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SUMOylation—protein modification by the small ubiquitin-related modifier
(SUMO)—affects several cellular processes by modulating the activity, stability,
interactions or subcellular localization of a variety of substrates. SUMO modi-
fication is involved in most cellular processes required for the maintenance
of metabolic homeostasis. Cholesterol is one of the main lipids required to
preserve the correct cellular function, contributing to the composition of the
plasma membrane and participating in transmembrane receptor signalling.
Besides these functions, cholesterol is required for the synthesis of steroid
hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to
be tightly regulated: in excess, it is toxic to the cell, and the disruption of its
homeostasis is associated with various disorders like atherosclerosis and cardi-
ovascular diseases. This review focuses on the role of SUMO in the regulation of
proteins involved in the metabolism of cholesterol.

1. Introduction

Cholesterol plays essential roles in the cellular organization and takes part in a
variety of intracellular mechanisms. The disruption of cholesterol homeostasis
associated with several diseases reveals its importance in human health.
For example, defects in cholesterol biosynthesis cause the Smith-Lemli-Opitz
syndrome, and low cholesterol levels are associated with the risk of neuropsychia-
tric disorders [1]. By contrast, excessive cholesterol in the body is associated
with cardiovascular diseases, and several studies show that increased serum
cholesterol levels are correlated with the risk of developing cancer and with
cancer progression (reviewed by [2]). Ubiquitylation leading to protein degra-
dation has been linked to mammalian cholesterol homeostasis [3]. However,
there is limited information regarding other post-translational modifications by
members of the ubiquitin-like family of proteins (UbLs). Here, we focused on
the role that modifications by the small ubiquitin-related modifier (SUMO) exert
in proteins involved in cholesterol biosynthesis, uptake, transport and secretion,
that is in the regulation of cholesterol homeostasis.

1.1. SUMO family members

SUMO covalently attaches to target proteins in a process termed SUMOylation.
SUMO proteins are present in all eukaryotes and are highly conserved across
species. Only one SUMO gene has been identified in the yeast Saccharomyces
cerevisiae, the nematode Caenorhabditis elegans and the insect Drosophila melanoga-
ster, whereas four SUMO paralogues are found in mammals and at least eight in
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Figure 1. The SUMOylation cycle. SUMO precursor is the first processed for activation by SENPs (1). Mature SUMO forms a thioester bond with the heterodimer
AOS1/UBA2-activating enzyme in an ATP-dependent manner (2: activation). E1-SUMO then passes SUMO to UBC9, which also forms a thioester bond (3: conju-
gation). E2-SUMO can directly modify substrates, but the action of E3s enhances conjugation rates by binding either E2-SUMO or substrates (4: ligation). SUMO and
the substrate can be recycled by the action of an SENP (5: deSUMOylation). S: SUMO; ~: thioester bond.

plants (revised by [4]). The human genome contains four
SUMO genes (SUMO1-4). SUMO2 and SUMO3 share 97%
identity in their amino acid sequence and are referred to as
the SUMO2/3 subfamily. SUMO1 shares only 47% sequence
identity with SUMO2/3. Finally, SUMO4 shares 87% identity
with SUMO2, but it has only been detected in few tissues [5].
Several evidences indicate important differences between
these SUMO paralogues: SUMO1 and SUMO?2/3 differ in
their cellular distribution and usually conjugate to different
substrates. In addition, the rate of conjugation/deconjugation
is higher for SUMO2/3 than for SUMOI1 [6]. There are also
differences in their ability to form polySUMO chains. While
SUMO2/3 can be itself SUMOylated in the N-terminal part
forming chains, SUMOL1 is considered as a stopper of SUMO
chain formation, because it lacks the lysine targeted for
SUMO conjugation [7]. Unlike vertebrate SUMO?2 /3, Drosophila
SUMO does not form polySUMO chains [8]. By contrast,
C. elegans SMOL1 is involved in both mono-SUMOylation and
SUMO chain formation [9].

1.2. The SUMOQylation pathway

Similarly to the modifications by other members of the UbL
family, SUMOylation results in the formation of an isopeptide
bond between a carboxyl group of SUMO and a lysine residue
in the target proteins [5,10-12]. The SUMOylation pathway
consists of several steps, each carried out by one or more
specific enzymes: SUMO processing, activation, conjugation
and ligation. As SUMOylation is a reversible process, deSU-
MOylation relies on particular proteases, resulting in a very
dynamic process (figure 1).

SUMO proteins are synthesized as immature polypeptide
precursors that need to be processed for activation. Maturation
happens through proteolysis of the C-terminal end, revealing a
di-glycine motif essential for its further conjugation to target
proteins. The proteases involved in such maturation are the
ubiquitin-like protein-specific proteases (Ulps) in yeast and
invertebrates (Ulpl and Ulp2in S. cerevisiae and D. melanogaster;
ULP-1, -2, -4 and -5 in C. elegans), and sentrin-specific proteases
(SENPs) in mammals (SENP1-3 and SENP5-7) [13]. Both Ulps

and SENPs are also involved in the deconjugation of SUMO
from substrates.

Processed SUMO is activated by the formation of a thioe-
ster bond with the activating E1 enzyme. The E1 enzyme is
a heterodimer composed of SUMO-activating enzyme
subunit 1 (SAE1, or Aosl) and SUMO-activating enzyme sub-
unit 2 (SAE2, or Uba2) [14,15]. This heterodimer activates the
C-terminus part of SUMO in a two-step reaction. First,
the SAE1 subunit adenylates SUMO using ATP. In a second
step, the adenylated SUMO is attacked by the catalytic cysteine
of the E1, forming the E1I-SUMO thioester bond. E1 then trans-
fers the SUMO load to the conjugating E2 enzyme by
transthioesterification (figure 1).

There is a single SUMO E2-conjugating enzyme, UBC9,
which is highly conserved in eukaryotes. E2s receive the
activated SUMO in the ubiquitin-conjugating catalytic (UBC)
fold, where the catalytic cysteine is located, to form an
E2-SUMO thioester bond interaction. Once conjugated, E2s
can transfer SUMO to a lysine residue in the target protein,
either directly or by a handful of E3 ligases (figure 1). Although
the SUMO-E2 can often bind directly to substrates and transfer
them the SUMO moiety, E3 protein ligases increase the rate
of conjugation through two mechanisms: either binding
E2-SUMO thioester and catalysing the transthioesterification
between E2 and the substrate, or directly binding the substrate
and recruit E2-SUMO to facilitate SUMO conjugation to the
substrate [12].

SUMO conjugation is a very dynamic, reversible and
tightly controlled process. As previously mentioned, Ulp and
SENP proteases fulfil a dual role by processing and deconju-
gating SUMO from substrates [13]. Their activity relies on
the conserved C-terminus catalytic domain that induces a
conformational change between SUMO and the substrate to
facilitate the hydrolysis of the covalent bond [16-19].

In addition to the covalent attachment of SUMO to
lysine residues in target proteins, the SUMO-interacting
motifs (SIMs) mediate non-covalent interactions with SUMO
or SUMO-conjugated proteins (reviewed in [20]). The func-
tional consequences of SUMO binding to SIM-containing
proteins include the recruitment of proteins to subcellular

localizations, the formation of promyelocytic leukaemia
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protein (PML) nuclear bodies or the recruitment of repressors
complexes to the chromatin [21,22].

SUMOylation affects the function of proteins involved in
many different metabolic pathways including those implica-
ted in cholesterol homeostasis. In many instances, this is
achieved through the regulation of transcription factors and
chromatin regulators.

The conjugation of SUMO to transcription factors correla-
tes usually with repressed transcription, but there are also
examples of proteins whose activity is enhanced by this modi-
fication [23]. For example, the SUMO acceptor sites in several
transcription factors, such as the glucocorticoid receptor, the
mineralocorticoid receptor and SERBP-1, map to known inhibi-
tory motifs [24]. SUMOylation can modify the transcriptional
output by changing different aspects necessary for the activity.
For instance, SUMO modification can change the subnuclear
localization or the nuclear import/export of certain factors
[25]. SUMO can also alter the DNA-binding capacity of other
factors, as shown, for example, with SUMO1 modification of
the heat shock transcription factor 2 (HSF2) [26]. SUMOylation
interferes as well with other post-translational modifications
such as acetylation, phosphorylation and ubiquitination [27].
The competition between acetylation and SUMOylation
usually represents a switch between active and inactive
forms of the transcription factor [28]. SUMOylation can also
influence the phosphorylation even if the modifications occur
on different amino acid residues such as in the transcrip-
tion factor STAT5 [29]. Similarly, by inhibiting ubiquitination,
SUMO can control the stability of the transcription factors
[30]. A link between SUMO and ubiquitin pathways in the con-
trol of genome stability involves the SUMO-targeted ubiquitin
ligases (STUbLs) which bind via SIM motifs to SUMOylated
proteins and target them for ubiquitylation [31].

In addition to regulate the specific action of transcription
factors, SUMOylation has an important role in chromatin remo-
delling by modifying histones and other chromatin-associated
proteins [32,33]. All core histones can be SUMOylated. In the
case of H4, SUMOylation increases its interaction with histone
deacetylase HDAC1 and the heterochromatin protein 1 HP1y,
which is in agreement with a role for SUMO in transcriptional
repression [34]. More recently, SUMO has been shown to
be necessary for deposition of the H3K9me3 molecular
hallmark of heterochromatin associated with gene silencing
[35,36]. Furthermore, SUMO is required for piRNA-guided
deposition of repressive chromatin marks necessary for tran-
scriptional silencing [37]. Therefore, SUMO is crucial in gene
expression regulation at multiple levels by modifying the prop-
erties of specific transcription factors and by regulating the
chromatin structure.

Cholesterol is an essential component of the cell, which is
involved in the permeability and fluidity of the cell membrane
and in the modulation of transmembrane signalling pathways.
It is also the precursor of all steroid hormones, vitamin D,
oxysterols and bile acids, which regulate diverse metabolic
pathways [38]. Although it plays these vital roles, high levels

of intracellular cholesterol are toxic to the cells and its accumu- n

lation can lead to cardiovascular diseases. Therefore, the
balance between cholesterol synthesis, absorption and excretion
needs to be tightly regulated. Under low cellular cholesterol
concentrations, the cell upregulates cholesterol intake and
increases cholesterol synthesis. Under high cholesterol con-
centrations, oxysterols regulate cholesterol homeostasis by
binding to the nuclear receptor liver X receptor (LXR) and
increasing the removal of cholesterol as bile acids.

In vertebrates, the cholesterol sources are de novo synthesis
and the dietary uptake. By contrast, arthropods and nema-
todes, which are unable to synthesized de novo sterols, must
obtain cholesterol directly from the diet [39]. In mammals,
the main cells involved in the synthesis of cholesterol are
hepatocytes and enterocytes. Cholesterol is synthetized de
novo from acetyl-CoA in the endoplasmic reticulum (ER) and
the rate-limiting enzyme is the hydroxymethylglutaryl-
CoA reductase (HMG-CoAR), which catalyses the synthesis
of mevalonate. The cholesterol absorbed by enterocytes,
a process regulated by the Niemann-Pick-C1-like-1 (NPC1L1)
protein, is esterified with a fatty acid in the membrane of the
ER [40,41]. The cholesteryl ester is further processed in the
Golgi to form chylomicrons that are secreted to the circulation.
Free cholesterol returns to the intestinal lumen via the transpor-
ters ATP-Binding Cassette Subfamily G Members 5 and 8
(ABCGS5 and 8).

Cholesterol biosynthesis and absorption are both regulated
by a sensor mechanism of cholesterol levels in the ER, which
acts through the transcription factor family sterol regulatory
element-binding proteins (SREBPs) [42]. SREBPs are translated
as inactive precursors and retained in the ER membrane via
association with SCAP (SREBP cleavage-activating protein).
This protein contains a sterol-sensing domain: in the presence
of sterol, SCAP-SREBP interacts with INSIG1 (insulin-induced
protein 1) to prevent SREBP modification [43,44]. Under low
cholesterol conditions, SCAP-SREBP dissociates from INSIG1
and moves to the Golgi where it is proteolytically cleaved
releasing a mature nuclear protein. Once translocated to the
nucleus, nSREBPs activate the transcription of genes involved
in cholesterol synthesis and uptake.

The transport of cholesterol and other lipids through the
body requires lipoproteins, which consist of a hydrophobic
core containing cholesteryl ester and triacylglycerol, and a
hydrophilic coat formed by phospholipids, free cholesterol
and apolipoproteins. The major cholesterol-carrying lipopro-
teins in the blood are the low-density lipoprotein (LDL) and
the high-density lipoprotein (HDL). The LDL particles trans-
port cholesterol to cells that required lipids, while the HDL
transfers excess of cholesterol from peripheral tissues to the
liver. To prevent the toxic effect of cholesterol accumulation,
several members of the family of nuclear receptors control
the storage, transport and catabolism of sterols. For example,
LXR prevents cholesterol accumulation in the enterocytes.
In mammals, the synthesis and excretion of bile acids comprise
the major cholesterol catabolism pathway, and the liver recep-
tor homologue 1 (LRH-1/NR5A2), LXR and Farnesoid X
receptor (FXR/NR1H4) are important regulators of these
pathways (reviewed by [45]). The levels of bile acids are
tightly regulated through the transcriptional regulation of the
cytochrome P450 7A1 (CYP7ALl), a rate-limiting enzyme in
the pathway of bile acid biosynthesis [46]. As examples,
LXRa upregulates CYP7A1 mRNA and eliminates the excess
of cholesterol via bile acid synthesis and excretion [47], whereas



FXR acts as a receptor for bile acids and inhibits bile acid
synthesis by repressing CYP7A1 transcription [48].

2. SUMOylation in de novo cholesterol
synthesis, uptake and storage

In the next sections, we provide information about the roles of
SUMO modification in the maintenance of whole cell and body
cholesterol balance. Specifically, we first discuss the role of
SUMO in cholesterol synthesis and uptake, and SUMOylation
of the SREBP as a master regulator of these processes.

2.1. SUMOylation in the mevalonate pathway

The cholesterol biosynthetic pathway, also referred to as the
mevalonate pathway, plays a critical role in cholesterol homeo-
stasis. This pathway promotes, through a series of enzymatic
steps, the conversion of acetyl-CoA first into mevalonate and,
eventually, into farnesyl diphosphate, the main precursor of
sterol isoprenoids such as cholesterol, steroid hormones and
bile acids, as well as of non-sterol isoprenoids. Despite the fun-
damental metabolic role of this pathway; little is known about
the post-translational mechanisms regulating the activity of the
enzymes involved.

The first committed step of the mevalonate pathway is
catalysed by the enzyme HMG-CoA synthase (HMGS-1). The
mevalonate pathway in C. elegans, although it lacks the choles-
terol synthesis branch, is very well conserved. In C. elegans,
HMGS-1 function is negatively regulated and inactivated by
SUMO. Sapir et al. [49] found HMGS-1 to be SUMOylated
in vivo and showed that knocking-down smol by RNAi
abolishes almost completely its SUMOylation.

In C. elegans, SUMOylation is physiologically balanced by
the deSUMOylation activity of the protease ULP-4. Interest-
ingly, ULP-4 appears to be regulated in an age-dependent
manner. As the worm ages, ULP-4 undergoes cytoplasm-to-
mitochondrial sequestration. The reduced cytoplasmic levels
of ULP4 fail to balance the SUMOylation activity of smol,
resulting in increased SUMOylation and inactivation of
HMGS-1. This substantially impairs the pathway, producing
serious metabolic defects in the ageing worm. These defects
can be partially rescued by supplying mevalonate with the
diet, suggesting that this age-related metabolic effect depends
mostly—if not only—on HMGS-1 activity. The SUMOylation
of the human HMGCS] in vitro and the conservation of the
mevalonate pathway suggest that this mechanism may play
similar roles in humans. However, the physiological relevance
of SUMO in regulating the mevalonate pathway in other
organisms outside nematodes requires further studies.

2.2. SUMO function in sterol uptake for steroidogenesis

Cholesterol is the most abundant sterol in insects even though,
as mentioned, insects are not able to synthesize cholesterol
de novo. Despite this difference when compared with ver-
tebrates, D. melanogaster has been an excellent model for
studying the molecular mechanisms that regulate cholesterol
homeostasis. As an example, the vertebrate LXRs and related
Drosophila DHR96 play similar regulatory roles in the control
of cholesterol metabolism [50,51].

The Drosophila SUMO homologue, Smt3, is required
for cholesterol uptake in steroidogenic tissues during post-

embryonic development [52,53]. The sterol intake in these
tissues is particularly important because cholesterol is the pre-
cursor for the steroid hormones, ecdysone and its derivative
20-hydroxyecdysone. These hormones control several aspects
of the physiology including larval molting and metamorphosis.
This function of SUMO in steroidogenic tissues is partially
dependent on the nuclear receptor Fushi tarazu transcription
factor 1, Ftz-f1. SUMO is required for the expression of Ftz-f1,
which is also modified by SUMO in vitro and in vivo, leading
to a reduced transcriptional activity. The SUMOylation of Ftz-
f1 affects the expression of the scavenger receptor Snmp1 [54],
which is required for cellular cholesterol uptake in the steroido-
genic tissues and subsequent for steroid synthesis [52]. The
mammalian Ftz-f1 subfamily of nuclear receptors, LRH-1 and
steroidogenic factor 1 (SF1/NR5A1), are as well modified by
SUMO [55-57] and play a central role in the control of choles-
terol homeostasis (see §4). In addition, SUMO and ubiquitin
regulate in mammals the function of other nuclear receptors
in steroidogenesis [58].

2.3. SUMOylation of SREBP-2 inhibits its transcriptional
activity

SREBP are transcription factors of the basic helix-loop-helix
leucine zipper (bHLH-Zip) family, which comprises three
isoforms in mammals: SREBP-la, SREBP-1c and SREBP-2.
SREBP-2 is the main isoform controlling the expression of
genes involved in cholesterol metabolism; it regulates the
expression of genes in the cholesterol biosynthetic pathway
and genes encoding proteins required for cholesterol uptake
[59,60]. When the cellular sterol concentrations decrease,
SREBPs translocate to the nucleus and upregulate the expression
of these genes. In invertebrates such as C. elegans and Drosophila,
there is only one SREBE, which resembles the vertebrate SREBP-
1c and controls fatty acid biosynthesis [61,62]. In these organ-
isms, the Drosophila dSREBP and the C. elegans SBP-1 do not
seem to be involved in cholesterol homeostasis; their activities
are regulated by phospholipids, but not by sterols [63,64].

SREBP regulation in the nucleus is driven by post-
translational modifications such as phosphorylation and
SUMOylation. SREBP-2, which interacts with the E2
SUMO-conjugating enzyme UBCY, is modified by SUMOI1
at a single site (Lys464) [65]. This modification represses its
transcriptional activity, while phosphorylation of SREBP-2
at 5455, in close proximity to the SUMOylation site, increases
its transcriptional activity [66-68]. Mutational analysis
showed that phosphorylation and SUMOylation act as
mutually exclusive competitive antagonistic signals (figure 2).
SREBP SUMOylation inhibits transcription indirectly through
the recruitment of a co-repressor complex that includes his-
tone deacetylase 3 (HDAC3). Although no direct interaction
was observed between SUMOylated SREBP-2 and HDACS,
the presence of HDAC3 is necessary for the inhibition of
the transcriptional activity [68].

3. Cholesterol-mediated LXR SUMOylation
requlates inflammation

High levels of cholesterol induce the transcriptional activity
of the nuclear receptor LXRs, which form obligate hetero-
dimers with retinoid X receptors (RXRs). Oxysterols, which
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Figure 2. SUMOylation of SREBP2 reduces its transcriptional activity. SUMOylation of SREBP2 recruits HDAC3-containing complex and reduces its transcriptional
activity. SREBP2 phosphorylation by MAPKs inhibits SUMOylation and activates the transcriptional activity of genes that contain sterol-response elements (SREs).
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Figure 3. Intracellular sterols mediate SUMOylation of LXR. (a) LRX/RXR heterodimers bind to LXR response elements (LXREs) in promoters and repress the tran-
scription of target genes by the recruitment of co-repressors such as NCoR1. Upon ligand binding, co-repressors are cleared and exchanged for co-activators leading
to transcription. (b) Oxysterol-activated LXRs are conjugated to SUMO. SUMOylated LXR monomers bind to repressive complexes bound to promoters of pro-inflam-

matory target genes.

are oxygenated derivatives of cholesterol and intermediate
precursors in the cholesterol biosynthesis pathway (such as
desmosterol), constitute the LXRs endogenous ligands [69].
Oxysterols can also block the activation of SREBP-2. In the
absence of activating ligand, the LXR-RXR heterodimer is
bound to the response element on the DNA. In this basal
state, the heterodimer complex recruits co-repressors such as
nuclear co-repressor 1 (NCoR1) and a silencing mediator of reti-
noic acid and thyroid hormone receptor (SMRT) that maintains
the chromatin in a repressive transcriptional state. The binding
of a ligand induces conformational changes leading to the
release of co-repressors and the recruitment of co-activators

(figure 3a). The LXR family consists of two isoforms: LXRa
(encoded by NR1H3), expressed in liver, intestine, kidney and
macrophages, and LXRB (encoded by NR1H2), ubiquitou-
sly expressed [70]. These cholesterol-sensing transcription
factors regulate genes involved in sterol uptake and transport
in enterocytes [71,72]. In addition to preventing cholesterol
accumulation in enterocytes, LXRs control the expression
of genes involved in sterol secretion and catabolism in
macrophages and liver (see §4).

LXR activation is modulated by deacetylation, phos-
phorylation [73] and SUMOylation [74]. Interestingly,
oxysterols promote the SUMOylation of LXR and subsequent
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transcriptional repression of pro-inflammatory genes [75,76]
(figure 3b). In macrophages and hepatocytes, ligand-activated
SUMOylation of LXR stabilizes co-repressors on NF-xB and
downregulates the expression of target genes. In astrocytes,
SUMOylation of LXRo and LXRp prevents gene expression by
blocking the binding of STAT1 to promoters. In LXRa, SUMO2
conjugation is mediated by the E3 ligase activity of HDAC4,
whereas in LXRB SUMO1 conjugation is mediated by the protein
inhibitor of activated STAT1 (PIAS1) (figure 3b) [75]. Similar to
LXR, ligand-induced SUMOylation of FXR, LRH-1 and peroxi-
some proliferator-activated receptor gamma (PPARy) are as
well involved in the repression of pro-inflammatory genes
[74,76,77]. In invertebrates, SUMOylation restrains the systemic
inflammation in Drosophila [78]. However, cholesterol-mediated
SUMOylation in the control of inflammation has not been
described. In addition, recent studies show the LXR-dependent
repression of inflammatory genes despite the mutation of LXR
SUMOylation sites [79,80]. These studies show that the mechan-
isms by which LXR protects from atherosclerosis are not totally
understood. Thus, the relevance of LXR SUMOylation on sterol
and inflammation requires further investigation.

4. SUMOylation in cholesterol transport and
catabolism

The liver plays an important role in cholesterol metabolism
by several pathways that include not only de novo cholesterol
synthesis and dietary cholesterol uptake, but also reverse
cholesterol transport (RCT), bile acid synthesis and biliary
cholesterol excretion. Members of the nuclear receptor family
such as LXR, LRH-1 and PPAR are involved in these pathways.
In the following sections, we review what is published in the
literature on the role of SUMO in these processes.

4.1. SUMOylation of LRH-1 in the RCT pathway

By RCT, the excess of cholesterol is removed from peripheral tis-
sues, enters the circulation and is delivered to the liver for
conversion into bile acids and excretion. RCT is essential to main-
tain cellular cholesterol homeostasis and is an important factor in
atherosclerosis development. Cellular cholesterol efflux from
macrophages is mediated through the action of ABCA1 and
ABCGI1 transporters. The main lipoprotein involved in the
RCT is the high-density lipoprotein cholesterol (HDL-c). The
HDL-c delivery to the liver can follow two routes: a direct one
through binding to hepatic receptor scavenger receptor class B
type 1 (SR-B1) or/and an indirect route via apoB-containing
lipoproteins, VLDL (very low-density lipoprotein) or LDL. In
addition to the selective uptake of cholesterol, SR-B1 function
in the liver includes also biliary cholesterol secretion. Another
pathway for the excretion of cholesterol is the trans-intestinal
cholesterol efflux (TICE) via the small intestine.

Studies in mice have shown the biological impact of LRH-1
SUMOylation on RCT (figure 4). The nuclear receptor
LRH-1 affects the expression of genes involved in cholesterol
flux and RCT such as Scavenger Receptor Class B Member 1
(Scarb1), Abcgs and Abcg8 [81,82]. LRH-1 is modified by
SUMO on several lysine residues, and the major effect of this
modification is the repression of its transcriptional capacity
[83,84]. SUMOylated LRH-1 recruits the co-repressor prospero
homeobox protein 1 (PROX1) and therefore inhibits the
LRH-1-dependent transcription of genes involved in RCT

sterol excretion

Figure 4. SUMOylation of LRH-1 inhibits RCT. SUMOylation of LRH-1 pro-
motes interaction with the transcriptional repressor PROX1 and inhibits the
LRH-1-dependent transcription of genes involved in hepatic RCT such as
Scarb1, Abgc5 and Abcg8. S: SUMO.

[85]. Accordingly, loss of LRH-1 SUMOylation by mutation
on K289 leads to an increase in RCT. This study shows the
in vivo function of LRH-1 SUMOylation in cholesterol homeo-
stasis and atherosclerosis. Other studies support the notion that
the mechanistic feature of LRH-1 SUMOylation is the pro-
motion of protein—protein interactions. For example,
SUMOylation of the human LRH-1 K224, the lysine residue
corresponding to mouse LRH-1 K289, binds to a transcriptional
co-repressor complex consisting of NCOR1, HDAC3 and G
Protein Pathway Suppressor 2 (GPS2) in hepatoma cells [76].
The SUMO modification of LRH-1 is highly conserved in
other organisms such as C. elegans and D. melanogaster, for
which its function in sterol uptake in steroidogenic tissues
has been described in §2 [52,86]. LXRs are also well-known reg-
ulators of RCT by inducing the expression of ABCA1, ABCG1
and ABCG5/G8 in macrophages and liver; however, the role of
LXR SUMOylation in RCT is unknown.

4.2. FXR and SHP SUMOylation in cholesterol
catabolism

Bile acid synthesis is an important route for cholesterol catabo-
lism in the liver. Under conditions of low dietary cholesterol,
the conversion of cholesterol into bile acids is reduced. The
rate-limiting step in the classical bile acid biosynthetic route
is the enzyme cholesterol 7a-hydroxylase (CYP7A1l). The
nuclear receptor FXR heterodimerizes with RXR and acts as
an intracellular bile acid sensor that controls bile acid synthesis
and transport [87]. FXR suppress the bile acid synthesis path-
way through a feedback regulation involving LRH-1 and the
orphan nuclear receptor Small Heterodimer Partner (SHF,
NROB2) (figure 5a) [88]. In the absence of bile acids, LRH-1,
in concert with LXRa, stimulates the expression of the
enzyme CYP7A1. In response to bile acids, FXR induces the
expression of SHF, which in turn inhibits LRH-1, preventing
the activation of bile acid synthesis. FXR is modified by
SUMOIT in HepG2 cells on the conserved residues K122 and
K275 in the activation function-1 (AF-1) and ligand-binding
domains, respectively, which attenuates its capacity to function
as a transcriptional activator [89]. SUMOI1 decreased the
ligand-dependent binding and/or the recruitment of FXR/
RXRa to the SHP promoter [89]. Moreover, bile acid homeo-
stasis is also maintained through SHP SUMOylation. When
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Figure 5. FXR and SHP SUMOylation in cholesterol catabolism. (a) Crosstalk between LXR and FXR—SHP—LRH-1 regulatory cascades in hepatic cholesterol catabolism.
In the absence of bile acids, LRH-1 with LXR stimulates bile acid synthesis. The ligand SUMOylation of FXR attenuates its capacity to function as a transcriptional
activator. (b) In response to elevated hepatic bile acids, SHP is modified by SUMO02-mediated by RanBP2. The modification facilitates nuclear transport and
interaction with repressive histone-modifying enzymes, LSD1 and HDAC1, to inhibit bile acid synthetic genes.

the hepatic bile acid levels are elevated, the E3 ligase Ran-
binding protein 2 (RanBP2/Nup358) mediates the SUMO2
modification of SHP. The SUMOylation of SHP facilitates its
nuclear transport and increases its interaction with repressive
histone-modifying enzymes LSD1 and HDAC1, which results
in repression of bile acid synthesis and import transport
(figure 5b) [90].

Recent studies in mice showed that FXR and its targets
cholesterol exporter ABCG5/GS8 stimulated the flux of choles-
terol through the non-biliary TICE pathway in the intestinal
lumen [91]. PPARS activation also increased faecal neutral
sterol excretion in mice, in part mediated by TICE [92]. How-
ever, the TICE route is less studied compared to RCT, and it is
unknown whether SUMOylation of FXR, PPARs or other
nuclear receptors modifies their recruitment to the promoters
of genes involved in this pathway.

5. Concluding remarks

Research during the last decades has proved the critical role of
SUMOylation in regulating almost all aspects of metabolism.
Cholesterol is a very important cellular molecule that is
involved in diseases such as atherosclerosis. SUMOylation
modifies factors involved in cholesterol homeostasis that
include SREBPs and members of the nuclear receptor super-
family such as LXR, FXR, LRH-1 and PPAR. These receptors,
due to their function on cholesterol and bile acid homeostasis,
are potential therapeutic targets. Indeed, the contribution of

SUMOylation in enhancing cholesterol efflux could lead to
the development of treatments to control cardiovascular and
other diseases. However, more studies are required to avoid
the undesired hepatic lipogenesis. Another area with potential
therapeutic applications could be the inhibition of inflam-
mation by activating specific SUMO-dependent nuclear
receptor transrepression pathways.

SUMO modification of nuclear receptors could also regulate
their crosstalk. Therefore, it will be interesting to explore the
implication of SUMO in heterodimer formation or the induced
expression of other receptors in the context of cholesterol metab-
olism and associated diseases. As examples, RXR and PPAR,
which are also negatively regulated by SUMO, form heterodi-
mers with LXRs and FXRs in cholesterol metabolism [93]. The
activation of the PPAR family in macrophages induces LXR
gene expression and LXRo-dependent cholesterol efflux
through ABCA1 [94]. Nevertheless, how SUMOylation specifi-
cally regulates the nuclear receptors and other transcription
factors in cholesterol homeostasis, alone or in combination
with other post-translational modifications, needs further
investigation. In addition, to get insights on the E3 ligases and
proteases involved in the SUMOylation of crucial factors in
cholesterol metabolism regulation could open new venues for
therapeutic intervention.
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