
CoproID predicts the source of coprolites
and paleofeces using microbiome
composition and host DNA content
Maxime Borry1, Bryan Cordova1, Angela Perri2,3, Marsha Wibowo4,5,6,
Tanvi Prasad Honap7,8, Jada Ko9, Jie Yu10, Kate Britton3,11,
Linus Girdland-Flink11,12, Robert C. Power3,13, Ingelise Stuijts14,
Domingo C. Salazar-García15,16, Courtney Hofman7,8, Richard Hagan1,
Thérèse Samdapawindé Kagoné17, Nicolas Meda17, Helene Carabin18,
David Jacobson7,8, Karl Reinhard19, Cecil Lewis7,8,
Aleksandar Kostic4,5,6, Choongwon Jeong1,20, Alexander Herbig1,
Alexander Hübner1 and Christina Warinner1,9,21

1 Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena,
Germany

2 Department of Archaeology, Durham University, Durham, UK
3Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig,
Germany

4 Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA,
USA

5 Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
6 Department of Microbiology, Harvard Medical School, Boston, MA, USA
7 Department of Anthropology, University of Oklahoma, Norman, OK, USA
8 Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of
Oklahoma, Norman, OK, USA

9 Department of Anthropology, Harvard University, Cambridge, MA, USA
10 Department of History, Wuhan University, Wuhan, China
11 Department of Archaeology, University of Aberdeen, Aberdeen, Scotland, UK
12 School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
13 Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie,

Ludwig-Maximilians-Universität München, München, Germany
14 The Discovery Programme, Dublin, Ireland
15 Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU), IKERBASQUE-Basque

Foundation for Science, Vitoria-Gasteiz, Spain
16 Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València,

València, Spain
17 Centre Muraz, Bobo-Dioulasso, Burkina Faso
18Département de pathologie et de microbiologie, Faculté de Médecine vétérinaire, Université de
Montréal, Saint-Hyacinthe, QC, Canada

19 School of Natural Resources, University of Nebraska, Lincoln, NE, USA
20 School of Biological Sciences, Seoul National University, Seoul, South Korea
21 Faculty of Biological Sciences, Friedrich-Schiller Universität Jena, Jena, Germany

ABSTRACT
Shotgun metagenomics applied to archaeological feces (paleofeces) can bring new
insights into the composition and functions of human and animal gut microbiota
from the past. However, paleofeces often undergo physical distortions in
archaeological sediments, making their source species difficult to identify on the basis
of fecal morphology or microscopic features alone. Here we present a reproducible
and scalable pipeline using both host and microbial DNA to infer the host source
of fecal material. We apply this pipeline to newly sequenced archaeological
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specimens and show that we are able to distinguish morphologically similar human
and canine paleofeces, as well as non-fecal sediments, from a range of archaeological
contexts.

Subjects Anthropology, Bioinformatics, Genomics, Microbiology, Data Mining and Machine
Learning
Keywords Coprolite, Paleofeces, Microbiome, Endogenous DNA, Archeology, Machine learning,
Nextflow, Gut, Human, Dog

INTRODUCTION
The gut microbiome, located in the distal colon and primarily studied through the analysis
of feces, is the largest and arguably most influential microbial community within the
body (The Human Microbiome Project Consortium, 2012). Recent investigations of the
human microbiome have revealed that it plays diverse roles in health and disease, and gut
microbiome composition has been linked to a variety of human health states, including
inflammatory bowel diseases, diabetes, and obesity (Kho & Lal, 2018). To investigate
the gut microbiome, metagenomic sequencing is typically used to reveal both the
taxononomic composition (i.e., which bacteria are there) and the functions the microbes
are capable of performing (i.e., their potential metabolic activities) (Sharpton, 2014). Given
the importance of the gut microbiome in human health, there is great interest in
understanding its recent evolutionary and ecological history (Warinner & Lewis, 2015;
Davenport et al., 2017).

Paleofeces, either in an organic or partially mineralized (coprolite) state, present a
unique opportunity to directly investigate changes in the structure and function of the gut
microbiome through time (Warinner et al., 2015). Paleofeces are found in a wide variety of
archaeological contexts around the world and are generally associated with localized
processes of dessication, freezing, or mineralization. Paleofeces can range in size from
whole, intact fecal pieces (Jiménez et al., 2012) to millimeter-sized sediment inclusions
identifiable by their high phosphate and fecal sterol content (Sistiaga et al., 2014).
Although genetic approaches have long been used to investigate dietary DNA found within
human (Gilbert et al., 2008; Poinar et al., 2001) and animal (Poinar et al., 1998; Hofreiter
et al., 2000; Bon et al., 2012; Wood et al., 2016) paleofeces, it is only recently that
improvements in metagenomic sequencing and bioinformatics have enabled detailed
characterization of their microbial communities (Tito et al., 2008, 2012; Warinner et al.,
2017).

However, before evolutionary studies of the gut microbiome can be conducted, it is first
necessary to confirm the host source of the paleofeces under study. Feces can be difficult
to taxonomically assign by morphology alone (Supplemental Text; Reinhard & Bryant,
1992), and human and canine feces can be particularly difficult to distinguish in
archaeological contexts (Poinar et al., 2009). Since their initial domestication more than
12,000 years ago (Frantz et al., 2016), dogs have often lived in close association with
humans, and it is not uncommon for human and dog feces to co-occur at archaeological
sites. Moreover, dogs often consume diets similar to humans because of provisioning or
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refuse scavenging (Guiry, 2012), making their feces difficult to distinguish based on dietary
contents. Even well-preserved fecal material degrades over time, changing in size, shape,
and color (Fig. 1; Reinhard & Bryant, 1992). The combined analysis of host and microbial
ancient DNA (aDNA) within paleofeces presents a potential solution to this problem.

Previously, paleofeces host source has been genetically inferred on the basis of
PCR-amplified mitochondrial DNA sequences alone (Hofreiter et al., 2000); however,
this is problematic in the case of dogs, which, in addition to being pets and working
animals, were also eaten by many ancient cultures (Clutton-Brock & Hammond, 1994;
Rosenswig, 2007; Kirch & O’Day, 2003; Podberscek, 2009), and thus trace amounts of dog
DNA may be expected to be present in the feces of humans consuming dogs. Additionally,
dogs often scavenge on human refuse, including human excrement (Butler & Du Toit,
2002), and thus ancient dog feces could also contain trace amounts of human DNA, which
could be further inflated by PCR-based methods.

A metagenomics approach overcomes these issues by allowing a quantitative assessment
of eukaryotic DNA at a genome-wide scale, including the identification and removal of
modern human contaminant DNA that could potentially arise during excavation or
subsequent curation or storage. It also allows for the microbial composition of the feces to
be taken into account. Gut microbiome composition differs among mammal species
(Ley et al., 2008), and thus paleofeces microbial composition could be used to confirm and
authenticate host assignment. Available microbial tools, such as SourceTracker (Knights
et al., 2011) and FEAST (Shenhav et al., 2019), can be used to perform the source
prediction of microbiome samples from uncertain sources (sinks) using a reference dataset
of source-labeled microbiome samples and, respectively, Gibbs sampling or an
Expectation-Maximization algorithm. However, although SourceTracker has been widely
used for modern microbiome studies and has even been applied to ancient gut microbiome
data (Tito et al., 2012; Hagan et al., 2020), it was not designed to be a host species
identification tool for ancient microbiomes.

In this work we present a bioinformatics method to infer and authenticate the host
source of paleofeces from shotgun metagenomic DNA sequencing data: coproID (coprolite
IDentification). coproID combines the analysis of putative host ancient DNA with a
machine learning prediction of the feces source based on microbiome taxonomic
composition. Ultimately, coproID predicts the host source of a paleofeces specimen from
the shotgun metagenomic data derived from it. We apply coproID to previously
published modern fecal datasets and show that it can be used to reliably predict their host.
We then apply coproID to a set of newly sequenced paleofeces specimens and non-fecal
archaeological sediments and show that it can discriminate between feces of human
and canine origin, as well as between fecal and non-fecal samples.

MATERIALS AND METHODS
Gut microbiome reference datasets
Previously published modern reference microbiomes were chosen to represent the
diversity of potential paleofeces sources and their possible contaminants, namely human
fecal microbiomes from Non-Westernized Human/Rural (NWHR) and Westernized
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Human/Urban (WHU) communities, dog fecal microbiomes, and soil samples (Table 1).
Because the human datasets had been filtered to remove human genetic sequences prior to
database deposition, we additionally generated new sequencing data from 118 fecal
specimens from both NWHR and WHU populations (Table S5) in order to determine the
average proportion and variance of host DNA in human feces. The Joslin Diabetes Center
granted Ethical approval (CHS# 2017-25) to sample the WHU individuals. The Centre
MURAZ Research Institute granted Ethical approval (No. 31/2016/CE-CM) to sample the
NWHR individuals.

Figure 1 Examples of archaeological paleofeces analyzed in this study. (A) H29-3, from Anhui
Province, China, Neolithic period; (B) Zape 2, from Durango, Mexico, ca. 1300 BP; (C) Zape 28, from
Durango, Mexico, ca. 1300 BP. Paleofeces ranged from slightly mineralized intact pieces (A) to more
fragmentary organic states (B and C), and color ranged from pale gray (A) to dark brown (C).

Full-size DOI: 10.7717/peerj.9001/fig-1

Table 1 Modern reference microbiome datasets.

Metagenome source Food
production

N Analysis Source

Homo sapiens, USA WHU 36 microbiome The Human Microbiome Project Consortium (2012)

Homo sapiens, India (Bhopal and
Kerala)

WHU and
NWHR

19 microbiome Dhakan et al. (2019)

Homo sapiens, Fiji (agrarian villages) NWHR 20 microbiome Brito et al. (2019)

Homo sapiens, Madagascar NWHR 110 microbiome Pasolli et al. (2019)

Homo sapiens, Brazil (Yanomami) NWHR 3 microbiome Pasolli et al. (2019)

Homo sapiens, Peru (Tunapuco) NWHR 12 microbiome Obregon-Tito et al. (2015)

Homo sapiens, Tanzania (Hadza) NWHR 38 microbiome Rampelli et al. (2015)

Homo sapiens, Peru (Matses) NWHR 24 microbiome Obregon-Tito et al. (2015)

Homo sapiens, USA (Boston) WHU 49 host DNA This study

Homo sapiens, Burkina Faso NWHR 69 host DNA This study

Canis familiaris – 150 microbiome and host
DNA

Coelho et al. (2018)

Soil – 16 microbiome Fierer et al. (2012)

Soil – 2 microbiome CSIR-Central Institute of Medicinal & Aromatic Plants
(2016)

Soil – 2 microbiome Orellana et al. (2018)
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Archaeological samples
A total of 20 archaeological samples, originating from 10 sites (Fig. S3) and spanning
periods from 7200 BP to the medieval era, were selected for this study. Among these 20
samples, of which 17 are newly sequenced, 13 are paleofeces, 4 are midden sediments, and
3 are sediments obtained from human pelvic bone surfaces (Table 2).

Table 2 Archaeological samples.

Archeological
ID

Laboratory
ID

Site Name Region Period Sample type Archaeologically
suspected species

Plot
ID

Zape 2* ZSM002 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 01

Zape 5* ZSM005 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 02

Zape 23 ZSM023 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN or
CANID

03

Zape 25 ZSM025 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 04

Zape 27 ZSM027 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 05

Zape 28* ZSM028 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 06

Zape 29 ZSM029 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 07

Zape 31 ZSM031 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 08

H29-1 AHP001 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

09

H35-1 AHP002 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

10

H29-2 AHP003 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

11

H29-3 AHP004 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

12

LG 4560.69 YRK001 Surrey UK Post-Medieval Paleofeces HUMAN 13

AP3-C197S163 DRL001.A Derragh Ireland Mesolithic Midden
Sediment

– 14

AP4-A6-2860 CBA001.A CabeÃ§o das Amoreiras Portugal Mesolithic Midden
Sediment

– 15

AP5-798-162 BRF001.A Binchester Roman Fort England Roman Midden
Sediment

– 16

AP6-LPZ702 LEI010.A Leipzig Germany 10th–11th century AD Midden
Sediment

– 17

AP7-6-28353 ECO004.D El Collado Spain Mesolithic Pelvic Sediment – 18

AP8-CMN-M1 CMN001.D Cingle del Mas Nou Spain Mesolithic Pelvic Sediment – 19

AP9-17590 MLP001.A Molpir Slovakia 7th century BC Pelvic Sediment – 20
Note:

* Metagenomic data were previously published in Hagan et al. (2020).
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Sampling
Paleofeces specimens from Mexico were sampled in a dedicated aDNA cleanroom in the
Laboratories for Molecular Anthropology and Microbiome Research (LMAMR) at the
University of Oklahoma, USA. Specimens from China were sampled in a dedicated aDNA
cleanroom at the Max Planck Institute for the Science of Human History (MPI-SHH) in
Jena, Germany. All other specimens were first sampled at the Max Planck Institute for
Evolutionary Anthropology (MPI-EVA) in Leipzig, Germany before being transferred to
the MPI-SHH for further processing. Sampling was performed using a sterile stainless
steel spatula or scalpel, followed by homogenization in a mortar and pestle, if necessary.
Because the specimens from Xiaosungang, China were very hard and dense, a rotary drill
was used to section the coprolite prior to sampling. Where possible, fecal material was
sampled from the interior of the specimen rather than the surface. Specimens from
Molphir and Leipzig were received suspended in a buffer of trisodium phosphate, glycerol,
and formyl following screening for parasite eggs using optical microscopy. For each
paleofeces specimen, a total of 50–200 mg was analyzed.

Modern feces were obtained under written informed consent from Boston, USA
(WHU) from a long-term (>50 years) type 1 diabetes cohort, and from villages in Burkina
Faso (NWHR) as part of broader studies on human gut microbiome biodiversity and
health-associated microbial communities. Feces were collected fresh and stored frozen
until analysis. A total of 250 mg was analyzed for each fecal specimen.

DNA extraction
For paleofeces and sediment samples, DNA extractions were performed using a silica spin
column protocol (Dabney et al., 2013) with minor modifications in dedicated aDNA
cleanrooms located at LMAMR (Mexican paleofeces) and the MPI-SHH (all other
paleofeces). At LMAMR, the modifications followed those of method D described in
Hagan et al. (2020). DNA extractions at the MPI-SHH were similar, but omitted the initial
bead-beating step, and a single silica column was used per sample instead of two.
Additionally, to reduce centrifugation errors, DNA extractions performed at the MPI-SHH
substituted the column apparatus from the High Pure Viral Nucleic Acid Large Volume
Kit (Roche, Switzerland) in place of the custom assembled Zymo-reservoirs coupled to
MinElute (Qiagen, Hilden, Germany) columns described in Dabney et al. (2013). Samples
processed at the MPI-SHH were also partially treated with uracil-DNA-glycosylase (UDG)
enzyme to confine DNA damage to the ends of the DNA molecules (Rohland et al., 2015).

For modern feces, DNA was extracted from Burkina Faso fecal samples using the
AllPrep PowerViral DNA/RNA Qiagen kit at Centre MURAZ Research Institute in
Burkina Faso. DNA was extracted from the Boston fecal material using the
ZymoBIOMICS DNA Miniprep Kit (D4303) at the Joslin Diabetes Center.

Library preparation and sequencing
For paleofeces and sediment samples, double-stranded, dual-indexed shotgun Illumina
libraries were constructed following (Meyer & Kircher, 2010) using either the NEBNext
DNA Library Prep Master Set (E6070) kit (Hagan et al., 2020; Mann et al., 2018) for the
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Mexican paleofeces or individually purchased reagents (Mann et al., 2018) for all other
samples. Following library amplification using Phusion HotStart II (ZSM023, ZSM025,
ZSM027, ZSM029), KAPA HiFi Uracil+ (ZSM002, ZSM005, ZSM028), or Agilent Pfu
Turbo Cx Hotstart (all other paleofeces) polymerase, the libraries were purified using a
Qiagen MinElute PCR Purification kit and quantified using either a BioAnalyzer 2100 with
High Sensitivity DNA reagents or an Agilent Tape Station D1000 Screen Tape kit.
The Mexican libraries were pooled in equimolar amounts and sequenced on an Illumina
HiSeq 2000 using 2 × 100 bp paired-end sequencing. All other libraries were pooled in
equimolar amounts and sequenced on an Illumina HiSeq 4000 using 2 × 75 bp paired-end
sequencing.

For modern NWHR feces, double-stranded, dual-indexed shotgun Illumina libraries
were constructed in a dedicated modern DNA facility at LMAMR. Briefly, after DNA
quantification using a Qubit dsDNA Broad Range Assay Kit, DNA was sheared using a
QSonica Q800R in 1.5 mL 4 !C cold water at 50% amplitude for 12 min to aim for a
fragment size between 400 and 600 bp. Fragments shorter than 150 bp were removed using
Sera-Mag SpeedBeads and a Alpaqua 96S Super Magnet Plate. End-repair and A-tailing
was performed using the Kapa HyperPrep EndRepair and A-Tailing Kit, and Illumina
sequencing adapters were added. After library quantification, libraries were dual-indexed
in an indexing PCR over four replicates, pooled, and purified using the SpeedBeads.
Libraries were quantified using the Agilent Fragment Analyzer, pooled in equimolar ratios,
and size-selected using the Pippin Prep to a target size range of 400–600 bp. Libraries were
sequenced on an Illumina NovaSeq S1 using 2 × 150 bp paired-end sequencing at the
Oklahoma Medical Research Foundation Next-Generation Sequencing Core facility.
Modern WHU libraries were generated using the NEBNext DNA library preparation kit
following manufacturer’s recommendations, after fragmentation by shearing for a target
fragment size of 350 bp. The libraries were then pooled and sequenced by Novogene on a
NovaSeq S4 using 2 × 150 bp paired-end sequencing.

Proportion of host DNA in gut microbiome
Because it is standard practice to remove human DNA sequences from metagenomics
DNA sequence files before data deposition into public repositories, we were unable to infer
the proportion of human DNA in human feces from publicly available data. To overcome
this problem, we measured the proportion of human DNA in two newly generated fecal
metagenomics datasets from Burkina Faso (NWHR) and Boston, U.S.A. (WHU)
(Table S5). To measure the proportion of human DNA in each fecal dataset, we used the
Anonymap pipeline (Borry, 2019a) to perform a mapping with Bowtie 2 (Langmead &
Salzberg, 2012) with the parameters -- very-sensitive -N 1 after adapter cleaning and
reads trimming for ambiguous and low-quality bases with a QScore below 20 by
AdapterRemoval v2 (Schubert, Lindgreen & Orlando, 2016). To preserve the anonymity of
the donors, the sequences of mapped reads were then replaced by Ns thus anonymizing the
alignment files. We obtained the proportion of host DNA per sample by dividing the
number of mapped reads by the total number of reads in the sample. The proportion of
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host DNA in dog feces was determined from the published dataset Coelho et al. (2018) as
described above, but without the anonymization step.

Visualization and statistical analysis
The statistical analyses were performed in Python v3.7.6 using Scipy v1.4.1, and the figures
were generated using Plotnine v0.6.0.

coproID pipeline
Data were processed using the coproID pipeline v1.0 (Fig. 2) (DOI 10.5281/zenodo.2653757)
written using Nextflow (Di Tommaso et al., 2017) andmade available through nf-core (Ewels
et al., 2019). Nextflow is a Domain Specific Language designed to ensure reproducibility
and scalability for scientific pipelines, and nf-core is a community-developed set of
guidelines and tools to promote standardization and maximum usability of Nextflow
pipelines. CoproID consists of 5 different steps:

Preprocessing
Fastq sequencing files are given as an input. After quality control analysis with FastQC
(Andrews, 2010), raw sequencing reads are cleaned from sequencing adapters and trimmed
from ambiguous and low-quality bases with a QScore below 20, while reads shorter than 30
base pairs are discarded using AdapterRemoval v2. By default, paired-end reads are
merged on overlapping base pairs.

Mapping
The preprocessed reads are then aligned to each of the target species genomes (source
species) by Bowtie2 with the -- very-sensitive preset while allowing for a mismatch in
the seed search (-N 1). When running coproID with the ancient DNA mode (--adna),
alignments are filtered by PMDtools (Skoglund et al., 2014) to only retain reads showing
post-mortem damages (PMD). PMDtools default settings are used, with specified library
type, and only reads with a PMDScore greater than three are kept.

Computing host DNA content
Next, filtered alignments are processed in Python using the Pysam library (Pysam
Developers, 2018). Reads matching above the identity threshold of 0.95 to multiple host
genomes are flagged as common reads readscommons whereas reads mapping above the
identity threshold to a single host genome are flagged as genome-specific host reads
readsspec g to each genome g. Each source species host DNA is normalized by genome size
and gut microbiome host DNA content such as:

NormalizedHostDNAðsource speciesÞ ¼
!lengthðreadsspec gÞ
genomeg length % endog

(1)

where for each species of genome g, ∑length(readsspec g) is the total length of all readsspec g,
genomeg length is the size of the genome, and endog is the host DNA proportion in the
species gut microbiome.
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Afterwards, an host DNA ratio is computed for each source species such as:

NormalizedRatioðsource speciesÞ ¼ NormalizedHostDNAðsource speciesÞ
!NormalizedHost DNAðsource speciesÞ

(2)

where ∑NormalizedHost DNA(source species) is the sum of all source species Normalized
Host DNA.

Metagenomic profiling
Adapter clipped and trimmed reads are given as an input to Kraken 2 (Wood & Salzberg,
2014). Using the MiniKraken2_v2_8GB database (2019/04/23 version), Kraken 2 performs
the taxonomic classification to output a taxon count per sample report file. All samples’
taxon counts are pooled together in a taxon counts matrix with samples in columns, and
taxons in rows. Next, Sourcepredict (Borry, 2019b) is used to predict the source based on
each microbiome sample taxon composition. Using dimension reduction and K-Nearest

Figure 2 Workflow schematic of the coproID pipeline. CoproID consists of five steps: Preprocessing
(orange), Mapping (blue), Computing host DNA content for each metagenome (red), Metagenomic pro-
filing (green), and Reporting (violet). Individual programs (squared boxes) are colored by category
(rounded boxes). Full-size DOI: 10.7717/peerj.9001/fig-2
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Neighbors (KNN) machine learning trained with reference modern gut microbiomes
samples (Table 1), Sourcepredict estimates a proportion propmicrobiome(source species) of
each potential source species, here Human or Dog, for each sample.

Reporting
For each filtered alignment file, the DNA damage patterns are estimated with
DamageProfiler (Peltzer & Neukamm, 2019). The information from the host DNA content
and the metagenomic profiling are gathered for each source in each sample such as:

proportionðsource speciesÞ ¼ NormalizedRatioðsource speciesÞ%
propmicrobiomeðsource speciesÞ

Finally, a summary report is generated including the damage plots, a summary table of
the coproID metrics, and the embedding of the samples in two dimensions by
Sourcepredict. coproID is available on GitHub at the following address: github.com/nf-
core/coproid.

RESULTS
We analyzed 20 archaeological samples with coproID v1.0 to estimate their source using
both host DNA and microbiome composition.

Host DNA in reference gut microbiomes
Before analyzing the archaeological samples, we first tested whether there is a per-species
difference in host DNA content in modern reference human and dog feces. With
Anonymap, we computed the amount of host DNA in each reference gut microbiome
(Table S1). We found that the median percentages of host DNA in NWHR, WHU, and
Dog (Fig. 3) are significantly different at alpha = 0.05 (Kruskal–Wallis H-test = 117.40,
p value < 0.0001). We confirmed that there is a significant difference of median percentages
of host DNA between dogs and NWHR, as well as dogs andWHU, with Mann–WhitneyU
tests (Table 3) and therefore corrected each sample by the mean percentage of gut host
DNA found in each species, 1.24% for humans (mNWHR = 0.85, σNWHR = 2.33,
mWHU = 1.67, σWHU0.81), and 0.11% for dogs (σdog = 0.16) (Eq. (1); Table S1). This
information was used to correct for the amount of host DNA found in paleofeces.

The effect of PMD filtering on host species prediction
Because aDNA accumulates damage over time (Briggs et al., 2007), we could use this
characteristic to filter for reads carrying these specific damage patterns using PMDtools,
and therefore reduce modern contamination in the dataset. We applied PMD filtering to
our archaeological datasets, and for each, compared the predicted host source before and
afterwards. The predicted host sources did not change after the DNA damage read
filtering, but some became less certain (Fig. 4). Most samples are confidently assigned to
one of the two target species, however some samples previously categorized as humans
now lie in the uncertainty zone. This suggests that PMDtools filtering lowered the modern
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human contamination which might have originated from sample excavation and
manipulation.

The trade-off of PMDtools filtering is that it reduces the assignment power by lowering
the number of reads available for host DNA-based source prediction by only keeping
PMD-bearing reads. This loss is greater for well-preserved samples, which may have
relatively few damaged reads (<15% of total). Ultimately, applying damage filtering can
make it more difficult to categorize samples on the sole basis of host DNA content, but it
also makes source assignments more reliable by removing modern contamination.

Source microbiome prediction of reference samples by Sourcepredict
To help resolve ambiguities related to the host aDNA present within a sample, we also
investigated gut microbiome composition as an additional line of evidence to better predict
paleofeces source. After performing taxonomic classification using Kraken2, we computed
a sample pairwise distance matrix from the species counts. With the t-SNE dimension
reduction method, we embedded this distance matrix in two dimensions to visualize the

Figure 3 Gut microbiome host DNA content. The median percentage of host DNA in the gut
microbiome and the number of samples in each group are displayed besides each boxplot.

Full-size DOI: 10.7717/peerj.9001/fig-3

Table 3 Statistical comparison of reference gut host DNA content. Mann–Whitney U test for inde-
pendent observations. H0: the distributions of both populations are equal.

Comparison Mann-Whitney U test p Value

Dog vs NWHR 3327.0 <0.0001

Dog vs WHU 41.0 <0.0001

NWHR vs WHU 370.0 <0.0001

Dog vs Human 3368.0 <0.0001
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sample positions and sources (Fig. 5A). We then used a KNN machine learning classifier
on this low dimension embedding to predict the source of gut microbiome samples. This
trained KNN model reached a test accuracy of 0.94 on previously unseen data (Fig. 5B).

Figure 4 The effect of filtering for damaged reads using PMD. The log2 of the human Normal-
izedHostDNA is graphed against the log2 of the dog NormalizedHostDNA. Squares represent samples
before filtering by PMD, whereas crosses represent samples after filtering by PMD. Dotted lines show the
correspondence between samples. The red diagonal line marks the boundary between the two species,
and the grey shaded area indicates a zone of species uncertainty (±1log2FC) due to insufficient genetic
information. Full-size DOI: 10.7717/peerj.9001/fig-4

Figure 5 Embedding of reference modern gut microbiomes. (A) t-SNE embedding of the species
composition based on sample pairwise Weighted Unifrac distances for training modern gut microbiomes
training samples. Samples are colored by their actual source. (B) t-SNE embedding of the species
composition based on sample pairwise Weighted Unifrac distances for source prediction of modern test
samples. The outer circle color is the actual source of a sample, while the inner circle color is the predicted
sample source by Sourcepredict. Full-size DOI: 10.7717/peerj.9001/fig-5
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Embedding of archaeological samples by Sourcepredict
We used this trained KNN model to predict the sources of the 20 paleofeces and
archaeological sediment samples, after embedding them in a two-dimensional space
(Fig. 6). Based on their microbiome composition data, Sourcepredict predicted
2 paleofeces samples as dogs, 8 paleofeces samples as human, 2 paleofeces samples and
4 archaeological sediments as soil, while the rest were predicted as unknown (Table S2).

coproID prediction
Combining both PMD-filtered host DNA information and microbiome composition,
coproID was able to reliably categorize 7 of the 13 paleofeces samples, as 5 human
paleofeces and 2 canine paleofeces, whereas all of the non-fecal archaeological sediments
were flagged as unknown (Fig. 7). This confirms the original archaeological source
hypothesis for five samples (ZSM005, ZSM025, ZSM027, ZSM028, ZSM031) and specifies
or rejects the original archaeological source hypothesis for the two others (YRK001,
AHP004). The 6 paleofeces samples not reliably identified by coproID have a conflicting
source proportion estimation between host DNA and microbiome composition (Fig. 8;
Table S3). Specifically, paleofeces AHP001, AHP002 and AHP003 show little predicted gut
microbiome preservation, and thus have likely been altered by taphonomic
(decomposition) processes. Paleofeces ZSM002, ZSM023 and ZSM029, by contrast, show
good evidence of both host and microbiome preservation, but have conflicting source
predictions based on host and microbiome evidence. Given that subsistence is associated
with gut microbiome composition, this conflict may be related to insufficient gut
microbiome datasets available for non-Westernized dog populations (Hagan et al., 2020).

Figure 6 Prediction of archaeological samples sources and t-SNE embedding by Sourcepredict.
t-SNE embedding of archaeological (crosses) and modern (hexagons) samples. The color of the mod-
ern samples is based on their actual source while the color of the archaeological samples is based on their
predicted source by Sourcepredict. Archaeological sample are labelled with their Plot ID (Table 2).

Full-size DOI: 10.7717/peerj.9001/fig-6
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DISCUSSION
Paleofeces are the preserved remains of human or animal feces, and although they typically
only preserve under highly particular conditions, they are nevertheless widely reported in
the paleontological and archaeological records and include specimens ranging in age from
the Paleozoic era (Dentzien-Dias et al., 2013) to the last few centuries. Paleofeces can
provide unprecedented insights into animal health and diet, parasite biology and
evolution, and the changing ecology and evolution of the gut microbiome. However,

Figure 7 coproID source prediction. Predicted human proportion graphed versus predicted canine
proportion. Samples are colored by their predicted sources proportions. Samples with a low canine and
human proportion are not annotated. Full-size DOI: 10.7717/peerj.9001/fig-7

Figure 8 Host DNA and Sourcepredict source prediction for paleofeces samples. For human (A) and
canine (B). The vertical bar represents the predicted proportion by host DNA (lighter fill) or by Sour-
cepredict (darker fill). The horizontal dashed line represents the confidence threshold to assign a source
to a sample. Full-size DOI: 10.7717/peerj.9001/fig-8
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because many paleofeces lack distinctive morphological features, determining the host
origin of a paleofeces can be a difficult problem (Poinar et al., 2009). In particular,
distinguishing human and canine paleofeces can be challenging because they are often
similar in size and shape, they tend to co-occur at archaeological sites and in midden
deposits, and humans and domesticated dogs tend to eat similar diets (Guiry, 2012).
We developed coproID to aid in identifying the source organism of archaeological
paleofeces and coprolites by applying a combined approach relying on both ancient host
DNA content and gut microbiome composition.

coproID addresses several shortcomings of previous methods. First, we have included a
DNA damage-filtering step that allows for the removal of potentially contaminating
modern human DNA, which may otherwise skew host species assignment. We have
additionally measured and accounted for significant differences in the mean proportion of
host DNA found in dog and human feces, and we also accounted for differences in host
genome size between humans and dogs when making quantitative comparisons of host
DNA. Then, because animal DNA recovered from paleofeces may contain a mixture of
host and dietary DNA, we also utilize gut microbiome compositional data to estimate host
source. We show that humans and dogs have distinct gut microbiome compositions, and
that their feces can be accurately distinguished from each other and from non-feces using a
machine learning classifier after data dimensionality reduction. Taken together, these
approaches allow a robust determination of paleofeces and coprolite host source, that takes
into account both modern contamination, microbiome composition, and postmortem
degradation.

In applying coproID to a set of 20 archaeological samples of known and/or suspected
origin, all 7 non-fecal sediment samples were accurately classified as “uncertain” and were
grouped with soil by Sourcepredict. For the 13 paleofeces and coprolites under study, 7
exhibited matching host and microbiome source assignments and were confidently
classified as either human (n = 5) or canine (n = 2). Importantly, one of the samples
confidently identified as canine was YRK001, a paleofeces that had been recovered from an
archaeological chamber pot in the United Kingdom, but which showed an unusual
diversity of parasites inconsistent with human feces, and therefore posed issues in host
assignation.

For the remaining six unidentified paleofeces, three exhibited poor microbiome
preservation and were classified as “uncertain”, while the other three were well-preserved
but yielded conflicting host DNA and microbiome assignments. These three samples,
ZSM002, Z023 and ZSM029, all from prehistoric Mexico, all contain high levels of canine
DNA, but have gut microbiome profiles within the range of NWHR humans. Classified as
“uncertain”, there are two possible explanations for these samples. First, these feces could
have originated from a human who consumed a recent meal of canine meat. Dogs were
consumed in ancient Mesoamerica (Clutton-Brock & Hammond, 1994; Santley & Rose,
1979; Rosenswig, 2007; Wing, 1978), but further research on the expected proportion of
dietary DNA in human feces is needed to determine whether this is a plausible explanation
for the very high amounts of canine DNA (and negligible amounts of human DNA)
observed.
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Alternatively, these feces could have originated from a canine whose microbiome
composition is shifted relative to that of the reference metagenomes used in our training
set. It is now well-established that subsistence mode strongly influences gut microbiome
composition in humans (Obregon-Tito et al., 2015), with NWHR and WHU human
populations largely exhibiting distinct gut microbiome structure (Fig. 5A). To date, no gut
microbiome data is available from non-Westernized dogs, and all reference dog
metagenome data included as training data for coproID originated from a single study of
labrador retrievers and beagles (Coelho et al., 2018). Future studies of non-Westernized
rural dogs are needed to establish the full range of gut microbial diversity in dogs and
to more accurately model dog gut microbiome diversity in the past. Given that all
confirmed human paleofeces in this study falls within the NWHR cluster (Fig. 6),
we anticipate that our ability to accurately classify dog paleofeces and coprolites as canine
(as opposed to “uncertain”) will improve with the future addition of non-Westernized
rural dog metagenomic data.

In addition to archaeological applications, coproID may also have useful applications in
the field of forensic genetic sciences, where it may assist with the identification of human or
other feces. As with the investigation of paleofeces, coproID works best when sufficient
comparative reference materials or datasets are available. Until a more exhaustive catalog
of the human and dog gut microbiome composition is established, not all samples
submitted to the coproID analysis will be able to be accurately classified. However, as
microbiome reference datasets expand and methods become more standardized in the
field, gut microbiome analyses will have increasing applications in the fields of archaeology
and forensics (Hampton-Marcell, Lopez & Gilbert, 2017).

CONCLUSIONS
We developed an open-source, documented, tested, scalable, and reproducible method to
perform the identification of archaeological paleofeces and coprolite source. By leveraging
the information from host DNA and microbiome composition, we were able to identify
and/or confirm the source of newly sequenced paleofeces. We demonstrated that coproID
can provide useful assistance to archaeologists in identifying authentic paleofeces and
inferring their host. Future work on dog gut microbiome diversity, especially among rural,
non-Westernized dogs, may help improve the tool’s sensitivity even further.
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