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Abstract: The purpose of this paper is to introduce and analyze a new idea of proximally compatible
mappings and we extend some results of Jungck via proximally compatible mappings. Furthermore,
we obtain common best proximity point theorems for proximally compatible mappings through two
different ways of construction of sequences. In addition, we provide an example to support our
main result.
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1. Introduction

A study of best proximity point theory is a useful tool for providing optimal approximate solutions
when a mapping does not have a fixed point. In other words, optimization problems can be converted
to the problem of finding best proximity points. Hence, the existence of best proximity points develops
the theory of optimization.

Interestingly, these best proximity point theorems also serve as a natural generalization of fixed
point theorems and a best proximity point becomes a fixed point if the mapping under consideration
is a self-mapping.

In [1], Jungck introduced the notion of compatible mappings and derived results on common
fixed points for the compatible mappings. Sessa [2] defined the term weakly commuting pairs and
obtained fixed point theorems. The following theorem via commuting mappings was studied in [3].

Theorem 1. Let (X, D) be complete metric space. Then, a continuous function Λ : X → X has a fixed point if
and only if there exists s ∈ (0, 1) and a function Γ : X → X which commutes with Λ (ΓΛ = ΛΓ) and satisfies:
Γ(X) ⊂ Λ(X) and D(Γ(η), Γ(ω)) ≤ sD(Λ(η), Λ(ω)) for η, ω ∈ X.

One can note that the above theorem is a generalization of the Banach contraction theorem.
Das et al. [4] generalized the result of Jungck [3] and proved existence of common fixed point for
mappings which need not be continuous. In [5], Chang generalized and unified many fixed point
theorems in complete metric spaces. Later, Conserva [6] proved three existence of common fixed
point theorems for commuting mappings on a metric space which generalize the various fixed point
results. In 1998, Jungck and Rhoades [7] initiated the concept of weakly compatible mappings and
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proved that the class of weakly compatible mappings contains the class of compatible mappings.
Furthermore, Chugh and Kumar [8] proved theorems on existence of a common fixed point for weakly
compatible mappings.

In the sequel, Basha et al. [9] gave existence of common best proximity points for pairs of non-self
mappings in metric spaces. Aydi et al. [10] established the existence result of common best proximity
point for generalized α−ψ−proximal contractive pair of non-self mappings. In [11], Mongkolkeha et al.
proved existence of common best proximity point for a pair of proximity commuting mappings in a
complete metric space. On the other hand, Cvetković et al. [12] showed existence of common fixed
point for four mappings in cone metric spaces. Parvaneh Lo′lo′ et al. [13] proved a result which gives
sufficient condition to exist a common best proximity point for four different mappings in metric-type
spaces. One can get some ideas on results of common best proximity point for several kinds of non-self
mappings which are available in [14–18]

In this research paper, we provide the concept of proximally compatible mappings and we give
common best proximity point theorems for proximally compatible non-self mappings. First, we prove
some basic results from Jungck [1], which are analogous of self mappings. Using these results, we give
enough conditions that make sure the existence of a common best proximity point.

2. Preliminaries

Here we start with some notions:
Let M, N be two subsets of a metric space (X, D).

dist(M, N) = D(M, N) = in f {D(η, ω) : η ∈ M, ω ∈ N};
D(η, N) = in f {D(η, ω) : ω ∈ N};
M0 = {η ∈ M : D(η, ω′) = dist(M, N) for some ω′ ∈ N};
N0 = {ω ∈ N : D(η′, ω) = dist(M, N) for some η′ ∈ M}.

Definition 1 ([13]). An element η ∈ M is said to be a common best proximity point of the nonself-mappings
Λ1, Λ2, ..., Λn : M→ N if it satisfies

D(η, Λ1η) = D(η, Λ2η) = ... = D(η, Λnη) = D(M, N).

Definition 2 ([13]). Mappings Λ : M→ N and Γ : M→ N are said to be commute proximally if they satisfy

[D(υ, Λη) = D(ν, Γη) = D(M, N)] implies Λν = Γυ,

for some υ, ν, η ∈ M.

Definition 3. Let Λ, Γ be two non self-mappings Λ, Γ : M → N. A point η ∈ M is said to be coincidence
point if Λ(η) = Γ(η).

Definition 4. A pair of mappings Λ and Γ is called weakly commuting proximally pair if they commute
proximally at coincidence points.

Definition 5 ([13]). If M0 6= ∅ then the pair (M, N) is said to have the P-property if for any η1, η2 ∈ M0 and
ω1, ω2 ∈ N0 {

D(η1, ω1) = D(M, N)

D(η2, ω2) = D(M, N)
implies D(η1, η2) = D(ω1, ω2).

Definition 6. A function χ : [0, ∞)→ [0, ∞) is said to be an altering distance function if it satisfies,
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(i) χ is non-decreasing and continuous,
(ii) χ(t) = 0 iff t = 0.

In [2], Khan et al. extended the fixed point theorems for contractive type mappings using altering
distance function.

Let M and N be subsets of a metric space (X, D). Let Γ : M → N be a continuous and
nondecreasing mapping such that

χ(D(Γ(η), Γ(ω))) ≤ χ(D(η, ω))− ϕ(D(η, ω)) for η, ω ∈ M,

where χ, ϕ are altering distance functions.

3. Proximally Compatible Mappings

Now we extend the definition of compatible mappings (Definition 2.1 of [1]) for the case of
non-self mappings.

Definition 7. Let M and N be two subsets of a metric space (X, D). Two non-self mappings Λ and Γ from M
to N are proximally compatible if for any sequences {ηn}, {υn} and {νn} in M{

D(υn, Ληn) = D(M, N)

D(νn, Γηn) = D(M, N)
implies lim

n→∞
D(Λνn, Γυn) = 0,

whenever limn→∞ υn = limn→∞ νn = t.

Example 1. Let X = R2 and D(η, ω) =
√
(η1 −ω1)2 + (η2 −ω2)2, where η = (η1, η2), ω = (ω1, ω2).

In addition, we consider M = {(0, η) : 0 ≤ η ≤ 1}, N = {(1, ω) : 0 ≤ ω ≤ 1}, then M0 = M, N0 = N.
Define the functions Λ, Γ : M→ N by Λ(0, η) = (1, η3) and Γ(0, η) = (1, 2η3). Now if{

D((0, η3
n), (1, η3

n)) = 1

D((0, 2η3
n), (1, 2η3

n)) = 1

then, we have D(Λ(0, 2η3
n), Γ(0, η3

n)) = D((1, 23η9
n), (1, 2η9

n)) = 6η9
n and

D((0, η3
n), (0, 2η3

n)) = η3
n. Since η3

n → 0 as n→ ∞, 6η9
n → 0. So Λ and Γ are proximally compatible.

Proposition 1. Let M and N be two subsets of a metric space (X, D). Let Λ, Γ : M→ N be continuous and
let B = {a ∈ M : D(a, Λa) = D(a, Γa) = D(M, N)}. Assume that the pair (M, N) satisfies P-property.
Then Λ and Γ are proximally compatible if any one of the following holds:

(1) If υn, νn → t ∈ M as n→ ∞, then t ∈ B,
(2) D(υn, νn)→ 0 as n→ ∞ implies D(υn, B)→ 0 as n→ ∞,
(3) B is compact and D(υn, νn)→ 0 as n→ ∞ imply D(ηn, B)→ 0 as n→ ∞,

where υn, νn, ηn are same as in Definition 7.

Proof. We assume limn→∞ υn = limn→∞ νn = t for some t ∈ M.
If (1) holds, since t ∈ B, D(t, Λt) = D(t, Γt) = D(M, N). By P-property, D(Λt, Γt) = 0. Since Λ, Γ are
continuous, which gives{

limn→∞ Λνn = Λt

limn→∞ Γυn = Γt
implies D(Λνn, Γυn)→ D(Λt, Γt) = 0,

result follows. If (2) holds, and by noting that B is closed, since D(υn, B) → 0 as n → ∞, then there
exists a sequence {bn} in B such that D(υn, bn)→ 0 as n→ ∞. This implies that bn → t as n→ ∞, and
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then t ∈ B. So the result follows from (1). If (3) holds, since B is compact, there is a subsequence {ηnk}
of {ηn} such that {ηnk} converges to η∗ and η∗ ∈ B, that is, D(η∗, Λη∗) = D(η∗, Γη∗) = D(M, N). The
continuity of Λ implies that Ληnk → Λη∗. From Definition 7, in particular, we have D(υnk , Ληnk ) =

D(M, N), and as k→ ∞, we obtain D(t, Λη∗) = D(M, N), and by P-property, we get t = η∗. Therefore
Λ, Γ are proximally compatible by (1).

Proposition 2. Let M and N be two subsets of a metric space (X, D). Let Λ, Γ : M → N, be proximally
compatible and the pair (M, N) satisfy P- property.

(1) If Λt = Γt, with {
D(υ, Λt) = D(M, N)

D(ν, Γt) = D(M, N),

then Λν = Γυ.
(2) Suppose that limn→∞ υn = limn→∞ νn = t for some t in M, where υn, νn are same as in Definition 7.

(a) If Λ is continuous at t, then limn→∞ Γυn = Λt.
(b) If Λ, Γ are continuous at t, with {

D(υ, Λt) = D(M, N)

D(ν, Γt) = D(M, N),

then υ = ν and Λν = Γυ.

Proof. For (1), suppose that Λt = Γt and{
D(υ, Λt) = D(M, N)

D(ν, Γt) = D(M, N).

By P-property, we have D(υ, ν) = D(Λt, Γt) = 0, and this implies that υ = ν. Now, assume
υn upsilon, νn = ν, ηn = t, for all n ∈ N. So{

D(υn, Ληn) = D(M, N)

D(νn, Γηn) = D(M, N),
implies lim

n→∞
D(Λνn, Γυn) = 0

by proximally compatible. Then D(Λν, Γυ) = 0, proving (1). Now we prove 2(a), since
limn→∞ νn = t, limn→∞ Λνn = Λt by continuity of Λ. Now

D(Γυn, Λt) ≤ D(Γυn, Λνn) + D(Λνn, Λt).

Since Λ, Γ are proximally compatible, D(Γυn, Λt)→ 0.
For 2(b), Γυn → Λt by 2(a) and by continuity Γυn → Γt. Thus Λt = Γt. By the P-property we have

υ = ν. In addition, also Λν = Γυ, by (1).

4. Common Best Proximity Points for (ε, δ, χ, ϕ)-Contractions

Motivated by Definition 3.1 in [1], we define the following.

Definition 8. Let (X, D) be a metric space. Let M and N be two subsets of X. A pair of nonself mappings Λ
and Γ from M to N are (ε, δ, χ, ϕ)− F, G− contractions relative to mappings F, G : M → N if and only if
Λ(M) ⊂ G(M), Γ(M) ⊂ F(M), and there exists a mapping δ : R+ → R+ such that δ(ε) > ε for all ε > 0
and for η, ω ∈ M :
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1. ε ≤ χ
(

D(Fη, Gω)
)
− ϕ

(
D(Fη, Gω)

)
< δ(ε) implies χ

(
D(Λη, Γω)

)
< ε, and

2. Λη = Γω whenever Fη = Gω,

where χ, ϕ are altering distance functions.

Note that if Λ and Γ are (ε, δ, χ, ϕ)− F, G− contractions, then χ
(

D(Λη, Γω)
)
≤ χ

(
D(Fη, Gω)

)
−

ϕ
(

D(Fη, Gω)
)

for all η, ω ∈ M.
Let M and N be subsets of a metric space (X, D). Let Λ, Γ, F, and G be nonself mappings from M to
N such that Λ(M) ⊂ G(M) and Γ(M) ⊂ F(M) for η0 ∈ M. Any sequence {ωn} is constructed by
ω2n−1 = Gη2n−1 = Λη2n−2 and ω2n = Fη2n = Γη2n−1 for n ∈ N - called an F, G - iteration of η0 under
Λ and Γ.

Lemma 1. Let M and N be two subsets of a metric space (X, D). Let F and G be nonself mappings from M to
N and let (Λ, Γ) be (ε, δ, χ, ϕ)− F, G− contraction. If η0 ∈ M and {ωn} is an F, G-iteration of η0 under Λ
and Γ, then

(i) for each ε > 0, ε ≤ χ
(

D(ωp, ωq)
)
− ϕ

(
D(ωp, ωq)

)
< δ(ε) implies

χ
(

D(ωp+1, ωq+1)
)
< ε, where p, q are opposite parity,

(ii) D(ωn, ωn+1)→ 0 as n→ ∞, and
(iii) {ωn} is a Cauchy sequence.

Proof. To prove (i), let ε > 0. Since Λ and Γ are (ε, δ, χ, ϕ)− F, G-contractions,

ε ≤ χ
(

D(Fη, Gω)
)
− ϕ

(
D(Fη, Gω)

)
< δ(ε) implies χ

(
D(Λη, Γω)

)
< ε. (1)

Now suppose that ε ≤ χ
(

D(ωp, ωq)
)
− ϕ

(
D(ωp, ωq)

)
< δ(ε), where p = 2n and q = 2m− 1. We have

χ
(

D(ωp+1, ωq+1)
)
= χ

(
D(ω2n+1, ω2m)

)
= χ

(
D(Λη2n, Γη2m−1)

)
and

χ
(

D(ωp, ωq)
)
− ϕ

(
D(ωp, ωq)

)
= χ

(
D(ω2n, ω2m−1)

)
− ϕ

(
D(ω2n, ω2m−1)

)
= χ

(
D(Fη2n, Gη2m−1)

)
− ϕ

(
D(Fη2n, Gη2m−1)

)
.

By (1), we have,

ε ≤ χ
(

D(Fη2n, Gη2m−1)
)
− ϕ

(
D(Fη2n, Gη2m−1)

)
< δ(ε),

which gives χ
(

D(Λη2n, Γη2m−1)
)
= χ

(
D(ωp+1, ωq+1)

)
< ε.

For (ii), we know from the hypothesis χ
(

D(Λη, Γω)
)
≤ χ

(
D(Fη, Gω)

)
− ϕ

(
D(Fη, Gω)

)
for all η, ω ∈

M. Suppose n is even, say, n = 2m,

χ
(

D(ωn, ωn+1)
)

= χ
(

D(ω2m, ω2m+1)
)

= χ
(

D(Γη2m−1, Λη2m)
)

≤ χ
(

D(Fη2m, Gη2m−1)
)
− ϕ

(
D(Fη2m, Gη2m−1)

)
≤ χ

(
D(Fη2m, Gη2m−1)

)
= χ

(
D(ω2m, ω2m−1)

)
= χ

(
D(ωn, ωn−1)

)
.

Similarly, one can prove that χ
(

D(ωn, ωn+1)
)
≤ χ

(
D(ωn−1, ωn)

)
if n = 2m + 1. Then the sequence

{χ
(

D(ωn, ωn+1)
)
} is nonincreasing which shows D(ωn, ωn+1) ≤ D(ωn, ωn−1) for all n. Hence, the

sequence {D(ωn, ωn+1)} is bounded and nonincreasing. Thus, there exists r ≥ 0 such that

lim
n→∞

D(ωn, ωn+1) = r. (2)
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Suppose r > 0. Let us assume n is odd, that is, n = 2m− 1. Then the inequality

χ
(

D(ωn, ωn+1)
)

= χ
(

D(ω2m−1, ω2m)
)

= χ
(

D(Λη2m−2, Γη2m−1)
)

≤ χ
(

D(Fη2m−2, Gη2m−1)
)
− ϕ

(
D(Fη2m−2, Gη2m−1)

)
≤ χ

(
D(Fη2m−2, Gη2m−1)

)
= χ

(
D(ω2m−2, ω2m−1)

)
= χ

(
D(ωn−1, ωn)

)
which implies that

lim
m→∞

ϕ
(

D(Fη2m−2, Gη2m−1)
)
= lim

m→∞
ϕ
(

D(ω2m−2, ω2m−1)
)
= lim

n→∞
ϕ
(

D(ωn+1, ωn)
)
= 0. (3)

However, as 0 < r ≤ D(ωn+1, ωn) and ϕ is nondecreasing function,

0 < ϕ(r) ≤ ϕ
(

D(ωn+1, ωn)
)
,

and this implies limn→∞ ϕ
(

D(ωn+1, ωn)
)
≥ ϕ(r) > 0 which contradicts to (3). Similarly one can easily

varify that for the case of n is even. Then we obtain,

lim
n→∞

D(ωn, ωn+1) = 0. (4)

To show (iii), suppose {ω2n} is not a Cauchy sequence. Then we can choose an ε > 0 such that for
any integer l, there exist m(l) and n(l) with m(l) > n(l) ≥ l such that

D(ω2m(l), ω2n(l)) > ε. (5)

For each 2l, let 2m(l) be the smallest integer exceeding 2n(l) satisfying both (5) and the next inequality

D(ω2n(l), ω2m(l)−2) ≤ ε. (6)

Then for each 2l, we have

ε ≤ D(ω2n(l), ω2m(l))

≤ D(ω2n(l), ω2m(l)−2) + D(ω2m(l)−2, ω2m(l)−1) + D(ω2m(l)−1, ω2m(l)).

Using (6), we obtain

ε ≤ D(ω2n(l), ω2m(l)) ≤ ε + D(ω2m(l)−2, ω2m(l)−1) + D(ω2m(l)−1, ω2m(l)).

From part (ii) and by Sandwich lemma, we get

D(ω2n(l), ω2m(l))→ ε as l → ∞. (7)

Again from part (ii) and (7), the inequality

D(ω2m(l), ω2n(l)) ≤ D(ω2m(l), ω2m(l)+1) + D(ω2m(l)+1, ω2n(l))

as l → ∞, gives that
ε ≤ lim

l→∞
D(ω2m(l)+1, ω2n(l)).



Symmetry 2020, 12, 353 7 of 13

Now again we have the inequality

D(ω2m(l)+1, ω2n(l)) ≤ D(ω2m(l)+1, ω2m(l)) + D(ω2m(l), ω2n(l))

as l → ∞, we obtain
lim
l→∞

D(ω2m(l)+1, ω2n(l)) ≤ ε.

Hence liml→∞ D(ω2m(l)+1, ω2n(l)) = ε. In the same way, one can obtain

lim
l→∞

D(ω2m(l), ω2n(l)−1) = ε.

Therefore, we have

χ
(

D(ω2n(l), ω2m(l)+1)
)

= χ
(

D(Γη2n(l)−1, Λη2m(l))
)

≤ χ
(

D(Fη2m(l), Gη2n(l)−1)
)
− ϕ

(
D(Fη2m(l), Gη2n(l)−1)

)
= χ

(
D(ω2m(l), ω2n(l)−1)

)
− ϕ

(
D(ω2m(l), ω2n(l)−1)

)
.

Letting l → ∞, we get
χ(ε) ≤ χ(ε)− ϕ(ε),

which implies a contradiction, since ε > 0. Thus, {ω2n} is a Cauchy sequence in N and so {ωn}.

Lemma 2. Let M and N be two subsets of a metric space (X, D). Let F, G : M→ N be nonself mappings. Let
Λ and Γ be (ε, δ, χ, ϕ)− F, G-contractions such that the pairs {Λ, F} and {Γ, G} are proximally compatible.
Assume (M, N) satisfies P-property and Λ(M0) ⊂ N0. If there exists z ∈ M0 such that Λz = Fz and
Γz = Gz, then Λ, Γ, F and G have unique common best proximity points.

Proof. By the definition of (ε, δ, χ, ϕ)− F, G-contractions implies

χ
(

D(Λη, Γω)
)
≤ χ

(
D(Fη, Gω)

)
− ϕ

(
D(Fη, Gω)

)
if Fη 6= Gω

< χ
(

D(Fη, Gω)
)
.

Suppose z ∈ M0 such that Λz = Fz and Γz = Gz. Thus if Fz 6= Gz, then

χ
(

D(Λz, Γz)
)
≤ χ

(
D(Fz, Gz)

)
− ϕ

(
D(Fz, Gz)

)
< χ

(
D(Fz, Gz)

)
,

which is contradiction. Then Λz = Γz = Fz = Gz.
Since Λ(M0) ⊂ N0, there exists η ∈ M0 such that D(η, Λz) = D(η, Γz) = D(η, Fz) =

D(η, Gz) = D(M, N).
As {Λ, F} and {Γ, G} proximally compatible, implies that Λη = Γη = Fη = Gη. Since Λ(M0) ⊂

N0, there exists ω ∈ M0 such that D(ω, Λη) = D(ω, Γη) = D(ω, Fη) = D(ω, Gη) = D(M, N).
Since the pair (M, N) has the P-property

χ
(

D(η, ω)
)

= χ
(

D(Λz, Γη)
)

≤ χ
(

D(Fz, Gη)
)
− ϕ

(
D(Fz, Gη)

)
= χ

(
D(η, ω)

)
− ϕ

(
D(η, ω)

)
,

ϕ
(

D(η, ω)
)
≤ 0.

These imply that η = ω. Therefore D(η, Λη) = D(η, Γη) = D(η, Fη) = D(η, Gη) = D(M, N).
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To prove the uniqueness, suppose that w is another common best proximity point of the mappings
Λ, Γ, F and G, so that, D(w, Λw) = D(w, Γw) = D(w, Fw) = D(w, Gw) = D(M, N). As the pair
(M, N) has the P-property

χ
(

D(η, w)
)

= χ
(

D(Λη, Γw)
)

≤ χ
(

D(Fη, Gw)
)
− ϕ

(
D(Fη, Gw)

)
= χ

(
D(η, w)

)
− ϕ

(
D(η, w)

)
,

ϕ
(

D(η, w)
)
≤ 0,

which imply η = w. This completes the proof.

Now we prove the existence of common best proximity point for four mappings.

Theorem 2. Let M and N be two subsets of a complete metric space (X, D). Let F and G be mappings from M
to N and let Λ and Γ be (ε, δ, χ, ϕ)− F, G- contractions such that the pairs (Λ, F) and (Γ, G) are proximally
compatible and assume Λ(M0) ⊆ G(M0) ⊆ N0, Γ(M0) ⊆ F(M0) ⊆ N0 with G(M0), F(M0) and N0 are
closed. Then Λ, Γ, F and G have unique common best proximity point.

Proof. Let η0 in M0. Since Λ(M0) ⊂ G(M0), there exists η1 in M0 such that Λ(η0) = G(η1). Similarly,
a point η2 ∈ M0 can be chosen such that Γ(η1) = F(η2). Continuing in this way, we obtain a sequence
{ωn} ⊂ N0 such that

ω2n = Λ(η2n) = G(η2n+1) and ω2n+1 = Γ(η2n+1) = F(η2n+2), n = 0, 1, 2, 3, .... (8)

By Lemma 1, {ωn} is a Cauchy sequence in N0. Since N0 is complete, there is a point z ∈ N0

such that limn→∞ ωn = z. Therefore limn→∞ Λη2n = limn→∞ Gη2n+1 = z and limn→∞ Γη2n+1 =

limn→∞ Fη2n+2 = z. Then

lim
n→∞

Λη2n = lim
n→∞

Gη2n+1 = lim
n→∞

Γη2n+1 = lim
n→∞

Fη2n+2 = z.

Since F(M0) is closed, z ∈ F(M0). Then there exists a point υ ∈ M0 such that Fυ = z. Then,

χ
(

D(Λυ, Γη2n+1)
)
≤ χ

(
D(Fυ, Gη2n+1)

)
− ϕ

(
D(Fυ, Gη2n+1)

)
.

As n→ ∞,

χ
(

D(Λυ, z)
)
≤ 0. (9)

Therefore Λυ = z = Fυ.
Since G(M0) is closed, z ∈ G(M0). Then there exists a point ν ∈ M0 such that Gν = z. Then,

χ
(

D(z, Γν)
)

= χ
(

D(Λυ, Γν)
)

≤ χ
(

D(Fυ, Gν)
)
− ϕ

(
D(Fυ, Gν)

)
≤ χ

(
D(Fυ, Gν)

)
= χ

(
D(z, z)

)
= 0.

Therefore Γν = z = Gν. Thus Λυ = Fυ = Γν = Gν ∈ N0.
Then there exists η ∈ M0 such that D(η, Λυ) = D(η, Γν) = D(η, Fυ) = D(η, Gν) = D(M, N).

Since the pair (Λ, F) and (Γ, G) are proximally compatible, Λη = Fη and Γη = Gη and the theorem
follows from Lemma 2.
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Through the following example we illustrate our result.

Example 2. Let X = R2, D(η, ω) =
√
(η1 −ω1)2 + (η2 −ω2)2 where η = (η1, η2), ω = (ω1, ω2) and

let M = {(0, ω) : ω ∈ [1, ∞)}, N = {(1, ω) : ω ∈ [1, ∞)}. Then clearly, M0 = M, N0 = N. The functions
Λ, Γ, F, G : M → N are defined by Λ(0, ω) = (1, ω2), Γ(0, ω) = (1, ω), F(0, ω) = (1, ω4+1

2 ), G(0, ω) =

(1, ω2+1
2 ). Here (M, N) satisfies P-property with D(M, N) = 1 and F(M0) = N0, G(M0) = N0. Now we

claim that Λ and F are proximally compatible. Indeed, let {(0, ηn)} ⊆ M0, we haveD((0, η2
n), (1, η2

n)) = 1

D((0, η4
n+1
2 )), (1, η4

n+1
2 )) = 1

whenever (0, η2
n)→ (0, t) as n→ ∞ and (0, η4

n+1
2 )→ (0, t) as n→ ∞, which implies that t = 1. Now

D
(

Λ
(

0,
η4

n + 1
2

)
, F(0, η2

n)
)
= D

((
1,
(η4

n + 1
2

)2)
,
(

1,
η8

n + 1
2

))
= (η4

n − 1)2/4.

As n→ ∞, since η2
n → 1, we get (η4

n − 1)2/4→ 0. This proves {Λ, F} is proximally compatible. Similarly,
one can easily verify that the pair {Γ, G} is also proximally compatible. Now suppose χ(t) = 2t, ϕ(t) = t, and if
ε ≤ χ

(
D(F(0, η), G(0, ω)

)
− ϕ

(
D(F(0, η), G(0, ω)

)
= D(F(0, η), G(0, ω)) = (η4 −ω2)/2 < δ(ε) then,

because of η, ω ≥ 1, we get η2 + ω ≥ 1 +
√

2ε + 1. In addition, also, since (η4 −ω2)/2 < δ(ε), we obtain
that χ

(
D(Λ(0, η), Γ(0, ω))

)
= (η2 − ω) < 4δ(ε)(1 +

√
2ε + 1)−1 = ε, if δ(ε) = ε(1 +

√
2ε + 1)/4.

Therefore by Theorem 2, there exists a common best proximity point (0, 1) ∈ M0.

We give another method to find best proximity point by changing the construction of sequence.
Let M and N be subsets of a metric space (X, D). Let Λ, Γ, F, and G be nonself mappings from

M to N such that Λ(M0) ⊂ G(M0) and Γ(M0) ⊂ F(M0). Fix η0 in M0, since Λ(M0) ⊂ G(M0),
there exists an element η1 in M0 such that Λη0 = Gη1. Similarly, a point η2 ∈ M0 can be chosen
such that Γη1 = Fη2. By continuing, we get a sequence {ηn} in M0 such that Λη2n = Gη2n+1 and
Γη2n+1 = Fη2n+2, for n = 0, 1, 2, 3, ...

Suppose Λ(M0) ⊂ N0 and Γ(M0) ⊂ N0, there exists {υn} in M0 such that

D
(
υ2n, Λη2n

)
= D(M, N) and D

(
υ2n+1, Γη2n+1

)
= D(M, N). (10)

Therefore

D
(
υ2n, Λη2n

)
= D

(
υ2n, Gη2n+1

)
= D

(
υ2n+1, Γη2n+1

)
= D

(
υ2n+1, Fη2n+2

)
= D(M, N).

Lemma 3. Let Λ and Γ be (ε, δ, χ, ϕ)− F, G-contractions and assume that the pair (M, N) has the P-property.
Then the sequence {υn} defined by (10) above is Cauchy in M0.

Proof. Let Dn = D(υn, υn+1), n = 0, 1, 2, .... Now, we prove Dn ≤ Dn−1 for n = 1, 2, 3, .... By the
P-property, we have

χ
(

D(υ2n, υ2n+1)
)

= χ
(

D(Λη2n, Γη2n+1)
)

≤ χ
(

D(Fη2n, Gη2n+1)
)
− ϕ

(
D(Fη2n, Gη2n+1)

)
≤ χ

(
D(Fη2n, Gη2n+1)

)
= χ

(
D(υ2n−1, υ2n)

)
,

χ(D2n) ≤ χ(D2n−1).
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These imply that D2n ≤ D2n−1. Similarly,

χ
(

D(υ2n+1, υ2n+2)
)

= χ
(

D(Λη2n+2, Γη2n+1)
)

≤ χ
(

D(Fη2n+2, Gη2n+1)
)
− ϕ

(
D(Fη2n+2, Gη2n+1)

)
≤ χ

(
D(Fη2n+2, Gη2n+1)

)
= χ

(
D(υ2n+1, υ2n)

)
,

χ(D2n+1) ≤ χ(D2n).

These imply that D2n+1 ≤ D2n. Therefore, we have Dn ≤ Dn−1.
Therefore, the sequence {D(υn, υn+1)} is bounded and non-increasing. Then there exists r ≥ 0
such that

lim
n→∞

D(υn, υn+1) = r. (11)

Suppose that limn→∞ D(υn, υn+1) = r > 0. Let us assume n is odd, that is, n = 2m− 1. Again by the
P-property and using Λ and Γ are (ε, δ, χ, ϕ)− F, G-contractions, we obtain

χ
(

D(υn, υn+1)
)

= χ
(

D(υ2m−1, υ2m)
)

= χ
(

D(Γη2m−1, Λη2m)
)

≤ χ
(

D(Fη2m, Gη2m−1)
)
− ϕ

(
D(Fη2m, Gη2m−1)

)
≤ χ

(
D(Fη2m, Gη2m−1)

)
= χ

(
D(υ2m−1, υ2m−2)

)
= χ

(
D(υn, υn+1)

)
.

Now using (11) and continuity of χ in the above inequality, we can obtain

lim
m→∞

ϕ
(

D(Fη2m, Gη2m−1)
)
= lim

m→∞
ϕ
(

D(υ2m−1, υ2m−2)
)
= lim

n→∞
ϕ
(

D(υn, υn+1)
)
= 0. (12)

However, as 0 < r ≤ D(υn, υn+1) and ϕ is nondecreasing function,

0 < ϕ(r) ≤ ϕ
(

D(υn, υn+1)
)
,

so limn→∞ ϕ
(

D(υn, υn+1)
)
≥ ϕ(r) > 0 which contradicts to (12). Similarly one can easily varify that

for the case of n is even. Hence,
lim

n→∞
D(υn, υn+1) = 0. (13)

Suppose that {υ2n} is not a Cauchy sequence. Then there exists ε > 0 and for any even integer 2l
for which we can find subsequences {υ2m(l)} and {υ2n(l)} of {υ2n} such that 2n(l) is smallest index
for which

2n(l) > 2m(l) ≥ 2l, D(υ2m(l), υ2n(l)) ≥ ε.

This means that
D(υ2m(l), υ2n(l)−1) < ε. (14)

Then, we obtain

ε ≤ D(υ2m(l), υ2n(l))

≤ D(υ2m(l), υ2n(l)−1) + D(υ2n(l)−1, υ2n(l))

< ε + D(υ2n(l)−1, υ2n(l)).
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Letting l → ∞ and using (13) we conclude that

lim
l→∞

D(υ2m(l), υ2n(l)) = ε. (15)

Again from (13) and (15), the inequality

D(υ2m(l), υ2n(l)) ≤ D(υ2m(l), υ2m(l)−1) + D(υ2m(l)−1, υ2n(l)),

as l → ∞, gives that
ε ≤ lim

l→∞
D(υ2m(l)−1, υ2n(l)). (16)

Now again we have the inequality

D(υ2m(l)−1, υ2n(l)) ≤ D(υ2m(l)−1, υ2m(l)) + D(υ2m(l), υ2n(l)),

as l → ∞, we obtain
lim
l→∞

D(υ2m(l)−1, υ2n(l)) ≤ ε. (17)

Then from (16) and (17), we have

lim
l→∞

D(υ2m(l)−1, υ2n(l)) = ε. (18)

Now we prove liml→∞ D(υ2n(l)−1, υ2m(l)−2) = ε. By (13) and (18), we have

D(υ2n(l)−1, υ2m(l)−2) ≤ D(υ2n(l)−1, υ2n(l)) + D(υ2n(l), υ2m(l)−1) + D(υ2m(l)−1, υ2m(l)−2),

as l → ∞, gives that
lim
l→∞

D(υ2n(l)−1, υ2m(l)−2) ≤ ε.

By triangle inequality

D(υ2n(l), υ2m(l)) ≤ D(υ2n(l), υ2n(l)−1) + D(υ2n(l)−1, υ2m(l)−2) + D(υ2m(l)−2, υ2m(l)−1)

+D(υ2m(l)−1, υ2m(l)).

Now using (13), (15) and taking limit on both side of the above inequality, we get

ε ≤ lim
l→∞

D(υ2n(l)−1, υ2m(l)−2).

Therefore

lim
l→∞

D(υ2n(l)−1, υ2m(l)−2) = ε. (19)

Using (18) and (19), we have

χ
(

D(υ2m(l)−1, υ2n(l))
)

= χ
(

D(Λη2n(l), Γη2m(l)−1)
)

≤ χ
(

D(Fη2n(l), Gη2m(l)−1)
)
− ϕ

(
D(Fη2n(l), Gη2m(l)−1)

)
= χ

(
D(υ2n(l)−1, υ2m(l)−2)

)
− ϕ

(
D(υ2n(l)−1, υ2m(l)−2)

)
.

Letting l → ∞, we get
χ(ε) ≤ χ(ε)− ϕ(ε),

which implies a contradiction, since ε > 0. Thus, {υ2n} is a Cauchy sequence in M0 and so {υn}.
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Theorem 3. Let M and N be two subsets of a complete metric space (X, D). Assume the pair (M, N) satisfies
P-property. Let F and G be mappings from M to N and let Λ and Γ be (ε, δ, χ, ϕ)− F, G- contractions such
that the pairs (Λ, F) and (Γ, G) are proximally compatible and assume Λ(M0) ⊂ G(M0), Γ(M0) ⊂ F(M0)

and Λ(M0) ⊂ N0, Γ(M0) ⊂ N0 with M0 is closed. If Λ, Γ, F and G are continuous on M then Λ, Γ, F and G
have unique common best proximity point.

Proof. By Lemma 3, the sequence {υn} is Cauchy and since M0 is closed, there exists υ ∈ M0 such
that {υn} converges to υ.

Since the pair {Λ, F} is proximally compatible, by Definition 7, D(Λυ2n+1, Fυ2n)→ 0. However,
since Λ and F are continuous, D(Λυ2n+1, Fυ2n)→ D(Λυ, Fυ). Therefore, Λυ = Fυ.
Similarly, the pair {Γ, G} is proximally compatible, by Definition 7, D(Γυ2n, Gυ2n+1) → 0. Also, the
continuity of Γ and G implies that D(Γυ2n, Gυ2n+1) → D(Γυ, Gυ). Therefore, Γυ = Gυ. Further the
theorem follows from Lemma 2.

5. Conclusions

The fixed point theorems help to provide sufficient conditions to ensure the existence of solution
for many nonlinear problems. On the other word, the fixed point theorems give the solution of
equations of the form Tx = x, where T is self mapping. Suppose the mapping T is non-self, there is
no guarantee for solution. In this situation, the best proximity point theorems provide approximate
solution to the nonlinear problems. In the literature, there are many articles deal the existence of best
proximity point for various kind of non-self mappings. The more general version of best proximity
point theorems which involve more than one non-self mappings known as common best proximity
point theorems. There are many research works that provide the existence of common best proximity
points. In the sequel, we want to find existence of common best proximity point for a large class of
non-self mappings. Therefore, in this paper, we give a new idea of proximally compatible mappings
with an interesting example and using this class of mappings, we extend some results of Jungck.
Furthermore, we introduce the concept (ε, δ, χ, ϕ) contractions, this class of mappings contains the
class of (ε, δ) contractions in [1]. In addition, using this class, we provide common best proximity
point theorems for proximally compatible mappings. Finally, we provide an example to support our
main result.
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