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• Probabilistic assessment of evolution of
annual characteristics of heatwaves

• Stochastic diffusionmodels to represent
annual statistics of heatwaves

• Long-term high-resolution time series
contain information on stochasticity.

• Assessment of human health impacts
from heatwaves in the context of cli-
mate change

• Risk metrics such as Value at Risk and
Expected Shortfall are proposed.
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In view of risk assessments this paper proposes a stochastic diffusion model to characterise statistics of extreme
events when climate- or environmental variables surpass critical thresholds. The proposed three-factor model
captures trend and volatility of such statistics and could prove valuable for climate and environmental impact
analysis in many systems such as human health, agriculture or ecology. The model supports decisions in view
of lowering risks to acceptable levels.
We illustrate the development of the model for heatwave impacts on human health in the context of
climate change. We propose a generic model composed of three random processes characterising an-
nual statistics of heatwaves: a Poisson process characterising the number of heatwaves, a Gamma
process characterising mean duration and a truncated Gaussian process capturing mean excess tem-
perature of heatwave days. Additionally, potential correlations between the three processes are taken
into account.
The model is calibrated with data obtained from a regional climate model for two cities in Spain. The
suitability of the model for probabilistic analysis is tested with Monte Carlo simulations. We assess
the time-dependent probability distributions of heatwave-related mortality and demonstrate how
to obtain relevant risk metrics such as the 95th percentile and the average of the 5% of worst
cases (ES (95%)).
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Heatwaves

According to theWorld Health Organisation and theWorld Mete-
orological Organisation (WMO, 2015), heatwaves are among the
most hazardous meteorological events, although in the past they
have received far less attention than other apparently more spectac-
ular and violent events such as floods, cyclones and hurricanes.
Heatwaves can pose significant threats to human health, ecosystems
and to energy-, water- and transport systems. They represent an im-
portant socio-economic problem. The Intergovernmental Panel on
Climate Change, IPCC, warns of an increase in frequency, duration
and magnitude of heatwaves in future decades (IPCC, 2012, 2013).
The 2003 heatwave, which affected all of Europe, was presumably
responsible for up to 70,000 deaths in 16 countries (Robine et al.,
2008), and according to Stott et al. (2004), such severe heatwaves
could become unexceptional events by 2040. Christidis et al.
(2015) project a clear trend of increase in the frequency of
heatwaves and a sharp reduction in the return period for the more
extreme cases.

Mueller et al. (2016) found that the probability of hot summers is
currently ten times higher compared to a scenario without climate
change. Within the next two decades regions such as the Mediterra-
nean, Western US, Canada, the Sahara and Southern Asia will start to
be particularly affected by hot summers. The PESETA project estimated
an increase in mortality between 1% and 4% for each degree Celsius in-
crease in temperature in Europe, which would result in 30,000 addi-
tional deaths by 2030, and between 50,000 and 110,000 by 2080
(Paci, 2014).

Heatwaves are generallymore serious in urban areas, due to the heat
island effect, though rural areas are also susceptible to suffer severe im-
pacts. Cities are especially vulnerable due to the urbanisation process
leading to a gradual increase of the proportion of population living in
urban areas.

Heatwaves typically occur when temperatures exceed thresholds
according to climatologic or epidemiological criteria. Epidemiological
thresholds depend on local climatic conditions and may be modified
by other variables such as pollution or humidity and wind. The defini-
tion of a heatwave event depends on local climate and geographical
conditions.

Perkins and Alexander (2013) argue that definitions for heatwaves
are ambiguous and inconsistent and that in some cases it is high day-
time temperatures that co-occur with high nocturnal temperatures or
with high humidity that are critical. Windy conditions can also modify
heat stress (WMO, 2015).

Areas that have not been at risk or at lower risk of extreme heat
so far might become vulnerable in the future. In this context it be-
comes crucial to assess future hazards and the occurrence of high-
impact events, in terms of intensity, duration and frequency. In
view of proof of concept we consider here a single time series of
maximum daytime temperature and look for a stochastic diffusion
model that can characterise annual statistics of daily exceedances
above a critical threshold temperature. Such a model could then
be widely applied for assessing health impacts dependent on
climatic- or epidemiological thresholds.

1.2. Stochastic diffusion models

For climate change impact- and adaptation assessments a good rep-
resentation of the future evolution of relevant extreme events such as
heatwaves is crucial. Such a representation should capture both evolu-
tion of trends and variability of its defining characteristics, aswell as po-
tential correlations.

Climatic variables, such as temperature, are typically available in the
form of time series. These time series can stem either from observed
historical observations or as outputs from climate models. In this con-
text, stochastic models provide a means to capture generic information
such as trends or variability of the number of annual heatwaves as well
as related indicators such as duration and intensity. They allow
summarising an entire time series through a model with calibrated pa-
rameters for deterministic and stochastic components. Suchmodels can
then be used to more easily compare time series from different origins
(e.g. from different climate models). The calibrated model can be used
for risk assessments, e.g. to compute risk metrics from probability
distributions.

Stochastic diffusion models could be especially suited to esti-
mate probability distributions of potential variables characterising
heatwaves in terms of number of events, duration and intensity. A
diffusion process is defined as a solution to a stochastic differential
equation which generates a probabilistic distribution for each time
t. A general introduction to such models can be found in Kloeden
and Platen (1999) and in Dixit and Pindyck (1994). We can distin-
guish between discrete stochastic processes, where the variable
takes on discrete values such as number of heatwaves per year
and continuous processes in which the variable takes on values in
a continuous range such as heatwave intensity.

Some authors have previously modelled heat wave characteris-
tics using a Poisson process approach. Furrer et al. (2010) develop a
model that considers the frequencymodelled by a Poisson distribu-
tion, the duration as a geometric distribution and the intensity of
heatwaves as a conditional generalized Pareto distribution. They
calibrated the model with historical series of daily maximum tem-
perature at three different stations. Wang et al. (2015) used the
model of Furrer et al. (2010) to study heatwaves in China with in-
formation from the 30 Coupled Model Intercomparison Project
Phase 5 (CIMP5) General Circulation Models (GCMs). Keellings
and Waylen (2014) studied the maximum and minimum daily
temperatures in Florida, considering the frequency, intensity, du-
ration of heat waves. They used historical data from 1949 to 2000
to study the variability of heatwaves characteristics. They exam-
ined the changes in heat wave characteristics between two equal
time periods. Abaurrea et al. (2007) analyse the summer maximum
daily temperature in the Ebro river basing during the period
1951–2004; they calibrated a statistical model using a nonhomo-
geneous Poisson process and used it to obtain medium-term pre-
dictions of extreme heat events.

Our approach considers frequency of heatwaves, as well as their
annual mean duration and the temperature exceedance on heatwave
days. It allows for time-dependent changes in these characteristics
caused by projected climate change of the 21st century. The model
we propose with the three variables is a “mixed” model containing
information on the evolution of annual statistics of heatwaves. It
consists of two discrete processes (number of heatwaves per year
and mean duration of heatwaves) and one continuous process
(mean excess temperature of heatwave days). Previous applications
with up to three variables have been conducted for continuous sto-
chastic diffusion processes (Abadie et al., 2014). The approach allows
for possible correlations among the three stochastic variables. Once
calibrated, we demonstrate how to use the model for computing
risk metrics of extreme events.

1.3. Risk metrics

After the model calibration, Monte Carlo simulations can be run
in order to obtain annual distributions of the measures of interest:
e.g. number of heatwaves as well as statistical properties such as
the expected values and risk measures. We use risk measures
with roots in financial engineering: Value at Risk (VaR) and Ex-
pected Shortfall (ES). They both characterise the risk properties
of the probability density functions at a given percentile, e.g. the
95% level:
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- Value at Risk − VaR (95%) is the value of a variable that is only
surpassed in 5% of cases, i.e. the 95th percentile.

- Expected Shortfall− ES (95%) is the mean of the 5% worst cases, i.e.
the mean of cases when the 95th percentile is exceeded.

The Expected Shortfall is more sensitive to the shape of the
distribution tails than is the 95th percentile. Although Value at
Risk is a widely used risk measure, the Expected Shortfall has
been shown to have better statistical properties (Artzner et al.,
1999).

These measures of risk provide valuable information for cli-
mate change impact assessments and adaptation. They allow to
calculate the effects of high-impact low-probability events and
can be an important input to decision-making. In this way the
adaptation decisions can be made using the risk measures that
reflect the impacts of worst cases and not only the expected
damages.

The remainder of the paper is organized as follows: Section 2 de-
scribes the materials and methods used. Section 3 shows the results
for heatwaves and associated mortality risk and discusses the generali-
zation and transferability of such an approach. Section 4 presents the
main conclusions of the study.
2. Materials and methods

2.1. Heatwave characterisation and temperature time series

For this study, a “heatwave” is defined in terms of maximum day-
time temperature Tmax exceeding a certain threshold value Tcrit during
one or more consecutive days.

For daily maximum temperature Tmax we assume two climatic pro-
jections between 2006 and 2100 (95 years) based on Representative
Concentration Pathway (RCP4.5 and RCP8.5) scenarios presented in
IPCC's Fifth Assessment Report AR5 (van Vuuren et al., 2014). RCP8.5
is a high CO2 emissions scenario, driven by strong reliance on fossil
fuels, and high population growth. RCP4.5, instead, is an intermediate
emissions scenario characterised by emissions reductions obtained
with climate policies.

Projections of Tmax for each scenario are taken from Scoccimarro and
Gualdi (2014) who downscaled simulations from the Coupled Models
Intercomparison Project (CMIP5) using the Rossby Center Atmosphere
(RCA4) regional model.

We demonstrate the development of themodel in view of heatwave
related mortality impacts for two cities in Spain: Madrid and Bilbao.
Based on epidemiological studies from Díaz et al. (2015), the critical
thresholds Tcrit above which mortality increases, are 34 °C for Madrid
and 30 °C for Bilbao. For consistency with the epidemiological model,
the analysis is conducted for the summer period (from 1 June to 30 Sep-
tember) and heatwave days outside that period are disregarded. Table 1
shows that this approach captures themajority of heatwave days (93%–
99.6%).
Table 1
Heatwave days occurringwithin summermonths (1 June to 30 September) and outside of
summer months for the period of 2006–2100 (number of days).

City Madrid Bilbao

Scenario RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5
Summer 3549 2761 960 900
Other months 54 11 67 34
Total 3603 2772 1027 934
2.2. Stochastic model requirements

The objective is to identify a stochastic model that is able to repro-
duce annual heatwave characteristics of the original Tmax time series.
The characteristics we are interested in are the number of heatwaves
in a given year, their mean duration in days and the mean exceedance
above Tcrit in °C on heatwave days. The model allows to characterise an-
nual degree-days. Degree-days refers to number of days in heatwave
multiplied with their mean excess temperature and is widely used for
impact models, such as in epidemiology or in the energy sector.

For each city and RCP scenario themodel is calibratedwith a time se-
ries of maximum daytime temperatures Tmax.

Potential acclimatisation processes that imply an increasing thresh-
old temperature Tcrit over time are not considered here. However, the
model framework is general enough to allow the introduction of dy-
namic thresholds.

The calculations refer only to two climatic scenarios RCP 8.5 and
RCP 4.5 for Madrid and Bilbao, but the model framework is general
enough to be transferable to other climate scenarios and other
cities.

2.3. Hypothesising a model

We consider the following three variables for which we want to re-
produce time-dependent deterministic and stochastic components on
an annual basis:

i) number of heatwaves,
ii) mean duration of heatwaves in days
iii) mean excess temperature (in °C) on heatwave days

For each variable a model is proposed based on first principles
and on parsimony and then calibrated with the available time series.
As heatwaves (i) occur as discrete random events, it is reasonable to
represent their annual occurrence with a Poisson process. As the
heatwave duration (ii) is a positive number of days we have chosen
a Gamma distribution that allows to calibrate both mean and volatil-
ity of duration. Finally, given that the mean excess temperature (iii)
must be characterised by a continuous distribution that cannot have
negative values, a truncated Gaussian process is hypothesised for
this distribution. We include a sensitivity analysis using a Gamma
distribution for excess temperature. In addition, we consider that
the expected values of the three processes can change over time.
For all three processes we consider the possibility of an exponential
increase. This choice is due to considerations of parsimony and a pre-
liminary analysis of the time series obtained with the climate model
data (Appendix A).

In accordance with the foregoing, the deterministic time-
dependent components of the three processes are considered in
the following way:

i) The number of annual heatwaves is estimated with Eq. (1) allowing
for exponential increase over time:

λ tð Þ ¼ λ 0ð Þeαt ð1Þ

where λ(0) is the expected number of heatwaves in year t=0 and λ(t)
is the expected number of heatwaves in year t.

ii) The expected value of the annual mean duration of heatwaves is es-
timated in accordance with Eq. (2):

dur tð Þ ¼ dur 0ð Þeγt ð2Þ



Table 4
Results of theMonte Carlo simulation expressedwithmeans for number of heatwaves per
year (−), duration (days) and excess temperature (°C), standard deviation of duration
(days), standard deviation of excess temperature (°C) and correlation coefficients (−).

City Madrid Bilbao

Parameter Year RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5

λ(t) 2025 6.59 6.97 4.86 5.82
2050 8.03 7.47 5.61 5.75
2075 9.22 8.02 6.48 5.68
2100 10.54 8.61 7.49 5.61

dur(t) 2025 3.62 3.52 1.60 1.77
2050 4.50 3.92 1.78 1.68
2075 5.61 4.35 1.96 1.59
2100 7.01 4.83 2.16 1.51

Table 3
Expected values of number of heatwaves (−), mean duration (days) and mean exceed-
ance (°C) for selected years.

City Madrid Bilbao

Parameter Year RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5

λ(t) 2025 6.98 6.96 4.84 5.82
2050 8.01 7.46 5.60 5.74
2075 9.19 8.01 6.47 5.67
2100 10.55 8.59 7.48 5.60

dur(t) 2025 3.62 3.53 1.61 1.77
2050 4.51 3.92 1.77 1.68
2075 5.62 4.35 1.95 1.59
2100 7.01 4.83 2.15 1.51

temp(t) 2025 1.91 2.00 2.83 2.76
2050 2.43 2.19 3.22 2.93
2075 3.09 2.39 3.65 3.12
2100 3.93 2.62 4.15 3.31

673L.M. Abadie et al. / Science of the Total Environment 646 (2019) 670–684
where dur(0) is the expected mean duration of heatwaves in the initial
year t = 0 and dur(t) is the expected mean duration in year t. The pro-
cess allows for an exponential increase it time.

iii) The expected value of the mean excess temperature is estimated
with Eq. (3):

temp tð Þ ¼ temp 0ð Þeβt ð3Þ

where temp(0) is the mean excess temperature expected during
heatwave days in the initial year t = 0 and temp(t) is the mean excess
temperature expected in year t. This process also allows for an exponen-
tial increase in time.

In summary, the following processes are hypothesised:

i) A Poisson process that generates an annual number of
heatwaves: X1,t.

ii) A Gamma process that determines the mean annual duration of
heatwaves: X2,t.

iii) A truncated Gaussian process characterisingmean annual excess
temperature of heatwave days: X3,t.

Potential correlations linking the three processes are considered as
follows: (ρ1,2) captures the potential correlation between the number
of heatwaves per year (i) and mean duration (ii) while (ρ2,3) captures
the potential correlation between mean duration (ii) and mean excess
temperature (iii).

Note that by definition, in the case of the Poisson processes
hypothesised for i) the mean and variability are captured by the same
parameter, whereas for the Gamma and Gaussian processes the volatil-
ities σG and σN needs to be calibrated.

In the next step the model is calibrated with a daily Tmax time series.

2.4. Model calibration

The calibration of the model is done using nonlinear least squares.
Detailed information on goodness-of-fit statistics and confidence inter-
vals is provided in Appendix A and a summary of the results is shown in
Table 2.

For most cases the coefficients are highly significant and the R-
squared values are very high indicating the adequacy of models (see
Appendix A).

The number of heatwaves per year, mean duration andmean excess
temperature tend to increase exponentially over time, except for Bilbao
Table 2
Calibrated model parameters.

Madrid Bilbao

Parameter Units RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5

λ(0) (−) 6.2894 6.5990 4.3355 5.8720
α (y−1) 0.0055 0.0028 0.0058 −0.0005
dur(0) (days) 3.0640 3.2557 1.4925 1.8373
γ (y−1) 0.0088 0.0042 0.0039 −0.0021
temp(0) (°C) 1.5922 1.8662 2.5698 2.6408
β (y−1) 0.0096 0.0036 0.0051 0.0024
σG (days) 2.1653 1.6383 1.3981 0.6738
σN (°C) 0.6159 0.6570 1.1477 1.1539
ρ1,2 (−) −0.2742 −0.2676 −0.0704 −0.0412
ρ2,3 (−) 0.7001 0.5807 0.1945 0.2809
under RCP4.5, where the exponential parametersα, β and γ are not sig-
nificantly different from 0 (see Appendix A).

Note the negative correlation ρ1,2 between the number of
heatwaves and mean duration as well as the positive correlation
ρ2,3 between mean duration and mean excess temperature. ρ1,2 can
be expected to be negative due to the finite length of the heat wave
season: The limits would be a single heat wave with duration of the
entire heat wave season, whereas the other extreme would be
every second day being a heatwave. ρ2,3 is believed to be positive
as heat wave intensity can be expected to increase with the number
of consecutive heat wave days: we would not expect a one-day
heatwave to be at extremely high temperatures whereas in a
temp(t) 2025 1.91 2.00 2.80 2.74
2050 2.43 2.19 3.21 2.92
2075 3.09 2.39 3.65 3.11
2100 3.93 2.62 4.15 3.30

σG 2025 2.18 1.64 1.39 0.67
2050 2.17 1.64 1.40 0.67
2075 2.17 1.63 1.40 0.67
2100 2.17 1.64 1.40 0.67

σN 2025 0.62 0.66 1.18 1.19
2050 0.61 0.66 1.16 1.18
2075 0.62 0.65 1.15 1.17
2100 0.62 0.66 1.15 1.16

ρ1,2 2025 −0.28 −0.27 −0.07 −0.04
2050 −0.28 −0.27 −0.07 −0.04
2075 −0.28 −0.27 −0.07 −0.04
2100 −0.28 −0.27 −0.07 −0.04

ρ2,3 2025 0.68 0.56 0.19 0.28
2050 0.67 0.56 0.20 0.28
2075 0.67 0.56 0.21 0.29
2100 0.67 0.56 0.20 0.28



Table 5
Mean excess temperature of heatwave days (°C). Mean, 95th percentile and mean of the
5% worst cases (ES (95%)) for selected years.

Year Madrid RCP 8.5 (°C) Madrid RCP 4.5 (°C)

Mean 95th percentile ES (95%) Mean 95th percentile ES (95%)

2025 1.91 2.99 3.36 2.00 3.12 3.45
2050 2.43 3.47 3.82 2.19 3.30 3.62
2075 3.09 4.14 4.45 2.39 3.49 3.80
2100 3.93 4.97 5.26 2.62 3.73 4.04

Year Bilbao RCP 8.5 (°C) Bilbao RCP 4.5 (°C)

Mean 95th percentile ES (95%) Mean 95th percentile ES (95%)

2025 2.80 4.78 5.26 2.74 4.74 5.25
2050 3.21 5.14 5.63 2.92 4.89 5.39
2075 3.65 5.56 6.05 3.11 5.06 5.56
2100 4.15 6.04 6.53 3.30 5.24 5.73
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heatwave of long duration we may expect very high temperatures
during some of the days.

Based on the parameter values in Table 2, the expected values for the
three processes are shown in Table 3 for selected years. For example, in
the case of Madrid, 10.55 heatwaves are expected in the year 2100
under scenario RCP 8.5, with an expected mean duration of 7.01 days
and an expected mean excess temperature of 3.93 °C on heatwave
days, equivalent to a mean Tmax of 37.93 °C during heatwave days. The
expected values have to be interpreted consistently with the results
presented in Table 2 and Appendix Tables A.1–A.4. For example, the re-
ported change over time among expected values for Bilbao RCP4.5 re-
flects coefficients not statistically significantly different from 0, so that
no trend in number, duration and intensity of heatwaves can be realis-
tically expected in this case. In all other cases, expected values show an
increase in frequency, mean duration and mean excess temperature
over time, which tends to be more pronounced for RCP8.5 compared
to RCP4.5.
Fig. 1. Distribution of mean excess temperature in Madrid in
2.5. Monte Carlo simulation

Because of the complex relationships between the three stochastic
processes with their variability and correlations and the very low com-
putational cost of a single simulation,we decided to use theMonte Carlo
methodology to compute the risk measures with a high accuracy. For a
general introduction to Monte Carlo simulations in the context of sto-
chastic diffusion models we refer the reader to Abadie and Chamorro
(2013).

50,000 Monte Carlo simulations were performed for selected years
(2025, 2050, 2075, 2100). In a first step, each simulation for each year
generates the number of heatwaves.

With the Poisson distribution, the probability of observing k events
in an interval is given by Eq. (4).

e−λ λ
k

k!
ð4Þ

There is a slight probability that there may not be any extreme
events (k = 0) in a given year. This is expressed by Eq. (5):

f 0;λ tð Þð Þ ¼ e−λ tð Þ ð5Þ

Therefore, in the case of Bilbao in the year 2100, under scenario
RCP 8.5 there is a 0.058% probability that there will be no
heatwaves.

The random values of annual number of heatwaves have
been generated from a Poisson distribution using the parameters
from Eq. (1) for each year. Similarly the values generated by
Eqs. (2) and (3) together with volatilities and correlations are
used to generate random samples for duration and excess tem-
perature. Truncation and correlations are accounted for as de-
scribed in Section 2.5.1.

2.5.1. Truncation and correlation
The excess temperature must always be greater or equal to

zero.
2100 over 34 °C under scenarios RCP 8.5 and RCP 4.5.



Fig. 2. Distribution of mean excess temperature in Bilbao in 2100 over 30 °C under scenarios RCP 8.5 and RCP 4.5.
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Mean excess temperature is obtained from a zero-truncated normal
distribution correlated with mean duration. See Johnson et al. (2005)
for the corresponding equations to obtain the parameters for the non-
truncated distribution.

Correlation is simulated by obtaining samples v2 (normalised
mean duration) and v3 (normalised mean excess temperature)
using Eq. (6):

v2 ¼ x2; v3 ¼ ρ2;3x2 þ x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2;3

� �2q
ð6Þ
Fig. 3. Distribution of number of deaths from heatwaves in
where x2 and x3 are two independent samples of duration and
excess temperature which are normalised in advance by
subtracting the means of their distribution and dividing by the
standard deviation of that distribution. Following the operation
with Eq. (6) the samples v2 and v3 are transformed back to the
original probability space to obtain variables with the original
mean and standard deviation, now including the appropriate
correlation.

In a similarway,we generate random samples to account for the cor-
relation between the number of heatwaves and duration.
Bilbao in 2100 under scenarios RCP 8.5 and RCP 4.5.



Table 7
Number of annual heatwave-related deaths per 10,000 inhabitants. Mean, 95th percentile
and mean of the 5% worst cases (ES (95%)) for selected years.

Year Madrid RCP 8.5 Madrid RCP 4.5

Mean 95th percentile ES (95%) Mean 95th percentile ES (95%)

2025 0.68 1.95 2.85 0.67 1.72 2.35
2050 1.19 2.97 4.03 0.86 2.09 2.79
2075 2.12 4.67 6.01 1.11 2.54 3.32
2100 3.81 7.49 9.14 1.45 3.15 4.01

Year Bilbao RCP 8.5 Bilbao RCP 4.5

Mean 95th percentile ES (95%) Mean 95th percentile ES (95%)

2025 0.34 1.14 1.75 0.43 1.12 1.49
2050 0.49 1.54 2.31 0.43 1.12 1.49
2075 0.71 2.07 2.98 0.43 1.12 1.50
2100 1.01 2.77 3.84 0.43 1.11 1.50

676 L.M. Abadie et al. / Science of the Total Environment 646 (2019) 670–684
2.5.2. Convergence
Table 4 shows the sample means of the Monte Carlo simulation for

numbers of events, mean duration, mean excess temperature, volatility
and correlations. As can be seen by comparison with Table 3, conver-
gence has been achieved: the differences between the theoretical values
of the parameters and those obtained via the Monte Carlo simulations
are minimal.

3. Results and discussion

In this section we analyse the resulting distributions of the annual
statistics of heatwaves and calculate risk metrics for mean excess tem-
perature and for mortality.

3.1. Excess temperature risk

The results for expected mean excess temperature during
heatwave days, the 95th percentile (Value at Risk VaR (95%)) and
the mean for the 5% of worst cases (Expected Shortfall ES (95%))
are shown in Table 5.

According to the model, in Madrid in 2100, under scenario
RCP8.5 there is a 5% probability that the mean annual excess
temperature of heatwave days will exceed 38.97 °C (4.97 °C
+ 34.00 °C). For the same scenario, the mean for the 5% worst
cases would be 39.26 °C (5.26 °C + 34.00 °C). Excess tempera-
ture risk tends to increase over time for all scenarios, although
the magnitude of increase is more severe under scenario
RCP8.5 than under scenario RCP4.5. Results for Bilbao show
higher values for expected excess temperature risks for all se-
lected years. For RCP 8.5 and RCP 4.5 we visualise the distribu-
tions of excess temperature in 2100 for the two cities as
obtained with the Monte Carlo simulations (Figs. 1–2).

3.2. Climate change impact assessment: mortality risk

In this section we illustrate the use of the model for mortality risk
projections using an epidemiological equation (Eq. (7)) where annual
heatwave-related mortality is proportional to the degree-days (Díaz
et al., 2015). We obtain the annual number of heatwave days by multi-
plying the number of heatwave events (X1,t) with the mean duration of
heatwaves (X2,t). The heatwave days are then multiplied by the mean
excess temperature (X1,t) to obtain the degree days: (X1,t ∗ X2,t ∗ X3,t).
Table 6
Heatwave-relatedmortality risk projections for Madrid and Bilbao under RCP 4.5 and RCP
8.5 (number of deaths per year).Mean, 95th percentile andmean of the 5%worst cases (ES
(95%)) for selected years.

Year Madrid RCP 8.5 Madrid RCP 4.5

Mean 95th percentile ES (95%) Mean 95th percentile ES (95%)

2025 194.66 561.93 821.42 191.53 494.35 677.31
2050 341.48 854.09 1159.62 248.25 602.02 803.58
2075 610.62 1346.04 1730.07 320.07 732.90 956.37
2100 1096.86 2157.52 2631.64 416.18 905.77 1154.18

Year Bilbao RCP 8.5 Bilbao RCP 4.5

Mean 95th percentile ES (95%) Mean 95th percentile ES (95%)

2025 11.87 40.46 62.01 15.38 39.77 52.91
2050 17.30 54.52 81.62 15.35 39.72 52.79
2075 25.01 73.45 105.47 15.27 39.47 52.93
2100 35.88 98.05 135.77 15.21 39.33 52.94

Note: We intentionally do not correct for population growth in order to only account for
mortality changes due to changes in heatwave dynamics (The corresponding population
numbers are Madrid: 2.88 million, and Bilbao: 0.354 million).
We use the epidemiological parameters from the site-specific studies
(Linares et al., 2014; Díaz et al., 2015).

Mt ¼ RM � B� X1;t � X2;t � X3;t
� � ð7Þ

where:

Mt is the heatwave-related mortality in the year t (deaths).
RM is the heatwave mortality risk (°C−1) expressed as mortality in-
crease per 1 °C temperature increase above the threshold tempera-
ture Tcrit. (Madrid: Tcrit = 34 °C with RM = 6.54% = 0.0654;
Bilbao: Tcrit = 30 °C with RM= 5.66% = 0.0566).
B is the background daily mortality rate (deaths per day)
for death from natural causes during heatwave days (June–
September) established for the period 2000–2008 (Madrid:
B = 57.5, Bilbao: B = 9.26). We intentionally do not correct
for population growth in order to only account for mortality
changes due to changes in heatwave dynamics. The corre-
sponding population numbers are for the year 2000: Madrid
(2.88 million) and Bilbao (0.354 million).
X1, t is the number of heatwaves in year t (−).
X2, t is the mean duration of heatwaves in year t (days).
X3, t is themean excess temperature on heatwave days in year t (°C).

Applying this calculation (Eq. (7)) for each Monte Carlo simulation
we obtain a distribution of annualmortalityMt. We display the distribu-
tions for Bilbao for RCP4.5 and RCP8.5 (Fig. 3).We then calculate the an-
nual means and the risk measures: 95th percentile and Expected
Shortfall ES (95%) (see Table 6).

The simulations indicate that in Bilbao in 2100, under scenario
RCP 8.5, a mean of 36 deaths is expected, and there is a 5% probability
that the number of deaths could exceed 98.05. The average of the 5%
worst case simulations would be 135.77. Depending on the scenario
and the city we find the Expected Shortfall ES (95%) to be around two
to four times the mean value. This information on worst case scenar-
ios can help in setting up appropriate adaptation plans. For Bilbao,
for the year 2100, the distributions are visualised for RCP 4.5 and
8.5 in Fig. 3.

To improve comparability between the two cities we include infor-
mation on the annual heatwave related deaths per 10,000 inhabitants
using the population numbers above (Table 7).

We additionally include a summary of the results of the sen-
sitivity analysis using a Gamma distribution for the mean excess
temperature with the same mean and volatility as the original
data. The Gamma distribution is only slightly different to the
one obtained with the truncated normal distribution (Appendix
B, Fig. B.1). When predicting mortality this small difference is
further diluted as mortality is a function of all of the three
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processes involved. The final difference in projected mortality
turns out to be negligible (Appendix B, Table B.1).

3.3. Generalization and transferability of the approach

The stochastic diffusion models allow capturing increasing trends
and volatility in a very versatilemanner, including correlations between
the involved processes. This could open up a much wider set of uses for
analysing climatic time series.

The methodology developed for heatwaves can be transferred to
other situations, such as other geographic locations and other tem-
perature thresholds (e.g. climatic thresholds instead of epidemiolog-
ical thresholds). It can be directly applied to study heatwaves
characterised by high wet-bulb temperatures (Im et al., 2017) or to
study cold-waves. The method is extendable to include time-
changing thresholds to account for acclimatisation processes. In-
stead of heatwave impacts on health, the approach could be adapted
to characterise low-probability high-impact events in other sectors
such as energy or agriculture.

4. Conclusions

A single long-term (N90 years) high resolution time series (e.g. max-
imum daily temperature) can be used to hypothesise a generic
N
R
A
R
R

λ
α

N
R
A
R
R

du
γ

N
R
A
R
R

te
stochastic model able to reproduce evolution of trends and volatility
of annual heatwave characteristics.

The model couples three stochastic processes characterising
the annual number of heatwaves (Poisson process), their mean
duration (Gamma process) as well as the mean excess tempera-
ture on heatwave days (truncated Gaussian process). The
calibration reveals a positive correlation between mean annual
heatwave duration and excess temperature and a negative
correlation between mean duration and annual number of
heatwaves.

We illustrate the versatility of such a model in view of risk assess-
ments of heatwave-related mortality projections using epidemiological
models. We show how calculating the associated risk metrics such as
Value at Risk and Expected Shortfall can provide valuable information
for decision making in climate change adaptation.
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Appendix A. Calibration results

Table A.1
Madrid RCP 8.5 calibration.

Number of heatwaves per year
umber of obs
 95

-squared
 0.9174

dj R-squared
 0.9157

oot MSE
 2.524696

es. dev.
 443.5399
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
(0)
 6.289359
 0.448781
 14.01
 0
 5.398168
 7.180549

0.005493
 0.001165
 4.71
 0
 0.003179
 0.007807
Duration of heatwaves (days)
umber of obs
 95

-squared
 0.8383

dj R-squared
 0.8348

oot MSE
 2.176978

es. dev.
 415.3851
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
r(0)
 3.064066
 0.353374
 8.67
 0
 2.362335
 3.765796

0.008795
 0.001776
 4.95
 0
 0.005268
 0.012322
Temperature excess over 34 °C
umber of obs
 95

-squared
 0.9498

dj R-squared
 0.9488

oot MSE
 0.6192655

es. dev.
 176.5249
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
mp(0)
 1.592232
 0.098329
 16.19
 0
 1.39697
 1.787493

0.009556
 0.00094
 10.17
 0
 0.007691
 0.011422
β
Volatility of excess temperature = 0.6159.
Volatility of duration heatwaves = 2.1653.
Correlation of duration and excess temperature = 0.7001.
Correlation of number of heatwaves and duration = −0.2742.
Note: In this case all the parameters values are significantly different from zero.



Fig. A.2. Excess temperature in Madrid over 34° C under scenario RCP 8.5.

Fig. A.1. Number of heatwaves and duration in Madrid under scenario RCP 8.5.

678 L.M. Abadie et al. / Science of the Total Environment 646 (2019) 670–684



Table A.2
Madrid RCP 4.5 Calibration.

Number of heatwaves per year
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N
R
A
R
R

λ
α

N
R
A
R
R

du
γ

N
R
A
R
R

te
umber of obs
Fig. A.3. Number of heatwaves and duration in Madrid under scenario RCP 4.5.
95

-squared
 0.9125

dj R-squared
 0.9106

oot MSE
 2.372549

es. dev.
 431.7303
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
(0)
 6.598955
 0.451464
 14.62
 0
 5.702437
 7.495473

0.002826
 0.001179
 2.4
 0.019
 0.000484
 0.005168
Duration of heatwaves (days)
umber of obs
 95

-squared
 0.8588

dj R-squared
 0.8558

oot MSE
 1.647124

es. dev.
 362.3928
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
r(0)
 3.255747
 0.30275
 10.75
 0
 2.654546
 3.856948

0.004204
 0.001557
 2.7
 0.008
 0.001112
 0.007297
Temperature excess over 34 °C
umber of obs
 95

-squared
 0.9211

dj R-squared
 0.9194

oot MSE
 0.6605721

es. dev.
 188.7937
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
mp(0)
 1.866188
 0.123258
 15.14
 0
 1.621422
 2.110954

0.003611
 0.00112
 3.22
 0.002
 0.001388
 0.005835
β
Volatility of excess temperature = 0.6570.
Volatility of duration heatwaves = 1.6383.
Correlation of duration and excess temperature = 0.5807.
Correlation of number of heatwaves and duration = −0.2676.
Note: In this case all the parameters values are significantly different from zero.
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Fig. A.4. Excess temperature in Madrid over 34° C under scenario RCP 4.5.
Table A.3

Bilbao RCP 8.5 calibration.

Number of heatwaves per year
N
R
A
R
R

λ
α

N
R
A
R
R

d
γ

N
R
A
R
R

te
umber of obs
 95

-squared
 0.8382

dj R-squared
 0.8347

oot MSE
 2.587336

es. dev.
 448.1964
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
(0)
 4.335485
 0.456661
 9.49
 0
 3.428647
 5.242324

0.005761
 0.001711
 3.37
 0.001
 0.002363
 0.009159
Duration of heatwaves (days)
umber of obs
 95

-squared
 0.6294

dj R-squared
 0.6215

oot MSE
 1.405602

es. dev.
 332.2655
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
ur(0)
 1.492538
 0.260421
 5.73
 0
 0.975394
 2.009683

0.003892
 0.002941
 1.32
 0.189
 −0.00195
 0.009732
Temperature excess over 30 °C
umber of obs
 95

-squared
 0.8943

dj R-squared
 0.8923

oot MSE
 1.153854

es. dev.
 294.7674
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
mp(0)
 2.569776
 0.207341
 12.39
 0
 2.158037
 2.981515

0.00508
 0.001328
 3.82
 0
 0.002442
 0.007717
β
Volatility of excess temperature = 1.1477.

Volatility of duration heatwaves = 1.3981.
Correlation of duration and excess temperature = 0.1945.
Correlation of number of heatwaves and duration = −0.0704.
Note: In this case all the parameters valueswith the exception of γ are significantly differ-
ent from zero.



Fig. A.5. Number of heatwaves and duration in Bilbao under scenario RCP 8.5.
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The spike in Fig. A.5 corresponds to the original data from Scoccimarro and Gualdi (2014) and has been generated by their climate model. It repre-
sents a year where just one heatwave episode occurs that lasts 14 days.
Fig. A.6. Excess temperature in Bilbao over 30 °C under scenario RCP 8.5.



Table A.4
Bilbao RCP 4.5 Calibration.

Number of heatwaves per year
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N
R
A
R
R

λ
α

N
R
A
R
R

d
γ

N
R
A
R
R

te
umber of obs
Fig. A.7. Number of heatwaves and duration in Bilbao under scenario RCP 4.5.
95

-squared
 0.8203

dj R-squared
 0.8165

oot MSE
 2.718816

es. dev.
 457.6143
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
(0)
 5.872042
 0.559381
 10.5
 0
 4.761223
 6.982861

−0.00046
 0.00177
 −0.26
 0.796
 −0.00397
 0.003057
Duration of heatwaves (days)
umber of obs
 95

-squared
 0.8615

dj R-squared
 0.8585

oot MSE
 0.6773774

es. dev.
 193.5669
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
ur(0)
 1.837252
 0.144545
 12.71
 0
 1.550215
 2.12429

−0.00208
 0.001522
 −1.37
 0.175
 −0.0051
 0.000941
Temperature excess over 30 °C
umber of obs
 95

-squared
 0.8697

dj R-squared
 0.8669

oot MSE
 1.160055

es. dev.
 295.7858
Parameter
 Coefficient
 Std. Err.
 t
 P N |t|
 [95% Conf. Interval]
mp(0)
 2.640783
 0.223204
 11.83
 0
 2.197544
 3.084022

0.002375
 0.001471
 1.61
 0.11
 −0.00055
 0.005296
β
Volatility of excess temperature = 1.1539.
Volatility of duration heatwaves = 0.6738.
Correlation of duration and excess temperature = 0.2809.
Correlation of number of heatwaves and duration = −0.0412.
Note: In this case all the exponential parameters α, γ and β are not significantly different from zero.



Fig. A.8. Excess temperature in Bilbao over 30 °C under scenario RCP 4.5.
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Appendix B. Sensitivity analysis with Gamma distribution for excess temperature
Fig. B.1. Excess temperature distribution in 2100 for Madrid and Bilbao using normal truncated and Gamma distributions.



Table B.1
Absolute difference in number of deaths when using the Gamma distribution instead of the truncated normal distribution for excess temperature (number of deaths).
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Year
2
2
2
2

2
2
2

Madrid RCP 8.5 (no. deaths)
 Madrid RCP 4.5 (no. deaths)
Mean
 95th
 ES (95%)
 Mean
 95th
 ES (95%)
025
 −0.71
 −3.90
 −7.65
 −0.34
 0.50
 −5.77

050
 0.03
 −3.60
 7.15
 0.37
 −5.68
 −2.53

075
 0.67
 −9.48
 8.97
 −0.49
 −5.84
 2.05

100
 −3.29
 1.61
 −11.55
 0.61
 1.62
 0.72
Year
 Bilbao RCP 8.5 (no. deaths)
 Bilbao RCP 4.5 (no. deaths)
Mean
 95th
 ES (95%)
 Mean
 95th
 ES (95%)
025
 −0.23
 −0.95
 −1.50
 −0.14
 −0.22
 −0.33

050
 −0.03
 −0.03
 0.32
 −0.12
 0.01
 −0.56

075
 0.09
 −0.39
 −0.45
 −0.10
 0.02
 −0.52

100
 0.13
 −0.31
 −0.30
 −0.04
 0.01
 −0.60
2
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