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Abstract: Mortars from the cistern in Amaiur Castle (Navarre, Spain) were analysed to assess the
mortar manufacturing process and application techniques. To this end, optical microscopy, scanning
electron microscopy (SEM), thermogravimetric analysis, X-ray fluorescence (XRF), X-ray diffraction
(XRD), Raman microspectroscopy, and Fourier transform infrared spectroscopy (FTIR) were performed.
The study of both structural and plaster mortars from Amaiur Castle cistern show patterns/rules in
the mortar manufacture according to the specific construction requirements. A multilayer application
technique was used for the construction of the cistern tank. Deliberate selection of the aggregate
nature and grading contributed to mortar impermeability. Ceramic and silico-aluminous rock
fragments were used as aggregates in the cistern tank to confer hydraulicity to the mortars, instead of
carbonated aggregates as used in the vault. Aluminosilicated phases present in the aggregates led to
the formation of amesite, which is a magnesium aluminosilicate hydrate (M-A-S-H) phase conferring
hydraulicity to the mortar. Two types of additives were identified in the outer pigmented layer of
plaster. Beeswax was the identified organic additive used to improve the impermeability of mortar,
while hematite was the identified inorganic additive giving rise to the reddish colour of the layer.

Keywords: lime mortar; plaster; hydraulicity; reaction rim; hydrotalcite; amesite; hematite; beeswax

1. Introduction

Cisterns have been essential structures for water storage since the Neolithic period not only to
guarantee a regular and independent water supply in regions with water shortages but also to ensure
the supply during drought or siege periods, particularly in castles or fortified sites [1–4]. The need to
store and supply water required improvements in the hygienic conditions of the cisterns and led to
structural and technological advances in the structures [5].

The great deteriorating capacity of water constitutes one of the main causes of construction
material deterioration [6]. Cistern mortars are continuously in contact with water. Therefore, to ensure
the impermeability and durability of mortars in the cistern tank, specific requirements are necessary
compared with other building structures, in both the mortar manufacture and application technology
practices [7].

Mortar impermeability is strictly related to mortar hydraulicity [8]. In hydraulic mortars,
the hardening occurs mainly by the chemical reaction with water rather than by exposure to carbon
dioxide as happens in non-hydraulic mortars. The amount of reactive silicates and aluminates present
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in the mixture will determine the hydraulicity degree of mortar [9]. To obtain the waterproofing of
mortars, a reactive additive, mainly pozzolanic components such as crushed bricks or calcined clays,
have been added to the mixture to provide hydraulic properties to non-hydraulic mortars, improving
their resistance to moisture [10–14]. Pozzolans are highly reactive materials mainly composed of
aluminosilicate phases that in the presence of water react with the calcium hydroxide [Ca(OH)2]
and form stable aluminosilicate hydrated products that confer hydraulic properties to mortars [8,15].
Due to this reaction, a reaction rim can be formed surrounding the aggregates [16]. Moreover, natural
organic compounds have also been added to the mixture to achieve specific behaviours in mortars [17].

The present study aims to perform petrographic and chemical–mineralogical characterisation of
the structural and plaster mortars of the cistern from Amaiur Castle to assess the mortar manufacturing
process and application technology used according to the specific requirements for the construction of
this structure.

2. Geological and Archaeological Setting

Amaiur Castle (Navarre, Spain) is located geologically on Triassic limestones and dolostones,
although Paleozoic and Mesozoic materials outcrop in the regional geology. The Paleozoic is
characterized by Ordovician to Carboniferous metamorphic materials, consisting mainly of schist
and quartzites and scarce limestones and dolomites, and by Permian carbonated and slaty breccias,
limestones, and sandstones. Regionally, Triassic materials are characterised by conglomerates and
sands in the Buntsandstein Facies, dolomitic limestones and dolostones in the Muschelkalk Facies,
mottled clays with gypsum in the Keuper Facies, and subvolcanic basic rocks associated with the
Keuper Facies [18,19].

The strategic emplacement of Amaiur Castle in the western Pyrenees allowed it to control the
pass across this mountain range during the Middle Ages. Although the castle was first mentioned
by written sources in the 12th century, the archaeological evidence showed an occupation period
from the 13th century to the 17th century (Figure 1). Amaiur Castle defences were reinforced during
the 14th century due to artillery development in that same century. Also in the 14th–15th century,
a second wall reinforced the 13th–14th century medieval wall. During the 16th and 17th centuries,
the castle was largely remodelled, owing to the conflicts occurring in the region at that time. In the
16th century, a circular bastion was added to the 14th–15th century medieval wall. The studied cistern
was built at this time between the two medieval walls, giving rise to a rectangular-based tank cistern
(Figure 2), and much of the space between the two medieval walls was filled with lime mortar. Later,
in the 17th century, the fortification was transformed into a trace italienne bastion with the addition of
diamond-shaped structures [20–22].
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Figure 1. Geographic location of Amaiur Castle (Navarre, Spain). Studied samples are marked by red 

circles. Modified from Ponce-Antón et al. [23]. 
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Figure 1. Geographic location of Amaiur Castle (Navarre, Spain). Studied samples are marked by red
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Figure 2. Location of the studied samples within the cistern. Cistern tank in green, vault lunette in
blue, barrel vault in yellow, and 14th–15th centuries wall in black.
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3. Materials and Methods

3.1. Materials

Seven representative lime mortar samples were collected from the preserved remains of the cistern
(Table 1, Figures 1 and 2). A total of six samples of structural mortar were collected, three from the
walls of the tank (Samples CA-AL-7 and CA-AL-8 from the SE wall and Sample CA-AL-9 from the SW
wall), two from the base of the barrel vault (Samples CA-AL-5 and CA-AL-6), and one from the vault
lunette (CA-AL-2). Sample CA-AL-8 has been subdivided into two different samples (CA-AL-8a and
CA-Al-8b) due to the granulometric differences observed on a macroscopic scale. Since both the tank
walls and lunette are covered with the same plaster, an additional sample of plaster was collected from
the lunette (CA-AL-1) in the area where the plastering is best preserved.

Table 1. Lime mortar samples from the different locations in Amaiur Castle cistern.

Mortar Type Structure Location Sample

Structural

Barrel vault
Lunette CA-AL-2

Base
CA-AL-5
CA-AL-6

Tank

Inner layer CA-AL-7

Outer layer CA-AL-8
CA-AL-8b
CA-AL-8a

CA-AL-9

Plaster
Inner layer

CA-AL-1Pigmented layer

3.2. Methods

Petrographic characteristics of mortars were studied by polarized light microscopy (PLM) (JEOL,
Tokyo, Japan) on polished thin sections and in both transmitted and reflected polarized light modes
using a Nikon Eclipse LV100POL polarizing microscope equipped with a DS F-11 digital camera and
DS L2 camera control unit.

Scanning electron microscopy (SEM) analysis was carried out on carbon-coated polished
thin sections using a JEOL JSM-7000F Schottky-type field emission scanning electron microscope
(JEOL, Tokyo, Japan) equipped with an INCA EDX detector X-sight Series Si (Li) Oxford pentaFET
microanalysis system.

Thermogravimetric analysis (TGA) was performed using a TA SDT 2960 TG-DSC simultaneous
instrument (TA Instruments, New Castle, DE, USA). A 5 to 7 mg of sample were heated in Pt crucibles
at 2 ◦C min−1 from room temperature to 900 ◦C under a dry oxidizing atmosphere.

The semiquantitative chemical composition of major elements of the mortar binder fraction <2 µm
was determined by means of X-ray fluorescence (XRF). A Wavelength Dispersive X-ray Fluorescence
(WDXRF) PANalytical Axios Advanced PW4400 XRF spectrometer (with 4 kW Rh anode SST-mAX
X-ray tubes) (Malvern PANalytical, Almelo, The Netherlands) was used to perform the analyses on a
powder sample. The detection limit was of 0.01 wt%. The loss on ignition (LOI) was calculated after
heating the powder sample at 900 ◦C.

The X-ray diffraction (XRD) analysis was performed to determine the mineralogy of powder
polycrystalline samples using a Philips X’Pert diffractometer (Malvern PANalytical, Almelo,
The Netherlands) equipped with a monochromatic Cu-ka1 X-radiation in a continuous scan from 5◦ to
70◦ 2θ operating at 40 kV and 20 mA conditions with an acquisition rate of 0.02◦ per second. X’Pert
HighScore Plus 3.0 software by PANalytical (Malvern PANalytical, Almelo, The Netherlands) and the
experimental patterns of the International Centre for Diffraction Data (ICDD) and the Inorganic Crystal
Structure Database (ICSD) diffraction databases were used for the mineral phase identification.
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Micro-Raman analyses were performed using a Renishaw inVia confocal microRaman spectrometer
(Renishaw inVia, Gloucestershire, UK). Spectra were acquired between 1000 and 1120 cm−1 with
a 1 cm resolution and the data acquisition was carried out using Renishaw’s WireTM 3.2 software
package (Renishaw, Gloucestershire, UK). Raman spectra of pure standard compounds collected in the
e-VISNICH dispersive Raman database were used to interpret the results.

Fourier transform infrared spectroscopy (FTIR) by the potassium bromide pellet technique was
carried out to determine the nature of the organic compounds using a JASCO 4200 FTIR spectrometer
(JASCO INTERNATIONAL CO., Hachioji, Tokyo, Japan) and acquiring spectra between 400 and
4000 cm−1.

To improve the FTIR signal of the organic components, an extraction was conducted using 200 µL
of dichloromethane organic solvent.

Hydraulicity Index (HI) (Equation (1)) and Cementation Index (CI) (Equation (2)) values were
calculated to assess the hydraulicity of the binder according to Boynton formula [24,25]. Indices were
calculated as below:

HI =
SiO2 + Al2O3

CaO + MgO
, (1)

CI =
2.8SiO2 + 1.1Al2O3 + 0.7Fe2O3

CaO + 1.4MgO
. (2)

4. Results

4.1. Petrographic and Chemical–Mineralogical Characterization

Macroscopically, a difference in the nature of aggregates was observed between the plaster
(Figure 3a), mortars from the tank (Figure 3b–d), and the mortars from the vault (Figure 3e,f).
Sample CA-AL-2 from the lunette of the vault and Samples CA-AL-5 and CA-AL-6 from the base of the
barrel vault (structural mortars) show carbonated aggregates, whereas Samples CA-AL-7, CA-AL-8 and
CA-AL-9 (structural mortars), and Sample CA-AL-1 (plaster) show siliceous aggregates. Mortars from
the tank also show increasing aggregate grading, from structural mortars (inner part; Samples CA-AL-7,
CA-AL-8, and CA-AL-9) to the plaster (outer part; Sample CA-AL-1) (Figure 3).
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Figure 3. Macroscopic texture of the lime mortars from the Amaiur Castle cistern. (a) CA-AL-2, plaster
sample. (b) CA-AL-8a, (c) CA-AL-8b, and (d) CA-AL-7, samples from the tank mortars. (e) CA-AL-2
and (f) CA-AL-5, mortars from the vault. Mortars from the tank show an increase in aggregate grading
from the inner part (d) to the outer part (a).

Microscopically, all samples show a heterogeneous binder matrix-supported texture with
aggregates embedded in a micritic calcite matrix. Petrographic observations of mortar identified the
carbonated aggregates of samples from the vault as poorly sorted fine-grained dolostone fragments
with angular to subangular shape (Figure 4a). The grain sizes of aggregates from the vault base
(Samples CA-AL-5 and CA-AL-6) range from 0.2 mm up to 3 mm, whereas aggregates from the lunette
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(CA-AL-2) reach 8 mm in size. Dolostone aggregates show a pronounced reaction zone (Figure 4a).
Scarce ceramic fragments can also be observed dispersed in the binder matrix.
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Figure 4. Photomicrographs showing the most representative microtextures of the lime mortars from
Amaiur Castle cistern. (a), (b)-left, (c) and (d)-left: plane polarized light mode (PPL). (b)-right, (d)-right,
(e,f): crossed-polarized light mode (XPL). C: ceramic; DRx: dolostone; L: lime lump; PhRx: phyllite; PL:
pigmented layer; QRx: quartzite; Qz: quartz; R: reaction zone; ScRx: Schist; SvRx: subvolcanic rock.

The nature of the aggregates from the cistern tank mortars is the same in both structural mortars
(Samples CA-AL-7, CA-AL-8, and CA-AL-9) and plaster (Samples CA-AL-1). Mortars are mainly
composed of subangular to rounded ceramic fragments (s.l.), and the siliceous aggregates observed
macroscopically have been identified as well-rounded quartz grains and phyllite, schist, quartzite,
sandstone, and subvolcanic rocks (Figure 4b–e). Dolostone fragments were also observed in minor
amounts, and also some charcoal fragments were dispersed in the binder matrix. Heterometric lime
lumps up to 4 mm were also observed (Figure 4e).

The grain size of aggregates decreases and aggregate sorting increases from the inner layer of
the structural mortar (Sample CA-AL-7) to the outer part (CA-AL-8 and CA-AL-9). Sample CA-AL-7
shows very poorly sorted aggregates from 0.7 mm to 2 cm in size. The outer part of Sample CA-AL-8
(CA-AL-8a) is very similar to Sample CA-AL-9, with smaller and more sorted aggregates than the
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inner part of Sample CA-AL-8 (CA-AL-8b). Both Subsample CA-AL-8b and Sample CA-AL-9 show
moderately sorted aggregates ranging from 0.2 mm up to 3 mm in grain size, whereas Subsample
CA-AL-8a shows better sorted aggregates from 0.1 to 1.3 mm in size.

Sample CA-AL-1 corresponding to the plaster mortar consists of two different layers (Figure 4f).
The inner layer of the plaster is also composed by the well-rounded and sorted ceramic and polygenic
rock aggregates, as observed in the structural mortars of the cistern, which are up to 0.3 mm in size.
The outer layer of the plaster is a reddish pigmented layer around 0.15 mm thick showing a scarce
amount of mica-like phyllosilicates and quartz grains.

Binder/aggregate ratios were defined by the comparison of the chart for volume percentage
estimation [26]. Samples show a binder/aggregate ratio between 1:2 and 1:1, except for Sample
CA-AL-7, which shows a binder/aggregate ratio of 1:1 and the inner layer of plaster, which shows a
binder/aggregates ratio of 2:1.

To determine the composition of the mortar binders, Sample CA-AL-2 from the vault lunette,
Sample CA-AL-9 from the structural mortars of the tank, and both inner and pigmented layers of
plaster (Sample CA-AL-1) were selected for X-ray diffraction (XRD) analysis.

A binder fraction <2 µm of Samples CA-AL-2 and CA-AL-9 was extracted in order to avoid the
interference of the aggregate composition following the procedures described by Ortega et al. [27] and
Ponce-Anton et al. [28]. The small amount of Sample CA-AL-1 from the plaster made it impossible
to extract the binder fraction <2 µm, and thus the bulk fraction of both inner and pigmented layers
was analysed. For the analysis of the inner layer, the aggregates observable with the naked eye
were removed.

The XRD results are shown in Figure 5. All samples are mainly composed of magnesium calcite
[(Ca, Mg)CO3], and in minor amounts, hydrotalcite [Mg6Al2(CO3)(OH)16·4(H2O)] was also detected
in all samples, except in the pigmented layer where only traces were detected. Quartz [SiO2] and
illite-like phyllosilicates were detected in samples from the cistern tank in both structural and plaster
mortars. Reflection peaks at 7.03 Å and 3.51 Å allowed to detect small amounts of the amesite mineral
phase [Mg2Al2SiO5(OH)4] in Sample CA-AL-9 and in the inner layer of the plaster. Hematite [Fe2O3]
was also identified in the pigmented outermost layer of the plaster.
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a layered double hydroxide phase (LDHs) [29], whereas amesite is a magnesium aluminosilicate 

hydrate phase (M-A-S-H). 

Figure 5. X-ray diffraction patterns of the lime mortars from Amaiur Castle cistern. (a) Binder fraction
<2 µm from the lunette. (b) Binder fraction <2 µm from the structural mortar of the tank. (c) Bulk
fraction from the inner layer of the plaster mortar. (d) Bulk fraction from the pigmented layer of the
plaster mortar. Ame: amesite, Hem: hematite, HT: hydrotalcite; Mg-cal: magnesium calcite, Phy:
phyllosilicates s.l., Qz: quartz.
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Both hydrotalcite and amesite have been the Mg-hydrated phases detected by XRD. Hydrotalcite
is a layered double hydroxide phase (LDHs) [29], whereas amesite is a magnesium aluminosilicate
hydrate phase (M-A-S-H).

To confirm the presence of the Mg-hydrated phases detected by XRD, the binder fraction <2 µm
of Samples CA-AL-2 (vault mortar) and CA-AL-9 (tank mortar) were analysed by thermogravimetric
analysis (TGA). The TGA results are shown in Figure 6.
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Figure 6. Thermogravimetric analyses of the binder fraction <2 µm from the vault mortar (Sample
CA-AL-2 in black) and tank mortar (Sample CA-AL-9 in green).

Sample CA-AL-2 shows a total weight loss of 38.14%, whereas Sample CA-AL-9 shows a total
weight loss of 28.17%. Since the total weight loss of pure calcium carbonate is 44%, these lower weight
losses indicate the presence of other mineral phases in the binder as indicated by the XRD results
(Figure 5).

The TGA curves show four main weight loss regions. The first weight loss (<120 ◦C) and the
second weight loss (120 to 200 ◦C) are attributed to the adsorption water and poorly bonded interlayer
water, respectively. The third weight loss (200 to 600 ◦C) is attributed to dehydration caused by the loss
of hydroxyl groups (OH−). The last fourth weight loss (600 to 800 ◦C) is related to the decomposition of
the carbonates [30–32]. No weight loss is observed over 800 ◦C. Considering the DSC curve, between
200 and 600 ◦C, two endothermic peaks are observed in both Sample CA-AL-2 and Sample CA-AL-9.
These two endothermic peaks correspond to the hydrotalcite (LDHs), which decomposes in two
steps in this range of temperatures [33,34]. Nevertheless, the second endothermic peak between
450 and 600 ◦C can also be related to the decomposition of the amesite (M-A-S-H) and illite-like
phyllosilicates [35–38] present in Sample CA-AL-9, and therefore, they appear to overlap. Between 800
and 900 ◦C, an endothermic peak is only detected in Sample CA-AL-9, confirming the presence of
amesite and illite in the tank mortar sample, since the breakdown of both phases takes place in this
temperature range [35–37].

X-ray fluorescence was performed to determine the chemical composition of the binder fraction
<2 µm of Samples CA-AL-2 and CA-AL-9. Chemical results of both vault and tank mortars (Samples
CA-AL-2 and CA-AL-9, respectively) were used to calculate the Hydraulicity Index (HI) and
Cementation Index (CI) in order to assess and compare the hydraulicity degree of binders from
the vault and tank (Table 2). Hydraulicity is classified as weak (HI = 0.1–0.2, CI = 0.3–0.5), moderate
(HI = 0.2–0.4, CI = 0.5–0.7), and eminent (HI < 0.4, CI = 0.7–1.1) [24,25]. According to the HI and CI
values, the mortar binder from the cistern tank is eminently hydraulic, whereas the mortar binder from
the vault is weakly hydraulic.
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Table 2. Semiquantitative results of the major elements of the binder fraction <2 µm in powder samples
from the lunette of the barrel vault and tank samples determined by X-ray fluorescence, the hydraulicity
index (HI), and the cementation index (CI). Chemical results are expressed as oxides in wt%. Iron
content is expressed as total Fe2O3t. LOI: loss on ignition (%).

Sample Structure MgO Al2O3 SiO2 K2O CaO TiO2 MnO Fe2O3t LOI HI CI

CA-AL-2 Lunette 6.16 2.43 5.55 0.23 44.73 0.20 0.05 2.40 38.14 0.20 0.37
CA-AL-9 Tank 6.70 8.15 21.12 1.08 29.20 0.35 0.15 4.88 28.17 0.95 1.85

4.2. Study of the Pigmented Layer of Plaster

Scanning electron microscopy (SEM) was performed on Sample CA-AL-1 for better characterization
of the plaster. SEM observations show that the pigmented layer of plaster is less porous than the inner
layer and that the contact surface between both layers is rough (Figure 7).
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Figure 7. SEM image of the cistern plaster. A: pigmented layer; B: inner layer. Rough contact surface
in red.

The outermost pigmented layer of the plaster was also analysed by Raman spectroscopy and
Fourier transform infrared spectroscopy (FTIR) in order to determine whether any other type of
additive was used in the manufacture. Raman spectroscopy confirmed that the pigmented layer of
plaster is mainly composed of a mixture of calcite and hematite (Figure 8a).

Raman spectra show intense bands at 282 cm−1, 712 cm−1, and 1087 cm−1 attributed to calcite and
less intense bands at 226 cm−1, 294 cm−1, and 410 cm−1 attributed to hematite [39,40]. Broad bands
at 355 and 464 cm−1 related to quartz are also observed. The broad band identified in the region of
1150–1450 cm−1 is attributed to an organic compound, but due to the low quality of the spectrum,
it was difficult to identify (Figure 8b).

Infrared spectroscopy (FTIR) analysis was performed in order to identify the organic compound
detected by Raman spectroscopy. FTIR spectra show bands at 2864 cm−1, 2514 cm−1, 1794 cm−1,
1428 cm−1, 871 cm−1, and 711 cm−1 attributed to calcite and bands at 1027 cm−1, 642 cm−1 and
528 cm−1 attributed to the hematite (red earth pigment) (Figure 9a) [41–43]. Nevertheless, the strong
absorption of the inorganic phases hides the signal of the organic compound, hindering its identification.
To improve the FTIR signal of the organic component, an extraction was conducted using 200 µL of
dichloromethane. The resulted supernatant was evaporated on a potassium bromide disk to be then
analysed. The intense bands detected at 2955 cm−1, 2916 cm−1, 2848 cm−1, 1736 cm−1, and 1472 cm−1

were attributed to beeswax organic compound (Figure 9b) [43].
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Figure 8. Raman spectroscopy of the bulk fraction of the pigmented layer of the cistern plaster.
(a) Raman spectra showing the highest intensities bands of calcite, hematite, and quartz. (b) Raman
spectra showing an organic compound in the region of 1150–1450 cm−1. Calcite bands at 282 cm−1,
712 cm−1, and 1087 cm−1; hematite bands at 226 cm−1, 294 cm−1, and 410 cm−1; quartz bands at
355 cm−1 and 464 cm−1.
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Figure 9. Fourier transform infrared spectroscopy (FTIR) analysis of the pigmented layer of the cistern
plaster. (a) FTIR spectra showing the highest intensities bands of calcite and hematite (red earth).
(b) FTIR spectra showing the highest intensities bands of the organic compound identified as beeswax.
Calcite bands at 2864 cm−1, 2514 cm−1, 1794 cm−1, 1428 cm−1, 871 cm−1, and 711 cm−1; hematite (red
earth) bands at 1027 cm−1, 642 cm−1, and 528 cm−1. Beeswax bands at 2955 cm−1, 2916 cm−1, 2848 cm−1,
1736 cm−1, and 1472 cm−1.

5. Discussion

Petrological study suggests a careful process in both the mortar manufacture and mortar application
technique for the cistern construction according to the specific characteristics needed for this structure.
The impermeability of the cistern tank is an essential requirement for appropriate water storage.
Mortar impermeability is strictly related to mortar hydraulicity, which is favoured by the use of
silico-aluminous aggregates working as reactive materials in the mixture [8,10–13]. The use of
silico-aluminous rocks and ceramic fragments as aggregates in the tank mortar manufacture, instead
of the carbonated aggregates used for the vault mortars, indicates a deliberate selection of aggregates
in order to confer hydraulicity to the mortar to obtain waterproof mortars. Furthermore, the use of
silico-aluminous aggregates adds greater cohesion and mechanical strength to the mortar [44,45].

The raw materials that were used as aggregates to manufacture both the lime mortars from the
vault and cistern tank correspond to the surrounding geological materials. Not only the selection
of aggregates was important but also the aggregate sorting. The grain size of aggregates in the
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tank mortars becomes smaller and better sorted from the first layer of the structural mortar toward
the outermost pigmented layer of the plaster. Besides, aggregate size also contributes to material
reactivity, since the smaller the size, the higher the specific surface area and thus the higher the reaction
rate [8,46–48]. Furthermore, mortar porosity is lower in mortars with better-sorted aggregates since
they produce a better-packed system [49–52].

The mineralogical analyses allowed identifying additives in the pigmented layer. The XRD, Raman,
and FTIR analyses indicate that hematite was used as an inorganic additive, which led to the reddish
colour of the pigmented layer (Figures 5, 8 and 9). Hematite would not be related to ceramic fragments,
since they were not observed either in the petrographic study or by XRD (Figures 4f and 5d). Therefore,
the hematite may have been deliberately added. FTIR analyses allowed identifying the beeswax as
the organic additive in the pigmented layer (Figure 9). Beeswax was the most common natural wax
used as an organic additive to provide impermeability and sealing property to the materials [53].
Since organic compounds are more susceptible to degradation than inorganic compounds, knowledge
of the composition of ancient additives is essential for appropriate interventions on archaeological
structures [53,54].

Therefore, to ensure the impermeability of the cistern tank, a multilayer application of different
mortars was performed using silico-aluminous aggregates and decreasing their grain size from the first
layer of the structural mortar toward the inner layer and applying a final plaster with a beeswax-bearing
pigmented layer (Figure 10).
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Figure 10. Schematic image of the multilayer application technique for mortars in Amaiur Castle
cistern. The cistern tank is shown in green, the vault lunette is shown in blue, the barrel vault is shown
in yellow, and the 14th–15th centuries wall is shown in black.

Furthermore, the reaction zones observed in dolomitic aggregates resulted from the
dedolomitization of dolomitic aggregates, and the presence of hydrotalcite in the binder has been
related to the use of the traditional hot-mixing method in mortar manufacture [23]. In the manufacture
of cistern tank mortars, the use of this traditional hot-mixing method would also be expected since
reaction zones were not only observed at the edge of the dolomitic aggregates, but they also stand out
in the ceramic fragments and some silico-aluminous aggregates (Figure 4a–d).
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Quartz and phyllosilicates are attributed to the ceramic fragments and silico-aluminous rocks
used as aggregates, whereas magnesium calcite, hydrotalcite, and amesite are mineral phases formed
during mortar manufacture (Figure 5). Magnesium calcite is formed in the setting of mortar as a result
of the lime cycle [24,55], and hydrotalcite is a carbonated mineral formed during the slaking process in
the presence of available magnesium content [28].

Hydrotalcite has been identified in all analysed mortar binders (Figure 5). Magnesium released
from the dedolomitization process, leading to the formation of the reaction zone in the edge of dolomitic
aggregates, and the aluminium released from the breakdown of phyllosilicates favours the formation
of hydrotalcite [23,56–58]. Nevertheless, some amount of magnesium and aluminium can also come
from the lime used for the mortar manufacture when impure limestones or partially dolomitized
limestones have been used as the raw material for lime production [28,59]. Therefore, the presence of
hydrotalcite and the absence of dolomitic aggregates in the pigmented layer of plaster (Figures 4 and 5)
would indicate the use of impure limestones or partially dolomitized limestones for the production of
lime for the cistern construction.

The aluminosilicate phases present in the silico-aluminous aggregates of the tank mortars are
highly reactive materials that in the presence of alkalis react with water, forming a wide family of
hydration products that induce hydraulic properties to the mortars [8,15,46]. Reaction zones observed
in the edge of the silico-aluminous aggregates suggest the development of this reaction (Figure 4b–d).
The reaction between aluminosilicate phases and an alkaline solution is known as an alkali-silicate
reaction (ASSR), which is a specific type of alkali-silica reaction (ASR) [60–62].

Amesite has been the only aluminosilicate hydrated phase detected in the tank mortars.
This mineral phase has also been described in some mortars with pozzolanic aggregates [48,63].
Amesite is a magnesium aluminosilicate hydrate (M-A-S-H) phase, and although it is chemically
related to chlorites, it displays a similar structure to serpentine with alternating tetrahedral and
trioctahedral layers [37]. The amesite has only been detected in samples containing silico-aluminous
aggregates, indicating that it would have formed as a result of the reaction between the aluminosilicate
phases and the putty alkalis.

Magnesium silicate hydrate (M-S-H) phases have been described during the hydration of
MgO-bearing lime materials and formed by the reaction between magnesium and silicate ions [64–66].
The M-S-H phases show a layered structure and have been related to poorly crystalline phyllosilicates [64,
66–69]. The reaction zone of the dolomitic aggregates of the structural mortars from Amaiur Castle
showed the presence of M-S-H phases, which are suggested as a result of an ASSR, although the
presence of the M-S-H phases could not be confirmed [23]. According to Mackenzie and Bowden [37],
amesite is formed by the substitution of the Si4+ in the tetrahedral layers and the Mg2+ in the octahedral
layers by the Al3+. Therefore, the amesite detected in the mortars from the cistern tank could also have
been formed as a result of the ASSR, since the kinetic formation of M-A-S-H phases has been described
as similar to M-S-H phases, incorporating aluminium into the structure [63,70].

Besides, the phases formed as a result of the reaction between the aluminosilicate phases of the
silico-aluminous aggregates and the putty alkalis contribute to decreasing the porosity and therefore
favour the waterproofing of the cistern tank [45,71–73].

The study of both structural and plaster mortars from Amaiur Castle cistern show patterns/rules in
the mortar manufacture according to the specific construction requirements, distinguishing two kinds
of mortars with aggregates of different nature. Mortars from the cistern tank acquired hydraulicity by
the addition of silico-aluminous rocks and ceramic fragments as aggregates.

6. Conclusions

The study of the mortars from the Amaiur Castle cistern has allowed assessing the knowledge
of the mortar manufacturing process and the mortar application techniques to ensure the structure
waterproofing necessary for the correct storage of water.
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The cistern shows three types of lime mortars with different compositional characteristics related
to the specific function within the structure: structural mortars from the barrel vault, structural mortars
from the tank, and plaster.

The nature of the aggregates used in the manufacture of cistern mortars was different, according to
specific construction requirements. Carbonated aggregates were used in the vault mortar and silicious
and silico-aluminous aggregates in the tank mortars and plaster, suggesting the specific selection of
raw materials.

The raw materials of the surrounding geological materials were used for the manufacture of the
lime mortars of the cistern of the Amaiur Castle.

To confer hydraulicity to the mortars of the cistern tank and achieve the waterproofing of the
structure, ceramic fragments and silico-aluminous rocks were used as aggregates in the manufacture.

Besides, the reaction zones on the edge of silico-aluminous rocks and ceramic aggregates resulted
from an alkali silicate reaction (ASSR) that favoured the formation of amesite, the magnesium
aluminosilicate hydrated (M-A-S-H) phase detected in the binder of the tank mortars.

A multilayering application technique was performed in the construction of the cistern tank.
Two/three layers have been differentiated in the structural mortar from the tank, with a decrease in
grain size and an improvement in sorting of aggregates from the inner part to the outer part. The plaster
is formed by two layers: an inner layer and an outer pigmented layer.

The pigmented layer of plaster is composed by two types of additives. Hematite was identified
as an inorganic additive giving rise to the reddish colour of the layer. Additionally, beeswax was
identified as an organic additive used to confer impermeability to the pigmented layer.

The presence of hydrotalcite and the absence of dolomitic aggregates in the pigmented layer
point to the use of impure limestones or partially dolomitized limestones as the raw material for the
production of lime at Amaiur Castle.
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