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Abstract: In this paper, an extension of Darbo’s fixed point theorem via θ-F-contractions in a Banach
space has been presented. Measure of noncompactness approach is the main tool in the presentation
of our proofs. As an application, we study the existence of solutions for a system of integral equations.
Finally, we present a concrete example to support the effectiveness of our results.
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1. Introduction and Preliminaries

Integral equations are equations in which an unknown function emerges under an integral
sign. Integral equations are handled naturally in applied sciences, such as physics and engineering.
Furthermore, especially integral equations have been connected with many applications in actuarial
science (ruin theory), inverse problems, Marchenko equation (inverse scattering transform), radiative
transfers and Viscoelasticity. (see, for example [1].)

One of the strong tools in solving integral equations is fixed point theory. Fixed point theory is
one of highly active fields for research in nonlinear analysis. Some new and interesting results in this
direction can be found in [2,3].

The existence of solutions for nonlinear integral equations have been perused in many papers
via applying the measures of noncompactness approach which was initiated by Kuratowski [4].
The Kuratowski measure of noncompactness has absorbed many researchers studying the fields of
functional equations, ordinary and partial differential equations and many other branches. In fact,
since measures of noncompactness are functions which are suitable for measuring the degree of
noncompactness of a given set, they are very useful instrumentations in functional analysis such as the
metric fixed point theory and the operator equation theory in Banach spaces (see [5,6]). Recently, in [7]
the concepts of α-ψ and β-ψ condensing operators have been defined and using them some new fixed
point results via the technique of measure of noncompactness have been presented.

For more details on the theory of measure of noncompactness, its applications and its relations
with nonlinear analysis we refer the reader to [8–13].

In this paper, first we collect some indispensable concepts and results that will be applied
throughout this text. Then, we obtain some new fixed point theorems utilizing the measure of

Mathematics 2020, 8, 492; doi:10.3390/math8040492 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9320-9433
https://orcid.org/0000-0002-3820-3351
http://dx.doi.org/10.3390/math8040492
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/4/492?type=check_update&version=2


Mathematics 2020, 8, 492 2 of 11

noncompactness. In the second section, we apply our results to obtain coupled fixed points. Finally, in
order to demonstrate the applicability of our results, we investigate the existence of solutions for a
system of integral equations.

Throughout this paper, let E be a real Banach space with norm ||.|| and Λ be a nonempty subset of
E. We mark by Λ and Convc(Λ) the closure and the closed convex hull of Λ, respectively. In addition,
let M(E) denotes the family of all nonempty and bounded subsets of E and let N(E) be the collection
of all relatively compact subsets of E. Let R denotes the set of all real numbers and R+ = [0,+∞).
Moreover, let B(ι, r) be the closed ball with center ι and radius r. Furthermore, let Br indicates the ball
B(0, r).

The following Definition of a measure of noncompactness is adapted from [14].

Definition 1. We say that a mapping m : M(E) −→ R+ is a measure of noncompactness in the Banach space
E if:

1◦ The family kerm = {Λ ∈M(E) : m(Λ) = 0} is nonempty and kerm ⊂ N(E);
2◦ Λ ⊂ Σ =⇒ m(Λ) ≤ m(Σ);
3◦ m(Λ) = m(Λ);
4◦ m(ConvΛ) = m(Λ);
5◦ m(λΛ + (1− λ)Σ) ≤ λm(Λ) + (1− λ)m(Σ) for all λ ∈ [0, 1];
6◦ If {Λn} is a sequence of closed sets from M(E) such that Λn+1 ⊂ Λn for n = 1, 2, · · · , and if

lim
n→∞

m(Λn) = 0, then Λ∞ = ∩∞
n=1Λn 6= ∅.

In 2012, Wardowski [15] presented a significant generalization of the Banach contraction principle.
He introduced a new class of control functions F which provide a large number of contractions.

Let Γ indicates the set of all functions W : (0, ∞)→ R such that:
(W1) W is strictly increasing, i.e., for all ρ, $ ∈ (0, ∞) such that ρ < $, one has W(ρ) < W($),
(W2) lim

n→∞
ρn = 0 if and only if lim

n→∞
W(ρn) = −∞, for all sequence {ρn} of positive values,

(W3) lim
ρ→0+

ρυW(ρ) = 0, for some υ ∈ (0, 1).

Let ∆ be the following subfamily of Γ consists of all functionsW : R+ → R so that

(W1) W is a continuous and strictly increasing mapping;
(W2) lim

n→∞
tn = 0 iff lim

n→∞
W(tn) = −∞, for each sequence {tn} ⊆ R+.

Example 1. IfW1(t) = ln(t), orW2(t) = 1− 1
tp , where p > 0, orW3(t) = 1− 1

et−1 , orW4(t) = 1
e−t−et ,

thenWi ∈ ∆, i = 1, 2, 3, 4.

Consider U (t) = − 1
t + t for t > 0. Note that lim

ρ→0+
ρυU (ρ) = −∞ (0 < υ < 1), that is, U ∈ ∆, but

it is not a Wardowski mapping.

As in [16], let Θ indicates the family of all functions θ : R→ R such that:

(θ1) lim
n→∞

θn(t) = −∞ for all t > 0;
(θ2) θ(t) < t for all t ≥ 0;
(θ3) θ is an increasing continuous mapping.

Example 2. Take θ1(t) = t− τ (τ > 0), θ2(t) = t3 − 1 (t ≤ 1) and θ2(t) =
3
√

t− 1 (t ≥ 1). Then θi ∈ Θ
for i = 1, 2.

Now we remind two significant theorems playing a main designation in the fixed point theory.
These theorems is extracted from [17] and [18] respectively.
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Theorem 1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Then each continuous
and compact mapping W : Ω→ Ω possesses at least one fixed point in the set Ω.

The above formulated theorem organizes the well known Schauder fixed point principle.
The Darbo fixed point theorem (the generalization of Schauder fixed point principle), is regulated

as below.

Theorem 2. Let Ω be a nonempty, bounded, closed and convexsubset of a Banach space E and let Υ : Ω→ Ω
be a continuous mapping. Assume that there exists a constant η ∈ [0, 1) such that m(ΥΛ) ≤ ηm(Λ) for any
nonempty subset Λ of Ω, where m is a MNC defined in E. Then Υ admits at least a fixed point in Ω.

2. Main Results

The Darbo contraction principle [18] is an applicable instrumentation for solving problems in
nonlinear analysis. In this section, we want to extend it using the concept of θ-W-contractions.

For simplicity, a nonempty, bounded, closed and convex subset Ω of a Banach space E is indicated
by NBCC, shortly.

Theorem 3. Let Ω be an NBCC subset of a Banach space E and let Υ : Ω → Ω be a continuous operator
such that

W
(
m(ΥΛ)

)
≤ θ

(
W(m(Λ)

))
, (1)

for all Λ ⊆ Ω, whereW ∈ ∆, θ ∈ Θ and m is an arbitrary MNC. Then Υ has at least one fixed point in Ω.

Proof. Define a sequence {Ωn} such that Ω0 = Ω and Ωn+1 = Conv(Υ(Ωn)) for all n ∈ N.
Let there exists an N ∈ N such that m(ΩN) = 0. So, ΩN is relatively compact and Theorem 1

yields that Υ possesses a fixed point. So, we can suppose that m(Ωn) > 0 for each n ∈ N.
It is clear that {Ωn}n∈N is a sequence of NBCC sets such that

Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωn ⊇ Ωn+1.

On the other hand,

W(m(Ωn+1)) =W(m(ΥΩn)) (2)

≤ θ(W(m(Ωn)))

≤ θ2(W(m(Ωn−1)))

≤ θn+1(W(m(Ω0))).

Tending n → ∞ in (3) and applying (θ1), we have lim
n→∞

W
(
m(Ωn+1)

)
= −∞. According to the fact

thatW ∈ ∆, we obtain that
lim

n→∞
m(Ωn+1) = 0.

According to principle (6◦) of Definition 1 we evolve that the set Ω∞ =
∞⋂

n=1

Ωn is a nonempty,

closed and convex set and it is stable under the operator Υ and belongs to Kerm. Then in view of the
Schauder theorem, Υ has a fixed point.

Taking θ(t) = t− τ, for all t ∈ R, we conclude that:
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Corollary 1. Let Ω be an NBCC subset of a Banach space E and let Υ : Ω → Ω be a continuous operator
such that

τ +W
(
m(ΥΛ)

)
≤ W

(
m(Λ)

)
, (3)

for all Λ ⊆ Ω, whereW ∈ ∆, τ is an arbitrary positive amount and m is an arbitrary MNC. Then Υ admits at
least one fixed point in Ω.

Remark 1. We can get the Darbo’s fixed point theorem in the above corollary if we takeW(t) = ln t, for all
t > 0.

3. Coupled Fixed Point

The notion of coupled fixed point has been introduced by Bhaskar and Lakshmikantham [19].

Definition 2. We say that (ι, κ) ∈ E2 is a coupled fixed point of a mapping Υ : E× E→ E if Υ(ι, κ) = ι and
Υ(κ, ι) = κ.

The following Theorem which is adapted from [13] helps to construct new measures from arbitrary
measures.

Theorem 4. Suppose thatm1,m2, . . . ,mn are measures of noncompactness in Banach spaces E1,E2, . . . ,En,
respectively, the function f : [0, ∞)n −→ [0, ∞) is a convex function and f (ι1, · · · , ιn) = 0 if and only if
ιi = 0 for all i = 1, 2, · · · , n. Then

m̃(Λ) = f (m1(Λ1),m2(Λ2), . . . ,mn(Λn)),

is a measure of noncompactness in E1 × E2 × . . .× En, where Λi denotes the natural projection of Λ into Ei,
for all i = 1, 2, . . . , n.

From now on, we assume thatW is a sub-additive mapping unless otherwise stated. For instance,
any concave function f : [0, ∞)→ [0, ∞) with the reservation that f (0) ≥ 0, is a sub-additive function.

Theorem 5. Let Ω be an NBCC subset of a Banach space E and let Υ : Ω×Ω→ Ω be a continuous function
such that

W
(
m(Υ(Λ1 ×Λ2))

)
≤ 1

2
[
θ
(
W
(
m(Λ1) +m(Λ2)

))]
(4)

for all subsets Λ1, Λ2 of Ω, where m is an arbitrary MNC and θ andW are as in Theorem 3. Then Υ embraces
at least a coupled fixed point.

Proof. Consider Υ̃ : Ω2 → Ω2 by

Υ̃(ι, κ) = (Υ(ι, κ), Υ(κ, ι)).

Clearly, Υ̃ is continuous. We show that Υ̃ satisfies all the conditions of Theorem 3. Let Λ ⊂ Ω2 be a
nonempty subset. We know that m̃(Λ) = m(Λ1) +m(Λ2) is a (MNC) [14] , where Λ1 and Λ2 denote
the natural projections of Λ into E. From (4) we have
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W
(
m̃(Υ̃(Λ))

)
≤ W

(
m̃(Υ(Λ1 ×Λ2)× Υ(Λ2 ×Λ1))

)
=W

(
m(Υ(Λ1 ×Λ2)) +m(Υ(Λ2 ×Λ1))

)
≤ W

(
m(Υ(Λ1 ×Λ2))

)
+W

(
m(Υ(Λ2 ×Λ1))

)
≤ 1

2
[
θ
(
W
(
m(Λ1) +m(Λ2)

))]
+

1
2
[
θ
(
W
(
m(Λ2) +m(Λ1)

))]
≤ θ

(
W
(
m(Λ1) +m(Λ2)

))
= θ(W

(
m̃(Λ))).

Now, from Theorem 3 we deduce that Υ̃ has at least a fixed point which implies that Υ has at least a
coupled fixed point.

Taking θ(t) = t− 2τ (τ > 0) in Theorem 5 we have:

Corollary 2. Let Ω be an NBCC subset of a Banach space E and Υ : Ω×Ω → Ω be a continuous function
such that

τ +W [m(Υ(Λ1 ×Λ2))] ≤
1
2
W [m(Λ1) +m(Λ2)] (5)

for any subsets Λ1, Λ2 of Ω, where m is an arbitrary (MNC), andW is as in Theorem 3. Then Υ has at least a
coupled fixed point.

The subadditivity assumption ofW has been omitted in the following theorem.

Theorem 6. Let Ω be an NBCC subset of a Banach space E and let Υ : Ω×Ω→ Ω be a continuous function
such that

W
(
m(Υ(Λ1 ×Λ2))

)
≤ θ

(
W
(

max{m(Λ1),m(Λ2)}
))

(6)

for all subsets Λ1, Λ2 of Ω, where m is an arbitrary MNC and θ andW are as in Theorem 3. Then Υ possesses
at least a coupled fixed point.

Proof. Take Υ̃ : Ω2 → Ω2 by
Υ̃(ι, κ) = (Υ(ι, κ), Υ(κ, ι)).

It is clear that Υ̃ is continuous. We show that Υ̃ satisfies all the conditions of Theorem 3. We know that
m̃(Λ) = max{m(Λ1),m(Λ2)} is a (MNC) [14], where Λ1 and Λ2 denote the natural projections of Λ
into E. Let Λ ⊂ Ω2 be a nonempty subset. From (6) we have

W
(
m̃(Υ̃(Λ))

)
≤ W(m̃(Υ(Λ1 ×Λ2)× Υ(Λ2 ×Λ1)))

=W
(

max{m(Υ(Λ1 ×Λ2)),m(Υ(Λ2 ×Λ1))}
)

= max{W
(
m(Υ(Λ1 ×Λ2))

)
,W
(
m(Υ(Λ2 ×Λ1))

)
}

≤ max
{

θ
(
W
(

max{m(Λ1),m(Λ2)}
))

, θ
(
W
(

max{m(Λ2),m(Λ1)}
))}

= θ
(
W
(

max{m(Λ1),m(Λ2)}
))

= θ
(
W
(
m̃(Λ)

))
.

Now, in view of Theorem 3 we deduce that Υ̃ possesses at least a fixed point, that is, Υ has at least a
coupled fixed point.
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Corollary 3. Let Ω be an NBCC subset of a Banach space E and let Υ : Ω×Ω→ Ω be a continuous function
such that

τ +W
(
m(Υ(Λ1 ×Λ2))

)
≤ W

(
max{m(Λ1),m(Λ2)}

)
(7)

for all subsets Λ1, Λ2 of Ω, where m is an arbitrary (MNC), τ > 0 andW is as in Theorem 3. Then Υ has at
least a coupled fixed point.

4. Application

This section of the article is dedicated to discussing the existence of solutions for the following
system of equations:

µ1(ι) = f
(

ι, µ1(ρ(ι)), µ2(ρ(ι)),
∫ $(ι)

0
g (ι, κ, µ1(ρ(κ)), µ2(ρ(κ))) dκ

)

µ2(ι) = f
(

ι, µ2(ρ(ι)), µ1(ρ(ι)),
∫ $(ι)

0
g (ι, κ, µ2(ρ(κ)), µ1(ρ(κ))) dκ

) (8)

where ι ∈ [0, T].
Let C[0, T] be the space of all real functions which are bounded and continuous on the interval

[0, T] with the usual norm
‖ι‖ = sup{|ι(t)| : t ∈ [0, T]}.

The modulus of continuity of a function ι ∈ C[0, T] is as

ω(ιε) = sup{|ι(t)− ι(s)| : t, s ∈ [0, T], |t− s| ≤ ε}.

Uniform continuity of ι on [0, T] yields that ω(ιε)→ 0 as ε→ 0.
Now, let ω(Λ, ε) = sup{ω(ιε) : ι ∈ Λ}. The Hausdorff measure of noncompactness for all

bounded sets Λ of C[0, T] is as follows:

ω(Λ) = lim
ε→0

{
sup
ι∈Λ

ω(ιε)
}

.

(See more detail in [13].)

Theorem 7. Suppose that:

(i) ρ, $ : [0, T] −→ [0, T] are continuous functions,
(ii) The function f : [0, T]×R3 −→ R is continuous and there exists a functionW ∈ ∆ so that

W
(∣∣∣ f (ι, µ1, µ2, κ

)
− f

(
ιν1, ν2, z

)∣∣∣) ≤ θ
(
W
(

max
{∣∣∣µ1 − ν1

∣∣∣, ∣∣∣µ2 − ν2

∣∣∣}+
∣∣∣κ − z

∣∣∣)), (9)

(iii) g : [0, T]× [0, T]×R2 −→ R is continuous,
(iv) The inequality

W−1
(

θ
(
W
(
r + Gr

)))
+ M ≤ r

has a positive solution r0, where M = max{ f (ι, 0, 0, 0) : ι ∈ [0, T]}, and Gr =

sup
{∣∣∣ ∫ $(ι)

0
g(ι, κ, µ1, µ2)dκ

∣∣∣ : ι ∈ [0, T], ||µ1||, ||µ2|| ≤ r
}

.

Then the system of integral Equations (8) possesses at least one solution in the space (C[0, T])2.
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Proof. Let Υ : C[0, T]× C[0, T] −→ C[0, T] be defined by

Υ(µ1, µ2)(ι) = f
(
ι, µ1(ρ(ι)), µ2(ρ(ι)),

∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ). (10)

According to given assumptions, we conclude that the function Υ(µ1, µ2) is continuous for arbitrarily
µ1, µ2 ∈ C[0, T]. Furthermore, from our assumptions, we obtain that

|Υ(µ1, µ2)(ι)| =
∣∣∣ f (ι, µ1(ρ(ι)), µ2(ρ(ι)),

∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

∣∣∣
≤
∣∣∣ f (ι, µ1(ρ(ι)), µ2(ρ(ι)),

∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)− f (ι, 0, 0, 0)

∣∣∣
+
∣∣∣ f (ι, 0, 0, 0)

∣∣∣.
Furthermore, we have

W
(∣∣∣ f (ι, µ1(ρ(ι)), µ2(ρ(ι)),

∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)− f (ι, 0, 0, 0)

∣∣∣)
≤ θ

(
W
(

max{
∣∣∣µ1(ρ(ι))

∣∣∣, ∣∣∣µ2(ρ(ι))
∣∣∣}+ ∣∣∣ ∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ

∣∣∣))
≤ θ

(
W
(

max{‖µ1‖, ‖µ2‖}+
∣∣∣ ∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ

∣∣∣))
≤ θ

(
W
(

max{‖µ1‖, ‖µ2‖}+ Gmax{‖µ1‖,‖µ2‖}
))

.

Thus, ∣∣∣ f (ι, µ1(ρ(ι)), µ2(ρ(ι)),
∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)− f (ι, 0, 0, 0)

∣∣∣
≤W−1

(
θ
(
W
(

max{‖µ1‖, ‖µ2‖}+ Gmax{‖µ1‖,‖µ2‖}
)))

.

From the above calculations, we have

‖Υ(µ1, µ2)(ι)‖ ≤ W−1
(

θ
(
W
(

max{‖µ1‖, ‖µ2‖}+ Gmax{‖µ1‖,‖µ2‖}
)))

+ M. (11)

Along of inequality (11) and applying (iv), the function Υ maps (B̄r0)
2 into B̄r0 .

Now, we shall prove the continuity of function Υ on (B̄r0)
2. So, fix ε > 0 and take µ1, µ2, ν1, ν2 ∈ B̄r0

arbitrarily such that ‖µi − νi‖ ≤ ε for all i = 1, 2. Then, for all ι ∈ [0, T], we obtain that
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W
(∣∣∣Υ(µ1, µ2)(ι)− Υ(ν1, ν2)(ι)

∣∣∣)
≤ W

(∣∣∣ f (ι, µ1(ρ(ι)), µ2(ρ(ι)),
∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

− f
(
ιν1(ρ(ι)), ν2(ρ(ι)),

∫ $(ι)

0
g(ι, κ, ν1(ρ(κ)), ν2(ρ(κ)))dκ)

∣∣∣)
≤ θ

(
W
(

max
i=1,2
{|µi(ι)− νi(ι)|}+

∣∣∣ ∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ

−
∫ $(ι)

0
g(ι, κ, ν1(ρ(κ)), ν2(ρ(κ)))dκ)

∣∣∣))
≤ θ

(
W
(

max
i=1,2
{‖µi − νi‖}

+
∣∣∣ ∫ $(ι)

0
g(ι, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ − g(ι, κ, ν1(ρ(κ)), ν2(ρ(κ)))dκ

∣∣∣))
≤ θ

(
W
(

max
i=1,2
{‖µi − νi‖}+ TQε

r0

))
<W(max

i=1,2
{‖µi − νi‖}+ TQε

r0
),

where

Qε
r0
= sup{|g(ι, κ, µ1, µ2)− g(ι, κ, ν1, ν2)| : ι, κ ∈ [0, T], ||µi||, ||νi|| ≤ r0, ||µi − νi|| ≤ ε}.

The continuity of g on the compact set [0, T]2 × [−r0, r0]
2 yields that Qε

r0
−→ 0 as ε −→ 0. Thus,∣∣∣Υ(µ1, µ2)(ι)− Υ(ν1, ν2)(ι)

∣∣∣ ⇒ 0 as ε −→ 0. That is, Υ is a continuous function on (B̄r0)
2. Now, we

show that Υ satisfies all the conditions of Theorem 6. Let Λ1, Λ2 be nonempty and bounded subsets
of B̄r0 . Assume that ε > 0 is an arbitrary constant. Also, we take ι1, ι2 ∈ [0, T], with |ι2 − ι1| ≤ ε,
|ρ(ι2)− ρ(ι1)| ≤ ε and µj ∈ Λj for all j = 1, 2. Then we have∣∣∣Υ(µ1, µ2)(ι1)− Υ(µ1, µ2)(ι2)

∣∣∣ (12)

≤
∣∣∣ f (ι1, µ1(ρ(ι1)), µ2(ρ(ι1)),

∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

− f
(
ι2, µ1(ρ(ι2)), µ2(ρ(ι2)),

∫ $(ι2)

0
g(ι2, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

∣∣∣
≤
∣∣∣ f (ι1, µ1(ρ(ι1)), µ2(ρ(ι1)),

∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

− f
(
ι2, µ1(ρ(ι1)), µ2(ρ(ι1)),

∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

∣∣∣
+
∣∣∣ f (ι2, µ1(ρ(ι1)), µ2(ρ(ι1)),

∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

− f
(
ι2, µ1(ρ(ι2)), µ2(ρ(ι2)),

∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

∣∣∣
+
∣∣∣ f (ι2, µ1(ρ(ι2)), µ2(ρ(ι2)),

∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

− f
(
ι2, µ1(ρ(ι2)), µ2(ρ(ι2)),

∫ $(ι2)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

∣∣∣
+
∣∣∣ f (ι2, µ1(ρ(ι2)), µ2(ρ(ι2)),

∫ $(ι2)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

− f
(
ι2, µ1(ρ(ι2)), µ2(ρ(ι2)),

∫ $(ι2)

0
g(ι2, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ)

∣∣∣.
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Using condition (9) we have∣∣∣Υ(µ1, µ2)(ι)− Υ(ν1, ν2)(ι)
∣∣∣

≤ ωr0( f , ε) +W−1
(

θ
(
W
(

max{|µ1(ρ(ι1))− µ1(ρ(ι2))|, |µ2(ρ(ι1))− µ2(ρ(ι2))|}
)))

+W−1
(

θ
(
W
(∣∣∣ ∫ $(ι1)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ −

∫ $(ι2)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ

∣∣∣)))
+W−1

(
θ
(
W
(∣∣∣ ∫ $(ι2)

0
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ −

∫ $(ι2)

0
g(ι2, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ

∣∣∣)))
≤ ωr0( f , ε) +W−1

(
θ
(
W
(

max{ω(µ1, ε), ω(µ2, ε)}
)))

+W−1
(

θ
(
W
(∣∣∣ ∫ $(ι2)

$(ι1)
g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ

∣∣∣)))
+W−1

(
θ
(
W
( ∫ $(ι2)

0

∣∣g(ι1, κ, µ1(ρ(κ)), µ2(ρ(κ)))− g(ι2, κ, µ1(ρ(κ)), µ2(ρ(κ)))dκ
∣∣)))

≤ ωr0( f , ε) +W−1
(

θ
(
W
(

max{ω(µ1, ε), ω(µ2, ε)}
)))

+W−1
(

θ
(
W
(
ω($, ε)Ur0

)))
+W−1

(
θ
(
W
(
Tωr0(g, ε)

)))

(13)

where

ωr0( f , ε)

= sup{| f (ι1, u, v, z)− f (ι2, u, v, z)| : ι1, ι2 ∈ [0, T], |ι2 − ι1| ≤ ε, ||u||, ||v|| ≤ r0, |z| ≤ Gr0}, ωr0(g, ε)

= sup{|g(ι1, κ, u, v)− g(ι2, κ, u, v)| : ι1, ι2, κ ∈ [0, T], |ι2 − ι1| ≤ ε, ||u||, ||v|| ≤ r0},
Ur0 = sup{|g(ι, κ, u, v)| : ι, κ ∈ [0, T], u, v ∈ [−r0, r0]}.

Since in (13), µi was an arbitrary element of Λi for i = 1, 2, we obtain that

ω(Υ(Λ1 ×Λ2), ε) ≤ ωr0( f , ε) +W−1
(

θ
(
W
(

max{ω(Λ1, ε), ω(Λ2, ε)}
)))

+W−1
(

θ
(
W
(
ω($, ε)Ur0

)))
+W−1

(
θ
(
W
(
Tωr0(g, ε)

)))
.

The uniform continuity of f , $ and g on the compact sets [0, T]× [−r0, r0]
2 × [−Gr0 , Gr0 ], [0, T] and

[0, T]2× [−r0, r0]
2, respectively, yields that ωr0( f , ε) −→ 0, ω($, ε) −→ 0 and ωr0(g, ε) −→ 0 as ε −→ 0.

Therefore,

ω(Υ(Λ1 ×Λ2)) ≤ W−1
(

θ
(
W
(

max{ω(Λ1), ω(Λ2)}
)))

.

Thus, we obtain that

W(ω(Υ(Λ1 ×Λ2))) ≤ θ
(
W
(

max{ω(Λ1), ω(Λ2)}
))

(14)

Therefore, Theorem 6 concludes that the operator Υ admits a coupled fixed point. That is, the system
of functional integral Equation (8) has at least one solution in (C[0, T])2.
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5. Example

Example 3. Suppose that the following system of integral equations be given:

ι(t) = 1
2 e−t2

+ arctan ι(t)+sinh−1 κ(t)
8π+t8

+
1
8

∫ t

0

s(|sinι(s)|+
√
(1 + ι2(s))(1 + sin2κ(s)))

et(1 + ι2(s))(1 + sin2κ(s))
ds

κ(t) = 1
2 e−t2

+ arctan κ(t)+sinh−1 ι(t)
8π+t8

+
1
8

∫ t

0

s(|sinκ(s)|+
√
(1 + κ2(s))(1 + sin2ι(s)))

et(1 + κ2(s))(1 + sin2ι(s))
ds.

(15)

We observe that this system of integral Equation (15) is a special case of the system (8) with

ρ(t) = $(t) = t, t ∈ [0, 1],

f (t, ι, κ, p) =
1
2

e−t2
+

arctan ι + sinh−1 κ

8π + t8 +
p
8

,

and

g(t, s, ι, κ) =
s(|sinι|+

√
(1 + ι2)(1 + sin2κ))

et(1 + ι2)(1 + sin2κ)
.

We need to verify the conditions (i)–(iv) of Theorem 7 to show that the above system has a solution.

Condition (i) is clearly evident. We defineW(t) = ln t and θ(t) = t− ln 8. Now, we have

W
(∣∣∣ f (t, ι, κ, m)− f (t, u, v, n)

∣∣∣)
≤ ln(

| arctan ι− arctan u|+ | sinh−1 κ − sinh−1 v|
8π + t8 +

|m− n|
8

)

≤ ln(
arctan |ι− u|

8π
+
|κ − v|

8π
+
|m− n|

8
)

≤ ln
(

max{|ι− u|, |κ − v|}+ |m− n|
)
− ln 8

= θ
(
W
(

max{|ι− u|, |κ − v|}+ |m− n|
))

.

So, we observe that f satisfies condition (ii) of Theorem 7. Furthermore,

M = sup{| f (t, 0, 0, 0)| : t ∈ [0, 1]} = sup{1
2

e−t2
: t ∈ [0, 1]} ≤ 0.5

Obviously, condition (iii) of Theorem 7 is valid, that is, g is continuous on [0, T]× [0, T]×R2, and

Gr = sup

{∣∣∣ ∫ t

0

s(|sinι(s)|+
√
(1 + ι2(s))(1 + sin2κ(s)))

et(1 + ι2(s))(1 + sin2κ(s))
ds
∣∣∣ : t, s ∈ [0, 1], ι, κ ∈ [−r, r]

}

≤ sup
t2

et ≤ 1.

Furthermore, clearly every r ≥ 0.15 satisfies the inequality appears in condition (iv), i.e.,

W−1
(

θ
(
W
(

r + Gr

)))
+ M <W−1

(
θ
(
W
(

r + 1
)))

+ 0.5 =
r + 1

8
≤ r.
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Consequently, the conditions of Theorem 7 are fulfilled and so, the above system of integral equations admits at
least one solution in {C[0, T]}2.
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