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Abstract
Asfirst proposed for the adiabatic quantum information processing byWu et al (2002Phys. Rev. Lett.
89 057904), the Trotterization technique is a very useful tool for universal quantum computing, and in
particular, the adiabatic quantum simulation of quantum systems. Given a bosonHamiltonian
involving arbitrary bilinear interactions, we propose a static version of this technique to perform an
optical simulation that would enable the identification of the ground state of theHamiltonian. By this
method, the dynamical process of the adiabatic evolution ismapped to a static linear optical array
which is robust to the errors caused by dynamicalfluctuations.We examine the cost of the physical
implementation of the Trotterization, i.e. the number of discrete steps required for a given accuracy.
Two conclusions are drawn.One is that the number of required steps growsmuchmore slowly than
the system size if the number of non-zeromatrix elements ofHamiltonian is not too large. The second
is that small fluctuations of the parameters of optical elements do not affect the first conclusion. This
implies that themethod is robust against the certain type of errors as we considered. Last but not least,
we present an example of implementation of the simulation on a photonic chip aswell as an optimized
scheme. By such examples, we show a reduction of the costs compared to its classical counterpart and
the potential for further improvement, which promotes amore general application.

1. Introduction

The reason for simulating a quantum systemusing another quantum system is to obtain information about an
uncontrollable system from a controllable onewhich is similar to the former. It has attracted a lot of attention
ever since proposed by Richard P Feynman [1], and developed by Lloyd [2]. Recent studies [3–15] show that
quantum simulation can provide alternative approaches tofinding solutions by encoding them to the ground
state of aHamiltonian. Some of the simulation strategies have been proven to be capable of dealingwith
classically intractable problems, for exampleNP-complete problems [4, 12].

Onemajor obstacle to realizing the quantum simulation of a particular system is the difficulties in preparing
the ground state of aHamiltonian. In a number of quantum systems, it is relatively easy tofind the ground state
of some particularHamiltonian, but very difficult tofind the one required to solve a specific problem about
whichwe are concerned. A great deal of effort has been expended developing the strategies and technologies for
ground state preparation, both experimentally and theoretically [16–20]. Among those preparation strategies,
adiabatic evolution is well-known for its applicability tomany different types of systems. In principle, if one
prepares the ground state of someHamiltonian, then one can then obtain the ground state of a target
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Hamiltonian by starting with the ground state that one can prepare and slowly evolving the system from the
preparedHamiltonian to the desired one. Such a scheme is guaranteed by adiabatic theorem and now termed
adiabatic quantum computing (AQC) [21]. AQChas been verified in several experiments [22–26] and is
considered a promising candidate for universal quantum computing [27]. In the implementation of AQC, the
crucial step is to adiabatically connect the problemHamiltonian (whose ground state encodes the solution)with
the initial, preparedHamiltonian. Fortunately, the Trotterizaion technique provides a way to achieve such
connection.With this technique, one can decompose the total evolution into short-time operations during
which the systemHamiltonian is approximately time-independent for each step. The dynamical control of the
system can be implemented by a sequence of such operations. This dramatically lowers the difficulty of realizing
AQCby reducing the control requirements. In general, thewhole Trotterized-AQC (TAQC) protocol can be
described as follows [5]. (i)Prepare the ground state ∣y ñ0 ofHamiltonianH0. (ii) Find the problemHamiltonian
Hpwhose ground state encodes the solution. (iii) Set the totalHamiltonian ( ) ( ) ( )= +H t f t H g t Hp0 with
slowly-varying control functions f (t) and g(t), e.g. ( ) = -f t t T1 and ( ) =g t t T where t is the time andT is
the period for the entire evolution. Then decompose the evolution operator into a sequence of steps using the
Trotter–Suzuki formula, which is the key ingredient and given by

( ) ≔ [ ( ) ] [ ( ) ] ( )ò  t t- » -
=

-

U T H t t H aexp i d exp i . 1
T

a

k

0 0

1

U(T) is the evolution operator from0 toT, k is a large integer so that t = T k is a small time segment, and  is
time ordering operator. (iv) Finally, obtain the solution bymeasuring the state ∣y ñf which is the simulation of
∣ ( )∣y yñ = ñU Tad 0 usingU(T) implemented according to equation (1). For operatorsA andB and a sufficiently
small δ, the Trotter–Suzuki formula implies ( )( ) d» +d d d+ Oe e eA B A B 2 . It was introduced for the simulation of
complex time-independentHamiltonians in [2]. The application of the formula to an adiabatic strategy
involving a time-dependentHamiltonian in a TAQCprotocol as described above, was first proposed in [5] and
experimentally implemented in [25].

Here, we propose an optical implementation of a Trotterized adiabatic simulation—one type of TAQC
algorithm using linear optical elements. Linear optics is a promising system formany types of quantum
information processing. A logical qubit can be encoded in the polarization, frequency, spatial modes or other
degrees of freedomof a photonwhich can be preserved for a relatively long time and is controllable [28–38].
Just as important for our purposes, the operations of the system are static so that the dynamics are discretized.
We consider thematrix diagonalization problemwhich is classically classified asNP-hard. In order to obtain
the solution, we propose amethod for reaching the ground state of a bosonHamiltonianwith arbitrary
bilinear interactions. Finding the ground state of aHamiltonian is QMA-hard [39] and, in special cases,
reduces to the diagonalization problem in certainHilbert subspaces. In our case, this reduction provides an
important example of optical simulation.We analyze the dependence of the implementation cost, given by the
Trotter Number (parameter k in the decomposition (1)), on the system size.We also study the effects of
fluctuations of the parameters of the simulation by using a randomized trotter formula (RTF) [12]. The
definition of RTF is

( ) [ ( ) ] ( ) t t» -
=

-

U T H aexp i , 2
a

k

a
0

1

where ( )t t= + g1a a and ga is a randomnumber.When ga is deleted, the decomposition (2) reduces to the
standard one (1). In our case, the fluctuation of τ corresponds to imperfections of experimental optical elements.
Unlike some of the recent investigations on evolution errors [40, 41]which affect the structures ofHamiltonians,
τa represents an inaccurate evolution time in each piece rather than the perturbation on the structure or
parameters of theHamiltonians,meaning that the basic functioning of the optical elements is preserved.We
shownumerically that such error will add little extra cost to the simulation for a given accuracy. Also, wewould
like to point out that the scaling of the ideal settings will likely be decimated by other types of implementation
errors such as those studied by [40, 41].

This paper is organized as follows. In section 2, we introduce our simulation proposal of AQCvia a static
optical circuit.We present our analysis of the dependence of the Trotter number on the system size in section 3.
We then provide three examples and show the numerical results of them in section 4. Section 5 illustrates an
implementation using photonic chip. Section 6 demonstrates a potential optimized scheme for the
Trotterizationmethod enabled by our proposal. Section 7 concludes.
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2. Adiabatic evolution simulated via optical elements

Weconsider a generalmodel with

( )† † †å å åe= = +
¹

H b b H b b J b b, . 3
s

s s s p
l

l l l
m n

mn m n0

where ( )†b bi i is a creation (annihilation) operator of the ith bosonicmodewith commutators
[ ] [ ] [ ]† † †d= = =b b b b b b, , , , 0i j ij i j i j and Jmn is the coupling coefficient between themthmode and nthmode. In
the one-photon subspace, theHamiltonian (3) can represent amatrix which has no additional constraints other
than beingHermitian. So the process offinding its ground state is equivalent to diagonalizing a general
Hermitianmatrix. In our proposal, the bosonicmodes aremapped to the spatialmodes of photons.Hence, †bi
corresponds to a photon propagating along an optical path labeled by i, and bi corresponds to the absence of the
photon from the path. To implement a TAQC, onemust design a physical realization of the adiabatic evolution.
Wenowdiscuss the details of such a realization. First, applying the decomposition (1) to the evolution of a
Hamiltonian (3), we have

⎛
⎝⎜

⎞
⎠⎟ ( )

( ) ( )† † †


å å åt t e

=

- - + +
¹


e . 4

a

k a k b b a k b b J b b

0

1 1
s

s s s
l

l l l
m n

mn m n

Wecan utilize theHermiticity of =J J J, mn nm* , so that

( )

[ ( ) ( )] ( )

† † †

† † † †

å å

å

= +

= + + -
¹ <

<

J b b J b b J b b

J b b b b J b b b bRe i Im , 5

m n
mn m n

m n
mn m n mn m n

m n
mn m n m n mn m n m n

*

where JRe mn ( JIm mn) is the real (imaginary) part of Jmn. Given the commutators andTrotter–Suzuki formula,
everymultiplier of expression (4) can be separated into three exponential operators, and each one can be further
decomposed as

( )

( ) ( )

( ) ( )

†
†

†
†





=

=

å

å

t t

t e te

- - - -

- -

 e e ,

e e , 6
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a k b b

l
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i 1
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i
i

s
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l
l l l

l l l

and

[

] ( )

( ) ( ) ( )

( ) ( )

†
† †

† †

»

´

åt t

t

-

<

-

- +

¹e e

e . 7

a k J b b

m n

a k J b b b b

a k J b b b b

i
Im

i Re

m n
mn m n

mn m n m n

mn m n m n

Next, we demonstrate how to simulate these operators using an array of optical devices. However, we note
that it is possible to implement the same set of elements using a photonic chip [35, 42, 43]which should enable a
speed-up over the classical counterpart. Herewe introduce the basicmethods and present a prototype for such a
chip. An example of the chip design is provided in the section 5.We primarily use two common linear elements,
phase shifters (PSs) and beam splitters (BSs), shown by figures 1(a) and (b). Themathematical descriptions of PS
andBS are ( ) †f = f-U e c c

ps
i and ( ) ( )† †q = q -U e c d cd

bs . (See for example [44].) †c and †d are two different spatial
modes.f is the phase shifted by a PS and θ defines the reflection (transmission) rate of a BS through qcos ( qsin ).

( )fUps and ( )qUbs match the formof equations (6) and (7). The factors of the forms ( ) †t- - e a k b bi 1 s s s and
( ) †te-e a k b bi l l l can be implemented by two PSs, (( ) )t- U a k1s

sps and (( ) )teU a kl
lps . Superscripts s and l denote

the opticalmodes. Factor ( ) ( )† †t -e a k J b b b bIm mn m n m n can be implemented by one BS, (( ) )tU a k JImmn
mnbs , wherem

and n denote opticalmodes. The factor ( ) ( )† †t- +e a k J b b b bi Re mn m n m n can be implemented by a combination of four PSs

and a BS, ( ) ( ) ( ) ( )( ) )tp p p p- -U U U a k J U URem n mn
mn

m n
bs 4 bs 4 bs bs 4 bs 4

. This can be seen by using the relation

=-p p
Y Xe eZ Z4 4 and the connection between the Lie group SU(2) and boson operators. An illustration of the

above combination is given by figure 1(c).Thewhole implementation of the simulation is described by figure 2.
For ease of illustration, figure 2 only shows nearest-neighbor interactions. However, it is in principle possible to
implement any type of bilinear interaction.

3. Parameter dependence analysis

Our objective is the simulation of large quantum systemswhich are difficult to simulate using classical
computers. However, when system size grows,more resourcesmay be required to obtain the same level of
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simulation accuracy. Therefore, it is important to examine the variation of the resources with the system size.We
next investigate this resource dependence in terms of the number of required segments (k)when the number of
bosonicmodes (N) increases. Although the error in the Trotterized time evolution for time-dependent
Hamiltonians has been analyzed in previouswork [45–47], we here provide a different perspective to look into
the problem,which is directly related to the optical system studied here.

We note that, as shownby the decomposition (1) and the expression (4), the accuracy of simulation increases
whenTrotter number k grows. Also, the number of optical elements required to perform the simulation is
proportional to k (seefigure 2). Now consider the difference between the ideal adiabatic evolution and the
Trotterized one asmeasured by ∣ ∣ ∣y yD = - á ñ1 ad f

2. The functionUd(T), which is the discrete formofU(T)
obtained using a finite-difference Schödinger equation, is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )å å åt t t t t t= + - + - +
=

-

=

-

=

-

U T H r H r H r O1 i i . 8d
r

k

r

k

r

r

0

1

1
2

1

1

1
0

1

2
3

1 1 2

1

Figure 1.Optical elements and their combinations used for simulation. (a)Phase shifter (b) beam splitter and (c) combination for the
simulation of the real part of the interaction. (Details are in themain text.)Outputmodes †¢c and †¢d in (b) are defined by

† † † † † †q q q q¢ = + ¢ = - +c c d d c dcos sin , sin cos .

Figure 2. Sketch of thewhole simulation of the adiabatic evolution (for only nearest-neighbor interactions). The parameters of each
element are shown in thefigure. Square brackets labeled by amark the unit cell which periodically repeats along the propagation
direction of the photons (from input to output)with = -a k0, , 1. Function ( ) t=c a a k. The phase function of the PS

( ) ( )j t t e= - +a k a k1na a n a n.
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Obviously, ( ) ( )U T U Td when  ¥k . Also, consider the commutator ofH0 andHpwhich, to a large extent,
describes the errorwhen applying equations (6) and (7). ByTaylor expansion,we canfind thedifference of

( ) t t
=
- -ea

k H a
0
1 i and ( ) ( ) t t

=
- - - -e ea

k a k H a k H
0
1 i 1 i p0 . Then, the dominant factor ofΔ canbe calculated by addingup

the leading terms in above expressions.More specifically, fromU(T) toUd(T), we have the leading error givenby

( )t=
-

D
H H

2
. 9

p
1

0

FromUd(T) to ( ) t t
=
- -ea

k H a
0
1 i (expression (4)), the leading error is given by

( ) ( ) ( )åt
at= -

-

a=

-

D H
i

2
. 10

k

2

2

0

1
2

From ( ) t t
=
- -ea

k H a
0
1 i to ( ) ( ) t t

=
- - - -e ea

k a k H a k H
0
1 i 1 i p0 which is, in principle, sufficient to describe the ~k N

relation, the leading error is given by

( ) [ ( ) ( )] ( )å t
bt bt= -

-

b=

-

D H H
i

2
, . 11

k

p3
0

1 2

0

Thenwe have

∣ ∣ ∣ ∣ ∣ ( )[ ( ) ]∣ ∣ ∣ ∣ ( ) ∣ ∣
{ ∣ ( ) ∣ } { ∣ ∣ } ( )

† †

†

y y y y y y

y y y y

á ñ » á - ñ = - á ñ

» - á ñ = - á ñ

U T U T D U T D

U T D D

1 , 0

1 2 Re 1 2 Re , 12

ad f

ad

2
0 0

2
0 0

2

0 0 0

where = + +D D D D1 2 3. In the second to last approximation, higher order terms are neglected. After some
simplification, we pick out the leading terms and obtain

⎡
⎣⎢

⎤
⎦⎥

{[ ∣ ∣ ∣ ∣ ∣( )∣ ∣ ∣ ]}

{ ∣ } ( ) ( )

y y y y y y y y

y y

D » á ñ + á ñ - á - ñ + á ñ

= á ñ + - - +

T

k
H H H

T
H H H

T

k
E E E

T
E E E

3
Re

3

2

3
Re

3

2
, 13

ad ad p ad p ad p

ad g g pg pg g pg

2

0
2

0 0 0 0 0
2

0

2

0 0
2

0 0
2

where Epg (E0g) is the ground state energy ofHp (H0). This expression comes from the fact that ∣y ñad (∣y ñ0 ) is the
ground state ofHp (H0). BecauseH0 is diagonal, E0g is independent ofN. In general, Epg is a function ofN
determined by the structure ofHp. The real part of the overlap ∣y yá ñad 0 is bounded by one. Sowe can rewriteΔ
in the following form:

( ( ) ( )) ( )D » + +
T

k
A BE N CE N

3
, 14pg pg

2
2

whereA,B,C are constants independent ofN.We can conclude from equation (14) that for a givenΔ, the
dependence of the Trotter number k on system sizeN is determined by the ground state energy ofHp to the
leading order in the approximation. Thus determining the formofHpwill enable the determination of the
dependence ofEg onN and therefore the relation between k andN for a givenΔ. Notice that we only focus on the
simulation accuracy of anAQCprocedure based on the Trotter formula, rather than the effectiveness of the
AQCwhen preparing the ground state. The latter is determined by the evolution timeT aswell as the band
structure of the totalHamiltonian, while the former rests on the Trotterization precision affected by the
decomposition of the exponential operator. So, in contrast to standardAQC, equation (14) involves the square
of the ground state energy.

Next, we consider the effect of the fluctuation of the optical elements on this relation. The analysis process is
basically the same as before, except that we replace τ by τa (given by RTF (2)). Thefluctuation ismodeled by
zero-mean randomnumber gawhere a is an integer subscript. Such a replacement generatesmore terms than
equations (9)–(11). The resultant expression of the additional terms to leading order are given by

∣ { ∣ [ ( ) ( )]( ) ( )( )

( ) ( )( )∣ }∣ ( )

å å

å å

y t t t

t t y

D » á + + +

+ + + ñ

=

-

=

-

=

-

= +

-

T

k
H j H j g H j g

H j H j g g g g

Re , 1 1

2 . 15

ad
j

k

p j
j

k

j

j

k

j j

k

j j j j

RTF

2

2
0

1

1 0 1
2

0

1
2

2
2

0

2

1

1

3 4 0

1

1

2

2

4 3 4

3 4 3 4

The consideration of RTF only changes the duration of a single part of evolution, so the parameters of the
Hamiltonian in one part do not change. The error scaling of equation (15) can be analyzed by exploring the
magnitude of the summations. Based on the following: (1) theH0(t) andHp(t)here are linear in t and (2) ga is a
small amplitude fluctuation, each summation is estimated using the averages of the randomnumbers over finite
samples.More specifically, one has
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⎛
⎝⎜
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for a given slowly-varying function s(t). Because ga has zeromean, + å + å ~= =g g1
M a

M
a M a

M
a

2
0

1
0

2

( ) ( )∣ ∣ [ ( )]
( )

+ + å å + + ~
+ =

-
= +O g g g g g O1 ,a M M M c

M
b c
M

b c b c Mmax
1 2

1 0
1

1
1 . Using approximation (16) and

summation formulas of arithmetic sequences, one can obtain ( )D ~ O
kRTF
1 which will not change the

scaling of equation (14). Therefore, one can conclude that the fluctuations introduced by τa do not contribute
significantly to the dependence of k onNwhen (1) and (2) hold.

4.Numerical results

In this section, we numerically evaluate this dependence for some particular cases to show that our
approximations are justified.Unlike the investigations in [45–47]which focus on the normof theHamiltonian
matrices, we characterize the influence by ground state energy as we deduced in the last section. In the specific
examples, the structures of the problemHamiltonians are categorized by the density (or equivalently by its
sparsity). This provides away to estimate the relative computational complexity of amatrix calculation and is
often used in computational physics.Wefirst letH0 be a diagonalmatrix whose entries are sorted, equally-
spaced and range from0.5 to -N 0.5. The diagonal entries ofHp are -H 0.50 . The distribution of non-zero
off-diagonal elements ofHp is described by the density of amatrix, which is defined as the number of non-zero
matrix elements divided by the total number ofmatrix elements.

We consider three off-diagonal examples ofHp. Thefirst one only involves the nearest- and next-nearest-
neighbor interaction, i.e.Hp is a pentadiagonalmatrix with density ( )-N N5 6 2. The second off-diagonal part
forms a sparsematrix with fixed density 0.5. The locations of non-zero entries are random. The third one is the
case with full non-zero-off-diagonal entries whichmeans the total density is 1. The values of the off-diagonal
entries in all three types ofHp randomly vary from0 to 1. The simulation results are shown infigure 3. The value
of k is found by increasing from a small number to the point where the overlap ∣ ∣ ∣y yá ñad f

2 is bigger than 0.9. ∣y ñf

is obtained by numerical simulation of TAQCand ∣y ñad is obtained by direct diagonalization ofHp. The value of
k of each point (marked by ◦ or×) infigure 3 is the average of eight ks, but the sameN. The lines are fit via linear
regression. The solid lines arefit by ordinary Totter decomposition data pointsmarked by ◦ and the dashed lines
arefit by RTF data pointsmarked by×. The slope of the solid lines infigure 3 are ´ -2.10 10 , 0.80, 1.623 and
that of the dashed lines are 1.46×10−4, 0.88, 1.63, from the bottom to the top. These results can be explained by
equation (14).We simulate the change ofEpgwithN in each of the three cases. For thefirst type ofHp (bottom,
blue),Epg only varies whenN increases, so k is nearly constant. For the other two, Epg

2 is found to be linear for

Figure 3.The dependence of Trotter number k on system sizeNwhen the overlap ∣ ∣ ∣y yá ñad f
2 is bigger than 0.9. Solid lines arefit via

data pointsmarked by ◦which are obtained by the ordinary Trotter decomposition. Dashed lines arefit via data pointsmarked
by×which are obtained byRTF. The blue, green and red results correspond to the cases whenHp is pentadiagonal, random sparse
and fully random respectively.
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both cases and the slope of the fitting lines are 9.20×10−4 for the third and 5.09×10−4 for the second, which
is approximately half of the former. The linearity of Epg

2 also indicates that ~E Npg whichmeans thatEpg
2 is

dominant, especially whenN is large. Therefore, from figure 3, we can see that the slope of the third (top, red) is
approximately twice the slope of the second (middle, green). The solid lines and the dashed lines are nearly
coincident which supports our analysis of the fluctuations. In general, such a linear dependence is compatible
with the results in [47].

5. An implementation of the Trotterization circuit using photonic chip

Weutilize the following example to show that our proposal can be implemented using a quantum chip
composed of fewer gates than the corresponding classical circuit. If the slowly-varying control functions are

( ) = -f t t T1 and ( ) =g t t T , as we consider in themain text, the total circuit can be built using two blocks.
Thefirst one, denoted byA, is the first piece of the Trotterization circuit (figure 2), which simulates the operator

†t- å e b bi s s s s. The second one, denoted byB, simulates the difference of the two adjacent pieces, given by
( )( )† † †t t- å + å +å ¹ e k b b k b b J b bi is s s s l l l l m n mn m n . According to our proposal, blockA can be implemented by using only

PSs and blockB can be implemented by a combination of PSs andBSs (similar to a piece in the Trotterization
circuit). Therefore, the ath piece in the Trotterization circuit can be realized by arranging blockA andB based on
the scheme shown by figure 4.

In such amanner, the Trotterization circuit we proposed can be transformed into a simpler one containing
only blockA andB, together with a set of control strategies to route the photons. To see that such controls are
available, see the literature describing recent work on photonic chips [42, 43]. An example is presented in
figure 5. The photon state propagates in optical fibers orwaveguides. The photon-number-resolving detector
(PNRD) is used to obtain the photon informationwithout destroying their states. Then, a control program can

Figure 4.A simplification of the Trotterization circuit. The upper panel shows the ath piece represented by blockA andB. The lower
panel shows the detailed schemes in blockA andB.

Figure 5.An implementation of the Trotterization circuit based on quantum chip. For the convenience of display, only one loop of the
mode is shown in the figure. The loops and controls of othermodes are similar.
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adjust the phase of the photon via a tunable phase shifter based on the photon information. Therefore, the
photon can be routed to blockA orB by aMach–Zehnder interferometer as required by the algorithm. A long
optical distancemight be used tomake the photon state analysis in the routermore convenience.

In the implementation shown infigure 5, only blocksA andB are used. The number of PSs in blockA is equal

to themode numberN. The number of BSs and PSs in blockB is ( ) +- NN N5 1

2
if we restrict our consideration

to two-mode interactions. Among the elements, the router for eachmode requires one PS, two PNRDs and three
BSs. Therefore, the total number of elements is 6N. Hence, number of gates in the circuit infigure 5 is

+N N5

2
2 11

2
, which implies the time complexity of the circuit isO(N2). This is smaller than the corresponding

classical algorithmwhich has a lower bound ofO(N3).

6. An implementation of adiabatic simulation using high-order Trotter–Suzuki formulas

Recently, several strategies for improving the performance of the Trotterizationmethod have been proposed. In
the proposals, high-order Trotter formulas as well as linear combinations of are introduced to decompose the
adiabatic evolution of theHamiltonian, which can boost the quality of the simulation or computation [48–50].
Here, wewould like to point out that these can be directly implemented by our scheme.We illustrate our setup
belowby considering a simple example.

The Taylor series of the exponential operators shows that the second order error of the Totter–Suzuki
decomposition is proportional to the commutators, i.e. [ ] ( )( ) d- = +d d d+ t A B Oe e e , 2A B A B 2 3 , for
Hermitian operatorsA andB and real number δ. One simpleway to eliminate the second order term is
introducing an anticommutator. Then one has ( ) ( )( ) d- + Îd d d d d+ Oe e e e e 2A B A B B A 3 [48]. In our case, the
scaling of the error in eachTrotter step can be suppressed as discussed previously. Therefore, the total number of
Trotter steps for a required accuracywill be smaller.We numerically evaluate the cases in section 4with
following replacement

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) +t t t t t t- - - - - - - - -e e
1

2
e e e e . 17t T H t T H t T H t T H t T H t T Hi i 1 i 1 i i i 1p p p0 0 0

The number of Trotter stepswhen applying the replacement for different types ofHp are all one order smaller
than the results in section 4. Also, such a strategy is easy to be implemented in an optical system. As shown in
section 5, one Trotter piece can be decomposed into a series of blocks. Realizing the evolution indicated by
replacement (17)merely requires an additional series of the blocks arranged in a different order.Hence, the gate
number only increases by a constant factor. A schematic of the setup is shownby figure 6.

There are other forms of high-order Trotter–Suzuki formulas as well. Some applications have been discussed
in detail [49, 50]. Here, wewould like to emphasize that our optical implementation of the adiabatic simulation
is compatible with any strategy composed of linear operations for error suppression or speed-up.One
interesting benefit of the linear strategy is that the additional implementation costs can be limited to polynomial
scaling. Fortunately, optical systems naturally capture the basic requirements for linear information processing,
providing a good platform for implementing such strategies.

7. Conclusions

AQCprovides an important potential avenue for quantum computing. However, some issues still need to be
addressed. For example, there is no evidence that AQC can solve optimization problems (even in the ideal case)
more efficiently than classical algorithms. Therefore, there is still the question of howone can improve

Figure 6.A schematic demonstration of implementing replacement (17). Every Trotter step is completed by two similar blocks with
different orders. All steps are connected by two beam splitters. Like figure 5, only the propagation of onemode ismarked out. BlockA
andBlockB are the same as those in figure 4. It is worthmentioning that above is only for a functional display. The scheme can also be
integrated into a quantum chip as shown infigure 5.
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optimization algorithms running onAQC.Another very important challenge is tofind suitable platforms for
AQC and/or adiabatic simulation. This has been ourmain concern in the present work.

We proposed a scheme to adiabatically reach the ground state of a bosonHamiltonianwith arbitrary bilinear
interactions using Trotterization. Thewhole process is implemented by a linear optical designwhich is robust
against errors caused by fluctuations in the accuracy of the individual elements. To the best of our knowledge,
Trotterization is the only way a dynamical quantumprocess can be completelymapped to a static circuit.We
also analyzed the dependence of implementation cost on the system sizewhen the simulation accuracy is
approximately fixed. Corresponding analytical and numerical results show that the cost of the simulation,
represented by Trotter number k, and system sizeN is determined by the structure of problemHamiltonian.
When the structure is relatively simple, such as the case whenHp is relatively sparse, the cost will growmore
slowly than system size.Moreover, we found that imperfect experimental conditions,modeled by the
fluctuation of evolution time, do not significantly affect the relation between k andNwhichmeans that the
simulation is robust against such type of errors. This was verified numerically.

Following our theoretical and numerical analysis, we presented an example of the implementation of the
proposal on a photonic chip. This shows that our scheme can be performed by a set of gates of orderN2, which is
a clear reduction of the costs compared to the algorithm’s classical counterpart. Last but not least, we proposed
to implement an optimized scheme for our simulation proposal based on high-order Trotter formula. By
example, we showed that this kind of scheme is effective and can be directly realized by our designwhich
indicates a further improvement of the all-optical adiabatic simulation.
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