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Abstract
Aim: Systematic conservation planning is vital for allocating protected areas given 
the spatial distribution of conservation features, such as species. Due to incomplete 
species inventories, species distribution models (SDMs) are often used for predicting 
species’ habitat suitability and species’ probability of occurrence. Currently, SDMs 
mostly ignore spatial dependencies in species and predictor data. Here, we provide a 
comparative evaluation of how accounting for spatial dependencies, that is, autocor‐
relation, affects the delineation of optimized protected areas.
Location: Southeast Australia, Southeast U.S. Continental Shelf, Danube River Basin.
Methods: We employ Bayesian spatially explicit and non‐spatial SDMs for terrestrial, 
marine and freshwater species, using realm‐specific planning unit shapes (grid, hexa‐
gon and subcatchment, respectively). We then apply the software gurobi to optimize 
conservation plans based on species targets derived from spatial and non‐spatial 
SDMs (10%–50% each to analyse sensitivity), and compare the delineation of the 
plans.
Results: Across realms and irrespective of the planning unit shape, spatially explicit 
SDMs (a) produce on average more accurate predictions in terms of AUC, TSS, sensi‐
tivity and specificity, along with a higher species detection probability. All spatial 
optimizations meet the species conservation targets. Spatial conservation plans that 
use predictions from spatially explicit SDMs (b) are spatially substantially different 
compared to those that use non‐spatial SDM predictions, but (c) encompass a similar 
amount of planning units. The overlap in the selection of planning units is smallest for 
conservation plans based on the lowest targets and vice versa.
Main conclusions: Species distribution models are core tools in conservation plan‐
ning. Not surprisingly, accounting for the spatial characteristics in SDMs has drastic 
impacts on the delineation of optimized conservation plans. We therefore encourage 
practitioners to consider spatial dependencies in conservation features to improve 
the spatial representation of future protected areas.
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1  | INTRODUCTION

In the light of the ongoing decline in global biodiversity (Pimm et al., 
2014), the implementation of protected areas in the terrestrial, ma‐
rine and freshwater realms is yet the most widely used conservation 
approach to reduce the loss of biodiversity. Consequently, how to 
delineate protected areas so that they produce optimal outcomes for 
the targeted conservation features in a cost‐effective way has been 
widely covered in the systematic conservation planning literature 
(Barnes, Glew, Wyborn, & Craigie, 2018; Margules & Pressey, 2000). 
In the past, conservation goals mainly reflected habitat or species 
representation. Only recently the focus has shifted towards consid‐
ering environmental and ecological processes, which are essential for 
securing species persistence (e.g., Klein et al., 2009). Such processes 
shape the distribution and abundance of species (Pressey, Cabeza, 
Watts, Cowling, & Wilson, 2007) with connectivity playing a para‐
mount and distinct role in terrestrial (Lockwood, 2010), marine (Carr 
et al., 2003), and freshwater ecosystems (Hermoso, Filipe, Segurado, 
& Beja, 2018). Incorporating spatial connectivity in the planning pro‐
cess has, therefore, important implications for designing protected 
areas (Daigle et al., 2018; van Teeffelen, Cabeza, & Moilanen, 2006; 
Weeks, 2017). This fact is also reflected in the software that is used 
in conservation planning, such as marxan (Ball, Possingham, & Watts, 
2009) or zonation (Lehtomäki & Moilanen, 2013). All of them base, 
among other parameters, the selection of potential planning units on 
algorithms that account for their spatial connectivity.

When accounting for spatial connectivity, conservation plans 
inherently build the protected areas based on the spatial dependen‐
cies in the planning units as well. For example, it is vital to account 
for the spatial structure of the environment around a given planning 
unit for assessing its importance as part of a protected area (Daigle 
et al., 2018; Weeks, 2017). However, this key characteristic of spatial 
dependency is rarely applied in the underlying conservation features 
themselves, which provide the basis for the conservation planning.

The most widely used conservation feature in conservation plan‐
ning is the geographical distribution of multiple species, as species 
distributions are often best known compared to other biodiversity 
facets (such as functional or phylogenetic characteristics of spe‐
cies; McGill, Dornelas, Gotelli, & Magurran, 2015). However, species 
point occurrence data alone are not useful in systematic conserva‐
tion planning, which requires range‐wide and seamless data of the 
targeted conservation features (Tulloch et al., 2016). This is likely 
one of the major challenges for conservation planners—to overcome 
the Wallacean shortfall, that is, to know the full geographical distri‐
bution of species (Bini, Diniz‐Filho, Rangel, Bastos, & Pinto, 2006; 
Meyer, Weigelt, & Kreft, 2016).

Currently, species distribution models (SDMs) are the main tools 
used to produce such range‐wide species distribution data (Guisan & 
Thuiller, 2005). SDMs assess habitat preferences in an environmen‐
tal envelope given the species occurrences and the environmental 
predictors at the respective locations, and project a probabilistic 
habitat suitability index across the study area (Elith & Leathwick, 
2009).

Species distribution models are considered useful in conserva‐
tion planning when used within a “structured and transparent deci‐
sion‐making process” (Guisan et al., 2013). In reality, however, most 
conservation plans are still based on species’ surrogates such as 
habitat maps, expert‐derived species distributions, or connectivity 
surfaces (Tulloch et al., 2016). As reviewed by Tulloch et al. (2016), 
SDMs are not yet widely used in conservation planning because of 
several constraints: (a) poor availability of species occurrence data 
and (b) respective predictor data, (c) uncertainties associated with 
the data and (d) the wish to understand processes rather than pat‐
terns, requiring alternative and additional data. Here, (a–c) are clearly 
methodological issues that need to be assessed with care, while (e) 
goes beyond the expectations towards SDMs, since per definition, 
they do not deliver information on processes. Hence, it is key to dis‐
tinguish between constraints that can be tackled (Dormann, 2007; 
Fourcade, Besnard, & Secondi, 2018; Pearson & Dawson, 2003), 
and those that are beyond the actual purpose of SDMs (Araújo & 
Peterson, 2012).

Species distribution models require rigorous testing for meth‐
odological issues and statistical shortcomings (Record, Fitzpatrick, 
Finley, Veloz, & Ellison, 2013; Tulloch et al., 2016). Given that spatial 
conservation plans incorporate spatial information among planning 
units, it is obvious that SDMs that yield the conservation feature 
data should make use of the same information. However, the few 
studies that modelled and used species distributions for conserva‐
tion planning are typically not accounting for such spatial depen‐
dencies (e.g., in the terrestrial (Rondinini et al., 2011), freshwater 
(Esselman & Allan, 2011) and marine realms (McGowan et al., 2013), 
but see White, Schroeger, Drake, and Edwards (2014)). The disad‐
vantage of such spatially implicit SDMs (hereafter referred to as 
“non‐spatial SDMs”) is that they do not account for spatial depen‐
dence or irregular sampling intensity (e.g., Latimer, Wu, Gelfand, & 
Silander, 2006), and frequently violate the assumption of indepen‐
dent samples and spatial units (Araujo, Pearson, Thuiller, & Erhard, 
2005; Hampe, 2004). Assuming independence of spatial units means 
that the model is not aware of the predicted habitat suitability of a 
given species in neighbouring planning units. In contrast, the opti‐
mization of the spatial conservation plan, that is, the selection of 
planning units, does account for the spatial relation among them, 
favouring neighbouring ones over those that are far apart.

In contrast, spatially explicit SDMs (“spatial SDMs”) account 
for the proximity and mobility (i.e., connectivity) in species popula‐
tions. Hence, they provide more powerful inference about species 
distributions and niche relations (Latimer et al., 2006; De Marco, 
Diniz‐Filho, & Bini, 2008). Incorporating the assumption of spatial 
dependencies in the data has, therefore, the potential to provide 
more robust SDM predictions (Guisan & Thuiller, 2005; Record et al., 
2013). Most importantly from a conservation planning perspective, 
spatial SDMs make use of the spatial information and dependen‐
cies of the species and environment in the planning units. Habitat 
suitability predictions from spatial SDMs are generally more con‐
tiguous (Domisch, Wilson, & Jetz, 2016) and less patchy than those 
derived from non‐spatial SDMs. The question remains, whether such 
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contiguous predictions have the potential to maximize the manage‐
ment efficiency of spatial plans.

Species distribution models can be made spatially explicit in nu‐
merous ways (see Dormann, 2007, for a review of various methods). 
Spatial aspects are included in the SDM given the spatial autocor‐
relation of species distributions (Besag, 1974; Record et al., 2013). 
Spatial autocorrelation is a common phenomenon in ecology, as 
nearby locations (given species occurrences and environmental pre‐
dictors) tend to be more similar compared to those located farther 
apart (Legendre, 1993; Record et al., 2013). One possible method to 
add the spatial dimension in SDMs can be, for instance, through spa‐
tial random effects (Dormann, 2007). Spatial random effects can be 
computationally demanding. However, their use may be warranted—
or even required—when the task is to limit the false positive and false 
negative predictions of probability of occurrence within a spatial unit 
(Record et al., 2013). Limiting false positive/negative predictions is 
crucial in conservation planning, since the over‐ or underestimation 
of suitable habitats (and therefore species occurrences) impacts 

species protection itself and produces unnecessary costs, that is, for 
establishing protected areas in erroneous locations where the target 
species do not actually occur.

Here, we analyse whether accounting for spatial dependencies 
in both steps, the spatial prioritization process and in the underlying 
conservation features (here: species), influences the arrangement of 
potential protected areas. Using species survey data, we build non‐
spatial and spatial SDMs and compare the resulting mapped spatial 
conservation plans across a range of conservation targets, that is, 
proportions of potential species distribution areas. We hypothesize 
that (a) spatial SDMs would outperform non‐spatial SDMs in terms 
of model evaluation scores, since spatial SDMs account for the in‐
fluence of proximity in species populations; (b) this effect cascades 
through to the spatial conservation plans, and that those derived 
from spatial SDMs would differ significantly from the ones based on 
non‐spatial SDMs. We test these hypotheses in three case studies 
covering terrestrial, marine and the freshwater realms. We do so, 
because protected areas in each realm are typically planned using 

F I G U R E  1  Spatial arrangement of 
potential protected areas derived from 
non‐spatial and spatial SDMs, as well as 
their overlap in the terrestrial (a), marine 
(b) and freshwater realms (c), each using 
a specific planning unit shape (grids, 
hexagons, subcatchments). Spatial plans 
were defined for a 20% conservation 
target within a 10% gap to optimality. 
The inset shows the location of the study 
areas in Australia, US East Coast and 
the Danube river basin. See Supporting 
Information Figures S3–S5 for maps 
showing a wider range of conservation 
targets
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different shapes of spatial units (grids, hexagons and subcatchments, 
respectively), and the planning unit shape has shown to impact the 
spatial pattern and effectiveness of protected areas (Nhancale & 
Smith, 2011).

2  | METHODS

2.1 | General workflow of the analysis

Our aim is to test whether, and if so, how the addition of spatial in‐
formation in the SDMs leads to different species habitat suitability 
predictions, and hence to different spatial conservation plans. The 
analysis is divided into five stages: (a) preparing the data and aggre‐
gating it into spatial units; (b) testing the degree of spatial autocor‐
relation in the species data to see whether adding spatial random 
effects in the SDMs is warranted; (c) running two SDMs for each 
species, one that does not use the spatial information (non‐spatial 
SDM) and another one that takes advantages of the spatial informa‐
tion via the spatial random effects (spatial SDM); (d) using the out‐
puts from the spatial and the non‐spatial SDMs as separate inputs 
to calculate spatially optimized conservation plans with varying con‐
servation targets; and, finally, (e) comparing the spatial conservation 
plans derived from the non‐spatial and the spatial SDMs. As the non‐
spatial and spatial SDMs are, except for the spatial random effects, 
identical, this allows us to single out the effect that the spatial infor‐
mation in SDMs has on the subsequent spatial conservation plans.

2.2 | Study areas and species data

The terrestrial case study (Figure 1a) comprised survey data of 33 
Eucalyptus species in Eastern Australia derived from Fithian, Elith, 
Hastie, and Keith (2015). This dataset encompasses species detec‐
tions/non‐detections sampled annually from 1970 to 2013 as well 
as environmental data covering climate and topography and deriva‐
tives thereof (Fithian et al. 2015). Environmental data layers were 
re‐sampled from the original 250‐m spatial resolution by factor 20 to 
obtain a grid with the individual squares sizing 0.05° (approximately 
25 km2), using the raster package in R (Hijmans & van Etten, 2018; 
R‐Core‐Team, 2018). This yielded 7,763 grid cells that were used for 
all subsequent analyses.

The marine case study (Figure 1b) consisted of monitoring data 
of 53 reef fish species in the Southeast U.S. Continental Shelf re‐
gion. Fish detections and non‐detections were derived from the 
Southeast Reef Fish Survey (SERFS) that was conducted annually 
from 1990 to 2013 (Bacheler et al., 2014; SEAMAP‐SA, 2017). 
Environmental data on ocean topography, currents, nutrients and 
light were obtained from the Bio‐Oracle (approx. 9 km spatial 
grain at the Equator, Tyberghein et al., 2012; Assis et al., 2018) 
and MARSPEC datasets (approx. 1 km, Sbrocco & Barber, 2013). 
All environmental data were harmonized to 7,123 hexagonal grids 
of approx. 19 km2, and the species data were summarized for each 
hexagonal grid cell (created using the R‐package sp; Pebesma & 
Bivand, 2005; Bivand, Pebesma, & Gomez‐Rubio, 2013).

The freshwater case study (Figure 1c) was based on detec‐
tion/non‐detection data of 85 fish species across the Danube 
river basin. Fish survey data were derived from the EFI+ and the 
BioFresh project databases, sampled during 1955–2007 (Schinegger, 
Pletterbauer, Melcher, & Schmutz, 2016; Zupancic, 2015). We used 
the HydroBASIN dataset (Lehner & Grill, 2013) and selected all level 
12 subcatchments draining into the Black Sea, comprising of 7,376 
subcatchments with an average size of 108 km2. We then extracted 
climatic (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), topo‐
graphic (Amatulli et al., 2018) and land cover variables (Tuanmu & 
Jetz, 2014, all at ~1 km spatial grain), as well as the number of dams 
(Lehner et al., 2011) for each subcatchment, the latter representing 
a proxy for human impact besides land use.

Species data, including species detections, non‐detections and 
sampling dates, were aggregated to the planning units. Within 
each planning unit, environmental data were aggregated using var‐
ious techniques (e.g., average, standard deviation; see Supporting 
Information Table S1). In the freshwater realm, we summed the 
precipitation across each subcatchment and routed the upstream 
accumulated precipitation along the hydrography to mimic run‐off 
(Domisch, Amatulli, & Jetz, 2015).

From a large set of layers per case study, we selected those that 
are meaningful from an ecological perspective to describe the distri‐
bution of the species. The decision regarding the choice of predic‐
tors was based on a mixture of expert knowledge, data availability 
and on preliminary model runs: For each realm, we did multiple pre‐
liminary model runs where we tested which set of predictors yields 
the highest model evaluation scores. Hence, we aimed to get the 
best‐possible model predictions for each realm. The set of predictors 
among realms is different as each realm needs to take realm‐specific 
characteristics into account. Highly intercorrelated environmental 
predictors were omitted (i.e., where Pearson's correlation tests be‐
tween different predictors yielded a correlation coefficient >0.7 or 
<−0.7) (Dormann et al., 2013, see Supporting Information Figure S1 
for all predictors used). All (continuous) predictors were centred (so 
all predictors have a mean of 0) and scaled by dividing by their stan‐
dard deviations. The final number of predictors was 13, 11 and 8 for 
SDMs in the terrestrial, marine and freshwater realms, respectively.

2.3 | Defining spatial connectivity

Regarding spatial SDMs, the connectivity among planning units for 
the terrestrial and marine realms was computed from a polygon 
shapefile using the R‐package spdep (using the queen's move; Bivand, 
Hauke, & Kossowski, 2013; Bivand & Piras, 2015). This procedure 
identifies all first‐order neighbours of each focal planning unit, that 
is, those planning units that are directly adjacent and connected. 
In the freshwater realm, it is crucial to account for the longitudinal 
connectivity among planning units (Abell, Allan, & Lehner, 2007; 
Hermoso, Linke, Prenda, & Possingham, 2011). Hence, the spatial 
connectivity was defined as all upstream subcatchments connected 
within a 100 km (as‐the‐fish‐swims) distance of a given subcatch‐
ment. This distance was chosen as a trade‐off between hydrological 
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connectivity (which can exceed 100 km) and the computational 
demand and time for calculating SDMs and spatial plans. Note that 
with this information, full connectivity matrices (range‐wide and up/
downstream) are built within SDMs and the spatial prioritization. In 
other words, each planning unit “knows” which planning units are 
connected to it.

2.4 | Detecting spatial autocorrelation

We first assessed the degree of spatial autocorrelation in species 
occurrences among planning units (where occurrences were aggre‐
gated within planning units). Here, we used the Monte Carlo simu‐
lation method and calculated Moran's I and the associated p‐value 
for each species (at α = 0.05), using the R‐package spdep (with 999 
permutations). Spatial weights were kept identical to the connectiv‐
ity definition of planning unit above, specifying proportional weights 
to the connected planning unit (row standardization).

2.5 | Species distribution modelling

We ran Bayesian occupancy models for predicting the habitat suitability 
of species in each realm. Our aim was to minimize the methodological 
shortcomings in SDMs that could be ported to the spatial prioritization. 
Hence, we refrained from artificial pseudo‐absences to draw species 
non‐detections, but used survey data with repeated visits to account 
for the detection probability of species at given sites. Specifically, we 
ran zero‐inflated binomial SDMs in a Bayesian framework using the 
hsdm R‐package (Vieilledent et al., 2014) with “hSDM.ZIB” and “hSDM.
ZIB.iCAR” functions for the non‐spatial and spatial SDMs, respectively. 
These functions integrate two processes, a Bernoulli suitability and a 
Binomial observability process, into a hierarchical zero‐inflated bino‐
mial model. The Bernoulli suitability process uses species point records 
and environmental predictors as the response and explanatory vari‐
ables, respectively (Vieilledent et al., 2014):

where zi is a random variable describing the binary habitat suitabil‐
ity at planning unit i, which follows a Bernoulli distribution of pa‐
rameter θi; that is, the probability that the habitat is suitable in the 
planning uniti. θi is expressed as a linear model combining the matrix 
of environmental predictors Xi and parameters β using a logit link 
function.

In the spatial models, Equation 2 is extended by an intrinsic con‐
ditional autoregressive model (iCAR) in the suitability process:

where ρi is the spatial random effect of the planning uniti. ρi ac‐
counts for the spatial autocorrelation of the presence probabilities 

variability in suitability that is not explained by the environmental 
variables:

where μi is the mean of ρi in the neighbourhood of i, Vρ is the variance 
of the spatial random effects, and ni is the number of neighbours 
for the planning uniti (see also Latimer et al., 2006, for the formal 
description of the iCAR). Thus, we assume that in addition to the 
environmental characteristics within the planning units, the species’ 
occurrence probabilities also depend on the occurrence probabilities 
of the neighbouring planning unit (Vieilledent et al., 2014). A plan‐
ning unit with “poor” environmental conditions next to planning 
units with “good” environmental conditions will result in higher es‐
timated suitability, than if its neighbours also show “poor” environ‐
mental conditions (Domisch et al., 2016).

Regarding the observability process, we counted the number 
of repeat surveys within each planning unit; that is, we aggregated 
the surveys over time, yielding the information on how often each 
planning unit was visited. The model then estimates the probabil‐
ity of observation given the species presence in a planning unit, 
where we assume that, if the species was observed at least once 
during multiple visits in a given planning unit, the habitat is suitable 
and the absence of the species during other visits in the planning 
unit is due to imperfect detection. For instance, a given species 
was observed once in planning units A and B. Planning unit A was 
visited once, yielding a detection probability of 1, whereas B was 
visited 10 times (yielding a detection probability of 1/10 = 0.1). 
In combination with the suitability process (i.e., environmental 
conditions) and the spatial autocorrelation (i.e., the spatial neigh‐
bourhood information), the observability information yields more 
robust estimates in unsampled locations, that is, whether a species 
actually occurs there but was not detected, or if it is actually not 
present (and hence not detected). The probability of observing the 
species (δρ) was specified as:

where yi is a vector of the total number of observed presences in 
planning uniti. zi is the binary habitat suitability in planning uniti from 
the suitability process (Equation 1), and ti denotes the total number 
of visits within the planning uniti, including the non‐detections as 
described above. yi follows a binomial distribution of the combina‐
tion of the habitat suitability zi at planning uniti and the parameters 
δi and ti. In other words, δi is the probability of observing a species in 
a location, if it was actually present. We estimate only the intercept 
(γ0) using a logit link function and assume a spatially constant detec‐
tion probability (due to the relatively small occurrence datasets and 
limited spatial replication needed to understand the role of covari‐
ates in variable detection probabilities).

(1)zi∼Bernoulli(�i)

(2)logit (�i)=Xi�

(3)logit (�i)=Xi�+�i

(4)�i∼Normal(��V�∕ni)

(5)yi∼Binomial(zi×�iti)

(6)logit(�i)= �0
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We ran three Markov chain Monte Carlo (MCMC) simulations 
with 200,000 iterations each, a burn‐in phase of 50,000 iterations 
and a thinning interval of 10. Model convergence was assessed by 
the multivariate potential scale reduction factor (MPSRF; Brooks 
& Gelman, 1998). For the suitability process, we used the coeffi‐
cients from an initial, non‐spatial generalized linear model (GLM) 
as initial values, and both suitability and observability processes 
used uninformative priors centred at zero with a fixed large vari‐
ance of 100 (Domisch et al., 2016). The prior distribution for the 
variance of the spatial random effects followed a uniform distri‐
bution, that is, a flat prior where the upper bound of the variance 
is set to 10.

Species data were split into training (70%) and validation (30%) 
sets, and model performance for each species was evaluated using 
the area under curve (AUC), true skill statistic (TSS), sensitivity and 
specificity (true positive and negative predictions, respectively) and 
the deviance information criterion (DIC). Note that the non‐spatial 
SDMs did not have any pre‐defined spatial configuration during the 
SDM calibration and prediction; that is, each planning unit was con‐
sidered independent of each other in the SDMs, while all other data 
were kept constant (i.e., identical random seed in the SDMs, and 
identical predictors and species data including the subsets for val‐
idation). The spatial prioritization was undertaken using the realm‐
specific spatial connectivity as described above, for predictions 
derived from both non‐spatial and spatial SDMs.

2.6 | Spatial prioritization

We transformed the predictive posterior mean probability maps from 
SDMs into a semi‐binary scheme using TSS as a threshold (Allouche, 
Tsoar, & Kadmon, 2006), where all values below the threshold were 
converted to zero and values above the threshold retained their 
original values. This overcomes the problem of inflating the spatial 
prioritization with many planning units having low probabilities of 
occurrence (e.g., 10 planning units with probabilistic values of 0.1 
would equal one planning unit having a value of 1). Simultaneously, 
this procedure retained the information of varying probabilities of 
occurrence (as recommended by Tulloch et al., 2016) above a cer‐
tain level of confidence as given by TSS (i.e., within the range of the 
predicted “presence” of a species). We refrained from locking‐in 
any current, already established protected areas as this would have 
decreased the flexibility in selecting protected areas given only the 
conservation features, which was the aim of this study.

To create the boundary files (describing the spatial connectivity) 
for the terrestrial and marine case studies, we used the QMarxan 
toolbox in QGIS (QGIS‐Development‐Team, 2017). For the fresh‐
water realm, we applied an inverse‐distance connectivity penalty, 
where subcatchments located closer to a given focal planning unit 
would get a higher penalty if not chosen as part of the protected 
area (opposed to those planning units located more distant, as pro‐
posed by Hermoso et al. 2011).

We first calibrated the boundary length modifier (BLM) for 
our analyses. The BLM is dimensionless and balances the spatial 

aggregation and patchiness of spatial plans. For the BLM cali‐
bration, we used the software marxan v.2.43v (Ball et al., 2009) 
within the R‐package marxan (Hanson & Watts, 2015). We cre‐
ated all necessary input files in base R, except the “input.dat” file, 
where for convenience, we used the marxan R‐package. We then 
calibrated the BLM following the recommendations by Ardron, 
Possingham, and Klein (2008). First, we ran marxan with a fixed 
species penalty factor of 10, and BLM values set to 0, 0.00001, 
0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1,000, 10,000, 100,000 to 
approximate the range of the optimal BLM value. We plotted the 
connectivity against the BLM (Supporting Information Figure S6) 
and identified the elbow, that is, the point from where an increase 
in the compactness (higher BLM values) has no major effect on the 
connectivity in spatial plans anymore. Similarly, we also mapped 
the spatial plans to visually confirm the increasing compactness 
derived from increasing BLM values. In a second step, we repeated 
the previous analyses and maps with setting the BLM ranging 
within the approximate BLM value (e.g., between 10 and 100). 
Again, we ran sensitivity runs within increments of 10 and identi‐
fied the BLM to 35, 20, 0.15 for the terrestrial, marine and fresh‐
water realms, respectively (Supporting Information Figure S6).

We then used the gurobi optimizer 7.5 software (Gurobi 
Optimization, 2017) to find optimal conservation planning solutions 
based on integer linear programming (ILP) within the R‐package pri-
oritizr (Hanson et al., 2017). ILP has shown to out‐compete tradi‐
tional simulated annealing tools (e.g., Marxan, Ball et al., 2009) in 
terms of time and accuracy (Beyer, Dujardin, Watts, & Possingham, 
2016), using the same input files as marxan. We varied the conser‐
vation target for all species in the spatial plans, ranging from 10% to 
50% in 5% increments. For instance, a conservation target of 20% 
means that for each species 20% of its suitable habitat (as given by 
the SDM predictions) are required in this specific spatial plan.

For each run, we allowed a 10% gap to optimality in the spatial 
plans (as trade‐off between optimality, and the time the optimizer 
takes to converge). To rule out the effect of the planning unit itself 
(cost, i.e., area of the planning unit), we set a constant value of 1 as the 
cost of each planning unit. Likewise, we set no weights for single spe‐
cies. This means that only the conservation features, that is, the prob‐
abilistic information on species habitat suitability and the connectivity 
penalty (set by the BLM), were decisive to the objective function that 
was set to minimize the total number of planning units to be part of 
the selected spatial plan (Game & Grantham, 2008). Note that op‐
posed to, for example, marxan, gurobi provides one optimal solution 
and hence requires that all species meet the conservation target.

2.7 | Statistical analyses

For each realm and model type, we compared model accuracy 
given the model evaluation scores, the estimated detection prob‐
ability, the range size estimates of model outputs considering all 
planning units that had a probability value above the threshold 
(equal to binary predictions), and the summed probability of habi‐
tat suitability across all species within each planning unit as a 
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proxy for species richness (Mateo, Felicísimo, Pottier, Guisan, & 
Muñoz, 2012). For each conservation target run (10%–50%) de‐
rived from spatial and non‐spatial SDMs, we (a) assessed whether 
species were covered by the spatial plans, (b) counted the relative 
number of planning units needed to fulfil the given target of the 
spatial plan and (c) compared the spatial overlap of spatial plans 
by assessing the percentage of overlapping spatial units.

3  | RESULTS

3.1 | Spatial autocorrelation

Across the terrestrial, marine and freshwater realms, all but 
three of the 171 modelled species showed a significantly positive 
spatial autocorrelation (α > 0.05 for the freshwater fish species 
White‐eye bream [Ballerus sapa], sunbleak [Leucaspius deline-
ates] and brown trout [Salmo trutta lacustris], see Supporting 
Information Table S2). Species occurrences across planning 
units were hence non‐randomly distributed, warranting the use 
of spatial random effects within SDMs to account for spatial 
autocorrelation.

3.2 | Model performance

The SDM performance indicators AUC, TSS, sensitivity and specific‐
ity were on average consistently higher for the spatial SDMs than for 

the counter‐parts (Figure 2). DIC was on average lower for the spa‐
tial SDMs in the terrestrial and freshwater realm, but higher in the 
marine realm (marine non‐spatial vs. spatial SDMs; DIC: 515 ± 485 
vs. 534 ± 596, mean ± SD). All chains of the SDMs converged suc‐
cessfully yielding a MPSRF value of 0.999. The detection probability 
across realms was on average consistently higher in the spatial than 
in the non‐spatial SDMs (Figure 2f,l,r).

3.3 | Range size estimates

Spatial SDMs yielded generally more compact and less dispersed 
habitat suitability estimates (see exemplary maps in Supporting 
Information Figure S1), and this effect is also mirrored in the range 
size estimates. Range size estimates derived from spatial SDMs were 
significantly lower in the freshwater and terrestrial realms than in 
the non‐spatial models. This means that the predictions derived from 
spatial SDMs were more restrictive and species' suitable habitats 
were predicted to occur in less planning units than in the non‐spa‐
tial SDMs (see exemplary maps in Supporting Information Figure S1; 
non‐spatial vs. spatial SDMs in the terrestrial realm: 1,278 ± 750 vs. 
1,057 ± 690 planning units, paired t‐test: t = 2.95, df = 32, p = 0.006; 
freshwater: 2,874 ± 1,491 and 2,532 ± 1,409 planning units, 
mean ± SD, paired t‐test: t = 2.0493, df = 84, p = 0.044). In the marine 
realm, no significant difference in range size estimates was observed 
(non‐spatial vs. spatial SDMs: 2,698 ± 1,564 and 2,628 ± 1,500 plan‐
ning units, paired t‐test: t = 0.783, df = 52, p = 0.436).

F I G U R E  2  Model evaluation scores representing AUC, TSS, sensitivity, specificity and DIC, as well as the estimated detection probability, 
summarized across 33 terrestrial (a–f), 53 marine (g–l) and 85 freshwater species (m–r) derived from non‐spatial (blue) and spatial SDMs 
(green). Bars represent median values and boxes the 1st and 3rd quartiles, respectively

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)



8  |     DOMISCH et al.

3.4 | Summed probabilities of habitat suitability

Across realms, spatial SDMs produced on average a lower summed 
habitat suitability across planning units (i.e., a proxy for species 
richness), than predicted by non‐spatial SDMs (non‐spatial vs. spa‐
tial SDMs in the terrestrial realm: 3.00 ± 1.28 vs. 2.37 ± 1.00 plan‐
ning units, paired t‐test: t = 61.845, df = 7,762, p < 0.001; marine: 
12.27 ± 3.01 vs. 11.79 ± 2.97 planning units, mean ± SD, paired 
t‐test: t = 28.458, df = 7,122, p < 0.001; freshwater: 21.36 ± 11.91 
vs. 16.50 ± 9.48 planning units, paired t‐test: t = 46.057, df = 7,375, 
p < 0.001). See Supporting Information Figure S2 for a spatial rep‐
resentation of the differences in summed probabilities among non‐
spatial and spatial SDMs.

3.5 | Spatial similarity of spatial plans

All species targets across SDM types and spatial conservation 
plans were met in all spatial prioritization runs (data shown in the 
Pangaea repository). The degree of spatial overlap of potential pro‐
tected areas derived from spatial and non‐spatial SDMs was target‐
dependent. The overlap was lowest for the smallest conservation 
target (10%) with the per cent overlap ranging from 1% to 2%, and 
increased up to a maximum of 30% to 39% for a conservation tar‐
get of 50% (Figure 3a, and Supporting Information Figures S3–S5). 
The number of required planning units increased linearly with in‐
creasing conservation targets: the higher the conservation target, 
the higher the required amount of planning units to meet the given 
target (Figure 3a).

The relative difference in the number of planning units needed 
for a given solution between spatial and non‐spatial SDMs was 
within a margin of 5% (Figure 3b). No significant differences in the 
number of planning units between spatial and non‐spatial models 
across conservation targets could be observed.

4  | DISCUSSION

Incorporating connectivity has been successfully adopted in sys‐
tematic conservation planning for building species migration and 
movement corridors (Margules & Pressey, 2000). Yet, this concept 
has been largely neglected in the underlying conservation features 
(e.g., species) that are used in the spatial planning. Our study pro‐
vides a non‐exhaustive comparison, shedding light on the effects of 
non‐spatial versus spatially explicit conservation features in system‐
atic conservation planning. We show that (a) spatially explicit pre‐
dictions of species’ probabilistic habitat suitability outperform those 
derived from non‐spatial SDMs across the three realms, each with a 
specific landscape configuration and consequently distinct species 
dispersal and connectivity characteristics. Moreover, (b) spatially 
explicit predictions provide lower range size estimates, indicating 
less dispersed habitat suitability predictions. This effect cascades 
into the conservation planning as (c) the spatial arrangement of spa‐
tial conservation plans differs fundamentally between those derived 
from non‐spatial and spatial model predictions. Simultaneously, (d) 
both spatial and non‐spatial approaches require a similar number of 
planning units for delineating potential protected areas.

Spatial SDMs yielded habitat suitability predictions that were 
on average more accurate given their better model performance 
(Figure 2), than those derived from non‐spatial SDMs. This pattern 
is in line with previous findings from Record et al. (2013) due to three 
well‐known factors (reviewed by Dormann, 2007): (a) distance‐related 
dispersal or species interactions, (b) non‐linear species–environment 
relationships and (c) spatially structured environmental predictors 
causing spatial structuring in the response, that is, the modelled spe‐
cies’ habitat suitability (Besag, 1974). In addition, Crase, Liedloff, Vesk, 
Fukuda, and Wintle (2014) showed that if such induced spatial auto‐
correlation in species distributions is not accounted for, model predic‐
tions are likely to remain inaccurate. Contrary to Thibaud, Petitpierre, 

F I G U R E  3   (a) Spatial overlap in potential protected areas based on spatial and non‐spatial SDMs, along a conservation target of 10%–
50% in the terrestrial, marine and freshwater realm. Please see Supporting Information Figures S3–S5 for the mapped spatial plans of each 
conservation target. (b) Relative number of planning units required for reaching the solution in spatial plans for the different realms with 
conservation targets ranging from 10%–50% in the terrestrial, marine and freshwater realms. Points and triangles along solid and dotted 
lines represent spatial plans derived from non‐spatial and spatial SDMs, respectively
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Broennimann, Davison, and Guisan (2014), who found that spatial 
autocorrelation itself has only a minor relative effect on model pre‐
diction accuracy (compared to the choice of predictors, sample sizes, 
sampling designs and modelling technique), our analyses reveal that 
accounting for spatial autocorrelation leads to a substantial improve‐
ment of model outputs (given that all other data were kept constant). 
This effect cascades into the resulting spatial plans: Those derived 
from spatial SDM predictions are likely to provide a better representa‐
tion of areas needed to potentially protect, than spatial conservation 
plans derived from non‐spatial SDM predictions. In addition, spatial 
SDMs yielded, on average, a slightly higher detection probability and 
thus reduced the potential false absences caused by the imperfect 
detection of species (MacKenzie et al., 2017). Reducing the risk of 
overlooking species is therefore crucial for an effective conservation 
planning (Petitot, Manceau, Geniez, & Besnard, 2014).

We found only a minor overlap of potential protected areas based 
on spatial and non‐spatial SDMs for the commonly applied conservation 
targets of 10%–20% (e.g., the global target of 17% set by the Convention 
on Biological Diversity, CBD, 2010; Veach, Minin, Pouzols, & Moilanen, 
2017). Interestingly, spatial plans, regardless of the modelling approach, 
required a similar amount of planning units. On average, spatial SDMs 
predicted a lower range size per species and, therefore, a lower number 
of species predicted to have a suitable habitat per planning unit. Hence, 
spatial plans using predictions from spatial SDMs require—relatively 
speaking—more planning units (e.g., assuming that non‐spatial and spa‐
tial SDMs would predict a suitable habitat of a species into 100 and 90 
planning units, respectively, the spatial plans should cover theoretically 
20 and 18 planning units given a target of 20%). This is likely to derive 
due to the, on average, lower summed probability of suitable habitats 
per planning unit in spatial SDM predictions (i.e., species richness sensu 
Mateo et al., 2012). Consequently, the optimizer (gurobi, in our case) 
had to choose from a smaller pool of available planning units. Hence, 
the optimizer is forced to seek additional planning units that lead to a 
remarkably different spatial arrangement of spatial conservation plans 
(Figures 1 and 3a). While we did not explicitly test for differences among 
realms, this pattern was similar across different landscape configura‐
tions and planning unit shapes. Broadening the perspective, non‐spatial 
SDMs tend to create artificial species “hot spots” by predicting a higher 
species richness per planning unit, and the derived spatial plans would 
take advantage of the umbrella effect, that is, where the conservation 
of a species confers protection to a larger number of co‐occurring spe‐
cies (Roberge & Angelstam, 2004). In our study, however, this pattern 
does not depict the best‐possible outcome given the lower model eval‐
uation scores. In turn, spatially explicit SDMs have the potential, though 
not reducing the quantity of protected areas, to increase their quality 
(Barnes et al., 2018).

We acknowledge that a 10% gap to optimality, as we used it here, 
can introduce noise in the spatial arrangement of potential protected 
areas (e.g., Figure 3a). Even with this noise, however, differences in 
spatial plans were distinct in our study. While a more stringent gap 
(e.g., 0.5%, Beyer et al., 2016) could yield more accurate spatial plans, 
we intended to balance uncertainties in the spatial plans with those 
most probably apparent in the underlying data (note that due to 

computational reasons, we only extracted the mean posterior prob‐
ability of SDMs). In other words, species and environmental data, as 
well as the aggregation of data into planning units, potentially lead 
to a certain level of uncertainty in the habitat suitability predictions 
in our study (Beale & Lennon, 2012). Hence, spatial plans should be 
given flexibility to accommodate such uncertainties in terms of the 
selection of spatial units during the spatial prioritization.

We singled out the effect of spatial autocorrelation in conserva‐
tion features to explore the effect of the connectivity among planning 
units on the subsequent spatial conservation planning. We encourage 
future studies to further explore these effects using “real‐world” ex‐
ercises, where the current and already established protected areas 
could be locked‐in during the spatial prioritization along with various 
costs for the planning units. This would decrease the flexibility in the 
selection of protected areas, and given the low overlap between non‐
spatial and spatial conservation features, the impact on the outcome 
remains to be seen. Similarly, the degree of fragmentation (Cabeza, 
2003) and the minimum patch size depend on the available area and 
financial resources (as a large amount of small patches are more ex‐
pensive to manage (Smith, Minin, Linke, Segan, & Possingham, 2010)). 
Likewise, the implementation of various cost measures, such as area, 
land price or human influence, could be added in the analyses—a topic 
that was however beyond the scope of our study. Hence, testing spa‐
tial plans and with these additions and interactions has the potential 
to further reveal differences stemming from non‐spatial and spatially 
explicit modelled conservation features. In our study, the species 
data were contingent on publicly available survey data across the 
three realms, and hence, the species can be considered generalist 
species. Rare species are considered particularly important for spa‐
tial planning; however, such data were not publicly available for our 
study. It remains therefore to be seen whether SDMs of rare species 
would yield similar differences in spatial plans as shown in our study.

We note that by accounting for species’ observability by employ‐
ing a hierarchical SDM, we aimed to limit the shortcomings of SDMs 
that else do not account for the fact that species might be over‐
looked during the sampling. Regarding the addition of the spatial 
information in SDMs, we want to highlight that instead of running hi‐
erarchical Bayesian models, other SDM techniques could be equally 
used, such as Generalized Linear Mixed Models using spatial random 
effects, or other SDMs algorithms that use spatial eigenvectors as a 
covariate containing information about the spatial structure in the 
study area (see Dormann, 2007, for a review on various methods).

5  | CONCLUSIONS

Employing SDMs that account for spatial dependencies in conserva‐
tion features provide a promising way forward to increase the quality 
of protected areas, however without increasing the area (and possibly 
costs) needed. They yield fundamentally different spatial conserva‐
tion plans given more accurate species habitat suitability predictions, 
compared to SDMs that ignore such spatial dependencies. This high‐
lights the importance of using best‐possible modelling practices sensu 
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Dormann (2007) and Guisan et al. (2013), which is needed for a wider 
acceptance of SDMs in systematic conservation planning (Tulloch et al., 
2016). Hence, we encourage modellers and practitioners to carefully 
assess the possibilities in adding spatial SDMs to their systematic con‐
servation planning to derive sufficient options for choosing the optimal 
spatial arrangement of protected areas.

ACKNOWLEDGEMENTS

We wish to thank the following data providers for making their data 
available: the Flora Survey Module of the Atlas of NSW Wildlife by the 
Office of Environment and Heritage (OEH), the Southeast Reef Fish 
Survey (SERFS) comprising data from the Marine Resources Monitoring 
Assessment and Prediction program (MARMAP), the Southeast Area 
Monitoring and Assessment Program, the South Atlantic (SEAMAP‐SA) 
and the Southeast Fisheries Independent Survey (SEFIS), as well as the 
EFI+ and BioFresh consortia. This study was funded by the European 
Union’s Horizon 2020 research and innovation programme under grant 
agreement No. 642317. SDL has received funding from the European 
Union’s Horizon 2020 research and innovation programme under the 
Marie Skłodowska‐Curie grant agreement No. 748625, and SCJ from 
the German Federal Ministry of Education and Research (BMBF) for 
the “GLANCE” project (Global Change Effects in River Ecosystems; 01 
LN1320A). We wish to thank Gwen Iacona and two anonymous referees 
for their constructive comments on an earlier version of the manuscript.

CONFLICT OF INTEREST

The authors declare no competing financial interests.

DATA ACCESSIBILITY

All results supporting the study are available at https://doi.pangaea.
de/10.1594/PANGAEA.889033 (all model predictions, model evalu‐
ation scores and spatial conservation plans) for each realm. All en‐
vironmental data used for modelling are available in the following 
repositories for download: www.worldclim.org, www.earthenv.org, 
http://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01, 
www.bio-oracle.org, www.marspec.org, and Supporting Information 
of Fithian et al. (2015). Species data are available for download in 
the following repositories: Supporting Information of Fithian et al. 
(2015), http://sero.nmfs.noaa.gov/sustainable_fisheries/caribbean/
fish_indep_wkshp/surveys/sefis/, and www.freshwaterplatform.eu.

ORCID

Sami Domisch   https://orcid.org/0000-0002-8127-9335 

Martin Friedrichs   https://orcid.org/0000-0003-0644-7869 

Thomas Hein   https://orcid.org/0000-0002-7767-4607 

Florian Borgwardt   https://orcid.org/0000-0002-8974-7834 

Sonja C. Jähnig   https://orcid.org/0000-0002-6349-9561 

Simone D. Langhans   https://orcid.org/0000-0001-9581-3183  

REFERENCES

Abell, R., Allan, J. D., & Lehner, B. (2007). Unlocking the potential of pro‐
tected areas for freshwaters. Biological Conservation, 134, 48–63. 
https://doi.org/10.1016/j.biocon.2006.08.017

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy 
of species distribution models: Prevalence, kappa and the true skill 
statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.
org/10.1111/j.1365-2664.2006.01214.x

Amatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, A., 
Malczyk, J., & Jetz, W. (2018). A suite of global, cross‐scale topo‐
graphic variables for environmental and biodiversity modeling. 
Scientific Data, 5, 180040. https://doi.org/10.1038/sdata.2018.40

Araujo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). 
Validation of species–climate impact models under climate 
change. Global Change Biology, 11, 1504–1513. https://doi.
org/10.1111/j.1365-2486.2005.01000.x

Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of biocli‐
matic envelope modeling. Ecology, 93, 1527–1539. https://doi.
org/10.1890/11-1930.1

Ardron, J. A., Possingham, H. P., & Klein, C. J. (2008). Marxan good prac-
tices handbook. Vancouver, BC: Pacific Marine Analysis and Research 
Association.

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., & De 
Clerck, O. (2018). Bio‐ORACLE v2. 0: Extending marine data layers 
for bioclimatic modelling. Global Ecology and Biogeography, 27, 277–
284. https://doi.org/10.1111/geb.12693

Bacheler, N. M., Berrane, D. J., Mitchell, W. A., Schobernd, C. M., 
Schobernd, Z. H., Teer, B. Z., & Ballenger, J. C. (2014). Environmental 
conditions and habitat characteristics influence trap and video de‐
tection probabilities for reef fish species. Marine Ecology Progress 
Series, 517, 1–14. https://doi.org/10.3354/meps11094

Ball, I. R., Possingham, H. P., & Watts, M. (2009). Marxan and relatives: 
Software for spatial conservation prioritisation. In A. Moilanen, K. A. 
Wilson & H. P. Possingham (Eds.), Spatial conservation prioritisation: 
Quantitative methods and computational tools (pp. 185–195). Oxford: 
Oxford University Press.

Barnes, M., Glew, L., Wyborn, C., & Craigie, I. D. (2018). Prevent 
perverse outcomes from global protected area policy. Nature 
Ecology and Evolution, 2, 759–762. https://doi.org/10.1038/
s41559-018-0501-y

Beale, C. M., & Lennon, J. J. (2012). Incorporating uncertainty in pre‐
dictive species distribution modelling.  Philosophical Transactions of 
the Royal Society of London. Series B, Biological Sciences, 367, 247–258. 
https://doi.org/10.1098/rstb.2011.0178

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice 
systems. Journal of the Royal Statistical Society, 36, 192–236. https://
doi.org/10.1111/j.2517-6161.1974.tb00999.x

Beyer, H. L., Dujardin, Y., Watts, M. E., & Possingham, H. P. (2016). 
Solving conservation planning problems with integer linear program‐
ming. Ecological Modelling, 328, 14–22. https://doi.org/10.1016/j.
ecolmodel.2016.02.005

Bini, L. M., Diniz‐Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P., & 
Pinto, M. P. (2006). Challenging wallacean and linnean shortfalls: 
Knowledge gradients and conservation planning in a biodiver‐
sity hotspot. Diversity and Distributions, 12, 475–482. https://doi.
org/10.1111/j.1366-9516.2006.00286.x

Bivand, R., Hauke, J., & Kossowski, T. (2013). Computing the jacobian in 
gaussian spatial autoregressive models: An illustrated comparison of 
available methods. Geographical Analysis, 45, 150–179.

Bivand, R. S., Pebesma, E., & Gomez‐Rubio, V. (2013). Applied spatial data 
analysis with R (2nd ed.). New York, NY: Springer.

Bivand, R., & Piras, G. (2015). Comparing implementations of estimation 
methods for spatial econometrics. Journal of the American Statistical 
Association, 63, 1–36. https://doi.org/10.18637/jss.v063.i18

https://doi.pangaea.de/10.1594/PANGAEA.889033
https://doi.pangaea.de/10.1594/PANGAEA.889033
http://www.worldclim.org
http://www.earthenv.org
http://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01
http://www.bio-oracle.org
http://www.marspec.org
http://sero.nmfs.noaa.gov/sustainable_fisheries/caribbean/fish_indep_wkshp/surveys/sefis/
http://sero.nmfs.noaa.gov/sustainable_fisheries/caribbean/fish_indep_wkshp/surveys/sefis/
http://www.freshwaterplatform.eu
https://orcid.org/0000-0002-8127-9335
https://orcid.org/0000-0002-8127-9335
https://orcid.org/0000-0003-0644-7869
https://orcid.org/0000-0003-0644-7869
https://orcid.org/0000-0002-7767-4607
https://orcid.org/0000-0002-7767-4607
https://orcid.org/0000-0002-8974-7834
https://orcid.org/0000-0002-8974-7834
https://orcid.org/0000-0002-6349-9561
https://orcid.org/0000-0002-6349-9561
https://orcid.org/0000-0001-9581-3183
https://orcid.org/0000-0001-9581-3183
https://doi.org/10.1016/j.biocon.2006.08.017
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1890/11-1930.1
https://doi.org/10.1890/11-1930.1
https://doi.org/10.1111/geb.12693
https://doi.org/10.3354/meps11094
https://doi.org/10.1038/s41559-018-0501-y
https://doi.org/10.1038/s41559-018-0501-y
https://doi.org/10.1098/rstb.2011.0178
https://doi.org/10.1111/j.2517-6161.1974.tb00999.x
https://doi.org/10.1111/j.2517-6161.1974.tb00999.x
https://doi.org/10.1016/j.ecolmodel.2016.02.005
https://doi.org/10.1016/j.ecolmodel.2016.02.005
https://doi.org/10.1111/j.1366-9516.2006.00286.x
https://doi.org/10.1111/j.1366-9516.2006.00286.x
https://doi.org/10.18637/jss.v063.i18


     |  11DOMISCH et al.

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring 
convergence of iterative simulations. Journal of Computational and 
Graphical Statistics, 7, 434–455.

Cabeza, M. (2003). Habitat loss and connectivity of reserve networks 
in probability approaches to reserve design. Ecology Letters, 6, 665–
672. https://doi.org/10.1046/j.1461-0248.2003.00475.x

Carr, M. H., Neigel, J. E., Estes, J. A., Andelman, S., Warner, R. 
R., & Largier, J. L. (2003). Comparing marine and terres‐
trial ecosystems: Implications for the design of coastal ma‐
rine reserves. Ecological Applications, 13, S90–S107. https://doi.
org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2

CBD (2010). Report of the tenth meeting of the conference of the parties 
to the convention on biological diversity. In: The tenth meeting of the 
Conference of the Parties to the Convention on Biological Diversity, 
Nagoya, Japan, NEP/CBD/COP/10/27. Retrieved from https://www.
cbd.int/cop10/doc.

Crase, B., Liedloff, A., Vesk, P. A., Fukuda, Y., & Wintle, B. A. (2014). 
Incorporating spatial autocorrelation into species distribution mod‐
els alters forecasts of climate‐mediated range shifts. Global Change 
Biology, 20, 2566–2579. https://doi.org/10.1111/gcb.12598

Daigle, R. M., Metaxas, A., Balbar, A., McGowan, J., Treml, E. A., Kuempel, 
C. D., … Beger, M. (2018). Operationalizing ecological connectivity in 
spatial conservation planning with Marxan Connect. Biorxiv. https://
doi.org/10.1101/315424

De Marco, P., Diniz‐Filho, J. A. F., & Bini, L. M. (2008). Spatial analysis 
improves species distribution modelling during range expansion. 
Biology Letters, 4, 577–580. https://doi.org/10.1098/rsbl.2008.0210

Domisch, S., Amatulli, G., & Jetz, W. (2015). Near‐global freshwater‐spe‐
cific environmental variables for biodiversity analyses in 1 km reso‐
lution. Scientific Data, 2, 150073.

Domisch, S., Wilson, A. M., & Jetz, W. (2016). Model‐based integration of 
observed and expertbased information for assessing the geographic 
and environmental distribution of freshwater species. Ecography, 39, 
1078–1088. https://doi.org/10.1111/ecog.01925

Dormann, C. F. (2007). Effects of incorporating spatial autocorrelation into 
the analysis of species distribution data. Global Ecology and Biogeography, 
16, 129–138. https://doi.org/10.1111/j.1466-8238.2006.00279.x

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … 
Leitão, P. J., (2013). Collinearity: A review of methods to deal with it 
and a simulation study evaluating their performance. Ecography, 36, 
27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review 
of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.
org/10.1146/annurev.ecolsys.110308.120159

Esselman, P. C., & Allan, J. (2011). Application of species distribution mod‐
els and conservation planning software to the design of a reserve net‐
work for the riverine fishes of northeastern Mesoamerica. Freshwater 
Biology, 56, 71–88. https://doi.org/10.1111/j.1365-2427.2010.02417.x

Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction 
in species distribution models: Pooling survey and collection data 
for multiple species. Methods in Ecology and Evolution, 6, 424–438. 
https://doi.org/10.1111/2041-210X.12242

Fourcade, Y., Besnard, A. G., & Secondi, J. (2018). Paintings predict the 
distribution of species, or the challenge of selecting environmental 
predictors and evaluation statistics. Global Ecology and Biogeography, 
27, 245–256. https://doi.org/10.1111/geb.12684

Game, E., & Grantham, H. (2008). Marxan user manual: For Marxan version 
1.8.10. St. Lucia, Qld, Australia, Vancouver, BC, Canada: University of 
Queensland, Pacific Marine Analysis and Research Association.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering 
more than simple habitat models. Ecology Letters, 8, 993–1009. 
https://doi.org/10.1111/j.1461-0248.2005.00792.x

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, 
P. R., Tulloch, A. I., … Buckley, Y. M. (2013). Predicting species 

distributions for conservation decisions. Ecology Letters, 16, 1424–
1435. https://doi.org/10.1111/ele.12189

Gurobi Optimization, I. (2017). Gurobi optimizer reference manual. 
Retrieved from http://www.gurobi.com.

Hampe, A. (2004). Bioclimate envelope models: What they detect and 
what they hide. Global Ecology and Biogeography, 13, 469–471. 
https://doi.org/10.1111/j.1466-822X.2004.00090.x

Hanson, J., & Watts, M. (2015). Marxan: decision support tools for reserve 
selection in R using Marxan. R package version 1.0. 1.

Hanson, J., Schuster, R., Morrell, N., Strimas‐Mackey, M., Watts, M., 
Arcese, P., …Possingham, H. P. (2017). prioritizr: Systematic conser‐
vation prioritization in R. R package version 3.0.1.1.

Hermoso, V., Filipe, A. F., Segurado, P., & Beja, P. (2018). Freshwater con‐
servation in a fragmented world: Dealing with barriers in a system‐
atic planning framework. Aquatic Conservation: Marine and Freshwater 
Ecosystems, 28, 17–25. https://doi.org/10.1002/aqc.2826

Hermoso, V., Linke, S., Prenda, J., & Possingham, H. (2011). Addressing 
longitudinal connectivity in the systematic conservation plan‐
ning of fresh waters. Freshwater Biology, 56, 57–70. https://doi.
org/10.1111/j.1365-2427.2009.02390.x

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). 
Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology, 25, 1965–1978. https://
doi.org/10.1002/joc.1276

Hijmans, R. J., & van Etten, J. (2018). raster: Geographic data analysis and 
modeling. R package version, 2.

Klein, C., Wilson, K., Watts, M., Stein, J., Berry, S., Carwardine, J., … 
Possingham, H. (2009). Incorporating ecological and evolutionary 
processes into continental scale conservation planning. Ecological 
Applications, 19, 206–217. https://doi.org/10.1890/07-1684.1

Latimer, A. M., Wu, S., Gelfand, A. E., & Silander, J. A. (2006). Building 
statistical models to analyze species distributions. Ecological 
Applications, 16, 33–50. https://doi.org/10.1890/04-0609

Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? 
Ecology, 74, 1659–1673.

Lehner, B., & Grill, G. (2013). Global river hydrography and network rout‐
ing: Baseline data and new approaches to study the world’s large 
river systems. Hydrological Processes, 27, 2171–2186.

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, 
P., … Wisser, D. (2011). High‐resolution mapping of the world’s reservoirs 
and dams for sustainable river‐flow management. Frontiers in Ecology 
and the Environment, 9, 494–502. https://doi.org/10.1890/100125

Lehtomäki, J., & Moilanen, A. (2013). Methods and workflow for spatial 
conservation prioritization using Zonation. Environmental Modelling and 
Software, 47, 128–137. https://doi.org/10.1016/j.envsoft.2013.05.001

Lockwood, M. (2010). Good governance for terrestrial protected areas: 
A framework, principles and performance outcomes. Journal of 
Environmental Management, 91, 754–766. https://doi.org/10.1016/j.
jenvman.2009.10.005

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & 
Hines, J. E. (2017). Occupancy estimation and modeling: Inferring pat-
terns and dynamics of species occurrence. Academic Press: Elsevier.

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation plan‐
ning. Nature, 405, 243–253. https://doi.org/10.1038/35012251

Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A., & Muñoz, J. (2012). 
Do stacked species distribution models reflect altitudinal diversity 
patterns? PLoS ONE, 7, e32586.

McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen 
forms of biodiversity trend in the anthropocene. Trends in Ecology and 
Evolution, 30, 104–113. https://doi.org/10.1016/j.tree.2014.11.006

McGowan, J., Hines, E., Elliott, M., Howar, J., Dransfield, A., Nur, N., 
& Jahncke, J. (2013). Using seabird habitat modeling to inform 
marine spatial planning in central California’s National Marine 
Sanctuaries. PLoS ONE, 8, e71406. https://doi.org/10.1371/jour‐
nal.pone.0071406

https://doi.org/10.1046/j.1461-0248.2003.00475.x
https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2
https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2
https://www.cbd.int/cop10/doc
https://www.cbd.int/cop10/doc
https://doi.org/10.1111/gcb.12598
https://doi.org/10.1101/315424
https://doi.org/10.1101/315424
https://doi.org/10.1098/rsbl.2008.0210
https://doi.org/10.1111/ecog.01925
https://doi.org/10.1111/j.1466-8238.2006.00279.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1365-2427.2010.02417.x
https://doi.org/10.1111/2041-210X.12242
https://doi.org/10.1111/geb.12684
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/ele.12189
http://www.gurobi.com
https://doi.org/10.1111/j.1466-822X.2004.00090.x
https://doi.org/10.1002/aqc.2826
https://doi.org/10.1111/j.1365-2427.2009.02390.x
https://doi.org/10.1111/j.1365-2427.2009.02390.x
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.1890/07-1684.1
https://doi.org/10.1890/04-0609
https://doi.org/10.1890/100125
https://doi.org/10.1016/j.envsoft.2013.05.001
https://doi.org/10.1016/j.jenvman.2009.10.005
https://doi.org/10.1016/j.jenvman.2009.10.005
https://doi.org/10.1038/35012251
https://doi.org/10.1016/j.tree.2014.11.006
https://doi.org/10.1371/journal.pone.0071406
https://doi.org/10.1371/journal.pone.0071406


12  |     DOMISCH et al.

Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps 
and uncertainties in global plant occurrence information. Ecology 
Letters, 19, 992–1006. https://doi.org/10.1111/ele.12624

Nhancale, B. A., & Smith, R. J. (2011). The influence of planning unit char‐
acteristics on the efficiency and spatial pattern of systematic con‐
servation planning assessments. Biodiversity and Conservation, 20, 
1821–1835. https://doi.org/10.1007/s10531-011-0063-7

Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate 
change on the distribution of species: Are bioclimate envelope mod‐
els useful? Global Ecology and Biogeography, 12, 361–371.

Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial 
data in R. R News, 5, 9–13.

Petitot, M., Manceau, N., Geniez, P., & Besnard, A. (2014). Optimizing 
occupancy surveys by maximizing detection probability: Application 
to amphibian monitoring in the mediterranean region. Ecology and 
Evolution, 4, 3538–3549. https://doi.org/10.1002/ece3.1207

Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., 
Joppa, L. N., … Sexton, J. O. (2014). The biodiversity of species and 
their rates of extinction, distribution, and protection. Science, 344, 
1246752. https://doi.org/10.1126/science.1246752

Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., & Wilson, K. 
A. (2007). Conservation planning in a changing world. Trends in 
Ecology and Evolution, 22, 583–592. https://doi.org/10.1016/j.
tree.2007.10.001

QGIS‐Development‐Team. (2017). QGIS Geographic Information System.
Open Source Geospatial Foundation Project. Retrieved fromhttps://
www.qgis.org.

R‐Core‐Team. (2018). R: A language and environment for statistical comput-
ing. Vienna, Austria: R Foundation for Statistical Computing.

Record, S., Fitzpatrick, M. C., Finley, A. O., Veloz, S., & Ellison, A. M. 
(2013). Should species distribution models account for spatial auto‐
correlation? A test of model projections across eight millennia of cli‐
mate change. Global Ecology and Biogeography, 22, 760–771. https://
doi.org/10.1111/geb.12017

Roberge, J. M., & Angelstam, P. (2004). Usefulness of the umbrella spe‐
cies concept as a conservation tool. Conservation Biology, 18, 76–85. 
https://doi.org/10.1111/j.1523-1739.2004.00450.x

Rondinini, C., Di Marco, M., Chiozza, F., Santulli, G., Baisero, D., Visconti, 
P., … Boitani, L. (2011). Global habitat suitability models of terres‐
trial mammals. Philosophical Transactions of the Royal Society of 
London. Series B, Biological Sciences, 366, 2633–2641. https://doi.
org/10.1098/rstb.2011.0113

Sbrocco, E. J., & Barber, P. H. (2013). Marspec: Ocean climate lay‐
ers for marine spatial ecology. Ecology, 94, 979–979. https://doi.
org/10.1890/12-1358.1

Schinegger, R., Pletterbauer, F., Melcher, A., & Schmutz, S. (2016). 
Metadata describing the European Fish Index Plus (EFI+) database. 
Freshwater Metadata Journal, 17, 1–12. https://doi.org/10.15504/
fmj.2016.17

SEAMAP‐SA. (2017). SEAMAP‐SA Data Management Work Group. 
SEAMAP‐SA online database. Retrieved from http://www.dnr.
sc.gov/SEAMAP/data.html.

Smith, R. J., Di Minin, E., Linke, S., Segan, D. B., & Possingham, H. P. (2010). 
An approach for ensuring minimum protected area size in system‐
atic conservation planning. Biological Conservation, 143, 2525–2531. 
https://doi.org/10.1016/j.biocon.2010.06.019

Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C., & Guisan, 
A. (2014). Measuring the relative effect of factors affecting species 
distribution model predictions. Methods in Ecology and Evolution, 5, 
947–955. https://doi.org/10.1111/2041-210X.12203

Tuanmu, M. N., & Jetz, W. (2014). A global 1‐km consensus land‐cover 
product for biodiversity and ecosystem modelling. Global Ecology and 
Biogeography, 23, 1031–1045. https://doi.org/10.1111/geb.12182

Tulloch, A. I., Sutcliffe, P., Naujokaitis‐Lewis, I., Tingley, R., Brotons, L., 
Ferraz, K. M. P., … Rhodes, J. R. (2016). Conservation planners tend to 

ignore improved accuracy of modelled species distributions to focus 
on multiple threats and ecological processes. Biological Conservation, 
199, 157–171. https://doi.org/10.1016/j.biocon.2016.04.023

Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., & De 
Clerck, O. (2012). Bio‐oracle: A global environmental dataset for ma‐
rine species distribution modelling. Global Ecology and Biogeography, 
21, 272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x

van Teeffelen, A. J., Cabeza, M., & Moilanen, A. (2006). Connectivity, 
probabilities and persistence: Comparing reserve selection strat‐
egies. Biodiversity & Conservation, 15, 899–919. https://doi.
org/10.1007/s10531-004-2933-8

Veach, V., Di Minin, E., Pouzols, F. M., & Moilanen, A. (2017). Species 
richness as criterion for global conservation area placement leads to 
large losses in coverage of biodiversity. Diversity and Distributions, 23, 
715–726. https://doi.org/10.1111/ddi.12571

Vieilledent, G., Latimer, A., Gelfand, A., Merow, C., Wilson, A., Mortier, 
F., & Silander, J. Jr (2014). hsdm: Hierarchical bayesian species distri‐
bution models. R package version, 1.

Weeks, R. (2017). Incorporating seascape connectivity in conservation 
prioritisation. PLoS ONE, 12, e0182396. https://doi.org/10.1371/
journal.pone.0182396

White, J. W., Schroeger, J., Drake, P. T., & Edwards, C. A. (2014). The 
value of larval connectivity information in the static optimization of 
marine reserve design. Conservation Letters, 7, 533–544. https://doi.
org/10.1111/conl.12097

Zupancic, P. (2015). BioFresh (data publisher) and Primoz Zupancic (data 
provider). Distribution data of Western Balkan freshwater fish mo‐
bilised through BioFresh. Retrieved from http://data.freshwaterbio‐
diversity.eu.

BIOSKETCH

Sami Domisch is an aquatic ecologist who is interested in fresh‐
water biodiversity and biogeography. His research is based on 
spatial freshwater biodiversity science and biodiversity informat‐
ics, and how these tools can be further developed to yield robust 
estimates regarding freshwater biodiversity and conservation 
planning. The authors consist of a multidisciplinary team with a 
wide range of research interests, such as freshwater biodiversity, 
spatial modelling, river restoration, floodplain ecology and sys‐
tematic conservation planning.

Author contributions: SD, MF, SCJ and SDL designed the study; 
SD performed the modelling and spatial prioritization; and SD, 
MF and SDL analysed output data. TH, FP and AW collected and 
prepared data. SD, MF and SDL wrote the first draft of the manu‐
script, and all authors contributed substantially to revisions.

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Domisch S, Friedrichs M, Hein T, et 
al. Spatially explicit species distribution models: A missed 
opportunity in conservation planning? Divers Distrib. 
2019;00:1–12. https://doi.org/10.1111/ddi.12891

https://doi.org/10.1111/ele.12624
https://doi.org/10.1007/s10531-011-0063-7
https://doi.org/10.1002/ece3.1207
https://doi.org/10.1126/science.1246752
https://doi.org/10.1016/j.tree.2007.10.001
https://doi.org/10.1016/j.tree.2007.10.001
https://www.qgis.org
https://www.qgis.org
https://doi.org/10.1111/geb.12017
https://doi.org/10.1111/geb.12017
https://doi.org/10.1111/j.1523-1739.2004.00450.x
https://doi.org/10.1098/rstb.2011.0113
https://doi.org/10.1098/rstb.2011.0113
https://doi.org/10.1890/12-1358.1
https://doi.org/10.1890/12-1358.1
https://doi.org/10.15504/fmj.2016.17
https://doi.org/10.15504/fmj.2016.17
http://www.dnr.sc.gov/SEAMAP/data.html
http://www.dnr.sc.gov/SEAMAP/data.html
https://doi.org/10.1016/j.biocon.2010.06.019
https://doi.org/10.1111/2041-210X.12203
https://doi.org/10.1111/geb.12182
https://doi.org/10.1016/j.biocon.2016.04.023
https://doi.org/10.1111/j.1466-8238.2011.00656.x
https://doi.org/10.1007/s10531-004-2933-8
https://doi.org/10.1007/s10531-004-2933-8
https://doi.org/10.1111/ddi.12571
https://doi.org/10.1371/journal.pone.0182396
https://doi.org/10.1371/journal.pone.0182396
https://doi.org/10.1111/conl.12097
https://doi.org/10.1111/conl.12097
http://data.freshwaterbiodiversity.eu
http://data.freshwaterbiodiversity.eu
https://doi.org/10.1111/ddi.12891

