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ABSTRACT 

Oligodendrocytes build up the myelin sheath that insulates axons and speeds up 

action potential propagation. Moreover, oligodendroglia also regulates the ionic 

environment and fuels axons with metabolites to meet their energy demands. In this 

review, I discuss the mechanisms by which oligodendrocytes and myelin are 

metabolically coupled to axons, and how they adjust metabolic support to spiking 

activity. In sum, the major goal of this review is to have a better insight into how 

axons rely on their myelinating partners for fulfilling energy demands. I propose that 

this axon-to-myelin interaction can be critical to understand axonal and neuronal 

damage in neurodegenerative and demyelinating diseases, as well as connectivity 

alterations in neuropsychiatric disorders. 
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1. INTRODUCTION 

Oligodendrocytes (OLGs), the myelin producing cells of the Central Nervous System 

(CNS), have been defined throughout decades by their axon insulating properties. 

Myelin is one of the most complex biological structures and is considered essential to 

enhance the speed of nerve impulses that allow neuronal communication in the 

human brain.  

This introduction will provide a brief insight on how oligodendrocytes and their 

properties have been classically described, according to their morphology, 

physiological functions and myelinating properties.  

1.1. HISTOLOGY OF OLIGODENDROCYTES 

Pío del Río Hortega (1882-1945), mentored by Nicolás Achúcarro, rendered the first 

systematic description of oligodendrocytes in 1920. Using the silver carbonate 

impregnation method developed by him, he discovered microglia - also named as the 

“third element” -, and also noticed the existence of a new cell type of neuroglia with 

very fine processes that gathered around axonal tracts. Besides, years later del Río 

Hortega proposed the relationship between oligodendroglia and myelination, being 

the CNS counterparts of Schwann cells in the Peripheral Nervous Systems. Notably, 

he also suggested the trophic role of OLGs in supporting neuronal activity, a feature 

that has been finally confirmed a century later. Nevertheless, the demonstration of 

these myelinating functions had to wait until the 1960s, when the introduction of the 

Electron Microscopy (EM) allowed a more accurate description. Unfortunately, this 

time gap, together with staining difficulties and the fact that his results were 

published in Spanish, unfairly made his findings not recognized internationally (1).  

In a review of his discoveries on the morphology and function of oligodendroglia 

published in 1928, del Río Hortega tried to classify OLGs based on their 

morphological characteristics according to the number and orientation of their 

cellular processes, shape and size of their somata, calibre of the axons they associate 

with, and their distribution within the CNS (1). This analysis resulted in four 

different subtypes (I to IV), which suggested a phenotypic diversity that, despite 

being initially neglected, has been later demonstrated by EM, 
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immunohistochemistry, intracellular dye injection and gene expression. Accordingly, 

we now group OLGs into two different phenotypes depending on the calibre of the 

axons they myelinate, below and above a diameter of 2 to 4 μm, which corresponds 

to del Río Hortega’s types I/II and III/IV, respectively (2). As a whole, OLG 

phenotypes differ in the number of axons they myelinate, the diameter of the axon 

and the internodal length of the myelin sheath. Hence, while type I OLGs support a 

large number of small calibre axons with short internodal length, type IV cells 

myelinate a single large calibre fiber with a long internodal length. However, these 

limits appear to be theorical, being the four main types variants of a morphological 

continuum. All in all, these phenotypic differences are functionally relevant, as fiber 

diameter and internodal length determine axonal speed conduction (2). 

Although originally described as morphologically heterogeneous, it is not yet clear 

whether OLGs become diversified during maturation through interaction with the 

environment or there is intrinsic heterogeneity (3). Classically, myelin sheath and 

axon growth have been considered developmentally interdependent, being OLG 

phenotypic divergence regulated by axon-derived factors and interactions (2). 

 

 

Figure 1. Single cell RNA-Seq analysis of 5072 cells expressing markers of the oligodendrocyte lineage 

in ten regions of the mouse CNS. Hierarchical clustering (left), correlation matrix (middle) and subclass 

abundances by region (right). VLMC, vascular and leptomeningeal cells; OPC, oligodendrocyte precursor cells; 

COP, differentiation-committed oligodendrocyte precursors; NFOL, newly formed oligodendrocytes; MFOL, 

myelin-forming oligodendrocytes; MOL, mature oligodendrocytes. Taken from Marques et al (2016). 
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Recently, however, transcriptional analysis revealed an unexpected heterogeneity 

along OLG differentiation. Thus, single-cell RNA sequencing of cells from the OLG 

lineage of mouse juvenile and adult CNS led to the identification of 13 different 

populations (3). This analysis revealed a differentiation path resulting in 12 different 

cell states from Pdgfra+
 oligodendrocyte precursor cells (OPCs) and myelin-forming 

oligodendrocytes to mature OLGs (Figure 1), each population expressing different 

genes according to their level of differentiation. Thus, while precursors were 

enriched in cell fate commitment and adhesion genes, more mature populations 

expressed genes involved in ensheathment of axons and steroid biosynthesis (3). 

Subtype specification also occurred in an age- and region-specific manner, 

suggesting not only a transcriptional diversity in terms of maturation, but also a 

functional divergence.  

Single cell transcriptomic analysis of OLG linage has recently been applied for the 

neuropathological analysis of diseases such as multiple sclerosis (MS), revealing an 

under-representation of some sub-clusters of mature OLGs in human MS tissue (4) 

and disease-specific OLG populations selectively expressing immunoprotective, 

innate and adaptative immunity genes (5). These findings suggest that OLG lineage 

and oligodendroglial heterogeneity might be important to understand disease origin, 

progression and developing therapeutic approaches. 

1.2. PHYSIOLOGY OF OLIGODENDROCYTES 

In accordance with the aforementioned oligodendroglial variety, OLGs show a 

heterogeneous receptor and channel expression. This subpopulation-specific 

expression of different subtypes of receptors and ion channels strongly suggests the 

possibility that distinct OLG subpopulations have diverse physiological properties. 

An in depth knowledge of the functional significance of this remarkable molecular 

heterogeneity will surely help in understanding the role of myelinating OLGs in 

cognition and behaviour, as well as their disorders (6). 

In the following sections, I will describe the major ligand- and voltage-gated ion 

channels, as well as G-protein coupled neurotransmitter receptors, present in OLGs. 
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1.2.1. Voltage-dependent ion channels 

Oligodendroglia expresses K+, Na+ and Ca2+ voltage dependent ion channels. In 

particular, K+ channels – the largest and most diverse class – play an important role 

in maintaining the resting membrane potential. In contrast, Na+ channels are less well 

characterized, being only expressed during early stages of the OLG lineage. Finally, 

voltage-operated Ca2+ channels may be involved in initiating and maintaining 

myelination via axoglial interactions mediated by K+ accumulation after axonal 

activity (6).  

1.2.2. Ligand-gated ion channels 

Ligand-gated ion channels represent a highly important family of proteins, as OLG 

lineage cells express functional ionotropic receptors for almost all neurotransmitters 

(6). I will mainly focus on ionotropic glutamate receptors (iGluR), which are not 

only fundamental to excitatory neurotransmission between neurons, but are also 

present in OLGs as key modulators of both physiological and pathological responses. 

AMPA- and Kainate-sensitive iGluR (respectively, AMPARs and KARs) are 

heterotetrameric, cationic, receptor channels that can be composed by four different 

subunits for AMPAR (GluA1-GluA4) and five subunits for KAR (GluK1-GluK5) 

(6). The consequences of AMPA/KAR activation in OLGs are not yet clearly 

defined. Na+ entry upon activation of these receptors depolarizes OLGs and may 

secondarily activate Na+ and voltage-operated Ca2+ channels (6). AMPAR activation 

could also regulate OPC differentiation into myelinating OLGs by the blockade of 

K+ channels mediated by Na+ entry. In this way, as it will be discussed later, axons 

can regulate their own myelination, as axonal glutamate release allows surrounding 

OPCs and myelinating OLGs to be constantly informed about their activity, and thus 

regulate myelination (6). By contrast, in mature OLGs, the importance of AMPARs 

is less certain, but they might cause physiological cell death, as overactivation of 

AMPAR mediate OLG death in pathological conditions such as ischemia (6). 

NMDARs are heterotetramers formed through combinations of NR1 (binding site for 

glycine/D-serine) with NR2 or NR3 subunits. These receptors are expressed in both 

OPCs and mature OLGs, inducing Ca2+ influx when activated. Unlike AMPARs, 
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NMDARs appear not to be critical in neuron-to-OPC synapses (6). Interestingly, 

however, NMDARs in OLGs have proved to be a key modulator of metabolic 

coupling to axonal activity in what it has recently been described as axo-myelinic 

synapse (AMS; see chapter 3). Similarly to AMPAR/KAR, glutamate excitotoxicity 

in OLGs during ischemia seemed to be also mediated by NMDAR activation. Yet, 

NMDAR specific knockout or blockade can worsen the outcome of white matter 

ischemia (6). 

In addition, expression of Gamma-aminobutyric acid type A receptors (GABAAR) 

and adenosine triphosphate (ATP) sensitive purinergic receptors (P2X), among 

others, has also been demonstrated in OLGs (6). However, the functional 

significance and relevance to pathology are not well known. 

1.2.3. Metabotropic receptors 

Metabotropic neurotransmitter receptors are G-protein coupled proteins that 

modulate the function of ligand- and voltage-gated ion channels or influence 

intracellular processes via second messengers such as Ca2+ and cAMP. Among 

others, OLGs and OPCs express glutamate (mGluR), GABA (GABABR) and 

purinergic metabotropic receptors (P2Y) (6).  

1.3. MYELIN DYNAMICS 

Myelin is known to insulate axons and to speed up action potential propagation. 

Although classically considered as a static interaction, recent studies have described 

novel functions for OLGs, proposing that neurons rely on these myelinating cells in a 

more dynamic manner. 

1.3.1. Myelination and its regulating factors 

OPCs proliferate through the CNS and eventually differentiate into OLGs. The 

process of differentiation and subsequent myelination of axons is driven by different 

regulatory factors. In what it could be considered as a “default program”, cultured 

OLGs develop the intrinsic capacity to expand their plasma membrane and even 

enwrap artificial nanofibers (7). In addition, dynamic interactions between neurons 

and OLGs also promote myelination driven by signals and molecules that 
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collectively determine when and how much to wrap based on “functional demand”. 

Adjustments of actin filaments, for example, regulated by cytoplasmic levels of 

gelsolin, pushes the inner tongue forward and contributes to myelin plasticity by the 

adaptation of myelin sheath thickness or internodal length (8). At the same time, 

proper adjustment of myelinic channels appears critical for myelin dynamics and, 

hence, axonal function. Non-compacted myelinic channels – routes for metabolites 

towards the inner tongue – close with myelin compaction. However, PI(3,4,5)P3-

mediated signalling can restore channel opening, thereby increasing metabolite flow 

during myelin growth (7). Similarly, OLG-specific protein 2',3'-cyclic nucleotide 3'-

phosphodiesterase (CNP) acts together with F-actin to counteract myelin compaction 

mediated by myelin basic protein (MBP) (9) (Figure 2). All in all, the balance 

between these permissive and non-permissive factors might be critical for axonal 

remyelination in demyelinating diseases.  

 

 

Figure 2. Model of myelin growth dynamics. Building materials and metabolites for membrane production and 

myelin growth are transported through a cytosolic channel system towards the growing tip. The force that pushes 

the inner tongue forward relies on actin filament assembly-disassembly cycles. Stacked layers of plasma 

membranes are subsequently compacted and myelin basic protein (MBP) is essential for membrane compaction. 

The membrane-associated 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) interacts with the actin 

cytoskeleton and counteracts the compacting force of MBP. This helps maintaining non-compacted cytosolic 

channels in mature sheaths, which are critical for metabolite diffusion. Taken from Saab and Nave (2017).  
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1.3.2. Influence of neuronal activity on OPC differentiation 

The functional impact of neuronal activity on OPC differentiation is still uncertain. 

As previously mentioned, unlike NMDA receptors, AMPAR signalling could be the 

driver for OPC differentiation (6). Axonal spiking and vesicular release of glutamate 

promote in vitro myelination by stimulating formation of cholesterol-rich signalling 

domains between OLGs and axons, and increasing local synthesis of the major 

protein in the myelin sheath, MBP. However, this does not need synapse formation, 

suggesting that non-synaptic axon-glial junctions could mediate glutamate delivery 

to OPCs (10, 11). Accordingly, time-lapse imaging of OLG myelination in zebrafish 

confirmed that axonal vesicular release stimulated myelin sheath formation, showing 

that myelinating processes were stabilized preferentially around electrically active 

axons (12).  

Although the cellular basis underlying learning are not well known, this form of 

activity-dependent regulation could be important in modifying development of brain 

circuits according to environmental experience. Thus, regulation of myelination by 

impulse activity in individual axons could regulate neurodevelopment and thus 

influence information transmission in the brain (10). 

On the other hand, as OPCs are functionally heterogeneous among regions and with 

age (13), in accordance to already described OLG heterogeneity (3), the impact of 

neuronal activity on OPC differentiation and myelination probably depends on 

neuronal subtype, brain region and neurotransmitters released from different cellular 

sources (7). 

1.3.3. Myelin plasticity 

Importantly, neuronal activity regulates not only myelinization during development, 

but also during plasticity in the adult brain. Thus, myelin sheath thickness, internodal 

length and perinodal organization can change following sensory stimuli and motor 

performance (7). This plasticity can be essential for synchronizing complex neuronal 

networks, as demonstrated in recent studies. For example, learning a motor skill on a 

“complex” running wheel caused a rapid production of new OLGs and changes in 

myelin structure (14). Conversely, social isolation provoked thinner and fewer 
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myelin sheaths, along with impaired cognitive and social behaviours (15). Strikingly, 

social reintegration restored myelin appearance and normal behaviour. All these data 

suggest that experience-mediated and activity-driven neuronal activity promotes 

changes in myelination that have an impact on brain function (7). 

In addition to speed up action potential propagation, proper myelination is crucial to 

fine-tune the brain’s computational power throughout life. In the results section, I 

will describe a recently highlighted novel feature, in which the myelinated axons 

receive metabolic support from OLGs in an activity-dependant manner. Thus, it 

appears that myelin is more than just an insulator. 

2. METHODS 

The bibliography search was conducted in PubMed database using the terms myelin, 

oligodendrocytes, oligodendroglia and axo-myelinic interaction together with each 

of the terms metabolism and energy. The search was limited to articles written in 

English and published in the last 10 years. All references were assessed and, mainly, 

seminal papers and most recent reviews were read in detail. Citations in these articles 

were noted as well, and all relevant citations not appearing in the original search 

were also included. 

2.1. STUDY SELECTION 

Due to the unmanageable number of articles that resulted from the search, 

publications were included only if they referred to axo-glial metabolic coupling. 

Studies referring to OLG metabolism itself were excluded, as were out-dated reviews 

that did not include facts described in the following years. 

Ultimately, among the articles retrieved from the initial search, only 41 met the 

criteria for review. However, the impact factor of each journal was also checked on 

Thomson ISI “Journal Citation Report 2017”, discarding those publications with 

lower citation indexes. Therefore, the bibliography on which I will base the main 

ideas of this review was finally comprised of 30 publications, including three seminal 

articles (Fünfschilling et al, 2012; Lee et al, 2012; Saab et al, 2016) and two highly 

relevant reviews (Saab and Nave, 2017; Micu et al, 2017). 
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3. RESULTS: AXO-MYELINIC METABOLIC COUPLING 

Glucose is the primary energy source for the brain and is ultimately oxidized to CO2 

by mitochondrial respiration. Neurons depend on mitochondria for ATP homeostasis 

and long-term integrity, whereas glial cells can survive with ATP generated only by 

anaerobic glycolysis (16).  

The interactions between different cell types and the mechanisms by which they 

exchange metabolites are essential to understand brain energy homeostasis. 

Hereafter, I will give a deep insight into how neurons rely on their myelinating 

partners for fulfilling their energy demands, which in the end could be critical to 

understand cognition, as well as the cognitive decline associated to neuropsychiatric 

diseases characterized by white matter pathology. 

3.1. OLIGODENDROCYTES SUPPORT NEURONAL FUNCTION 

In 2012, Fünfschilling et al discovered axon-glia metabolic coupling (16). By using 

conditional Cox10 mutant mice, that is, a model for mitochondrial disease where the 

assembly of the terminal complex cytochrome c oxidase (COX) of the electron 

transport chain was blocked, they assessed the effect of glial cell metabolism 

inhibition. They hypothesized that in the absence of functional COX, OLGs would 

fail to fully metabolize glucose, and would instead generate ATP mostly by 

glycolysis and produce lactate. 

Surprisingly, myelinated tracts were normally developed in the CNS, with no signs 

of demyelination or white matter pathology. Genomic recombination in OLGs of 

newborn mutant mice did not interfere with postnatal myelination, as mutant OLGs 

myelinated using pre-existing mitochondria that will subsequently decline in 

respiratory function (16). Even at 9 months of age, histological analysis failed to 

show any signs of demyelination or neurodegeneration. Thus, once myelination had 

occurred, reduced mitochondrial functions in OLGs do not perturb their survival, 

myelin maintenance or axonal integrity (16) (Figure 3). 

In view of these results, Fünfschilling et al proposed that OLGs survived by 

enhanced glycolysis (16). By localized proton magnetic resonance spectroscopy 

(MRS), mutants showed increased lactate levels only under isoflurane anaesthesia, a 
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finding compatible with a model in which oligodendroglial release of lactate – the 

ultimate by-product of anaerobic glycolysis – is followed by its rapid use in other 

cellular compartments (Figure 4). In addition, it was demonstrated in vitro that glial 

lactate is efficiently metabolized by myelinated axons. 

 

 

Figure 3. Oligodendroglial survival, myelin preservation and white matter integrity in Cnp1Cre/+* 

Cox10flox/flox mice. a, d, By Gallyas’ silver impregnation of myelin at 9 months of age, the corpus callosum and 

other white matter tracts appear normally developed and mature in mutant mice. b, c, e, f, Electron microscopy 

of high-pressure frozen optic nerve shows intact myelination of CNS axons (b, e), and healthy oligodendroglia 

nuclei (c, f). A, axon; N, nucleus; M, mitochondria. Scale bars, 500 nm. Modified from Fünfschilling et al (2012).   

All in all, for the first time, this study suggested that the increased rate of OLG 

glycolysis could supply metabolic products to support axonal energy needs. 

Almost simultaneously, Lee et al (2012) further clarified the mechanisms by which 

OLGs support neurons and axons. They mainly focused on the contribution of 

monocarboxylate transporter 1 (MCT1) to this lactate shuttle. This carrier, along with 

MCT2 and MCT4, transports monocarboxylic acids (such as lactate, pyruvate and 

ketone bodies) in the CNS. By using transgenic mice with a fluorescent reporter, they 

demonstrated in vivo what it had inconsistently been suggested by in vitro studies, 



 11 

namely, that MCT1 is almost exclusively expressed by myelinating OLGs and, in 

addition, its expression is closely apposed to the axolemma (17).  

Mouse models of OLG injury demonstrate axon loss without considerable 

demyelination, suggesting that OLGs support axon survival through a myelin-

independent mechanism possibly, as previously remarked, as a result of insufficient 

axonal energy support (17). Therefore, Lee et al investigated the effect of MCT1 

inhibition on neuronal death (Figure 5a-d), showing that neurons in vitro were 

vulnerable to genetic or pharmacological reduction of MCT1 (17). Not only that, this 

toxicity was enhanced by removing glucose (Figure 5d-f) or increasing the 

metabolic activity of neurons (not shown) and, in contrast, prevented by supplying 

exogenous lactate (Figure 5f). These results confirmed that when neuronal energy-

requirements increase, either because of energy-deprivation or enhanced activity, 

reduced lactate release from OLGs leads to neuronal loss. Accordingly, focal MCT1 

downregulation in vivo in the spinal cord also produced motoneuron death (17). 

 

Figure 4. Rapid use of lactate shown by proton magnetic resonance spectroscopy (MRS). a, Lactate levels 

in the cortex (left) and white matter (right) are increased in mutant mice (grey bars) compared with controls (black 

bars) under isoflurane anaesthesia. Data are mean ± s.e.m. *P<0.05. Note that under isoflurane anaesthesia the 

control mice have higher lactate levels in white matter than in grey matter. M, months. b, Increased brain lactate 

drops to undetectable levels in less than 60 min at the end of anaesthesia. This suggests that lactate (produced 

by oligodendrocytes) is rapidly metabolized by other cellular compartments in the white matter tracts of awake 

mutant mice. Taken from Fünfschilling et al (2012). 

Similarly, heterogeneous MCT1-null mice eventually developed axonopathy, but 

notably, OLG morphology and number were not changed and myelination was 

preserved, again suggesting that axonal degeneration was not due to OLG damage, 
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but to a reduction of MCT1, crucial for the normal function of CNS axons through a 

myelin dependent-mechanism (17). Indeed, Lee et al proposed that reduced 

expression of MCT1 is one of the mechanism by which oligodendroglia produce 

neurotoxicity in amyotrophic lateral sclerosis (ALS; see section 3.3.1) (17). 

 

Figure 5. MCT1 is required for neuronal survival in vitro. a–d, Photomicrographs (a) and quantification (b–d) 

of motoneurons in spinal cord slice cultures treated with media only (ctrl), MCT1 sense or antisense (ASO) 

oligonucleotides for 3 weeks (b), after 3 weeks of treatment with MCT1 inhibitor (MCT1i) (c), or 2 h of glucose 

deprivation (GD) with or without MCT1i (d). e, f, Propidium iodide uptake in slice cultures with 2 h glucose 

deprivation plus MCT1i (e) or 2 h glucose deprivation with or without MCT1i and 20 mM lactate (f). Error bars 

denote s.e.m. *P<0.05; **P<0.01; ***P<0.001. Taken from Lee et al (2012). 

Taken together, these results confirmed what Fünfschilling et al suggested: lactate 

export from glycolytic OLGs, regulated by MCT1, is a crucial component of the 

local energy supply to axons, and the disruption of this transport leads to axonal 

dysfunction and ultimately to neuronal degeneration (summary in Figure 6). Thus, 

these data expand the known roles of myelin sheaths and reveals how the interruption 

of metabolic support through myelin might cause disease. 

On the other hand, astrocytes constitute a glycogen store (18), possibly being an 

important glucose source for glycolytic OLGs. Presumably, astroglia can also 

provide lactate to neurons (19) and even OLGs could use MCT1 to take up lactate, 

which helps them to survive and produce myelin particularly in low-glucose 
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conditions (19). In addition, the demonstration that exogenous lactate can overcome 

the neuronal dysfunction caused by deficient lactate supply from OLGs is intriguing, 

as it could have a therapeutic potential and be one of the ways in which physical 

exercise benefits the brain (19). 

 

Figure 6. Model of metabolic coupling between oligodendrocytes and myelinated axons. Oligodendrocytes 

(OLGs) import glucose for glycolysis through glucose transporter GLUT1 and possibly via astrocytes and gap 

junctions (CX, connexin), which produce metabolic precursors from glycogen and their contacts with the 

vasculature. Pyruvate is metabolised in mitochondria (yellow) for ATP generation (TCA, tricarboxylic acid cycle). 

With the onset of myelination, glucose also serves the synthesis of fatty acid (FAS) and myelin lipids from acetyl-

CoA. In post-myelination OLGs, glycolysis can yield sufficient ATP to support OLG survival. Glycolysis products 

are used by myelinated axons when energy levels are low. Lactate can be directly transferred via 

monocarboxylate transporter 1 (MCT1), which resides in internodal myelin near MCT2 present in the axolemma, 

in a way in which lactate ultimately reaches the axon. Lactate can also be produced in astrocytes and then 

transferred to axons by means of gap junctions. Adapted from Fünfschilling et al (2012) and Lee et al (2012). 

3.2. METABOLIC SUPPORT IS DRIVEN BY NEURONAL ACTIVITY 

This new paradigm of metabolic interaction between axons and OLGs raised the 

following question: could OLGs glucose utilization be quantitatively regulated to 

match neuronal energy needs? That is, as ATP consumption differs greatly 

depending on the spiking activity of myelinated axons, could OLGs “know” their 

association with fast spiking axons to adapt their own metabolism and, thus, their 

lactate supply? 
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In 2016, Saab et al tested this hypothesis. The function of NMDARs (see chapter 1) 

in OLGs was relatively unknown by that time, but it had been described that 

glutamate release upon axonal spiking induced calcium elevations in myelin (20). 

Consequently, Saab et al proposed NMDAR signalling as a link for axonal ATP 

consumption and oligodendroglial lactate supply. 

To that end, they showed that similar to neurons, treatment with NMDA in cultured 

OLGs triggered glucose transporter GLUT1 surface expression, which in turn was 

efficiently blocked by NMDAR inhibitors (21). This NMDAR activation was 

followed by an increase on glucose uptake and the release of lactate was 

simultaneously enhanced, suggesting that as expected, lactate release relied on 

glucose availability. In contrast, MCT1 expression was unaffected by NMDA 

(Figure 7). 

 

Figure 7. NMDA stimulates GLUT1 surface expression and glucose uptake by cultured oligodendrocytes. 

a, OLG immunostained for GLUT1 and GalC. NMDA receptor stimulation mobilizes GLUT1 and increases its cell 

surface expression, which is blocked by D-AP5. Scale bar, 20 m. b, GLUT1 and MCT1 immunoblots following 

cell surface biotinylation of immunopanned NMDA-treated OLGs and controls. c, Quantification of the 

experiments in (b), normalizing biotinylated to total protein. MCT1 surface expression is unchanged. d, 

Immunopanned OLGs stimulated with NMDA/Gly (25 min) before switching to 2-deoxyglucose (2DG, 10 mM, 5 

min). Increased 2DG uptake was blocked by 7CKA and D-AP5. e, Lactate release after NMDA receptor 

stimulation increased to 124% ± 4%. *P<0.05; **P<0.01. Modified from Saab et al (2016).  
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Considering glucose as a source for lipid precursor metabolites essential for 

myelination (see Figure 6), Saab et al hypothesized if reduced glutamate signalling 

could affect myelination during development. However, they showed that NMDARs 

were not essential for myelination per se, although the decrease of GLUT1 in OLGs 

could affect the rate of myelin growth “metabolically controlled” at highest 

myelination rates (third postnatal week) (Figure 8). Nevertheless, differences were 

transient, as myelin thickness caught up with time (21).   

 

Figure 8. Myelination in the absence of oligodendroglial NMDA receptors in vivo is transiently delayed. a-

c, High-pressure freezing electron microscopy of the developing optic nerve. Overview of optic nerve cross 

sections from control and NR1 knockout (NR1 cKO) mice at P10 (a), P20 (b), and P70 (c). At early and late 

stages, NR1 mutant nerves are indistinguishable from controls. A minor hypomyelination is apparent around P20. 

Scale bars, 0.5 μm (a and b) and 0.2 μm (c). d, Electron microscopy of conventionally fixed optic nerves from 

mutant and controls, with unmyelinated (U), ensheathed (E), and myelinated (M) axons. Scale bar, 1 μm. e-f, 

Axon size distribution and myelin sheath thickness (g-ratio) at P18. e, Diameter profile of myelinated axons with 

relatively more myelinated small caliber axons in control nerves than in NR1 cKO at P18. f, At P18, myelinated 

(M) axons are reduced in mutant optic nerves, while the number of unmyelinated (U) and merely ensheathed (E) 

axons remain similar. *P<0.05; **P<0.01; ***P<0.001. Modified from Saab et al (2016).  
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Figure 9. Axonal energy metabolism regulated by NMDAR and GLUT1-dependent lactate export from 

myelinating oligodendrocytes. a, Optic nerve compound action potential (CAP) areas normalized to baseline. 

After 1 hr, nerves were subjected to 60 min oxygen glucose deprivation (OGD) followed by reperfusion with 

artificial cerebrospinal fluid (ACSF) containing 10 mM glucose. Note the rapid decline of nerve conduction and 

the incomplete recovery after reperfusion, which is more pronounced in NR1 knockout mutants (NR1 cKO) (red) 

compared to controls (black). b, Average optic nerve CAPs during baseline, OGD, and recovery phase in control 

(top) and NR1 cKO (bottom). c, Quantification of data in (A) with reduced functional recovery after OGD in 

mutants versus controls (**P<0.01). d, With 20 mM lactate, the functional recovery after OGD was the same in 

NR1 mutants and controls. e, Axonal recovery at higher temporal resolution, comparing 10 mM glucose (glc) and 

20 mM lactate (lac). f, Wild-type optic nerves, maintained functional ex vivo for 16 hr in the presence of 

NMDA/Gly (100 μM), or NMDA/Gly plus 7CKA/D-AP5 (100 μM), or only DMSO (control), were subsequently 

challenged with increasing stimulation frequencies. Note that nerves treated with NMDA/Gly show less decline of 

CAP area at higher frequency (***P<0.001). Modified from Saab et al (2016).  
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More interestingly, Saab et al assessed myelinated axon conduction to study 

functional differences between NMDAR mutants and controls. By recording 

compound action potentials (CAPs) ex vivo under basal conditions, they revealed a 

transiently reduced conduction velocity only at the peak of myelination (again at 

around the third postnatal week) that could be best explained due to the previously 

mentioned delay of CNS myelination (data not shown) (21).  

However, when myelinated nerves were assessed under metabolic stress to test their 

ability to recover from transient oxygen-glucose deprivation (OGD), differences 

arose. In those experiments, they induced nerve conduction blockade by OGD for 60 

min, and then re-perfused for an additional hour using oxygenated artificial 

cerebrospinal fluid (ACSF) to determine the recovery of axonal function. 

Surprisingly, the recovery of axonal conduction in wild-type nerves was better than 

in NMDAR mutant nerves (Figure 9). As myelin injury was the same in both 

mutants and controls, they concluded that the loss of axonal conductivity in mutant 

nerves was caused by less-efficient axonal recovery from metabolic stress (21). 

Interestingly, axonal recovery after OGD was normal prior to myelination (data not 

shown), suggesting that axons require OLG support mainly after the formation of the 

myelin sheath, which limits rapid axonal access to extracellular metabolites (21). 

Thereafter, according to the model proposed by Fünfschilling et al and Lee et al 

(2012) (Figure 6), they tested whether lactate could restore axonal conduction 

independent of prior NMDAR signalling and replace glucose as an energy source 

through MCT1 transporters. As expected, by using lactate-containing ACSF for 

reperfusion, nerves from NMDAR mutants recovered as well as control nerves and 

even better than in the presence of glucose (Figure 9).   

Accordingly, nerves that had been isolated and treated for 16 hours with NMDA 

showed a much better maintained conductivity under increasing stimulation 

frequencies in comparison with those nerves without NMDA exposure. Consistently, 

the decline of axonal conduction was even more aggravated when nerves had been 

treated with NMDAR inhibitors (Figure 9). These results were confirmed as well by 

in vivo studies, where after high-frequency stimulation, CAPs dropped fast in 

mutants and recovered more slowly (21). 
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Taken together, Saab et al demonstrated that OLGs regulate glucose utilization by 

using NMDA receptor signals as a switch for axonal spiking activity (Summary in 

Figure 10).  

 

Figure 10. Schematic depiction of oligodendroglial NMDA receptor signalling. Working model in which 

axonal electrical activity in developing white matter tracts constitutes a glutamatergic signal for the surrounding 

OPC/oligodendrocytes/myelin compartments (1). After myelination, NMDA receptors associated with the 

internodal/ paranodal membrane respond to axonal glutamate release as a surrogate marker for increased 

axonal electrical activity and energy needs, causing (2) the incorporation of additional glucose transporters 

(GLUT1) into OLGs and myelin membrane and the adaptation of glucose uptake (feed-forward regulation). 

Glycolysis products (3) are initially used for ATP and lipid synthesis (4). Later, mature oligodendrocytes release 

lactate (or pyruvate) to fuel the axonal compartment (5) for mitochondrial ATP production (6). Regulation of 

oligodendroglial glucose uptake by axonal energy needs could help prevent abnormal accumulation of lactate. 

Taken from Saab et al (2016).  
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3.3. CLINICAL IMPLICATIONS TO DISEASE OF IMPAIRED MYELIN 

METABOLIC SUPPORT 

Axons comprise a vulnerable neuronal compartment that serves connectivity in the 

CNS. Metabolic support from myelinating OLGs appears critical to maintain long-

term axonal integrity, so hereafter I will describe how impaired metabolic coupling 

in white matter tracts could perturb axonal viability and thereby contribute to 

neurodegenerative diseases.  

3.3.1. MCT1 expression is reduced in ALS 

Lee et al (2012) proposed that the reduced ability of grey and white matter OLGs to 

support motoneurons caused by altered MCT1 expression, might contribute to ALS 

pathogenesis (17). They investigated the expression levels of MCT proteins in 

patients with ALS, showing a greater than 50% decline in MCT1 and MCT4 

expression compared with gender- and age-matched control patients (Figure 11). 

OLGs were preserved (although it is possible the oligodendroglia were immature) 

thus suggesting alterations in OLG MCT1 as a possible contributor to motoneuron 

degeneration in ALS (17). 

Interestingly, it is well known that a mutation in the gene encoding superoxide 

dismutase 1 (SOD1), an enzyme involved in the removal of potentially harmful 

reactive oxygen species (ROS), leads to mitochondrial dysfunction and causes a 

hereditary form of ALS – it is also a commonly used transgenic mice model for this 

disease (Figure 11) – (17,19). Hence, the reduction of MCT1 expression could be 

linked to mitochondrial dysfunction, since the lack of metabolic substrates (such as 

lactate) could damage the mitochondria (19). 

Taken together, this metabolic coupling is presumably not as critical for all 

myelinated axons, because they vary significantly in length, diameter, and firing 

frequencies, suggesting that their long-term energy demands differ greatly as well. 

This could explain why neurons of the cortico-spinal tracts, for example, are more 

vulnerable to neurodegeneration in MCT1 knock out mice (19). Besides their higher 

energy demands, the supply of lactate along the axon could be less efficient in 

motoneurons than in neurons with shorter axons (19). That is, assuming that energy 
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substrates enter into the axons only at the nodes of Ranvier, diffusion times from the 

node to the internode could take long for larger-calibre axons with long internodes. 

These distances are critical, as ATP-consuming pumps and axonal mitochondria are 

largely localized in internodal regions (22). Thus, additional energy supplies 

delivered from OLGs or astrocytes are likely vital to support the dynamic range of 

firing frequencies of myelinated fibre tracts (22). 

 

 

Figure 11. MCT1 is reduced in ALS patients and SOD1 (G93A) mice. a, Immunoblots of MCT1 and myelin-

related proteins from patients with sporadic ALS and non-ALS patients. b, c, Relative densitometry of proteins 

from the motor (b) and frontal (c) cortex of patients with ALS compared with control patients. Error bars denote 

s.e.m. **P<0.01; ***P<0.001. d–g, Immunofluorescence of the MCT1 reporter alone (d, f; red) and double-

labelling with CC-1 (e, g; green), in end-stage SOD1(G93A) transgenic mice (d, e) and littermate controls (f, g). 

Scale bars, 100 m. Dashed lines delineate the boundary of ventral horn grey matter. Taken from Lee et al 

(2012).  
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3.3.2. Neuroinflammation and axonopathy in NMDAR mutant mice 

Saab et al (2012) predicted that NMDAR mutant mice, with a developmentally 

reduced presence of GLUT1 in OLGs, would develop at least some signs of axonal 

pathology (21). As expected, mutant mice kept in standard housing – without 

physical challenges – showed signs of neuroinflammation and axonopathy beginning 

in the medulla and spinal cord at 10 months of age and later progressing to all CNS 

white matter tracts (21). Moreover, 1 year old NMDAR mutants revealed a 

significant deficit in performance comparing to age-matched controls when they 

performed a motor-behavioural analysis by a simple rotarod test, a feature that can be 

explained considering that myelinated axons in the cortico-spinal tracts fire at high 

frequency and are energy-demanding (21). Later, at the age of 19 months, NMDAR 

mutants showed a severe neurological phenotype caused by the on-going 

neurodegeneration that was already visible at 10 months (Figure 12). 

As pointed out by Saab et al, it is tempting to compare NMDA receptor-dependent 

regulation of GLUT1 with insulin-dependent GLUT4 trafficking in other cell types 

such adipocytes (7,21). However, in their study, they were unable to mobilize 

GLUT1 with insulin in OLGs. Despite analogies, like calcium-dependent GLUT 

trafficking or the need for a stable microtubule network in both cell types, in OLGs 

glucose transporters are more likely to serve long-term functions rather than fast 

(“insulin-like”) adaptations to changing energy needs (7,21). In fact, their in vivo 

experiment showed that it takes up to 16 hours for OLGs to metabolically respond to 

the loss of NMDAR signalling (Figure 9). Acute changes in axonal activity might 

require thereby additional mechanisms to regulate lactate supply (7,21).  

All in all, activity-dependent regulation of axonal energy metabolism suggests that 

axon-glial signalling is critical to adjust the metabolic machinery for long-term 

integrity, also suggesting why neural functions must be practiced or they will 

deteriorate (“use it or lose it”) (7,12). Thus, better understanding of these 

mechanisms might be clinically relevant to comprehend, for example, the aging brain 

or neurodegenerative diseases and help, at the same time, in the design of new 

therapeutic strategies. 
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Figure 12. Late-onset neuroinflammation and axonopathy in NMDAR mutant (NR1 cKO) mice. a, b, By 

electron microscopy of ventral cervical spinal cord cross sections (a), ultrastructural features of axonal pathology 

and degeneration were more frequent in NR1 cKO mice compared to controls (b) Scale bar, 2 m. In (a): A, 

axonal degeneration; B, blebbing membranes; D, delamination; N, normal myelin. c, Motor deficits of NR1 cKO 

mutants at 10-11 months of age, demonstrated by Rotarod testing on three consecutive days (repeated the 

following month). The latency to fall is decreased in NR1 mutant mice (red line) compared to littermate controls. 

d, At age 19 months, NR1 cKO mice display significant neurological deficits compared to controls. e, Brain 

sections of 19-month-old NR1 cKO mice immunostained for Mac3+ show widespread signs of neuroinflammation 

in white matter tracts; corpus callosum and fimbria are magnified (right panel). f, Quantification of Mac3+ 

immunostained area in NR1 mutants compared to littermate controls and age-matched Cnp1Cre/+ mice. 

*P<0.05; **P<0.01; ***P<0.001. Taken from Saab et al (2016). 

4. DISCUSSION  

The data reported above indicates that oligodendrocyte-to-axon metabolic support is 

important for normal physiology. Therefore, disruption of this coupling may be 

responsible for a host of diseases displaying axonopathy and degeneration. Hereafter 

I would like to propose a hypothesis as to how dysfunction of this metabolic 

interaction may contribute to various CNS disorders with white matter involvement, 

especially in the earliest stages of pathology. 
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4.1. AXO-MYELINIC “SYNAPSE” DYSFUNCTION 

The interactions between myelin and axons resemble in many regards those 

occurring in classical synapses; in particular, in the way these two compartments use 

neurotransmitter signalling. Thus, neurotransmitters including glutamate are released 

from axons (“the presynaptic site”) and activate receptors mostly located in myelin 

and OLGs (“the postsynaptic site”).  

Myelinated axons release neurotransmitters in an activity-dependent manner, thereby 

stimulating receptors on the inner myelin surface, and thus forming an axo-myelinic 

synapse (AMS). As I explained, this form of communication is vital to both myelin 

and axon, as one likely function of the AMS is to couple electrical activity to the 

metabolic output from the OLG (22). Thus, dysregulation of the AMS may lead to 

deleterious effects that could hypothetically be involved in the pathogenesis of 

diseases including multiple sclerosis (MS) and Alzheimer’s disease (AD). 

4.1.1. Multiple Sclerosis 

MS is a chronic progressive disease of unknown aetiology, characterized by 

multifocal lesions of inflammatory demyelination exhibiting perivascular 

inflammation and complement deposition (22). However, the absence of substantial 

inflammation in a subgroup of very early lesions has raised the following question: 

could degenerative CNS pathology precede inflammation? (23). 

Particularly, pathology at the inner tongue of myelin suggests that a perturbation of 

the AMS – with subsequent biochemical alterations of myelin components, possibly 

impaired transfer of metabolites and other deleterious effects – plays a primary role 

in the onset of MS lesions (22). Indeed, the inner tongue pathology in some cases of 

MS includes the loss of myelin-associated glycoprotein, suggesting that structural 

perturbation of the interface between axon and myelin is one possible mechanism by 

which an oligodendropathy could lead to disease (22). 

In this sense, Micu et al (2017) proposed that aberrant glutamatergic transmission 

represent a potential mechanism by which the AMS might contribute to MS 

pathogenesis. Noteworthy, MS genome-wide association studies have identified 

disease-associated genes involved  in glutamate  homeostasis  whose  alteration  may 
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Figure 13. Proposed pathological consequences of overactivation of the axo-myelinic synapse. White-

matter ’energy failure’ would impair the ability of the OLG to generate lactate for export to the axon, also 

impeding the ability of axonal mitochondria to synthesize ATP (step 1). The reduction in axonal ATP results in 

failure of ion transporters, which in turn causes axons depolarization, activation of voltage-gated Ca2+ channels 

(Cav) (step 2) and excessive release of Ca2+ from stores (step 3). This Ca2+ release not only directly injures 

the axon by overactivation of Ca2+-dependent axonal enzymes but also stimulates excessive vesicular glutamate 

release into the periaxonal space (step 4). In addition, pathological entry of Na+ into the axon together with loss 

of K+ promotes reversal of Na+-dependent glutamate transporters (GluTs) and glycine transporters (GlyTs) (step 

5), further exacerbating the increase of agonists at myelinic receptors. Excessive Ca2+ entry through these 

receptors over time, together with the inability of the myelin and/or OLG to buffer these Ca2+ loads because of 

energy deprivation, could overactivate several key enzymatic pathways, leading to aberrant biochemical 

modification of myelin components (step 6). Ca2+-activated calpains and phospholipases will degrade myelin 

proteins and lipids, respectively, and if persistent and exceeding the capacity for repair, this will eventually lead to 

demyelination of the axon. Peptidylarginine deiminases (PADs) are Ca2+- dependent enzymes that convert 

positively charged arginine residues on myelin basic protein (MBP) to citrulline. The deficit of positive charge on 

citrullinated MBP (citMBP) could focally disrupt the compacted myelin sheath (step 7), promoting the release of 

antigenic citMBP and lipid debris (step 8). In a host predisposed to immune-system overactivation, a T cell-

driven adaptive immune response could result in a secondary wave of inflammatory pathology and autoimmune 

attack, causing further damage to myelin and the axon (step 9). RyR, ryanodine receptor. Taken from Micu et al 

(2017). 
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lead to glutamate excitotoxicity in relapsing-remitting MS (24). Thereby, it is 

tempting to suggest that glutamatergic dysregulation could establish an environment 

of “chronic excitotoxicity” where overstimulation of the AMS might have adverse 

effects on myelin structure and, consequently, on the axon by impairing the ability of 

OLGs to provide metabolic support (Figure 13). At the same time, AMS 

overstimulation could activate enzymatic pathways resulting in demyelination and 

release of antigenic debris that could lead to secondary inflammation with further 

damage to myelin and the axon (22). Accordingly, the axo-myelinic signalling 

machinery would be a potential key target, as therapies controlling chronic axo-

myelinic excitotoxicity could provide cytoprotection for both the axon and myelin, 

and thus preserve the functional integrity of myelinated tracts. Considering that 

effective therapies for MS are very limited, especially for later-stage progressive MS, 

AMS would represent a novel target for drug development to treat this disease (22). 

4.1.2. Neurodegenerative disorders 

AD is caused by the neurotoxic accumulation of β-amyloid (Aβ) and 

hyperphosphorylated tau proteins. In addition, evidence increasingly points to a role 

for white matter abnormalities in disease pathogenesis, as defective axonal transport 

precedes amyloid accumulation and subsequent grey matter pathology (25). Indeed, 

imaging of patients with mild cognitive impairment suggests that white matter 

damage could even precede grey matter atrophy (26).  

Regarding AMS, AD-related Aβ peptides increase the activity of NMDARs (27), 

which could as well promote chronic glutamatergic overstimulation of the 

oligodendroglial compartment (22). Considering that Aβ binds copper-bound major 

prion protein (PRP) with high affinity – a known inhibitor of NMDARs –, this could 

lead to chronic excitotoxicity at the AMS with consequent white matter pathology 

(22), with similar consequences for axonal integrity as described for MS.   

Taken together, impairment of this new mode of communication between axons and 

OLGs may underlay the pathogenesis of chronic CNS diseases such as AD or MS, 

which highlights the need of research on the molecular architecture of the AMS to 

allow potential pharmacological strategies.  
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4.2. CONSEQUENCES OF MYELIN METABOLIC SUPPORT 

DYSFUNCTION TO BRAIN CONECTIVITY: PSYCHIATRIC DISEASES 

Human brain white matter tracts constitute an enormous cellular network that 

connects the cortex with subcortical structures and, importantly, interconnect cortical 

areas with each other. Lesions affecting white matter disconnect brain areas causing 

motor and sensory deficits, as well as cognitive dysfunction (28). Besides, abnormal 

metabolic support can slow down or interrupt signal propagation, which may result 

in neurodegeneration (e.g. motoneuron cell death in ALS; 17) and contribute to 

psychiatric diseases (28).    

Several clinical studies using imaging and neuropathology techniques have reported 

white matter changes and oligodendroglia alterations in depression, schizophrenia 

and autism, among others. These changes may stress axons metabolically and 

compromise axon potential propagation (28). 

Table 1. Hypothetical mechanisms underlying primary and secondary involvement of myelin-forming 

oligodendrocytes in the course of psychiatric diseases. Taken from Nave and Ehrenreich (2014). 

 

Indeed, mutant mice with genetically defined defects in OLGs reveal unusual 

phenotype consisting of catatonia and depression-like symptoms (29) and 

interestingly, post-mortem brain of patients with schizophrenia shows specifically 
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reduced OLG gene transcripts (30). Consequently, primary defects of OLGs and 

myelin could well affect higher brain functions in different ways (Table 1).  

The continuous motor-driven transport of organelles and vesicles containing 

signalling proteins for synaptic transmission is an energy-consuming process. In 

heterozygous mice for OLG-specific genes (Cnp1+/-), for example, the first signs of 

pathology are axonal swellings, which indicate transport problems evocative of those 

seen in axonopathies caused by mitochondrial disease (28). This is well matched 

with the role of OLGs in supporting axonal energy metabolism, as reduced axonal 

ATP levels could lead to a slowing down of transport along the axon and eventually 

cause its arrest, abnormal calcium entry and caspase-mediated degeneration. Thus, 

decreased fuelling by myelin of axons could damage the synaptic machinery and 

cause behavioural disease symptoms (28). 

Myelin thickness and internodal length in myelinated axons are designed to 

synchronize impulse transmission, specifically when parallel input differs in axon 

length. Transcallosal and interhemispheric connections, for example, are 

extraordinarily stable over time, and this may be critical for coupling between 

cortical regions, spike-timing-dependent plasticity or attention, processes that need a 

high temporal precision (28). 

Whether these ideas are amenable to clinical applications remains to be seen, 

nonetheless it is certain that metabolic interactions between axons and OLGs are key 

for proper white matter function and axon survival, as well as to prevent 

neurodegenerative and psychiatric diseases. Thereby, such a complex model of 

metabolic interaction highlights the need to broaden the focus of research from 

neurons to other brain cells. 

5. CONCLUSION 

Oligodendroglia represents a much more diverse class of CNS cells than previously 

thought. Functionally, they subserve roles including not only insulation of axons, but 

also a source of energy substrates for proper propagation of action potentials. 

Notably, the supply of fuel to axons is controlled on demand according to neuronal 

activity via NMDA receptors localized in the myelin sheath, which are activated by 
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glutamate release from axons. Conceptually, the relationship between the axon and 

the enwrapping myelin constitutes a structure resembling the classical neuronal 

synapse. Disruption of this communication can lead to demyelination or axonopathy, 

and contribute to the physiopathology of diseases including multiple sclerosis, 

amyotrophic lateral sclerosis and Alzheimer’s disease. 
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