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ABSTRACT
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short
time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored prop-
erties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab
initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical prop-
erties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind,
i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materi-
als, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent
density functional theory. This article aims to present the new features that have been implemented over the last few years, including techni-
cal developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast
light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description
of novel light–matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific
community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new
emergent states of matter (quantum electrodynamical-materials).

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5142502., s

I. INTRODUCTION

It is a general challenge in the electronic structure community
to develop accurate and efficient methods for modeling materials
of ever increasing complexity in order to predict their properties.
In this respect, time-dependent density functional theory (TDDFT)
and related methods have become a natural choice for modeling
systems in and out of their equilibrium.

During the last few years, novel directions of research emerged
in the fields of chemistry, physics, and materials science that
required the development of novel simulation tools needed to face
the new challenges posed by those experimental advances and
emerging phenomena. One can cite some examples among these
new fields of research: the strong coupling between light and mat-
ter (including materials embedded in cavities), new states of matter
(hidden phases and topological solids and molecules), and strong
field dynamics in periodic systems. Whereas the strong-field dynam-
ics of atoms and molecules is now well understood, strong-field
dynamics in solids is an active field of research. Real-time (rt)
TDDFT1,2 represents a natural tool to study highly non-linear phe-
nomena in solids and low-dimensional materials, and the develop-
ment of efficient numerical methods to perform real-time TDDFT in
such periodic or semi-periodic systems is crucial to explore this new
phenomenon (including the quantum nature of light and phonons).
Indeed, it allows us to describe highly nonlinear processes without
having to resort to perturbation theory on top of equilibrium DFT
calculations.

Recent years have seen tremendous experimental progress in
the field of strong light–matter interactions,3–5 where the strong
coupling of light to chemical systems, quantum materials, or
nanoplasmonic systems, among others, has been demonstrated.
In this regime, light and matter meet on the same footing and
the electron–photon interaction has to be explicitly considered.4–9

A novel theoretical approach accelerating this field is quantum-
electrodynamical density-functional theory (QEDFT),4,5,10–14 which
complements TDDFT with the photonic degrees of freedom and
provides reliable and predictive simulations in this emerging field
of research.

In this paper, we explore the recent advances in the Octopus
project.15–19 We focus our attention on the recently added features
and, particularly, on the ones that have not been described in the
previous papers.17–19 These new features include the implementation
of new levels of self-consistent and microscopic couplings of light
and matter, the treatment of solvent effects through the polarizable
continuum model (PCM), the implementation of various methods
to treat van der Waals (vdW) interactions, new methods to calcu-
late magnons, conductivities, and photoelectron spectroscopy from
real-time TDDFT, and the calculation of orbital magneto-optical
responses. Advances in numerical algorithms and methods, such as
new propagators and the use of iterative eigensolvers in the con-
text of reduced density matrix (RDM) functional theory, are also
discussed. Finally, recent improvements in the treatment of peri-
odic systems, as well as more technical code improvements, are
also presented. For a more detailed explanation about how to use
these newly introduced features in practice, we refer the readers to
the Octopus webpage,20 as new tutorials and examples are regularly
being added to it.

This paper is organized as follows: First, we present in
Secs. II–XII the new implementations of physical theories and
algorithms that allow us to deal with non-equilibrium phe-
nomena in materials and nanostructures. This is followed by
Secs. XIII–XVI dealing with technical developments that are funda-
mental in improving the code performance and the stability of the
algorithms. Finally, we draw our conclusions in Sec. XVII. Unless
otherwise stated, atomic units are used throughout the paper.

II. COUPLED MAXWELL–KOHN–SHAM EQUATIONS
In most cases when light–matter interactions are considered,

a decoupling of light and matter is performed at the outset. Either
the electromagnetic fields are prescribed and then the properties
of the matter subsystem are determined, as frequently found in,
e.g., quantum chemistry or solid-state physics, or the properties
of matter are prescribed and then the properties of the photon
subsystem are determined, as done in, e.g., quantum optics or
photonics.12,21
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The microscopic interaction of light and matter in Octopus
has followed this decoupling strategy and has been treated so far
only in the forward-coupling direction. In this approximation, an
external classical laser pulse or kick is prescribed and the response
of the system is computed by evolving the Kohn–Sham orbitals.22

The back-action of the matter subsystem on the laser pulse, the
subsequent effect of this modified pulse on the matter, and so on
are ignored. This forward-coupling approximation is highly accu-
rate when the total current generated in the system is compara-
bly small, such as in atoms or small molecules. Small refers here
to currents that induce transverse electric fields that are about an
order of magnitude smaller than the longitudinal electric field that
originates from the Hartree potential of the system. This has been
exploited in Octopus and other codes, and many different types of
spectroscopies were computed successfully in the past using this
approach.

In contrast, in classical electromagnetic modeling, the oppo-
site view is taken. Here, the material properties are prescribed and
the resulting electromagnetic fields are computed. In practice, the
material properties are routinely approximated by a local continuum
model or by the dielectric function of the system (such as the Debye,
Lorentz, or Drude models) and then Maxwell’s equations are solved
for linear dielectric media arranged in appropriate geometries.23

It is clear that both perspectives, a focus on matter dynam-
ics alone or a focus on electromagnetic field dynamics alone, break
down when the total induced currents become large and when elec-
tromagnetic near-field effects on the scale of the material system are
not negligible anymore. Prime examples for such cases are nanoplas-
monic systems, surface plasmon-polaritons, or tip-enhanced spec-
troscopies. In these cases, the back-action of the material response
on the system itself has to be taken into account, leading to screen-
ing and retardation effects. The proper theoretical framework, which
encompasses all these effects, is quantum electrodynamics. Starting
with a generalized Pauli-Fierz field theory for the combined system
of electrons, nuclei, and photons, we have recently derived different
levels of self-consistent and microscopic couplings of light and mat-
ter. In the classical limit, this results in a coupled set of Ehrenfest–
Maxwell–Pauli–Kohn–Sham equations.21 To implement these equa-
tions, we added a Maxwell solver to the Octopus code, which we
couple self-consistently to the dynamics of the electrons and nuclei.
In the following, we briefly summarize the basic ingredients for
this implementation and show an example of self-consistent light–
matter interactions for a nanoplasmonic system. Further details of
the implementation and nano-optical applications can be found in
Ref. 21.

Since over the years, Octopus has been optimized heavily to
solve time-dependent Schrödinger and Kohn–Sham equations, we
have exploited the fact that Maxwell’s equations can be formulated
in Schrödinger form24 to benefit from the efficient time-evolution
in the code. This reformulation is based on the Riemann–Silberstein
vector,25 which is a combination of the electric E(r, t) and magnetic
field B(r, t),

F±(r, t) =
√ ϵ0

2
E(r, t) ± i

√
1

2μ0
B(r, t). (1)

The sign of the imaginary part of the Riemann–Silberstein vector
corresponds to different helicities. The reformulation of Maxwell’s

equations in Schrödinger form is purely algebraic and starts out with
the microscopic Maxwell’s equations

∇ ⋅ E =
ρ
ϵ0

, ∇ ⋅ B = 0, (2)

∇× B =
1
c2

∂E
∂t

+ μ0J, ∇× E = −
∂B
∂t

, (3)

where E and B are the classical electric and magnetic fields,
respectively, ρ and J are the charge and current densities, ϵ0
and μ0 are the vacuum permittivity and permeability, respectively,
and c = (ϵ0μ0)

−1/2 is the speed of light. Using the Riemann–
Silberstein vector, the electric and magnetic Gauss laws may now be
combined,

∇ ⋅ F =
1
√

2ϵ0
ρ, (4)

and likewise, the Faraday and Ampere laws can be combined into
one evolution equation for the Riemann–Silberstein vector,

ih̵
∂F
∂t
= c(S ⋅

h̵
i
∇)F −

ih̵
√

2ϵ0
J. (5)

Here, S = (Sx, Sy, Sz) denotes a vector of spin one matrices

Sx =
⎛
⎜
⎜
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟
⎟
⎠

, Sy =
⎛
⎜
⎜
⎝

0 0 i
0 0 0
−i 0 0

⎞
⎟
⎟
⎠

, Sz =
⎛
⎜
⎜
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟
⎟
⎠

, (6)

which are analogous to the Pauli matrices and show the spin-one
character of the photon. Having cast Maxwell’s equations as an
inhomogeneous Schrödinger equation, it is now straightforward to
use the time-evolution algorithms in Octopus to time-evolve the
Riemann–Silberstein vector. The only difference to the matter prop-
agation is that we are now dealing with the “Maxwell Hamiltonian”

HEM = c(S ⋅
h̵
i
∇), (7)

which acts upon six orbitals of the Riemann–Silberstein vector cor-
responding to the three components of the electric and magnetic
field vectors. As in the matter case in Octopus, the discretization
of the gradient in the Maxwell Hamiltonian is performed with
finite-difference stencils, and the domain parallelization of Octo-
pus can be used seamlessly for the Maxwell case as well. The dif-
ference to finite-difference time-domain (FDTD) codes based on
the Yee algorithm is that we do not employ two shifted grids for
the electric and magnetic fields,23 but rather a single grid for the
Riemann–Silberstein vector. This simplifies the coupling to mat-
ter and allows us to use higher-order finite-difference discretiza-
tions for the gradient. Since the spatial discretization is connected
to the temporal discretization through the Courant condition, this,
in turn, allows us to use larger time steps. Furthermore, from our
experience, a unified grid also improves the stability compared
to FDTD.

Instead of using the constitutive relations, we couple Maxwell’s
equations directly to the microscopic current density of the matter
subsystem, consisting of the usual paramagnetic current term, the
diamagnetic current term, and the magnetization current term. For
the coupling of the electromagnetic fields to the matter subsystem,
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we are relying on the Power–Zienau–Woolley transformation,26,27

which leads to a multipole expansion. We have implemented the
first two orders of this expansion: the dipole approximation in low-
est order and electrical-quadrupole and magnetic-dipole coupling in
the next order. In addition, we are currently working on implement-
ing the full minimal coupling with a full position dependent vector
potential.

The time evolution of the Kohn–Sham orbitals and the Maxwell
fields is performed side-by-side and the two subsystems are coupled
self-consistently in each time step, as illustrated in Fig. 1. To prop-
agate different subsystems with different Hamiltonians and differ-
ent sets of orbitals simultaneously, we implemented a multi-system
framework in Octopus (for more details, refer Subsection XVI C).

Similar to the matter propagation, also in the Maxwell case, out-
going waves that reach the boundary of the simulation box have to be
absorbed to avoid artificial reflections and backscattering. Our first
attempt was to use also the mask functions that are used for the mat-
ter propagation in Octopus. However, in the electromagnetic case,
the mask absorption of outgoing waves turned out to be not efficient
enough so that we implemented a perfectly matched layer (PML)23

for the Maxwell propagation.
When considering incoming electromagnetic fields with opti-

cal wavelengths, the coupling to atomistic or nano-scale systems
leads to a multi-scale problem. The optical wavelength of the radi-
ation is in this case much larger than the de Broglie wavelength
of the matter. Likewise, the electromagnetic waves are traveling
with the speed of light, which requires sub-attosecond time steps.
We have, therefore, implemented different multi-scale couplings in
space and time. For example, the Maxwell simulation box can be
on the same scale as the matter box. In this case, the electromag-
netic waves are represented as incoming analytical time-dependent
boundary conditions and are propagated numerically inside the sim-
ulation box. Alternatively, the Maxwell simulation box can be much
larger than the matter box to fully encompass laser pulses with
optical wavelengths. In this case, prolongations and interpolations
have to be used similarly to multi-grid methods. Since the electronic
and nuclear motion is much slower than the time-evolution of the

electromagnetic waves, we also implemented a multi-scale approach
for the real-time propagation. The Riemann–Silberstein vector is
propagated with frozen electronic current from the last point of
interaction for many intermediate time steps before a coupling to
the matter subsystem takes place. The number of intermediate steps
is a convergence parameter and depends on the physical situation
at hand.

Since we now include the description of classical electromag-
netic fields explicitly in our real-time simulations, we have directly
access to the outgoing electromagnetic radiation. This allows us
to define electromagnetic detectors at the box boundaries, which
accumulate the outgoing electromagnetic waves. We implemented
such electromagnetic detectors in Octopus, and this allows us to
run simulations in close analogy with experiments and to directly
observe the outgoing radiation. For example, it is no longer needed
to Fourier transform the time signal of the matter dipole to get opti-
cal spectra, but we rather have access to the spectrum directly on the
Maxwell grid.

As an example of a coupled Ehrenfest–Maxwell–Pauli–Kohn–
Sham propagation with Octopus, we selected a nano-optical appli-
cation. We consider in this example two almost spherical sodium
nanoparticles with 297 sodium atoms each, which are arranged in
a dimer configuration. This system interacts with an incoming laser
pulse that excites either the internal dipole or quadrupole plasmon
motion of the dimer. In Fig. 2, we show the resulting electromag-
netic field enhancements for different levels of light–matter cou-
pling. In panels (a) and (b), we show the temporal profile of the
incoming laser pulse and the resulting current density at the cen-
ter point between the two nanoparticles. The field enhancement can
be seen in panels (c)–(e). Including a self-consistent back reaction
in the light–matter coupling, the field enhancement is reduced at
the center point between the two nanoparticles, as shown in panel
(c), while far away from the dimer, as shown in panels (d) and (e),
the field enhancement is larger than in the forward coupled case.
Furthermore, frequency shifts can also be observed, which are more
pronounced in the near-field. We found that the field enhancement
is also sensitive to the coupling terms of the multipole expansion,

FIG. 1. (Left) The standard forward-coupling approximation: the electromagnetic fields (in blue) propagate freely and only influence the propagation of the matter (in red). The
back reaction of the matter currents on the electromagnetic fields is neglected. (Right) Illustration of a fully self-consistent predictor-corrector scheme for a coupled Maxwell–
Pauli–Kohn–Sham time step. As before, the electromagnetic fields influence the propagation of the matter (forward coupling). However, in addition, here the currents from the
matter propagation also influence the propagation of the electromagnetic fields (backward coupling). A given time step for the matter wavefunctions and the electromagnetic
fields is repeated until self-consistency is found (self-consistent forward–backward coupling).
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FIG. 2. Electric field and current density in the z-direction for a dimer of sodium nanoparticles. The centers of the two nanoparticles are located along the z-axis, and the
distance between the two effective spheres of the nanoparticles is 0.5 nm. The electric field values are calculated at two different points: the center point rcp between the two
nanoparticles, located at the origin, and an off-center point rocpx located along the x-axis at a distance of 1.957 nm from rcp. Panel (a) illustrates the incident cosinusoidal
laser pulse with frequency ω1 = 3.05 eV (0.112 a.u.), λ1 = 406.5 nm (7681.84 a.u.), and amplitude of E0

z = 5.142 × 107 V/m (10−4 a.u.), which drives the system. Panel (b)
displays the current density at rcp. In panels (c)–(e), we show the electric field enhancement at rcp, the electric field enhancement at rocpx, and the average of the electric
field over the detector surface close to the box boundary, respectively. The curve in bright gray in panel (c) was added to simplify the comparison and is identical to the laser
pulse in panel (a). The period T1 = 1.36 fs corresponding to the laser frequency ω1 is indicated with gray vertical lines.

which are included, and that the quantitative difference of switch-
ing from local-density approximation (LDA) to the Perdew-Burke-
Ernzerhof (PBE) functional for the exchange–correlation functional
is in this case smaller than including the back reaction in the
light–matter coupling (cf. Ref. 21).

To conclude, with our new efficient implementation for cou-
pled Ehrenfest–Maxwell–Pauli–Kohn–Sham equations in Octopus,
we have now a very versatile tool that allows us to compute fully self-
consistent forward–backward light–matter coupling in real-time
and real-space for a vast set of applications and in close analogy
to experiments. As the coupling to Maxwell’s equations of motion
(EOM) represents the classical limit of the light–matter interaction,
this development leads to the classical limit of QEDFT.

III. STRONG ELECTRON–PHOTON INTERACTIONS
IN REAL SPACE: QUANTUM-ELECTRODYNAMICAL
DENSITY-FUNCTIONAL THEORY

The nascent field of strong light–matter interaction expanded
over the past decades from small atomic structures to chemistry3 and
materials science.28 This development necessitates predictive first-
principles methods capable to describe light and matter on the same
footing. We introduced for the first time, a time-dependent den-
sity functional theory for quantum electrodynamics (QEDFT)4,10

to treat ab initio weak and strong light–matter interactions and its
applications to chemistry and materials, which provides a unique
framework to explore, predict, and control new states of mat-
ter out of equilibrium. This generalization of the time-dependent

density-functional method allows us, for the first time, to explore
the effects of dressing electronic states with photons while retaining
the electronic properties of real materials.

A general non-relativistic Hamiltonian for light–matter sys-
tems treating N interacting electrons coupled to Np photonic modes
in the case of the so-called length-gauge, and after employing the
long-wavelength (dipole) approximation,13 reads as follows:

Ĥ =
N

∑
k=1
[− 1

2∂
2
rk + v(rk, t)] + 1

2∑
k≠l

w(rk, rl)

+
1
2

Np

∑
α=1

⎡
⎢
⎢
⎢
⎢
⎣

− ∂2

∂q2
α

+ (ωαqα − λα ⋅
N

∑
k=1

rk)
2

+ 2
j(α)ext (t)
ωα

qα
⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Here, the first two terms on the right-hand side correspond to
the usual electronic many-body Hamiltonian, while the last term
describes the photon modes, which is characterized for each pho-
ton mode α by its elongation qα, frequency ωα, and electron–photon
coupling strength vector λα that includes the polarization of the pho-
ton mode and introduces the coupling to the total dipole ∑N

k=1 rk of
the electronic system. For a more detailed discussion of the differ-
ent regimes of weak/strong/ultra-strong light–matter coupling, we
refer to Ref. 6. The external variable for the photon system is the
time-dependent current j(α)ext (t).

QEDFT4,10 is structurally similar to time-dependent density-
functional theory in that it is based on a one-to-one correspondence
between internal and external variables. If now photons are also
considered, the set of internal variables has to be expanded. In the
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framework of Eq. (8), the internal variables become the density
n(r, t) and the mode-resolved contributions to the electric dis-
placement field qα(t). By introducing and exploiting the bijec-
tive mapping of these internal and the external variables [vext(r,
t) and jext(t)], the auxiliary Kohn–Sham system is described by
the electronic Kohn–Sham equations as well as Maxwell’s equa-
tions,5 leading to no exchange–correlation contribution in the
photon subsystem [j(α)xc (t) = 0]. This reformulation subsumes
the “quantumness” of the light–matter interaction solely into the
local exchange–correlation potential that now features a compo-
nent due to the electron–photon interactions, in addition to the part
due to electron–electron interaction, i.e., vxcσ(r, t) = veexcσ(r, t) +
v
ep
xcσ(r, t).4,10,12 Extending the coupled Maxwell–Kohn–Sham equa-

tions to consider quantum photons is, thus, condensed into the
calculation of the local exchange–correlation potential.

In practice, QEDFT requires the construction of an additional
exchange–correlation potential that describes the electron–photon
interaction. First attempts to construct this potential were based on
many-body perturbation theory via the Sham–Schlüter equation29

within the exact exchange (EXX) approximation13,30 by utilizing the
optimized-effective potential (OEP) method.31

A. The optimized effective potential
The framework of the optimized effective potential (OEP)

equation for electron–photon systems has been introduced in Ref.
30 for the static and time-dependent regimes. Solving the time-
dependent OEP equation is unfortunately computationally challeng-
ing. Applications to electronic systems32–34 have been realized so
far only for small and low-dimensional systems while their utiliza-
tion for interacting electron–photon systems remained restricted
to models.30,35,36 This section provides a brief introduction to the
implementation that allows us to solve the computationally more
tractable static OEP equation.

As introduced in Ref. 30, the OEP photon energy depends
on both the occupied and unoccupied electronic orbitals. Alterna-
tively, the OEP photon energy can also be formulated using occu-
pied orbitals and orbital shifts only.13 The full energy expression is
given by

Exc = E(ee)
xc +

Np

∑
α=1

E(α)x , (9)

where E(ee)xc describes the electronic exchange–correlation energy
and E(α)x describes the exchange energy due to the interaction
of the electrons with the photon mode α. Avoiding unoccupied
orbitals is computationally much more favorable for larger systems
and the photonic induced exchange energy can be correspond-
ingly expressed as a sum over the Nσ occupied orbitals of spin
channel σ,

E(α)x = ∑
σ=↑,↓

Nσ

∑
i=1

√ωα
8
⟨Φ(1)iσ,α∣d̂α∣φiσ⟩ +

1
4
⟨Φ(2)iσ,α∣d̂α∣φiσ⟩ + c.c., (10)

where ωα describes the αth mode of the electromagnetic field and
d̂α = λα⋅r describes the dipole operator and the electron–photon cou-
pling strength. We can now reformulate the problem in terms of two

electron–photon orbital shifts. The Kohn–Sham orbitals φiσ con-
tribute to both electron–photon orbital shifts Φ(1)iσ,α and Φ(2)iσ,α that can
be calculated using the Sternheimer equations.13 The first electron–
photon orbital shift can be obtained explicitly by the solution of a
linear Sternheimer equation

[ĥsσ − (ϵiσ − ωα)]Φ(1)iσ,α(r) = −
√ωα

2
d̂αφiσ(r)

+
√ωα

2

Nσ

∑
k=1

d(α)kiσ φkσ (r) (11)

with the matrix element d(α)ijσ = ⟨φiσ ∣d̂α∣φjσ⟩. In addition, the sec-

ond electron–photon orbital shift Φ(2)iσ,α(r) can be defined explicitly
as follows:

Φ(2)iσ,α(r) = d̂αφiσ(r) −
Nσ

∑
k=1

d(α)kiσ φkσ (r). (12)

From Eq. (10), we can now deduce the potential using

vxcσ(r) =
δExc

δnσ(r)
. (13)

After these reformulations, we find for the final OEP equation
including electron–electron effects as well as electron–photon effects

Nσ

∑
i=1
ψ∗iσ(r)φiσ(r) −Λiσ(r) + c.c. = 0, (14)

where the inhomogeneity Λiσ(r) is given by

Λiσ(r) =
1
2

Np

∑
α=1
[Φ(1)∗iσ,α (r)Φ

(1)
iσ,α(r) − ⟨Φ

(1)
iσ,α∣Φ

(1)
iσ,α⟩φ

∗
iσ(r)φiσ(r)].

In Eq. (14), we defined a third orbital shift, the exchange–correlation
orbital shift, which will be used to obtain the corresponding
exchange–correlation potential and is defined along the lines of the
orbital shift usually used in OEP calculations.31 We can also obtain
ψ∗iσ(r) using a Sternheimer equation

(ĥsσ − ϵiσ)ψ∗iσ(r) =M
∗
iσ(r) − ⟨Miσ ∣φiσ⟩φ∗iσ(r), (15)

where M∗iσ(r) now consist of the electron–photon orbital shifts and
the Kohn–Sham orbitals, as described in Ref. 13. Accordingly, we
define this quantity as

M∗iσ(r) = −[vxσ(r) − uxiσ(r)]φ
∗
iσ(r)

+
Np

∑
α=1
[d̂α(

√ωα
2
Φ(1)∗iσ,α (r) +

1
2
d̂αφ∗iσ(r))

−

Nσ

∑
k=1

d(α)ikσ (

√ωα
2
Φ(1)∗kσ,α (r) + d̂αφ∗kσ(r))], (16)

where the effects of the electron–electron interaction are included
in the quantity uxiσ(r). For instance, in exchange-only calculations,

this quantity is defined as uxiσ(r) = 1
φ∗iσ(r)

δE(ee)
x [{φjτ}]
δφiσ(r)

, where E(ee)
x is

the usual Fock exchange energy.
Equation (15) has to be solved self-consistently with Eq. (11).

By this reformulation, we replaced the problem of calculating the
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OEP equation using all unoccupied states by a problem of solving
Np+1 Sternheimer equations that only involve the occupied orbitals.
In this way, the formulation of the problem becomes similar to the
one of Ref. 37 for electrons only.

For practical implementation, we reformulate the OEP equa-
tion in the following form, as it is commonly done to construct the
electronic OEP:31

Sσ(r) =
Nσ

∑
i=1
ψ∗iσ(r)φiσ(r) −Λiσ(r) + c.c., (17)

and update the potential with

v(new)
xσ (r) = v(old)

xσ (r) + c(r)Sσ(r). (18)

The quantity Sσ(r) becomes a measure for convergence, since it is
vanishing at the solution point [compare Eqs. (17) and (14)]. For
the function c(r), we have different possibilities, such as using a con-
stant or using the inverse of the electron density, as used in Ref. 37.
Other methods are also possible, such as the Barzilai–Borwein (BB)
method.38 We found stable algorithms when using a constant and
the Barzilai–Borwein method.

While we will show the computational feasibility of this
approach in the following, often a simplified solution is beneficial
as a starting point for the self-consistency procedure. Such a simpli-
fied approximation can be deduced by reformulating Eq. (15) into
the following equivalent form:

vxσ(r) =
1

2nσ(r)

Nσ

∑
i=1
(⟨φiσ ∣vxσ ∣φiσ⟩∣φiσ(r)∣2

+ [{M∗iσ(r) + vxσ(r)φ∗iσ(r)}

− ⟨{Miσ + vxσφiσ}∣φiσ⟩φ∗iσ(r)

− (ĥsσ(r) − ϵiσ)ψ∗iσ(r)]φiσ(r)) + c.c., (19)

and subsequently assuming (ĥsσ(r) − ϵiσ)ψ∗iσ(r) = 0 to start the
iterative process. In situations where Λiσ(r) = 0, such as pure

electronic exact exchange, this approximation is exact for a single
electron and is referred to as the Krieger–Li–Iafrate (KLI) approx-
imation.13,37,39–41 By multiplying Eq. (19) by |φjσ(r)|2 and integrat-
ing over the spatial coordinates, we arrive at a linear equation that,
in turn, can be solved for the approximate vxσ . This approxima-
tion scheme has proven to often deliver sufficiently accurate results
for electronic structure calculations with significantly lower com-
putational effort and reliable stability. As this approximation can
be seen as a diagonal approximation to the response function, it
unavoidably fails in accurately describing polarization features. In
the context of light–matter correlated ground-states, this leads to a
slight unbalance when approximating components including pho-
tonic excitations [introduced by Φ(1)] and self-polarization inter-
action [introduced by Φ(2)].13,30,42,43 This results in a violation of
translational invariance and introduces an artificial dependence on
the permanent dipole. When performing KLI calculations including
light–matter interaction, we thus suggest moving the set of coordi-
nates into the electronic center-of-charge instead of the center-of-
mass frame. To reduce the effect of this dependence during a self-
consistent calculation, the optional input parameter KLIpt_coc has
been introduced in the code. When activated, this option defines the
dipole operator d̂α with respect to the electronic center-of-charge,
thus improving the stability of the algorithm.

Finally, in Fig. 3, we show the capabilities of the new implemen-
tation, where we calculate two sodium dimers in the weak coupling
regime under light–matter coupling. Figure 3(a) shows the electron
density, and Fig. 3(b) shows the comparison of OEP and KLI results.
As shown in Ref. 13, in the weak-coupling regime, the KLI is close to
the OEP result. In Fig. 3(c), we show the convergence behavior when
using a constant in Eq. (18) and when using the Barzilai–Borwein
method.38

For a more detailed analysis on how the OEP equation per-
forms also in the strong and the ultra-strong coupling limit, we refer
to Refs. 13 and 30, where we find accurate results for few-level sys-
tems and asymmetric external potentials up to high electron–photon
coupling strength.

FIG. 3. Ground-state density of two sodium dimers affected by the vacuum-field of a cavity: In (a), we show the electron density, in (b), we show the difference of the electron
density inside and outside the cavity for the OEP and the KLI approximations (see main text for details). We find for the exchange energy E(α)x = 6.52 meV and the number
of photons in the correlated light–matter ground-state npt = ⟨a†αaα⟩ = 2.03× 10−3 for the OEP case, and E(α)x = 6.67 meV and npt = 2.22 × 10−3 for KLI. Panel (c) shows
the convergence of |S(r)|2 as defined by Eq. (17) using a constant with c = 20 and using the Barzilai–Borwein (BB) scheme. The simulation is set up as described in Refs. 12
and 13, with h̵ωα = 2.19 eV, λα = 2.95 eV1/2 nm−1, and λα = λαey , and the real-space grid is sampled as 31.75 × 31.75 × 31.75 Å3 with a grid spacing of 0.265 Å.
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Extensions of QEDFT to the regime of vibrational strong cou-
pling,44 the linear-response regime,45 and multitrajectory methods
that capture quantum fluctuations46 are currently work in progress
and will further strengthen the capabilities of the Octopus code for
the real-space description of strongly coupled light–matter systems.
To describe the effects in the ultra-strong coupling regime, one can
use an alternative method that is presented in Sec. IV.

IV. DRESSED REDUCED DENSITY MATRIX
FUNCTIONAL THEORY FOR ULTRA-STRONGLY
COUPLED LIGHT–MATTER SYSTEMS

The accurate description of the (ultra-)strong coupling regime
of light–matter systems is a formidable task. In many cases, the
known functionals for QEDFT (see Sec. III) are inaccurate, and
for complex electronic systems, typical few-level approximations
become unreliable.42,47 In this section, we present the Octopus
implementation of an alternative real-space ab initio method for
coupled light–matter systems. Dressed Reduced Density Matrix
Functional Theory (dressed RDMFT)48 extends standard electronic
RDMFT to coupled light–matter systems similarly to how QEDFT
extends DFT. First tests on simple model systems suggest that the
dressed RDMFT remains accurate from the weak to the ultra-strong
coupling regime. A proper introduction of the theory, examples, and
convergence studies can be found in Ref. 49.

This approach allows for the description of an interacting N-
electron system coupled to one photonic mode within the dipole
approximation. The respective Hamiltonian is given in Eq. (8) of
Sec. III. Note that we set jext = 0 throughout this section and that
the ground state Ψ of Eq. (8) depends on 4N + 1 coordinates, i.e.,
Ψ = Ψ(r1, σ1, . . ., rN , σN , p), where {σi} denotes the spin degrees of
freedom and p is the elongation of the photon mode.

Within the dressed RDMFT, the original Hamiltonian (8) of N
electrons in d dimensions and one mode is replaced by an extended
auxiliary Hamiltonian of N dressed fermions in d + 1 dimensions
with coordinates z = (r, q) ∈ Rd+1. This auxiliary Hamiltonian reads

Ĥ′ =
N

∑
k=1
[− 1

2Δ
′
k + v′(zk)] + 1

2∑
k≠l

w′(zk, zl) (20)

and gives access to the same physics (see Refs. 49, Sec. 4). For a
d = 1 matter subsystem, the operators introduced in Eq. (20) read

as follows: the dressed Laplacian Δ′ = ∂2

∂x2 + ∂2

∂q2 , the dressed local
potential

v′(z) = v(x) + [ 1
2ω

2q2
− ω
√

N
λqx + 1

2(λx)
2
], (21)

and the dressed interaction kernel

w′(z, z′) = w(x, x′) + [− ω
√

N
λqx′ − ω

√
N
λq′x + λ2xx′]. (22)

The ground state Ψ′(z1, σ1, . . ., zN , σN) = Ψ(x1, σ1, . . ., xN , σn)
⊗ χ(p2, . . ., pN) of Ĥ′ is a product of the original physical ground
state Ψ and the ground state of χ, which, in turn, is the product of
N − 1 harmonic oscillator ground states. The auxiliary Hamiltonian
(20) contains only one-body and two-body terms in terms of the
dressed coordinates, which allows us, in principle, to use any stan-
dard electronic structure method to solve it (see also Refs. 49, Secs.
4 and 5). We use this construction to develop the dressed RDMFT
and dressed Hartree–Fock (HF). For that, we define the dressed
(spin-summed) first order reduced density matrix (1RDM)

γ′(z, z′) = N ∑
σ1 ,...,σN

∫ d2(N−1)zΨ′∗(z′σ1, z2σ2, . . . , zNσN)

×Ψ′(zσ1, z2σ2, . . . , zNσN). (23)

To apply RDMFT theory on the auxiliary system, we have to replace
the total energy functional of electronic RDMFT, given in Ref. 19,
with the newly introduced quantities of the dressed system, i.e., the
auxiliary Hamiltonian of Eq. (20) (approximately) evaluated by the
dressed 1RDM γ′ of Eq. (23). By that, common approximations
for the two-body energy expression in terms of the 1RDM can be
directly transferred from electronic theory to the dressed system.50

The minimization is performed like in the electronic case and is
based on the RDMFT implementation of Octopus, though the con-
vergence of the dressed system requires a more complicated pro-
tocol that can be found in the supplementary material of Ref. 49.
The current implementation in Octopus approximates the condi-
tions under which the dressed 1RDM corresponds to a wave func-
tion by ensuring the fermionic ensemble N-representability condi-
tions.51 However, the auxiliary wave function also exhibits another
exchange symmetry with respect to the auxiliary coordinates, which
is currently neglected. For the practical validity of this approach, the
reader is referred to Sec. 5 and the supplementary material of Ref. 49.

FIG. 4. Differences of the dressed
HF (dHF) and the dressed RDMFT
(dRDMFT) from the exact ground state
energies (in hartree, left) and from the
exact photon number (right) as a function
of the coupling g/ω for the stretched H2
molecule in the dressed orbital descrip-
tion. The dressed RDMFT improves
considerably upon dressed HF for the
energy, especially due to the better
description of the electronic correlation.
The photon number, an example of a
photonic observable, is captured simi-
larly with both methods.
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As an example, we consider the one-dimensional (1D) H2
molecule in a soft-Coulomb potential with a slightly stretched bond-
length of b = 2.0 bohrs52 that is modeled by the local potential

vH2(x) = −
1

√
(x − b/2)2 + 1

−
1

√
(x + b/2)2 + 1

+
1

√
b2 + 1

(24)

and the soft Coulomb interaction

w(x, x′) =
1

√
∣x − x′∣2 + 1

. (25)

In Fig. 4, we show the total energy and the total photon num-
ber of the dressed RDMFT, the dressed HF, and the exact many-
body calculations53 for different coupling strengths. We see that for
small couplings, both observables are captured well by the dressed
RDMFT and dressed HF. With an increase in the coupling strength,
both approximations fail to capture the strongly increasing pho-
ton number. For the total energy instead, the dressed RDMFT
remains very close to the exact result, whereas the deviations to the
dressed HF increase with increasing coupling strength. This shows
the potential of the dressed RDMFT to describe correlated electron
systems that are strongly coupled to a cavity mode. In the future,
we plan to investigate better approximations to the polaritonic N-
representability conditions that also account for the symmetry of the
many-body wave function with respect to the exchange of photon
coordinates.

V. TOWARD DYNAMICS OF STRONGLY CORRELATED
SYSTEMS: THE TDDFT+U FUNCTIONAL

It is well known that the standard local and semilocal function-
als of DFT tend to over-delocalize the electrons, as usual approx-
imations are based on the homogeneous electron gas. This leads
to several failures of DFT for materials in which the localization
of electrons plays a critical role in dictating the system’s proper-
ties. This is, for instance, the case for transition metal oxides. The
DFT+U method was originally proposed to compensate for some
of the failures of the LDA for such materials.54–57 In essence, the
DFT+U method aims at a better description of the local electron–
electron interaction, which is achieved by adding the mean-field
Hubbard model on a chosen localized subspace to the DFT total
energy. The double counting of electron interaction in this local-
ized subspace is then removed. The DFT+U total energy functional
reads

EDFT+U[n,{nI,σmm′}] = EDFT[n] + E(ee)[{n
I,σ
mm′}] − Edc[{n

I,σ
mm′}], (26)

where E(ee) is the usual electron–electron interaction energy and
Edc accounts for the double counting of the electron–electron inter-
action already present in EDFT. The analytical expression of this
double-counting term is not known in the general case, a general
problem to all +U methods. Several approximated forms have been
proposed along the years.58,59 In the Octopus code, we implemented
the most commonly used double-counting terms: the fully localized
limit (FLL)60 and the around-mean field (AMF) double-counting
terms.61 They read as59

EFLL
dc [{n

I,σ
mm′}] =

U
2
N(N − 1) −

J
2∑σ

Nσ
(Nσ
− 1) (27)

and

EAMF
dc [{n

I,σ
mm′}] = UN↑N↓ − (U − J)

2l
2l + 1∑σ

N2
σ , (28)

respectively, where Nσ = ∑m nσmm and N = N↑ + N↓. The Eee and Edc
energies depend on the density matrix of a localized orbital basis set
{ϕI ,m}, which are the localized orbitals attached to the atom I. In the
following, we refer to the elements of the density matrix of the local-
ized basis as occupation matrices and we denote them as {nI,σmm′}.
In the rotational-invariant form of DFT+U proposed by Dudarev
et al.,60 and for the FLL double-counting term, we obtain the EU
energy to be added to the DFT total energy, which only depends on
an effective Hubbard U parameter Ueff = U − J,

EU[{nI,σmm′}] = Eee[{n
I,σ
mm′}] − Edc[{n

I,σ
mm′}]

= ∑
I,n,l

Ueff
I,n,l

2 ∑
m,σ
(nI,n,l,σ

mm −∑
m′

nI,n,l,σ
mm′ n

I,n,l,σ
m′m ), (29)

where I is an atom index, σ is the spin index, and n, l, and m refer
to the principal, azimuthal, and angular quantum numbers, respec-
tively. In the case of a periodic system, the occupation matrices nI,n,l,σ

mm′
are given by

nI,n,l,σ
mm′ = ∑

n

BZ

∑
k
wkf

σ
nk⟨ψ

σ
n,k∣ϕI,n,l,m⟩⟨ϕI,n,l,m′ ∣ψ

σ
n,k⟩, (30)

where wk is the k-point weight and f σnk is the occupation of the Bloch
state ∣ψσn,k⟩. Here, |ϕI ,n , l ,m⟩ are the localized orbitals that form the
basis used to describe the electron localization. Details of the imple-
mentation can be found in Ref. 62. We recently extended our origi-
nal implementation to be able to construct a localized subspace from
localized states, such as Wannier states,63 and to treat the intersite
interaction.64

In its usual formulation, the DFT+U method is an empiri-
cal method in which the effective U is a parameter of the calcula-
tion. However, it recently became possible to evaluate U and J fully
ab initio and self-consistently using the ACBN0 functional.65 We
also implemented this method in Octopus and extended it to the
time-dependent case62 to investigate strongly correlated materials
out-of equilibrium. We showed that the absorption spectra of transi-
tion metal oxides, such as NiO or MnO, are well reproduced by our
TDDFT+U simulations.62

Figure 5 shows the calculated time profile of the effective Hub-
bard Ueff = U − J for the 3d orbitals of Ni for light-driven NiO.
The top panel exhibits the time profile of the driving vector poten-
tial. This shows that strongly driven correlated materials cannot be
described by simply assuming that the effective electronic parame-
ters (here, the effective Hubbard U) remain constant out of equi-
librium. Moreover, the possibility to tune these effective electronic
parameters offers opportunities for light-driven phase transitions,
such as light-induced magnetic Weyl semimetals.66

We finally note that TDDFT+U is not the only method that
can be used to describe correlated materials such as transition
metal oxides. An alternative approach to this problem would be
to use hybrid functionals. However, such types of calculations in
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FIG. 5. Self-consistent dynamics of Hubbard U for the Ni 3d orbitals (bottom panel)
for pump intensities as indicated. The top panel represents the time-dependent
vector potential, and the vertical dashed lines indicate the extrema of the vector
potential, i.e., the minima of the driving electric field. Results are from Ref. 67.

complex systems, potentially involving strong spin–orbit coupling
interactions, are usually numerically very expensive in the context of
real-time real-space TDDFT.

VI. VAN DER WAALS INTERACTIONS
The van der Waals (vdW) interactions arise from correlations

between electrons and are, in principle, described by the exact energy
functional through the correlation energy functional Ec[n(r)]. How-
ever, the vdW interactions are inherently non-local and long-range
and, by construction, cannot be described by usual local and semi-
local functionals.68 Therefore, much work has been devoted to find-
ing consistent ways to enhance available functionals to correctly
describe the necessary correlations yielding vdW forces.

Within a pure DFT approach, the inclusion of vdW interac-
tions should be done through the correlation functional. To this
end, a family of non-local density functionals has been proposed.68

The so-called vdW density functionals (vdW-DF) are derived
ab initio from the screened response of the homogeneous electron
gas.68 Another route to include vdW interactions in DFT calcu-
lations is by adding explicit corrections to the energy and forces
based on atomic parameterizations. The most well-known method
of this type is probably the vdW-D3 scheme of dispersion correc-
tions from Grimme.69 Although computationally more favorable
than the vdW-DF method, the major disadvantage of this type of
approach, particularly from the perspective of time-dependent sim-
ulations, is that it fails to correctly describe the effects that depend
on the electron dynamics. A trivial example would be a lone elec-
tron traveling through space. Another scheme based on explicit
corrections to the energy and forces was proposed by Tkatchenko
and Scheffler (vdW-TS).70 This scheme has the advantage of retain-
ing much of the low computational cost of the vdW-D3 scheme
while making the atomic parameterization dependent on the elec-
tronic density. Recently, these three schemes (vdW-DF, vdW-TS,
and vdW-D3) were implemented in the Octopus code to deal with
vdW interactions in isolated and periodic systems.

In the context of real-time TDDFT, it is important to note that
these various levels of the description of vdW interactions have dif-
ferent implications. Indeed, in the vdW-D3 method, the energy and
forces do not depend on the electronic density and will not change
in time, unless atoms are moved, as already mentioned above. This
should be a good approximation only when the time-dependent
density remains close enough to the ground-state density. On the
contrary, the expressions for the vdW-TS and the vdW-DF methods
have a direct dependence on the electronic density and should thus
yield a better description of vdW energies and forces out of equilib-
rium. However, we note that the use of the vdW-TS and vdW-DF
methods within real-time TDDFT must be done using the adia-
batic approximation and will, therefore, behave poorly when this
approximation breaks down.

A. vdW-DF
Octopus supports vdW-DF functionals68 through the libvdwxc

library.71 The vdW-DF functionals are expressed as a sum,

EvdW-DF
c [n] = ELDA

c [n] + Enl
c [n], (31)

of the LDA correlation energy72 and a fully non-local correlation
term. The latter is the integral over a kernel function ϕ(q0, q0

′, r),

Enl
c =

1
2∬

n(r)ϕ(q0(r), q0(r′), ∣r − r′∣)n(r′)drdr′, (32)

where q0(r) depends on the local density and its gradient. An explicit
evaluation of this six-dimensional integral is very expensive and
scales as the volume squared, O(N2

). Roman-Pérez and Soler pro-
posed an efficient method, which approximates it as a sum of three-
dimensional integrals.73 The method works by expressing the inte-
grand as a convolution using a limited set of helper functions and
then applying the Fourier convolution theorem for a scaling of
O(N logN) and a much lower prefactor. This has since become the
standard method for evaluating vdW-DF functionals.

As implemented in Octopus, the density is redistributed from
its normal uniform grid of arbitrary shape onto a uniform 3D grid
forming a cube or parallelepiped, which is suitable for 3D Fourier
transforms. The library libvdwxc then evaluates the non-local energy
and contributions to the potential, relying on the FFTW library74

for efficient parallel Fourier transforms. After calculating the energy
and potential, the potential is redistributed back to the original
form.

Octopus supports the standard functionals vdW-DF1,75,76

vdW-DF2,77 and vdW-DF-cx,78 as well as other common forms that
differ by combining the correlation with a different exchange func-
tional. Some common supported variations are vdW-DF-optPBE,
vdW-DF-optB88,79 and vdW-DF-C09.80

B. vdW-TS
Since the vdW-TS approach depends on the density, the effect

of the van der Waals interaction can be observed in properties other
than the forces. In particular, we expect to observe an effect in the
excited states of systems that interact through vdW forces. We use
the hydrogen fluoride dimer as a simple model system for a proof-of-
concept application of the modular implementation of the vdW-TS
functional correction on TDDFT calculations. The dimer geometry
is setup as shown in Fig. 6. The hydrogen fluoride monomers are
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FIG. 6. Absorption cross section spectrum of the hydrogen fluoride dimer with
and without van der Waals effects. A zoomed-in view of the absorption feature at
around 9.3 eV illustrates a small red shift when van der Waals effects are con-
sidered. Both hydrogen fluoride molecules are placed on the same plane at a
separation of 2.8 Å.

placed in an anti-parallel fashion, each one with its main symme-
try axis oriented along the y-axis. The hydrogen fluoride bond in
each monomer is 0.92 Å long, and the molecules are separated by
2.8 Å along the z-axis. At this distance, the van der Waals inter-
action between the monomers is the strongest according to the
vdW-TS model. We choose this dimer model because it is a conve-
niently small system in which the effects of including the dispersion
correction can be shown at an affordable computational cost.

To calculate absorption, we excite the system with an infinites-
imal electric-field pulse and then propagate the time-dependent
Kohn–Sham (TDKS) equations for 30.385 35 h̵/eV. The singlet
dipole spectrum is evaluated from the time-dependent dipole
moment. The strength of the perturbation is set to 0.01 Å−1, and the
polarization is in the z-axis. The time evolution is carried out using
the enforced time-reversal symmetry propagator with (default) time
steps of 0.033 52 h̵/eV.

The results (Fig. 6) show a small van der Waals-induced
bathochromic-like (red) shift in the optical spectrum of the hydro-
gen fluoride dimer calculated with the LDA. This example opens the
door for a new series of applications in supra-molecular chemistry,
structural biology, and polymer science, which incorporate van der
Waals effects on real-time electron dynamics.

C. vdW-D3
Octopus also supports the DFT-D3 van der Waals correction.69

This correction depends only on the atomic positions and does not
depend on the atomic density. It is implemented in Octopus by link-
ing to the DFT-D3 library provided by the authors. As we have
validated Octopus results with the reference data provided with the
library, the results are guaranteed to be consistent with other codes
that implement this correction.

The only modification we did to the library was to move the
very large set of coefficients from a source file to a stand alone text file
that is parsed only when necessary. This speeds up compilation and
reduces the size of the binaries. The modified library is distributed
with Octopus, so users need not compile it separately.

VII. POLARIZABLE CONTINUUM MODEL
The Polarizable Continuum Model (PCM)81 comprises a family

of implicit-solvent approaches to tackle quantum-mechanical cal-
culations of molecules in solution. The PCM assumes that (i) the
solvent is a continuum and infinite dielectric medium characterized
by a frequency-dependent dielectric function and (ii) a void cav-
ity of appropriate shape and size encapsulates the solute molecule,
separating it from the solvent by a sharp interface. The numerical
implementation of the PCM relies on the Apparent Surface Charge
(ASC) approach and the Boundary Element Method (BEM).82 In
this framework, the solvent polarization response induced by the
molecule’s charge density is modeled by a reaction potential defined
by a set of point charges q = {q1, q2, . . ., qT} that spread over
a tessellated cavity surface consisting of T finite surface elements
or tesserae.83 The reaction potential is the object through which
the complex dielectric environment is accounted for.84 The imple-
mentation of the PCM in Octopus rests on the Integral Equation
Formalism (IEF).85 The key IEF-PCM equation for computing the
polarization charges is

q = QV, (33)

where q and V are column vectors of size T storing the induced
polarization charges and the molecule’s electrostatic potential at the
tesserae representative points, respectively. Q is the T × T PCM
response matrix, which depends on the geometry of the cavity and
the dielectric function of the solvent.81

A realistic description of the molecular cavity is key to cap-
ture accurate electronic and optical properties of molecules in solu-
tion. In principle, the cavity should (i) exclude the solvent, (ii)
comprise most of the solute electronic density, and (iii) conform
with the molecular shape. Octopus uses the GEPOL algorithm,86

which builds up the van der Waals cavity from the union of inter-
locking spheres with element-specific radii centered at each atom
position (by default, no spheres are built around hydrogen atoms).
Within GEPOL, the BEM tessellation of the solute–solvent inter-
face is done starting from a 60- or 240-face circumscribed poly-
hedron per sphere, selecting only exposed tesserae and properly
reshaping those that are partially exposed. The BEM tessellation is
a surface grid constructed independently from the real-space three-
dimensional grid used in Octopus to represent both the Kohn–
Sham electronic Hamiltonian and molecular orbitals. The mismatch
between the two discrete representations might cause numerical
problems arising from the Coulomb singularities whenever tesserae
and grid points are close to each other. The implementation of the
PCM in Octopus regularizes such singularities by using normalized
spherical Gaussian functions to smooth the discretized polarization
charges q.84

Having briefly described the implementation, we now look at
specific and relevant cases for chemical reactions, namely, solvation
energies and ground-state stabilization. The most evident effect of
the presence of a solvent is to change the total energy of a system
compared to its value in vacuum. In the framework of DFT, the
Kohn–Sham Hamiltonian of the solvated molecule contains the sol-
vent reaction potential, which is a functional of the electronic and
nuclear densities of the solute molecule.84 The latter implies that
the Kohn–Sham and IEF-PCM equations become coupled and the
polarization charges qe = QVHartree[ρe], induced by the molecule’s

J. Chem. Phys. 152, 124119 (2020); doi: 10.1063/1.5142502 152, 124119-11

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

electronic density, have to be computed at each Kohn–Sham itera-
tion until convergence is reached. The resulting electronic density
can be used to compute the electrostatic contribution to the solva-
tion free energy ΔGel = G[ρesolv] − E[ρ

e
vac], where G and E denote the

free and total energy functionals of the molecule in solvent and in
vacuum, respectively. The current PCM implementation in Octo-
pus84 has been thoroughly tested on a benchmark set of organic
molecules and compared with analogous calculations performed
with the quantum chemistry package GAMESS.87 As an example
of the solvent stabilization effect in the ground state, we studied
the nitrobenzene molecule in water (static dielectric constant set
to ϵs = 80).

In Fig. 7, we show the convergence of the solvation free energy
as a function of the Kohn–Sham iteration. The solvation free energy
is stabilized already after 10 Kohn–Sham iterations out of the 19
required to optimize the molecular orbitals of the solvated molecule.
We have also verified that the numerical error inherent to the dis-
cretization of the solute cavity surface is very small. For example,
the total polarization charge QPCM = ∑

T
i=1 q

e
i at each Kohn–Sham

iteration deviates by only 0.03% from the actual number of valence
electrons in the nitrobenzene molecule (the relation between q and
the solute charge is determined by Gauss’s theorem81). However, the
magnitude of this error will depend, in general, on the size and the
geometry of the molecule.

Now we move forward and describe the extension of the pre-
vious PCM method to the time domain using real-time PCM and
non-equilibrium solvation. The ground state PCM is unable to cap-
ture the complex dynamical interactions between the solvent and
the solute when the latter is in an excited state. Fortunately, the
PCM admits a generalization to account for solvation dynamics.89

The time-dependent PCM (TD-PCM) implementation in Octopus
comes in three flavors of increasing complexity, all coupled with
real-time TDDFT calculations of the solute molecules. The first

one, called equilibrium TD-PCM,84 assumes that the solvent is fast
enough to instantaneously equilibrate the solute charge density fluc-
tuations and to polarize accordingly. This approach is physically
sound for weakly polar solvents, having similar values for the static
and dynamic dielectric constants. The second is a nonequilibrium
approach called inertial TD-PCM and amounts to partitioning the
solvent response in a fast (dynamic) and a slow (inertial) part.90

Faster degrees of freedom respond instantaneously to the changes
of the applied potential (either of molecular or external in origin),
whereas slower degrees of freedom remain “frozen” and in equilib-
rium with the initial value of the field. This approximation works
well when the solvent relaxation times are large enough with respect
to the electronic excitations in the solute molecule (e.g., within the
picosecond scale). The third TD-PCM approach, called equation
of motion (EOM) TD-PCM, considers the full history-dependent
evolution of the solvent polarization through a set of equations
of motion for the polarization charges.91 Nonequilibrium polar-
ization effects of this sort originate from the frequency-dependent
dielectric response of the solvent, encoding the fact that it takes
a different non-negligible time to adjust to fast or slow electro-
static perturbations. Solvation dynamics affect strongly and non-
trivially the absorption spectrum of molecules, especially for fast and
polar solvents, by inducing solvatochromic shifts of the peaks in the
UV–visible absorption spectrum and modifying their relative ampli-
tudes. The details about the implementation of all of these schemes
and a detailed discussion of their effects can be found in Refs. 84
and 92.

Here, we show the differences among the TD-PCM flavors
described above for the case of the nitrobenzene molecule in aque-
ous solution, excited with an electrical dipole perturbation in the x
direction. We take the dynamic dielectric constant of water, enter-
ing in the inertial and EOM TD-PCMs, as ϵd = 1.786. Figure 8
shows the photo-absorption spectrum of the gas-phase and solvated

FIG. 7. (Left panel) Nitrobenzene molecule in water (ϵs = 80) surrounded by the ground state PCM charges distributed on the solvation cavity. The actual distribution of
the charges in 3D is given in the supplementary material, SM1. (Right panel) Electrostatic contribution to the solvation free energy computed at each Kohn–Sham iteration.
Kohn–Sham equations were solved in real-space as implemented in Octopus using the GGA-PBE approximation88 to the exchange–correlation energy. The simulation box
was built using spheres of radius 5 Å and an uniform spacing of 0.19 Å between grid points. The radii of the spheres used to build the cavity surface of the solute molecule
are 2.4 Å for carbon, 1.8 Å for oxygen, and 1.9 Å for nitrogen.
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FIG. 8. Absorption spectrum of nitrobenzene in vacuo and in water (ϵs = 80, ϵd
= 1.786) for all the TD-PCM schemes. The inset shows the normalized cavity
field factor (CFF) vs the excitation energy for the two EOM TD-PCMs with solvent
relaxation times of 3.37 ps (slow) and 1 fs (fast) corresponding to CFFmax = 1.27
and 2.55, respectively. Real-time TDDFT simulations of 20 fs with a time step of
1.7 × 10−3 fs were performed to obtain the absorption spectra. An electric dipole
perturbation within the linear regime and oriented along x was applied as an initial
perturbation. The rest of the computational details are shared with the ground-state
DFT calculations leading to Fig. 7.

molecule. We can see that, with respect to the absorption in vacuo,
all of the TD-PCM methods produce shifts of the features (in this
case, toward lower excitation energies). The shifts are not rigid over-
all but depend on the excited state and on the specific solvation
scheme (equilibrium, inertial, and EOM). Within Debye’s model,
the equilibrium and inertial TD-PCMs are limiting cases for the
dynamics when the relaxation time is zero and infinite, respec-
tively. The EOM TD-PCM, with a finite relaxation time, interpo-
lates between these limits. Water has a large relaxation time of
3.37 ps, and therefore, the absorption spectrum is almost coinci-
dent for the EOM and the inertial TD-PCMs, as shown in Fig. 8.
Whenever the solvent is as slow as water, there is not much gain
in selecting the EOM over inertial TD-PCM and the latter is the
method of choice in terms of computational performance. Instead,
for faster solvents, the EOM results depart from those of the iner-
tial algorithm, approaching those of the equilibrium TD-PCM. In
Fig. 8, we considered an effective solvent having the same static
and dynamic dielectric constants as water, but with a 1 fs relaxation
time. The EOM TD-PCM for such a model solvent produces almost
the same excitation energy shift equilibrium TD-PCM and peak
intensities in between the inertial and the equilibrium TD-PCMs, as
expected.

A real-time representation of the molecular dipole coupled with
the PCM surface charges is found in the supplementary material,
SM2, which also highlights how the different TD-PCM approaches
affect the time-evolution of the dipole.

When studying the evolution of a solvated molecule under
the effect of an external time-dependent electromagnetic field, a
separate treatment is required to take into account that there are
two solvent polarization contributions interacting with the solute
molecule, namely, the reaction and the cavity fields.93 The reaction
field comes from the polarization induced by the solute molecule
itself, while the cavity field arises as a polarization induced by the
external electric field. Both reaction and cavity field effects can be

accounted for in static and real-time quantum-mechanical calcu-
lations of molecules within the PCM and TD-PCM simulations in
Octopus.92

All TD-PCM calculations shown here were performed using
both reaction- and cavity-field effects, although the redshift of
the peaks in each TD-PCM scheme is mainly a feature of the
reaction-field, as ascertained in test calculations (not shown) and as
expected.94 Cavity field effects impact directly on the peak intensi-
ties by making the absorption more favorable depending on how
large the effective local field acting on the molecule is allowed to
be by solvent dielectric properties and the geometry of the cav-
ity (normally, reassembling the molecular shape). Still, cavity field
effects can have a non-trivial influence in the absorption spec-
trum shape when considering non-equilibrium solvation dynam-
ics (EOM TD-PCM) by changing the relative peak intensities. This
effect can be seen in the inset of Fig. 8, where the normalized
cavity field factor (CFF)—the ratio between absorption cross sec-
tion with and without cavity field effects—is plotted against the
excitation energy for the EOM TD-PCM simulations with water
and the aforementioned faster water-like solvent. The large differ-
ence in absorption peak intensities between the equilibrium and
the rest of the TD-PCMs in Fig. 8 is also related to the modifica-
tion of the probing electromagnetic field inside the dielectric. The
photo-absorption cross section is, by definition, the ratio between
the absorbed and the incoming power of light. In our case, both
increase with the dielectric constant: the larger the dielectric con-
stant of a medium, the larger the CFF, but also a larger dielectric
constant implies a smaller phase velocity of light, therefore increas-
ing the power of the traveling electromagnetic wave. The impact
of the latter effect (∝ refractive index =

√
(∣ϵ(ω)∣ + Rϵ(ω))/2)

is stronger than that of the former [∝CFF, e.g., for a spheri-

cal cavity93
∝ ∣

3ϵ(ω)
2ϵ(ω)+1 ∣

2
] for a large enough dielectric constant

such as the one corresponding to the equilibrium TD-PCM for
water (ϵs = 80).

In conclusion, Octopus is now capable of including an implicit
dielectric continuum model as an environment for quantum
mechanical calculations of excited states in the time-domain. The
different versions of the TD-PCM scheme implemented allow us to
select the most suitable to capture the relevant physics, accounting
for a full range of different relaxation and response times.

VIII. MAGNONS FROM REAL-TIME TDDFT
In the last couple of years, the first studies investigating

magnetization dynamics from first principles in real time have
emerged.95–100 Here, we are interested in transverse magnetic exci-
tations, specifically magnons, which are long wavelength collective
excitations with a typical energy of tens to hundreds of millielectron
volts. We recently developed an alternative to the linear-response
TDDFT formulation98,99,101 to compute the spin susceptibilities of
magnetic systems based on real-time TDDFT.102 Our approach fol-
lows the work of Bertsch et al. for optical excitations. In the original
work of Bertsch et al., the system is perturbed by a sudden change in
the vector potential, which induces a charge- and current-density
response. To investigate magnons, we employ a “transverse mag-
netic kick,” which induces magnetic fluctuations in the system. To
be more precise, our perturbation corresponds to an infinitely short
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application of a Zeeman term,

δĤq(t) =
B
2
δ(t)∫ d3r[e−iq⋅rσ̂+

(r) + eiq⋅rσ̂−(r)], (34)

where q is the momentum of the spin wave we are exciting, B is the
strength of the perturbation, and σ± = σx ± iσy are Pauli matrices.
In this expression, the z axis is taken to be along the direction of
the magnetization of the system before excitation. In case the sys-
tem has a preferred magnetization direction due to the presence of
spin–orbit coupling, usually referred as an “easy axis,” we perform a
kick in the transverse direction with respect to this “easy axis” of the
system.

The subsequent time evolution of the spin magnetization
m(r, t), governed by the time-dependent Schrödinger equation, is
then computed and analyzed in Fourier space. If we perturb our sys-
tem from its ground state and we assume linear response, we have
directly that

m+(q;ω) = χ+−(q;ω)
B
2

, (35)

where χ+−(q; ω) is the spin susceptibility we want to extract. A
similar expression is obtained for χ−+(q; ω).

In order to access finite momenta, one typically has to employ
large supercells to perform the dynamics, which can be compu-
tationally very expensive when a few meV energy resolution is
needed. Fortunately, there is a way to circumvent the construc-
tion of supercells by using the so-called generalized Bloch theo-
rem (GBT). The GBT has been introduced by Sandradskii103 for
the calculation of ground-state spin waves and requires the imple-
mentation of specific boundary conditions. We implemented the
GBT for the real-time calculation of magnons, taking advantage
that Octopus is a real-space finite difference code, for which we
can easily specify any type of boundary conditions. However, it is
important to note that this applies only in the absence of spin–orbit
coupling. The boundary condition, described below, depends on
the momentum q of the perturbation and acts differently depend-
ing on whether a state was originally “up” or “down” with respect
to the unperturbed magnetization. This is determined by the sign
of ⟨Φnk|Sz|Φnk⟩ just before the perturbation for each spinor state
|Φnk⟩. If we label these states α and β, the boundary condition
reads

Φα,kn(r, t) = eik⋅r
⎛

⎝

u↑α,kn(r, t)
eiq⋅ru↓α,kn(r, t)

⎞

⎠
,

Φβ,kn(r, t) = e
ik⋅r⎛

⎝

e−iq⋅ru↑β,kn(r, t)
u↓β,kn(r, t)

⎞

⎠
.

(36)

We checked that performing the simulation using the GBT
or the supercell approach leads to the same results up to numer-
ical precision. We tested our approach for cubic Ni, Fe, and Co,
which have been widely studied using linear response TDDFT, and
we found that our results are in very good agreement with pre-
vious work,96 thus validating our implementation. Figure 9 shows
the results obtained for bulk nickel using the adiabatic local-density
approximation. We used here a real-space grid spacing of 0.27 bohr,
norm-conserving pseudopotentials, and we employed a 16 × 16 × 16
k-point grid shifted 4 times in order to resolve momenta q that
are multiples of 2π/(16a), where a is the lattice parameter of Ni,

FIG. 9. Calculated magnon dispersion: spin susceptibility of bulk Ni along the ΓX
direction, displayed in logarithmic scale. Numerical details are given in the main
text. The experimental data are taken from Ref. 104.

which we took to be 3.436 Å. In order to obtain the linear response,
we took B = 0.02 and we propagated for 435.4 fs using a time
step of 1.81 as. To reduce the numerical burden, symmetries were
employed.

Let us now comment on the interest of the proposed approach.
So far, we only used this new method for investigating weak mag-
netic kicks, where we recover the results from linear response the-
ory. However, our approach does not rely on the assumptions
of small perturbations and can be used to investigate nonlinear
phenomena induced by a strong magnetic field as well as out-of-
equilibrium situations where the system is kicked from an excited
state. This is the strength of a real-time method.105–108 Moreover,
we can investigate directly the coupling with other degrees of free-
dom, such as phonons or photons, without any new theory or
code development. Using the real-space method, we benefit from
the favorable scaling of the time propagation, which is linear in
the number of states, whereas sum-over-state approaches usually
scale quadratically with the number of states. Finally, our approach
offers the great advantage of not requiring the use of an exchange–
correlation kernel, as only the exchange–correlation potential is
needed to perform a time propagation. This is very interesting in
order to test new functionals and theory levels for which deriv-
ing the expression of the exchange–correlation kernel can become
complicated. These different aspects will be investigated in future
works.

IX. ORBITAL MAGNETO-OPTICAL RESPONSE
OF SOLIDS AND MOLECULES FROM A STERNHEIMER
APPROACH

In this section, we review the implemented routines for
magneto-optical phenomena, which arise from the loss of sym-
metry between left and right circularly polarized light in the
presence of a magnetic field.109,110 While magneto-optical spectra
can be straightforwardly computed for molecules,111–115 the the-
ory for solids has been developed only recently.116 The reason is
that external electromagnetic fields break the translational symme-
try of periodic systems, which is formally expressed through the
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unboundness of the position operator.117–119 The orbital response
to magnetic fields is especially complicated to describe, as such
fields lead to non-perturbative changes in wavefunctions and intro-
duce vector coupling to electron dynamics.120–122 Here, we will
focus on calculations of changes in the linear optical response
in the presence of the magnetic field within the Sternheimer
approach.19,123–125

To treat uniform magnetic fields in periodic systems, we use the
approach based on perturbation theory for the one-particle density
matrix.116,120,122 Such an approach allows us to work under purely
periodic boundary conditions and to take into account automatically
gauge invariance. A periodic and gauge-invariant counterpart Õ is
distinguished for any operator O = Or1r2 defined for two points r1
and r2 in real space

Or1r2 = Õr1r2 exp(−
i
c ∫

r1

r2

A(r)dr), (37)

where A is the vector potential associated with external electric
(E = −c−1∂/∂tA, where c is the speed of light) and magnetic (B = ∇
× A) fields and the integral is taken along the straight line between
points r2 and r1.

The time-dependent Liouville equation for the gauge-invariant
counterpart ρ̃ of the one-particle density matrix to the first order in
E and B takes the form116

−i∂t ρ̃ + [H0, ρ̃] = −
1
2
{E +

1
c
V × B, [r, ρ̃]} − [δH̃, ρ̃]. (38)

Here, the commutator and anticommutator of operators O(1) and
O(2) are denoted by [O(1),O(2)] and {O(1),O(2)}, respectively, the
velocity operator V = −i[r, H̃] is computed taking into account all
non-local contributions to the Hamiltonian (e.g., non-local pseu-
dopotentials), and the Hamiltonian is represented as H̃ = H0 + δH̃,
where the difference δH̃ between the gauge-invariant counterpart
H̃ of the Hamiltonian and unperturbed Hamiltonian H0 is related
to the local-field effects. Unlike the singular position operator r,
the commutator [r, ρ̃] of the position operator with the periodic
function ρ̃ is well defined in Eq. (38) and corresponds to the
derivative with respect to the wave vector, i∂kρ̃k, in reciprocal
space. Differentiating Eq. (38), one finds the derivatives of the den-
sity matrix ρ̃(P) = ∂ρ̃/∂P with respect to external perturbations
P (E, B, etc.).

For TDDFT calculations in Octopus, ρ is the Kohn–Sham
density matrix. The nth order derivative ρ̃(P) describing the joint
response to the perturbations P = P1P2 . . . Pn is divided into four
blocks within and between the occupied (V) and unoccupied sub-
spaces (C): ρ̃(P)VV = Pv ρ̃(P)Pv , ρ̃(P)CC = Pcρ̃(P)Pc, ρ̃(P)VC = Pv ρ̃(P)Pc,
and ρ̃(P)CV = Pcρ̃(P)Pv , where Pv = ρ(0) and Pc = 1 − Pv are the
projectors onto the occupied and unoccupied bands. In accordance
with the density matrix perturbation theory,126 to get the elements
ρ̃(P)CV , Eq. (38) is projected onto unperturbed Kohn–Sham wavefunc-
tions ∣ψ(0)vk ⟩ of occupied bands v to give an equation for the response
function ∣η(P)vk ⟩ = ρ̃

(P)
CV (Ω)∣ψ

(0)
vk ⟩,

Lvk(Ω)∣η
(P)
vk ⟩ = PcR

(P)
[ρ̃(n−1), . . . , ρ(0),n(P)]∣ψ(0)vk ⟩. (39)

Here, the operator on the left-hand side is given by Lvk(Ω) = Ω
+ H0 −ϵvk, where Ω is the frequency considered and ϵvk is the
energy of the unperturbed state ∣ψ(0)vk ⟩. The operator R comes from
the right-hand side of Eq. (38) and is determined by the derivatives
of the density matrix of the previous orders. If the local-field effects
are taken into account, the right-hand side R also depends on the
derivative of the electron density n(P)(r1) = ρ(P)(r1, r2)δ(r1 − r2). In
this case, Eq. (39) needs to be solved self-consistently. The calcula-
tions, in practice, work with the periodic parts of the wavefunctions,
∣u(0)vk ⟩. The commutator [r, ρ̃] corresponding to i∂kρ̃k in the recipro-
cal space is computed within the k ⋅ p theory.19,124,125 Equation (39)
is solved using the efficient Sternheimer approach,19,123–125 where the
function ∣η(P)vk (Ω)⟩ that fits into Eq. (39) is found iteratively at each
frequency Ω. To avoid divergences at resonances, a small but finite
imaginary frequency iδ is added to the frequency Ω0 of the external
perturbation so that Ω = Ω0 + iδ.

Once the solution of Eq. (39) is known, the elements ρ̃(P)CV are
obtained as

ρ̃(P)CV (Ω) = ∫BZ

dk
(2π)3 ∑

v

∣η(P)vk (Ω)⟩⟨ψ
(0)
vk ∣. (40)

The elements of ρ̃(P) between the occupied and unoccupied sub-
spaces are found using the relation ρ̃(P)VC (Ω) = (ρ̃

(P)
CV (−Ω∗))∗, and

for that, Eq. (39) is also solved for the frequency −Ω∗.
To find the elements within the occupied ρ̃(P)VV and unoccupied

ρ̃(P)CC subspaces, the idempotency condition ρ = ρρ is used. In terms
of the periodic counterpart ρ̃ of the density matrix and to the first
order in the magnetic field, it is written as120,122

ρ̃ = ρ̃ρ̃ +
i

2c
B ⋅ [r, ρ̃] × [r, ρ̃]. (41)

The contribution ανμ ,γ to the polarizability in the presence of the
magnetic field (ανμ = α0νμ + ανμ ,γBγ) is finally obtained from the
current response as

ανμ,γ(Ω) =
i

Ω
Tr[Vνρ̃(EμBγ)(Ω)], (42)

where indices ν, μ, and γ are used to denote components of the
vectors V, E, and B. The dielectric tensor in the presence of the
magnetic field is computed as ϵνμ = δνμ + 4πανμ/V, where V is
the volume of the unit cell. Note that according to the “2n + 1”
theorem,127,128 there is no need to calculate explicitly the second-
order derivative ρ(EμBγ). Instead, ανμ ,γ is expressed through the first-
order derivatives to the perturbations P = Eμ, Bγ and a supplemen-
tary perturbation corresponding to a vector potential P = Aν at
frequency −Ω.116

To test the formalism for solids, we applied it to bulk sili-
con and the corresponding results are shown in Fig. 10. The full
details of the calculations can be found in Ref. 116. It is seen in
Fig. 10(b) that even without accounting for excitonic effects, the
calculated spectra Re/Im ϵxy for the transverse component of the
dielectric tensor are already qualitatively similar to the experimen-
tal curves110 at the direct absorption edge. To model excitonic
effects, we used the model from Ref. 129. The spectra computed by
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FIG. 10. Calculated components (a) ϵxx and (b) ϵxy of the dielectric tensor of silicon
for different frequencies of light Ω0 (in eV) and the magnetic field of 1 T along the
z axis (with and without account of excitonic effects). The linewidth δ = 0.1 eV is
used. The blue shift by 0.7 eV is applied to take into account the GW correction
to the bandgap.130,131 The experimental data for ϵxx

132 and ϵxy
110 (scaled by 1/2)

are indicated by symbols.

accounting for excitonic effects show a better agreement with the
experimental results [Figs. 10(a) and 10(b)]. Although the magni-
tudes of the peaks in the magneto-optical spectra are about a fac-
tor of two smaller than in the magneto-optical measurements,110

they can be corrected by reducing the linewidth δ assumed in the
calculations.

In the limit of a large supercell, this formalism becomes equiv-
alent to the simpler standard formulation for finite systems, which
we have also implemented for reference. In this case, the Liou-
ville equation for the density matrix is written in the Coulomb
gauge as

Ωρ + [H0, ρ] = [d ⋅ E + m ⋅ B − δH, ρ], (43)

where d = −r is the electric dipole moment, m = −r × V/2c is
the orbital magnetic dipole moment, and δH describes local-field
effects. The change in the polarizability ανμ ,γBγ in the presence of
the magnetic field is calculated from the dipole response

ανμ,γ(Ω) = Tr[dνρ(EμBγ)(Ω)]. (44)

As in the periodic case, due to the “2n + 1” theorem,127,128

the explicit calculation of the second-order derivative ρ(EμBγ) is
avoided. Instead, a supplementary electric field at frequency −Ω,
E′ν, is introduced.116 In the case of real wavefunctions, ∣η(E

′
ν)

v (−Ω)⟩
= (∣η(Eν)v (−Ω∗)⟩)∗, and there is no need to solve additionally the
Liouville equation for this supplementary electric field.

The efficiency of the present scheme to compute magneto-
optics is comparable to standard linear-response calculations of sim-
ple optical polarizability in the absence of the magnetic field.116

When local-field effects are included self-consistently, the calcula-
tions of magneto-optical spectra for solids take only twice as long as
those of polarizability. For finite systems, the computational effort is
the same as for the simple optical polarizability.

X. TIME-DEPENDENT ANGULAR RESOLVED
PHOTOELECTRON SPECTROSCOPY

The real-space representation of the dynamics of the electronic
structure allows for a seamless and straightforward description of
dynamical processes outside the material, i.e., processes where elec-
trons are excited into vacuum. Beyond simply describing the ion-
ization process, Octopus has routines implemented that compute
photoelectron spectroscopy in different flavors. Photoelectron spec-
troscopy is particularly ubiquitous for the characterization of the
electronic structure in solids because it provides a direct observ-
able of the energy and momentum distribution of electronic states,
known as the bandstructure. In contrast to other electronic struc-
ture methods that compute quantities linked to the photoelectron
spectrum, most commonly the single-quasiparticle spectral function
obtained through the GW approximation to the many-body self-
energy, the approach described here does not consider unit cells of
bulk materials but instead computes directly the energy and momen-
tum resolved ionization probability.107,133 Besides the study of the
electronic structure of solids, photoelectron spectra of atoms and
molecules are of equal interest and the implementation in Octopus
is capable to describe accurately all such systems on an equal footing.

The most detailed quantity available in the experiments is the
momentum-resolved photoelectron probability P(p), i.e., the prob-
ability to detect an electron with a given momentum p. In some
cases, the experimental setup offers the possibility to measure the
spin polarization along a given axis. The formalism we are going to
outline can easily accommodate a non-collinear spin structure and,
therefore, calculate spin-resolved quantities, but for the sake of sim-
plicity, in the following, we are going to restrict ourselves to closed
shell systems with collinear spins, i.e., where all the orbitals are
doubly occupied with electrons having opposite spins. The reader
interested in the most general case can find a detailed description
in Ref. 134. From P(p), one can obtain other derived quantities
by simple manipulation. For instance, the energy-resolved spec-
trum P(E), used to identify the occupied energy levels, can be
obtained with a change of variable using the free electron energy
dispersion relation E = p2/2. The angle-resolved photoelectron spec-
trum (ARPES), normally employed to measure the quasiparticle
bandstructure, is simply obtained by taking the energy resolved
spectrum as a function of the electron momentum parallel to the
surface P(p∥,E).

The t-SURFF method was first proposed by Tao and Scrinzi135

for one-electron systems and later extended to many electrons with
TDDFT for periodic134 and non-periodic systems.136 It is based on
the assumption that the Kohn–Sham Hamiltonian describing the
full experimental process, i.e., including the ionization and detec-
tion, can be decomposed into the sum of two Hamiltonians act-
ing into complementary spatial regions, inner and outer, and that
can be approximated in different ways. In the inner region sur-
rounding the system, the electron dynamics is governed by the
interacting Kohn–Sham Hamiltonian ĤKS(r, t), while in the outer
region, electrons are free from the Coulomb tails of the parent sys-
tem and behave as independent particles driven by an external field
and, therefore, are described by the Volkov Hamiltonian ĤV(r, t)
= 1/2(−i∇−A(t)/c)2. We express the field with a time dependent
vector potential potential A(t) in the dipole approximation, i.e., by
discarding the spatial dependence of the field A(r, t) ≈ A(t). The
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advantage of this approach is provided by the fact that the time-
dependent Schrödinger equation associated with the Volkov Hamil-
tonian can be solved analytically and that the solutions, the Volkov
waves,

χp(r, t) =
1

(2π)
3
2

eip⋅reiΦ(p,t) (45)

with

Φ(p, t) = ∫
t

0
dτ(p −

A(t)
c
)

2

, (46)

are eigenstates of the momentum operator. We can, therefore,
expand the Kohn–Sham orbitals φi as a superposition of detector
states in the form of Volkov waves

φi(r, t) = ∫ dp bi(p, t)χp(r, t) (47)

and obtain the photoelectron probability in terms of the expan-
sion coefficients by summing up the contribution of all the orbitals:
P(p) = limt→∞ 2/N∑N/2

i=1 ∣bi(p, t)∣2.
Using the continuity equation, t-SURFF allows us to express

the coefficients bi, and thus P(p), as a time integral of the photo-
current flux through the surface S separating the domains of the two
Hamiltonians. More specifically,

bi(p, t) = −∫
t

0
d τ∮

S
ds ⋅ ⟨χp(τ)∣̂j∣φi(τ)⟩ (48)

with the single-particle current density operator matrix element
given by

⟨χp(τ)∣̂j∣φi(τ)⟩ =
1
2
{iφi(r, τ)∇χ∗p (r, τ) − iχ

∗
p (r, τ)∇φi(r, τ)

− 2
A(t)
c

χ∗p (r, τ)φi(r, τ)}. (49)

The flexibility offered by the definition of the boundary surface
S allows us to easily adapt t-SURFF to periodic and non-periodic
systems. For periodic systems, we choose S as a plane parallel to the
material surface, while for the non-periodic case, the most natural
choice is a sphere, as shown in Figs. 11(a) and 11(b).

For periodic systems, one can apply the Bloch theorem to the
Volkov Hamiltonian and further reduce Eq. (48) to an expression
where only the periodic part of the Bloch waves is employed.134

The present computation of the photoelectron spectrum relies
on the condition that the Volkov Hamiltonian can be used to
describe electrons in a region of space and entails the following
approximations: (i) the ionized electrons become non-interacting at
some distance from the system and (ii) they are free with respect to
the tail of the Coulomb potential of the system, i.e., it has to be pos-
sible to neglect it at some distance. Both conditions are controlled
by the placement of the analyzing surface S for the evaluation of
the flux, and in practice, this has to be converged by placing it at

FIG. 11. Calculated photoelectron spec-
trum with t-SURFF, as implemented in
Octopus.136 The geometries employed
to calculate the flux of the photoelec-
tron current are depicted in (a) for peri-
odic and (b) for non-periodic systems. (c)
Pump–probe ARPES spectrum of mono-
layer h-BN driven by a laser field reso-
nant with the gap at K, adapted from Ref.
134. (d) Photoelectron angular distribu-
tion obtained by strong-field ionization
of C60 with an IR field polarized along
x, adapted from Ref. 136. All the elec-
trons rescattering at the same time in
one period of the field end up with final
momenta forming a ring (dashed) cen-
tered at the value of A(tr ) at the rescat-
tering time, tr . The two arrows repre-
sent the graphical decomposition of the
final momentum of the photoelectron in
the vector potential at the moment of
rescattering (horizontal arrow) plus the
rescattering momentum.
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successively larger distances from the system. This method needs an
explicit description of the vacuum around the probed system, which
for solids requires an explicit construction of the electronic structure
of the surface layer, and if bulk properties are probed, one needs
to converge a slab of material. Compared to unit cell calculations
of solids, this puts the present method at a disadvantage. However,
when aiming at simulating specific experiments, it natively includes
signals coming from the surface layers and can thus capture more
of the experimental reality of the spectroscopic process compared
to standard perturbative many-body approaches that are directly
performed in the bulk unit cell.

In practical calculations, in order to avoid spurious reflection
of electrons from the boundaries of the simulation box, one has
to employ absorbing boundaries, and depending on the condition
of their transparency, this can add up to the size of the simulation
box.137 Other than the increased size of the computational box, this
method is not computationally costly, as it requires the evaluation of
the gradient operator on surface points S only and straightforwardly
supports the existing k-point, state, and mesh parallelizations.

Pump–probe configurations can be simulated naturally since
there is no restriction on the functional form of the vector poten-
tial A(t), and therefore, we can accommodate any linear combi-
nation of pulses. As an example, in Fig. 11(c), we show the result
of a simulated pump–probe time-resolved ARPES measurement of
monolayer hexagonal boron nitride (hBN) driven by a field resonant
with the gap at the K-point in the Brillouin zone. As it is appar-
ent from the simulation, the excited state population transfer to the
conduction band is well observed in the resulting ARPES spectrum.

The method is not limited to simple photoelectron spec-
troscopy but can be used to simulate complex experimental tech-
niques, such as the reconstruction of attosecond beating by interfer-
ence of two-photon transitions (RABBITT).138 Furthermore, due to
the versatility of the real-time description in Octopus, the underlying
excitation does not need to be originating from an optical pulse (i.e.,
an external vector potential), and since the ions can move accord-
ing to TDDFT-Ehrenfest dynamics,139 one can also simulate fea-
tures coming from the ionic or lattice motion, specifically electron–
phonon coupling signature in ARPES.140 Pump–probe simulations
are not limited to the dynamical process of excitations but can also
be employed to study steady-state modifications of driven electronic
states.141 This opens the possibility of studying Floquet physics from
an ab initio perspective and to simulate directly the effect that a
periodic force would have on the dressed electronic structure—an
important aspect to underline, given the growing interest in the field
of Floquet engineering142 and Floquet analysis.143

Finally, t-SURFF is particularly suited to simulating strong
field ionization processes such as in laser-induced photoelectron
diffraction (LIED) experiments, where the ionization takes place
by direct tunneling into the continuum and the field is so strong
as to drive electrons in trajectories recolliding with the parent sys-
tem. In fact, since in Eq. (48), we accumulate the flux through S
over the time of the propagation, with t-SURFF, electrons can seam-
lessly flow back and forth through the surface without producing
any artifact in the final spectrum. As an example, in Fig. 11(d), we
present the photoelectron angular distribution of C60 ionized by a
strong IR pulse capable of inducing rescattering dynamics, which
then gets imprinted in the photoelectron spectrum as characteristic
rings centered in the value of the vector potential at the instant of

rescattering.144 In this regime, the result of simulations obtained
with Octopus are in excellent agreement with the experiments.145,146

XI. ELECTRIC AND THERMAL CONDUCTIVITIES
Electrical conductivity in real materials can be described to a

first approximation by Ohm’s law, which is a linear relationship
between the applied electric field and the current density generated
in response. The standard method to study electrical and thermal
conductivity is to carry out a DFT calculation at equilibrium and
apply Kubo–Greenwood linear-response theory to evaluate the con-
ductivities. Although this method has been used successfully in the
past to calculate the transport properties,147,148 the application is
limited to systems in the linear response regime. It is known that
in many cases, especially in the presence of strong external fields,
Ohm’s law is no longer valid and the system exhibits non-linear
behavior. In order to capture this complex behavior in materials, one
must go beyond simple, linear approximations and describe electron
interactions in a non-trivial manner.

One promising route to go beyond linear response is to use
density functional methods to study directly thermoelectric trans-
port. This topic has received less attention but has recently been
implemented in Octopus and applied to liquid aluminum.149 For
detailed descriptions and derivations of non-equilibrium thermo-
electric phenomena using density based methods, we refer the reader
to Ref. 150.

In Octopus, we are able to calculate the current density and heat
current density at each step during a time-dependent simulation. A
current is induced in this study by applying an electric field of the
form E(t) = E0δ(t), where E0 describes the magnitude and direction
of the field. The electric field is induced through a time-dependent
vector potential [E(t) = −c−1∂tA(t), where c is the speed of light] in
the Hamiltonian. This vector potential satisfies the periodic bound-
ary conditions of an extended system. It should be noted that there
is no limitation on the form of the applied electric field in general.
We are able to evaluate the macroscopic current density as

J(t) = −
i

Ω ∫
dr

N

∑
j
φ†
(r, t)[Ĥ(t), r̂]φi(r, t), (50)

where Ω is the volume of the unit cell. The energy current density,
Ĵh(r, t), is expressed as

Ĵh(r, t) = Ĵt(r, t) + Ĵv(r, t) + Ĵu(r, t) + Ĵf (r, t), (51)

where Ĵt(r) is the kinetic energy contribution given as

[Ĵt(r, t)]i =
i
8
([∂iφ̂†

][∇
2φ̂] − [∇2φ̂†][∂iφ̂]

− [∂i∇φ†
] ⋅ [∇φ] − [∇φ̂†

] ⋅ [∂i∇φ̂]) (52)

and φ = φ(r, t) are understood to be the time-dependent states.
The output of the time-dependent simulation can be further ana-
lyzed to yield the frequency-dependent conductivity. The electrical
(or thermal) conductivity σ can be found by Fourier transforming
the corresponding current as

σij(ω) =
1
[E0]i

∫

∞

0
dte−iωtJj(t). (53)

In general, it is possible to study the conductivity of an
extended system in the presence of an applied electric field. Here, we
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FIG. 12. (Left) Time-dependent current
density for one ionic snapshot of a super-
cell of 128 atoms of hydrogen in the
liquid phase at 1400 K and 400 GPa
with an initial electric field E0 of 0.1 a.u.
The blue line represents the current den-
sity as given in Eq. (50), and the red
line is the heat current evaluated from
Eq. (52). Both currents are decaying to
zero. (Right) The Fourier transform of the
respective currents gives the frequency-
dependent conductivities.

illustrate the use of this method on hydrogen at 1400 K and 400 GPa.
At this temperature and pressure, hydrogen is in its liquid metal-
lic phase. A molecular dynamics simulation was carried out with
VASP151 to produce several ionic snapshots of the system. For each
ionic snapshot, we performed a TDDFT simulation with a time step
of 0.05 a.u. (0.001 21 fs) for a total time of 3 fs. The initial electric
field E0 was 0.1 a.u. The calculation was carried out on a 3 × 3 × 3
k-point grid to ensure that the current density decays to zero.

In Fig. 12, we plot the time-dependent current density and heat
current density as a function of time after an initial electric field is
applied at time zero. Both currents are shown to decay to zero by
the end of the simulation. It should be noted that the heat current
corresponds to the kinetic energy contribution given in Eq. (52). In
general, this heat current is related to the Peltier coefficient, since it
describes the heat generated from the response to an electric current.
The remaining contributions in Eq. (51) are not yet implemented in
Octopus. Both Ju and Jf arise from electron–electron interactions
and Jv is the potential energy. In future work, it would be interest-
ing to evaluate these remaining contributions to determine if they
are large or can reasonably be ignored for some systems. The electri-
cal conductivity and the heat conductivity can be evaluated using
Eq. (53). These frequency-dependent conductivities are shown in
Fig. 12 (right). One may also calculate the DC conductivity by taking
ω = 0.

This suite of tools implemented in Octopus will allow for the
study of time-dependent thermoelectric phenomena using TDDFT.
This approach to study current and conductivity is more general and
widely applicable than the standard Kubo–Greenwood approach.
While Kubo–Greenwood is a linear response theory, this method
can be applied to study materials where non-linear conduction
effects can appear. In a recent study, this TDDFT method was used
to illustrate non-linear conductivity effects in liquid aluminum,149

which would not be possible by applying standard linear response
theory. In the future, we plan to extend these tools by implement-
ing a thermal vector potential that can induce a heat current in an
extended system during a time-dependent simulation.

XII. LOCAL DOMAIN CONTRIBUTION TO PHYSICAL
OBSERVABLES

Usually, we are interested in studying systems consisting of
different atoms, molecules, regions, or domains. In such cases, we
might want to understand the different contributions from differ-
ent parts of the system toward a specific observable. Based on the

Hohenberg–Kohn theorems for the DFT,152 and its extension for
TDDFT, the Runge–Gross theorem,153 we can state that any phys-
ical observable of the system is a functional of the electronic density,
either static (ground state) or time dependent. In other words, the
expectation value of an operator Ô can be expressed as a functional
of the electronic density

O[n] = ⟨Ψ[n]∣Ô∣Ψ[n]⟩. (54)

Let us now consider the case where we write the total electronic
density as a sum of N densities

n(r) =
N

∑
i
ni(r), (55)

and no further constraints are imposed on n or ni. Such partition-
ing of the density is at the basis of subsystem DFT, which allows us
to divide a system into several Kohn–Sham subsystems that interact
with each other in a theoretically well justified manner (see Ref. 154
and references therein). However, in our case, we are only inter-
ested in this kind of partition for post-processing purposes where we
assign a density ni to a specific part of the system in order to identify
how it contributes to a given observable. We are, thus, interested in
operators for which the following condition is true:

O[n] =
N

∑
i
O[ni]. (56)

Such operators are said to be additive. One example of an additive
operator that is particularly relevant in the context of TDDFT is the
time-dependent dipole

d(t) = ∫ rn(r, t)dr =
N

∑
i
∫ rni(r, t)dr, (57)

as this is the relevant observable for obtaining the optical absorption
cross section of finite systems.

The range of operators that fulfill Eq. (56) can be further
expanded if we now consider non-overlapping densities, that is, den-
sities ni that are non-zero only in a given domain V i and that the
domains do not overlap. We refer to this type of partitioning as a
local domain partitioning. In such cases, any (semi-)local operator
that depends (semi-)locally on the density should fulfill Eq. (56). In
this context, an example of a relevant observable is the exchange–
correlation energy within the LDA (or GGA) approximation
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ELDA
xc [n] = ∫ n(r)eLDA

xc (n(r))dr =
N

∑
i
∫
Vi

ni(r)eLDA
xc (ni(r))dr,

(58)
where eLDA

xc is the exchange–correlation energy per unit particle.
Currently, several different options can be used in Octopus

to define specific regions of the simulation box. These options
include simple geometric shapes, such as spheres centered on par-
ticular points of space, atom-dependent domains, such as a union
of spheres centered on the atoms, or the definition of Bader vol-
umes. The latter option follows the Quantum Theory of Atoms
in Molecules (QTAIM)155 and associates a density region with a
given atom through a density gradient path such that the bound-
aries of each volume are defined as the surfaces through which the
charge density gradient has a zero flux. Note that some of these
options allow for the user to specify overlapping regions. In this case,
the overlap must be taken into account when analyzing the results
and extra care is required when comparing results from different
domains.

Let us exemplify the applicability of the local domain partition-
ing by decomposing the optical response for a coupled chromophore
system. Similar to Frozen Density Embedding real-time TDDFT
(FDE-rt-TDDFT),156 we decompose the total optical spectrum as a
sum of the local response within each domain

α(ω) = ∑
i
αi(ω), (59)

where α is the dynamic polarizability. In addition, from each local
dynamic polarizability tensor, we can compute for each fragment the

corresponding cross section. This is justified by the fact that the rel-
evant operator to calculate α is the dipole operator, and as shown
above, this is an additive operator that fulfills Eq. (56).

As an example, we performed a series of optical spectrum
simulations using real-time TDDFT for a benzene–fulvene dimer
with different π-stacking separation ranging from 4 Å to 8 Å. We
use the standard PBE exchange–correlation functional157,158 and the
optimized norm-conserving Vanderbilt PBE pseudopotential (sg15)
set.159 The real-space grid is defined as a parallelepiped box with
length 16 Å, 17 Å, and 20 Å in the three Cartesian axes. The spacing
between points is set to be 0.13 Å.

For each intermolecular separation, we carry out a single
ground-state calculation and three time-propagations. For each
time-propagation, a dipolar electric perturbation is applied along
one of the Cartesian axes.125 We let the perturbed Kohn–Sham states
evolve for a propagation time of T = 24 h̵/eV (15.8 fs) with a reso-
lution of 0.26 eV (2π/T). The ground-state electron density is frag-
mented following the Bader atomic decomposition, and each molec-
ular domain is defined as the sum of these atomic volumes. Then, the
corresponding dipole operator is applied over each defined domain.
Finally, by Fourier transform of the local time-dependent dipole
moment, the local polarizability tensor is recovered.

Figure 13 shows the spectral decomposition of the benzene–
fulvene system as a function of the intermolecular separation. The
full system at large intermolecular separation (8 Å) shows two major
peaks located at the same frequencies as for the isolated molecules.
As the intermolecular distance becomes smaller, the global spectrum
changes due to electrostatic effects induced by the electronic cloud

FIG. 13. (Top) Schematic representation of the benzene–fulvene dimer with π-stacking along the z axis and a intermolecular distance of 4 Å. From left to right, the electronic
density for the global system for an isosurface of 0.006 Å−3 and the QTAIM local density for the fulvene and benzene molecules, respectively. Visualized with USCF Chimera
software.160 (Bottom) Photo-absorption cross section obtained from, from left to right, the full system density, the fulvene local density, and the benzene local density.
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of the neighboring molecule. We can see that the peak located at
around 5 eV suffers a red-shift, while the stronger peak between
6.5 eV and 7 eV reduces its intensity, giving rise to an oscilla-
tor strength transfer to excited states at higher energy. The local
domain analysis reveals that the major change is caused by the
reduction of the oscillator strength of the fulvene peak located at
around 6.5 eV.

These results are in agreement with the FDE-rt-TDDFT calcu-
lations of Ref. 156, further validating our strategy. In addition, the
local domain methodology does not require any previous fragmen-
tation, selection, or localization of the basis set, allowing us also to
treat very large systems, such as biological molecules like the major
light harvesting complex LHC-II.161 Recently, we have shown that
this technique also allows for exciton coupling calculations when
combined with a new formulation of the transition densities from
real-time TDDFT.162

XIII. NEW PROPAGATORS FOR REAL-TIME TDDFT
At the core of most Octopus calculations lies the need to inte-

grate the time-dependent Kohn–Sham (TDKS) equations. These are
a set of non-linear equations, given the dependence of the Kohn–
Sham Hamiltonian on the electronic density. Upon the discretiza-
tion of the electronic Hilbert space, they take the generic form of a
system of first-order ordinary differential equations (ODEs)

φ̇ = f (φ(t), t), (60)

φ(t0) = φ0, (61)

where t0 is the initial time, φ is an array containing all the Kohn–
Sham orbitals, {φNm} (φ0 is its initial value), and f is a vector function
(f = (f 1, . . ., f N)) given by the action of the Kohn–Sham Hamiltonian
Ĥ[n(t), t],

fi(φ(t), t) = −iĤ[n(t)t]φi(t) , (i = 1, . . . ,N). (62)

Note that (i) if the nuclei are also to be propagated, the state should
be supplemented with their position and momenta, and the equa-
tions with the corresponding nuclear equations of motion. (ii) Like-
wise, the formalism for solids includes a polarization vector field22

that must also be included in the system definition and propaga-
tion. (iii) Strictly speaking, the TDKS equations are not ordinary but
“delay differential equations” (i.e., equations for which the derivative
of the unknown function at a certain time depends on the func-
tion values at previous times), due to the dependence of the exact
exchange and correlation potential functional on the past densi-
ties. This is ignored in the adiabatic approximation, which is almost
always assumed.

A myriad of numerical propagators for ODEs are available,
all of them theoretically applicable to the TDKS equations. Ideally,
however, one should choose a propagator that respects all the math-
ematical properties of the equations that describe the problem at
hand, for example, the preservation of the norm of the orbitals.
In the case of the TDKS equations in the adiabatic approximation,
another such property is symplecticity (a fact that is demonstrated
in Ref. 163). This property is usually stated in terms of the conser-
vation of the volume of the flow of the system of ODEs in the phase
space, although the precise definition is as follows:

Any system of ODEs can be viewed as a “flow,” a differentiable
map g : Rp

→ Rp that transforms the state y(t0) at some point in
time t0 into the state at time t, y(t) = g(y(t0)). For systems described
with complex variables such as ours, since it can be split into a real
and an imaginary part, p is even: g : R2N

→ R2N . A map with an
even number of variables such as this one is defined to be symplectic
if and only if

∂g
∂x

T
J
∂g
∂x
= J , J = [

0 I
−I 0

], (63)

where I is the unit matrix of dimension N, and x ∈ R2N (con-
ventionally, the first N variables of x are called the “coordinates”
and the second half are the “momenta,” but no physical meaning
should be assumed for them in this purely mathematical definition).
A numerical propagator is also a differentiable map, which relates
the solution y(t) to y(t + Δt). As such, it may respect or not the
symplecticity—and other properties—of the original flow.

The symplecticity also means that the system has to be “Hamil-
tonian”: one may find a set of coordinates q ∈ RN , p ∈ RN (in this
case, the real and imaginary parts of the orbitals coefficients) and
some scalar function H(q, p) (the Hamiltonian expectation value),
which permits us to rewrite the system into the well-known form of
Hamilton’s equations

q̇i =
∂H(p, q)

∂pi
, (64a)

ṗi = −
∂H(p, q)

∂qi
. (64b)

The relevance of the symplectic numerical propagators stems from
the fact that they present some features, such as a better conservation
of the energy at long times, where the value of the energy ends up
oscillating around the true value instead of diverging. For a more
detailed discussion about symplecticity on numerical propagators,
see Ref. 164.

The Octopus code has several propagator options, many of
them already described in Ref. 165, such as the Crank–Nicolson,
standard Runge–Kutta, exponential midpoint rule (EMR) and vari-
ations (e.g., the “enforced time-reversal symmetry” scheme), and
split operator techniques. In a recent paper,163 some of the present
authors have studied propagators of different families that had been
scarcely (or not at all) tested for the TDKS equations: multistep,
exponential Runge–Kutta, and commutator-free Magnus (CFM)
expansions. After considering the accuracy, stability, and the per-
formance of the propagators, the CFM techniques were identi-
fied as suitable schemes for TDDFT problems and implemented in
Octopus. In this section, we make a brief description.

Developed in Ref. 166 for linear non-autonomous systems,
the CFM expansion offers an alternative to the “standard” Magnus
expansion, which requires expensive application of nested commu-
tators of the Hamiltonian with itself at different times. In essence,
CFM expansions Γ(t + Δt, t) consist of substituting the propagator
Û(t + Δt, t) by a product of exponentials

Γ(t + Δt, t) =
m

∏
i=1

exp(D̂i). (65)

The m linear operators D̂i are either the Hamiltonian at different
times within the interval [t, t + Δt] or parts of it.
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We implemented in Octopus an order four (q = 4) version,
given, for example, in Eq. (43) of Ref. 166, which we call hereafter
CFM4. This propagator requires two exponentials (m = 2),

φ(t + Δt) = exp(−iΔt(α1Ĥ[t1] + α2Ĥ[t2]))

× exp(−iΔt(α2Ĥ[t1] + α1Ĥ[t2]))φ(t), (66)

where

α1 =
3 − 2
√

3
12

, t1 = t + (
1
2
−

√
3

6
)Δt, (67)

α2 =
3 + 2
√

3
12

, t2 = t + (
1
2

+
√

3
6
)Δt. (68)

Ĥ[t1] and Ĥ[t2] are the Hamiltonians at times t1 and t2, which are,
in fact, unknown because they depend on the Kohn–Sham states
through the density: we are dealing with a non-linear problem and
the CFM expansions were, in fact, developed for linear systems. We
have various options to extend them for our non-linear problem: for
example, one could define Ĥ[t1] and Ĥ[t2] as interpolated Hamil-
tonians from Ĥ[t] and Ĥ[t + Δt] in which case we end up with
an implicit equation for φ(t + Δt) that we would have to solve at
a substantial cost.

The alternative that we implemented, however, is to approx-
imate Ĥ[ti] via an extrapolation from the Hamiltonian at various
previous time steps (in practice, it is the Hartree, exchange, and cor-
relation parts that must be extrapolated). The resulting method is
then explicit, i.e., no linear or non-linear algebraic equations need
to be solved. The fourth order accuracy is preserved as long as the
extrapolation is also done at order four.

As an example, Fig. 14 shows the performance of this CFM4
method against the well-known exponential midpoint rule (EMR).
The benchmark system consists of a benzene molecule. It is subject
to an instantaneous perturbation at the beginning of the propaga-
tion, and then, it evolves freely for some fixed interval of time. The
propagations are performed at varying values of Δt. The plot dis-
plays the cost of the propagation vs the accuracy achieved in each

FIG. 14. Wall-time computational cost of the method (in seconds) against the error

in the wave function [defined as Error(T,Δt) =
√
∑
m
∣∣φm(T) − φexact

m (T)∣∣2,

where the φexact
m are the values of the Kohn–Sham orbitals computed using the

explicit fourth-order Runge–Kutta integrator with a very small time step] for the
EMR and CFM4 propagators.

case. As we can see, the CFM4 outperforms the EMR for all val-
ues of the error examined, although the differences become more
obvious when higher accuracy is demanded. The key difference
between the two methods is the fourth-order accuracy of the CFM4
scheme—at the cost of requiring two exponentials, instead of just
one, while the EMR is only second-order accurate. This is reflected
in the different slopes of the curves as the error becomes smaller, i.e.,
as Δt → 0.

XIV. CONJUGATE GRADIENT IMPLEMENTATION
IN RDMFT

The RDMFT implementation in Octopus has been described
in detail in a previous paper.19 In this section, we review briefly the
existing implementation, providing some new insights, and intro-
duce a recently implemented method to solve the RDMFT equa-
tions, which is better suited to the real-space grids used in the
code.

The optimization of the natural orbitals in RDMFT is subject
to an orthonormalization constraint for the orbitals. One minimizes
the functional

Etotal −
M

∑
j,k=1

λjk(∫ drψ∗j (r)ψk(r) − δjk), (69)

where Etotal and M denote the total energy and the number of natural
orbitals ψj included in the calculation, respectively. The parameters
λjk are the Lagrange multipliers, which ensure the orthonormality
of the natural orbitals at the solution point. We note that, for an
RDMFT calculation, the number of natural orbitals has to be larger
than the number of electrons in the system (core electrons that are
included in the pseudopotential do not count). The exact number M
is system-dependent and should be treated as an additional parame-
ter with respect to which a convergence study should be carried out,
just like it is done for the basis set or the grid parameters. Typically,
the optimization is performed using the so-called Piris method,167

which was the method previously implemented in Octopus. Within
this approach, one uses the orthonormality constraint of the nat-
ural orbitals, which implies that a certain matrix constructed from
the Lagrange multipliers λjk is diagonal at the solution point. As an
immediate consequence of the Piris method, the natural orbitals at
the solution point are linear combinations of the orbitals used as
a starting point for the minimization. In other words, the initial
orbitals serve as a basis. Consequently, the necessary matrix ele-
ments for different energy contributions can be calculated for the
basis functions (initial orbitals) before the iterative optimization of
the natural orbitals and their occupation numbers is started. In addi-
tion, the optimization of the occupation numbers can be turned off
completely, resulting in a Hartree–Fock calculation on the basis of
the initial orbitals.

For the existing implementation in Octopus of the Piris
method, the initial orbitals are taken to be the solutions obtained
with a different level of theory, such as independent particles or DFT.
In order to better understand the effect of the choice of basis, we
tested the following choices: (i) independent particles, density func-
tional theory within (ii) the local density approximation (LDA) or
(iii) the exact exchange (EXX) approximation, and (iv) the Hartree–
Fock approximation. In all cases, we have to ensure that the number
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of unoccupied states in the calculation is sufficient to cover all the
natural orbitals that will obtain significant occupation in the fol-
lowing RDMFT calculation. The results for the convergence of the
total energy of a one-dimensional (1D) hydrogen molecule using the
Müller functional168 are given in Fig. 15. The calculations were per-
formed on a 1D grid extending from −12.0 bohr to 12.0 bohrs, with a
grid spacing of 0.03 bohr. The nuclear potential for the 1D hydrogen
molecule reads

v(x) = −
1

√
(x − d)2 + 1

−
1

√
(x + d)2 + 1

, (70)

with d = 1.628 bohr, which corresponds to the equilibrium geometry.
The electron–electron interaction in one dimension is described by
the soft-Coulomb interaction

w(x, x′) =
1

√
(x − x′)2 + 1

. (71)

Since Octopus performs all calculations on a finite grid, we typ-
ically obtain a finite number of bound states in the calculations for
the basis set and any additional orbitals that extend over the whole
grid, i.e., they are unbound and, therefore, delocalized. However, all
natural orbitals with non-zero occupation, because they decay with
the ionization potential of the system,170 are localized on the system.
Hence, the extended basis states will only contribute with very small
coefficients, if at all, and their inclusion in the basis set does not lead
to a significant improvement of the results. In the past, this problem
was addressed by performing an additional step to localize the ini-
tial states before starting the RDMFT calculation. However, further
investigations showed that this only improves the results for a small
number of natural orbitals in the calculation. Testing the conver-
gence with respect to the number of natural orbitals then showed
that the additional localization step slows down the convergence

FIG. 15. Total energy for the RDMFT calculation for one-dimensional H2
169 using

the Piris method with different basis sets and using the conjugate gradient imple-
mentation. The inset shows a zoomed-in view of the area where convergence is
reached. We employ the Müller functional168 for all calculations.

with respect to the number of basis functions. The fastest conver-
gence and lowest total energies are obtained by using the results
from an independent particle calculation, as those yield the largest
number of localized orbitals from all the different basis sets that
were tested, as shown in Fig. 15. As the additional localization step
proved to be unnecessary and even hinders convergence, it has been
removed from the new version of the code.

Since the natural way of representing quantities in Octopus is
directly on the real-space grid, and to circumvent the limitations
with the quality of the basis sets available for the Piris method, we
decided to implement a conjugate gradient optimization of the nat-
ural orbitals. This implementation follows the procedure for DFT
explained in Ref. 171, which we adapted for RDMFT. This pro-
cedure allows us to take advantage of the full flexibility of a real-
space grid and provides a systematic way of improving the results
by enlarging the grid and reducing the spacing between grid points.
The conjugate gradient algorithm requires a set of initial orbitals
to start the self-consistent calculation; however, at convergence, the
results are independent of that starting point. Therefore, while the
calculation using the Piris method requires a set of initial states
that serve as the basis, the conjugate gradient algorithm can be
used starting from an initial set of random states. In our tests of
the conjugate gradient implementation, the quality of the initial
states only had an influence on the number of iterations neces-
sary for the convergence, but not on the final result. We suggest
to use the orbitals obtained from an independent particle calcula-
tion as initial states since they can be obtained for a small numer-
ical cost and simultaneously can serve as a basis set in the Piris
implementation.

Since we are not solving an eigenvalue equation to obtain the
natural orbitals, they are not automatically orthogonal. As men-
tioned above, the orthogonality is taken into account via a con-
straint. Compared to Ref. 171, the non-diagonal Lagrange multipli-
ers λjk lead to two modifications in the conjugate gradient procedure.
First, the steepest-descent direction [cf. Eq. (5.10) of Ref. 171] reads
here

ζmi = −Ĥψ
m
i +

M

∑
k=1

λikψ
m
k , (72)

where

λik = ⟨ψ
m
i ∣Ĥψ

m
k ⟩. (73)

Second, the one parameter of the line-minimization [cf. Eq. (5.26) of
Ref. 171] is changed to

∂Etotal

∂Θ
= ⟨ϕ′i

m
∣Ĥψm

i ⟩ + ⟨ψm
i ∣Ĥϕ

′
i
m
⟩

− ∑
k
(λki⟨ϕ

′
i
m
∣ψm

i ⟩ + λik⟨ψ
m
i ∣ϕ

′
i
m
⟩), (74)

where Θ parameterizes the descend in the direction of the gra-
dient and the single-particle Hamiltonian acting on a state |ϕ⟩ is
defined as

Ĥ∣ϕ⟩ =
∂Etotal

∂ϕ∗
. (75)

For details of the notation, we refer the reader to Ref. 171.
The convergence study with respect to the number of natu-

ral orbitals for the conjugate gradient algorithm is also included in
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Fig. 15. As one can see, a smaller number of natural orbitals needs
to be included in the calculation than for the basis set implemen-
tations with the Piris method. As the number of natural orbitals
equals the number of basis functions in these calculations, this is
mostly due to the fact that the available basis sets are of rather
poor quality. In addition, the converged total energy for the con-
jugate gradient algorithm is slightly lower than for all the basis
sets using the Piris method (see the inset of Fig. 15), which shows
that the conjugate gradient algorithm exploits the full flexibility
of the grid implementation, allowing for contributions to the nat-
ural orbitals that are not covered by any of the basis sets. We
have also verified that the converged result of the conjugate gradi-
ent method is indeed independent of the choice of initial state for
the Müller functional168 employed in our calculations. The Müller
functional is known to be convex when all infinitely many natu-
ral orbitals are included.172 This property is most likely not shared
by all available RDMFT functionals. In addition, the number of
natural orbitals in any practical calculation is always finite. Conse-
quently, in practice, one needs to test the convergence for the dif-
ferent starting points, as the appearance of local minima cannot be
excluded.

XV. PERIODIC SYSTEMS AND SYMMETRIES
Electronic structure in periodic systems is usually described

using plane waves, but real-space grids have been shown to be
a viable alternative when performing DFT and TDDFT calcula-
tions.22,173 Unfortunately, the discretization introduced by the real-
space grid often breaks the direct connection between the physical
system and the basis set, as symmetries and translations are, in most
of the cases, incompatible with the discretized grid. However, real-
space grids offer many advantages, such as natural mixed periodic-
boundary conditions for semi-periodic systems, and the calculation
of the exchange and correlation term of DFT is straightforwardly
obtained on the grid.

One of the main challenges for treating periodic systems in real
space is the generation of the real-space grid and the corresponding
weights for the finite differences. This becomes relevant when the
grid is generated along the primitive axes of the Wigner–Seitz cell
(primitive cell) of a solid, where the generating axes are usually non-
orthogonal.

In Octopus, the grid points are generated along the primitive
axes, and the calculation of the finite-difference weights follows the
implementation described in Ref. 174. Once the grid is generated,
and the weights for the finite differences (gradient and Laplacian) are
obtained, it is necessary to deal with the discretization of the recip-
rocal space. Indeed, for periodic systems, the full crystal is replaced
by the primitive cell of the crystal in real-space, thanks to the Bloch
theorem, but is then complemented by the Brillouin zone, which also
needs to be sampled. This grid, usually called k-point grid, is com-
mon to any type of basis sets, as long as one decides to reduce the
crystal to its primitive cell.

In order to reduce the numerical effort associated with the
description of periodic systems, we make use of the symmetries to
reduce the Brillouin zone to its irreducible zone, which can drasti-
cally reduce the number of k-points. The space group of the crys-
tal, as well as its symmetries, are obtained, thanks to the spglib
library.175 In the present implementation, we restrict the symmetries

to the symmorphic symmetries (inversion, rotations, and mirror
planes), leaving for later the so-called non-symmorphic symmetries,
i.e., symmetries involving a fractional translation, as they are not
compatible with arbitrary real-space grids.

In order to assess the validity of our implementation, we used
the so-called delta-factor test.176 Using the Schlipf-Gygi ONCVPSP
2015 pseudopotential set, we obtained the value of 1.50 meV/atom,
which is very close to the value obtained by other codes using the
same pseudopotential set.

When investigating the electron dynamics driven by a laser
field or any type of symmetry-breaking perturbation (vector poten-
tials, kicks with a finite momentum, strain, etc.), some of the origi-
nal symmetries are lost. To deal with that, Octopus finds the small
group of symmetries corresponding to the original space-group of
the solid, retaining only the symmetries that leave invariant the per-
turbation direction. This defines the symmetries that are used for a
time-dependent calculation.

One important aspect when using symmetries is the sym-
metrization (in real-space) of the charge and current densities, as
well as other observables, such as kinetic energy density. In com-
plement to the reduction of the Brillouin zone to its irreducible
zone, we implemented a real-space symmetrization. We found that
performing the real-space symmetrization is very important to
achieve good and stable numerical results when taking into account
symmetries.

For a comprehensive description of periodic systems, the ion
dynamics has to be considered in addition to the electron dynam-
ics. For isolated systems, it is often described with the TDDFT-
Ehrenfest dynamics method,17,177 where the ions obey the New-
ton equation with force fields computed by TDDFT. In contrast,
for periodic systems, the ion dynamics has to be described with
two sets of equations: one is the Newton equation for ions on
the reduced coordinates in the primitive cell and the other is the
equation of motion for the primitive cell itself, as the ionic coor-
dinates of periodic systems are described by the combination of
the reduced coordinates with the lattice vectors of the primitive
cell. The lattice dynamics is often treated with the Parrinello–
Rahman method,178,179 and the key ingredient of the equation of
motion is the stress tensor. Therefore, to realize the ab initio sim-
ulations for electron-ion-lattice dynamics based on TDDFT, the
calculation of the stress-tensor has been implemented based on
Ref. 180, and the implementation of the lattice dynamics is under
way.

XVI. ADDITIONAL TECHNICAL CODE IMPROVEMENTS
In order to make all the new developments and applications

described in the above sections possible, the code needs to be accu-
rate, efficient, and reliable. In addition, when a code reaches the
size and complexity of Octopus (currently more than 200 000 lines
of source code), the amount of time required for maintenance and
for adding new features becomes considerable. Therefore, continu-
ous efforts at optimizing, validating, and improving the source code
quality are needed. These efforts are essential, but often do not get
the attention they deserve. In this section, we present some note-
worthy developments to improve the code reliability and efficiency,
to make the project easier to maintain, and to tackle new computer
architecture challenges.
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A. Web application for analyzing regression tests
In a complex code such as Octopus, every new development

may have unintended side effects, possibly introducing errors to
already existing features. To avoid such regressions, every change
to the code is required to pass a suite of tests before being accepted.
This suite is executed automatically using Buildbot181 and is inte-
grated with the continuous integration framework of the gitlab plat-
form where Octopus is hosted for several years now. The testsuite is
executed with 30 different toolchains spanning a variety of architec-
tures, compilers, and Message-Passing Interface (MPI) libraries. It
contains currently about 180 tests that execute Octopus roughly 740
times and that contain about 12 000 comparisons to reference values.
The overall coverage of the tests is determined using the codecov.io
service and lies at about 71% at the moment.

Although the testsuite is efficient in avoiding regressions, ana-
lyzing why a test failed has been difficult so far due to the large
amount of data generated. Thus, we implemented an interactive
analysis and visualization of the testsuite results as a web applica-
tion available at https://octopus-code.org/testsuite/. This application
makes it easier to understand why a test failed: Is it a problem
with just one toolchain, e.g., a particular architecture, or is it simply
a larger numerical variation of the results? Moreover, it facilitates
updating the tests and improving the testsuite itself.

The application was implemented using the web framework
Django coupled to a Postgres database. The testsuite results are
automatically uploaded by the Buildbot service as soon as they
are available. The application allows us to analyze single toolchain
runs and single comparison matches and to compare all toolchain
runs for a single commit in git. It provides histograms to judge
if there are outliers or if it is a broad distribution; moreover, this
allows us to determine, e.g., if there is a difference between MPI
and non-MPI toolchains. This application has already helped us
to identify bugs causing regressions and will continue to be use-
ful to understand failed tests, to update them, and to improve the
testsuite.

B. Improving ground-state calculations
To improve the reliability of ground-state calculations with

Octopus, the default eigensolver used inside the self-consistent field
(SCF) cycle was improved and different real-space preconditioners
for the eigensolvers were evaluated.

The default eigensolver, a conjugate-gradient algorithm, has
been improved over the previous implementation by now following
closely Ref. 171, which greatly improves the reliability of the solver.
The updated implementation differs from Ref. 171 in only one point:
by default, the current band is not orthogonalized against all bands,
instead it is only orthogonalized against previously computed bands
with lower energies. According to our tests, in Octopus, this leads to
a faster convergence for most cases.

Preconditioners for eigensolvers are an integral part of SCF cal-
culations because they greatly accelerate convergence. They achieve
this by applying an approximate inverse of the Hamiltonian in each
iteration that leaves the solution invariant and brings the system
closer to the real solution. As Octopus uses a real-space grid (as
opposed to plane waves like in Ref. 171), different precondition-
ers are needed. A range of preconditioners has been compared for
a wide variety of systems, comprising molecules, semiconductors,

metallic systems, and surfaces to test convergence for very different
cases.

The default preconditioner in Octopus is a low-pass filter
obtained by adding the neighboring values in each dimension to the
current value at a grid point, weighted by a certain factor α,

ψ′i,j,k = αψi,j,k + (1 − α)(ψi−1,j,k + ψi+1,j,k + ψi,j−1,k

+ ψi,j+1,k + ψi,j,k−1 + ψi,j,k+1). (76)

This preconditioner was first described by Saad et al.182 with α = 0.5.
It was proven to be the most effective preconditioner in our compar-
ison because it is quite cheap to apply and it, nevertheless, decreases
the number of SCF iterations noticeably. It can also be understood
as two weighted Jacobi iterations (up to a prefactor) to solve for the
inverse of the kinetic term of the Hamiltonian (i.e., 0.5Δψ′ = ψ).
From the convergence radius of the Jacobi iterations, we can con-
clude that the allowed values for α are between 0.5 and 1. From the-
oretical considerations of damping of different spatial wavelengths
during Jacobi iterations (see Secs. 4.1.3 and 4.2 of Ref. 183), the ideal
value should be 0.75 to most effectively damp high spatial frequen-
cies. In practice, we find that this depends on the system. Moreover,
increasing the number of Jacobi iterations does not make the pre-
conditioner more effective. In addition, using a single Jacobi itera-
tion (i.e., dividing by the diagonal of the Laplacian) does not speed
up the convergence significantly.

A multigrid method similar to the one implemented in
GPAW184 also uses Jacobi iterations to solve for the kinetic Hamil-
tonian but employs different grids to reach a faster decrease in the
error. Although this method reduces the number of SCF iterations, it
is computationally more expensive because the Laplacian is applied
several times for each iteration and is, thus, less effective than the
filter preconditioner.

A preconditioner specifically targeting real-space methods was
proposed by Seitsonen et al.185 It uses the ratio between the dif-
ference of the energy and the potential to the kinetic energy [their
Eq. (3)] with a preconditioning function [their Eq. (4)] originally
from Ref. 171. However, this preconditioner did not speed up
convergence significantly when used in Octopus.

Another way to get an approximate inverse of the Hamiltonian
is to solve the Poisson equation associated with the kinetic part of
the Hamiltonian. This reduces the number of iterations needed to
converge the SCF calculation, but it increases the total calculation
time, as each iteration is much more costly.

In summary, we find that for our real-space code, the filter
preconditioner is most effective in reducing the total time needed
to compute ground states because it reduces the total number of
iterations without being computationally too expensive.

Nonetheless, sometimes certain states cannot be fully con-
verged using a preconditioner, especially for calculations with many
unoccupied states. In this case, restarting without preconditioner is
needed to obtain a complete SCF convergence. The reasons for this
are still under investigation.

C. Novel multi-system framework
In the way Octopus was originally designed, the entire code was

structured around the idea that there was only one system (albeit
of arbitrary size and complexity) with an associated Hamiltonian.
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This was typically a combined system of electrons and nuclei, where
the former were described using DFT and the latter were treated
classically. All possible sorts of interactions of this system with
some external source (e.g., external electromagnetic fields, solvents
described with the PCM, etc.) were then added in an ad hoc fashion.
Although this approach worked well for many features and appli-
cations, its limitations became evident with several recent develop-
ments, in particular, the coupled Maxwell–Kohn–Sham equations
described in Sec. II, where the Kohn–Sham orbitals need to be
time-propagated alongside the Maxwell fields.

This has prompted us to start a major refactoring of the code,
where the full physical system is treated as several subsystems inter-
acting with each other. Such subsystems can be electrons, nuclei,
and Maxwell fields. While this framework was mainly motivated by
the Maxwell–TDDFT coupling, it has been implemented in a very
general fashion so that all existing features can be converted to it
and that, in the future, many other developments that require the
coupling of several subsystems can be based on it.

D. Memory layout
A new memory layout for storing the orbitals was introduced in

Ref. 186, where all states are stored in a number of smaller batches
with the innermost index being the state index instead of the real-
space grid index. Thus, for all states in a batch, exactly the same oper-
ations can be executed when looping over the grid while accessing
memory contiguously. This allows efficient parallelization on graph-
ical processing units (GPUs), where all threads in a warp need to
execute the same instructions, as well as vectorization on central pro-
cessing units (CPUs), where one instruction can operate on several
data points. To fully utilize these instructions, the kernel for com-
puting finite differences (e.g., the Laplacian) has been specialized to
explicitly use SSE, AVX, or AVX512 instructions. Now, more parts
of the code have been ported to use this new layout to increase their
performance, and whenever possible, the code will use this layout by
default.

E. GPUs
The first GPU implementation was described in Ref. 186.

This was based on OpenCL and was limited to a small selection
of numerical algorithms and calculation modes. These included
some of the most commonly used features of the code or algo-
rithms that were particularly suited for GPU porting, such as
the residual minimization method-direct inversion in the iterative
subspace (RMM-DIIS) eigensolver for ground-state calculations
or the enforced time-reversal-symmetry propagator for time-
dependent calculations. Since then, the GPU implementation has

been expanded in several different ways. Most notably, it now sup-
ports CUDA through an additional compatibility layer. The num-
ber of supported features and algorithms has also been increasing
steadily such that most time-dependent calculations can now be
run efficiently on GPUs. The implementation was also expanded
to support multiple devices per host. Using the packed storage
format described above, Octopus is able to store the states fully
in the GPU memory, provided the memory is large enough, thus
reducing memory transfers to a minimum. Recently, this was
improved further by removing frequent allocations and dealloca-
tions of temporary variables on the GPU, now using a custom mem-
ory management for those. This proved very effective in improv-
ing the scaling to several GPUs and also to several nodes with
GPUs.

We show two examples of time-dependent runs in Fig. 16.
For the first example (left panel), β-cyclodextrine was used as an
input system and the simulation was run on the GPU island of the
COBRA supercomputer at the Max Planck Computing and Data
Facility. Each node in this island consists of two 20-core Intel Xeon
6148 Gold sockets (Skylake architecture) with two Nvidia Volta
100 GPUs (PCIe); the nodes are connected with an Omnipath fab-
ric (100 Gbit/s). When executed on a full node with GPUs, the
average time step for the example is a factor of 4.8 faster than on
one full CPU node, i.e., the time to solution is reduced by a fac-
tor of 4.8. This also means that the GPU version consumes less
energy: although one GPU node draws more power than a CPU
node (∼950 W vs 450 W), the faster execution time reduces the
overall energy to solution by a factor of 2.3 when running on a
GPU node. When scaling to 2, 4, and 8 nodes, the speed-up is 1.26,
2.14, and 3.37, respectively, and the corresponding parallel efficiency
is 63%, 54%, and 42%. Although the scaling is not yet perfect, it
has improved considerably and also hints at the need for improv-
ing inter-node communication. For the second example (Fig. 16,
right panel), a time-dependent simulation of a part of a chloro-
phyll complex was executed on a Supermicro server with two 8-core
Intel Xeon 6134 Gold CPUs (Skylake architecture) and eight Nvidia
Volta 100 GPUs interconnected with NVLink. Here, the speed-up
of the average time step of the simulation when using 2, 4, and
8 GPUs is 1.95, 3.70, and 5.97, which corresponds to parallel effi-
ciencies of 97%, 93%, and 75%, respectively. These efficiencies are
much better than for the multi-node example, probably because
data are only communicated within one node. For both examples,
all states were stored in the GPU memory, and the paralleliza-
tion was achieved by distributing the states only. Distributing the
grid (i.e., parallelization over domain) is not as effective, because
it leads to more frequent communication, and thus has a larger
overhead.

FIG. 16. Scaling plots for the GPU imple-
mentation of Octopus. The left panel
shows speed-up for a machine with two
20-core Intel Xeon 6148 Gold sock-
ets (Skylake architecture) and two V100
GPUs (PCIe) per node. The right panel
shows speed-up for a Supermicro server
with 8 V100 GPUs (NVLink).
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Our current and future efforts regarding the GPU implementa-
tion are focused on two aspects. First, we are planning to enhance the
existing implementation by improving the communication, possibly
by overlapping computation and communication, and by optimiz-
ing the existing kernels. Second, we want to port more algorithms
that are currently only implemented for the CPU version, especially
for spin-dependent calculations and ground-state runs. This is a
long-term effort, and the ultimate goal is to have as many features
and algorithms as possible running efficiently on GPUs.

XVII. CONCLUSIONS
It has been almost 20 years since the development of Octo-

pus started. During this period, the code has matured and expanded
to cover an ever-growing range of methods, theories, applications,
and systems. It has also adapted continuously to the available com-
puter architectures and computing paradigms, allowing researchers
to tackle increasingly challenging problems in electronic structure
theory.

Although many of the code capabilities have been routinely
used by many groups around the world, mainly to study electronic
excited state properties and dynamics, which still remain, to a large
extent, the core of Octopus, we believe the main reason for the
code’s success lies elsewhere. From the beginning, the code has
been designed to take full advantage of the flexibility and versatil-
ity offered by the use of real-space grids and provides developers
with a framework to easily implement and test new ideas and meth-
ods that can be later on adopted by other codes (as it has already
been the case with quite a few features previously developed within
Octopus). This is demonstrated by the number of new theoretical
methodologies and frameworks presented in this paper to deal with
non-equilibrium phenomena of complex systems and to address
the combined dynamics of electrons, phonons, and photons that
go beyond what can be found in other electronic structure codes.
This includes several novel approaches to treat the coupling of the
electronic systems to the photons, such as the coupled Maxwell–
Kohn–Sham equations, the OEP approach to the electron–photon
coupling, and the dressed RDMFT. Other examples include the
description of magnons in real-time and the orbital magneto-optical
response in solids and molecules using the Sternheimer approach. In
the case of magnons, supercells need to be employed, and the scala-
bility of real-space grid methods make this approach very promising
for future applications in more complex correlated magnetic sys-
tems. We expect that many of these methods and approaches will
be integrated into other electronic-structure codes and will become
standard tools in the near future.

The flexibility of the code is also demonstrated by the variety of
systems that it can efficiently treat, as the applications described in
this paper include molecules, nanoparticles, model systems, solvents,
solids, and monolayers. Particularly noteworthy is the efficient treat-
ment of periodic systems, which traditionally have been described
using plane-wave basis-sets, and this has been achieved without loss
of accuracy, as shown by our results for the delta-factor test. In the
end, it is our hope that combining this flexibility with a growing
range of methodologies will provide researchers with the necessary
tools to study new challenging phenomena, such as novel correlated
materials, out of equilibrium physics, or coupled electron–boson
systems.

We also discussed recent improvements in performance and
scalability, with particular emphasis on the GPU support. These
developments are crucial in the view of the new challenges that
electronic-structure applications are facing with the upcoming
exaflop supercomputers.

Finally, several other implementations are in the pipeline,
such as Floquet and cavity QED materials engineering, multitrajec-
tory methods to deal with the nonadiabatic electron-ion dynamics,
treatement of open quantum dissipative systems, and spectroscopies
with entangled photons. All of these should be available to the users
in the next years, so we invite you to stay tuned to the Octopus
webpage at https://octopus-code.org/.

SUPPLEMENTARY MATERIAL

The supplementary material contains the following: (i) Movie
SM1—The nitrobenzene molecule is surrounded by the solvation
cavity on which the PCM charges rest. PCM charges are modified in
an iterative scheme coupled to the KS problem to get the molecular
ground state in equilibrium with the solvent (here, water). The size
and color of the spheres reflect the PCM charge value at each point
of the surface. The animation is the 3D version of Fig. 7 in the main
text. (ii) Movie SM2—Time dependent evolution of the molecular
dipole of the nitrobenzene molecule in water subject to an electri-
cal dipole perturbation in the x direction applied at the initial time.
(Left) The PCM surface charges (represented as in movie SM1) and
the molecular dipole (red arrow) are animated according to the equi-
librium method (see main text for details). The white arrow is the
molecular dipole in vacuo. (Right) The molecular dipole magnitude
(top panel) and xy in-plane angle (bottom panel) calculated with
the different PCM methods implemented in Octopus. Observe how
the presence of the solvent enhances the intrinsic molecular dipole
magnitude and produces a noticeable dephasing with respect to the
in vacuo case already after few fs. This dephasing reflects into the
solvatochromic shift reported in Fig. 8 of the main text.
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