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Abstract: This review article focused on the innovative procedure for electrophilic fluorination using
HF and in situ generation of the required electrophilic species derived from hypervalent iodine
compounds. The areas of synthetic application of this approach include fluorination of 1,3-dicarbonyl
compounds, aryl-alkyl ketones, styrene derivatives, α,β-unsaturated ketones and alcohols, homoallyl
amine and homoallyl alcohol derivatives, 3-butenoic acids and alkynes.

Keywords: electrophilic fluorination; hydrogen fluoride; hypervalent iodine; fluorination reagents;
bioactive compounds

1. Introduction

Over the last two decades, the chemistry of fluorine-containing compounds has emerged as one
of the exciting areas of multidisciplinary research. The most notable impact of fluorine can be seen in
materials [1–10], agriculture [11–13] and health-related industries [14–22]. To sustain the continuous
advancement and pace of the innovations enabled by fluorine, many research groups are focusing on
new methodological inventions allowing for more selective and economical syntheses of structurally
diverse fluoro-organic compounds [23–28]. For instance, the recent progress in asymmetric synthesis
of fluorine-containing tailor-made amino acids [29–48] was stimulated by growth in their applications
to drug design [49] magnetic resonance imaging [50,51], positron emission tomography [52,53],
and peptide/protein engineering [54–60]. Nevertheless, while some complex polyfunctional
fluorine-containing molecules possessing useful properties represent the ultimate target of synthetic
chemistry, more fundamental research still focuses on the formation of the C–F bond. In this regard,
electrophilic fluorination is one of the most pioneering and rapidly developing areas of study [61–67].
Conceptually, this approach requires a carbon-centered nucleophile and an electrophilic source of
fluorine. While the former is a well-established chemical unit, the “electrophilic fluorine” is still a rather
exotic and mechanistically controversial entity [68–71]. The major thrust of research activity in this
field was centered on the development of the corresponding reagents capable of releasing the required
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“electrophilic fluorine”. The most successful results have been achieved utilizing compounds with N–F
bonds. For example, as presented in Figure 1, 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane
bis(tetrafluoroborate) (1), introduced by Professor E. Banks [72], also known as Selectfluor, is one
of the best reagents used as a source of “electrophilic fluorine”. Other reagents, developed by
Professor N. Shibata [73–76], are N-fluoro-N-(methylsulfonyl)methanesulfonamide (Me-NFSI) (2),
3,5-di-tert-butyl-N-((3,5-di-tert-butyl-4-methoxyphenyl)sulfonyl)-N-fluoro-4-methoxybenzenesulfonamide
(NFBSI) (3) and axially chiral NFSIs (4), which can be used for enantioselective fluorination [77]. All these
reagents are shelf-stable, easy to handle and operationally convenient to use for various synthetic
applications [78–81]. However, the preparation of N-F reagents usually requires molecular fluorine [72,82],
rendering them rather expensive and not practical for large-scale syntheses.
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Figure 1. Some commercially available N–F electrophilic fluorination reagents. 

From the standpoint of practicality, the application of HF, as a source of fluorine, with the in situ 
formation of the electrophilic species, would offer an attractive alternative as a general methodology 
for “electrophilic” formation of a C–F bond. In this review article, we discuss the use of hypervalent 
iodine compounds, as electrophilic centers, and HF as a source of fluorine, creatively assembled in a 
one-pot sequence, allowing one to perform “electrophilic fluorination” of various types of organic 
compounds. The synthetic generality and practicality of these methods is critically discussed. 

2. Fluorination of 1,3-Dicarbonyl Compounds 

2.1. Iodosylbenzene-Mediated Fluorination 

In 2011, Professor T. Kitamura’s group has reported that mixing ethyl 3-oxo-3-phenylpropionate 
(5) with 1.2 equivalents of a hypervalent iodine compound and excess (10-fold) of 55% aqueous HF 
resulted in formation of the corresponding ethyl 2-fluoro-3-oxo-3-phenylpropionate (6) in up to 98% 
chemical yield (Scheme 1) [83]. 

Figure 1. Some commercially available N–F electrophilic fluorination reagents.

From the standpoint of practicality, the application of HF, as a source of fluorine, with the in situ
formation of the electrophilic species, would offer an attractive alternative as a general methodology
for “electrophilic” formation of a C–F bond. In this review article, we discuss the use of hypervalent
iodine compounds, as electrophilic centers, and HF as a source of fluorine, creatively assembled in a
one-pot sequence, allowing one to perform “electrophilic fluorination” of various types of organic
compounds. The synthetic generality and practicality of these methods is critically discussed.

2. Fluorination of 1,3-Dicarbonyl Compounds

2.1. Iodosylbenzene-Mediated Fluorination

In 2011, Professor T. Kitamura’s group has reported that mixing ethyl 3-oxo-3-phenylpropionate
(5) with 1.2 equivalents of a hypervalent iodine compound and excess (10-fold) of 55% aqueous HF
resulted in formation of the corresponding ethyl 2-fluoro-3-oxo-3-phenylpropionate (6) in up to 98%
chemical yield (Scheme 1) [83].
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in quantitative yield by the reaction of keto ester 5 with (diacetoxyiodo)benzene in the presence of 
KOH in MeCN [106]. 

Scheme 1. Fluorination of 3-oxo-3-phenylpropionate 5 using HF as a source of fluorine.

It was found that the nature of a hypervalent iodine compound played a key role in the reaction,
affording an excellent yield of 98% of product 6 with the application of iodosylbenzene (PhIO).
The outcome of this reaction, the substitution of acidic hydrogen in 5 by fluorine, is classified
as “electrophilic” fluorination and was previously reported using F2 [84], XeF2 [85–87] fluoroxy
compounds [88–94], N–F compounds [95–102] of type 1–4 (Figure 1) and (difluoroiodo)toluene [103,104];
all of them are typical electrophilic fluorination reagents.

The mechanistic rationale for the reaction is presented in Scheme 2. It postulates the in situ
formation of (difluoroiodo)benzene 7 from iodosylbenzene and two equivalents of hydrogen fluoride.
The reaction of 7 with the enol 8 gives rise to intermediate 9, followed by the nucleophilic substitution
of the iodine species to afford fluorinated compound 6 along with iodobenzene 10 as the final
reaction products.
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2-fluoro-3-oxo-3-phenylpropionate 6.

Some support for the proposed mechanistic pathway can be derived from the reactions of
iodonium ylides with HF and HCl [105]. As shown in Scheme 3, iodonium ylide 11 can be prepared in
quantitative yield by the reaction of keto ester 5 with (diacetoxyiodo)benzene in the presence of KOH
in MeCN [106].
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iodosylbenzene, its derivatives, such as p- and o-iodosyltoluene, can also be used successfully, and in 
some cases, even give better chemical yields as compared with unsubstituted iodosylbenzene 
[107,108]. For example, fluorination of amide derivatives of 3-keto-esters 15 (R’ = CONAlk2) with 
HF/PhIO affords the corresponding products 16 with relatively low (<50%) yield, while the 
application of o-iodosyltoluene allows for improved yields of the target products 16 (up to 93%). The 
source of the HF has also been examined in detail showing that other HF reagents such as complexes 
with triethylamine and pyridine can be successfully used in place of aqueous HF. Of particular 
importance is the wide synthetic generality of this approach. Thus, 3-keto esters 15 bearing an 
aromatic ring with electron-withdrawing or donating substituents can be successfully used as 
substrates. In the case of derivatives 15 featuring alkyl groups (R and/or R’ = Alk) the chemical yields 

Scheme 3. Synthesis of iodonium ylide 11 and its reactions with HF and HCl.

The reaction of iodonium ylide 11 with concentrated aqueous HCl, conducted in dichloromethane
at ambient temperature, gave chlorinated product 12 in 55% yield [105]. Similar yields of fluorination
product 6 were also obtained under the same conditions in the reactions of 11 with various HF reagents,
such as 55% aqueous HF and TEA·3HF [105]. The noticeably lower chemical yields of 6 obtained in the
reactions of iodonium ylide 11 with HF reagents (vs 98%), as compared with the reactions of 5 with
HF in the presence of PhIO (Schemes 1 and 2) can be explained by enolization of intermediate 13 to
vinyliodonium salt 14, further reactions of which give complex mixtures of products.

Meticulous investigations of HF/PhIO reactivity revealed that this new approach has a general
synthetic application for fluorination of various compounds bearing the acidic CH2 moiety, such as
3-keto-esters, 1,3-diketones and malonic acid derivatives, summarized in Scheme 4.
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Scheme 4. General synthetic applications of HF/PhIO for “electrophilic” fluorination of
1,3-dicarbonyl compounds.

Optimization of the reaction conditions and reagents revealed that besides the original
iodosylbenzene, its derivatives, such as p- and o-iodosyltoluene, can also be used successfully, and in
some cases, even give better chemical yields as compared with unsubstituted iodosylbenzene [107,108].
For example, fluorination of amide derivatives of 3-keto-esters 15 (R’ = CONAlk2) with HF/PhIO
affords the corresponding products 16 with relatively low (<50%) yield, while the application of
o-iodosyltoluene allows for improved yields of the target products 16 (up to 93%). The source of
the HF has also been examined in detail showing that other HF reagents such as complexes with
triethylamine and pyridine can be successfully used in place of aqueous HF. Of particular importance
is the wide synthetic generality of this approach. Thus, 3-keto esters 15 bearing an aromatic ring with
electron-withdrawing or donating substituents can be successfully used as substrates. In the case of
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derivatives 15 featuring alkyl groups (R and/or R’ = Alk) the chemical yields of the corresponding
fluorinated products 16 are a bit lower (~50–70%), likely due to possible enolization.

2.2. Catalytic Iodoarene-Mediated Fluorination

Considering the postulated reaction mechanism (Scheme 2) involving eventual transformation
(reduction) of iodosylbenzene to iodobenzene 10, the final reaction product, the authors posited that
providing in situ efficient oxidation of the latter to iodosylbenzene, would allow for a catalytic version
of this process. Indeed, a significant breakthrough was made with the application of m-CPBA as a
terminal oxidant [109]. As presented in Scheme 5, the Ar-I, used in catalytic amounts, undergoes a
three-step transformation: oxidation to Ar-IO, reaction with HF to produce Ar-IF2 and reaction with
the enolate form of 15 giving rise to the target product 16.
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The optimized conditions for this catalytic “electrophilic” fluorination method are presented in
Scheme 6 and included the following: as low as 20 mol% ArI, 55% aq. HF as a source of fluorine,
m-CPBA as the oxidizing reagent and 1,2-dichloroethane as a solvent. The reactions are conducted at
49 ◦C and can be easily scaled up. The overall synthetic generality of this catalytic process is rather
similar to the stoichiometric version.
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Scheme 6. “Electrophilic” fluorination using a catalytic amount of Ar-I.

The catalytic version can be used for fluorination of 3-keto-esters and 1,3-diketones bearing
substituted aromatic, aliphatic, ester as well as amide groups. It should be notated, however, that
the yields of target products 16 are a bit lower as compared with the results obtained in the reactions
using a stoichiometric amount of the corresponding iodoarene. Furthermore, in most of the cases,
application of o-Tol-I gave the best conversion of the starting 1,3-dicarbonyl compounds 15 and highest
yields of fluorinated products 16.

3. Fluorination of Aryl-Alkyl Ketones

Synthesis of fluorinated derivatives of monocarbonyl compounds, such as ketones and aldehydes,
are of high importance in fluoro-organic chemistry [110–121]. These types of fluorinated derivatives
are of proven synthetic value as building blocks for the preparation of a variety of polyfunctional
fluorine-containing compounds of biological interest [30,122–128]. In particular, these derivatives can
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be easily transformed to the corresponding fluorinated amines and amino acids via biomimetic
transamination [129–131]. General approaches for the preparation of α-fluoro-ketones include
the following: two-step sequence of halogenation followed by nucleophilic substitution using
fluoride [132–136] or a two-step process, involving the generation of the corresponding enolates,
followed by fluorination using typical electrophilic fluorination reagents [137–139].

It was found that the direct application of Kitamura’s approach, using PhIO/hydrofluoric acid, for
fluorination of acetophenone (Scheme 7) gives very low yields of the target product 17.
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However, careful examination of various reaction conditions and reagents allowed for the
discovery that the presence of water is detrimental for the fluorination process. The most likely reason
is a reduction of fluoride’s nucleophilicity by coordination with water molecules. Consequently, it was
found that the application of a triethylamine/5HF complex as a fluorine source provides for a smooth
fluorination process affordingα-fluoro-acetophenone 17 in a good yield [140]. Further research revealed
that this reaction can be generally applied for various aryl-alkyl ketones (Scheme 8). Among possible
sources of hypervalent iodine, p-iodosyltoluene (4-MeC6H4IO), p-chloloiodosylbenzene (4-ClC6H4IO),
and p-iodosyl(trifluoromethyl)benzene (4-CF3C6H4IO) gave generally good results. Optimized reaction
conditions included TEA/5HF in DCE (1,2-dichloroethane) at 60 ◦C for 24 h. Under these conditions,
chemical yields of aryl-fluoromethyl ketones 19 varied between 70–85%. Of particular interest is the
application of this reaction for α-fluorination of substrates derived from aryl-benzyl ketone 20, higher
alkyl derivatives such as 21 and 22, haloalkyl 23 and cyclic compounds 24.
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4. Fluorination of Styrene Derivatives

In sharp contrast to a trifluoromethyl group, the CHF2 group is still rather scarcely represented
among marketed pharmaceuticals [14–22]. Known biological properties of difluoromethyl-containing
compounds [141], clearly suggest that the application of this fluorinated motif might be as successful
as that already established for the trifluoromethylated compounds. The major reason for the current
significantly lesser application of a CHF2 group in drug design is, most definitely, a lack of synthetic
methods allowing for convenient installation of this functionality. Thus, most generally used methods
include reaction of organozinc reagents with potassium bromodifluoroacetate [142], fluorination of
gem-bistriflates and gem-dihalides [143–146], fluorodecarboxylation of dicarboxylic acids [147,148] and
chlorodifluoromethylation followed by the elimination of HCl and migration of the double bond [149].

4.1. Hypervalent Iodine-Mediated Fluorination

4.1.1. Stoichiometric Hypervalent Iodine Reagents

The synthesis of difluoromethyl-containing compounds via reaction of styrene derivatives with
fluorinated hypervalent iodine reagents or iodine in the presence XeF2 [150–156] is also a known
method. However, the necessity of preparing hypervalent iodine compounds or the use of XeF2 limits
its synthetic applications. With this in mind, Kitamura’s approach was examined for the fluorination
of styrene substrates [157]. As presented in Scheme 10, a series of hypervalent reagents were screened
and the trifluoroacetoxy derivatives were identified as the best.
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It should also be noted that a separate optimization study showed that a complex of HF with
pyridine was found to serve as a superior source of nucleophilic fluoride. Thus, under these optimized
conditions, the target fluorinated product 28 was prepared in greater than 60% yield [157].
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Application of these reaction conditions for fluorination of various substituted styrenes gave
rather good results. This approach was applied to substrates 29 (Scheme 11) bearing alkyl, halo
and OAc-type substituents in the o-, m- or p-position on the phenyl ring. The chemical yields of
difluorinated products 30 ranged from 50% to 93%.
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Some structural limitations of this method may arise from a mechanism involving the migration of
an aryl group. As presented in Scheme 12, in situ generated electrophilic hyper-iodide reagent 30, reacts
with starting styrene 29 to form three-ring intermediate 31 which is opened with fluoride to afford
mono-fluorinated compound 32. The latter proceeds to a second spirocyclic three-ring intermediate 33
with the elimination of Ar-I. The final step of the process is the nucleophilic opening of 33 with fluoride
to give the difluorinated product 30. One can assume that the stability of intermediate 33 will be
strongly influenced by the electronic properties of the substituents on the aromatic ring. Nevertheless,
as mentioned above, moderately electron-donating/withdrawing substituents, such as alkyl groups
and halogens, can be tolerated giving product 30 with synthetically attractive chemical yields.
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4.1.2. Catalytic Hypervalent Iodine Reactions

The catalytic version (Scheme 13) of this process was realized with application of 4-iodotoluene,
HF/Py complex and m-CPBA, as the oxidizing reagent [157].
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However, the outcome of the catalytic reactions was not entirely successful as difluoro products
30 were generally isolated in relatively low yields of about 50%. The highest yield (66%) in the
series was obtained for the electron-rich trimethyl derivative 34. In sharp contrast, mono-methyl
substituted compound 35 was prepared in only 31% yield. It is interesting to note that fluorination of
1,1-diphenylethene resulted in rearranged difluoro compound 36 isolated in 50% yield.

5. Fluorination of α,β-Unsaturated Ketones and Alcohols

One may assume that a chemically similar process can also be realized for fluorination of other
types of unsaturated compounds [158]. For example, as presented in Scheme 14, it was found that
α,β-unsaturated ketones of general structure 37 can be converted to ketones 38 featuring α-aryl and
difluoromethyl groups [159].
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Substrate generality in this reaction is rather broad as the substituent R in starting 37 can be a
methyl, long-chain alkyl, tert-butyl, aromatic or heteroaromatic group. Furthermore, the aromatic ring
on the carbonyl carbon can bear electron-withdrawing or -donating groups, including NO2, halogens,
Alk-O and Ac-NH. The aromatic group on the unsaturated C=C fragment is migrating during the
reaction to the α-position, relatively to the carbonyl, and therefore is a bit more sensitive to the nature
of substitution. Nevertheless, alkyl and halogen groups on the para position of the Ar moiety seem to
be perfectly tolerated [159].

A catalytic version of this process was successfully realized using m-CPBA for the in situ oxidation
of p-Tol-I to p-Tol-I=O. Optimized conditions included p-Tol-I (0.2 mol%), HF/Py (40 mol%) and
(1.3 mol%). Substrate generality under the catalytic conditions was not compromised, however,
the chemical yields were about 5–10% lower when compared with those obtained for the reactions
conducted with stoichiometric amounts of the p-Tol-I=O [159].

Of particular interest are the results reported for the fluorination of cinnamyl alcohol
derivatives [160]. As presented in Scheme 15, starting compounds 39 were treated with Ph-I=O
and HF/Py in dichloromethane to furnish fluorinated products 40.
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It should be noted that this type of fluorination required low reaction temperature due to
the sensitive nature of the cinnamyl alcohol functionality. Similar to the previously discussed
fluorination of compounds with conjugated C=C bonds, the reactions occurred with migration of the
Ar group. Substrate generality study of these reactions was limited to two types of products, featuring
difluoromethyl 41 and difluoroethyl groups 42.

6. Cyclization–Fluorination Cascade

6.1. Homoallyl Amine Derivatives

Compounds containing the 3-fluoropyrrolidine moiety possessing a wide spectrum of biological
properties. Some of them have been developed as dipeptidyl peptidase inhibitors [160–163],
glucokinase activators [164] prolyl oligopeptidase inhibitors [165] and purine nucleoside phosphorylase
inhibitors [166]. The most commonly used synthetic approach for preparation of 3-fluoropyrrolidines
is based on fluorine substitution for hydroxy group in 3-hydroxylpyrrolidines [167–171]. Another
approach, based on aminofluorination of alkenes [172–176], is more practical allowing both ring
construction and introduction of a fluorine atom in one convenient synthetic sequence. It was found
that the aminofluorination version of this approach can be successfully realized using the Kitamura
fluorination protocol. As presented in Scheme 16, treatment of homoallyl amines 43 with a hypervalent
iodine reagent and HF/Py afforded 3-fluoropyrrolidines 44 with respectable yields ranging from 50%
to 87% [177].
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Optimization of the reaction conditions in terms of hypervalent iodine reagent and source of HF
found that a combination of HF/Py and PhI(OCOCF3)2 or PhI(OAc)2 was superior to other compounds
such as PhI(OAc)2 and aqueous 55% HF and PhI(OH)OTs and HF/TEA complex [177]. As for the
starting homoallyl amines, protection of the amino group with strong electron-withdrawing groups
such as Ts, Ms or Ns, was found to be essential for the successful transformation. From the standpoint
of generality, the process was shown to be applicable for a reasonably wide range of compounds with
the substituent R bearing hydrogen or alkyl groups and with the R1 representing hydrogen, alkyl, bulky
iso-alkyl and aryl groups. Quite remarkably, the reaction can be used for preparation of six-membered
rings, as represented by the transformation of N-tosyl-4-pentenylamine 45 to N-tosyl-3-fluoropiperidine
46, in 69% yield [177].

To obtain information about the reaction mechanism for this intramolecular aminofluorination,
the authors conducted a competitive reaction between homoallyl amines 47 and 48 (Scheme 17).
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Scheme 17. Competitive intramolecular aminofluorination.

To this end, an equimolar mixture of 47 and 48 was subjected to the aminofluorination reaction
using Ph-I(OAc)2 and HF/Py. It was found that, almost exclusively, homoallyl amine 48 was transformed
to 3-fluoro-3-methylpyrrolidine 50, while product 49, derived from homoallyl amine 47, was detected
in the reaction mixture only in trace amounts. This result strongly suggested that the hypervalent
iodine reagent preferentially reacts with the more electron-rich olefinic moiety. Based on the outcome
of this competitive reaction, the authors proposed the following reaction mechanism, presented in
Scheme 18.
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Scheme 18. Mechanism of the intramolecular aminofluorination.

According to the proposed mechanism, the formed in situ (difluoroiodo)benzene is activated
by HF and interacts with the nucleophilic double bond of homoallyl amine 51 resulting in formation
of the cyclic iodonium salt 52. The three-membered ring is opened next by the nitrogen, attacking
the terminal carbon by the bridged iodonium salts 52 to afford pyrrolidine 53. The formation of
intermediate 53 is followed by SN2 substitution by a fluoride ion. The final step is the deprotonation of
54 giving rise to the final 3-fluoropyrrolidine product 55.

6.2. Homoallyl Alcohol and 3-butenoic Acid Derivatives

An interesting extension of this reaction cascade was demonstrated for other types of polyfunctional
olefins, such as homoallyl alcohols and 3-butenoic acid derivatives [178]. The fluorination-cyclization
cascade of homoallyl alcohols 56 (Scheme 19) was performed using the reagent system of PhI(OPiv)2

and HF/Py in dichloromethane. The target fluorinated tetrahydrofuran derivatives 57 were isolated
with reasonably good 54−65% yields as a mixture of cis- and trans-isomers.



Molecules 2020, 25, 2116 12 of 22
Molecules 2020, 25, 2116 12 of 21 

 

 
Scheme 19. Fluorination of homoallyl alcohols and 3-butenoic acid derivatives. 

Under similar conditions, except using Ph-I(OCOCF3)2 as the hypervalent iodine reagent and 
dichloroethane as a solvent, butenoic acid 58 was transformed to fluorinated butyrolactone 59 in 45% 
yield. The structure of products 57 and 59 is consistent with the above-discussed mechanism (Scheme 
18) for the fluorination-cyclization cascade. Thus, in the cases of homoallyl alcohols 56 and 3-butenoic 
acid 58 the oxygen of the hydroxy group acts as the nucleophilic element attacking the terminal 
carbon of the corresponding intermediate bridged iodonium salts of type 52, to complete the 
cyclization step. 

7. Reactions with Alkynes 

One of the most recent developments in this chemistry is the synthesis of β-fluorovinyliodonium 
salts via the reaction of alkynes with hypervalent iodine reagents in the presence of HF (Scheme 20) 
[179]. 

 

Scheme 20. Synthesis of β-fluorovinyliodonium salts by the reaction of alkynes with hypervalent 
iodine/HF reagent. 

It should be noted that direct application of the conditions developed for the reactions of various 
C=C unsaturated compounds was found to be ineffective for alkynes. In a series of preliminary 
experiments, it was determined that Ph-IF2 needed some additional activation by a Lewis acid, such 
as BF3·OEt2. Indeed, treatment of mono-alkyl substituted alkynes 60 with Ph-I=O and HF/Py, 
followed by the addition of BF3·OEt2, resulted in the formation of β-fluorovinyliodonium salts 61 with 
a respectable chemical yield. Compound 61 is quite stable to be isolated and fully characterized. In 
terms of generality one can mention that the alkyl group could bear in its terminal position some 
functionalities, such as aromatic or heterocyclic rings, a protected alcohol or ester group. The 
reactions are highly regio- and stereospecific as the fluorine being added to the most substituted 
carbon on 60 and products 61 are obtained as trans-isomers only. This set of conditions can also be 

Scheme 19. Fluorination of homoallyl alcohols and 3-butenoic acid derivatives.

Under similar conditions, except using Ph-I(OCOCF3)2 as the hypervalent iodine reagent and
dichloroethane as a solvent, butenoic acid 58 was transformed to fluorinated butyrolactone 59 in
45% yield. The structure of products 57 and 59 is consistent with the above-discussed mechanism
(Scheme 18) for the fluorination-cyclization cascade. Thus, in the cases of homoallyl alcohols 56 and
3-butenoic acid 58 the oxygen of the hydroxy group acts as the nucleophilic element attacking the
terminal carbon of the corresponding intermediate bridged iodonium salts of type 52, to complete the
cyclization step.

7. Reactions with Alkynes

One of the most recent developments in this chemistry is the synthesis of β-fluorovinyliodonium
salts via the reaction of alkynes with hypervalent iodine reagents in the presence of HF (Scheme 20) [179].

Molecules 2020, 25, 2116 12 of 21 

 

 
Scheme 19. Fluorination of homoallyl alcohols and 3-butenoic acid derivatives. 

Under similar conditions, except using Ph-I(OCOCF3)2 as the hypervalent iodine reagent and 
dichloroethane as a solvent, butenoic acid 58 was transformed to fluorinated butyrolactone 59 in 45% 
yield. The structure of products 57 and 59 is consistent with the above-discussed mechanism (Scheme 
18) for the fluorination-cyclization cascade. Thus, in the cases of homoallyl alcohols 56 and 3-butenoic 
acid 58 the oxygen of the hydroxy group acts as the nucleophilic element attacking the terminal 
carbon of the corresponding intermediate bridged iodonium salts of type 52, to complete the 
cyclization step. 

7. Reactions with Alkynes 

One of the most recent developments in this chemistry is the synthesis of β-fluorovinyliodonium 
salts via the reaction of alkynes with hypervalent iodine reagents in the presence of HF (Scheme 20) 
[179]. 

 

Scheme 20. Synthesis of β-fluorovinyliodonium salts by the reaction of alkynes with hypervalent 
iodine/HF reagent. 

It should be noted that direct application of the conditions developed for the reactions of various 
C=C unsaturated compounds was found to be ineffective for alkynes. In a series of preliminary 
experiments, it was determined that Ph-IF2 needed some additional activation by a Lewis acid, such 
as BF3·OEt2. Indeed, treatment of mono-alkyl substituted alkynes 60 with Ph-I=O and HF/Py, 
followed by the addition of BF3·OEt2, resulted in the formation of β-fluorovinyliodonium salts 61 with 
a respectable chemical yield. Compound 61 is quite stable to be isolated and fully characterized. In 
terms of generality one can mention that the alkyl group could bear in its terminal position some 
functionalities, such as aromatic or heterocyclic rings, a protected alcohol or ester group. The 
reactions are highly regio- and stereospecific as the fluorine being added to the most substituted 
carbon on 60 and products 61 are obtained as trans-isomers only. This set of conditions can also be 

Scheme 20. Synthesis of β-fluorovinyliodonium salts by the reaction of alkynes with hypervalent
iodine/HF reagent.

It should be noted that direct application of the conditions developed for the reactions of various
C=C unsaturated compounds was found to be ineffective for alkynes. In a series of preliminary
experiments, it was determined that Ph-IF2 needed some additional activation by a Lewis acid, such as
BF3·OEt2. Indeed, treatment of mono-alkyl substituted alkynes 60 with Ph-I=O and HF/Py, followed by
the addition of BF3·OEt2, resulted in the formation of β-fluorovinyliodonium salts 61 with a respectable
chemical yield. Compound 61 is quite stable to be isolated and fully characterized. In terms of
generality one can mention that the alkyl group could bear in its terminal position some functionalities,
such as aromatic or heterocyclic rings, a protected alcohol or ester group. The reactions are highly regio-
and stereospecific as the fluorine being added to the most substituted carbon on 60 and products 61 are
obtained as trans-isomers only. This set of conditions can also be successfully applied to symmetrically
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disubstitute alkynes 62. The corresponding β-fluorovinyliodonium salts 63 were obtained exclusively
as trans-isomers with 60–78% yields. The proposed mechanism for the reactions of Ph-I=O and HF/Py
reagents with alkynes is presented in Scheme 21.
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Scheme 21. Proposed mechanism for the reactions of alkynes with Ph-I=O and HF/Py in the presence
of BF3·OEt2.

According to the proposed mechanism, the in situ generated PhIF2 is activated by HBF4 and
undertakes the electrophilic addition to alkyne 60 affording bridged three-membered iodonium species
62. Intermediate 62 is subjected to the nucleophilic attack of fluoride ions leading to the formation of
(E)-β-vinyliodonium fluorides 63. The final step in this sequence is the ligand exchange with HBF4

yielding final product 61. It should be emphasized that the geometric configuration of 63 is controlled
by the ring-opening of iodonium species 62 with fluoride ion.

8. Conclusions

The chemistry discussed in this review article is based on the original idea of the application
of HF as a source of fluorine for subsequent “electrophilic” formation of a C–F bond. The target
transformation is achieved via in situ generation of the proper electrophilic species derived from
hypervalent iodine compounds. The data reported so far clearly show the great synthetic value of this
approach for fluorination of various 1,3-dicarbonyl compounds, aryl-alkyl ketones, styrene derivatives,
α,β-unsaturated ketones and alcohols, homoallyl amine and homoallyl alcohol derivatives, 3-butenoic
acids and alkynes. The major advantage of this chemistry over alternative approaches is its practicality
and very attractive cost-structure, boding well for its application in large-scale synthesis of important
drug intermediates or other industrial fluoro-organics. However, there are still some issues that need to
be solved, to further increase the synthetic value of this methodology. One critical area of improvement
would be the application of more safe and still cheaper sources of HF. Thus, most of the research has
been performed using aqueous HF, and its complexes with TEA and Py. One would also suggest HF in
complex with THF as an alternative source, which was reported by Professor W. R. Dolbier [179,180].
Finally, further optimization of the reaction conditions, alongside with applications of new sources
of HF, leading to increased chemical yield would clearly be in the focus for future research in this
exciting area of fundamental fluoro-organic methodology. As a word of caution, we would like to
remind the readers that hydrogen fluoride, aqueous or in complexes with pyridine, triethylamine or in
any other form, is quite toxic, highly corrosive and can easily penetrate skin and muscles destroying
cell membranes and nerves. The reactions should be conducted in a well-ventilated hood using
Teflon-lined reactors of tubes.
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