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Abstract

As first proposed for the adiabatic quantum information processing by Wu et al (2002 Phys. Rev. Lett.
89 057904), the Trotterization technique is a very useful tool for universal quantum computing, and in
particular, the adiabatic quantum simulation of quantum systems. Given a boson Hamiltonian
involving arbitrary bilinear interactions, we propose a static version of this technique to perform an
optical simulation that would enable the identification of the ground state of the Hamiltonian. By this
method, the dynamical process of the adiabatic evolution is mapped to a static linear optical array
which is robust to the errors caused by dynamical fluctuations. We examine the cost of the physical
implementation of the Trotterization, i.e. the number of discrete steps required for a given accuracy.
Two conclusions are drawn. One is that the number of required steps grows much more slowly than
the system size if the number of non-zero matrix elements of Hamiltonian is not too large. The second
is that small fluctuations of the parameters of optical elements do not affect the first conclusion. This
implies that the method is robust against the certain type of errors as we considered. Last but not least,
we present an example of implementation of the simulation on a photonic chip as well as an optimized
scheme. By such examples, we show a reduction of the costs compared to its classical counterpart and
the potential for further improvement, which promotes a more general application.

1. Introduction

The reason for simulating a quantum system using another quantum system is to obtain information about an
uncontrollable system from a controllable one which is similar to the former. It has attracted alot of attention
ever since proposed by Richard P Feynman [1], and developed by Lloyd [2]. Recent studies [3—15] show that
quantum simulation can provide alternative approaches to finding solutions by encoding them to the ground
state of a Hamiltonian. Some of the simulation strategies have been proven to be capable of dealing with
classically intractable problems, for example NP-complete problems [4, 12].

One major obstacle to realizing the quantum simulation of a particular system is the difficulties in preparing
the ground state of a Hamiltonian. In a number of quantum systems, it is relatively easy to find the ground state
of some particular Hamiltonian, but very difficult to find the one required to solve a specific problem about
which we are concerned. A great deal of effort has been expended developing the strategies and technologies for
ground state preparation, both experimentally and theoretically [ 16—20]. Among those preparation strategies,
adiabatic evolution is well-known for its applicability to many different types of systems. In principle, if one
prepares the ground state of some Hamiltonian, then one can then obtain the ground state of a target
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Hamiltonian by starting with the ground state that one can prepare and slowly evolving the system from the
prepared Hamiltonian to the desired one. Such a scheme is guaranteed by adiabatic theorem and now termed
adiabatic quantum computing (AQC) [21]. AQC has been verified in several experiments [22—26] and is
considered a promising candidate for universal quantum computing [27]. In the implementation of AQC, the
crucial step is to adiabatically connect the problem Hamiltonian (whose ground state encodes the solution) with
the initial, prepared Hamiltonian. Fortunately, the Trotterizaion technique provides a way to achieve such
connection. With this technique, one can decompose the total evolution into short-time operations during
which the system Hamiltonian is approximately time-independent for each step. The dynamical control of the
system can be implemented by a sequence of such operations. This dramatically lowers the difficulty of realizing
AQCby reducing the control requirements. In general, the whole Trotterized-AQC (TAQC) protocol can be
described as follows [5]. (i) Prepare the ground state |1)y) of Hamiltonian Hy,. (ii) Find the problem Hamiltonian
H, whose ground state encodes the solution. (iii) Set the total Hamiltonian H(¢) = f (t)H, + g(t)H, with
slowly-varying control functions f(f) and g(t), e.g. f (t) = 1 — t/T and g(¢t) = t/T where tis the time and Tis
the period for the entire evolution. Then decompose the evolution operator into a sequence of steps using the
Trotter—Suzuki formula, which is the key ingredient and given by

T k-1
U(T) = Texpl—i [ H®de] ~ [] expl—iH (@), )
0

a=0

U(T) is the evolution operator from 0 to T, k is a large integer so that 7 = T/k is a small time segment, and 7 is
time ordering operator. (iv) Finally, obtain the solution by measuring the state |¢/y) which is the simulation of
[tag) = U(T)|1ho) using U(T) implemented according to equation (1). For operators A and B and a sufficiently
small &, the Trotter—Suzuki formula implies e? A5 x~ e*e®® + O(62). It was introduced for the simulation of
complex time-independent Hamiltonians in [2]. The application of the formula to an adiabatic strategy
involving a time-dependent Hamiltonian in a TAQC protocol as described above, was first proposed in [5] and
experimentally implemented in [25].

Here, we propose an optical implementation of a Trotterized adiabatic simulation—one type of TAQC
algorithm using linear optical elements. Linear optics is a promising system for many types of quantum
information processing. A logical qubit can be encoded in the polarization, frequency, spatial modes or other
degrees of freedom of a photon which can be preserved for a relatively long time and is controllable [28—38].
Just as important for our purposes, the operations of the system are static so that the dynamics are discretized.
We consider the matrix diagonalization problem which is classically classified as NP-hard. In order to obtain
the solution, we propose a method for reaching the ground state of a boson Hamiltonian with arbitrary
bilinear interactions. Finding the ground state of a Hamiltonian is QMA-hard [39] and, in special cases,
reduces to the diagonalization problem in certain Hilbert subspaces. In our case, this reduction provides an
important example of optical simulation. We analyze the dependence of the implementation cost, given by the
Trotter Number (parameter k in the decomposition (1)), on the system size. We also study the effects of
fluctuations of the parameters of the simulation by using a randomized trotter formula (RTF) [12]. The
definition of RTF is

k—1
U(T) ~ H exp[—iH (aT) 7], 2)

a=0

where 7, = 7(1 + g,) and g,is arandom number. When g, is deleted, the decomposition (2) reduces to the
standard one (1). In our case, the fluctuation of 7 corresponds to imperfections of experimental optical elements.
Unlike some of the recent investigations on evolution errors [40, 41] which affect the structures of Hamiltonians,
T, represents an inaccurate evolution time in each piece rather than the perturbation on the structure or
parameters of the Hamiltonians, meaning that the basic functioning of the optical elements is preserved. We
show numerically that such error will add little extra cost to the simulation for a given accuracy. Also, we would
like to point out that the scaling of the ideal settings will likely be decimated by other types of implementation
errors such as those studied by [40, 41].

This paper is organized as follows. In section 2, we introduce our simulation proposal of AQC via a static
optical circuit. We present our analysis of the dependence of the Trotter number on the system size in section 3.
We then provide three examples and show the numerical results of them in section 4. Section 5 illustrates an
implementation using photonic chip. Section 6 demonstrates a potential optimized scheme for the
Trotterization method enabled by our proposal. Section 7 concludes.
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2. Adiabatic evolution simulated via optical elements

We consider a general model with

Hy=>_eb'b, Hy=> eabbi+ > Junb),bs. 3)
s 1 m=n
where bf (b;) is a creation (annihilation) operator of the ith bosonic mode with commutators
[b;, bJT] = by [b;, bj] = [b;, bj] = 0and],,,is the coupling coefficient between the mth mode and nth mode. In
the one-photon subspace, the Hamiltonian (3) can represent a matrix which has no additional constraints other
than being Hermitian. So the process of finding its ground state is equivalent to diagonalizing a general
Hermitian matrix. In our proposal, the bosonic modes are mapped to the spatial modes of photons. Hence, b,
corresponds to a photon propagating along an optical path labeled by 7, and b; corresponds to the absence of the
photon from the path. To implement a TAQC, one must design a physical realization of the adiabatic evolution.
We now discuss the details of such a realization. First, applying the decomposition (1) to the evolution of a
Hamiltonian (3), we have

k=1 —aziprS] fsb!bs+(a/k)7(z b b1+ S Junbyhiba
H e s 1 m=n . (4)

a=0
We can utilize the Hermiticity of J, J,,, = ,’fm, so that

Z ]mnb:qbn = Z (]mnbrL,bn + ]inbmbri)

m=n m<n
= Z [Re]mn(brL by + by, an) + iIm]mn(bjn b, — by b:;)]» %)
m<n
where Rej,,, Im],,,,) is the real (imaginary) part of J,,,,,. Given the commutators and Trotter—Suzuki formula,
every multiplier of expression (4) can be separated into three exponential operators, and each one can be further
decomposed as

7i(17a/k)7'26 by b, . B
e ; s _ H e—1(1—a/k)7f5b5 bs’

S

—i T .
. IW’OTXI: aib/br _ H e—ita/breib] by (6)
!

and

—i i .
¢ T 2 Tt [T [et@/Drimhmib—bub)

m<n

x e i(a/RTRe (bt bub )] 7

Next, we demonstrate how to simulate these operators using an array of optical devices. However, we note
that it is possible to implement the same set of elements using a photonic chip [35, 42, 43] which should enable a
speed-up over the classical counterpart. Here we introduce the basic methods and present a prototype for such a
chip. An example of the chip design is provided in the section 5. We primarily use two common linear elements,
phase shifters (PSs) and beam splitters (BSs), shown by figures 1(a) and (b). The mathematical descriptions of PS
and BSare U, (¢) = e °“ and Uy, (0) = €@~ (See for example [44].) ¢ and d" are two different spatial
modes. ¢ is the phase shifted by a PS and 6 defines the reflection (transmission) rate of a BS through cos 6 (sin 6).
Ups () and Uy, (6) match the form of equations (6) and (7). The factors of the forms e i1 ~a/b)7e b'b and
e~i(@/07=b{ b can be implemented by two PSs, Uso((1 — a/k)Te;) and U[’,S ((a / k)7e)). Superscripts sand  denote

buba=bub) can be implemented by one BS, UyY" ((a/k) T Im],,,,,), where m

the optical modes. Factor e(@/<)71m/n(
and n denote optical modes. The factor e~i(3/H 7R (bibitbubi) can be implemented by a combination of four PSs
andaBS, U" (%) UL (%) Ul (a/k)TRefn) ULk (%) U, (%) This can be seen by using the relation

e~1?Yei? = X and the connection between the Lie group SU(2) and boson operators. An illustration of the
above combination is given by figure 1(c).The whole implementation of the simulation is described by figure 2.
For ease of illustration, figure 2 only shows nearest-neighbor interactions. However, it is in principle possible to
implement any type of bilinear interaction.

3. Parameter dependence analysis

Our objective is the simulation of large quantum systems which are difficult to simulate using classical
computers. However, when system size grows, more resources may be required to obtain the same level of

3
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Figure 1. Optical elements and their combinations used for simulation. (a) Phase shifter (b) beam splitter and (c) combination for the
simulation of the real part of the interaction. (Details are in the main text.) Output modes ¢’" and d’" in (b) are defined by
" =ctcos® + d¥sind, d'" = —ctsing + d¥ cosb.
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Figure 2. Sketch of the whole simulation of the adiabatic evolution (for only nearest-neighbor interactions). The parameters of each
element are shown in the figure. Square brackets labeled by a mark the unit cell which periodically repeats along the propagation
direction of the photons (from input to output) with a = 0, ---, k — 1. Function c(a) = 7a/k. The phase function of the PS

G =1 — a6, + (a/k) T,

simulation accuracy. Therefore, it is important to examine the variation of the resources with the system size. We
next investigate this resource dependence in terms of the number of required segments (k) when the number of
bosonic modes (IN) increases. Although the error in the Trotterized time evolution for time-dependent
Hamiltonians has been analyzed in previous work [45-47], we here provide a different perspective to look into
the problem, which is directly related to the optical system studied here.

We note that, as shown by the decomposition (1) and the expression (4), the accuracy of simulation increases
when Trotter number k grows. Also, the number of optical elements required to perform the simulation is
proportional to k (see figure 2). Now consider the difference between the ideal adiabatic evolution and the
Trotterized oneas measuredby A = 1 — | (¢4l¢y) [2. The function U,(T), which is the discrete form of U(T)
obtained using a finite-difference Schodinger equation, is

k—1 k—1 n—1
UiT) =1+ (—in) Y H(n1) + (—in)*Y_ H(n1) Y H(nt) + O(). ®)
n=0 n=1 =0
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Obviously, Uy (T) — U(T)when k — occ. Also, consider the commutator of H, and H,, which, to a large extent,
describes the error when applying equations (6) and (7). By Taylor expansion, we can find the difference of

[[F2) e H@DT and [TFZ] i1~ a/bHiTe~i@/OH,7 Then, the dominant factor of A can be calculated by adding up
the leading terms in above expressions. More specifically, from U(T) to U,(T), we have the leading error given by

H, — H
D= L —2r, ©)
2
From U4(T)to [[*Z} e @7 (expression (4)), the leading error is given by
2 k=1
p,= ¢ ;T) > H(ar). (10)
a=0

From [[¥Z} e H@NT 1o [[FZ1 e-i(-a/bDHime-ia/H,T which is, in principle, sufficient to describe the k ~ N
relation, the leading error is given by
1 —ir)?

Dy=->"

B=0

[H,(87), Ho(B7)]. (1D
Then we have

|(Waaltor) 1> = [ (ol UT(T)[U(T) — Dlloo) > = |1 — (2ol UT(T, 0)Dltho) |?
~1 — 2Re{(Yo|UT(T)Dlthg)} = 1 — 2Re{(¢adl DItbg) } (12)

where D = D) + D, + Ds.Inthe second to last approximation, higher order terms are neglected. After some
simplification, we pick out the leading terms and obtain

T2
&~ T Rel{(wad i) + (ol i) — %wadqu — Ho)lto) + (tud B0}
T2 3
_ §Re{<¢ad|¢0>}|:E02g + EoeEpe — ﬁ(Epg - EOg) + E;g]» (13)

where E,,, (Eo,) is the ground state energy of H, (Hy). This expression comes from the fact that |1/,,4) (o)) is the
ground state of H,, (Hy). Because H, is diagonal, E, is independent of N. In general, E is a function of N
determined by the structure of H,,. The real part of the overlap (1/,4|1) is bounded by one. So we can rewrite A
in the following form:

2
A~ f—k(A + BEp(N) 4 CE,,(N)), (14)

where A, B, Care constants independent of N. We can conclude from equation (14) that for a given A, the
dependence of the Trotter number k on system size N is determined by the ground state energy of H,, to the
leading order in the approximation. Thus determining the form of H,, will enable the determination of the
dependence of E;on N and therefore the relation between k and N for a given A. Notice that we only focus on the
simulation accuracy of an AQC procedure based on the Trotter formula, rather than the effectiveness of the
AQC when preparing the ground state. The latter is determined by the evolution time T as well as the band
structure of the total Hamiltonian, while the former rests on the Trotterization precision affected by the
decomposition of the exponential operator. So, in contrast to standard AQC, equation (14) involves the square
of the ground state energy.

Next, we consider the effect of the fluctuation of the optical elements on this relation. The analysis process is
basically the same as before, except that we replace 7 by 7, (given by RTF (2)). The fluctuation is modeled by
zero-mean random number g, where a is an integer subscript. Such a replacement generates more terms than
equations (9)—(11). The resultant expression of the additional terms to leading order are given by

T2 k—1 ] ' k—1 -
Arre ~ 7| Re{ (v 20 [H, (), HoGyDI(A + ;) + ZO H2(j,7)(1 + g;)?
h= J=
k-2 k-1
+230 Y HGDHGM(E, + g, + 8.8 1)} . (15)

j4:0j3:j4+1

The consideration of RTF only changes the duration of a single part of evolution, so the parameters of the
Hamiltonian in one part do not change. The error scaling of equation (15) can be analyzed by exploring the
magnitude of the summations. Based on the following: (1) the Hy(f) and H,(#) here are linear in tand (2) g, is a
small amplitude fluctuation, each summation is estimated using the averages of the random numbers over finite
samples. More specifically, one has
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Figure 3. The dependence of Trotter number k on system size N when the overlap | (¢,q4]ty) |? is bigger than 0.9. Solid lines are fit via
data points marked by o which are obtained by the ordinary Trotter decomposition. Dashed lines are fit via data points marked
by x which are obtained by RTF. The blue, green and red results correspond to the cases when H,, is pentadiagonal, random sparse

and fully random respectively.

M 1M 1M M M-1 M
Z S(ﬂ)(l + ga)2 ~|1 + _Zga + _Zgaz Z S(a), Z Z S(C)S(b)(gb + gc + gbgc)
a=0 M = MazO a=0 =0 b=c+1
M-1 M M-1 M
~ +g + b), 16

for a given slowly—varying function s(¢). Because g, has zero mean, 1 + %Eﬁio g, + ﬁzﬁio ga2 ~
O(l + 1€, max + ﬁ), M(M+ 1)[2 oM (g, + g g8 ~ ( ! ).Usingapproximation(lé) and

summation formulas of arithmetic sequences, one can obtain Agtg ~ O (%) which will not change the

scaling of equation (14). Therefore, one can conclude that the fluctuations introduced by 7, do not contribute
significantly to the dependence of k on Nwhen (1) and (2) hold.

4. Numerical results

In this section, we numerically evaluate this dependence for some particular cases to show that our
approximations are justified. Unlike the investigations in [45—47] which focus on the norm of the Hamiltonian
matrices, we characterize the influence by ground state energy as we deduced in the last section. In the specific
examples, the structures of the problem Hamiltonians are categorized by the density (or equivalently by its
sparsity). This provides a way to estimate the relative computational complexity of a matrix calculation and is
often used in computational physics. We firstlet Hy be a diagonal matrix whose entries are sorted, equally-
spaced and range from 0.5to N — 0.5. The diagonal entries of H, are Hy — 0.5. The distribution of non-zero
off-diagonal elements of H, is described by the density of a matrix, which is defined as the number of non-zero
matrix elements divided by the total number of matrix elements.

We consider three off-diagonal examples of H,,. The first one only involves the nearest- and next-nearest-
neighbor interaction, i.e. H, is a pentadiagonal matrix with density (SN — 6) /N2. The second off-diagonal part
forms a sparse matrix with fixed density 0.5. The locations of non-zero entries are random. The third one is the
case with full non-zero-off-diagonal entries which means the total density is 1. The values of the off-diagonal
entries in all three types of H, randomly vary from 0 to 1. The simulation results are shown in figure 3. The value
of kis found by increasing from a small number to the point where the overlap | (¢/,4|¢) |* is bigger than 0.9. |¢/y)
is obtained by numerical simulation of TAQC and [/,4) is obtained by direct diagonalization of H,,. The value of
k of each point (marked by o or x) in figure 3 is the average of eight ks, but the same N. The lines are fit via linear
regression. The solid lines are fit by ordinary Totter decomposition data points marked by o and the dashed lines
are fit by RTF data points marked by X . The slope of the solid lines in figure 3 are 2.10 x 1073, 0.80, 1.62 and
that of the dashed lines are 1.46 x 10~*,0.88, 1.63, from the bottom to the top. These results can be explained by
equation (14). We simulate the change of E,; with N in each of the three cases. For the first type of H, (bottom,
blue), E,,, only varies when N increases, so k is nearly constant. For the other two, Elfg is found to be linear for

6
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=> = c(a)Jy;
c(@)Jyy

phase shifter phase shifter + beam splitter

Figure 4. A simplification of the Trotterization circuit. The upper panel shows the ath piece represented by block A and B. The lower
panel shows the detailed schemes in block A and B.

o

PS: tunable phase shifter (controlled by driven voltage)

PNRD: photon-number-resolved detector

Figure 5. An implementation of the Trotterization circuit based on quantum chip. For the convenience of display, only one loop of the
mode is shown in the figure. The loops and controls of other modes are similar.

both cases and the slope of the fitting lines are 9.20 x 10 *for the third and 5.09 x 10~ * for the second, which
is approximately half of the former. The linearity of Egg also indicates that E,, ~ VN which means that Ef,g is
dominant, especially when N is large. Therefore, from figure 3, we can see that the slope of the third (top, red) is
approximately twice the slope of the second (middle, green). The solid lines and the dashed lines are nearly
coincident which supports our analysis of the fluctuations. In general, such a linear dependence is compatible
with the resultsin [47].

5. An implementation of the Trotterization circuit using photonic chip

We utilize the following example to show that our proposal can be implemented using a quantum chip
composed of fewer gates than the corresponding classical circuit. If the slowly-varying control functions are
f(@)=1—t/Tand g(t) = t/T,aswe consider in the main text, the total circuit can be built using two blocks.
The first one, denoted by A, is the first piece of the Trotterization circuit (figure 2), which simulates the operator
¢~ ImX.&8b The second one, denoted by B, simulates the difference of the two adjacent pieces, given by

e iT/kE, bl bt Gr/R) () @by bt ZJunbubi) | According to our proposal, block A can be implemented by using only
PSs and block B can be implemented by a combination of PSs and BSs (similar to a piece in the Trotterization
circuit). Therefore, the ath piece in the Trotterization circuit can be realized by arranging block A and B based on
the scheme shown by figure 4.

In such a manner, the Trotterization circuit we proposed can be transformed into a simpler one containing
only block A and B, together with a set of control strategies to route the photons. To see that such controls are
available, see the literature describing recent work on photonic chips [42, 43]. An example is presented in
figure 5. The photon state propagates in optical fibers or waveguides. The photon-number-resolving detector
(PNRD) is used to obtain the photon information without destroying their states. Then, a control program can

7
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Figure 6. A schematic demonstration of implementing replacement (17). Every Trotter step is completed by two similar blocks with
different orders. All steps are connected by two beam splitters. Like figure 5, only the propagation of one mode is marked out. Block A
and Block B are the same as those in figure 4. It is worth mentioning that above is only for a functional display. The scheme can also be
integrated into a quantum chip as shown in figure 5.

adjust the phase of the photon via a tunable phase shifter based on the photon information. Therefore, the
photon can be routed to block A or Bby a Mach—Zehnder interferometer as required by the algorithm. A long
optical distance might be used to make the photon state analysis in the router more convenience.

In the implementation shown in figure 5, only blocks A and B are used. The number of PSs in block A is equal
to the mode number N. The number of BSs and PSs in block Bis X¥—1 N if we restrict our consideration
to two-mode interactions. Among the elements, the router for each mode requires one PS, two PNRDs and three
BSs. Therefore, the total number of elements is 6N. Hence, number of gates in the circuit in figure 5 is
%N 24+ %N , which implies the time complexity of the circuit is O(N?). This is smaller than the corresponding

classical algorithm which has alower bound of O(N°).

6. An implementation of adiabatic simulation using high-order Trotter—Suzuki formulas

Recently, several strategies for improving the performance of the Trotterization method have been proposed. In
the proposals, high-order Trotter formulas as well as linear combinations of are introduced to decompose the
adiabatic evolution of the Hamiltonian, which can boost the quality of the simulation or computation [48—-50].
Here, we would like to point out that these can be directly implemented by our scheme. We illustrate our setup
below by considering a simple example.

The Taylor series of the exponential operators shows that the second order error of the Totter—Suzuki
decomposition is proportional to the commutators, i.e. e’ A8 — e = 2[A, B] /2 + O(8%), for
Hermitian operators A and B and real number 6. One simple way to eliminate the second order term is
introducing an anticommutator. Then one has e? A+ — (e%4e®B 1 e8Bed) /2 ¢ O(67) [48]. In our case, the
scaling of the error in each Trotter step can be suppressed as discussed previously. Therefore, the total number of
Trotter steps for a required accuracy will be smaller. We numerically evaluate the cases in section 4 with
following replacement

e it/ Hyre—i(1—t/T)HoT _, l(e—i(l—t/T)Hore—i(t/T)H,,r + e—i(t/T)Hpre—i(l—t/T)Hor). (17)

The number of Trotter steps when applying the replacement for different types of H,, are all one order smaller
than the results in section 4. Also, such a strategy is easy to be implemented in an optical system. As shown in
section 5, one Trotter piece can be decomposed into a series of blocks. Realizing the evolution indicated by
replacement (17) merely requires an additional series of the blocks arranged in a different order. Hence, the gate
number only increases by a constant factor. A schematic of the setup is shown by figure 6.

There are other forms of high-order Trotter—Suzuki formulas as well. Some applications have been discussed
in detail [49, 50]. Here, we would like to emphasize that our optical implementation of the adiabatic simulation
is compatible with any strategy composed of linear operations for error suppression or speed-up. One
interesting benefit of the linear strategy is that the additional implementation costs can be limited to polynomial
scaling. Fortunately, optical systems naturally capture the basic requirements for linear information processing,
providing a good platform for implementing such strategies.

7. Conclusions

AQC provides an important potential avenue for quantum computing. However, some issues still need to be
addressed. For example, there is no evidence that AQC can solve optimization problems (even in the ideal case)
more efficiently than classical algorithms. Therefore, there is still the question of how one can improve
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optimization algorithms running on AQC. Another very important challenge is to find suitable platforms for
AQC and/or adiabatic simulation. This has been our main concern in the present work.

We proposed a scheme to adiabatically reach the ground state of a boson Hamiltonian with arbitrary bilinear
interactions using Trotterization. The whole process is implemented by a linear optical design which is robust
against errors caused by fluctuations in the accuracy of the individual elements. To the best of our knowledge,
Trotterization is the only way a dynamical quantum process can be completely mapped to a static circuit. We
also analyzed the dependence of implementation cost on the system size when the simulation accuracy is
approximately fixed. Corresponding analytical and numerical results show that the cost of the simulation,
represented by Trotter number k, and system size N is determined by the structure of problem Hamiltonian.
When the structure is relatively simple, such as the case when H,, is relatively sparse, the cost will grow more
slowly than system size. Moreover, we found that imperfect experimental conditions, modeled by the
fluctuation of evolution time, do not significantly affect the relation between k and N which means that the
simulation is robust against such type of errors. This was verified numerically.

Following our theoretical and numerical analysis, we presented an example of the implementation of the
proposal on a photonic chip. This shows that our scheme can be performed by a set of gates of order N, which is
aclear reduction of the costs compared to the algorithm’s classical counterpart. Last but not least, we proposed
to implement an optimized scheme for our simulation proposal based on high-order Trotter formula. By
example, we showed that this kind of scheme is effective and can be directly realized by our design which
indicates a further improvement of the all-optical adiabatic simulation.
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