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During the development of multicellular organisms, transcriptional regulation plays an
important role in the control of cell growth, differentiation and morphogenesis.
SUMOylation is a reversible post-translational process involved in transcriptional regula-
tion through the modification of transcription factors and through chromatin remodelling
(either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting
recruitment of chromatin regulators). SUMO modification results in changes in the activ-
ity, stability, interactions or localization of its substrates, which affects cellular processes
such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic trans-
port. This review focuses on the role of SUMO machinery and the modification of target
proteins during embryonic development and organogenesis of animals, from inverte-
brates to mammals.

Introduction
SUMO belongs to the Ubiquitin-like modifier (UbL) family of proteins and attaches covalently to
target proteins in a transient and reversible process termed SUMOylation. SUMO proteins are highly
conserved in eukaryotes, but the number of paralogues varies among species. A single SUMO gene
has been identified in S. cerevisiae (smt3), C. elegans (smo-1) and the insect Drosophila melanogaster
(smt3), whereas three SUMO paralogues are found in mammals and eight in plants. There are three
SUMO genes in the human genome, SUMO1 to 3. Human SUMO2 and SUMO3 share 97% identity
at amino acid level (referred as SUMO2/3), and they share 47% sequence identity with SUMO1.
SUMO4 shares 87% identity with SUMO2, and its expression is limited to some tissues [1].
SUMO proteins are synthesized as precursors that need to be matured by SUMO isopeptidases to

expose the C-terminal di-glycine motif. The matured SUMO is activated by the heterodimeric E1
enzyme, comprised by SUMO-activating enzyme subunit 1 (SEA1, Aos1) and 2 (SAE2, Uba2). E1
forms a thioester bond between its catalytic cysteine and the SUMO C-terminal glycine. Once acti-
vated, SUMO is passed to the catalytic cysteine of the only E2 conjugating enzyme UBC9 (Ubiquitin
Conjugating Enzyme E2 I). Finally, SUMO is transferred to the substrate either directly or through a
SUMO E3 ligase (Figure 1 and Table 1). The transfer through the E3 ligases ensures a higher conjuga-
tion rate and the use of a particular E3 confers substrate specificity. The SUMO E3 ligases best charac-
terized are Protein inhibitor of activated STAT 1 to 4 (PIAS1 to 4) and the Ran-binding protein 2
(RanBP2) Recently, the zinc finger protein ZNF451 was shown to have SUMO E3 ligase activity and
to assemble efficiently SUMO2/3 chains (Table 1) [2,3]. The proteases involved in maturation and in
the reverse de-conjugation are the ubiquitin-like protein-specific proteases (Ulps) in yeast and inverte-
brates and sentrin-specific proteases (SENPs) in mammals (SENP1–3 and SENP5–7). Moreover, two
additional SUMO isopeptidases have been described in humans, deSUMOylating isopeptidase (DeSI),
and the ubiquitin-specific protease-like 1 (USPL1) (Table 1) [4–6].
SUMOylation modulates the function of target proteins by changing their subcellular localization,

modifying their DNA-binding or chromatin association ability, recruiting histone-deacetylases and
other corepressors or interfering with other post-translational modifications. This review is focused on
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the role of SUMO during embryonic development highlighting the most recent studies related to organogenesis
(Table 2). In each section, we first review the expression and/or roles of SUMOs, E1, E2, ligases or proteases
and then, we provide examples of SUMO target proteins and the effect of SUMOylation in their function
during development.

SUMO in the germ cells
Primordial germ cells are a specialized population of cells that undergo meiosis to generate gametes, oocytes
and spermatozoa. This involves several tightly coordinated processes such as pairing of homologous chromo-
somes, formation of the synaptonemal complex (SC) and the completion of meiotic recombination that leads
to physical attachments between homologous chromosomes.
In yeast, both Ubc9 and Smt3 localize to synapsed regions of meiotic chromosomes. An ubc9-t mutant

exhibited inefficient synapsis [7] and a meiotic smt3 reduction-of-function strain displayed abnormal levels of
crossover recombination and diminished SC assembly [8]. These studies show that SUMOylation regulates
chromosome synapsis during meiosis in budding yeast [9]. In Drosophila, mutations of the Drosophila UBC9
homologue lesswright (lwr), associated with either insertions in the 50unstranslate region (lwr5486) or with a
point mutation (G-to-A) in the coding region that leads to substitution of Arg104 by His (lwr5), show defects in
meiotic chromosome segregation [10]. In C. elegans, the homolog of SUMO1, SMO-1 and the E2 conjugation
enzyme UBC9 localize to germline nuclei throughout prophase I [11]. Both, the smo-1(ok359) null mutant and
ubc9(tm2610) mutant, with deletion of the sequences that encoded for the catalytic domain, were sterile.
Although the germ cells enter the meiotic prophase, they have defects in meiotic progression and failed to
form normal sperm and oocytes [12]. All these studies show the important roles for SUMOylation during
meiosis that include the maintenance of meiotic centromeric heterochromatin, meiotic DNA double-strand
break repair and homologous recombination, centromeric coupling and the assembly of the SC [13].

Spermatogenesis
The roles that SUMO plays during spermatogenesis include meiotic sex chromosome inactivation, centromeric
heterochromatin organization, XY body formation, microtubule nucleation and nuclear restructuring [14–18].

Figure 1. The SUMOylation/deSUMOylation cycle.

(1) First, SENPs process newly synthesized SUMO precursor into mature SUMO. (2) Then, SUMO’s exposed di-glycine forms a

thioester bond with the SAE2’s catalytic cysteine in an ATP-dependent manner. (3) SUMO is then passed from the SAE1/SAE2

E1 activating heterodimer to the E2 conjugating enzyme UBC9, which also forms a thioester bond. (4) Substrates can be

directly modified by E2-SUMO, but E3s might enhance conjugation rates by binding either E2-SUMO or substrates. (5) SENPs

cleave the isopeptide bond and SUMO as well as the substrate are recycled. S: SUMO. ∼: thioester bond.
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Table 1 E3 SUMO ligases and deSUMOylases Part 1 of 2

Organism Name
Tissue expression/Subcellular
localization

Mammalian
Ortholog Biological/Cellular process References

E3 Ligases

S. cerevisiae Ull1/Siz1 - PIAS4 Sumoylation of septins and histone H3, Mitosis [99,100]
Nfi1/Siz2 - PIAS4 Septin regulation [101,102]
Cst9/Zip3 - RNF212 Synaptonemal complex formation, Meiosis [103]
Mms21 - NSE2 DNA replication and repair [104,105]

C. elegans GEI-17 Germ cells, embryo, pharinx,
neurons

PIAS2-4 Meiosis, Telomere positioning, DNA damage [32,106–108]

Drosophila tonalli Salivary gland, Ring gland,
imaginal discs, other tissues

ZMIZ1, ZMIZ2 Chromatin modification [109–112]

Suppressor of
variegation 2-10

Nervous system, reproductive
system, other tissues

PIAS1-4 Chromatin modification, JAK-STAT signaling [113–115]

Mammals RNF212 Ubiquitous, Germ cells - Meiotic recombination [23]
PIAS1 Ubiquitous, Germ cells - Embryogenesis, Neuronal differentiation, Cardiac

development
[50,58,81]

PIAS2 Testis, pancreas, others/ PML
body

- Post-Synaptic dendritic differentiation [82]

PIAS3 Ubiquitous/Nucleus - Neuronal differentiation, Steroidogenic tissue,
Retinal differentiation

[66,79,87]

PIAS4 Ubiquitous, enhanced in testis/
PML body

- Early embryogenesis stage [51]

RanBP2 Ubiquitous/Nuclear membrane
and vesicles

- Macromolecular transport [116]

NSE2 Ubiquitous/Nucleus - Myogenic differentiation, DNA damage repair [117]
ZNF451 Ubiquitous/Nucleoplasm - SUMO chain formation [2]
Pc2/CBX4 Ubiquitous/Nucleoplasm and

nuclear bodies
- Heart development [54]

TOPORS Ubiquitous/Nucleoplasm - Chromatin modification [118]
SLX4 Ubiquitous/Nucleoplasm, cytosol

and cell junctions
- Genome maintenance [119]

hDREF Ubiquitous - Nucleosome remodeling and cell proliferation [120]
MAPL Nucleoplasm, mitochondria and

cytosol
- Mitochondrial fission [121]

Krox20 Ubiquitous - Hindbrain development [78]
ZMIZ1 Ovary, prostate, spleen and

testis/Nucleoplasm
- Embryonic development, vascular development [111,122,123]

ZMIZ2 Gallbladder, testis and germ
cells/Nuceloplasm and
mitochondria

- Embryonic development of neural tissue [111,124]

TRIM 1–19–22
—27–28–32–39

Subcellular proteinaceous bodies - Senescence, Apoptosis, Innate immunity,
Antiviral defense, Gene silencing, Autophagy,
Genomic stability

[125–130]

DeSUMOylases

S. cerevisiae Ulp1 Nuclear pore SENP1,
SENP2

Cell cycle progression, Telomeric silencing, DNA
damage

[131,132]

Ulp2 Nucleoplasm SENP6 Cell cycle, DNA damage, DNA replication [133,134]

C. elegans ulp-1 Neurons, intestine, germ line,
body wall muscle cell

SENP1 Meiosis, embryonic development [135]

ulp-2 Hypodermis and neuroblasts/
Citosol and nucleus

SENP7 Embryonic development [136]

ulp-4 Body wall muculature,
hypodermis/Mitochondrial matrix

SENP7 Cholesterol metabolism cell cycle, Unfolded
protein response

[137–139]

ulp-5 n.s. Predicted deSUMOylase [138]

Drosophila Ulp1 Early embryo, embryonic CNS,
adult germ line, other tissues

SENP1,
SENP2

Central nervous system projection neuron
axonogenesis, negative regulation of Toll
signaling pathway and inmflamatory response

[140–142]

Continued
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In mouse prophase I of meiosis, SUMO1 is localized to the XY body in spermatocytes, whereas only SUMO2/3
are detected near centromeres in metaphase I spermatocytes [14,15,19]. During human meiotic prophase,
SUMO1 is associated with XY chromosome axes and also found in centromeric and pericentromeric hetero-
chromatin [17,20].
The proteasome is involved in ensuring that homologous chromosomes pair each other during meiosis [21].

SUMO acts in coordination with ubiquitin-proteasome to regulate major transitions of meiotic recombination.
Interestingly, in mouse, a SUMO-ubiquitin relay recruits proteasomes to the axes between homologous chro-
mosomes to mediate chromosome pairing and recombination between homologs. The Ring Finger Protein 212
(RNF212), involved in SUMO conjugation, mediates the formation of axis-associated SUMO conjugates, while
the ubiquitin ligase Cyclin B1 Interacting Protein 1 (CCNB1IP1 or HEI10) antagonizes RNF212 by promoting
its turnover from synapses chromosomes [22,23]. Recently, novel proteins modified by SUMO during sperm-
atogenesis have been identified in human and mouse: Cyclin Dependent Kinase 1 (CDK1), RNA polymerase II
(RNAP II), Cell Division Cycle 5 Like (CDC5), Piwi Like RNA-Mediated Gene Silencing 2 (PIWIL2 or MILI),
DEAD-Box Helicase 4 (DDX4), TAR DNA Binding Protein (TARDBP or TDP-43) and Serine/Threonine
Kinase 31 (STK31); but the functional role of SUMOylation of these factors in spermatogenesis has not been
reported [24,25].

Oogenesis
During mouse oocyte maturation and growth, different expression patterns and protein localizations have been
described for SUMO1 and SUMO2/3 [18]. In transcriptionally active oocytes, both SUMO1 and SUMO2/3 are
localized to the nucleoplasm and chromatin. In transcriptionally quiescent oocytes, SUMO1 is weakly detected
with chromatin, while SUMO2/3 is localized throughout the nucleoplasm and on chromatin [26]. During
oocyte maturation, SUMO1 is localized to the spindle poles in prometaphase I, metaphase I and II stages and
around the separating homologues in anaphase I and telophase I stages of first meiosis. SUMO 2/3 is mainly

Table 1 E3 SUMO ligases and deSUMOylases Part 2 of 2

Organism Name
Tissue expression/Subcellular
localization

Mammalian
Ortholog Biological/Cellular process References

CG12717 n.s. SENP6,
SENP7

Predicted deSUMOylase [141]

Veloren Early embryo, embryonic CNS SENP7,
SENP6

Axon targeting, negative regulation of cell death [141]

Mammals SENP1 Ubiquitous, enhanced in testis/
Nuclear pore and nuclear foci

- Embryogenesis, Mitotic progression,
Senescence, Hematopoiesis

[47,143–146]

SENP2 Ubiquitous/Nuclear pore, nuclear
foci, cytoplasm

- Trophoblast development, cardiac development,
Myogenesis

[48,54,147,148]

SENP3 Ubiquitous/Nucleolus - Osteogenic differentiation, Sarcomere
organization, Oocyte meiosis, Ribosome
biogenesis

[29,60,149,150]

SENP5 Nucleolus and mitochondria - Ribosome biogenesis, RNAPI-mediated
transcription 47S rRNA, tmitochondrial
fragmentation during mitosis

[151,152]

SENP6 Ubiquitous/Nucleoplasm - Osteochondro-progenitor homeostasis,
Hematopoiesis

[153,154]

SENP7 Ubiquitous/Nucleoplasm - Neuronal differentiation,Chromatin remodeling [76,155]
DeSI1 Ubiquitous, enhanced in

gastrontestinal tract, pancreas
and muscle tissues/Cytoplasm
and nucleus

- Modulation transcriptional repressor activity [5]

DeSI2 Cytoplasm - Modulation transcriptional repressor activity [5]
USPL1 Ubiquitous, enhanced in

gastrointestinal tract and kidney/
Cajal bodies

- RNAPII-mediated snRNA transcription [4,156]

The organism, tissue expression, subcellular localization, orthologs and biological and cellular processes of the E3 SUMO ligases and deSUMOylases are shown.
n.s.: not specified.
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Table 2 SUMOylation components in developmental processes Part 1 of 2

Organ/Process
SUMO/
Ubc9

E3
Ligase

De
SUMOylase Target Organism Pathway/Function Reference

Germ cells Ubc9 Yeast Chromosome synapsis during
meiosis

[7]

Smt3 Yeast Chromosome synapsis during
meiosis

[8]

Lwr Drosophila Defects in meiotic chromosome
segregation

[10]

SMO-1 C. elegans Sterility [12]
UBC9 C. elegans Sterility [12]

Spermatogenesis RNF212 Mouse Formation of axis-associated
SUMO conjugates

[22]

CDK1 Mouse n.s. [25]
RNAPII Mouse n.s. [25]
CDC5 Mouse n.s. [25]
PIWIL2 or MILI Mouse n.s. [25]
DDX4 Mouse n.s. [25]
TARDBP or TDP-43 Mouse n.s. [25]
STK31 Mouse n.s. [25]

Oogenesis SUMO1 PLK1 Mouse microtubule and spindle pole
organization

[28]

SUMO2/3 PLK2 Mouse kinetochore [28]
SENP2 Mouse metaphase II spindle organization [27]
SENP3 Mouse G2-M transition and spindle

assembly
[29]

SENP7 Mouse meiosis and egg maturation [30]
GEI-17 KLP-19 C. elegans Recruitment to the Ring Complex [31]

BUB-1 C. elegans Localization between segregating
chromosomes during early
anaphase I

[32]

CLS-2 C. elegans Localization to central spindle [32]
SUMO1 Septin2 Mouse Chromosome congression and

meiosis progression
[33]

Embryogenesis and
ZGA

Ubc9 Mouse nuclear organization and
chromosome segregation at
postimplantation stage

[36]

Smt3, Lwr Drosophila early embryogenesis [37–39]
UBC9 C. elegans embryogenesis [40]
ubc9 Zebrafish embryogenesis [41]
SUMO2 Mouse Embryogenesis, stage E10.5,

growth, cell proliferation, cell
survival

[42]

SENP1 HIF1alpha, GATA1 Mouse Mid-gestational embryogenesis;
Erythropoiesis; placental
development

[45–47]

SENP2 p53/Mdm2 Mouse Cell cycle progression during
mouse trophoblast development,
endoreduplication

[48]

PIAS1 Mouse Embryogenesis, stages E10.5 and
E12.5, red blood cells,
angiogenesis, capillary plexus and
blood vessel formation, heart
development

[50]

PIAS4 DPPA2 Mouse zygotic genome activation;
chromosome segregation;
heterochromoatine state

[51,52]

Continued
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Table 2 SUMOylation components in developmental processes Part 2 of 2

Organ/Process
SUMO/
Ubc9

E3
Ligase

De
SUMOylase Target Organism Pathway/Function Reference

Heart SENP2 cyclin and
cyclin-dependent
kinase inhibitors

Transgenic mice
overexpressing
human SENP2
Mouse

cardiomyocyte proliferation [54,55]

SENP5 Mouse cell death [56]
SUMO1 SENP2 Pc2/CBX4 Mouse SUMO1-conjugated CBX4

decreases cardiomyocyte
proliferation/suppressing the
expression of Gata4 and Gata6/
regulation of chromatin remodelling
complexes

[54]

SUMO1 PIAS1 GATA4 Mouse enhanced transcriptional activity [57,58]
SUMO1 PIAS1 Nkx2.5 Mouse enhanced transcriptional activity [53,59]

SRF Mouse enhanced transcriptional activity/
synergy with Nkx2.5 in activation of
cardiac target genes

[59,157,158]

MEF2 Mouse reduced transcriptional activity [159–162]
SUMO1 PIAS1 myocardin Mouse enhanced transcriptional activity [163]

Prox1 Human downregulation corepressor activity,
increased transcriptional activity

[164,165]

Tbx2/Tbx5 Human, mouse,
C. elegans

pharyngeal muscle development [108,166]

Osteogenic
differentiation

SENP3 RbBP5 Human activation of HOX gene DLX3 [60]

Adrenal Gland SUMO1 PIAS1,
PIAS3

SF1 Human, mouse Attenuation of its transcriptional
capacity

[64–66]

Smt3 Ftz-f1 Drosophila Sterol uptake. Attenuation of its
transcriptional capacity

[69,70]

SMO-1 NHR-25 C. elegans cell fate of reproductive organs [71]

Neuronal
development and
differentiation

SENP2 Drp1 mouse neurodegeneration through the
modulation of mitochondrial
morphogenesis

[75]

SENP7 neuronal differentiation [76]
Braf35 Mouse repression of neuronal specific

genes and inhibition of neuronal
differentiation

[77]

Krox20 Nab negative regulation [78]
SUMO1,
2, 3

PIAS1, 3 SENP2 FOXP2 Human modulates transcriptional activity on
downstream target genes (DISC1,
SRPX2, and MiR200c); Purkinje cell
development, cerebellar motor
function and vocal communication

[79–81]

PIAS2 MEF2A Human, rat represses transcriptional activity;
postsynaptic dendritic
differentiation

[82]

Retinal proliferation
and differentiation

ubc9 Sp1 Xenopus laevis promotes retinal progenitor
proliferation by repressing the cell
cycle exit; suppresses p27Xic1
expression

[84]

Smt3,
Aos1/
Uba2, Lwr

Drosophila proliferating cells in the developing
eye

[85,86]

PIAS3 Nr2e3 Mouse specification of the rod subtype in
the retina while preventing cone-like
characteristics

[87]

Proteins modified by SUMO in Germ Cells, embryogenesis, ZGA, Heart, osteogenic differentiation, adrenal gland, Neuronal development and differentiation and retinal
proliferation and differentiation. The organism, SUMO ligases, DeSUMOylases, their targets, and the pathway and function are shown.
n.s.: not specified.
ZGA: zygotic genome activation.
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concentrated near centromeres [27]. Interestingly, the SUMOylation of the Polo-like kinase 1 (PLK1) by differ-
ent SUMO paralogues correlates with its different functions and localizations: PLK1 modification by SUMO1 is
related to its function in microtubule and spindle pole organization, whereas modification by SUMO2/3 regu-
lates its function at the kinetochore [28].
Studies in mouse show the important roles of deSUMOylases during oogenesis. The overexpression of Senp2

led to defects in metaphase II spindle organization in mature eggs [27]. Other examples are the regulation of
G2-M transition and spindle assembly by SENP3 [29] and the meiotic arrest and decrease of mature eggs in
SENP7 deficient oocytes [30].
SUMO modification plays also a role in chromosome congression in oocyte meiosis in C. elegans by regulat-

ing the multi-protein ring complex (RC) assembly [31]. There, the SUMO E3 ligase GEI-17 modifies and
recruits the kinesin KLP-19 to the RC. Recently, the same group showed that SUMO regulates the dynamic
localization of the central spindle proteins Mitotic Checkpoint Serine/Threonine Kinase (BUB-1) and CLS-2
during female meiosis [32]. Few SUMO modified proteins have been identified in mouse oocyte. As an
example, the GTP binding protein Septin2 is modified by SUMO1 and its inhibition showed that it plays an
essential role in regulating chromosome congression and meiosis progression [33]. Thus, SUMO1 plays crucial
roles during meiotic oocyte maturation by regulating spindle organization, chromosome congression and
chromosome segregation [34]. In addition to the role in oogenesis, SUMOylation is also required for the com-
munication of the oocyte with the ovarian somatic cells [35].

SUMO in embryogenesis and zygotic genome activation (ZGA)
SUMO plays important roles in embryogenesis, as revealed by embryonic lethality when the conjugating
enzyme UBC9 is deleted or knocked-down. Ubc9 deficient mouse embryos show severe defects in nuclear
organization and chromosome segregation, and die at early post implantation stage [36]. In Drosophila embryo-
genesis, Smt3 coordinates multiple regulatory pathways and loss of function mutations in Ubc9 results in
impaired embryogenesis [37–39]. Embryonic arrest is also observed in Ubc9 knockdown in C. elegans and zeb-
rafish [40,41].
In mouse, the SUMOs orthologues have non-overlapping roles during embryonic development. SUMO2 is

expressed at higher levels than SUMO3 in early embryonic stages and is indispensable for embryonic develop-
ment, as shown by the phenotype of the null mutant mice. Sumo2−/− embryos die at stage E10.5 and exhibit
severe growth retardation with reduced cell proliferation and increased cell death. However, embryos deficient
in SUMO3 are viable [42]. Similarly, SUMO1 deficient mice are viable, likely because its function can be com-
pensated by SUMO2 or SUMO3 [43,44].
Consistently with a central role for SUMOylation in embryonic development, knockout mice of the SUMO

proteases SENP1 or SENP2 are mid-gestational embryonic lethal [45,46]. Mutations of SENP1 in mouse
produce defects in erythropoiesis by impairing the physiological deSUMOylation of the hematopoietic factors
Hypoxia Inducible Factor 1 Subunit Alpha (HIF1α) and GATA Binding Protein 1 (GATA1) [45,47]. SENP2
mutations cause deficiencies in cell cycle progression during mouse trophoblast development: SENP2 ablation
disturbs the p53/Mdm2 pathway, affecting the expansion of trophoblasts progenitors and their maturation [48].
Moreover, deficiency of SUMO E3 ligases, such as PIAS1/PIASy double-knockout mice, impairs embryonic
development between E10.5 and E12.5 in mouse [49,50].
While early phases of embryonic development are driven by maternal determinants, development comes

under the control of the zygotic genome activation (ZGA) after fertilization. Two recent studies have analyzed
the function of SUMOylation in regulating the maternal to zygotic transition and ZGA. Overexpression of the
E3 ligase PIAS4 in mouse zygotes inhibited ZGA and impaired early embryo development. PIAS4 effect is par-
tially caused by the SUMOylation of Developmental Pluripotency Associated 2 (DPPA2), which converts this
transcriptional activator to a potent inhibitor of zygotic transcriptional program [51]. In agreement, another
study shows that overexpression of PIAS4 after fertilization led to a failure of chromosome segregation and
impaired ZGA, due to the enhanced SUMO ligase activity. Overexpressed PIAS4 disturbed the demethylation
of histone H3 lysine 9 trimethylation (H3K9me3), affecting the heterochromatin state [52].

SUMO in developing tissues and organs
To illustrate the role of SUMO in different developmental pathways, we selected several examples in which
SUMO components and SUMOylation of transcription factors play fundamental roles in organ development.
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Heart development
The enrichment of SUMO1 and SUMO2 mRNAs in cardiac chamber regions undergoing proliferation and dif-
ferentiation suggests a central role for SUMOylation in heart development [53]. A critical issue to achieve
correct cardiac development is the balance between SUMOylation/deSUMOylation. Deletion of the
deSUMOylating enzyme SENP2 in mice caused defects in cardiac development due to decreased cardiomyocyte
proliferation: knockout of SENP2 lead to accumulation of SUMO1-conjugated Chromobox 4 or Polycomb 2
Homolog (Pc2/CBX4), a subunit of the polycomb repressive complex 1 (PRC1). SUMOylation of Pc2/CBX4
facilitated its binding to H3K27me3, suppressing the expression of the cardiac transcription factors encoding
genes Gata4 and 6 [54], revealing a role for SUMOylation in the regulation of chromatin remodelling com-
plexes during cardiogenesis. Moreover, SENP2 overexpression produced abnormal cardiomyocyte proliferation,
with dysregulation of cyclin and cyclin-dependent kinase inhibitors, leading to cardiac defects [55]. Likewise,
overexpression of SENP5 in mouse cardiomyocytes increased cell death and led to cardiomyopathy. Indeed,
dysregulated levels of SENP5 and SUMO conjugation are observed in human failing hearts [56]. A role for
PIAS1 has also been described for erythropoiesis and angiogenesis in the yolk sac. PIAS1 regulates proliferation
in cells from the endoderm and mesoderm and its inactivation reduces the myocardium muscle mass, impair-
ing cardiac development [50].
SUMO modifies a multitude of transcription factors that are important for normal cardiac development.

These factors include NK2 homeobox 5 (Nkx2.5), GATA4 and 6, Serum Response Factor (SRF), myocyte
enhancer factor-2 (MEF2), myocardin, T-box transcription factors-2 and -5 (TBX2 and 5) and prospero-related
homeobox (Prox1) [57]. The zinc finger-containing transcription factor GATA4 is modified by SUMO1 in its
transactivation domain, which results in enhanced transcriptional activity. The E3 ligase PIAS1 enhances the
GATA4 SUMOylation efficiency via its RING finger domain [58]. Similarly, SUMO1 modification of the home-
odomain transcription factor Nkx2.5 by PIAS1 increased its transcriptional activity by enhancing the physical
association with its binding partners [53,59].

Osteogenic differentiation
Mesenchymal stem cells have the ability to differentiate into multiple cell types including adipocytes, chondro-
cytes and osteocytes. SUMOylation is required for the epigenetic control of gene expression during osteogenic
differentiation of human stem cells. Notably, some studies show that SUMO affects the expression of HOX
genes, which are evolutionary conserved master regulators that determine body plan in vertebrate development.
For instance, the SUMO isopeptidase SENP3 associates with the Lysine Methyltransferase 2A and 2D
(KMT2A/KMT2D or MLL1/MLL2) histone methyltransferase complexes and catalyzes the deSUMOylation of
RB Binding Protein 5 (RbBP5), which is required for activation of HOX genes such as Distal-Less Homeobox
(DLX3) [60]. A recent study by this group further showed that flightless-I-homolog (FLII), member of the gel-
solin family of actin-remodelling proteins, determines the SENP3 recruitment and MILL1/2 complex assembly
on the DLX3 gene [61].

Adrenal gland development and hormone synthesis
SUMO function is necessary in cell fate determination during adrenal gland development. SUMOylation com-
ponents are expressed in human adrenal cortex and SUMO modification of transcription factors Steroidogenic
Factor 1 (SF-1 or NR5A1), Wilms Tumor Protein 1 (WT1), GLI Family Zinc Finger 3 (GLI3), Spalt Like
Transcription Factor 1 (SALL1) and Nuclear Receptor Subfamily 0 Group B Member 1 (NR0B1 or DAX1)
have been described [62,63]. SF-1, member of the NR5A subfamily of nuclear receptors, is crucial for the devel-
opment of the adrenal gland and for the expression of steroidogenic genes. SF-1 interacts with UBC9, PIAS1
and PIAS3 and is modified by SUMO, which results in attenuation of its transcriptional capacity [64–66].
Interestingly, a knock-in mouse model expressing a non-SUMOylatable form of SF-1 exhibits endocrine abnor-
malities and changes in cell fate, due in part to the inappropriate activation of the Hedgehog signalling [67].
The resulting mutant adrenal glands in this model exhibit a persistent foetal tissue, suggesting that
SUMOylation interferes as well with normal maturation. Indeed, another recent study shows that foetal adrenal
cortex regression is controlled by the synergistic interaction between SF-1 SUMOylation and DAX1, a nuclear
receptor corepressor that interacts with SF-1 and inhibits genes involved in adrenal development and steroido-
genesis [68]. In Drosophila, SUMO is as well required in steroidogenic tissues for the synthesis of steroid hor-
mones [69]. Drosophila SF-1 homolog Fushi Tarazu Transcription Factor 1 (Ftz-f1) is modified by SUMO and
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is involved in sterol uptake, in part through the scavenger receptor member Snmp1 [70]. In addition,
SUMOylation of the C. elegans homologue NHR-25 regulates it activity and maintains proper cell fate during
development of the reproductive organs [71].

Neuronal development and differentiation
SUMOylation exerts a central role during embryonic brain development. Several studies have analyzed the
spatiotemporal distribution of the SUMO moieties, UBC9, SAE1, SENP1 and SENP6 in the developing mouse
and rat brains [72–74]. Total conjugation by SUMO1 and SUMO2/3 peaked at E12, whereas the highest levels
of UBC9 expression were detected between E15 and E18.
Similarly to the heart, a controlled SUMOylation and deSUMOylation balance is important in the developing

brain. A mouse model deficient for SENP2 in neural progenitors shows increased neuronal SUMOylation levels
and produces neurodegeneration through the modulation of mitochondrial morphogenesis. This degeneration
is a consequence of the hyper-SUMOylation of Dynamin-related protein 1 (Drp1), which promotes its associ-
ation with mitochondria and neuronal apoptosis [75]. Recent studies showed that SENP7 is involved as well in
proper neuronal differentiation [76].
SUMO regulates the function of several transcription factors during neuronal differentiation, including PHD

Finger Protein 21A (PHF21A or Braf35), Early Growth Response 2 (EGR2 or Krox20), Myocyte Enhancer
Factor 2A (MEF2A) and Forkhead Box P2 (Foxp2). In mouse developing brain, Braf35, a subunit of the
LSD1-CoREST histone demethylase complex, is expressed in immature neurons. SUMOylation of Braf35 is
required for the repression of neuronal specific genes and for the inhibition of neuronal differentiation [77].
An interesting case of cross-regulation is exemplified by the zinc finger transcription factor Krox20, which has
essential roles in vertebrate hindbrain segmentation. Krox20 was described as a SUMO ligase for its coregula-
tors, the NGFI-A Binding (Nab) proteins. As a consequence, the SUMOylation of Nab by Krox20 negatively
modulates Krox20 activity and the extension of Krox20-positive territories [78]. During neuronal differentiation
in the cerebellum, SUMOylation of the transcription factor FOXP2 increases, as a result of the function of
PIAS1 and PIAS3 SUMO ligases and isopeptidase SENP2 [79,80]. This modification is required for the regula-
tion of cerebellar motor function and vocal communication [81]. SUMOylation is also involved in the postsy-
naptic dendritic differentiation in the cerebellar cortex. The E3 ligase PIAS2 induces SUMO modification of
the transcription factor Myocyte Enhancer Factor 2A (MEF2A), repressing the MEF2-dependent transcription
in neurons [82]. Furthermore, the SUMOylation machinery participates in the synapsis plasticity and is asso-
ciated with neurodegenerative diseases [83].

Retinal proliferation and differentiation
During embryonic development, the vertebrate retina originates from the central nervous system. In Xenopus
laevis, ubc9 controls retinal progenitor proliferation by repressing the cell cycle exit in an high mobility group
box 3 (hmgb3)-dependent manner. This function is partially mediated by the SUMOylation of the transcrip-
tion factor Sp1, which suppressed p27Xic1 expression leading to the promotion of retinal progenitor prolifer-
ation [84]. In Drosophila, knockdown of Smt3 or E1 and E2 enzymes disrupts the proliferating cells in the
developing eye, as well as in other imaginal tissues [85,86].
Two retina photoreceptors, rods and cones, arise from a common progenitor. Interestingly, SUMOylation

promotes the specification of the rod subtype in the retina while preventing cone-like characteristics. This func-
tion involves the E3 SUMO ligase PIAS3 that SUMOylates the transcription factor Nuclear Receptor Subfamily
2 Group E Member 3 (Nr2e3) and converts it into a repressor of cone-specific gene expression [87]. In add-
ition, PIAS3 has been involved in establishing dorsoventral patterning and visual response of cone photorecep-
tors in the mouse retina [88].

Conclusions
The development of organisms requires a fine-tune regulation of diverse signalling pathways. Several findings
during the last years have unravelled the crucial role of SUMOylation for developmental and differentiation
processes through the modification of relevant transcription factors. To these previous examples, we could add
the role of SUMOylation during limb development. For instance, wing formation in Drosophila depends on the
regulation of the SALL transcription factors by SUMO [89,90], or the role of SUMOylation in hedgehog signal-
ling, a pathway that is relevant in limb formation [91]. In addition, SUMOylation of epigenetic regulators
modifies their transcriptional activity, localization or stability. Additional complexity is driven by the interplay
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of SUMOylation with other post-translational modifications such as acetylation, phosphorylation or ubiquityla-
tion. By the modification of transcription factor and chromatin remodelers, SUMO is involved in the regulation
of cell division, cell lineage commitment, specification, and differentiation during the developmental processes.
A fine balance of SUMOylation/deSUMOylation is required during embryonic development and for normal

cardiac and neuronal development. The disruption of the SUMO homeostasis led to inhibition of cell cycle
progression, changes in gene expression through chromatin remodelling and to apoptosis. Thus, in normal
physiological conditions, the isopeptidase activity is essential to maintain a stable fraction of SUMO modified
proteins. Interestingly, changes in SENPs levels that disrupts SUMO equilibrium are observed also in several
carcinomas. For example, in hepatocellular carcinoma, the complex between Cbx4 and PIASy mediates
hypoxia-induced angiogenesis through enhancing HIF-1α sumoylation and increasing the transcriptional activ-
ity of HIF-1 [92].
A crucial step to understand the diverse cellular functions of this modification is the detection of targets of

SUMOylation in vivo, due to the low abundance of the SUMOylated forms for any given target. For this
reason, the technology to identify SUMO targets is crucial. Emergence of new techniques for the analysis of
protein SUMOylation and characterization of the SUMO pathway across species and organs have been
described [93–96]. Remarkably, as dysregulation of SUMO conjugation is associated to different human dis-
eases it represents a potential therapeutic target. The study of in vivo role of SUMOylation in higher eukaryotes
and also in more simple organisms with powerful genetic tools such as yeasts and invertebrates [97,98] will
allow to elucidate more functions of SUMO targets during development.

Perspectives
1. SUMOylation has been proven crucial in the regulation of developmental processes.

2. Fine-tuning of key transcription factors function and signalling pathways components by
SUMOylation contributes to modulate developmental processes.

3. Generation of new technologies to identify SUMOylation targets in vivo in model systems and
in an organ specific manner will be crucial to achieve a more complete knowledge of the role
of SUMO during development.
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