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Abstract 

Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by 

considering species-specific traits and stress tolerance strategies. Studies have tested stress 

tolerance and competitive ability in mediating interaction outcomes, but few have 

incorporated this to predict how species interactions shift between competition and 

facilitation along stress gradients. We used field surveys, salt tolerance and competition 

experiments to develop a predictive model interspecific interaction shifts across salinity stress 

gradients. Field survey and greenhouse tolerance tests revealed trade-offs between stress 

tolerance and competitive ability. Modelling showed that along salinity gradients, 1) plant 
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interactions shifted from competition to facilitation at high salinities within the physiological 

limits of salt-intolerant plants, 2) facilitation collapsed when salinity stress exceeded the 

physiological tolerance of salt-intolerant plants, and 3) neighbor removal experiments 

overestimate interspecific facilitation by including intraspecific effects. A community-level  

field experiment, suggested that 1) species interactions are competitive in benign and,  

facilitative in harsh condition, but fuzzy under medium environmental stress due to niche 

differences of species and weak stress amelioration, and 2) the SGH works on strong but not 

weak stress  gradients, so SGH confusion arises when it is applied across questionable stress 

gradients.  Our study clarifies how species interactions vary along stress gradients. Moving 

forward, focusing on SGH applications rather than exceptions on weak or nonexistent 

gradients would be most productive. 

 

Key words: ecological theory; plant-plant interactions; process-based model; relative 

stress tolerance; salt marsh; stress-gradient hypothesis; plant community 

 

Introduction 

Understanding interspecific interactions is a fundamental goal of community ecology and 

essential for predicting how ecosystems respond to environmental change (Harmon et al. 

2009, Harley 2011). Both positive (i.e. facilitation) and negative (i.e. competition) species 

interactions are included in ecological theory as important driving forces of community 

organization and dynamics (He and Bertness 2014). The stress-gradient hypothesis (SGH) 

(Bertness and Callaway 1994) predicts that competitive interactions switch to positive 

interactions with increasing biotic/abiotic stress due to amelioration of physical stress or 

associational consumer defenses. While the SGH has been widely supported (He et al. 2012, 

2013), several questions remain (He and Bertness 2014), including: 1) whether competition 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

can dominate in stressful conditions (Pennings et al. 2003, Schöb et al. 2013), and 2) whether 

facilitation collapses in extremely stressful conditions (Kawai and Tokeshi 2007, Holmgren 

and Scheffer 2010, Dangles et al. 2013). Since the SGH has been increasingly applied to 

models predicting plant population and community dynamics (Travis et al. 2006, Chu et al. 

2008, 2009, 2010, Filotas et al. 2010 , Wang et al. 2013), resolving these questions is crucial 

to refining predictions of how plant communities will respond to environmental change. 

Controversies on the SGH have emerged because most empirical plant studies have 

focused on one or few pairwise species interactions, rather than community-level interactions 

Soliveres et al. 2015). Pairwise interactions can be primarily affected by species-specific 

traits, with environmental stress playing a secondary role (Soliveres et al. 2014, 2015). For 

example, stress tolerance, competitive ability (Liancourt et al. 2005, Graff and Aguiar, 2017), 

growth form, phylogeny, and life history stage (He et al. 2013) can mediate the outcome of 

plant interactions. Some have suggested that the SGH could be reconciled by incorporating 

the competitive ability (i.e., the ability to tolerate the inhibition of neighbors) and stress 

tolerance of the target species (Maestre et al. 2009, Soliveres et al. 2015). Interestingly, 

whole community-level studies of intertidal marine assemblages of seaweeds, marsh grasses 

and sessile and mobile invertebrates strongly supported the SGH (Altieri et al. 2007, Silliman 

et al. 2011, Crotty and Bertness 2015). 

We generally do not know how far species-specific pairwise interactions can be 

extrapolated to the community-level since the predictability of the latter may depend on 1) 

whether stress in pairwise interactions is linked to the overall environmental conditions 

(Bertness and Callaway 1994, Bruno et al. 2003) and 2) whether there are multiple stresses 

on the community (Kawai and Tokeshi 2007, Michalet 2007). Increasing mechanistic 

understanding of pairwise interactions may improve insight to community-level interactions.  
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Recent studies of pairwise interactions suggest that the distance to ecological optimum 

(the best performance of isolated individuals) of beneficiary species would determine the 

outcome of pairwise interactions (Liancourt et al. 2005). Thus, the further away a beneficiary 

species was from its optimum, the more important the nurse species would be. Moreover, 

when the performance of isolated individuals are linked to stress tolerances, evidence of the 

importance of the fundamental niche in determining pairwise interactions may appear. For 

instance, stress intolerant species were better facilitation candidates than stress-tolerators 

because they are more sensitive to stress alleviation (Liancourt et al. 2005, Graff and Aguiar 

2017). 

Competitive interactions under stressful conditions are frequently due to stress-tolerant 

species benefiting less from stress amelioration than stress intolerant species (Pennings et al. 

2003). Thus, if we knew the shape of the stress tolerance curve, the competitive ability and 

amount of stress a benefactor can alleviate along stress gradients for co-occurring species, we 

could predict pairwise and community-level interactions shifts along stress gradients. These 

predictions could be to predict the effects of facilitation on community structure and function. 

In this study, based on field survey and greenhouse experiments, we estimate the shape of 

the performance curve of tidal marsh plants along salinity gradients, the “Relative Stress 

Tolerance Curve (RSTC)”. This curve was then implemented and tested in a dynamic 

competition model as the plant’s competition strategy (Figure 1). The resulting quantitative 

predictions and a field transplant experiment were then analyzed to improve understanding 1) 

why and how stress intolerant species benefit more from stress amelioration; 2) how and 

when competition would shift to facilitation and 3) if facilitation collapses at extremely 

stressful conditions.  
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Methods 

Study sites and species 

We chose the Yellow River Delta Nature Reserve (37°35′–38°12′ N, 118°33′–119°20′ E) 

in the Shandong Province in China for this study. High elevation habitats, including uplands, 

terrestrial borders, and high marshes were used as study sites because the wide salinity 

gradient is the dominant abiotic stress (Cui et al. 2011). The transplant experiment and field 

surveys described below were conducted across this gradient. The three dominant species at 

the site and our target species were Phragmites australis, Tamarix chinensis, and Suaeda 

salsa. T. chinensis is a perennial shrub and its salt tolerance increases with age (Cui et al. 

2010). Because it is difficult to conduct experiments that measure the exact stress tolerance 

and competitive ability of adult individuals of T. chinensis, we used one- to two-year-old 

juveniles of this species. A common invasive species S. alterniflora, which colonized 

mudflats, was included in the community-level field transplant experiment to increase the 

generality of our results. This species has a high salt tolerance similar to S. salsa (Qi et al. 

2017). Variation in soil salinity at the site is driven by the groundwater table, evaporation, 

and precipitation with vegetation reducing soil evaporation and salinity stress by shading (Cui 

et al. 2011, He et al. 2012). (See Appendix S1 for site details).  

 

Field survey on plant distribution 

We quantified plant composition along the study site salinity gradient with eight transects 

(Fig. A1). In July 2015, we placed a 2 × 2 m quadrat every 100 m along each transect (5 to 8 

quadrats per transect) and recorded the percent cover of aboveground biomass of target 

species. Dry aboveground biomass was calculated by measuring the water content of the 

corresponding fresh aboveground plant tissue. Soil cores (5.05 cm diameter × 5 cm deep) 
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were collected at the center and four corners of each quadrat. Pore water salinity and moisture 

content was measured on these samples in the laboratory (see Qi et al. 2017).  

Greenhouse salt-tolerance tests  

We quantified salt-tolerance of P. australis, T. chinensis, and S. salsa in the greenhouse. 

Juveniles or ramets of each species were collected from monospecific areas at the study site 

and grown in a greenhouse over a wide range of salinities. We randomly excavated substrate 

blocks containing young ramets and juveniles from the field and transplanted size-

standardized ramet blocks (21 × 21 × 18 cm) of P. australis and (18 × 18 × 15 cm) blocks of 

S. salsa juvenile into pots. Three juveniles of T. chinensis were collected with intact substrate 

and planted in individual pots (21 × 21 × 18 cm). P. australis and T. chinensis aboveground 

biomass was cleared during transplantation to decrease transpiration and increase the survival 

of the juveniles. New buds or branches germinated within two weeks. We collected 25 

replicates/species and grew them in the greenhouse for two weeks with fresh water for 

acclimation to greenhouse conditions before exposing them to salinity treatments. Plants 

exhibiting transplantation shock were discarded and replaced. Three replicates of each 

species were randomly assigned to seven salinity treatments ranging from 0 to 100 PSU (21 

replicates/species). Salinity treatments were achieved by adding a salt solution at seven 

different concentrations (0.5, 2.0, 5.0, 10.0, 15.0, 30.0, and 60.0 PSU) daily to maintain 

saturation and stable soil salinity. Plants were collected in late April 2014; salinity treatments 

were established on May 7 and maintained for four months. 

Soil salinity (5 cm depth, measured as in the field survey) and plant performance (stem 

height, percentage of green/live plant tissue) of each replicate were monitored monthly. In 

September above- and belowground biomass of all replicates was harvested, dried, and 

weighed. Soil cores for water content and pore water salinity were also taken (Qi et al. 2017). 

Since the final dry biomass of replicates varied by as much as three orders of magnitude 
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among species; the data were normalized for interspecific comparisons. For each species, we 

calculated the percent maximum biomass achieved by identifying the highest biomass 

replicate at the end of the salt tolerance experiments (Crain et al. 2004).  

Field transplant experiment 

To determine community-level interspecific interactions along a salinity gradient, we 

transplanted P. australis, T. chinensis, S. salsa and Spartina. alterniflora into upland, 

terrestrial border, and high marsh zones with and without neighbors of other species (Fig. 

A1). In mid-May 2014, we excavated substrate blocks (10 × 10 × 20 cm) containing healthy 

P. australis ramets, S. alterniflora ramets, S. salsa juveniles, and T. chinensis juveniles from 

nearby plant communities, and immediately transplanted them into upland, terrestrial border, 

and high marsh zones. At each transplant site (4 sites/habitat), we established five 0.5 × 0.5 m 

plots all separated by at least 0.5 m from each other. At each site we planted the four species 

separately (four patches) and one mixed plot with all species (five different patches in total). 

In each plot, transplants were evenly spaced, with the total number of substrate blocks and 

shrub juveniles kept at 25 to control plant density and competition. Transplants were watered 

daily for one week to reduce transplant shock. Transplant stem height and pore-water salinity 

were monitored monthly, before aboveground biomass was harvested and dried and weighed 

in mid-October 2014.  

Field plant removal experiments 

We conducted a plant removal experiment along the salinity gradient in April 2014 to 

measure salinity alleviation resulting from aboveground shading. We established three sites 

separated by >50 m in the upland (least saline zone), terrestrial border (mediate saline zone), 

and the high marsh (most saline zone) where vegetation shading was observed to play a role 

in generating positive interactions among plants (He et al. 2012). In the three sample sites in 
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each zone we established two 1×1 m plots: a control plot and a plant removal plot, separated 

by >2 m. Aboveground biomass was removed biweekly as needed in the experimental 

treatments. A soil core (5.05 cm diameter × 5 cm depth) was taken in each plot monthly from 

April to July 2014 to determine pore-water salinity. Fresh and dry weights of aboveground 

vegetation were measured in each control plot in late July when plants achieved maximum 

biomass. Regressions were performed to quantified the relationship between soil salinity and 

salt stress alleviation ability and results were incorporated into the vegetation dynamic model 

below as plant-soil feedbacks. 

Model development 

A Stress Gradient Interspecific Interaction Model (SGIIM) was developed to link the 

competition and stress amelioration processes to elucidate the dynamic interplay between 

these processes. This model was kept as simple as possible while still containing the 

important processes discussed above. STELLA version 9.0 (Isee Systems, Inc.; Costanza and 

Voinov 2001) was used as a platform for our model (see Appendix S2: Fig. S1 for a model 

diagram). Parameters and equations used in the model (Appendix S2: Tables S1-S2) were 

acquired from our experiments described above and previous work (Qi et al. 2016; see Fig. 1 

for a conceptual study flow diagram).  

Salt-tolerance tests and the field survey were used to quantify target species RSTC later 

used in a competition model as the plant’s competition strategy. RSTC can be represented as  

                        (1) 

where Si is the relative stress tolerance of species i, ci is a constant ∈[0,1] that represents the 

competitive ability of species  at its fundamental niche optima;  is 

the standardized Gaussian stress tolerance curve; st represents the stress intensity to which the 

species is exposed; mi is the most suitable environmental condition of species i; and ri is a 
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constant  reflecting the stress tolerance range of species i. This formula can represent 

variation in species competitive advantage across a stress gradient (as explained in Fig. 2).  

A finite-difference equation was used to compute the change in plant population density, 

represented as dry aboveground biomass (g/m2) (Pacala and Tilman 1994): 

                       (2) 

where ΔXi is the change in population density of species i from time t to the next time step (t 

+ 1), j represents all species in the community, and Xi,t is the population density of i at time t 

(g/m2). The mortality rate of species i is represented by di. biomax is the maximum 

environment carrying capacity within a plant community (g/m2), and  represents the 

total biomass of plant community at time t.  is the total decreased population 

density at time t. Thus, is the remaining carrying capacity of 

the plant community at time t, and Pi is the probability that the species i juvenile can occupy 

the remaining carrying capacity of the plant community, being equal to the relative stress 

tolerance Si. Finally, the mortality rate equals to , being a constant equal to 5 (Qi et al. 

2016). The plant removal experiments quantified the relationship between soil salinity 

alleviation and vegetation biomass, which was incorporated into the competition model to 

calculate changes in soil salinity caused by vegetation shading. Plant distribution field survey 

data was used to validate the model (see Appendix S2: Fig. S2). The field transplant 

experiment and plant competition model were ultimately used to test the interspecific 

interaction along the stress gradient. 

Model inputs include initial salinity level and species biomass. A salinity gradient ranging 

from 0 to 120 PSU was used to represent the field salinity range and the initial biomass of 
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each species was set to a low level (50 g/m2). The model was run yearly for a 10-year 

simulation to achieve equilibrium for all simulations described below.  

Model-based interspecific interaction analysis 

Both pairwise plant interaction and community-level interaction were simulated to study 

variation in competition and facilitation. The model firstly simulated pairwise plant 

interactions between two spatially adjacent species (P. australis vs. T. chinensis and T. 

chinensis vs. S. salsa) across the salinity gradient with and without neighboring species, with 

and without salinity amelioration feedback. To study the interspecific interaction mechanism, 

we used competition between T. chinensis and S. salsa as an example, and selected T. 

chinensis as a target species to analyzed its biomass distribution under four different 

scenarios, i.e. species grow ① without neighboring species and salinity amelioration process 

(biomass distribution curve was set as ), ② without neighboring species but with salinity 

amelioration process (biomass distribution curve was set as for easier 

comparison with scenario ①), ③ with neighboring species but without salinity amelioration 

process (biomass distribution curve was set as ), ④ with neighboring 

species and with salinity amelioration process (biomass distribution curve was set as 

). Thus, the interspecific interactions could be calculated with the 

difference in T. chinensis biomass between scenario ② and scenario ④; i.e. 

, where  represented population loss of T. chinensis due 

to the competition of S. salsa, represented population alteration of T. chinensis 

resulting from altered stress amelioration ability when S. salsa was present (hereafter was 

called interspecific facilitation). Since <0, the positive or negative value of this equation 
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depended on the difference between and . Interspecific interactions 

( , i is the target species, j is the neighboring species) of pairwise interaction (P. 

australis vs. T. chinensis and T. chinensis vs. S. salsa) were analyzed to see how interspecific 

interaction vary between benefactors and beneficiaries. 

We then simulated community-level interspecific interaction among P. australis, T. 

chinensis, and S. salsa by comparing each species’ distribution with and without neighbor 

species. Community-level simulations were compared with pairwise simulation and field 

transplant experiment results to test if pairwise interaction can be scaled up to community 

level, and how interspecific interaction change at community level.   

 

 Results 

Field survey and salt-tolerance tests 

The field survey (Fig. 3a) showed zonal distribution where P. australis occupied the 

upland with a narrow salinity range; T. chinensis dominated the terrestrial border with a 

broader salinity range; and S. salsa dominated the high marsh with the widest salinity range. 

With above field distribution of species, and their salt tolerance result (Fig. 3b-d), we 

deduced their competitive abilities. Among species, S. salsa had the broadest salinity 

tolerance and a wide fundamental niche, as indicated by its large distribution range. 

Moreover, S. salsa reached its maximum growth at the lower end of the salinity gradient 

grown alone (Fig. 3d) and its lower abundance with neighboring species (Fig. 3a) revealed its 

low competitive ability. In contrast, P. australis was the most salt intolerant species but 

showed a high competitive ability, which allowed it to dominate the low salinity habitat.  
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Interspecific interactions along salinity gradients: Field transplant experiments 

Transplant experiments indicated that competition was strongest in upland habitats where 

all species can survive (Fig. 3e-h). With increasing soil salinity from upland to terrestrial 

border and high marsh (Appendix S3: Fig. S1), some salinity intolerant species, i.e. P. 

australis and T. chinensis, cannot survive at terrestrial border and/or high marsh, thus we did 

not observe a facilitative effect of neighboring species on these species. Yet we still found 

competitive effect of neighboring species on T. chinensis weakened with increasing salinity 

level. For species with a wide salinity tolerance range, i.e. S. salsa and S. alterniflora, we 

found neighboring species’ effect shifted to facilitation at high marsh where the only 

surviving species were S. salsa and S. alterniflora. For each species, the location where 

facilitative effects of neighboring species varied depending on their specific niche width.  

For each species, though location where facilitative effects of neighboring species differed 

regarding their specific niche width. It seems facilitation occurs near species’ physiological 

limit, and community-level interspecific interaction shifted from competition at upland to 

facilitation at terrestrial border. 

Salinity alleviation ability: Field plant removal experiments  

Soil salinity alleviation was positively related to the aboveground biomass fresh weight 

and to substrate salinity (Appendix S3: Fig. S2): the regression expression was Z = 

1.2749ln(X+1)(exp(Y/80)-1), r2 = 0.9708, where Z is the ameliorated salinity value (PSU), X 

is the fresh weight of aboveground plants (g) and Y is the salinity of bare soil (PSU). It 

should be noted that we took use of this expression form to make sure ameliorated salinity 

value (Z) equals to zero when there is no plants (X=0) or salinity of bare soil (Y) is zero. It 

should be noted that this regression function is only validated when the range of X and Y is 

within the parameter space of the field data shown in dots. 
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Modelling pairwise interspecific interactions along salinity gradients  

When salinity amelioration was not considered, only interspecific competition occurred 

without facilitation (Fig. 4a, c). Competition intensity was high with low salt stress, and 

decreased to zero near the stress limit of stress intolerant species. More specifically, the 

competitive effect of relatively salt tolerant T. chinensis on salt-intolerant P. australis 

declined to zero at 30 PSU, a relative high salinity stress level before P. australis died at 40 

PSU (its physiological salinity tolerance: Fig. 4a). Similarly, the competitive effect of S. salsa 

on T. chinensis decreased to zero at 40 PSU, a relatively high salinity stress before T. 

chinensis died at 60 PSU (its physiological salinity tolerance: Fig. 4c).  

When the impact of salinity amelioration on interspecific interactions was considered, 

interspecific facilitation emerged at the upper part of the target species’ physiological salinity 

tolerance, and peaked near the salinity level where competition intensity originally equaled to 

zero (Fig. 4b, d). In addition, though both interacting species were facilitated by the other, 

salinity intolerant species benefited more from neighboring species, and their realized 

distributions were extended, thus they were more likely to be benefactors. Using the 

coexistence of T. chinensis and S. salsa as an example (Fig. 5), we found that when T. 

chinensis grew in isolation (scenario ① and ②), the salinity amelioration pushed the 

distribution curve ( ) to a higher salinity ( ), where <0 at the lower end of 

distribution and >0 at the higher end of distribution. When plant-soil feedback was 

neglected and there was competition from S. salsa (scenario ③), T. chinensis biomass 

decreased to , where <0 and was smallest at the distribution peak for T. 

chinensis and biggest at the distribution limit. Further, when plant-soil feedback was 

considered during competition with S. salsa (from scenario ③ to scenario ④), the T. 
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chinensis distribution curve shifted to the right ( ), where <0 

at the lower end of distribution and >0 at the higher end of its distribution. 

Analysis of interspecific interactions ( ) indicate that   varied 

between beneficiaries and benefactors (Fig. 6). For beneficiaries, such as T. chinensis 

(Appendix S3: Fig. S3a) and P. australis (Appendix S3: Fig. S3c) interspecific facilitation 

(i.e. ) was weak in benign conditions and was negative under certain salinity 

levels, but was never less than zero in harsh conditions. For benefactors, such as S. salsa 

(Appendix S3: Fig. S3b) and T. chinensis (Appendix S3: Fig. S3d), interspecific facilitation 

was positive and weak under benign, but negative and strong in moderately stressful 

conditions. Interspecific facilitation was weaker than competition in benign conditions and 

only surpassed interspecific competition when it was near zero under harsh growth 

conditions. 

Simulation of community-level interspecific interactions indicated that community-level 

interspecific interaction are competitive at low salinity level (less than 25 PSU in Fig. 6b). 

With the increase of salinity level, community-level interspecific interaction become 

diverged: some species (salinity intolerant species) experience facilitative effect from 

neighbors, meanwhile other species (salinity tolerant species) experienced competitive effect. 

With further increase of salinity level (over 38 PSU in Fig. 6b), all species are facilitated by 

neighboring species, though species that is relative less tolerant to salinity stress (T. 

chinensis) are facilitated more by salinity tolerant species (S. salsa).  

Discussion 

Our experimental results demonstrate a trade-off between salinity tolerance and 

competitive ability, resulting in stress-intolerant species with a relative competitive ability 

that increased faster than stress-tolerant species in stressful condition due to stress 
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amelioration. This explains why stress intolerant species benefit more from neighboring 

species at stressful conditions. Thus stress-intolerant species and stress-tolerant species are 

more likely to be beneficiaries and benefactors of facilitative interactions, respectively. 

Pairwise and community simulations indicated that for beneficiary and benefactor, 

competition shifted to facilitation at the upper limit of their physiological salinity tolerance 

(Figure 4b, d). This was also found in our field transplant experiment: except for P. australis 

and T. chinensis whose salinity tolerance ranges were relative narrow and our transplant 

experiment did not capture facilitative interactions; neighbor facilitation with S. salsa and S. 

alterniflora occurred at the upper limit of their physiological salinity tolerance (Fig. 3e-h).  

 Model simulations also predicted a collapse of facilitation, but our field transplant 

experiment could not confirm this, probably due to the fact that more densely distributed 

transplant sites and more strictly controlled experimental condition are required to increase 

the resolution of salinity and minimize experimental errors.  

Trade-offs between competitive ability and stress tolerance 

Previous studies have shown that interspecific interactions depend on both the stress 

tolerance and competitive ability of interacting species, as well as the position of the species 

within their realized niches (Soliveres et al. 2015). Three main predictions regarding stress 

tolerance can be drawn from these studies: 1) stress-tolerant species are more likely to be 

benefactors, while stress-intolerant species are more often beneficiaries; 2) species with the 

strongest competitive responses are likely to benefit the most from facilitation when 

environmental stress is in the upper part of their physiological tolerance (Liancourt et al. 

2005); 3) greater distance from a species environmental optimum (i.e. increasing ‘strain’) is 

positively correlated with the benefit a species experiences from interspecific interactions 

(Choler et al. 2001). Our study suggests that the first two predictions are due to trade-offs 
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between salinity tolerance and competitive ability. The third prediction is still uncertain as 

interspecific interactions changed nonlinearly and facilitation collapses when environmental 

stress exceeds a species’ physiological tolerance limit (Fig. 4). 

The trade-offs between salinity tolerance and competitive ability has also been reported in 

other salt marsh communities (Crain et al. 2004, Martínez-López et al. 2015) and has been 

long recognized (Grime 1974, Liancourt et al. 2005, Lind et al. 2013). Trade-off resulted in 

stress intolerant and tolerant species to more likely be beneficiaries and benefactors in 

facilitative interactions, respectively. In fact, it has been long recognized that stress intolerant 

species are more likely to be beneficiaries in facilitative interactions, although few studies 

have considered trade-offs between competitive ability and stress tolerance, as proposed by 

Grime’s (1974) C-S-R theory, to explain this ecological pattern. Our study links Grime’s C-

S-R theory with the SGH, helping understand why stress intolerant species are often 

beneficiaries, and stress tolerators are often benefactors in facilitative interactions. 

Collapse of facilitation in extreme salt stress conditions 

Our experiments tested the hypothesis that the importance and/or intensity of facilitative 

effects might decline under extreme environmental stress. For non-resource related stress, the 

collapse of facilitation is generally thought to be caused by a decrease in the facilitative effect 

of plant neighbors (Michalet et al. 2006, Maestre et al. 2009, Holmgren and Scheffer 2010, 

Michalet et al. 2014). For the two pairwise interactions tested in this study, we found that P. 

australis died at 40 PSU when coexisting with T. chinensis, and its interspecific facilitation 

declined at 30 PSU (Fig. 4b), where T. chinensis still ameliorate salinity greatly, which result 

in 400 g/m2 increment of T. chinensis biomass production compared to that without salinity 

amelioration (see in Appendix S3: Fig. S3d). Similarly, T. chinensis died at 70 PSU 

when coexisting with S. salsa, and facilitative effect of S. salsa on T. chinensis decreased at 
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50 PSU (Fig. 4d), where S. salsa was still successful at ameliorating salinity stress (Appendix 

S3: Fig. S3b). Thus, the collapse of facilitation was because stress intolerant species could 

not survive under “moderate stress” even with intense stress amelioration, salinity stress still 

exceeded the physiological tolerance limit of the stress intolerant species and led to its 

mortality. This finding concurs with Brooker et al (2005) and Maestre et al. (2009). 

Overestimation of interspecific facilitation 

Current understanding of facilitation is generally based on neighbor removal experiments 

in the field, which might overestimate interspecific facilitation. In these neighbor removal 

experiments, aboveground parts of neighboring species are cleared, leaving target individuals 

surrounded by vacant soil and growing alone. The biomass of these target plants is compared 

with the control group to estimate the facilitation effect. In nature, vacant space released by 

neighbor removal might allow individuals of the same species to naturally colonize the 

surrounding area. Thus, removing neighbors around target species rather than replacing them 

with individuals of the same species might resulted in potential intraspecific facilitation be 

counted as interspecific facilitation, i.e., overestimation of interspecific facilitation.  

In our simulations, we compared the scenario ② (isolated and with feedback) and scenario 

④ (mixed and with feedback) to calculate the interspecific interaction between T. chinensis 

and S. salsa (Fig. 4). If we had followed the design of previous neighbor removal 

experiments, the biomass of target species in scenario ② would be expected to shift leftward, 

i.e. a decrease in biomass. As a result, facilitation would be measured as being stronger than 

it actually was at the upper distribution limit, and the shift from competition to facilitation 

would occur in less stressful environments. Furthermore, this misleading result was similar to 

the observations from a neighbor removal experiment by Choler et al. (2001), who claimed 

that biotic interactions in target species were competitive on the left side of their distribution 
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and facilitative on the right side of their distribution. Thus, we suggest a third treatment, 

neighbor replacement experiments, be added to estimate the degree of intraspecific 

interaction in case interspecific interaction was overestimated. 

Scaling-up to the community level 

Scaling up pairwise interspecific interactions to the community-level should be cautiously 

done, given multiple co-occurring stresses and diverse stress response curves. In single stress 

studies like ours, community-level interspecific interaction were mainly determined by the 

RSTC of the interacting species. Our community simulation (Fig. 6) and field transplant 

experiment (Fig. 3 e-h) indicated that all species were exposed to competition at low 

environmental stress (i.e. upland), and species that survived at high environmental stress (i.e. 

high marsh) were facilitated by neighboring species. However, at medium environmental 

stress (i.e. terrestrial border), interspecific interactions diverged. What are the mechanisms?  

Regression analysis of soil –salinity -alleviation indicated that salinity alleviation is less 

sensitive to plant productivity at less stressful conditions (Appendix S3: Fig. S2). Moreover, 

at low environmental stress, community productivity was high and close to the carrying 

capacity of the habitat (Fig. 3a), thus the introduction of another species did not increase 

productivity greatly. Consequently, species within the community gained little biomass due 

to the introduction of another species, which would compete with existing species for 

resources. Thus, competition was quite common at low environmental stress. On the contrary, 

at high environmental stress, interspecific interaction was very weak and the introduction of 

another stress-tolerant species did not intensify competition but rather alleviated the stress. In 

addition, the surviving species were near their physiological tolerance limit and stress 

alleviation allowed them to grow better, thus interspecific interactions became facilitative 

(see the interaction between S. salsa and S. alterniflora at high marsh in Fig. 4g-h, and the 

interaction between S. salsa and T. chinensis when salinity range between 40 to 50 PSU in 
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Fig. 6). Different from high environmental stress conditions, where almost all species are at 

their distribution limit, at medium environmental conditions, some species reached their 

distribution limit and were facilitated by other species, whereas others that were near their 

optimal condition were exposed to competition from other species (like the interaction 

between S. salsa and S. alterniflora at terrestrial border in Fig. 4g-h, and community 

simulation in Fig. 6 when salinity range between 25 to 40 PSU). Thus, the apparently fuzzy 

interspecific interaction at medium environmental stress was actually attributable to niche 

differences of the interacting species. 

 

As a general rule in ecology, the SGH has been repeatedly validated with seaweeds, marsh 

grasses and sessile and invertebrates on strong intertidal gradients rocky shores, cobble 

beaches, sand dunes and salt marshes (Altieri et al. 2007, Silliman et al. 2011, Crotty and 

Bertness 2015), which are all habitats dominated by strong limiting factors that can be 

ameliorated. Whereas along weak gradients, our study shows that interspecific interaction 

might be fuzzy possibly because of 1) the niche difference of species within a community, 2) 

weak stress amelioration process compared with extreme conditions. We suggest that the 

SGH works on habitats dominated by strong gradients that can be ameliorated by coexisting 

species. In habitats without strong directional stress gradients the SGH doesn’t work or gets 

fuzzy. Thus, much of the confusion of the SGH is when it is applied to communities not 

really on a stress gradient (He and Bertness 2014).  

 

Variation in community-level interspecific interactions would be more complicated to 

predict with multiple stresses, because these stresses might interact and change in different 

directions. Even for the simplest circumstances where stress gradients vary in the same 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

direction, species might be tolerant to one stress and intolerant to another stress, making it 

challenging to predict variation in species interactions as affected by environmental stress. In 

those case, it would be advisable to identify the main stress type and make predictions based 

on the main stress type. 

To conclude, pairwise and community-level species interaction modelling showed that 

along the salinity gradients, 1) plant interactions shifted from competition to facilitation at 

relatively high salinities within the physiological tolerance limits of the salt-intolerant  plants, 

2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-

intolerant plants, and 3) neighbor removal experiments may overestimate interspecific 

facilitation because intraspecific facilitation is included. Combining our modelling and 

community-level field experiment, we suggest that 1) community level species interactions 

are competition at benign conditions, and facilitation at harsh conditions, but are fuzzy at 

medium environmental stress, 2) the SGH works on strong gradient, and does not work on 

weak gradient, so much of the confusion of the SGH is when it is applied to communities not 

really on a stress gradient. It is important to refocusing SGH work on meaningful application 

rather than exceptions on weak or nonexistent gradients. 
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Figure captions.  

Figure 1. Conceptual diagram showing the integration of experiments (grey boxes) and 

GRIIM (elements within the dashed line). The conceptual diagram of GRIIM shows the main 

flows, state variables and functions. ‘State variables’ represent variables that get 

accumulated, ‘flow’ is an activity that changes the magnitude of a state variable, and 

‘functions’ imposes an input or an output to GRIIM. Within GRIIM each plant species was 

subjected to the same dynamics. 

Figure 2. Relative stress tolerance curve (RSTC) that effectively represents the varying 

competition relationship among species. For a given pairwise species interaction that presents 

tradeoffs between stress tolerance ability and competitive ability, i.e. one with a higher 

competitive ability but lower stress tolerance ability (species 1, dashed lines), and the other 

with a lower competitive ability but higher stress tolerance ability (species 2, solid lines), 

when the standardized stress tolerance curve (gray curves) was multiplied by the competitive 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ability constant ci, the resulting relative stress tolerance curve (dark curves) would represent 

the modified competitive ability across a stress gradient. Thus, species 1 would be a stronger 

competitor under benign conditions, yet losing its competitive advantage under stressful 

conditions. 

Figure 3. Experimental results. (a) shows field plant distribution along the salinity gradient, 

(b) ~ (d) show the standardized biomass of Phragmites australis, Tamarix chinensis, and 

Suaeda salsa respectively at varying levels of salinity, based on greenhouse performance. (e) 

~ (h) show biomass of transplanted species with and without neighboring species in the field 

transplant experiment. T1 to T8 represent the eight field transects from upland to low marsh, 

SM in brackets refers to the corresponding mean salinity value in units of PSU. Data are 

shown as mean ± SE for n = 5-8 quadrats per field line transect, n = 3 replicates per 

greenhouse treatment, n = 4 replicates per field transplant treatment. Salinity tolerance curves 

(solid lines) are represented by Gaussian function in (b), (c), and (d). Bars sharing a letter are 

not significantly different from one another in (e) ~ (h). 

Figure 4. Model variation in pairwise species interactions across salinity gradients in coastal 

salt marshes. The pairwise competition between Phragmites australis and Tamarix chinensis 

without (a), and with salinity amelioration process (b); the pairwise competition between T. 

chinensis and Suaeda salsa without (c) and with (d) salinity amelioration process. In each 

panel, the distribution of target species was simulated with and/or without the existence of 

neighboring species, and changes in biomass due to neighboring species occurrence was 

calculated. Legend: P. a: P. australis, T. c: T. chinensis, and S. s: S. salsa. Subpanels 

represent the enlarged detail in the shaded area of each panel. 

Figure 5. Distribution of Tamarix chinensis under four scenarios: ①, without neighboring 

species and salinity amelioration process; ②, without neighboring species but with salinity 

amelioration process; ③, with neighboring species Suaeda salsa but without salinity 
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amelioration process; ④, with neighboring species S. salsa and with salinity amelioration 

process. Gray shadow in the main panel indicates the difference between the red and blue 

curves. 

Figure 6. Variation in community-level species interactions across salinity gradients. (a) 

compares the results of target species’ distribution across salinity gradients with and without 

neighbors; changes in biomass due to neighboring species occurrence was calculated in (b). 

Legend: P. a: Phragmites australis, T. c: Tamarix chinensis, and S. s: Suaeda salsa. 
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