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Abstract

The primary function of stomata is to minimize plant water loss while maintaining CO2 assimilation. Stomatal water 
loss incurs an indirect cost to photosynthesis in the form of non-stomatal limitations (NSL) via reduced carboxyla-
tion capacity (CAP) and/or mesophyll conductance (MES). Two optimal formulations for stomatal conductance (gs) 
arise from the assumption of each type of NSL. In reality, both NSL could coexist, but one may prevail for a given leaf 
ontogenetic stage or plant functional type, depending on leaf morphology. We tested the suitability of two gs formu-
lations (CAP versus MES) on species from six plant functional types (C4 crop, C3 grass, fern, conifer, evergreen, and 
deciduous angiosperm trees). MES and CAP parameters (the latter proportional to the marginal water cost to carbon 
gain) decreased with water availability only in deciduous angiosperm trees, while there were no clear differences 
between leaf ontogenetic stages. Both CAP and MES formulations fit our data in most cases, particularly under low 
water availability. For ferns, stomata appeared to operate optimally only when subjected to water stress. Overall, the 
CAP formulation provided a better fit across all species, suggesting that sub-daily stomatal responses minimize NSL 
by reducing carboxylation capacity predominantly, regardless of leaf morphology and ontogenetic stage.

Keywords:   Drought, fern, mesophyll conductance, ontogeny, optimization, photosynthesis, plant functional type, stomatal 
conductance, transpiration, water use efficiency.

Introduction

Climate change is predicted to decrease water availabil-
ity and increase drought risk in many regions around the 
world (Sheffield and Wood, 2007; Dai and Zhao, 2017). Water 

availability is one of the main factors regulating vegetation 
carbon and water fluxes and drought impacts on the vegeta-
tion, reducing productivity, changing species distribution, or 
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even driving large-scale mortality events (Vicente-Serrano 
et al., 2013; Lobell et al., 2014; Allen et al., 2015). The impact 
of drought on vegetation functioning is not well represented 
in current dynamic global vegetation models (DGVM), which 
still vary greatly in their underlying assumptions (Egea et al., 
2011; De Kauwe et  al., 2014; Rogers et  al., 2017). This is 
partly caused by the diversity of strategies deployed by plants 
to cope with drought, ranging from avoidance or migration 
to drought tolerance (Chaves et al., 2002; Jump and Peñuelas, 
2005). Drought tolerance or avoidance requires the coordina-
tion of morphological and physiological traits (Croker et  al., 
1998; Brodribb and Holbrook, 2003; Bartlett et al., 2016), and 
one of the most important and the most immediate physi-
ological mechanism for regulating plant water loss is stomatal 
closure (Flexas et al., 2006; Rodriguez-Dominguez et al., 2016; 
Martinez-Vilalta and Garcia-Forner, 2017). Thus, understand-
ing stomatal regulation is fundamental to projecting the impact 
of increased drought risk on the climate–vegetation system.

According to optimization theory, stomata should operate to 
maximize photosynthetic uptake minus the cost of water loss 
to the plant (Cowan and Farquhar, 1977). The direct benefit of 
stomatal opening consists of increasing the CO2 concentration 
at the sites of carboxylation, but the nature of the associated 
water costs remains unclear. Transpiration losses through the 
stomata lead to decreased leaf water potential (Ψleaf), which 
triggers a cascade of processes affecting leaf conductivity, cell 
turgidity, protein stability, metabolic rates, solute accumulation, 
and membrane and cell wall permeability (Chaves et al., 2002; 
Brodribb and Holbrook, 2003; Flexas et al., 2012). As a conse-
quence, non-stomatal limitations (NSL) to photosynthesis arise 
in the form of reduced carboxylation capacity or CO2 dif-
fusivity through the mesophyll. As NSL arise, stomata should 
continue to operate optimally, but the sensitivities of stomatal 
and non-stomatal processes could be uncoupled, challenging 
our ability to predict stomatal behaviour. For example, changes 
in the capacitance and resistance pathway from the soil to the 
leaves can alter stomatal sensitivity to vapour pressure deficit 
(Dw) (Martins et al., 2016). Based on the idea that the cost of 
stomatal opening arises from NSL, Dewar et  al. (2018) pro-
posed two analytical formulations for stomatal conductance to 
CO2 (gsc). In these formulations, photosynthesis is maximized 
instantaneously and the cost of water use arises from reduc-
tions in photosynthesis resulting from decreasing Ψleaf. These 
formulations can be structurally similar to previous ones (e.g. 
Katul et  al., 2010; Medlyn et  al., 2011; Prentice et  al., 2014), 
but their advantage is that they do not require a defined tem-
poral framework over which stomatal behaviour is optimized. 
In addition, Dewar et  al. (2018) provide a formulation for 
the elusive λ parameter (marginal water cost to carbon gain; 
Cowan and Farquhar, 1977) and testable predictions for this 
cost parameter as a function of hydraulic and photosynthetic 
traits. Dewar et al. (2018) hypothesized that NSL were induced 
by a reduction in either carboxylation capacity or mesophyll 
conductance (gm). In reality, such a dichotomy is probably rare 
and both types of NSL coexist (Zhou et al., 2013; Drake et al., 
2017). Nevertheless, we could expect a certain NSL to pre-
vail depending on the sensitivity of gm and the photosynthetic 
machinery to Ψleaf.

Leaves that are likely to experience drought during their 
lifespan exhibit morphological traits that contribute to 
maintain Ψleaf and physiological activity under water stress 
(Mediavilla and Escudero, 2003; Flexas et al., 2006); one such 
trait is high leaf mass per area (LMA). High-LMA leaves often 
have multiple layers of cells with thick walls and tortuous mes-
ophyll interspaces (Niinemets et al., 2009; Onoda et al., 2017). 
These traits protect the photosynthetic machinery from dehy-
dration (Gimeno et al., 2010; Limousin et al., 2013) but they 
are also associated with low mesophyll diffusivity (Niinemets 
et al., 2009). gm can be the most important limitation to pho-
tosynthesis in evergreen trees and shrubs (Flexas et al., 2012; 
Peguero-Pina et  al., 2016) and also in many ferns (Carriqui 
et  al., 2015; Tosens et  al., 2016). Ferns have more rudimen-
tary stomata, in the sense that they are insensitive to absci-
sic acid, CO2, and blue light (Brodribb and McAdam, 2011) 
and they appear to respond only to changes in vapour pressure 
deficit (Martins et al., 2016). Franks and Britton-Harper (2016) 
observed that stomata of some ferns can close in response to 
elevated CO2, but these responses have not been tested under 
the framework of optimization theory.

In addition to drought tolerance and leaf morphology, 
longevity and construction costs can also influence stomatal 
behaviour. Lin et al. (2015) evaluated the convergence across 
plant functional types (PFTs) in their ability to operate stomata 
optimally, and found that PFTs with low marginal water use 
per unit of C gain had water-transport systems with greater 
construction costs, except for species with a C4 pathway, for 
which optimization theory predicts the lowest marginal water 
cost. In addition to an associated cost to water transport, leaf 
construction costs could also influence stomatal regulation. 
Leaf construction costs depend on leaf lifespan and turno-
ver: generally, the longer the lifespan, the slower the return of 
nutrient and dry mass investment (Wright et  al., 2004). Leaf 
development is a crucial stage for all PFTs and in deciduous 
species, it can occur over a significant fraction of their lifespan. 
Yet, only mature fully expanded leaves are targeted for the vast 
majority of physiological measurements (with some excep-
tions, e.g. Field and Mooney, 1983; Medlyn et al., 2002; Locke 
and Ort, 2014; Macinnis-Ng et al., 2017), and hence DGVM 
assume constant stomatal behaviour throughout leaf ontogeny 
(Keenan et  al., 2013). During leaf construction, respiratory 
costs are high, so that net photosynthesis per unit of water tran-
spired is usually low (Rajaona et al., 2013; Jensen et al., 2015). 
Additionally, during development, the internal leaf anatomy 
experiences modifications including cell multiplication and 
expansion, increase in the number of chloroplasts, thickening 
of the cell wall, and formation of the intercellular air spaces 
(Niinemets et al., 2009; Kuusk et al., 2018). Collectively, these 
modifications should result in greater carboxylation capacity 
and the ability to maintain greater Ψleaf under drought stress, 
but also lower gm (Aasamaa et al., 2005; Grassi and Magnani, 
2005; Barbour et  al., 2016). Hence, in developing leaves the 
photosynthetic costs of stomatal opening likely result from a 
decrease in carboxylation capacity, rather than in gm.

Here, we tested the formulations proposed by Dewar et al. 
(2018) to determine when carboxylation capacity (the CAP 
formulation) or gm (the MES formulation) are the predominant 
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NSL to photosynthesis. We expected developing leaves to have 
a greater marginal water cost per unit of C gain than mature 
leaves. We also hypothesized that in developing leaves the car-
boxylation capacity should be more sensitive to Ψleaf and the 
CAP formulation should fit better. Regarding the effect of leaf 
morphological differences among species from various PFTs, 
we hypothesized that in leaves with lower LMA the photosyn-
thetic machinery would be more sensitive to fluctuations in 
Ψleaf and the CAP formulation would be more suitable, while 
in species where gm constitutes the main limitation to photo-
synthesis, such as in evergreen species with greater LMA and 
ferns, the MES formulation could fit better. On the other hand, 
in leaves with low maximum realized gm, fluctuations in gm 
would have a marginal effect and NSL should arise from lim-
ited carboxylation capacity. We address these hypotheses within 
the theoretical framework of Dewar et al. (2018) by comparing 
stomatal behaviour between mature and developing leaves of 
species from six PFTs (including a fern) maintained under two 
watering regimes.

Materials and methods

Plant material and experimental design
We selected seven species economically or ecologically relevant to the 
ecosystems in the south-west of France and representative of six PFTs: 
a fern, common bracken (Pteridium aquilinum L.  Kuhn); an evergreen 
conifer, maritime pine (Pinus pinaster Ait.); two deciduous angiosperm 
temperate trees, pedunculate oak (Quercus robur L.) and silver birch 
(Betula pendula Roth); a C3 grass, purple moor grass [Molinia caerulea (L.) 
Moench]; an evergreen angiosperm tree, cider gum (Eucalyptus gunnii 
Hook.f.); and a C4 crop, maize (Zea mays L.).

Saplings of P. pinaster, Q. robur, B. pendula, and E. gunnii were grown 
from seeds obtained from nearby plantations in an open-air nursery at 
INRA Pierroton (Cestas, France; annual precipitation 977 mm, annual 
mean temperature 13  °C). Plants of M.  caerulea and P.  aquilinum were 
grown from tussocks (~15  cm diameter) and overwintering rhizomes, 
respectively, collected in February 2015 from a local forest (Le Bray 
experimental site; Wingate et al., 2010). Plants of Z. mays (variety DKC 
5784) were grown from seeds sown in May 2015. All species were grown 
in 3.4 l square pots. The soil substrate consisted of a 4:2:1 (v/v) mix 
of bark:peat:soil (typical sandy soil from the Le Bray experimental site). 
A slow-release fertilizer (OsmocoteTM, Mashville, OH, USA) was added 
at the beginning of the experiment.

From March (May for Z. mays) to September 2015, pots were kept 
in a glasshouse at the INRA campus of La Grande Ferrade (Villenave 

d’Ornon, France). Pots were watered every other day to field capacity 
with an automatic dripping system. In March and April 2015, to treat a 
fungal infection by Erysiphe sp., Q. robur plants were sprayed twice with 
a 0.4 g l−1 solution of tebuconazole and twice with a 0.6 g l−1 solution 
of Meptyldinocap Karathane® 3D (Merck KGaA, Darmstadt, Germany). 
In addition, in May 2015, an early aphid outbreak on B.  pendula was 
controlled by spraying plants with colza oil. Climatic conditions were 
monitored inside the glasshouse with a temperature and humidity probe 
(HMP60, Vaisala, Vanta, Finland) and, in June and July, a quantum sensor 
(SQ-200, Apogee, Logan, UT, USA). Ten-minute averages were logged 
on a 21X micrologger® (Campbell Scientific, Logan, UT, USA). Mean 
temperature over the study period inside the glasshouse was 21.7  °C 
during the day and 16.6 °C at night. A shading cloth was permanently 
deployed from May 2015 and mean daily photosynthetic photon flux 
density was 121±6.4 mol m−2 d−1 (measured over 38 days in June–July).

In July 2015, we selected seven plants of each species and assigned 
them to a low-water-availability treatment. The concept of low water 
availability is complex, and attaining a homogeneous level of water stress 
that allows for comparison between species is not straightforward (Drake 
et al., 2017). Our low-water treatment consisted of cessation of water-
ing for a number of days until the mean predawn leaf water potential 
(Ψpd) was reduced by half of the total range. We determined this range 
and number of days for our study species in a separate experiment. In 
brief, five randomly selected individuals of each species were placed in 
a climatically controlled chamber (MD1400, Snijders Labs, Tilburg, The 
Netherlands) on 1 July 2015. The temperature and relative humidity 
inside the chamber were set to mimic a typical summer day inside the 
glasshouse, with a 13/9 h light/dark cycle and a photosynthetic photon 
flux density of 580 µmol m−2 s−1, supplied by fluorescent lamps (BriteGro 
2084, Sylvania, BioSystems, Wageningen, The Netherlands). Plants inside 
the chamber were watered to field capacity on the first day and then 
watering was withheld until all individuals died. We assessed dead indi-
viduals as plants that had no green leaves and had lost stem flexibility, and 
verified that none of these individuals re-sprouted following re-watering. 
Pots with M. caerulea tussocks were measured until at least 80% of the 
leaves in a pot had completely withered. After 25 days of withholding 
water, individuals of P. pinaster still showed no visible signs of water stress; 
by this point Ψpd had dropped from –0.32±0.04 to –1.19±0.11 MPa 
(Table 1) and the experiment ceased. The range of Ψpd for each species 
was determined as the difference between the mean (n=5 plants per spe-
cies) maximum and minimum Ψpd. Measurements of Ψpd were made 
with a Scholander-type pressure chamber (SARL SAM PRECIS 2000, 
Gradignan, France).

Morphological and physiological measurements
LMA was calculated from one mature and one young developing leaf 
collected from five individuals per species in mid-June 2015. Mature fully 
expanded leaves were sampled from the middle of the plant (in height), 
and young developing leaves, not fully expanded, from the upper third. 

Table 1.  Mean ±SE (n=5–7) predawn leaf water potential (Ψpd) for the study species in the trial experiment and in the August 2015 
campaign under the well-watered (WW) and low water availability (LW) regimes

Species Trial experiment August 2015

Max Ψpd (MPa) Min Ψpd (MPa) Ψpd WW (MPa) Ψpd LW (MPa)

B. pendula –0.56±0.1 –2.31±0.25 –0.51±0.12 –1.47±0.34
E. gunnii –0.58±0.28 –2.03±0.3 –0.58±0.28 –0.97±0.4
M. caerulea –0.46±0.04 –2.24±0.22 –0.48±0.05 –1.38±0.25
P. pinaster –0.32±0.04 –1.19±0.11 –0.37±0.1 –0.54±0.08
P. aquilinum –0.47±0.13 –1.24±0.06 –0.45±0.07 –0.89±0.25
Q. robur –0.46±0.21 –2.44±0.2 –0.53±0.09 –0.83±0.24
Z. mays –0.28±0.03 –1.94±0.26 –0.4±0.05 –1.42±0.29

In August 2015, there were no significant differences among species (F=1.9, P=0.11) and plants in the LW treatment had significantly lower Ψpd (F=15.9, 
P<0.01).
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For P. aquilinum, we selected a pinna (leaflet) close to the base of the frond 
as a mature pinna, and the most distal as a young pinna. Sampled leaves 
were photographed and dried at 70 °C for 48 h. Leaf area was calculated 
using ImageJ software for image analysis (Rasband, 2009). Leaf thickness 
was measured on the same leaves.

We conducted two gas-exchange campaigns, each over the course 
of 3 or 4 sunny and cloudless days with comparable conditions within 
campaigns. In the first campaign (18, 22, and 24 June 2015), we meas-
ured five well-watered individuals of each species, and during the second 
campaign (5, 6, 20, and 21 August 2015), we measured three or four 
individuals of each species and water treatment (well-watered and low-
watered). On each day, we measured gas exchange starting at 08.00 h 
(local time) every 2–2.5 h on the same set of plants, to track net pho-
tosynthesis (Anet) and gsc along a gradually increasing gradient of Dw  
(Fig. 1). Plants measured each day were kept outside in an open area next 
to the glasshouse, exposed to full sun, from the first until the last round 
of measurements. A mature fully expanded leaf, and in June also a young 
developing leaf, was measured on each individual at each measurement 
round. Gas-exchange measurements were performed with an open-flow 
portable photosynthesis system (IRGA, LI-6400, LI-COR, Lincoln, NE, 
USA) with a standard leaf chamber fluorometer head (LI-6400–40). We 
measured Anet and gsc under saturating light intensity (1800 µmol m−2 s−1 
for Z. mays and 1500 µmol m−2 s−1 for all other species) provided by the 
inbuilt LI-6400 red–blue LED lamp. The CO2 concentration entering 
the cuvette was set to 390 µmol mol−1 using the inbuilt CO2 control unit, 
and airflow through the cuvette was set to 500 µmol s−1 (300 µmol s−1 
when gsc <0.03 mol m−2 s−1). Relative humidity and temperature inside 
the leaf cuvette were maintained as close as possible to ambient condi-
tions during each measurement period. Measurements were logged after 
reaching steady state (within 3–5 min).

In August, we measured predawn leaf (B. pendula, Q. robur, M. caerulea, 
Z. mays), needle (P. pinaster), branch (E. gunnii), or pinna (P. aquilinum) 
water potential (Ψpd) on all water-stressed plants (n=7 per species) and on 
the well-watered plants selected for gas exchange measurements in this 
campaign (n=3 or 4 per species, except for well-watered E. gunnii, where 
Ψpd was assumed to be the maximal Ψpd from the trial experiment).

Data analyses and model fitting
We tested the effects of leaf age, species, and water stress on optimal 
stomatal behaviour according to the formulations of Dewar et al. (2018). 
When reduced carboxylation capacity (CAP) underlies the costs of sto-
matal opening, Dewar et al. (2018) predict that gsc (stomatal conductance 
to CO2 in mol m−2 s−1) should follow:

�
gsc = g0 + (1+

ξ√
Dw

)
Anet

Ca − Γ∗�
(1)

where Dw (mmol mol−1) is the leaf-to-air vapour pressure deficit, Anet 
(µmol m−2 s−1) is net photosynthesis, Ca (µmol mol−1) is the ambi-
ent CO2 concentration, Γ* (µmol mol−1) is the CO2 photorespira-
tory compensation point according to Bernacchi et  al. (2001), and 
ξ (mmol0.5 mol−0.5) is a fitting parameter proportional to the square 
root of λ (Cowan and Farquhar, 1977) and equivalent to the g1 param-
eter in Medlyn et al. (2011). The intercept g0 (mol m−2 s−1) is another 
fitting parameter that was added to the model to represent subop-
timal water losses through leaf cuticles or leaky stomata (Medlyn 
et  al., 2011). Parameters ξ and g0 were estimated from non-linear 
least-square regressions using the ‘nls’ function in R (R Development 
Core Team, 2017). The non-linear nature of the CAP formulation 
does not allow a straightforward comparison among species and 
between treatments. Therefore, to assess differences in ξ among spe-
cies, between leaf ages (June campaign) and between watering treat-
ments (August campaign), we compared the 95% confidence intervals 
(CI) for the fitted parameter (ξ; Gimeno et al., 2016). Our estimates 
of ξ (in mmol0.5 mol−0.5 and calculated for gsc) can be related to the g1 
estimates of Lin et al. (2015, in kPa0.5 and calculated for gs to water) 
according to g1 = ξ/1.6

√
P , where P is atmospheric pressure and 

the factor 1.6 accounts for the ratio of the molecular diffusion coef-
ficients for CO2 and water.

In addition, according to the CAP formulation, Dewar et  al. (2018) 
also predict that parameter ξ should vary according to:

Fig. 1.  Mean ±SE (n=3–5) vapour pressure deficit (Dw), stomatal conductance to CO2 (gsc), and photosynthesis (Anet) measured in mature (Mat) and 
developing (Dev) leaves and in well-watered (WW) and low-watered (LW) plants during the day. Circles and triangles depict measurements from the June 
2015 and August 2015 campaigns, respectively. Different shades correspond to measurements on WW versus LW plants or to measurements on mature 
versus developing leaves. Note the change in scale for Anet in the Z. mays panel. 
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�
ξ
√
Vc max0 =

 
Ksl |Ψc| km + Γ∗

1.6
�

(2)

where Vc max0 is the maximum carboxylation capacity in the absence of 
NSL, km is the Michaelis constant for CO2 (710 μmol mol−1; Bernacchi 
et al., 2001), and Ψc is the critical leaf water potential when photosyn-
thetic capacity is zero (–2 MPa; Dewar et al., 2018). Noting that Dewar 
et al. (2018) neglect mitochondrial respiration, Vcmax=0 at Ψleaf=Ψc also 

translates into Anet=0. We compared our estimates of ξ 
»
“V cmax0with 

the predicted values according to equation 2 for a range of predawn Ψ 
(Ψpd, from 0 to –2 MPa). To do so, we estimated temperature-corrected 
Vcmax0 (“V cmax0) with the one-point method (De Kauwe et al., 2016) from 
mid-morning gas-exchange measurements (see Supplementary Protocol 
S1 at JXB online). The soil-to-leaf hydraulic conductance (Ksl) was esti-
mated from equations 5b and 5c in Dewar et al. (2018) using a range of 
fixed values of the root-to-leaf hydraulic conductance (Krl=2, 5, 12, and 
50 mmol m−2 s−1 MPa−1, Dewar et al., 2018), and a soil-to-root conduct-
ance estimated from retention curve parameters typical of an organic soil 
(Ogée and Brunet, 2001) and a bulk density of 0.25 g cm−3.

When decreased mesophyll conductance (MES) underlies the cost of 
stomatal opening, Dewar et al. (2018) predict:

�

gsc = g0 +

 
Emax Anet

1.6Dw(Ca − Γ∗)
�

(3)

where

�
Emax = Ksl(Ψ−Ψc)

�
(4)

and Ψc represents here the critical leaf water potential that leads also to 
Anet=0 but through a reduction of gm rather than Vcmax. We estimated 
Emax from the square of the slope of the linear relationship between gsc 

and 
»

Anet
1.6Dw(Ca−Γ∗)  (hereafter the MES index) for each species, leaf age, 

and watering treatment. We used analyses of homogeneity of slopes to 
test for the effects of species, leaf age (June campaign), and water stress 

(August campaign) on 
√
Emax . Additionally, we compared our estimates 

of Emax with the predicted value according to equation 4 for the same 
range of Ψpd (0 to –2 MPa and assuming Ψs=Ψpd) and Ksl, calculated 
from four Krl (2, 5, 12, and 50 mmol m−2 s−1 MPa−1; Dewar et al., 2018) 
as explained above.

We fitted equations 1 and 3 to our gas-exchange data and used the 
likelihood ratio test, the Akaike Information Criterion (AIC, with 
ΔAIC>10 indicating an improvement in the model fit), and root mean 
square error (RMSE) from the relationship between observed and pre-
dicted gsc to compare between formulations for each species, leaf age, and 
watering treatment. We assessed differences among species and between 
leaf ages on morphological parameters (LMA and leaf thickness, June 
campaign) and among species and between watering treatments on Ψpd 
(August campaign) with two-way ANOVA. We tested for the overall 
effect of species and leaf age (June campaign) or watering treatment 
(August campaign) on Anet and gsc with linear mixed models including 
plant and round of measurements as random factors (Zuur et al., 2009). 
We tested for the effect of leaf age (June campaign) and watering (August 
campaign) on ξ and Emax with one-way ANOVA. Finally, we explored 
the relationship between ξ and Emax and LMA and leaf thickness, for 
different species and leaf ages (only the June campaign), using linear 
regression. All analyses were performed in R v3.4.3 (R Development 
Core Team, 2017).

Results

The seven study species exhibited morphological trait values 
representative of their corresponding PFT (F=60.1 for LMA 

and 38.6 for thickness, P<0.001; Supplementary Fig. S4). In 
all species, LMA and leaf thickness were significantly lower 
in developing leaves than mature leaves (F=11.1, P=0.002 for 
LMA and F=16.2, P<0.001 for leaf thickness; Supplementary 
Fig. S4).

Over the course of the gas-exchange campaigns, Dw 
increased gradually from 8 to 42  mmol mol−1. For all spe-
cies and in both campaigns, we measured Anet and gsc under 
a Dw range of at least 12–35 mmol mol−1 (Fig. 1). We meas-
ured maximum Anet and gsc on the first round of measurements, 
when Dw was minimal. In general, as Dw increased, Anet, gsc, 
and estimated carboxylation capacity (“V cmax) decreased from 
mid-morning to midday measurements (Supplementary Fig. 
S1). The ratio of intercellular to ambient CO2 concentra-
tions (Ci/Ca) was between 0.6 and 0.8 for the C3 species and 
remained relatively constant within species along an increasing 
Dw gradient in the June campaign (Supplementary Fig. S2). 
We measured the lowest Ci/Ca in the C4 crop (Z. mays) under 
well-watered conditions (Supplementary Fig. S2). In August, 
under low water availability, Ci/Ca gradually increased with Dw 
in P. pinaster and Z. mays (Supplementary Fig. S2). There were 
significant differences among species (P<0.05, except for gsc in 
June, P=0.07) in gsc and Anet: the C4 crop (Z. mays) had signifi-
cantly higher Anet and lower gsc than the other species (Fig. 1). 
In June, developing leaves had significantly higher gsc and lower 
Anet than mature fully expanded leaves, although the leaf age 
effect was species specific, with maximum differences in the 
C4 species for Anet and in the fern for gsc (Fig. 1). In addition, 
developing leaves had lower “V cmax0 (Supplementary Fig. S1). 
The low-water treatment reduced Ψleaf, gsc, Anet, and “V cmax0 
(Table 1, Fig. 1, Supplementary Fig. S1). Again, the treatment 
effect was species specific: the reduction in both gsc and Anet 
under low-water treatment was least pronounced in the two 
evergreen trees (Fig. 1), to the point that Ψleaf of P. pinaster was 
only marginally affected (Table 1).

We found that both the CAP and the MES formulations fit-
ted our data for most species, leaf ages, and watering treatments, 
with a few exceptions. Neither the CAP nor the MES formula-
tion fitted the fern (P. aquilinum) data for either mature or devel-
oping leaves in the June campaign, or for well-watered ferns in 
the August campaign (Supplementary Fig. S3). Similarly, neither 
the CAP nor the MES formulation fitted the measurements on 
well-watered plants of M. caerulea (the C3 grass) in the August 
campaign (Supplementary Fig. S3). In addition, the CAP formu-
lation did not fit the measurements on the C4 species Z. mays for 
developing leaves in June and under either watering treatment in 
August (Supplementary Fig. S3). For the other species, leaf ages, 
and watering treatments, both the CAP and MES formulations 
fitted our observations. When both the CAP and MES formu-
lations could explain our data, the AIC value and the RMSE, 
as well as the likelihood ratio test (in most cases), indicated that 
the CAP formulation provided a better fit than that of the MES 
formulation, with the exception of developing leaves in P. pinaster 
and Q. robur (Table 2). Observed and predicted gsc values were 
more closely related for the CAP formulation (lower RMSE), 
regardless of leaf age and watering regime (Fig. 2). For the CAP 
formulation, there was a significant difference between mature 
and developing leaves, with a smaller RMSE for mature leaves 
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compared with developing leaves (Table 2). There were no sig-
nificant differences in the fit between low-watered and well-
watered plants (Fig. 2).

Comparison of estimated ξ (CAP formulation) values with 
their 95% CI showed that there were some differences among 
species. Deciduous angiosperm trees had the highest ξ values 
and the C4 crop (maize) the lowest (Table 2). Under well-
watered conditions and in mature leaves, estimated ξ values 
for the four tree species were similar (Fig. 3A). We did not 
find clear differences in ξ values between mature and devel-
oping leaves in any species (Fig. 3A), although in M. caerulea 
ξ tended to be higher in developing than mature leaves. The 
low-water treatment decreased ξ in the deciduous angiosperm 
trees (oak and birch; Fig. 3B). For the MES formulation, anal-
yses of homogeneity of slopes showed similar results to the 
comparison of the 95% CI for ξ values. Species differed sig-

nificantly in their slopes (
√
Emax) in both measurement cam-

paigns (Table 3). Deciduous angiosperm trees had the highest 
slope, and the C4 crop the lowest, whereas all tree species had 

comparable slopes for mature leaves under well-watered con-
ditions (Table 2). Leaf age did not have a significant effect on 
Emax and the water-stress treatment decreased Emax in angio-
sperm deciduous trees (Tables 2 and 3), although the relation-
ship between gsc and the MES index did not appear to be 
linear for the majority of plants under the low-water treat-
ment (Supplementary Fig. S2).

Analyses of homogeneity of slopes for Emax and comparisons 
of the 95% CIs for ξ values were consistent with results of one-
way ANOVAs. Under low water availability, Emax decreased 
(Fig. 4, F=8, P=0.015), but the species mean ξ values did not 
decrease significantly (Fig. 3, F=2.2, P=0.16). Leaf age did not 
have a significant effect on Emax (F=0.5, P=0.511) or ξ (F=0.4, 
P=0.561). We did not find any significant correlation between 
ξ and Emax with LMA or leaf thickness (F≤3 and P≥0.1 for all 
analyses; Supplementary Fig. S5).

When we plotted ξ 
»
“V cmax0  against Ψpd for well-watered 

and low-watered plants (Fig. 4A), we found that estimates for 

Fig. 2.  Relationship between predicted and observed stomatal conductance to CO2 (gsc) according to the CAP (A and C) and MES (B and D) 
formulations for mature and developing leaves (A and B) and under well-watered and low-watered conditions (C and D) for the study species for which 
the CAP and MES fits were significant. The dashed grey line depicts the 1:1 line. The slope of each linear relationship is indicated on each plot (with its 
corresponding 95% CI).
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deciduous angiosperm trees varied greatly between watering 
treatments and fell close to the values predicted by the CAP 
formulation (equation 2) for high Krl (50 mmol m−2 s−1 MPa−1). 

In contrast, for all other C3 species, ξ 
»
“V cmax0  did not appear 

to decrease notably from well-watered to low-watered plants, 
and our estimates fell within the CAP model predictions for 
lower Krl (2–12 mmol m−2 s−1 MPa−1). The plot of Emax against 
Ψpd showed a similar pattern (Fig. 4B), but with a larger 
spread. Our Emax estimates for deciduous angiosperm trees fell 
closer to the theoretical estimates (equation 4) predicted for  
higher Krl.

Discussion

In this study we compared two analytical solutions to pre-
dict gsc based on optimization theory, assuming that the water 
costs of stomata opening originate from NSL to photosyn-
thesis caused by either a reduction in carboxylation capacity 

(the CAP formulation) or in gm (the MES formulation; Dewar 
et al., 2018). We expected the CAP formulation to fit better 
for developing leaves and for PFTs with low-LMA leaves. Our 
results showed that the CAP formulation fitted better to our 
measurements not only for low-LMA leaves, but for all species, 
leaf ages, and watering regimes.

One single formulation to predict stomatal behaviour 
across plant functional types

We had hypothesized that the suitability of the two formu-
lations proposed by Dewar et  al. (2018) would vary across 
species from PFTs depending on leaf morphology. Here, the 
variation in LMA observed among species from contrasting 
PFTs was consistent with previous classifications (Poorter 
et al., 2009). Anatomical traits encompassing low gm are usu-
ally associated with high LMA, and thus the limitation to 
photosynthesis imposed by gm should increase with LMA 
(Flexas et al., 2008; Niinemets et al., 2009). We expected a bet-
ter fit of the MES formulation for evergreen species (which 
have high LMA; Veromann-Jurgenson et al., 2017). However, 
this was not the case. Instead, the CAP formulation provided 
a better fit for all species, including the conifer and evergreen 
angiosperm trees, especially under conditions of reduced 
water availability (Fig. 4). This result is consistent with the 
midday depression observed in carboxylation capacity for all 
species, leaf ages, and watering levels (Supplementary Fig. 
S1). A better fit of the CAP over the MES formulation does 
not imply that gm is not limiting photosynthesis, but rather 
that decreased carboxylation capacity in response to diurnal 
changes in Ψleaf can impose a stronger constraint on carbon 
gain over the timescale at which stomata operate (Franks 
et al., 2017). This result supports our alternative expectation 
that in evergreen leaves, with low maximum gm (Niinemets 
et al., 2009; Flexas et al., 2012), marginal reductions in gm in 
response to daily oscillations in Ψleaf, are unlikely to impose 
further NSL to photosynthesis over short (sub-daily) time-
scales. Nevertheless, the extent of our results is limited by 
the lack of a quantitative analysis of the relative limitations to 
photosynthesis (Grassi and Magnani, 2005).

Our estimates of ξ (parameter of the CAP formulation) for 
our study species were generally lower than but comparable 
to those of Lin et al. (2015) for their corresponding PFT. In 
agreement with previous classifications, we found that ξ was 
lowest for the C4 species (maize) and higher for the deciduous 
and herbaceous angiosperm species (Lin et  al., 2015; Miner 
et al., 2017). In addition, our ξ estimates for tree saplings and 
potted plants were comparable to previously reported val-
ues for congeneric and closely related species grown under 
controlled conditions (Héroult et al., 2013; Zhou et al., 2013, 
2014). For the crop with a C4 pathway (maize), we found 
that the CAP formulation provided a better fit (especially for 
mature leaves) in the June campaign, but in the August cam-
paign it did not provide a reasonable fit. Our measurements 
of Anet and gsc in this latter campaign were lower than those 
from the June campaign and some were nearing the limit of 
detection of our porometer (Fig. 1). It is possible that during 
this second campaign, maize plants were close to the senescent 

Fig. 3.  Parameter estimate (±95% CI) for the CAP formulation (ξ) fitted 
for (A) mature and developing leaves (June 2015 campaign, only well-
watered plants) and (B) well-watered and low-watered plants (August 2015 
campaign, only mature leaves), for all study species. Non-overlapping 
CIs indicate significant differences (P<0.05) among species, leaf ages, or 
watering treatments. Grey symbols indicate species for which the CAP fit 
was non-significant. 

Table 3.  Results of the analyses of homogeneity of slopes to test 
for the effects of species, leaf age (mature versus developing), 
and watering treatment on optimization behaviour according to 
equation 4 (MES index is √A/1.6D(Ca-Γ*))

Campaign Effect F P

June MES 205.8 <0.001
 MES×age 1.7 0.195
 MES×species. 3.7 0.002
 MES×age×species 0.6 0.742
August MES 579.2 <0.001
 MES×treatment 32.2 <0.001
 MES×species 5.3 <0.001
 MES×treatment×species. 1.1 0.341

Significant effects (P<0.05) are indicated in bold.
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stage (Jordan-Meille and Pellerin, 2004), and a coordinated 
age-related decline in both gsc and gm could have influenced 
our measurements (Barbour et al., 2016).

As far as we know, this is the first study to specifically test 
for optimal stomatal behaviour in a fern species. We found 
that, unless subjected to reduced water availability, stomata in 
the fern P. aquilinum did not operate according to optimiza-
tion theory. The main NSL to photosynthesis in many ferns is 
gm (Carriqui et al., 2015; Tosens et al., 2016), so we expected 
the MES formulation to provide the best fit, but this was not 
the case. We suggest that in ferns, although gm often imposes 
the main limitation to photosynthesis (Carriqui et al., 2015), 
at the sub-daily timescale at which stomata operate, marginal 
reductions in gm with Ψleaf are unlikely to incur further costs 
on C gain. Additionally, although carboxylation capacity can 
co-limit photosynthesis in some ferns (Gago et  al., 2013), 
it is unlikely that rudimentary fern stomata are capable of 
exhibiting a coordinated response to minimize damage to the 
photosynthetic machinery (Brodribb and McAdam, 2011). 
Instead, collectively, our results could be interpreted as fur-
ther supporting the passive hydraulic control of stomata in 
ferns (despite our coarse characterization of the sensitivity of 
gsc to Dw; Fig. 1), where changes in Dw and leaf capacitance 
would underlie stomatal control (Brodribb and McAdam, 
2011; Martins et al., 2016).

DGVM need measurable physiological traits for distinct 
PFTs to provide reliable estimates of vegetation–atmospheric 
fluxes (Miner et al., 2017). Our results support that the param-
eter ξ (from the CAP formulation in Dewar et al., 2018, and 
equivalent to g1 in Medlyn et  al., 2011) is a good candidate 
trait to be incorporated into DGVM to predict the coupling 

of carbon and water fluxes under future atmospheric condi-
tions, in combination with other fundamental physiological 
traits. Parameter ξ (or g1) captures well the variability across 
PFTs (Fig. 3) and is commonly associated with other traits, 
so that it could contribute to defining common plant strate-
gies within PFTs. For example, species with high ξ should 
exhibit low Vcmax0 (Lin et al., 2015; Hasper et al., 2017; Medlyn 
et al., 2017), as well as high |Ψc| and low Krl, and hence high 
resistance to cavitation. Yet, we should be cautious regarding 
the generalization of a static ξ value for each PFT, particularly 
under decreasing water availability (Zhou et al., 2013; Drake 
et al., 2017). In addition, it remains to be tested how plasticity 
or endogenous regulation could impact ξ estimates within and 
across PFTs (Peguero-Pina et  al., 2016; de Dios et  al., 2017; 
Miner and Bauerle, 2017; Wolz et al., 2017).

Impact of water availability on optimal stomatal 
behaviour

We found that under low water availability, stomata behaved 
according to optimization theory in all our study species. The 
low-watering treatment had the expected physiological effects: 
it reduced Anet, gsc, “V cmax, and Ψpd relative to well-watered 
plants (Fig. 1, Table 1), although Ψpd did not decrease sig-
nificantly in P. pinaster (Table 1), which maintained Ψpd well 
above levels required to induce stem cavitation for this species 
(Bouche et al., 2016). Decreased Anet is directly affected by sto-
matal closure because of diminished substrate supply, but also 
by NSL (Farquhar and Sharkey, 1982). Most likely, decreased 
Anet under low water availability resulted from reductions in 
both types of NSL, that is, gm (Théroux-Rancourt et al., 2014; 

Fig. 4.  (A) Parameter estimate for the CAP model (ξ) multiplied by the square root of temperature-corrected estimated maximum carboxylation capacity 
(V̂ cmax0, only for the six C3 species) and (B) parameter estimate for the MES model (Emax), both plotted against mean predawn leaf water potential (Ψpd). 
Error bars indicate ±SE. Parameters ξ and Emax were fitted to mature leaves measured in the August campaign in well-watered and low-watered plants. 
Grey symbols without vertical error bars indicate species for which the CAP or MES fit were non-significant (P>0.05). The lines indicate the model 
predictions for different values of root-to-leaf xylem conductivity (Krl, mmol m−2 s−1 MPa−1) from equation 2 (A) and equation 4 (B).
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Wang et  al., 2018)  and carboxylation capacity (Flexas et  al., 
2006; Gimeno et al., 2010). Here, we did not explicitly quan-
tify the contributions of each NSL to reduced photosynthe-
sis under water stress (Grassi and Magnani, 2005; Zhou et al., 
2013; Drake et al., 2017) and we did not measure gm. Yet, we 
found that “V cmax0 decreased at midday and the CAP formula-
tion provided the best fit under both watering levels (Fig. 2). 
Thus, we suggest that reduced carboxylation capacity is likely 
to be a major driver underlying rapid (sub-daily) stomatal reg-
ulation, irrespective of water availability.

We observed some differences in stomatal behaviour among 
species from the six PFTs as a consequence of reduced water 
availability. The marginal water cost to C gain (ξ or g1) was 
conserved under low water availability, except for the two 
deciduous angiosperm trees, for which ξ decreased under low 
water availability. Conserved ξ or g1 under decreasing water 
availability has previously been reported for species with a large 
drought-tolerance range, while more drought-sensitive species 
were capable of modulating their marginal water cost under 
water stress (Héroult et al., 2013; Zhou et al., 2013; Gimeno 
et al., 2016; Miner and Bauerle, 2017). For the fern, we found 
a tight coupling of gsc and Anet according to optimization 
theory only under low water availability, suggesting that the 
hydro-passive mechanism underlying the stomatal response to 
increasing Dw might be functional only below a certain water 
availability threshold (Martins et  al., 2016). According to the 
CAP formulation, Dewar et al. (2018) predict a larger decrease 

in ξ 
»
“V cmax0  with Ψleaf for species with a higher root-to-

leaf conductivity (Krl). Our results support this prediction (Fig. 
4), as we found that for the two deciduous angiosperm trees, 
which were expected to exhibit high Krl (Domec et al., 2017), 

our estimates of ξ 
»
“V cmax0  fell close to the CAP model pre-

dictions for the higher range of Krl. For the conifer (P.  pin-
aster), the water-stress treatment did not reduce Ψpd and our 

estimates of ξ 
»
“V cmax0  from low-watered and well-watered 

plants overlapped (Fig. 4), a response that typifies isohydric 
behaviour, consistent with previous observations for this spe-
cies (Ripullone et al., 2007).

Optimal stomatal behaviour in developing leaves

We found that optimal stomatal behaviour in developing 
leaves mimicked that of their mature counterparts (Fig. 3). 
Contrary to our expectations, we did not find lower Anet in 
developing leaves. Similar Anet would imply that in developing 
leaves respiratory costs associated with construction would 
be compensated for in mature leaves with greater mainte-
nance costs (Zhou et al., 2015). Alternatively, or in addition, 
developing leaves would compensate for extra respiratory 
costs with greater carboxylation capacity (Medlyn et  al., 
2002; Rajaona et al., 2013; Locke and Ort, 2014), but this lat-
ter explanation is not supported by our estimates of carboxy-
lation capacity using the one-point method (Supplementary 
Fig. S1) (De Kauwe et al., 2016). More importantly, the CAP 
formulation predicted similar coupling between gsc and Anet 
with no clear differences in the marginal water cost to C 

gain (ξ or g1) between mature and developing leaves. The 
CAP formulation fitted best for both leaf ages, except for 
the developing leaves of pine and oak, although the CAP 
formulation also successfully predicted gsc in the developing 
leaves of these species. This result supports our initial expec-
tation that the photosynthetic apparatus of developing leaves 
would be sensitive to diurnal oscillations in Ψleaf and their 
stomata would operate to minimize the likelihood of dehy-
dration damage (Chaves et al., 2002). Similar stomatal behav-
iour for both leaf ages suggests that developing leaves might 
not be less tolerant to dehydration, although the underlying 
protective mechanisms could vary. For example, it has been 
shown that developing leaves can tolerate similar water stress 
to mature leaves, albeit at a greater carbon cost as they rely 
on the accumulation of compatible solutes (Sperdouli and 
Moustakas, 2014). This strategy would compensate for a lack 
of morphological adaptation expressed later in ontogeny. 
Furthermore, our results could also suggest that gm limits 
photosynthesis in mature and developing leaves to a similar 
extent and that gm does not necessarily decrease during leaf 
development. Developmental changes that result in lower gm, 
such as thicker cell walls, could be partially compensated, for 
example, with an increase in the chloroplast per surface area 
ratio (Evans et al., 2009). Overall, our results did not support 
that the type of formulation and the marginal water cost 
to C gain in the developing stage would differ from those 
applied to mature canopies. Instead, our results indicated that 
stomatal behaviour was conserved along leaf ontogeny and 
across PFTs, despite potentially large differences in construc-
tion costs (Wright et  al., 2004; Onoda et  al., 2017). So far, 
DGVM have ignored possible changes in stomatal behaviour 
with leaf ontogeny, even for deciduous forests in temper-
ate regions (Keenan et  al., 2013). Our study, together with 
other recent observations (Macinnis-Ng et al., 2017), suggest 
that the CAP formulation could serve as a homogeneous 
approach to predict gsc under changing environmental con-
ditions, irrespective of leaf ontogenetic stage.

Conclusions

We have shown that the optimal formulation assuming that 
water costs to carbon gain arise from reduced carboxylation 
capacity (CAP) provides a suitable fit for predicting stomatal 
behaviour irrespective of leaf ontogenetic stage, PFT, and water 
availability. Our results do not imply that NSL to photosyn-
thesis are restricted to reduced carboxylation capacity. Instead, 
we argue that sub-daily marginal changes in gm are unlikely 
to be influencing the rapid stomatal responses to atmospheric 
drought. Our results suggest that the CAP formulation success-
fully captures the co-variation of gsc and Anet with increasing 
Dw, irrespective of PFT, water stress, or leaf ontogenetic stage, 
for the timescale at which stomata operate. Our data also sup-
port that the use of a single-parameter CAP formulation is 
valid for most PFTs, with the caveat that the CAP parameter (ξ 
or g1) should not be assumed to be static in response to water 
availability for all PFTs, particularly for those most sensitive to 
drought.
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Supplementary data

Supplementary data are available at JXB online.
Protocol S1. Estimated carboxylation capacity with the one-

point method.
Fig. S1. Estimated carboxylation capacity.
Fig. S2. Internal to ambient CO2 molar ratio against vapour 

pressure deficit.
Fig. S3. Stomatal conductance plotted against the indexes of 

the two formulations.
Fig. S4. Leaf mass per area and leaf thickness for all species 

and two leaf ages.
Fig. S5. Model slope parameters plotted against leaf mass per 

area and leaf thickness.
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