3.7. Given the complexity of the effect of tocopherols on soybean oil oxidation 

process under accelerated storage conditions, the behaviour of these compounds 

towards edible oil oxidation should be addressed on the basis of a broad range of 

lipid oxidation markers, monitored throughout the whole oxidation process, or 

on the global study of this latter. Otherwise, the monitoring of only one or two 

compounds or group of compounds at certain times throughout the process could 

lead to erroneous conclusions. 

2.3.8. The results obtained suggest that it would be necessary to revise the European 

regulations to limit the addition of - and -T to products intended for human 

consumption since, as in the vegetable oil here studied, the supplementation with 
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these tocopherols could have a negative effect not only on the oxidative stability 

of the oil, but also potentially on human health due to the acceleration in the 

appearance of some toxic oxidation products. 

2.4. In relation to the effect of lysine 

2.4.1. The enrichment of refined soybean oil with L-lysine increases its oxidative 

stability, although no large differences were observed between the effects of the 

1 and 2% enrichment levels. 

2.4.2. The addition of lysine not only delays considerably the degradation of the oil acyl 

groups and the generation rate of hydroperoxides, but also postpones the 

appearance of secondary oxidation compounds, while preserving the -T oil 

content. All this extends considerably the oil shelf life. 

2.4.3. Contrary to - and -tocopherols, lysine does not modify the oxidation pathway 

of soybean oil although, unlike in the non-enriched oil, the presence of 

conjugated hydroxy-dienes is detected during part of the oxidation process, in 

general before hydroperoxides reach their maximum concentration. 

2.4.4. It could be said that the presence of lysine exerts a detoxifying effect on soybean 

oil submitted to oxidative conditions, since it considerably reduces the 

concentrations of some toxic secondary oxidation products such as the very 

reactive oxygenated -unsaturated aldehydes, possibly due to their reaction 

with the amino acid. 

2.4.5. Lysine has been shown to be much more effective than - and -tocopherols to 

reduce the oxidation rate of soybean oil, so it could constitute a worthy 

alternative to consider in order to increase the oxidative stability of edible oils 

and diminish their oxidation. 

2.4.6. The selection of appropriate markers to assess lipid oxidation is also a crucial 

issue when amino compounds able to react with oxidation products are present 

in the system since, as in the case of lysine, reduced concentrations of aldehydes 

in relation to other types of oxidation compounds can be found at very advanced 

stages of the oxidation process. 

2.4.7. The cooxidation of soybean oil and lysine provokes changes in the amino acid 

that, under the studied conditions, seem to be mainly due to its reaction with 

different types of aldehydes, thus confirming the results suggested by the study 
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of the oil. However, the involvement of lysine in other types of reactions like 

polymerization ones could also be plausible. 

2.4.8. In the soybean oil oxidation process in presence of lysine, the most abundant 

lysine-aldehyde adducts and the first ones to be detected by LC/MS are those 

formed at the reactive N- position with low molecular weight n-alkanals and 

malondialdehdye, followed by the ones with -unsaturated aldehydes and (E)-

2-alkenals. To the best of our knowledge, this is the first time that several lysine 

adducts with aldehydes of varying nature have simultaneously been detected in a 

complex food model system. 

2.4.9. Despite the great decrease observed in the concentration of oxygenated -

unsaturated aldehydes in presence of lysine, the adducts of lysine with this kind 

of aldehydes are not the most abundant among those tentatively identified. 

Therefore, it could be thought that this class of compounds might also be taking 

part in other types of reactions with lysine. 

2.4.10. Although some antioxidant ability has been attributed to certain products of the 

reaction of lysine with unsaturated aldehydes, they do not match with those 

identified in this study, and in addition, a retardation in the oil oxidation process 

is already evident before these adducts are detected. This suggests that much 

more complex mechanisms seem to be involved in the observed effect. 

 

Aim 3 - STUDY OF THE IN VITRO DIGESTION PROCESS OF COMMERCIAL 

SOYBEAN OIL AND OF THE INFLUENCE OF THE OIL COMPOSITION IN 

MINOR COMPONENTS, OF ITS INITIAL OXIDATIVE STATUS AND OF 

THE PRESENCE OF DIFFERENT PROPORTIONS OF OVALBUMIN ON 

LIPOLYSIS AND OXIDATION REACTIONS 

In relation to the effect of the minor components present in unoxidized soybean oil 

3.1. In line with that observed under accelerated storage conditions, higher 

concentrations of tocopherols and squalene and a lower content of free fatty acids 

in soybean oils with similar unsaturation degrees, result in a higher oxidative 

stability during in vitro digestion and also in a smaller reduction in the 

bioaccessibility of -T, the main tocopherol present in soybean oil. 

3.2. In relation to the influence of the initial oxidative status of soybean oil 
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3.2.1. An initial oxidation degree in soybean oil negatively influences the lipolysis 

extent during in vitro digestion, reducing the bioaccessibility of the major oil 

components, which include some essential fatty acids like the -3 ones. This 

could be due to the reaction of certain oxidation products present in the oxidized 

oils with the amino acid residues of lipolytic enzymes, which in turn could lead 

to a decrease in their activity. However, great differences between the lipolysis 

degree achieved in oils with two different initial levels of oxidation are not 

observed. This evidences the complexity of oxidized lipid digestion and of the 

factors that can affect this process. 

3.2.2. The initial oxidative status of the oil also affects the occurrence of oxidation 

during in vitro digestion, this being greater and deductible from polyunsaturated 

acyl group degradation when the initial oxidation degree is high. 

3.2.3. The in vitro digestion process of soybean oil causes changes in its oxidation 

compound profile that entail generation, transformation and/or reaction with 

components of the digestive fluids. The balance among all these processes will 

determine which kinds of compounds appear to a lesser or greater extent in the 

digestates. 

3.2.4. Not all the types of oxidation products present in oxidized soybean oil evolve in 

the same way during in vitro digestion, epoxides being among those remaining 

to a greater extent and the most abundant oxidation compounds present in the 

digestates. This raises the need to go deeper into the effect that the presence of 

epoxides in the gastrointestinal tract can have on human health. 

3.2.5. It is considered of special interest the case of those samples having notable levels 

of toxic oxygenated-unsaturated aldehydes because, although a pronounced 

decrease in their concentration occurs after digestion, a certain amount is present 

in the digestates. This suggests that this type of compounds react with enzymes 

and/or other proteins present in the digestive fluids, being able to affect their 

functionality; however, part of them remain bioaccessible for absorption. 

3.3. In relation to the effect of the addition of different proportions of ovalbumin to 

oxidized soybean oil 

3.3.1. The presence of a low proportion of ovalbumin during the in vitro digestion of 

oxidized soybean oil does not significantly affect either lipolysis or oxidation or 
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oxidation compound evolution. By contrast, a high proportion of this protein can 

affect all these processes. 

3.3.2. A high level of ovalbumin during the in vitro digestion of oxidized soybean oil 

greatly enhances lipolysis when the oxidation degree of the oil is low, improving 

lipid bioaccessibility. This might be due to the emulsifying ability of the 

ovalbumin added. However, this effect is much smaller when the initial 

oxidation degree of the oil is high, this revealing a negative effect on ovalbumin 

performance during digestion. 

3.3.3. The presence of a high level of ovalbumin during the in vitro digestion of 

oxidized soybean oil, irrespectively of the sample oxidation degree, modifies to 

some extent the oxidation product profile of the digestates, favouring the 

reduction of hydroperoxides to their corresponding hydroxides and diminishing 

the levels of some oxidation products such as hydroperoxides, certain epoxides 

and above all aldehydes. 

3.3.4. A high proportion of ovalbumin, and maybe of other proteins of similar nature, 

could play a beneficial role in the digestion of lipids, to a greater or lesser extent 

depending on the initial oxidation degree of the oil, by increasing the 

bioaccessibility of major lipid nutrients, of -T and presumably of other 

compounds of the same nature. This could be due to an enhancement of lipolysis 

and/or to a reduction in oxidation reactions consequence of a likely antioxidant 

effect. Moreover, the presence of ovalbumin in high enough proportion during 

digestion can contribute to reduce the concentration in the gastrointestinal tract 

of oxidation products that could exert negative effects on human health, such as 

certain aldehydes and epoxides, either by diminishing their generation and/or by 

reacting with them. 

3.3.5. Taking into account the different evolution of the various kinds of oxidation 

compounds during the in vitro digestion of soybean oil depending on its initial 

oxidative status, a battery of markers should be used to assess oxidation during 

digestion of oils. In addition to this, another important issue that should be borne 

in mind is that the presence of proteins able to react with certain oxidation 

products can lead to an underestimation of the oxidation extent depending on the 

oxidation compounds monitored. 
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CONTRIBUTION I 

Simultaneous monitoring of the degradation of minor oil components able to 

exhibit antioxidant ability and of the formation of secondary oxidation products 

during accelerated storage of refined soybean oil 

 

María L. Ibargoitia, Giovanna Cristillo, Ana San Martin, Patricia Sopelana and María 

D. Guillén* 

Food Technology, Lascaray Research Centre, Faculty of Pharmacy, University of the 

Basque Country (UPV/EHU). Paseo de la Universidad, 7, 01006 Vitoria, Spain. *E-

mail: mariadolores.guillen@ehu.eus 

 

Vegetable oils undergo oxidation when they are submitted to degradative conditions. 

The oxidation of edible oils has received much attention due to its influence on oil 

nutritional and sensory quality, and its economical and technological repercussions on 

the food industry. A great variety of methodologies have been developed and 

implemented to evaluate the extent of the oxidative deterioration in vegetable oils, and 

in foods, in general. Some of these are directed to the determination of certain 

parameters, requiring a different method for each parameter, involving the use of 

reagents and the chemical modification of the sample. In the last time, it has been 

described a methodology, based on 
1
H NMR spectroscopy, able to provide 

simultaneously information on the degradation of main oil components, and on the 

formation of some new components; this methodology require the use of a solvent 

although the chemical modification of the sample is not required (1). In this 

communication the capability of a new methodology to provide simultaneously 

information, on the degradation rate of those oil components able to exhibit antioxidant 

ability and on the formation of new compounds derived from these and from oil 

triglycerides is shown. This methodology uses Solid Phase Microextraction and Gas 

Chromatography-Mass Spectrometry and does not require solvents. In this 

communication the oxidation of refined soybean oil submitted to accelerated storage is 

analyzed by using the above mentioned method. 
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CONTRIBUTION II 

INFLUENCE OF HIGH CONCENTRATIONS OF PHYTOSTEROLS ON THE 

EVOLUTION OF REFINED SOYBEAN OIL UNDER ACCELERATED 

STORAGE CONDITIONS  

Ana S Martín, Maria Luisa Ibargoitia, Patricia Sopelana, Maria Dolores Guillén
 

 
Food Technology. Faculty of Pharmacy. Lascaray Research Center. University of the Basque 

Country (UPV/EHU), Vitoria, Spain 

 

Keywords: refined soybean oil, phytosterols, antioxidant ability, 
1
H NMR 

 

Different types of phytosterols, either in mixtures or individually, have been added to various vegetable 

oils in order to increase their thermal stability and reduce polymerization at high temperatures, even 

though results vary among phytosterols (1). However, very little has been studied in relation to the effect 

of phytosterols on the oxidative stability of oils at lower temperatures. Concerning this latter issue, some 

authors have taken for granted a lack of antioxidant activity of phytosterols at low temperatures, 

apparently without any explanation for it (2). In contrast, an antioxidant effect of some of these 

compounds at 37 ºC has been reported by other researchers (3). 

The objective of this research was to study whether phytosterols added to refined soybean oil in higher 

amounts than those usually present in this type of oil could exert an effect on its evolution under 

accelerated storage conditions. For this purpose, refined soybean oil (RSO) and the same oil enriched 

with phytosterols (5% in weight) were subjected to heating at 70 ºC in an oven with aeration for a long 

period of time. The evolution of the oil was monitored by 
1
H Nuclear Magnetic Resonance (

1
H NMR) 

and both acyl groups degradation and formation of different kinds of oxidation products were monitored 

throughout time. 

The results obtained reveal that the presence of a high concentration of phytosterols in RSO modifies 

slightly the oxidation process of the RSO oil. On the one hand, a small reduction in the degradation rate 

of linoleic groups, the most abundant in RSO, after 6 days under accelerated storage conditions, was 

observed. On the other hand, a slight delay in the formation of secondary oxidation products was also 

noticed. Although primary oxidation products were detected at the same time in the RSO with and 

without added phytosterols, their evolution as well as the formation of aldehydes was found to be slower 

in the enriched RSO. Therefore, it can be said that the presence of high amounts of phytosterols slows 

down slightly the oxidative degradation of RSO once this has begun. 
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CONTRIBUTION III 

LA ADICIÓN DE -TOCOFEROL A ACEITE DE SOJA REFINADO PUEDE 

ACELERAR SU OXIDACION 

A. S Martín, M.L. Ibargoitia, P. Sopelana, M.D. Guillén 
Grupo Investigación PROCAYSEAL, Tecnología de Alimentos, Facultad de Farmacia, Centro de Investigación Lascaray, 

Universidad del País Vasco (UPV/EHU), Vitoria, España 

Resumen – En este trabajo se estudia el efecto de la adición de diferentes concentraciones de α-tocoferol (α-T) 

sobre la estabilidad oxidativa de aceite de soja refinado mantenido en condiciones de almacenaje acelerado. El 

objetivo es analizar si el α-T actúa como anti- o como pro-oxidante en las concentraciones utilizadas, y contribuir 

al conocimiento del mecanismo de acción de este compuesto fenólico. El seguimiento de la evolución del aceite se 

llevó a cabo mediante Resonancia Magnética Nuclear de Protón (RMN de 1H). Los resultados obtenidos ponen 

de manifiesto que el α-T actúa como pro-oxidante en las concentraciones ensayadas. 

 

Palabras clave – aceite de soja refinado, actividad prooxidante, alfa-tocoferol, estabilidad oxidativa, RMN 

 
I. INTRODUCCIÓN 

El -tocoferol (α-T) puede actuar como antioxidante; de hecho su adición a aceites comestibles y otros 

alimentos está permitida en la Unión Europea sin indicación de límite máximo (principio quantum satis). 

Sin embargo, algunos autores han señalado que el α-T, dependiendo de distintos factores entre los que se ha 

citado la concentracion, puede comportarse también como pro-oxidante [1,2]. En un intento de contribuir al 

conocimiento de la actuación de este compuesto bajo condiciones oxidativas, en este trabajo se ha estudiado 

el efecto de la adición de altas concentraciones de α-T sobre la estabilidad oxidativa de aceite de soja 

refinado mantenido bajo condiciones de almacenaje acelerado. El estudio se ha llevado a cabo mediante 

RMN de 
1
H ya que proporciona información difícil, si no imposible, de obtener por otros métodos. 

 

II. MATERIALES Y MÉTODOS 

Las muestras objeto de estudio fueron aceite de soja refinado y el mismo aceite de soja enriquecido con dos 

concentraciones diferentes de α-T: 0,2 y 2% en peso. 

Todas las muestras se mantuvieron bajo condiciones de almacenaje acelerado a 70 ºC en una estufa con 

aireación durante 13 días. Con el fin de seguir su evolución, se tomaron alícuotas a lo largo del almacenaje a 

intervalos regulares de tiempo y su evolución fue estudiada mediante RMN de 
1
H, del mismo modo que en 

estudios previos [3,4]. 

 

III. RESULTADOS Y DISCUSIÓN 

La adición de α-T en las concentraciones estudiadas acelera la degradación de los grupos acilo del aceite, 

así como la formación de compuestos primarios de oxidación, siendo esta aceleración mayor cuanto mayor 

es la cantidad de α-T añadido. Es de destacar que la naturaleza de los compuestos primarios de oxidación 

derivados del aceite está claramente afectada por la adición de α-T. También se acelera la formación de 

compuestos secundarios de oxidación. Los resultados obtenidos sugieren que el proceso de oxidación 

transcurre por un mecanismo diferente en el aceite con y sin α-T añadido.  

 
IV. CONCLUSIÓN 

La adición de α-T en concentraciones del 0,2 y del 2% a aceite de soja refinado reduce la estabilidad 

oxidativa de éste poniendo de manifiesto que el α-T actúa como pro-oxidante.  

Es evidente que aunque la legislación no limita la cantidad a la que el α-T se puede añadir a los alimentos, 

la adición al aceite de soja en las cantidades ensayadas es perjudicial, ya que reduce su vida útil, acelerando 

la formación de compuestos tóxicos.  
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CONTRIBUTION IV 

CONTROVERSIA EN RELACIÓN AL CONTENIDO DE ACEITE DE SOJA 

VIRGEN Y REFINADO EN COMPONENTES BENEFICIOSOS PARA LA 

SALUD 

 

A. S Martín, M.L. Ibargoitia, P. Sopelana, M.D. Guillén 

INTRODUCCION 

Los aceites vegetales de semillas normalmente se someten a un proceso de refinado 

antes de ser destinados a consumo humano. Sin embargo, algunos de ellos como el de 

soja, también pueden ser consumidos sin refinar. Diversos estudios han puesto de 

manifiesto que el proceso de refinado provoca la pérdida de componentes minoritarios, 

algunos de los cuales tienen capacidad antioxidante, como tocoferoles y esteroles 

vegetales, a los que se atribuye efectos saludables en el organismo humano. Sin 

embargo, en los últimos tiempos se están buscando alternativas para que el impacto del 

refinado en los componentes beneficiosos del aceite sea el mínimo posible. 

 

OBJETIVO 

Comparar el contenido de algunos componentes minoritarios de interés en aceite de soja 

virgen y aceite de soja refinado. 

 

MATERIALES Y MÉTODOS 

Las muestras estudiadas fueron aceite de soja virgen y refinado. El estudio se llevó a 

cabo mediante Microextracción en Fase Sólida seguida de Cromatografía de 

Gases/Espectrometría de Masas. 

 

RESULTADOS 

Contrariamente a lo que cabría esperar teniendo en cuenta la denominación de los 

aceites estudiados y las características que normalmente se atribuyen a los aceites 

vírgenes y refinados, el aceite virgen presenta un contenido menor de tocoles, 

mayoritariamente tocoferoles, así como de esteroles vegetales, que el refinado. Sin 

embargo, en el aceite virgen las concentraciones de ácidos grasos libres son más altas 

que en el refinado. En ambos tipos de aceite se han detectado compuestos derivados de 

reacciones de oxidación, si bien éstos se encuentran en concentraciones más altas en el 

virgen. 

 

CONCLUSIONES 

*En el caso de los aceites de soja estudiados, el aceite virgen es más pobre que el 

refinado en ciertos componentes considerados beneficiosos. 

*La composición observada podría sugerir que tal vez el etiquetado de los aceites 

estudiados no fuera correcto. Sin embargo, la presencia de una concentración más 

elevada de ácidos grasos libres en el aceite virgen es una característica de este tipo de 

aceites. 

*La calidad de algunos aceites refinados de soja presentes en el mercado puede ser 

comparable o incluso superior a la de algunos vírgenes. 
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CONTRIBUTION V 

EFECTO DE α-TOCOFEROL EN ALTA CONCENTRACIÓN EN LA 

EVOLUCIÓN DE ACEITE DE SOJA DURANTE LA DIGESTIÓN IN VITRO 

A. S Martín, M.L. Ibargoitia, P. Sopelana, M.D. Guillén 

INTRODUCCIÓN 

Actualmente existe en la industria alimentaria una tendencia a enriquecer alimentos con 

compuestos con capacidad antioxidante con el fin de aumentar su estabilidad oxidativa, 

y a su vez, también buscando un efecto beneficioso para la salud. En este contexto, cabe 

destacar el -tocoferol, bien conocido por su capacidad antioxidante y por su actividad 

como vitamina E. Sin embargo, existen evidencias científicas de que, en contra de lo 

esperado, este compuesto puede ejercer un efecto prooxidante en altas concentraciones. 

Por otra parte, también existen estudios que muestran que la digestión in vitro puede 

promover la oxidación de lípidos alimentarios. Teniendo esto en cuenta, cabe pensar 

que ese mismo efecto prooxidante podría observarse también durante el proceso de 

digestión. 

 

OBJETIVO 

Estudiar el efecto que la presencia de α-tocoferol en una concentración del 2% en peso 

tiene en la evolución de aceite de soja refinado durante el proceso de digestión in vitro. 

 

MATERIALES Y MÉTODOS 

Las muestras estudiadas fueron un aceite de soja refinado y ese mismo aceite 

enriquecido con un 2% en peso de α-tocoferol. Ambas fueron sometidas a digestión in 

vitro, tomándose alícuotas antes y después del proceso. El estudio se llevó a cabo 

mediante Microextracción en Fase Sólida seguida de Cromatografía de 

Gases/Espectrometría de Masas. 

 

RESULTADOS 

Tanto en el aceite de soja sin enriquecer en α-tocoferol como en el enriquecido se 

producen reacciones de oxidación durante el proceso de digestión in vitro. Esto se 

deduce de un aumento en la concentración de productos de oxidación, tales como 

aldehídos, en las muestras digeridas en comparación con las mismas muestras sin 

digerir. Sin embargo, la concentración de estos compuestos es más alta entre los 

productos de digestión del aceite enriquecido en α-tocoferol. 

 

CONCLUSIONES 

 a adición de α-tocoferol en un 2% al aceite de soja refinado durante la digestión in 

vitro, no solo no frena la oxidación del aceite generada en este proceso, sino que 

aumenta la extensión de ésta ejerciendo un efecto prooxidante. 
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CONTRIBUTION VI 

LOS ÉSTERES DE ESTEROLES INCORPORADOS A CIERTOS ALIMENTOS COMO 

COMPUESTOS SALUDABLES SE OXIDAN BAJO CONDICIONES OXIDATIVAS IGUAL 

QUE EL RESTO DE LÍPIDOS DANDO LUGAR A SUSTANCIAS TÓXICAS 

M.D. Guillén, P. Sopelana, A. S Martín, M.L. Ibargoitia 

Grupo Investigación PROCAYSEAL, Tecnología de Alimentos, Facultad de Farmacia, CIEA, Universidad del País 

Vasco (UPV/EHU), Vitoria, España 

 

INTRODUCCIÓN 

Los alimentos enriquecidos en esteroles vegetales gozan de gran popularidad en la sociedad actual debido 

a la capacidad de este tipo de compuestos para reducir los niveles de colesterol. Sin embargo, los esteroles 

se oxidan cuando se someten a calentamiento, dando lugar a la formación de derivados tóxicos. En la 

manufactura de ciertos alimentos se emplean ésteres de esteroles en lugar de esteroles, ya que son más 

solubles en lípidos. En este contexto se centra esta comunicación, referida a la oxidación de mezclas de 

ésteres de esteroles bajo condiciones oxidativas y su posible repercusión en la seguridad de tales 

alimentos cuando se calientan. 

 

OBJETIVO 

Estudiar el comportamiento de una mezcla de ésteres de esteroles vegetales cuando es sometida a 

condiciones de termooxidación, atendiendo tanto a los grupos esterilo como a los grupos acilo. 

 

MATERIALES Y MÉTODOS 

La muestra objeto de estudio fue una mezcla comercial de ésteres de esteroles vegetales. Ésta fue 

sometida a un proceso de termooxidación a 180 ºC en una estufa con aireación durante un período de 6 h. 

Las alícuotas tomadas antes y a lo largo del calentamiento fueron estudiadas por Resonancia Magnética 

Nuclear de Protón. 

 

RESULTADOS 

A lo largo del proceso de termooxidación se observa que los grupos esterilo se degradan, dando lugar a la 

formación de derivados oxidados. Asimismo, los grupos acilo, entre los cuales predominan las cadenas 

insaturadas, también sufren un proceso de termodegradación, dando lugar a diferentes compuestos de 

oxidación. Entre ellos cabe destacar la presencia de aldehídos, algunos de ellos tóxicos. 

 

CONCLUSIÓN 

Los ésteres de esteroles incorporados a alimentos se pueden oxidar en las dos partes que conforman su 

molécula por efecto del calentamiento a alta temperatura, lo que puede repercutir en la seguridad de estos 

alimentos. 
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CONTRIBUTION VII 

Advance of oxidation during in vitro digestion of edible oils of different 

unsaturation degree containing hydroperoxides. A study by SPME-GC/MS and by 
1
H NMR 

A.S. Martin, M.L. Ibargoitia, P. Sopelana, M.D. Guillén
* 

Food Technology. Faculty of Pharmacy. Lascaray Research Center. University of the 

Basque Country (UPV/EHU). Paseo de la Universidad nº 7, 01006 Vitoria, Spain  

 

Several works have shown that in vitro digestion promotes lipid oxidation (1,2), and 

that oxidation can be enhanced when the lipids subjected to digestion are slightly 

degraded (3). This is an important issue, since some oxidation products are toxic and, if 

they are formed in the gastrointestinal tract, they can be directly available to be 

absorbed. In this work, three slightly oxidized vegetable oils were subjected to a static 

in vitro digestion process; two of them were rich in polyunsaturated acyl groups and the 

third one in monounsaturated groups. The oils and the extracts of the corresponding 

digestates were studied by 
1
H Nuclear Magnetic Resonance in order to examine the 

occurrence of oxidation reactions. With the same aim, the headspace of each of the oils 

and of their digestates was analyzed by Solid-Phase Microextraction followed by Gas 

Chromatography/Mass Spectrometry. The results obtained prove that, in line with 

previous findings (3), in all cases, irrespective of the oil composition, the oxidation 

process just initiated evolve during digestion, giving rise to the formation of different 

types of oxidation products, both volatile and non volatile; among these, aldehydes and 

compounds with conjugated hydroxy-dienes can be cited. Therefore, the ingestion of 

partially degraded lipids could give rise to the formation of directly absorbable 

oxidation products, so their consumption should be avoided. 
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CONTRIBUTION VIII 

Study by 
1
H Nuclear Magnetic Resonance of the evolution of refined soybean oil 

with different oxidation status under in vitro digestion conditions 

A.S. Martin, P. Sopelana, M.L. Ibargoitia, M.D. Guillén
* 

Food Technology. Faculty of Pharmacy. Lascaray Research Center. University of the 

Basque Country (UPV/EHU). Paseo de la Universidad nº 7, 01006 Vitoria, Spain  

Previous studies have shown that a slight level of lipids degradation in sunflower oil 

promotes their oxidation under in vitro digestion conditions (1). However, little is 

known about the influence of the oxidation status of food lipids on their evolution 

throughout the digestion process. Taking this into account, in this work, refined soybean 

oil with different degrees of oxidation has been subjected to a static in vitro digestion 

process, and its evolution has been followed by 
1
H Nuclear Magnetic Resonance; the 

samples subject of study include the unoxidized oil, the oil with an incipient stage of 

lipids degradation containing hydroperoxides, and the oil with a more advanced 

oxidation status containing both hydroperoxides and different types of secondary 

oxidation products such as aldehydes. The results show that, during the digestion 

process, not only oxidation takes place but also the concentrations of the different types 

of oxidation products change when compared with the undigested samples, in a 

different way depending on their nature. In addition, the oxidation status of the oil has 

an influence on the lipolysis degree reached in the different samples, this being lower in 

the case of the most oxidized oil; this points to a loss of efficiency of the digestive 

enzymes presumably due to their interaction with certain oxidation products. 
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CONTRIBUTION IX 

EFECTO DEL ENRIQUECIMIENTO DE ACEITE DE SOJA CON -

TOCOFEROL SOBRE SU PROCESO DE OXIDACIÓN BAJO CONDICIONES 

DE ALMACENAJE ACELERADO. COMPARACIÓN CON -TOCOFEROL 

A.S. Martin-Rubio, P. Sopelana, M.L. Ibargoitia y M.D. Guillén* 

Grupo Investigación PROCAYSEAL (www.ehu.eus/procayseal), 
 
Tecnología de 

Alimentos, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), Vitoria, 

España 

*mariadolores.guillen@ehu.eus 

– El estudio mediante Resonancia Magnética Nuclear de Protón del efecto del 

enriquecimiento de aceite de soja refinado con -tocoferol muestra que este compuesto 

acelera ligeramente la degradación del aceite bajo condiciones de almacenaje 

acelerado, más cuanto mayor es su concentración. Sin embargo, retrasa la formación 

de aldehídos. 

INTRODUCCIÓN 

Según diversos estudios, el -tocoferol (-T) puede ejercer un efecto antioxidante 

mayor que el -tocoferol (-T) dependiendo de su concentración. Además, la capacidad 

del -T para exhibir una acción prooxidante a concentraciones altas es menor que la del 

-T [1]. Teniendo esto en cuenta, y dado que se conoce poco acerca del mecanismo de 

actuación del -T, en este trabajo se estudia, mediante Resonancia Magnética Nuclear 

de Protón (RMN de 
1
H), el efecto de la adición de diferentes proporciones de -T en el 

proceso de termoxidación de aceite de soja refinado, considerando la formación de 

compuestos de oxidación primarios (hidroperóxidos) y secundarios (aldehídos). Este 

efecto se compara con el observado cuando el aceite se enriquece con -T. 

MATERIALES Y MÉTODOS 

Las muestras objeto de estudio fueron aceite de soja refinado (ASR) sin enriquecer y 

enriquecido con un 0,2 y un 2% en peso de -T. Todas ellas se mantuvieron bajo 

condiciones de almacenaje acelerado en estufa a 70ºC, tomándose alícuotas 

periódicamente hasta su completa polimerización, y fueron estudiadas antes y a lo largo 

del proceso de termoxidación mediante RMN de 
1
H. 

RESULTADOS Y DISCUSIÓN 

http://www.ehu.eus/procayseal
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La adición de -T acelera, aunque en menor medida que el -T, la degradación del 

aceite, provocando una generación más rápida de (Z,E)-hidroperóxidos, sobre todo en la 

muestra con mayor concentración de -T. Sin embargo, en los aceites enriquecidos el 

tiempo necesario para 

alcanzar la concentración máxima de hidroperóxidos es mayor, de manera que su 

descomposición, y en consecuencia la aparición de productos de oxidación secundarios 

como aldehídos, se producen más tarde que en el aceite sin enriquecer. Este efecto es 

especialmente notable en la muestra con mayor cantidad de -T, en la que también la 

polimerización total se ralentiza. El retraso en la generación de aldehídos debido a la 

adición de -T contrasta con lo observado en muestras de aceite de soja refinado 

enriquecido con las mismas proporciones de -T, en las cuales la formación de aldehídos 

se acelera [2]. 

CONCLUSIONES 

El enriquecimiento de ASR con -T en las proporciones ensayadas reduce ligeramente 

su estabilidad oxidativa, pero una vez iniciado el proceso de oxidación, éste transcurre 

más lentamente cuanto mayor es la concentración de -T. 

El -T y elT afectan muy diferentemente a la generación de aldehídos. 

Es necesario considerar el proceso de oxidación globalmente para poder valorar 

adecuadamente el efecto de cualquier compuesto con potencial capacidad antioxidante, 

pues de lo contrario se pueden obtener conclusiones erróneas. 
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CONTRIBUTION X 

Antioxidant effect of lysine on soybean oil evidenced by 

1H Nuclear Magnetic Resonance 
S. Martín-Rubio A., Sopelana P.,Guillén M.D., Basque Country University.  

Vitoria-Gasteiz, Spain. 

The antioxidant effect that proteins and amino acids may have in oils and emulsions is a 

very interesting topic due to the implications that lipid oxidation processes have in food 

nutritional, quality and safety parameters (1). Actually, some authors have shown that 

under certain oxidative conditions, amino acid residues are capable to slowdown lipid 

oxidation processes (2). In spite of all the multiple works dealing with this issue, there is 

not a single study which monitoring lipid peroxidation in a global way in a food model 

system.  

Thus, in this work the effect of L-lysine on the evolution of refined soybean oil 

submitted to oxidative conditions has been studied. The degradation of the oil acyl 

groups of the oil, and the subsequent generation of oxidation compounds the oil have 

been studied. With this purpose refined soybean oil (RSO) and this same oil containing 

a 2% in weight of this amino acid have been heated under continuous stirring in 

magnetic stirrer at 70ºC simulating accelerate storage conditions. The evolution of the 

was monitored by 
1
H Nuclear Magnetic Resonance (

1
H NMR). 

LYS meaningfully slowed down the degradation of acyl groups of the oil as well as the 

generation of primary, and in turn, secondary oxidation compounds. It must be 

mentioned that the amount of α, β-unsaturated aldehydes detected was also lower in the 

oil with LYS added. This work shows that lysine addition to RSO slows down lipid 

oxidation processes under these oxidative conditions. (POSTER PRESENTATION) 
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CONTRIBUTION XI 

La adición de L-cisteina permite alargar la vida útil del aceite de soja 

 

A.S.Martin-Rubio, P.Sopelana, María D.Guillén* 

Procesado, Calidad y Seguridad de Alimentos (PROCAYSEAL), Facultad de Farmacia, 

Universidad del País Vasco (EHU/UPV), Vitoria-Gasteiz, España 

* mariadolores.guillen@ehu.eus 

Se estudió el proceso de oxidación del aceite de soja en presencia o ausencia de un 

2% de L-cisteína a 70ºC con agitación mediante resonancia magnética nuclear de 

protón (
1
H RMN). Se observó que este aminoácido retrasa la oxidación del aceite y 

modifica la ruta de oxidación de algunos epóxidos. 

 

Key words – L-cisteína, aceite de soja, oxidación de lípidos, 
1
H NMR.  

 

INTRODUCCIÓN 

Los procesos de autoxidación lipídica en alimentos es un proceso que conlleva 

consecuencias negativas en términos de calidad y seguridad alimentaria [1]. La industria 

recurre al uso de compuestos clásicamente considerados como antioxidantes [2] con el fin 

de minimizar el avance de la oxidación de lípidos. En este sentido y según la literatura, 

algunos aminoácidos también podrían ejercer actividad antioxidante como se ha 

demostrado en diferentes sistemas de modelo [3]. En esta comunicación se propone el 

estudio de un aminoácido, la L-cisteína (CYS) como alternativa al uso de los 

antioxidantes clásicos comúnmente empleados. De hecho, entre las tendencias más 

recientes que la industria alimentaria desea implementar se contempla el uso de 

ingredientes de fuentes naturales que sean capaces de actuar como antioxidantes en 

sistemas alimentarios reales. Dentro de este contexto el uso de este aminoácido como 

antioxidante podría encajar. 

Teniendo en cuenta lo anterior, con objeto de valorar el efecto de la presencia de un 

aminoácido, como la CYS en el proceso de oxidación del aceite de soja, se propuso el 

estudió de la oxidación del aceite de soja presencia o ausencia de un 2% de CYS bajo 

condiciones de almacenamiento acelerado a 70ºC con agitación empleando 
1
H RMN. Esta 

es una técnica muy interesante ya que permite observar la tanto la degradación de los 

componentes principales de los aceites, así como la generación de una amplia variedad de 

compuestos de oxidación, ofreciendo así visión global de estos procesos de oxidación 

lipídica [1]. 

 

MATERIALES Y METODOS 

Las muestras de estudio fueron aceite de soja o aceite de soja enriquecido un 2% en 

peso con CYS. Muestras de 10 g (en vasos de precipitados) se colocaron en un agitador 

magnético múltiple con calefacción y se calentaron a 70ºC. Se tomaron alícuotas 

periódicamente durante todo el proceso de oxidación del aceite para su estudio por 
1
H 

RMN. 

 

https://www.sciencedirect.com/science/article/pii/S0963996918306021#!
https://www.sciencedirect.com/science/article/pii/S0963996918306021#!
https://www.sciencedirect.com/science/article/pii/S0963996918306021#!
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RESULTADOS Y DISCUSIÓN 

Mediante 
1
H RMN se observó que la presencia de CYS en el aceite retrasa 

notablemente la degradación de los grupos acilo linoleico y linolénico. 

La presencia de CYS, también retrasa la aparición de los primeros hidroperóxidos. 

Además, la velocidad de generación de estos compuestos de oxidación primarios también 

es menor que la observada en el aceite calentado solo, la cual se produce en todos los 

casos en paralelo a la degradación de los grupos acilo insaturados del aceite ya 

mencionada.  

Con respecto a epóxidos y aldehídos, su generación también fue retrasada por la 

adición de CYS al aceite. 

Debe señalarse que la presencia de este aminoácido azufrado no solo retrasó la 

degradación grupos acilo insaturados del aceite y los productos de oxidación, sino que 

también modificó la ruta de oxidación de algunos epóxidos generados durante el proceso 

de oxidación y, en consecuencia, el tipo de compuestos de oxidación generados a partir de 

ellos. 

 

CONCLUSIONES 

Bajo las condiciones de este estudio se ha observado que la presencia de CYS en el 

aceite de soja puede mejorar su estabilidad oxidativa y, por lo tanto, actuar como 

antioxidante.  

Por medio de 
1
H NMR se demuestra que la presencia de este aminoácido retrasa la 

degradación de los grupos acilo poliinsaturados en aceite y, en consecuencia, de los 

productos de oxidación originados a partir de ellos. 

Además, también fue posible observar que la presencia de CYS modifica la ruta de 

oxidación de algunos epóxidos generados a través de este proceso, así como el tipo de 

productos de oxidación que se generan a partir de ellos. Este es un hecho que cabe 

destacar, ya que los epóxidos generados durante la autoxidación de lípidos constituyen 

uno de los grupos de compuestos tóxicos que se forman en mayor proporción durante este 

proceso [1]. 
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