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One by one 

Only the good die young 

They're only flyin' too close to the sun 
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Abstract 

 

Biomarkers constitute all those molecules and substances that are able to measure and 

describe any change in a biological system. Because of this property, they have been 

adopted as disease diagnostic and surveillance tools. The number of studies involving 

new biomarker discoveries has tremendously increased since the development and 

globalization of high-throughput technologies, such as the omics ones, either performed 

alone or in combination. The success of these kinds of studies, though, is far from 

efficient, as much of these newly described biomarker candidates fail in the validation 

process, being this success ratio calculated to be about 0.1% of proposed biomarkers to 

end up on clinical standardized practice. 

Diseases are considered to be multifactorial, with several combinations of 

environmental and genomics factors defining a specific phenotype. Omics technologies 

allow the measurement of thousands of features simultaneously, providing this way 

with a tool to characterize diseases with great detail. Single omics studies, though, are 

limited to correlations between one data type, while multi-omics studies may explain 

interactions between different data types, leading to better-characterized phenotype. 

Multi-omics integrative studies are still being implemented and, therefore, methods for 

integration are being developed and discussed. Current methods include dimension 

reduction analysis and correlation-based methods. Among the widely used omics 

technologies are genomics, metagenomics, transcriptomics, proteomics and 

metabolomics analyses. This latter technology is based on the study of small molecules, 

usually of less than 2,000 Da in size, which are part of all the metabolic pathways. They 

vary rapidly in front of an environmental change, making them very good candidates for 

biomarkers. On the other hand, metagenomics studies the structure, composition and 

metabolic capabilities of the genetic components of a specific community. By 

metagenomics, we usually refer to microbiome studies, usually restricted to bacterial 

population, either performed by WGS or 16S gene sequencing. 

In this thesis, we combined distinct omics data and biochemical analysis to try to identify 

new biomarkers in three diseases with elevated socio-economical impact: prostate 

cancer, colorectal cancer and fibromyalgia. On one hand, we combined metabolomics 

and transcriptomics for PCa early diagnosis biomarkers identification. In the case of CRC 

we have combined metabolomics, microbiome and transcriptomics for detection of 

early biomarkers. Later on, metabolomics, microbiome, cytokines and miRNA profiling 

for fibromyalgia characterization and diagnostic biomarkers. Finally, focusing on the 

metabolomics, we developed a tool to facilitate the functional characterization of 

metabolites identified as potential biomarkers by automatic data retrieval from the 

most used metabolomics databases. 
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As result, urine EVs metabolomics analysis revealed higher EVs and different metabolite 

content in PCa patients when compared to BPH. The combination of metabolomics with 

publicly available transcriptomics datasets allowed us to provide a functional 

explanation for the alterations identified. Metabolomics revealed increased levels of 

sterols and acylcarnitines in PCa patients, while PC family metabolites were decreased. 

Functional profiling of these alterations mapped metabolite alterations to steroid 

hormones and cellular energy pathways. Transcriptomics analysis of enzymes related to 

our altered metabolites showed high concordance with our results, thus providing with 

a biological context of the described changes and with robustness for our biomarkers, 

as we used different cohorts for both analyses. 

Also, the bioinformatics analysis, in this case of fecal microbiome dataset revealed a 

reduction of diversity in fibromyalgia patients when compared to healthy individuals. In 

this case, the functional interpretation by using specific software identify a reduction of 

bacteria related to neurotransmitter metabolism, which was afterwards confirmed by 

qPCR analyses. These alterations were concordant with serum metabolomics analysis, 

which found increased levels of neurotransmitters in patients’ blood. Several 

correlations were found between metabolomics and microbiome datasets, thus 

confirming the hypothesis of gut microbiota role on the host’s metabolome and health. 

While microbiome and microbiome ability to discriminate between fibromyalgia 

patients and healthy individuals was not very good, the combination of both the four 

distinct data types improved the discrimination ability. 

For the colorectal cancer study, the fecal metabolomics provided with 18 differentially 

abundant metabolites between healthy individuals and patients, mostly from 

ceramides, cholesteryl esters and sphingomyelins metabolite families. A combination of 

seven of those metabolites was used as a predictive model for the disease, validated 

later with another cohort. Microbiome study of the CRC patients presented an increased 

abundance of Fusobacterium, Bulleidia, Parvimonas, Staphylococcus and Gemella. 

Lachnospiraceae family bacteria were found to be decreased for CRC individuals. 

Adlercreutzia was found to be increased only in AD patients. The integration of both 

datasets revealed correlation clusters between altered bacteria and altered metabolite 

families in CRC patients. The Procrustes analysis revealed similarities between 

microbiome and metabolomics data, confirming the role of the intestinal microbiome 

population modulating the fecal metabolomics. Finally, gut microbiota was found to be 

a better choice to differentiate CRC patients from other sample groups, while 

metabolomics seemed to discriminate better between healthy individuals and AD 

patients. The regression model combining both data types performed slightly better 

than models generated with only one omics data type. 

Our work explores the use of multi-omics integration studies to improve the biomarker 

discovery process, providing options to ensure the robustness of biomarker candidates. 

We tried to tackle each common challenge multi-omics studies have been discussed to 

present, trying to solve them in various ways. Finally, we proposed a list of 

considerations to be followed to ensure good performance of these kinds of projects. 
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Resumen 

Los biomarcadores son todas esas moléculas y sustancias que pueden usarse para medir 

y describir cualquier alteración en un sistema biológico. Son muy sensibles a cualquier 

cambio que se produzca en el sistema biológico en el que se miden, presentado las 

correspondientes modificaciones de forma casi inmediata. De ahí deriva su utilidad 

como herramientas para el diagnóstico y control de cualquier sistema. Actualmente, los 

biomarcadores se clasifican en tres categorías en función de su utilidad: biomarcadores 

predictivos, biomarcadores pronósticos y biomarcadores diagnósticos. Con el desarrollo 

y globalización de los estudios high-throughput, como es el caso de las tecnologías 

ómicas, el número de estudios relacionados con la búsqueda de nuevos biomarcadores 

se ha incrementado notablemente. Este incremento se ha dado principalmente en 

estudios de una sola ómica, aunque recientemente se han empezado a popularizar 

también los estudios de combinación de distintas ómicas. Desafortunadamente, el éxito 

de este tipo de estudios dista mucho de ser óptimo, puesto que la mayor parte de los 

nuevos candidatos a biomarcadores no superan el proceso de validación. Existen 

distintas razones por las que estos biomarcadores pueden no validarse. La no 

recolección de datos clínicos y ambientales de calidad, por ejemplo, pueden influir en 

este proceso, al no poderse discriminar si las diferencias en estos biomarcadores se 

deben a factores externos o a la propia patología de estudio. La falta de estandarización 

de los protocolos experimentales durante el procesado de las muestras como de los 

métodos de análisis bioinformáticos y estadísticos tiene un impacto directo en la 

reproducibilidad y validación de cualquier biomarcador. 

Hoy en día sabemos que la mayor parte de las enfermedades son multifactoriales, cuyo 

fenotipo depende de una combinación de factores genómicos y ambientales. Las 

tecnologías ómicas permiten medir miles de variables simultáneamente, siendo así muy 

útiles para describir cualquier enfermedad. Aun así, los estudios basados en una sola 

ómica están limitados a las correlaciones que se puedan establecer en el tipo de datos 

correspondiente mientras que los estudios que combinan distintas ómicas permiten 

identificar y explicar interacciones entre distintos tipos de datos (moléculas) 

permitiendo así una mejor caracterización de un fenotipo concreto. Los estudios 

combinatorios de ómicas están aún en desarrollo, por lo que los métodos analíticos 

correspondientes están también en desarrollo y en constante discusión. Actualmente, 

los métodos usados para estos estudios incluyen los análisis de reducción de 

dimensionalidad de datos y métodos basados en correlaciones.  

Entre las tecnologías ómicas más usadas encontramos la genómica, transcriptómica, 

proteómica, metabolómica y metagenómica. La metabolómica se basa en el estudio de 

las moléculas pequeñas (<2.000 Da) que forman parte de los miles de rutas metabólicas 

del organismo. Varían muy rápidamente delante de cualquier cambio ambiental, siendo 

así una muy buena fuente para la búsqueda de biomarcadores. La metagenómica es el 

estudio de la estructura, composición y funcionalidad metabólica de los genes de una 
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comunidad específica. Habitualmente nos referimos a los estudios de microbioma, 

generalmente restringidos a la población bacteriana, ya sean realizados mediante 

secuenciación completa del genoma o solo del gen ribosomal 16S. Cada una de estas 

dos opciones tienes sus ventajas y sus inconvenientes. Así como la secuenciación del gen 

16S proporciona datos puramente taxonómicos, los estudios de WGS nos permiten 

identificar genes individuales, permitiendo así la caracterización funcional de la 

población microbiana. Aun así, el manejo de datos resultantes de la secuenciación del 

gen 16S es más sencilla y la resolución taxonómica buena. Además, resulta una 

tecnología más barata que el WGS y actualmente ya existen herramientas 

bioinformáticas que nos permiten reconstruir el genoma completa y hacer una 

aproximación de estudio funcional a partir de estos datos de 16S. 

Los estudios de combinación de distintas ómicas son bastante recientes, por lo que 

metodológicamente aún existen muchas lagunas al respecto. De hecho, en este tipo de 

estudios se unen los problemas propios de cada ómica que se incluya en el análisis y los 

problemas derivados de la integración entre ellas. Uno de los inconvenientes más 

relevantes es el formato de datos en los que cada ómica trabaja, que puede dificultar la 

integración. Para integrar datos provenientes de distintas ómicas, el primer paso es 

normalizar adecuadamente cada tipo de datos. Luego podremos aplicar la técnica que 

consideremos más apropiada, ya sea de reducción de dimensionalidad o basada en 

correlaciones entre variables. Las técnicas de reducción de dimensionalidad incluyen los 

análisis de componentes principales, ya sean no supervisadas o supervisadas, los 

estudios de Procrustes y los análisis de co-inercia. Este tipo de aproximación nos permite 

comparar la similitud entre dos o más ómicas distintas, aunque dificulta la identificación 

de biomarcadores derivados de estos estudios. Para facilitar la identificación y 

caracterización funcional de estos biomarcadores podemos usar las técnicas basadas en 

correlaciones, que van a identificar que variables de cada ómica están más relacionadas 

con las variables de otra ómica. 

En esta tesis hemos combinado diferentes ómicas para intentar identificar nuevos 

biomarcadores en tres enfermedades distintas: cáncer de próstata, cáncer colorrectal y 

fibromialgia. Tanto hemos combinado nuestros propios datos con los datos de acceso 

libre que se pueden descargar de las bases de datos correspondientes. Para la 

identificación de nuevos biomarcadores tempranos para cáncer de próstata (PCa) 

combinamos datos de metabolómica y transcriptómica; para cáncer colorrectal (CRC) 

hemos combinado metabolómica, microbioma y transcriptómica; y finalmente 

combinamos metabolómica, microbioma, peptidómica y un cribado de citoquinas y 

microRNAs para la identificación de biomarcadores para la caracterización y diagnóstico 

de la fibromialgia. Centrándonos en la metabolómica, hemos desarrollado una 

herramienta para facilitar la caracterización funcional de los metabolitos identificados 

como potenciales biomarcadores a partir de la automatización del proceso de selección 

de información de las bases de datos de metabolómica más comunes. 

El PCa es uno de los tipos de cáncer con mayor mortalidad en hombres de los países 

desarrollados, pero a día de hoy no existen herramientas diagnósticas útiles en los 
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primeros estadíos de la enfermedad. En este contexto, la metabolómica de las vesículas 

extracelulares (EV) presentes en la orina podría proveer con biomarcadores capaces de 

discriminar pacientes con hiperplasia benigna (BPH) de los pacientes con PCa. El uso de 

EVs de orina puede aliviar las dificultades derivadas del uso de muestras de  orina, siendo 

así una mejor fuente de potenciales biomarcadores. El estudio de la metabolómica de 

las EVs de orina identificó EVs de mayor tamaño y con un contenido de metabolitos 

distinto en los pacientes de PCa en comparación de los pacientes de BPH. En este 

contexto, vimos que el tamaño medio de las poblaciones de EVs era similar a medida 

que la enfermedad progresaba, pero que en estadíos avanzados aparecía también una 

subpoblación de EVs de mayor tamaño. La combinación de nuestra metabolómica con 

los datos de acceso abierto de transcriptómica nos permitió darle una explicación 

funcional a las alteraciones observadas. La metabolómica identificó niveles elevados de 

esteroles y acilcarnitinas en los pacientes de PCa, mientras que los metabolitos de la 

familia de las PC estaban reducidos en estos pacientes. La caracterización funcional de 

las alteraciones observadas mapeó esos metabolitos a rutas relacionadas con las 

hormonas esteroides y de obtención de energía. Los EVs de los estadíos avanzados de 

PCa mostraron además niveles elevados de ceramidas y fosfolípidos, comparado con el 

primer estadío de PCa. Finalmente, entre los pacientes de los primeros estadíos que 

presentaban invasión perineural identificamos mayores niveles de esteroles, mientras 

que también se observó una reducción de AMP cíclico, comparados con los pacientes 

sin invasión perineural. Los análisis de transcriptómica para las enzimas relacionadas con 

los metabolitos alterados concordaban con nuestros resultados a la vez que daban un 

contexto biológico a los cambios descritos. Además, al usar distintas cohortes, la 

transcriptómica dio robustez a nuestro biomarcadores. 

La fibromialgia es una enfermedad de etiopatología desconocida, caracterizada 

principalmente por un dolor crónico inespecífico. No existe un criterio diagnostico 

objetivo, siendo el actual basado en una exploración clínica y un formulario que incluye 

una serie de potenciales síntomas asociados. Aun así, se considera que está 

estrechamente relacionada con el sistema nervioso central (CNS). En este contexto, 

nuestra hipótesis de trabajo se basa en el conocido como eje intestino-cerebro, por el 

cual el microbioma intestinal se comunica con el huésped y regula aspectos físicos y 

psicológicos del mismo. El análisis del microbioma fecal de los pacientes de fibromialgia 

mostró una reducción de la diversidad bacteriana en los pacientes y, específicamente, 

en las bacterias relacionadas con el metabolismo de neurotransmisores, como pudimos 

validar por qPCR. Estas alteraciones concordaban con los estudios de metabolómica en 

suero, que identificaron niveles más elevados de neurotransmisores en la sangre de los 

pacientes de fibromialgia. También identificamos varias correlaciones entre el 

microbioma fecal y el metaboloma del suero, confirmando así el papel del microbioma 

en el metaboloma y la salud del huésped. El estudio de las citoquinas y miRNAs identificó 

algunas alteraciones en diez citoquinas en sangre, mientras que solo un miRNA se 

encontró estar alterado. Mientras que la capacidad para diferenciar entre pacientes de 

fibromialgia e individuos sanos de los datos de metabolómica y microbioma por si solos 

era limitado, la combinación de las 4 ómicas mejoró notablemente esta capacidad 
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predictiva. Además, la combinación de la metabolómica, miRNAs y citoquinas identificó 

alteraciones en rutas metabólicas relacionadas con ciertos neurotransmisores como el 

glutamato y el óxido nítrico (NO) que concordaban además con las alteraciones 

propuestas a partir del estudio del microbioma.  

La relación entre el microbioma y el CRC se ha discutido que sea muy estrecha, llegando 

a proponer un rol para el microbioma por el cual este es responsable de la acumulación 

de mutaciones en oncogenes, influyendo así en la aparición y desarrollo del CRC, en la 

hipótesis llamada driver-passenger bacteria. Además, hay que tener en cuenta el papel 

del microbioma modulando el metaboloma de las heces, puesto que para este proyecto 

usamos muestras de heces para identificar biomarcadores. Combinando metabolómica 

y microbioma en muestras de heces, intentamos identificar biomarcadores tempranos 

útiles para diferenciar entre tres grupos de muestras: controles sanos, pacientes con 

adenoma y pacientes con CRC. Las muestras analizadas las distribuimos en 3 lotes de 

muestras, usando los dos primeros para generar un modelo diagnostico con los datos 

de metabolómica y el tercero para validar el modelo. Para el estudio de microbioma no 

establecimos ninguna organización particular de las muestras y se trabajó con todas 

ellas. El estudio de metabolómica identificó 18 metabolitos con diferente abundancia 

entre los individuos sanos y los pacientes, mayormente ceramidas, ésteres de colesterol 

y esfingomielinas. Una combinación de 7 metabolitos se usó para generar un modelo 

predictivo para la enfermedad, que se pudo validar en otra cohorte. Para el estudio del 

microbioma, combinamos distintas herramientas de análisis, para intentar identificar el 

máximo número posible de potenciales biomarcadores. El estudio del microbioma para 

todas las muestras no pudo identificar ninguna diferencia entre los individuos sanos y 

los diagnosticados con adenoma. Sin embargo, los pacientes con CRC presentaban una 

mayor abundancia de Fusobacterium, Bulleidia, Parvimonas, Staphylococcus y Gemella. 

La familia de bacterias Lachnospiraceae se encontró reducida en los pacientes de CRC. 

Finalmente, vimos que el género Adlercreutzia presentaba mayor abundancia solo para 

los pacientes de AD. A nivel funcional, se identificaron también alteraciones en la 

capacidad metabólica de las comunidades microbianas de los pacientes de CRC, con 

mayor representación de rutas relacionadas con la methanogenesis o la degradación de 

nitratos, por ejemplo. La integración de los dos tipos de datos mostró grupos de 

correlaciones entre las bacterias y los metabolitos alterados en los pacientes de CRC. 

Los análisis de Procrustes identificaron similitudes entre los datos de microbioma y los 

de metabolómica, confirmando así el papel de la población del microbioma intestinal 

modulando el metaboloma fecal. Finalmente, vimos que el microbioma intestinal era la 

mejor opción para diferenciar los pacientes de CRC del resto de grupos incluidos en el 

estudio, mientras que los datos de metabolómica funcionaron mejor para discriminar 

entre los individuos sanos y los pacientes de AD. El modelo de regresión generado con 

la combinación de los dos tipos de datos tuvo una mayor capacidad predictiva que los 

modelos generados con solo un tipo de ómicas. 

Más allá de los tres casos prácticos expuestos y los respectivos biomarcadores 

identificados, durante el desarrollo de esta tesis también hemos ahondado en aspectos 
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experimentales y estructurales del microbioma y hemos desarrollado una serie de 

scripts bioinformáticos destinados a facilitar la tarea de descripción, contextualización y 

caracterización de los metabolitos como biomarcadores. En este sentido, analizamos la 

especificidad y las diferencias a nivel composicional del microbioma usando distintos 

sets de primers, cada uno dirigido a regiones hipervariables distintas del gen ribosomal 

16S. Aun obteniendo un perfil composicional distinto, con especificidad por distintos 

tipos de bacteria para cada set de primers, los análisis comparativos revelaron que 

ambas aproximaciones proporcionaban un perfil de distribución y diferenciación entre 

muestras prácticamente idéntico. También analizamos las potenciales diferencias entre 

distintas poblaciones microbianas dependiendo de la región corporal muestreada. 

Como se ha descrito previamente, identificamos una composición completamente 

distinta en función de la región corporal analizada, posiblemente relacionada con los 

distintos requerimientos funcionales y metabólicos de cada región. 

Respecto a la herramienta bioinformática desarrollada, durante el desarrollo de esta 

tesis nos encontramos con la necesidad de caracterizar funcionalmente los distintos 

metabolitos que hemos identificado como biomarcadores de alguna de las 

enfermedades estudiadas. Así, decidimos desarrollar una herramienta que nos 

permitiese extraer información y caracterizar así los diferentes metabolitos 

identificados de forma relativamente sencilla y pudiendo trabajar en bloque. Además, 

decidimos incluir y combinar las dos bases de datos más usadas en el campo, KEGG y 

HMDB. También quisimos aportar un extra de funcionalidad facilitando la tarea 

posterior de discusión de resultados y validación experimental de las alteraciones 

identificadas añadiendo funcionalidades como la búsqueda automática en OMIM, 

Pubmed, etc. de las enzimas relacionadas con los metabolitos correspondientes. Para 

facilitar la distribución de la herramienta, decidimos adaptarla a dos de los lenguajes de 

programación más comunes, R y Python. 

Nuestro trabajo explora el uso de los estudios de integración de las tecnologías ómicas 

para mejorar el proceso de identificación de nuevos biomarcadores, aportando 

opciones para mejorar la robustez de los candidatos a biomarcador identificados. 

Mediante la combinación de los tres casos prácticos, hemos intentado afrontar los 

problemas más habituales de este tipo de estudios combinatorios de distintas formas. 

Finalmente, hemos propuesto una lista de consideraciones que pueden servir para 

mejorar el rendimiento de este tipo de proyectos. 
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The Force will be with you. Always. 

A New Hope, 1977. 
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1.1.-Biomarkers 

The definition of biomarker was proposed by the World Health Organization (WHO) Task 

Group on Biomarkers and Risk Assessment: Concepts and Principles in a report from 

1989, which summarized a series of meetings dedicated to discussing this term [1]. They 

adopted the term biomarker to describe the “(…) chemicals, metabolites of chemicals, 

enzymes and other biochemical substances (…) to document the interaction of 

chemicals with biological systems”. Although the WHO group were the ones to define 

what a biomarker was, they were not the first to use the term, as they mention. 

Technically, the first proposition of a biomarker definition appeared in a US National 

Academy of Sciences report [2] and in another paper [3]. Notably, in both cases, the 

term was referred to and proposed in terms of toxicology studies. Combining the three 

reports, biomarkers were defined within a broad sense, in order to include any 

measurement that could reflect an interaction between biological systems and potential 

hazards, which were defined to include either chemical, physical or biological. The use 

of biomarkers in research has grown exponentially with the development of new high 

throughput technologies that allow the measurement of a multitude of variables 

simultaneously such the omics technologies [4]. Behind this growth, there is the need to 

have direct measurement of potential disease causes and affections, free from recall 

bias and capable to provide with a biological framework too [5].  Biomarkers have been 

identified in a range of human tissues and fluids, including blood, brain, cerebrospinal 

fluid (CSF), urine, feces…  

An ideal biomedical diagnostics biomarker should comply with the maximum possible 

number of the following criteria: 

a) It should be present in a minimally invasive source. 

b) It should be as much sensitive as possible, in order to be useful for early diagnosis 

and also be specific, to avoid the potential confounding factors caused by 

external factors. 

c) It should vary fast in response to any change in its biological context, like the 

disease progression and/or treatment. 

d) It should provide a better understanding of the disease’s mechanisms, provided 

that it should be relevant in a biological framework. 

e) It should be useful in risk stratification and prognosis. 

Biomarkers can be classified into three categories, depending on their usage: predictive, 

prognostic and diagnostic biomarkers. Predictive biomarkers are used to study 

responses to therapeutic interventions, such as cancer treatments. Prognostic 

biomarkers are used to identify the risk of disease progression and/or recurrence, such 

could be genetic markers for hereditary diseases. Finally, diagnostic biomarkers are 

those used to identify which patients have a specific disease  [5, 6]. Is in this last class of 

biomarkers that we will focus on the work generated in this thesis dissertation.  

When defining a new biomarker, several issues may arise that can complicate the path 

from the biomarker discovery to its implementation into clinical practice. This has 
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become especially true with the development of high-throughput omics technologies, 

which has supposed an increase in the number of potential biomarkers proposed that 

had failed to be validated and reproduced [7–9]. Nonetheless, it has been calculated 

that only 0.1% of potential biomarkers have been later implemented in clinical practice 

[10]. To put this into context, between only 2008 and 2009, the NIH funded with 2.5 

billion dollars grants related to biomarker discovery [11]. This lack of success in 

biomarker discovery studies may be reduced by taking some actions during the 

discovery process. Indeed, biomarker discovery studies usually involve the following 

steps: initial discovery in basic studies, validation of potential biomarkers and final 

clinical implementation.  

Usually, biomarkers are discovered and firstly validated in the same study. Thanks to 

technological developments in omics analyses, thousands of molecules can be measured 

without previous assumptions, so that hypotheses on biomarkers may be generated 

after the data analysis, in a data-driven fashion [12]. The cohort generation is an 

important step and careful planning and clear inclusion and exclusion criteria are 

needed to avoid potential confounding effects. Either the study is a cohort or a case-

control one, metadata is important to correlate potential findings to any external factor 

that may explain them, such as sex, age, diet, lifestyle, etc. [13]. In case-control studies, 

matching the potential confounding factors between the cases and the controls will 

reduce their impact upon the final dataset. To do the validation, ideally, an independent 

cohort should be used, although is common to use cross-validation methodologies in 

the same set of patients from the discovery phase [14]. Finally, a detailed report on 

technical, methodological and bioinformatics protocols is required to ensure 

reproducibility of the results. This requires also the release of patients’ data that may be 

legally protected, so that it may be difficult depending on the legislation. 

Once the cohort is correctly established, the diagnostic biomarker performance is 

needed to be computed. For this assessment, the number of correctly identified cases 

and controls is computed, so that we finally have a recount of true positives and true 

negatives, as summarized in Table 1. 

Table 1: Typical structure of the results summary for a predictive biomarker model. 

 Cohort 

Biomarker result Control Case 

Positive False-positive True positive 

Negative True negative False-negative 
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From the table generated, we can calculate the three factors used to characterize the 

performance of the potential biomarker: sensitivity, specificity and accuracy. Sensitivity 

is defined by the percentage of correctly identified case-patients, while specificity is the 

percentage of correctly identified control individuals. Accuracy is the percentage of 

correctly identified individuals, either cases or controls. Finally, the difference between 

the true positive predictions and the false positives is known as the positive predictive 

value (PPV), while the difference between true and false-negative predictions is the 

negative predictive value (NPV). Sensitivity and specificity can be used to construct a 

receiver operating characteristic (ROC) curve (FIGURE 1) [15], a plot that depicts the 

performance of the biomarker, plotting in the X axis the false positive fraction (1-

specificity) and in the Y axis the true positive fraction (sensitivity). Once the ROC curve 

is plotted, the predictive capability of the biomarker may be assessed by computing the 

Area Under the Curve (AUC) value. A non-informative biomarker will have an AUC value 

of ≤0.5, while values over 0.5 will represent a predictive biomarker. 

 

1.1.1.-Extracellular Vesicles 

One of the most important criteria is the accessibility of the potential biomarkers. This 

criterion is met by the liquid biopsies, which consist of the analysis of non-solid tissues, 

such as blood and urine [16]. Liquid biopsies are generally focused on the analysis of 

circulating tumor cells, free circulant DNA, a set of RNA molecules and extracellular 

vesicles (EVs) [17].  

EVs are microvesicles released by nearly all types of cells which mediate in cell-to-cell 

communication and signaling [18, 19] (FIGURE 2). EVs contain nucleic acids, proteins and 

lipids, encapsulating them into a lipid bilayer membrane [19] that protects them from 

degradation in environments such as blood [20]. While no common protein to all EVs 

families have been identified, they are commonly enriched in tetraspanins (CD9, CD63, 

Figure 1: Typical ROC curve, with False 

Positive Rate (1-specificity) in the horizontal 
axis and True Positive Rate (sensitivity) in 
vertical one. 
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CD81), major histocompatibility complex (MHC) and other cytosolic proteins, like heat-

shock proteins (HSPs) [21]. Relevantly, all these proteins derive from cytoskeleton, 

cytosol and/or plasma membrane, while no proteins coming from Golgi, endoplasmic 

reticulum or nucleus have been identified in EVs [22] (FIGURE 2). It has been reported 

also that tumor cells secrete more EVs that healthy cells [23]. Thus, they represent a 

valuable source for biomarker discovery process by the analysis of their contents. 

 

Figure 2: Biogenesis and release of EVs, adapted from [19, 24]. Proposed mechanism of biogenesis by 

invagination of plasma membrane and release of microvesicles and exosomes (A). Types of EVs depending 
on the origin and physicochemical characteristics of them, including exosomes, microvesicles, apoptotic 
bodies and outer membrane vesicles (OMVs) (B). Transference of proteins and RNA between cells mediated 
by EVs. RNA is internalized in the EVs, while proteins can be membrane associated (triangles) or 
transmembrane proteins (rectangles) (C). 
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1.2.-Data analysis for multi-omics 

Multi-omics approach to unravel biomarkers and mechanisms underlying diseases 

started with the genomics in early 90´s, due to technical development that allowed cost-

effective high-throughput analyses to exist. This allowed researchers to map diseases to 

an enormous number of genetic variants, hence suggesting that, for the majority of 

diseases, genetics only explained a fraction of their pathology. This fact supposed for 

the scientific community to assume that diseases, even those clearly regulated by 

genetic factors, were also dependent upon environmental factors too, something that 

was not possible to study with genomics, highlighting the requirement of a systemic 

approach that could integrate multiple factors among genetics. Nowadays, it is assumed 

that the majority of diseases that affect adults are multifactorial and their phenotype 

depends on a combination of both genetic and environmental factors [25–27]. This led 

to the development of new omics technologies and the respective analyses techniques 

that can provide a holistic understanding of cells and organisms and the progression to 

disease [28–30]. Technological advances that resulted in a reduction of the cost of omics 

technologies have also impacted on the advance and acceptance of these multi-omics 

studies among the scientific community [31–34].  

Each omics technique will provide a list of differential features between two 

populations, depending on the kind of measurement performed. Nowadays, the most 

common omics technologies are genomics, epigenomics, transcriptomics, proteomics 

and metabolomics. Microbiome analysis has been recently also included in this family, 

although it supposes the study of multiple organisms and can be coupled to the other 

omics, generating metagenomics, metatranscriptomics, etc. fields. Thus, genomics 

provides with genetic variants, epigenomics provides with epigenome changes, 

proteomics with protein alterations, etc. All this data, either taken alone or combined, 

will provide a list of potential biomarkers that can be used both as diagnostics tool and 

to provide with a biological context, by mapping them into metabolic pathways. This 

functional characterization of biomarkers can also aid in the therapy designing, targeting 

the efforts against the identified altered pathways. One omics analysis is limited to 

correlations with a specific variable of the population, thus reflecting mainly reactive 

processes instead of causational ones. The combination of multiple omics, however, 

allows the identification of potential alterations that can lead to disease progression, 

causative alterations, instead of only reactive ones [35].   

Omics technologies can be ordered in a fashion such that they reflect their proximity to 

the final phenotype, by plotting the importance of genetics vs the importance of the 

environment, as seen in FIGURE 3.  
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The integration of distinct omics techniques allows us to understand the flow of 

information, either starting from genetic alterations to the final phenotype (genome 

first approach) or by starting from the phenotype and trying to reveal which biological 

alterations may explain it (phenotype first approach). The decision on which of these 

two options should be followed for a multi-omics study will depend highly on the 

characteristics of the disease studied. Simple diseases may be explained by one or a 

small subset of gene mutations while more complex ones are usually defined by a 

combination of factors. Moreover, the phenotype of complex diseases may be the same 

even when the factors involved are distinct. Thus, the requirement of a multi-omics 

approach becomes evident in order to be able to elucidate the full complex combination 

of factors that leads to a specific disease phenotype. 

1.2.1.- Omics challenges 

The challenge with multi-omics studies starts with the special characteristics of omics 

data itself. Each omics technique will generate, by default, extremely large, highly 

variable and noisy datasets [36]. These large datasets are complex and full of redundant 

non-informative data. Therefore, it may be tricky to assess their relevance and quality. 

Figure 3: Organization of omics technologies depending on the impact of each factor. Genome is only 

represented to be affected by genetics, while the other omics technologies are affected by both, genetics 

and environment. Arrows represent the potential interactions between different omics features. Circles 

represent the molecules identified per omics layer, being those colored potential altered ones. 
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The solution to this issue will mostly depend on the omics data type and the research 

community developed standards. Also, because of these specific-omics features, a 

proper multi-omics study will require the collaboration of multiple researchers, each 

one specialized in one of the omics involved in the study, in order to ensure that the 

appropriate standards for each omics measurement and analysis are followed.  

Once each omics issues have been resolved, challenges on how to integrate different 

omics technologies arise. The above discussed fact of the generated datasets complexity 

implies that most omics will generate qualitative data, instead of a quantitative one. 

Qualitative data is, by default, hard to reproduce and nearly impossible to compare. 

Consequently, if only qualitative data is available its integration is hard, when impossible 

if data is coming from different sources [37–39]. While most of the omics technologies 

tend to provide qualitative data, this can be solved by the use of standardized operating 

protocols (SOP) and reference standards that would help in making these studies 

reproducible. If all these controls are applied and quantitative data is obtained, multi-

omics can be performed and even comparisons between distinct laboratories. 

Because of the high variability obtained in these high-throughput analyses, metadata 

collection is also one of the important aspects to consider. The elevated number of 

variables measured in omics studies makes it feasible that some of them may be affected 

by environmental factors that need to be controlled and removed [40]. Recurrently, a 

lot of time and money is invested in collecting molecular data, while no time is destined 

to metadata collection. This lack of metadata will drastically reduce the quality of the 

collected molecular omics data, making it non-reproducible and confounding the 

potential results and biological observations. Hence, it becomes clear the importance of 

getting data as well annotated as possible, although lack of quality metadata can be 

overcome by increasing notably the sample number included in the study, which will 

also increase its cost [41]. 

Collecting data issues have been discussed already, but a research project does not end 

there. When analyzing the data generated, other issues will arise. The bioinformatics 

community is enormous and tends to produce an important number of tools too, each 

one suited for a specific requirement. Thus, the catalog of tools and software dedicated 

to multi-omics data integration enormous. Knowing each one of them is just impossible 

and researchers usually just use what they know how to use or what is in fashion in a 

specific moment. This could be partially solved with the use of a centralized tool 

repository that lists all these tools, such as Bioconductor, CRAN R packages repository or 

OMICtools [42]. Benchmarking studies are also a useful tool to help researchers not only 

to discover new tools but to make better choices in analytical tools selection too. 

Benchmarking studies use gold-standard data sets to test a set of algorithms and tools 

in order to identify which are the best ones, by measuring distinct metrics, usually 

related to the tool performance [43]. This overcrowded tools market for distinct omics 

technologies analyses contributes to worsen the election of gold standards. One of the 

most critical for omics analysis is, in fact, the lack of a gold standard, either for data 

nomenclature, processing, and analysis. 
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At this point, it is also important to consider the usability of the distinct tools. Programs 

are just a compendium of code lines, which bioinformaticians usually understand and 

know how to use. To an experimentalist, though, this can be a limitation to choose a 

tool to use. Hence, it’s important to consider the user-friendliness of the developed tool 

and the operative system compatibility. 

Each omics technology will generate data in its own format and even in the same omics 

technique, distinct machines will export distinct data formats. Remarkably, public 

databases store data in distinct formats. All this combination of data formats highly 

limits the use of published data, adding another step in analytical protocols in order to 

transform all data into the same format. Furthermore, if distinct tools are used, data will 

need to be transformed to each tool-required format. To solve these issues, the 

bioinformatics community is starting to move towards open access research and to 

develop what has been called the FAIR data standards, which stands for Findable, 

Accessible, Interoperable and Re-usable software and databases development [44].  

Finally, the most important issue and probably the most easily solved is the lack of 

funding for these kinds of projects. Multi-omics studies are expensive, as they make use 

of expensive equipment and require the involvement of multiple highly-specialized 

researchers. Even though the technological advancements in the last years have made, 

the huge number of samples still makes these kinds of studies to be so expensive. Lack 

of funding for multi-omics studies, apart from the countries on which research 

investment is not a priority, may be explained in part because of the fail of this field to 

demonstrate its utility and vindicate itself. While several studies have been already 

performed, just a few of them have effectively developed new technologies and/or 

drugs, being instead more basic research oriented, which is less funded (although 

extremely necessary). 

Summarizing, the challenges of multi-omics integration studies include specific-omics 

processing data issues, the involvement of multiple specialized researchers, 

requirements for well-designed and annotated studies and lack of standards, both 

experimental and analytical. 

1.2.2.- Integration methodologies 

In order to integrate distinct omics technologies, the first-things-first rule is required. 

Hence, since data comes from different technologies, it is important to firstly normalize 

(and analyze) individually each dataset. After this step, data will be more or less 

equilibrated in order to be able to combine and integrate it [45]. Then, both machine 

learning and statistical tools will be needed in order to integrate distinct omics [46–48].  

While the techniques dedicated to integrating distinct omics datasets will vary 

depending upon which omics we are integrating, there are some common methods that 

can be used. Among them, probably the most used are the dimension reduction 

techniques. These techniques take a complex dataset, with usually thousands of 

variables and generate a new one resulting from the decomposition of the complex 

dataset into new variables, called components. These components derive from the 
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combination of distinct variables in such a way that they explain the potential 

differences between the samples included in the original dataset [49]. 

1.2.2.1.- Dimension reduction techniques for omics integration 

One of the first steps to consider in omics data management is to perform Exploratory 

Data Analysis (EDA) which consist in summarizing the characteristics of a dataset and 

allows the identification of potential batch effects and confounding factors [50]. Usually, 

two approaches exist for the EDA step, knowingly cluster analysis and dimension 

reduction one. Dimension reduction techniques analyze the whole dataset, thus 

conserving its global variance, while cluster analysis focuses on individual variable 

relationships [51]. Hence, cluster analysis loses this information on the relationships 

between variables, as each variable can only be in one cluster. Because biological 

phenotypes are often complex and depend on the combination of a set of factors, 

dimension reduction techniques are more appropriated for omics data analysis, as they 

retain the potential interactions between variables. They also allow the integration of 

multiple omics datasets, which in turn helps in discovering global correlation patterns 

among datasets, so that the findings are more robust against outliers and batch effects. 

Usually, omics datasets are presented in a matrix form, where samples are the rows and 

variables in columns. Because of the high-throughput nature of omics analyses, usually, 

the number of variables is several times bigger than the number of samples. Dimension 

reduction tries to identify a set of variables that linearly combined generate a 

component. Then, each generated component is combined in a new dataset so that this 

reduced dataset has less components (combinations of variables) than samples. This can 

be formulated like: 

Being X the omics dataset a 𝑛 × 𝑝 matrix, where n represents the observations and p 

the variables: 

 𝐗 = (𝐱𝟏, 𝐱𝟐 … , 𝐱𝐩) (1) 

   
Dimension reduction will generate a set of new components combining different 

variables so that the resulting dataset will have fewer components than samples: 

 𝐟 =  𝐪𝟏𝐱𝟏 +  𝐪𝟐𝐱𝟐 + ⋯ +  𝐪𝐩𝐱𝐩  (2) 

 

f is the new variable, which may be called latent variable, component, principal axis, an 

eigenvector or latent factor, depending on the research field and the researcher. q is a 

p-length vector of coefficients in which at least one is not zero, which can be also called 

loadings. What dimension reduction techniques do is to find a set of q’s that maximize 

the variance of f. Depending on the constraint criteria used to achieve this reduction and 

the optimization protocols, different reduction methods exist. The most commonly used 

dimension reduction approach is the Principal Components Analysis (PCA) [52]. 

PCA was first described by Pearson as early as 1901 [53] and  in 1933 by Hotelling [54]. 

Each principal component (PC) of a PCA analysis is a linear combination of original 

variables in a way that the first PC explains the most variance, meaning that the largest 
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dispersion of values will occur among this component. Seemingly, second PC will retain 

the second largest variance and so on [51]. Different PCA types exist for different types 

of data, which differ in how data is transformed before the decomposition step  [55, 56]. 

PCoA, for example, is indicated for distance matrices and is mostly used for continuous 

data, being appropriated for microbiome data analysis. 

Canonical correlation analysis (CCA) is indicated to the integration of two datasets that, 

once decomposed in factors, are analyzed in order to identify the variables that most 

correlate the two datasets. Variations on this approach have been developed in order 

to improve the performance of the methodology and to adapt it to the new kind of data 

derived from high-throughput analysis. While CCA cannot be applied to datasets with 

more variables than samples, new approaches have been proposed that solve this pitfall. 

Thus, options like sparse CCA [57] or penalized CCA [58] have been applied to the 

integration of omics datasets. Sparse solutions filter the number of variables, thus 

simplifying the analytical process and the interpretation of the results. 

Another technique widely used is the Partial Least Squares approach (PLS), which does 

not suffer for these CCA-related constraints. Instead of working with correlations, PLS 

analyzes the covariance between different components of the datasets, which also 

makes it more robust against outliers. It has been shown that, for multi-omics studies, 

sparse PLS works, at least, as well as sparse CCA methods [59]. 

In addition, Procrustes analysis allows the comparison of the distribution of samples 

between two PCAs analyses of two datasets [60], by the comparison of its shapes. It 

superimposes the shape of two PCA objects, moving, scaling and rotating one of them 

until the difference between shapes is reduced to its minimal value [51].  

Finally, co-Inertia Analysis (CIA) is used to combine two different datasets. While it was 

developed for the integration of ecological measurements, it has been successfully 

applied to omics integration too [61, 62]. It consists of two steps: (i) perform a dimension 

reduction technique on each dataset (PCA or similar) and (ii) constrain the projections 

of the orthogonal axes so that the covariance is maximized [61, 63]. Instead of sparse 

methods, the CIA does not remove any variable, so that the final result tends to include 

redundant and non-informative information, hence making more difficult its 

interpretation [59]. Its finality is to find similarities between two datasets using 

ordination spaces and being quantitatively measured by a coefficient called RV [51]. 

 

1.2.2.2.- Omics – microbiome integration 

In general, the integration of microbiome with other omics relies on dimensionality 

reduction approaches, without being more specific than that, except probably for 

metabolomics data. Nowadays, omics – microbiome integration studies have been 

performed with a broad combination of omics, including genomics, epigenomics, 

proteomics and metabolomics [64]. Strategies for these omics combinations have relied 

upon correlation measurements, regression approaches and network-based ones, apart 
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from the dimension reduction ones [64]. In fact, it is not unusual to combine dimension 

reduction techniques with some of the aforementioned methods.  

For the combination of the microbiome and host genomics, it is important to study the 

heritability of the microbiome, which refers to the part of the microbiome variance 

explained by genetic variants in the population [65]. This is to ensure that microbiome 

data is, in fact, hereditary and to remove those variables that do not have this hereditary 

component. Later, microbiome – genome associations can be tested at individual genes 

level or the whole genome level. To test individual associations, correlation-based 

approaches have been previously used, either Spearman’s or Pearson’s correlations [66, 

67]. For full genome associations dimensionality reduction methods are used, such as 

PCA or PCoA (principal co-ordinate analysis) [67]. The drawback of this approach is that 

identifying specific correlated variables is less straight forward. With these approaches 

it has been possible to better describe the impact of diet on microbiome composition, 

describing correlations between lactase [66] or vitamin D receptor [68] genes and 

specific bacteria genera. Similar approaches have been followed for the integration of 

transcriptomics and microbiome, although correlation approaches have been improved 

to multivariate correlation, like the canonical correlation analysis (CCA) [69]. From these 

correlation methods, network techniques have also been developed, such as the 

Weighted Gene Co-expression Network Analysis (WGCNA). WGCNA is a data-driven 

technique that clusters together those variables (bacterial OTUs and transcripts) most 

correlated. 

Finally, there is the metabolomics – microbiome integration. As mentioned above, while 

other omics integration with the microbiome is pretty much performed the same way, 

with metabolomics things are slightly different, as metabolomics datasets need different 

data pre-processing. Once that is done, the integration may be performed by simple 

correlations or via dimensionality reduction techniques. Other integration techniques 

include Procrustes and co-inertia analysis (CIA) that allows the comparison of two PCAs 

(or PCoAs) from distinct omics datasets. Both techniques are used to study the similarity 

between two datasets and to establish a correlation value for the whole datasets. While 

Procrustes is mostly used for these global dataset comparisons, CIA is useful to identify 

which variables are the most similar between datasets. This approach has been applied, 

for example, to study the interactions existent between distinct parts of the intestinal 

mucosa and the microbiome composition [70]. The combination of correlation and 

network-based methodologies have been used to describe the relationship between 

microbiome and host’s insulin sensitivity [71] or the development and progression of 

CRC [72, 73].  
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1.3.- Metabolomics 

Metabolomics is one of the latest incorporations to the omics research field [74]. It is 

dedicated to the study of the metabolome, which was defined by Oliver et al. 1998 [75] 

“as the complete set of metabolites/low molecular weight compound which is context 

dependent, varying according to the physiology, development or pathological state of 

the cell, tissue, organ or organism”. In this metabolites definition, we include all those 

molecules that are the end-product of any metabolic reaction that occurs in the cell [76]. 

We consider to be a metabolite those molecules that have a molecular weight <2,000 

Da [77]. The complete catalog of all these small molecules is what we call the 

metabolome that, combined with the omics suffix, refers to metabolomics. Metabolites 

are biologically active compounds implicated in each biological process of a living cell, 

from building blocks for macromolecules to energy carriers. Thus, they are part of the 

thousands of metabolic and biosynthetic pathways required for all the cells and 

organisms functions [78].  

The metabolome is constituted by distinct classes of compounds, from lipids to amino 

acids, including inorganic species and derivatives of hydrophilic lipids. Thus, unlike genes 

or proteins, metabolites are harder to study, as they possess an extreme variability in 

terms of the order and subgroups of the atoms than the 4-letter (genes) or the linear 

20-letter (proteins) codes. The huge range of compounds included provides a large 

variety of chemical and physical properties, such as molecular weight, polarity, solubility 

and volatility. The number of metabolites included in a determined metabolome 

depends on the organism studied, ranging from the 600 metabolites of Saccharomyces 

cerevisiae [79] to the 200,000 metabolites of the plant kingdom. While no metabolome 

size has been proposed for humans, it is accepted that it will be smaller than the plants' 

metabolome, although more than 4,000 different metabolites have already been 

annotated [80]. Inside the metabolome, we can differentiate between primary and 

secondary metabolites. Primary metabolites are those ones that are involved in 

biological processes, thus making them essential to life. This is the case of amino acids, 

organic acids, lipids, etc. Secondary metabolites, instead, are those metabolites not 

essential to cell life, because they have no role in any essential biological process. Hence, 

they are restricted to a selected set of cells, which synthetize them for specific biological 

functions. This class of metabolites include xenobiotics, metabolites that come from 

external sources, such as diet, medication, interactions with microbiota, etc.  

Instead of the traditional sequencing approach, useful for genomics, transcriptomics 

and proteomics, metabolomics requires a de novo elucidation of their elemental 

composition, atoms order and stereochemical orientation. To deal with this complex 

situation, different approaches have been developed, grouped in two ways: untargeted 

or targeted metabolomics.  

1.3.1.- Targeted metabolomics vs untargeted metabolomics 

Targeted metabolomics is mainly used for screening purposes. This is an approach that 

takes into consideration one to few metabolites, usually related between them, in order 
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to study the effects of a specific alteration. In these kinds of studies, sample preparation 

protocol should be adapted to the chemical properties of the targeted compounds, to 

reduce the potential confounding factors and the matrix effect. Matrix effect refers to 

the events by which metabolite signals may be altered by other metabolites signals [81]. 

These signals may come from metabolites coming from the sample matrix, may be 

altered due to degradation of metabolites during processing steps or to instrument 

influences that may corrupt metabolites quantification [82]. 

Often, an alteration does not produce a simple, located alteration in a small subset of 

metabolites. Instead, either because of one metabolite can be found in several biological 

pathways, the potential interactions established with other metabolites and/or 

pleiotropic effects, it is plausible that the alteration may impact on other pathways. 

Therefore, this requires that all metabolites should be measured and considered to 

describe the role of some biological alteration, which is what we know as untargeted 

metabolomics. The inclusion of the whole metabolome into a study has its own 

associated complications. Ideally, metabolomics should aim to the inclusion of all 

metabolites, but this is not always achievable. Therefore, in order to include the 

maximum possible number of metabolites, different extraction and sample preparation 

protocols may be needed. The chosen analytical method must have strong enough 

resolving power maintaining a good sensitivity and selectivity. Ideally, it should be 

matrix independent too. Because of the nature of the data obtained, a methodology to 

identify unknown metabolites should be established too. A variant of the untargeted 

approach is the metabolic fingerprinting, in which full metabolite identification is not 

needed, as it is used for the classification of samples between two (or more) conditions. 

Metabolomics datasets are complex by definition. Therefore, appropriated tools are 

needed for the handling, storing, normalizing and analyzing of the data. 

Although technically the first metabolomics studies were performed by gas 

chromatography mass spectrometry (GC-MS) as early as in the 1970s [83, 84], the later 

improvements in analytical instruments and the computer advances are the ones 

responsible for a more broader implementation of metabolomics, enabling the 

acquisition and interpretation of comprehensive metabolic profiles through multivariate 

statistical tools [85]. Traditionally, the most used metabolomics technology is Nuclear 

Magnetic Resonance (NMR) spectroscopy. It offers some advantages, as it is a rapid, 

high-throughput non-destructive technique with small to no sample preparation. Mass 

spectrometry (MS), though, provides better performance in sensitivity, something that 

facilitates the measurement of species with low abundance, an event quite feasible to 

occur in an untargeted metabolomics study. In contrast, MS needs more sample 

preparation than NMR and it is usually coupled to another separation technique, like 

gas or liquid chromatography (GC or LC), in order to better separate the sample 

metabolites. In this thesis, though, we will work only with MS technology. 

1.3.2.- Metabolomics data acquisition and analysis 

The typical metabolomics workflow is comprised by seven general steps: establish the 

experimental design (1), ideally within the input from a statistician, sample collection (2) 
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and preparation (3), running of samples in analytical instruments (4), data processing 

(5), statistical analysis (6) and pathway and functional analyses (7) [78] (FIGURE 4).  

 

1.3.3.- Experimental design considerations 

The experimental design (1) is the most 

critical step not only for a metabolomics 

study but for any kind of experimental work. 

Its design will have a huge impact on the 

quality of the results obtained. Therefore, 

well planned studies, with all the potential 

confounding variables established and 

controlled will lead to better and easier 

interpreted results. A good experimental 

design includes aspects like the correct 

number of samples, the appropriate 

classification of each group and a reduced 

sample variability within groups. It is useful to 

integrate all subjects related to the study in 

this step, from the sample collectors and 

processors to the bioinformaticians or 

statisticians that will analyze the data.   

 

1.3.4.- Sample collection and 

preparation 

Because of the wide variability of physical and chemical properties of different 

metabolites, there is no unique methodology that can capture the full set of metabolites 

of a sample. About sample collection, it is important to consider that each biofluid will 

contain a different set of metabolites, depending on their physicochemical 

characteristics. Thus, while blood metabolome composition is stable and controlled 

homeostatically, urine will mostly contain water-soluble metabolites [86]. A well-

defined and documented sample collection protocol will also improve the 

reproducibility of the study. An important consideration to make is also the fact that 

metabolism is a constant flux, thus stopping any potential metabolic reaction is 

important in both sample collection, preservation and manipulation in order to avoid 

any potential loss of metabolites. For liquid samples, freezing to -20ºC or -80ºC is 

recommended [87] while for solid samples lyophilization is a good option. Conservation 

at 4ºC may alter the metabolite composition due to the effects of microbial communities 

present in samples  [88]. Metabolite extraction methods from the collected samples 

have been developed to be effective for specific metabolite families thus each method 

will also suppose the loss of other metabolite features. Summarizing all potential issues 

in extraction methods, an ideal extraction step should [89]: 

Figure 4: typical metabolomics workflow, from [78].  
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a) Incorporate a preservative so that metabolite composition reflects the original 

one in the sampling moment. 

b) Be as non-selective as possible, in order to incorporate the broader range of 

metabolites possible. To this aim, a combination of distinct extraction protocols 

may be considered. 

c) Be simple and fast, so that the potential metabolite loss is avoided. 

d) Be reproducible.  

Extraction methodologies will depend on several factors, including the sample type and 

the potential aims of the study, that will determine the metabolome coverage required 

(FIGURE 5). Hence, a targeted metabolomics analysis may need less metabolome 

coverage so that extraction protocols may be optimized to the metabolite families 

considered. Untargeted metabolomics, otherwise, is intended to cover as many 

metabolites as possible, so that they will need a combination of extraction 

methodologies to cover a wider metabolite range. Even though, some general 

recommendations can be identified depending on the sample type: 

1) Liquid samples: simple, unselective methods are usually applied, like dilutions 

and solvent precipitations. They enable high coverage and are fast, while if later 

an LC-MS approach is used ionization suppression events may occur during the 

electrospray process. 

2) Blood samples: the main issue with blood samples, either plasma or serum, is 

related to the high concentration of proteins. Thus, a protein removal step is 

required, which can be achieved with ACN or acetone.  

3) Solid samples (feces): because of the phase of the sample, an extraction step in 

order to transfer the metabolites to a liquid phase is needed. Usually, samples 

come lyophilized, so that extraction is more homogeneous. For the extraction, a 

combination of solvents with different polarities may be used so that distinct 

metabolome may be obtained. Commonly, methods that allow the extraction of 

lipophilic and hydrophilic metabolites are used (chloroform-methanol, 

chloroform – methanol-water). 
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Figure 5: Metabolite types extracted by different solvents, from [85]. 

1.3.5.- Data acquisition 

The high diversity of physicochemical features of the whole metabolome does not only 

affect the sample preparation step, but it impacts also in the data acquisition one. Thus, 

not one analytical technique will be able to capture the whole range of metabolites in 

an MS study. Again, a selection of techniques will be needed, biasing this way the output. 

One selection way is the coupling of separation procedures before the metabolite 

injection into the MS equipment. Depending on the separation methodology selected, 

different metabolite types will be conserved. Hence, LC-MS is recommended for the 

analysis of polar metabolites, while GC-MS works better for small volatile ones. 

As El-Aneed et al. [90] elegantly defined: “mass spectrometry relies on the formation of 

gas-phase ions that can be isolated electrically based on their mass-to-charge ratio 

(m/z)”. Since its invention in the late 1880s, it was not until 1957 that separation 

methodologies were coupled to it, being the first the GC [91]. Nowadays, MS is usually 

combined with other separation techniques, such as high-pressure liquid 

chromatography (HPLC) and ultra-high pressure liquid chromatography (UHPLC). The 

mass spectrometer is composed of an ion source, which is the entry point for the ionized 

metabolites into the equipment, a mass analyzer, which separates the metabolites by 

m/z and the detector. The m/z abbreviation indicates the number that results from 

dividing the mass number (m) of an ion by the corresponding charge number (z) [92]. 
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1.3.6.-Data processing 

Raw data obtained from the mass spectrometer usually are big. For example, for 

fibromyalgia metabolomics, 200 samples raw data occupied 17GB (approximately), thus 

making it manual management very difficult. Raw data needs to be converted to a more 

readable format in order to be able to statistically analyze it. This is usually performed 

by specialized software, able to deconvolute the full metabolomics spectrum to spectral 

bins, each one related to a specific m/z value.  

Basically, this data processing step consists of four parts (FIGURE 4). It starts with the 

removal of the background signal that may confuse the posterior analyses. Then comes 

the peak selection, where each m/z value is assigned to a peak and its value reported 

for each sample. Following it comes the peak alignment process, where a correction on 

the retention time shifts that occurs during data acquisition is performed. This is done 

to assure that each m/z value for a specific molecule appears at the same retention time 

in each sample. The correction factor applied may be extracted from the use of internal 

calibration ions, which are injected with each sample, so that the analyst later can 

identify the corresponding retention time shift in each sample. Finally, missing values 

analysis should be performed. A missing value proportion threshold is established so 

that all molecules with more missing values than the threshold are removed from 

posterior analyses. With the remaining molecules missing value imputation strategies 

can be studied, being the most common ones using the average and/or the median value 

of that molecule in the samples or the minimal value divided by a specific factor [93, 94].  

1.3.7.- Data analysis 

Once data has been properly normalized and pre-treated, it is time to provide the data 

with a biological context and significance [95]. Usually, metabolomics data analysis is 

complicated due to several features that are characteristic of high-throughput data: 

overfitting, because of the much larger variables measured than samples (i); several 

variables tend to depend one on another (ii); elevated noise levels (iii); the need to 

separate informative data from the non-informative one (iv) [96]. Metabolomics data 

can be analyzed in two ways, applying univariate or using multivariate statistics, 

although a combination of both is recommended [97]. 

Univariate analysis is referred to as the analysis of just one metabolite at a time. In this 

approach, more standardized statistics are used to assess the differences between 

sample groups, such as t-test or ANOVA. If univariate statistics are used in an omics 

study, it is important to perform a multi-test correction to avoid the potential increase 

on false positives, as it is known that the chance of a comparison to be statistically 

significant increases proportionally to the tests made [98]. What multi-test correction 

does is to reduce the significance level so that the chance of getting false positives is 

reduced, although increasing the possibilities of false negatives. 

Multivariate approaches, instead, compare all the variables simultaneously, so that the 

potential interactions between variables are also considered, considering the 

correlations and/or covariances between variables [97]. Due to data characteristics, 



 

53 | M e t a b o l o m i c s  
 

consisting of a relevant number of variables, usually much larger than samples, 

multivariate statistics is an appropriated choice. With either PCA [52] and/or PLS-DA [99] 

methodologies, patterns in the data will arise that may help in explaining specific 

phenotypes.  

As each approach considers different features related to the variables analyzed, it is not 

strange that each of them provides results that may not agree between them. Reasons 

for this are various and reviewed in [97], but this event is expectable and nullifies neither 

multivariate nor univariate results. Differences are explained, mainly, because of the 

differential characteristics and assumptions of both statistical approaches. Furthermore, 

the combination of both approaches may result in a better, more holistic view of the 

results, with an improved fitting in a biological framework.  

Either before or after this statistical analysis of the metabolomics data, metabolite 

identification is needed in order to assign an identity to each metabolomics peak 

identified. Depending on the kind of metabolomics analysis performed (NMR, GC-MS or 

LC-MS), the metabolite identification protocol will differ. For LC-MS, obtained spectra 

are compared against databases such as METLIN [100] or HMDB [101], so that a 

tentative identification for the metabolite is obtained based on the reported feature 

mass and the comparison between identified fragmentation patterns and the 

corresponding entries in such databases. A comparison against commercial standards, 

analyzed under the same conditions as the samples, is required for complete metabolite 

identification, as stated by the Metabolomics Standards Initiative working group [102]. 

During this identification process, issues may arise related to the metabolite 

nomenclature, especially when non-common metabolites are trying to be identified. 

Each database uses a particular nomenclature format and no standards have been 

defined yet. Therefore, for common metabolites databases usually incorporate a 

synonyms section, in order to facilitate the information retrieval process [103]. 

Finally, identified metabolites may be used for a more functional-orientated analysis, in 

order to identify which biological processes may be related to a specific phenotype, 

using pathway databases such as KEGG [104], WikiPathways [105] and/or Reactome 

[106]. 
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1.4.- Metagenomics – microbiome analysis 

1.4.1.- History of the microbiome studies 

It is assumed that the human body contains between 2 to 20 million different bacterial 

genes, at least 100 times more than human genes (about 20,000 genes) [107–109]. Even 

though, while the human genome has been widely studied and analyzed, the impact of 

this huge number of bacterial genes upon the human organism has just started to be 

studied. Interestingly, while the human genome is fixed at birth and cannot be changed, 

microbiome composition can be and is modified by a high number of factors [110], 

including environmental and lifestyle-related factors and diseases.  

Technically, the first study of the human’s microbiome was performed as early as 1677 

by Antonie van Leeuwenhoek, considered the father of microbiology. The inventor of 

the microscopy, he used it to compare not only his own oral and fecal microbiome but 

also the microbiome from other people and even the effects of distinct lifestyle factors, 

such as tobacco and alcohol consumption, upon the microbiome composition [111, 112] 

(FIGURE 6). 

 

Figure 6: Oral bacteria as seen by Antonie van Leeuwenhoek, first published in Arcana naturae detecta 

(Antonie van Leeuwenhoek, 1695). Credit: Wellcome Collection. 

Since then, the microbiome studies have evolved quite significantly. Until the 

introduction of the 16S rRNA sequencing technique, microbiome studies relied on 

culture techniques. Even then, it was clear that culture techniques were not able to 

capture the whole diversity of the human microbiome, assuming that only 20-40% of it 



 

55 | M i c r o b i o m e  
 

was culturable [113]. The first authors to propose that gene sequences could be 

appropriate to study evolution, using them as “molecular clocks” to study phylogenies 

were Pauling and Zuckerkandl [114]. Using their proposal, but focusing on ribosomal 

RNA sequences, Woese and Fox were the kingdoms division of the life in kingdoms [115], 

introducing also new domain among the previously existent, the Archaea one [116]. 

They introduced the study of ribosomal RNA, a component of all self-replicating systems, 

easily isolated and with a sequence that, although it changes with time, it does it slowly, 

permitting the comparisons between distant species. This became a new standard in the 

1980s, mainly with Woese’s work demonstrating that phylogenetic relationships of 

bacteria could be determined by using stable parts from these ribosomal RNA sequences 

[117, 118]. The adoption of 16S rRNA gene as a gold-standard molecular marker for 

microbial studies started after that, between 1990-1991, with the first studies being 

done in environmental microbiology field [119, 120], although the first observations 

about 16S rRNA sequence conservation were done by Dubnau et al. as early as 1960 

[121]. In 1999, the first study of human gut microbiome using the 16S rRNA was 

published [122]. In this study, the authors demonstrated that only 24% of the molecular 

species identified from the 16S rRNA sequencing corresponded to previously known 

bacteria. Since then, several studies have been done trying to better characterize the 

human microbiome and to increase the number of bacteria present in it. Among them, 

probably the most important study performed to date is the Human Microbiome Project 

(https://hmpdacc.org). 

1.4.2.- The Human Microbiome Project (HMP) 

The HMP is an initiative from the National Health Institutes (NIH) established in 2007, in 

order to study and develop the required tools, protocols and resources to allow the 

characterization of the human microbiome and its role in health and disease [109]. The 

HMP is a conglomerate of multiple projects, developed worldwide (including the United 

States, Europe and Asia). It is not only focused on the effects of microbiome changes in 

human health but also to determine which factors (either genetics or environmental 

ones) contribute to the definition of microbiome’s composition.  

300 healthy individuals were recruited for the HMP study. To determine the structure 

and function of the healthy human microbiome, 4,788 specimens from 242 of these 

individuals were analyzed [107]. Two different kinds of data were generated, 16S rRNA 

sequencing and metagenomics whole genome sequencing (WGS). Different data can be 

obtained by each of the distinct sequencing options. While 16S rRNA sequencing is 

restricted to taxonomy analysis, as it just analyzes the 16S gene, WGS can be also used 

for functional profiling of bacterial communities, because all the bacterial genes are 

sequenced and analyzed [123]. Therefore, during the HMP study, 16S data was used to 

analyze the composition of the human microbiome and the potential existence of a core 

microbiome, while WGS data used to determine its functions.  

Resulting from the immense amount of data generated during the project and, 

specifically, 16S gene reads, two bioinformatics tools, mothur [124] and QIIME [125, 

126], were updated in order to incorporate the pipelines developed by HMP Consortium 

https://hmpdacc.org/
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for the analysis of microbiome data. These pipelines were developed in order to 

generate a standard data analysis workflow for the microbiome researchers community 

and to reduce sequencing errors generated by previous tools [127]. 

1.4.3.- Human microbiota: structure and function 

The main results of HMP study (and from other studies like the European MetaHIT) 

allowed the identification of distinct microbiome niches in the human body, thus 

identifying different populations of bacteria depending on the sampling location. 

Notably, the specialization of the bacterial population in each one of these niches was 

so notable that the microbial communities from the same niche were more similar 

between individuals that microbial communities from distinct locations of the same 

individual [107] (FIGURE 7A). To this extent, meta-analyses also showed the importance 

of this niche-specialization of microbiota populations, showing a preferential clustering 

of samples by the body site before the clustering by the study [128]. One important 

parameter in the study of microbiome is named “Microbial diversity” that can be defined 

as the number and abundance distribution of different bacterial species in a specific 

environment. By body sites, the most diverse ones where those related to the 

gastrointestinal tract, including both the oral cavity and the gut and stool. Skin 

presented with reduced diversity, probably due to modern hygiene habits and finally, 

the vaginal microbiome was less diverse, mainly dominated by Lactobacillus [129]. Gut 

microbiota is typically composed  more than 1,000 bacteria species, although two phyla 

dominate over the rest, Bacteroides and Firmicutes [107, 108]. Relevantly, it has been 

demonstrated that stool microbiota composition resembles mostly the colon-specific 

microbiota, while showing moderate similarities with distal small intestine [130]. 

 

Figure 7: HMP project results. PCoA plot of HMP data showing samples primary clustering for body area 

(A) and metabolic pathways abundances in each body area studied. Figure adapted from [107]. 

While studies on human microbiota composition have been mostly focused on the 

bacteria, microbiota extends among the whole tree of life and it is known to include also 

archaea, viruses and eukaryotes elements too. 16S sequencing is restricted to bacteria 

identification, although some archaea can be identified too, such has been the case of 

Methanobrevibacter genus, prevalent in the gut [131]. WGS techniques have identified 

also viral-related genes, which also points towards the existence of a virome, which is 

suspected to be pretty extensive, with an elevated inter-variability [132, 133], formed 
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mainly by bacteriophages and with an important impact upon host health [134]. 

Eukaryotes found in the human body are typically pathogens, although some of them 

(Candida, Malassezia and Saccharomyces) are also found in healthy conditions [135]. 

Relevantly, multicellular eukaryotes such helminths have been a component of the gut 

microbiota on our evolutionary history [136], although nowadays is removed from 

Western-cultures gut microbiota.  

Studies on microbiome composition have been focused on trying to define what a 

healthy microbiome is and which bacteria compose it (understanding healthy as the 

absence of any disease). With the emergence of metagenome and microbiome studies 

it became evident that the enormous amount of variation in the taxonomical 

composition of distinct people microbiome would make it impossible to define a 

common set of bacteria species between individuals [137, 109]. Instead, the idea of a 

core microbiome turned towards a functional core: an essential set of metabolic 

functions, common in all humans, provided by bacteria but not necessarily the same 

bacterial species [138]. The idea of the existence of a core of functionalities was 

supported by two facts: the broad taxonomical distribution of specific bacterial 

functions (essential housekeeping functionalities) and/or the enrichment of specific 

functionalities among bacteria colonizing a specific niche (because of a selective 

advantage) [139]. Researchers have been able to identify distinct core pathways 

depending on they were broadly expressed or niche-specific enriched by classifying 

them accordingly to the taxonomic range. Notably, those pathways related to 

housekeeping functions (such as biosynthesis of coenzyme A) were broadly distributed 

among all bacteria, independently of the niche sampled (FIGURE 7B). Pathways that 

were found to be specific for a niche were related to metabolic functions performed 

upon specific molecules found in those specific niches. Thus, pathways such as vitamin 

B12 biosynthesis and short-chain fatty acids (SCFA) production pathways were found to 

be functional core of gut and oral microbiomes, where bacteria have the required 

precursors and environmental conditions to perform them [139]. These site-enriched 

pathways suggest a functional adaptation of niche-specific microbiota to the human 

body. Notably, microbiota composition changes with time, but those core functional 

bacterial pathways were temporarily stable too [139]. 

The most important functional aspects of the gut microbiota includes nutrient 

metabolism, xenobiotic and drug metabolism, antimicrobial protection, 

immunomodulation, maintenance of the integrity of both gut barrier and 

gastrointestinal tract and communication with the Central Nervous System (CNS) [150]. 

Of this list, the influence of microbiome in nutrient metabolism is one of the most 

relevant for host health. Gut microbiota obtain their nutrients from carbohydrates 

derived from the host’s digestion. The fermentation of indigestible oligosaccharides by 

gut microbiota species (Bacteroides, Roseburia, Bifidobacterium, Enterobacteria and 

Fecalibacterium) results in the synthesis of short SCFA (butyrate, acetate, propionate) 

[150], that are an energy source for the host and greatly contributes to its health [151–

154]. 
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The healthy microbiota, or healthy functional core, requires also of three characteristics: 

resistance, resilience and stability; because of the multitude of factors that influence, 

shape and modify the gut microbiota [137]. Resistance refers to the capability of gut 

microbiota to resist those perturbations, resilience to the ability to return to the pre-

perturbation state (the healthy one) and stability to be more or less constant, either in 

their composition or their functional capabilities, among time [140]. Factors affecting 

the gut microbiota include geography [128] and evolutionary events [141], diet [142], 

host genetics [143], early-life colonization and establishment, including mode of delivery 

[144], breast-feeding [145–147] and diseases and clinical treatments, such as antibiotics 

[109, 148, 149]. 

1.4.4.-The 16S rRNA marker 

Three different molecules of RNA are present in the prokaryote ribosome, the 5S, 16S 

and 23S subunits (S being the units of Svedberg). The 16S rRNA gene is approximately 

1,500 base pairs (bp) long, composed by variable and conserved regions (FIGURE 8). It 

contains enough polymorphisms to provide differentially measurements between 

different bacteria species.  

 

1) It is present in all bacteria, becoming this way a universal target for bacterial 

identification. 

2) Its function never changed over time, suggesting than random changes in its 

sequence are a good accurate measure of time, as they must be random 

changes, not selected ones due to some function alterations. 

3) The gene is large enough (≈1,500bp) for informatics purposes, as it can contain 

statistically relevant sequence information. 

4) Approximately, 16S rRNA contains about 50 functional domains, supposing that 

an introduction of function-altering mutation won’t affect importantly the other 

domains. 
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Figure 8: 16S rRNA gene structure, with the different regions colored separately. The base position of 

each region starting point is indicated in the lower figure. 
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Initially, 16S rRNA sequencing was laborious and complex, such that only a small number 

of laboratories around the world were able to assume its costs [155]. With the invention 

of the polymerase chain reaction (PCR) in 1986 [156] this situation changed, making it 

more economic and simple. Depending on the aims of the study, the whole 16S rRNA or 

just a portion of it can be amplified by PCR and sequenced. This has conducted to the 

generation of conserved primers targeting conserved regions of the 16S rRNA that 

allows the amplification for most bacterial species [157, 158]. Interestingly, these 

universalization of primers allows for the comparison of distinct studies performed by 

different research groups, as the molecule sequenced is the same [128]. The sequencing 

of these amplicons and its alignment against referential databases [159] (such as 

Greengenes [160], SILVA [161] and/or RDP [162]) allows the identification of each 

bacterial specie present in a sample. This, in turn, supposes also the first pitfall of 16S 

rRNA amplification studies, as we can only annotate those bacteria already present in a 

reference database. Another pitfall is that 16S rRNA can be identical between different 

bacteria from the same genera, even between bacteria from different genera too. This 

could lead to wrong annotation and identification of bacterial species. To overcome this 

limitation, functional and biochemical techniques, including bacterial cultures, are 

needed. Because PCR methodology is quite sensitive to contamination, due to the 

ubiquitous presence of bacteria in the environment can lead to false assumptions 

derived from these contaminations. Therefore, to overcome this third pitfall is crucial to 

incorporate negative controls and blank samples to this kind of taxonomical studies 

[155]. As 16S rRNA is present only in bacteria and archaea, we lose also the information 

coming from viruses, protozoa and fungi. It is important to note that they are also a part 

of the microbiome environment and that can interact with bacteria. Finally, 16S rRNA 

studied do not comply with Koch’s postulates, as they are based just on analyzing the 

presence of a specific gene, but not in determining if these bacteria are alive and which 

are their function. Therefore, to determine whether alterations in microbiome are 

associated to a disease state 16S rRNA sequencing studies are not enough. Relevantly, 

16S sequencing provides information about the composition of the microbiome, but not 

about their genomes and functions [163]. To overcome these issues, whole genome 

sequencing (WGS) has been developed and applied to microbiome research and Koch’s 

postulates modified accordingly [164].  

 

In order to try to overcome this functionality pitfall from the 16S rRNA sequencing 

studies, researchers have developed tools that allow the prediction of the functional 

composition of a specific bacterial community, such as PICRUSt. PICRUSt stands for 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. It 

takes advantage of data published in the HMP project to, starting from 16S rRNA 

annotated sequences, predict the whole genome for each one of the bacteria identified, 

allowing the functional annotation of these predicted bacterial genomes in KEGG 

database [104]. Its accuracy has been determined to be about 80% although PICRUSt’s 

authors are working on improving it. 
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1.4.5.-Microbiome data analysis 

 In brief, a 16S rRNA sequencing study contains four main steps: DNA extraction, PCR 

amplification, amplicons sequencing and bioinformatics analysis [165].  

1) Several protocols for DNA extraction steps exist, most of them being 

commercially available as extraction kits. What matters most in this step is to 

consider an extraction protocol appropriated for the sample type (stool, soil, 

blood, etc.) and to the type of cell lysis needed, as some cell types may resist the 

common lysis methods. Also relevant, the amount of sample used may be taken 

into account when selecting the extraction protocol. 

2) PCR amplification is, nowadays, performed mostly by sequencing companies 

already. Therefore, protocols are quite optimized, and the most important 

consideration here is the selection of 16S primers, which will determine whether 

the whole 16S is amplified or just some specific regions.  

3) Amplicon sequencing is, most often, performed by Next Generation Sequencing 

(NGS) systems.  

4) Finally, the bioinformatics analysis includes everything that happens after the 

sequencing itself, from the quality control of the reads to the diversity analysis. 

For these kinds of analyses, several pipelines have been developed, being the 

most commonly used mothur [124] and QIIME [125]. The following steps have 

been implemented in, at least, the QIIME tool and can be performed from inside 

it. 

a. Reads quality control and reads joining (if required). For this step, tools 

like FLASH [166] and prinseq-lite [167] have been developed. 

b. Removal of chimeras is a necessary step, especially when PCR steps have 

been performed previously. The most used tools include UCHIME. 

c. Operational Taxonomic Units (OTUs) clustering. After quality controls, 

reads are clustered into OTUs, which are based on sequence identity 

(%ID). Depending on the researcher, several thresholds can be used, 

being the most used one is the 97% similarity threshold. Three types of 

clustering exist: de novo, closed-reference and open-reference.  

i. De novo clustering implies that sequences are clustered just by 

similarity into OTUs, without the use of reference databases. 

ii. Closed-reference OTU picking aligns the reads to a reference 

database, discarding those sequences that fail to align. 

iii. Open-reference combines both previous approached, starting by 

close-referencing OTUs and performing de novo picking for these 

sequences that don’t align to the reference database. 

d. Diversity analysis. Two kinds of analyses can be performed, α and β 

diversity analyses [168] In both cases, we have to consider what kind of 

analysis we want to perform, either qualitative measurements (just 

considering presence/absence of taxa) or quantitative measurements, if 
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also taxa abundance is considered. Finally, there is a third consideration 

to make, whether we consider phylogenetic distance between each pair 

of taxa studied (divergence-based measures) or we treat each pair of taxa 

equally (species-based measures). 

i. α-diversity measures the diversity between members of a defined 

population. It allows the comparison of the total intra-diversity 

between communities. It is used, mostly, to determine whether 

one community is more or less diverse than other, if it has more 

or less different bacterial species. Several measures have been 

developed, both for qualitative (Chao 1 [169], ACE [170], 

Phylogenetic diversity [171]) and quantitative (Shannon [172], 

Simpson [173]) approaches. 

ii. The β-diversity measure is used to assess the differential 

distribution of diversity among two or more populations. 

Different indexes exist, depending on if they are quantitative 

(weighted) or qualitative (unweighted), including Bray-Curtis, 

Jaccard, Unifrac, etc. indexes. 

e. If the OTU-picking step was performed without the use of a reference 

database, usually the next step is the taxonomical annotation of the OTUs 

identified. 

Once the OTUs dataset is taxonomically annotated, we can work with either the 

taxonomical table (at several taxonomic levels) or with the OTUs directly. In both cases, 

there are two kinds of analyses that can be performed subsequently: population 

diversity analysis and differential abundances analysis. While the first kind analysis 

measures how much different and diverse are two or more distinct populations, the 

second type allows the potential identification of factors that may drive these 

differences, such a kind of biomarker. 

Before being able to perform these analyses, a previous step of normalization is needed. 

Currently, there is a not a defined, standard protocol for microbiome data analysis steps 

are to be followed. In fact, the microbiome research community is still debating which 

kind of data is microbiome data, which kind of statistics should be applied and how 

normalization of datasets performed. This debate has led to a considerable number of 

tools developed for microbiome analysis, each one with different assumptions and 

considerations that may lead to different results and conclusions. While some authors 

defend that rarefaction approach for dataset normalization is unacceptable because it 

can suppose the loss of less abundant but still important bacterial features [174], other 

authors have discussed this affirmation while linking the decision of normalization and 

rarefaction to the data characteristics and the study aims and assumptions [175]. Other 

authors have focused on the dataset itself, discussing the traditional approach usually 

followed of analyzing the normalized OTU counts [176]. They argument, instead, that 

microbiome datasets should be considered as compositional, so that relative 

frequencies of bacterial OTUs should be used and different normalization and statistical 
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approaches applied, because of the limitations introduced by the sequencing step. 

Comparisons of tools developed by each contenders on this disagreement have been 

compared, sometimes being more favorable to the non-rarefaction, compositionally-

based analysis positions [177] and other times being favorable to the other contender 

[175].  

In any case, after normalization of data, independently of which methodology is 

selected, traditionally diversity analyses follow. In the case of β-diversity analyses, 

several indexes exist that measure distinct features, ones incorporating phylogenetic 

information in the measurements and others just considering global differences. What 

those indexes do is to measure distances between samples depending on the 

microbiome composition, so that the final result are distance matrices that are analyzed 

by multivariate methods [51], including exploratory methods (such as clustering analysis 

or dimension reduction approaches [49]), interpretative methods and discriminant 

ones, which have been previously introduced (see section 1.2.2.- Integration 

methodologies). 

1.4.6.- Microbiome impact upon development 

Until recently, it was assumed that uterus was a sterile environment and that 

microbiome was first established after birth [178]. According to this principle, known as 

sterile womb paradigm [179], microbes are acquired both vertically, from the mother, 

and horizontally, from the environment. However, more recently new research has 

demonstrated the presence of bacterial genomes upon the uterus, proposing that 

neither the fetus, placenta nor the amniotic fluid are sterile [180–182]. These postulates 

have generated controversy on whether the uterus is really sterile or not, with data and 

opinions going both ways, without reaching a consensus nowadays [183]. In any case, it 

is known that the host depends highly on the interactions with the microbiome and that 

the microbiome composition depends highly on the host and the environment [148]. It 

is known, for example, that microbiome composition is clearly affected, especially 

during first weeks of life, upon the mode of delivery. Thus, microbiome from babies 

delivered by C-section resembles the skin microbiome, while vaginally delivered babies’ 

microbiome are dominated by Lactobacillus, Prevotella and Atopobium, bacteria 

typically present in the vaginal microbiome community. 

Microbiome composition changes during the whole host life (FIGURE 9). Thus, first 

weeks after birth it starts a diversification process, generating an anaerobe-dominated 

microbiome [184]. During this time, microbiome is mainly dominated by two phyla, 

Actinobacteria and Proteobacteria [185]. In this first microbiome community 

composition, an important modulating factor is the feeding of the babies, existing 

differences between the own mom’s milk, donor’s milk and/or formula [145–147]. 

Microbiome keeps evolving towards a stable composition, with individual-specific 

temporal patterns [186], that will be maintained during adulthood, only altered by 

environment factors. Finally, a set of age-related shifts occur in both composition and 

function of the microbiome. As adult microbiome is mostly composed by bacteria from 

both Firmicutes and Bacteroidetes phyla, it has been demonstrated that age is 
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associated to changes on Firmicutes/Bacteroidetes ratio [187]. Notably, elderly people 

microbiome composition presents a reduction on the capability to perform specific 

metabolic processes such as SCFA production and amylolysis. This specific microbiome 

also shows that proteolytic activity is increased [188]. These microbiome metabolic 

capabilities changes are, in turn, associated to inflammation processes the low grade 

inflammation event specific of elder individuals [189]. The association between aging, 

microbiome and specific metabolic processes is, therefore, clear and demonstrated. 

Seemingly, immune system is developed during the first years of life, as host’s 

microbiome does. Interactions between these two systems will be established, 

influencing one another’s composition [190].  

 

Figure 9: Timeline of major events occurring in the brain, immune system and gut development from 

conception to adulthood (adapted from Estes and McAllister, Science (2016) [191]. 

1.4.6.1.- Microbiome and immune system 

It is accepted that gut microbiota mainly interacts, intensively, with the immune system 

located in the intestinal mucosa [192]. To this extent, some authors have considered the 

intestinal mucosa as an immunological niche, an immune-functional organ formed by T 

cell subpopulation, with the related pro- and anti-inflammatory cytokines, the 

microbiota and others mediators of inflammation. Innate and adaptive immune systems 

are believed to play a role in this niche [193]. It’s in there were immune and epithelial 

cells encode receptor molecules for microbial ligands, like capsular polysaccharides 

(PSA) and lipopolysaccharides (LPS) [194]. Cytokines that are produced during these 

contacts regulate the differentiation of naïve T cells into regulatory cells (Treg) or a set of 

helper cells (TH1, TH2, TH17) [195, 196]. Evidence shows that TH17 and Treg are essential 

for immune homeostasis and that alteration in their balance can be related to an 

inadequate microbial gut colonization [197–199] (FIGURE 10).  
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Figure 10: Summary of the most important manners in which microbiota may shape the host 

immune system, including mucosal and systemic immunity [200]. 

All these effects upon cells and tissues of the immune system have an impact upon its 

functionality and, especially important, upon the host resistance to pathogen infections 

[201]. Several mechanisms by which gut microbiota may improve the resistance to 

pathogens have been described. The two most relevant are the role of microbiota to 

inhibit the pathogen invasion by competing for the intestinal nutrients [202, 203]  and 

the promoting of the mucosal barrier function, in part with the production of SCFA, 

which improves the function of the intestinal barrier [150, 151]. 

1.4.6.2.-The gut-brain axis 

The gut-brain axis does not end in the communication during adulthood. Increasing data 

points towards brain development, function and behavior regulation by gut microbiota 

[204]. This is due, in part, to the new roles unraveled of molecules related to the 

peripheral immune system in neurodevelopment, such is the case of cytokines While no 

clear knowledge exists upon how microbiota influences microglia, it seems that specific 

bacterial taxa are responsible. GF-associated microglial alterations can be recovered by 

the administration of SCFA, thus supporting the gut microbiota – microglia association 

[205].  

Notably, microbiota can also modify the integrity of the blood-brain barrier. A reduction 

of SCFA-producing bacteria supposes an alteration of the tight junction organization, 

thus increasing the blood-brain barrier permeability [206]. The intrinsic connection gut 

microbiota – immune system – CNS is clearly demonstrated by the induction of 
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Experimental Autoimmune Encephalomyelitis (EAE) in GF-mice through the gut 

colonization by SFB [207], likely via the induction of TH17, as explained above. This too 

is supported by the fact that SCFA treatment of these mice reduces EAE and axonal 

damage by promoting Treg differentiation [208]. 

Microbiota communicates with the CNS through three main neuroimmune pathways 

[204] (FIGURE 11):  

1) Bacteria-derived and host-derived molecules. The colonization by gut microbiota 

modulates the host’s metabolome, which in turn influences the CNS function by 

circulating metabolites that can enter the CNS directly affecting neuroactivity 

[209]. In this particular event, neurotransmitters must be considered, as 

microbiota can modulate its production and even synthesize them in de novo 

fashion [210]. This microbiota-regulation has been observed for GABA [211], 

norepinephrine [212], dopamine [212], tryptamine [213] and serotonin, for 

which is considered that it’s mainly produced in the gastrointestinal tract [214]. 

At this point, is quite relevant to mention the role of GABA as a pain inhibitor 

[215] and appetite regulator [216]. 

2) Neuronal signaling. Gut microbiota can also interact with the CNS through the 

vagus nerve, a nerve that innervates the peripheral organs, such as the 

gastrointestinal tract. It allows the communication between the CNS and the 

peripheral organs [217].  

3) Neuroendocrine pathways. Through this pathway brain communicates to the gut 

microbiota, reflecting biochemical changes in the brain to the intestine, 

modifying its physiology. This kind of communication occurs mainly through the 

hypothalamic-pituitary-adrenal (HPA) axis [217]. 

 

Figure 11: Summary of the crosswalk pathways between the gut microbiota, the CNS and the immune 

system [204]. 
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1.4.6.3.- Gut microbiome and colorectal cancer 

Cancer has been associated with a broad of genetic and environmental factors that, in 

turn, modulates also the gut microbiota. To this extent, it has been calculated that ~20% 

of human tumors are associated with microorganisms [218]. Notably, the role of 

bacteria and viruses in cancer development and progression has been known for 

decades [219], being these especially true for the relationship between cervical cancer 

and Human Papilloma Virus (HPV) and gastric cancer and Helicobacter pylori [220, 221]. 

This relation has also been proved to be true for colorectal cancer (CRC). 

Colorectal cancer is the fourth most prevalent cancer worldwide [222], with more than 

600,000 deaths per year. Many of the risk factors are associated with developed 

countries' lifestyles, which correlates with the global distribution of CRC, being more 

prevalent in developed countries than in non-developed ones. Its progression follows is 

described as the “adenoma (AD)-carcinoma sequence” [223] (Fearon and Vogelstein), 

which stats that accumulated genetic and epigenetic mutations drive epithelial 

hyperplasia in the colon, which results in CRC. Recently, a new factor has been proposed 

to act in this AD-CRC transition, the microbiota by the hypothesis known as driver-

passenger bacteria. This hypothesis proposes that indigenous bacteria (driver bacteria) 

drive the DNA damage process, accumulating mutations in genes such as APC, CTNNB1, 

DCC, P53, KRAS and/or MYC. This accumulation of DNA damage will eventually lead to 

CRC development. This tumorigenesis will modify the environment, favoring the 

establishment of opportunistic bacteria, the passenger bacteria. Passenger bacteria 

outgrows the driver ones, as they are better fitted to the new tumoral environment and 

driver bacteria will disappear from the tumoral tissue. 
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Do. Or not do. There is no try. 

The Empire Strikes Back, 1980. 
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Nowadays several high-throughput omics technologies have demonstrated to be a 

valuable tool to deeply characterize and understand biological processes, what explains 

their broad application for new biomarkers discovery. In order to increase the efficacy 

of these technologies, their integration need to be improved it. Thus, in this thesis, we 

pretended to analyze and choose a standardized pipeline for metabolomics – 

microbiome integration using current methodologies.  The work has been divided in 

three practical cases, each of them with their specific objectives what guide the 

bioinformatics approaches. The first project (see results Chapter 2) was focused on early 

prostate cancer (PCa) biomarkers identification by metabolomics analysis of urinary EVs 

and its reflection of tissue tumoral metabolism. The second project (results Chapter 4) 

was a multi-omics study of fibromyalgia disease to identify potential molecular 

alterations and propose biomarkers, focusing on metabolomics-microbiome 

integration. Finally, the last practical case included in this thesis (results Chapters 5 and 

6) was the integration of metabolomics-microbiome data for the identification of fecal 

biomarkers for colorectal cancer (CRC) and advanced adenocarcinoma (AD). 

The general objectives for this thesis were: 

i) To identify, review and summarize the currently available omics-integration 

tools. 

ii) To establish a data analysis pipeline that complies with minimal quality criteria 

for each omics included in the studies. 

iii) To identify and develop bioinformatics tools able to automatically retrieve data 

from the most common metabolite databases. 

iv) To set up and establish a pipeline to analyze and integrate metabolomics and 

microbiome data. 

Specific objectives for the PCa metabolomics project: 

Urinary EVs should reflect the biological status of prostate cells, therefore, their content 

should be useful to discriminate between Benign Prostatic Hyperplasia (BPH) and PCa 

patients. To test this hypothesis, we proposed the following objectives for the study: 

i) To characterize the metabolome of EVs from BPH and PCa patients. 

ii) Identify differentially expressed metabolites between these two groups of 

patients. 

iii) To identify differentially expressed metabolites between subgroups of PCa 

patients (stage 2 vs stage 3 and stage 2 with perineural invasion vs stage 2 

without perineural invasion). 

iv) To integrate gene expression data obtained from publicly available databases 

and metabolomics data in order to identify differentially expressed genes. 

Specific objectives for the fibromyalgia multi-omics study: 

The main objective was the identification of molecular markers that could be useful as 

diagnostics criteria for fibromyalgia disease, improving the nowadays diagnostics 

options.  
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i) To process, analyze and identify potential bacteria strains from microbiome data 

able differentially present between fibromyalgia patients and control individuals. 

ii) To process, analyze and identify potential metabolites differentially present 

between fibromyalgia patients and healthy individuals. 

iii) To analyze data from cytokines and miRNA analyses in order to support the 

findings in microbiome and metabolomics analyses. 

iv) To integrate different types of data (microbiome, metabolomics, cytokines, 

miRNA) in order to explain potential biological alterations that could explain 

fibromyalgia pathogenesis. 

v) To validate alterations identified by bioinformatics data analysis with 

experimental methodologies. 

Specific objectives for the CRC microbiome-metabolomics integration project: 

The first aim and the most important one was to identify changes in both metabolites 

and microbiota composition in the same fecal sample of CRC and AD patients when 

compared to healthy controls. 

The identified changes were considered as potential biomarkers for CRC and AD. The 

biological context for the observed alterations was provided by the integration of both 

data omics. In a more specific way, the objectives of this study were: 

i) To characterize the metabolome and metagenome associated with healthy 

individuals, CRC and advanced AD patients. 

ii) To detect and identify differentially expressed metabolites between the three 

population groups included in the study. 

iii) To detect the bacteria species differentially expressed between the three 

population groups included in the study. 

iv) To integrate clinical parameters, metabolomics and metagenomics data in order 

to identify and describe biological processes related to CRC pathogenesis and 

progression. 

v) To identify and characterize new non-invasive metabolomics-based biomarkers 

capable of discriminating between healthy individuals and those with AD and/or 

CRC. 

vi) To develop a new diagnostics tool better than the actual ones by statistics 

methodologies, generating predictive regression models capable of 

discriminating between healthy, AD and CRC diagnosis better than the actual 

gold standard. 
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Never tell me the odds! 

The Empire Strikes Back, 1980. 
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3.1.- Chapter 1. Bioinformatics and data analysis considerations 

In the Introduction section, we have already analyzed which are the most challenging 

aspects of multi-omics integration, specifically from the bioinformatics point of view. In 

this chapter, I will present which bioinformatics approaches have been used and 

developed to tackle them, including approaches for individuals omics (metabolomics 

and microbiome) and for the combination of them.  

In order to avoid contributing to the already overcrowded stock of analytical tools, we 

limited the development of new bioinformatics tools and analytical pipelines to when it 

was strictly required, favoring the test of several already developed and published tools 

and pipelines in order to avoid as much as possible contributing to an already 

overgrowth market of analytical tools, in order to favor the identification of this gold 

standards. 

3.1.1.- Metabolomics 

While data cleaning, processing, and analysis did not suppose a relevant challenge 

because the pipelines are quite established, functional annotation and profiling of 

metabolomics results needed more work.  

Because metabolomics is included in each one of the projects presented in this thesis, 

we decided to establish a common pipeline for data processing and analysis, with 

common statistics measurements. The metabolomics data was generated by two ways: 

targeted metabolomics that was performed in collaboration with OWL Metabolomics 

and untargeted that was performed in bioGUNE’s Metabolomics Platform. Because of 

the targeted metabolomics characteristics, no peak identification step was needed for 

these projects. For untargeted metabolomics, though, a first step of potential 

metabolite annotation and chemical standards validation was needed. To facilitate this 

step, we decided to focus only on those metabolomics peaks that were differentially 

expressed between sample groups included in each study.  

Either if the data was already processed (with metabolites identified) or not, the first 

step was to clean the dataset. To this, we identified and removed all the features that 

presented with more than 30% of missing values, either in all sample groups or in one 

of them. Only if in one group that features presented less than 30% of missing values 

and in the other one less than 70% of them we kept the metabolite, considering that 

this fact could be associated with the biological phenomenon we were studying. Once 

features with an excessive number of missing values were removed, we proceeded to 

impute the remaining missing values. To this, of the distinct methods we tested (1/10 

minimal value, median, mean and k-means nearest neighbor), we decided to use the 

minimal value of the feature divided by 10, so that the minimal alteration was included 

in the analysis. 

Afterwards, the data was log-normalized and applied custom scripts dedicated to 

compute the following basic statistics for each sample group in a standard way: mean, 

winsored mean, median, standard error of the mean (SEM), standard deviation, 
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coefficient of variance, interquartile range, Kurtosis and Skewness indexes and Shapiro 

test. Using these measurements fold change and either Student’s t-test and/or Wilcoxon 

signed-rank p-values are computed and the volcano plot is generated to aid in the data 

interpretation in a visual way. 

Once differential metabolites were identified, functional annotation and pathway 

mapping followed. Is in this step on which more work was performed. Using two publicly 

available metabolomics databases, KEGG [104] and HMDB [101], we wrote both R and 

Python scripts that access those databases and extract the required information.  

 

Figure 12: Developed bioinformatics pipeline. Starting from metabolite ID related enzymes are identified, 

associated genes retrieved and pathways enrichment performed. 

Because metabolites receive a broad range of names, we decided to focus on the 

accession codes for both datasets. This allowed us to work with no-ambiguous 

metabolite identifications and to be able to combine the information on both databases, 

by translating each accession code to the corresponding one on the other database. 

Because of the characteristics of each database, complementary information may be 

obtained this way. Because metabolites are the end-product of biological reactions, our 

idea was to associate each metabolite to the corresponding enzymes, thus this way we 

could associate metabolite levels to genes and transcriptomics data. This conversion of 

metabolites to gene names is what allowed us to perform pathway enrichment analysis 

by means of tools like PANTHER-db or DAVID functional annotation tool.  

KEGG database is structured in several sub-databases related to genomes, biological 

pathways, diseases, drugs and chemical compounds. The combination of all these data 

allows the integration of multiple omics into metabolic pathways, being thus a tool for 

systems biology [224]. 
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Table 2: The compendium of KEGG databases, with the corresponding contents, updated in 2017 

(modified from [225]). 

Category Database name Content KEGG identifier 

Systems Information 
KEGG PATHWAY KEGG pathway maps Map number 

KEGG BRITE BRITE hierarchies and tables br/ko number 

KEGG MODULE KEGG modules M number 

Genomic 
Information 

KEGG ORTHOLOGY KO groups for functional 
orthologs 

K number 

KEGG GENOME KEGG organisms (complete 
genomes) and selected 
viruses 

org code/T number 

KEGG GENES Gene catalogs ofKEGG 
organisms, viruses, and 
addendum category 

org:gene 

KEGG SSDB KEGG SSDB 
Sequence similarity among 
GENES entries 
(computationally generated) 

 

Chemical 
Information  
(KEGG LIGAND) 

KEGG COMPOUND Metabolites and other small 
molecules 

C number 

KEGG GLYCAN Glycans G number 

KEGG REACTION Biochemical reactions R number 

KEGG RCLASS Reaction class RC number 

KEGG ENZYME Enzyme nomenclature EC number 

Health Information 
(KEGG MEDICUS) 

KEGG DISEASE Human diseases H number 

KEGG DRUG Drugs D number 

KEGG DGROUP Drug groups DG number 

KEGG ENVIRON Crude drugs and health-
related substances 

E number 

 

Because of KEGG’s architecture, by using metabolite codes we developed an R package 

dedicated to retrieving general information, enzymes, genes and pathways related to 

the corresponding metabolite in an automatized fashion.  

HMDB database is a multi-purpose bioinformatics database focused on quantitative, 

analytical and functional annotation of human metabolites [77]. Entries in the HMDB 

database are structured in the so-called “MetaboCards”, each one of them containing 

more than 90 data fields, including physicochemical and biochemical features of the 

metabolites, biological and biomedical data and cross-references with other databases 

[77, 101]. Some of the most relevant entries of MetaboCards are summarized in Table 

19.  

Our approach with HMDB database included the same data as KEGG’s database step 

and, due to the availability of more data, other important information. 
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Table 3: Summary of the MetaboCards included information for HMDB database, adapted from [77]. 

Metabolite and medical information Protein/enzyme information 
Common name 
Description 
Synonyms/IUPAC name 
Chemical structure 
Chemical taxonomy 
Molecular weight (mono and ave) 
SMILES (isomeric and canonical) 
KEGG/PubChem/OMIM/MetaGene links 
CAS number 
InChi identifier 
Melting point 
Water solubility (predicted and expected) 
State (solid, liquid, gas) 
pKa or pI 
LogP or hydrophobicity 
MOL/SDF/PDF text files 
MOL/PDB image files 
NMR spectra (predicted, calculated) 
Location (cell, biofluid, tissue) 
Concentration (urine, plasma, CSF) 
Associated disorders 
Abnormal concentration (urine, plasma, CSF) 
Metabolic pathways (KEGG, SimCell) 
Metabolizing enzymes 

Enzyme/protein name 
Enzyme/protein synonyms 
Enzyme/protein sequence 
Protein number of residues 
Protein molecular weight 
Protein pI 
Protein gene ontology 
Protein general function 
Protein specific function 
Protein pathways 
Protein reactions 
Protein Pfam domains 
Protein signal sites 
Protein transmembrane regions 
Protein metabolic importance 
Protein/enzyme EC link 
GenBank, SwissProt, PDB ID 
Protein structure data 
Protein cellular location 
Gene sequence 
GenBank ID 
Chromosome location 
Chromosome locus 
Protein/enzyme SNP/mutations 
Protein/enzyme references 

 

Combining both approaches, we developed an R package dedicated to the automatic 

data retrieval of both KEGG and HMDB databases that we called DatR. It had also extra 

functionalities connected to other databases such as OMIM, Uniprot and/or PubMed. In 

order to be able to use the full functionalities of the package, the following 

dependencies were used: KEGGREST [226], XML [227], stringi [228], rentrez [229], 

GEOquery [230] and RISmed [231]. All the functions developed within this R package 

were accessible by standard R format. R package was uploaded to GitHub repository 

(https://github.com/pxtm/DatR). 

 

3.1.1.1.- KEGG database access 

KEGG compounds ID follow the following structure: a capital C followed by a 

combination of 5 numbers, for example, phosphatidylcholine is identified as C00157 in 

KEGG’s database. Because the ID code is unique to each metabolite, we designed the 

KEGG data retrieval functions to work with these IDs. 

In R, with the metabolites identified by their KEGG ID code, we designed mainly three 

functions, one for metabolite associated enzymes code (EC) retrieval, one for the 

conversion of these enzymes to their corresponding genes and a final one to map the 

metabolites to the metabolic pathways in which they are represented. 

https://github.com/pxtm/DatR
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1.- Metabolites to enzymes 

From the KEGG ID metabolite code, the function uses the REST KEGG portal and 

returns the enzymes that are associated to a specific metabolite. Enzymes are 

identified through the corresponding EC code, the standard form. The code for the 

function can be found below: 

kenz <- function(x){ 

KEGG_LINK_BASE <- "http://rest.kegg.jp/link/enzyme/" 

link_REST_url <- paste(KEGG_LINK_BASE, x, sep="") 

link <- readLines(link_REST_url) 

enzs<-sapply(link, function(x){ 

strsplit(x, "\t")[[1]][2] 

}) 

enzs<-unname(enzs) 

enzs<-sapply(enzs, function(x){ 

strsplit(x, "ec:")[[1]][2] 

}) 

enzs<-unname(enzs) 

enzs<-enzs[!is.na(enzs)] 

} 

 

2.- Metabolites to genes 

Using a similar approach, this time the function retrieves the genes present in the 

specific metabolite entry in KEGG. Because of the KEGG’s structure, in order to 

obtain genes from a specific metabolite, we need to retrieve first the enzymes 

associated with the metabolite and then cross-link them to the corresponding genes 

database. 

kgenes <- function(met){ 

  KEGG_LINK_BASE <- "http://rest.kegg.jp/link/enzyme/" 

  link_REST_url <- paste(KEGG_LINK_BASE, met, sep="") 

  link <- readLines(link_REST_url) 

  enzs<-sapply(link, function(x){ 

    strsplit(x, "\t")[[1]][2] 

  }) 

  enzs<-unname(enzs) 

  enzs<-sapply(enzs, function(y){ 

    strsplit(y, "ec:")[[1]][2] 

  }) 

  enzs<-unname(enzs) 

  enzs<-enzs[!is.na(enzs)] 

  kegg_link_gene<-"http://rest.kegg.jp/link/hsa/enzyme" 

  total_genes<-readLines(kegg_link_gene) 

  genes<-sapply(enzs, function(c){ 

    total_genes[grep(c, total_genes)]}) 

  genes<-unlist(sapply(genes, function(z){ 

    unname(unlist(sapply(z, function(d){ 

      sapply(d, function(f){strsplit(f, "\t")[[1]][2]})})))})) 

  genes<-unname(unlist(sapply(genes, function(z){ 

    unname(unlist(sapply(z, function(d){ 

      sapply(d, function(f){strsplit(f, "hsa:")[[1]][2]})})))}))) 

  require(rentrez) 

  gene_names<-sapply(genes, function(m){ 

    sapply(m, function(n){ 

      entrez_summary('gene', n) 

    }) 

  }) 

  gene_names<-as.data.frame(gene_names) 
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  gene_names<-(unname(unlist(gene_names[2,]))) 

  return(gene_names) 

} 

2.1.- Enzymes to genes 

In case we were starting from the enzymes obtained results, we also 

included a simplified version of the above function that retrieved the 

metabolite associated genes but starting from the enzymes list.  

kenzgen <- function(x){ 

  kegg_link_gene<-"http://rest.kegg.jp/link/hsa/enzyme" 

  total_genes<-readLines(kegg_link_gene) 

  genes<-sapply(x, function(c){ 

    total_genes[grep(c, total_genes)]}) 

  genes<-unlist(sapply(genes, function(z){ 

    unname(unlist(sapply(z, function(d){ 

      sapply(d, function(f){strsplit(f, "\t")[[1]][2]})})))})) 

  genes<-unname(unlist(sapply(genes, function(z){ 

    unname(unlist(sapply(z, function(d){ 

      sapply(d, function(f){strsplit(f, "hsa:")[[1]][2]})})))}))) 

  gene_names<-sapply(genes, function(m){ 

    sapply(m, function(n){ 

      entrez_summary('gene', n) 

    }) 

  }) 

  gene_names<-as.data.frame(gene_names) 

  gene_names<-(unname(unlist(gene_names[2,]))) 

} 

3.- Metabolites mapping to pathways 

We also developed a function that maps metabolites to human metabolic pathways 

and return the code and name of these pathways. 

kpaths <- function(x){ 

  temp<-readLines(paste0('http://rest.kegg.jp/link/pathway/', x)) 

  temp_paths<-sapply(temp, function(x){ 

    strsplit(x, 'path:')[[1]][2] 

  }) 

  paths<-sapply(temp_paths, 

function(y){readLines(paste0('http://rest.kegg.jp/find/pathway/', 

y))}) 

  paths<-sapply(paths, function(z){strsplit(z, '\t')[[1]][2]}) 

  return(unname(paths)) 

} 

4.- Summary of all KEGG data 

Finally, in order to facilitate the KEGG’s data retrieval step, we wrote a function that 

wraps up all the above, returning a final list with enzymes, genes and pathways 

associated to the metabolites. 

ksumm <- function(x){ 

  df1<-list( 

    list( 

      Enzymes=kenz(x), 

      Genes=kgenes(x), 

      Paths=kpaths(x))) 

  return(df1) 

} 
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Figure 13: Comparison of the C00157 metabolite entry in KEGG database (left) and the results obtained 

using the functions developed and run in the R environment (right) for the same metabolite. 

 

3.1.1.2.- HMDB database access 

For accessing HMDB database, we considered two options. One was accessing each 

MetaboCard individually, in a sequential form, which was time-consuming. The other 

was to download the full database and upload it to our own servers or the RStudio 

environment, which we discarded because of the lack of resources to do that. 

1.- Summary of HMDB data 

This function was designed to retrieve all the available information of interest 

for our projects: accession code, metabolite name, chemical and SMILEs 

formulas, related pathways (including metabolic pathways and diseases), the 

KEGG ID to cross-reference databases and the protein associations (protein 

accession, name, UniProt ID, gene name and protein type). 

 hsumm <- function (x) { 

  temp <- xmlToList(xmlParse(paste0("http://www.hmdb.ca/metabolites/",  

                                    x, ".xml"))) 

  Accession = temp$accession 

  Name = temp$name 

  Formula = temp$chemical_formul 

  Smiles = temp$smile 

  Genes <- vector("list", length = length(temp$protein_associations)) 

  for (i in 1:length(temp$protein_associations)) { 

    Genes[i] <- temp$protein_associations[i]$protein$gene_name 

  } 

  KEGG_ID = temp$kegg_id 
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  Paths <- vector("list", length =            

length(temp$biological_properties$pathways)) 

  if (length(temp$biological_properties$pathways) == 1) { 

    Paths = temp$biological_properties$pathways$pathway$name 

  } 

  else { 

    for (a in 1:length(temp$biological_properties$pathways)) { 

      Paths[a] <- temp$biological_properties$pathways[a]$pathway$name 

    } 

  } 

  hmdb_data <- list(Acces = Accession, Name = Name, Formula = Formula,  

                    SMILES = Smiles, Genes = unlist(Genes), KEGG = 

KEGG_ID, Paths = unlist(Paths)) 

} 

 

2.- Databases cross-linking 

In order to combine HMDB and KEGG databases, we needed one function that 

could convert between HMDB IDs and KEGG ones. Thus, we developed this 

function that retrieves the KEGG accession code from an HMDB metabolite 

entry. 

hkeggid <- function(x){ 

temp<-xmlToList(xmlParse(paste0("http://www.hmdb.ca/metabolites/", 

x,  ".xml"))) 

  keggid<-temp$kegg_id 

  return(keggid) 

} 

 

3.- Genes retrieval from HMDB metabolite 

This was a variant of the first HMDB database related function designed to obtain 

the gene name of the proteins related to each metabolite so that less time was 

consumed in comparison with the full function. Because of the specifics of the 

format of the data, it’s a combination of two different functions, one that 

retrieves the data and the other one that formats it into a readable and easy-

exportable way. 

hgenes <- function(x){ 

  temp<-xmlToList(xmlParse(paste0("http://www.hmdb.ca/metabolites/", 

 x,  ".xml"))) 

  Genes<-vector('list', length = length(temp$protein_associations)) 

  for (i in 1:length(temp$protein_associations)){ 

  Genes[i]<-temp$protein_associations[i]$protein$gene_name 

  } 

  return(unlist(Genes)) 

} 
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Figure 14: Comparison of the HMDB0007940 metabolite entry in HMDB database (upper panel) and the 

results obtained using the functions developed and run in the R environment (lower panel) for the same 
metabolite. HMDB MetaboCard has been reduced for easier visualization purposes.  
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3.1.1.3.- Other functionalities 

Apart from the database access functions described, we also included other options to 

aid in the functional profiling step.  

1.- Accession codes and metabolite names 

Because our center has strong collaborations with OWL Metabolomics Company 

and they use their personal codes for metabolites, we developed a function that 

allows us to retrieve the standard name, KEGG and HMDB codes for a specific 

metabolite. With slight modifications, this function also allowed us to easily 

convert KEGG IDs to HMDB ones and vice versa. 

owl_code <- function(x){ 

  data.frame( 

    Name=owl[grep(paste0('^', x, '$'), owl$OWL.Code), 3], 

    Alternative=owl[grep(paste0('^', x, '$'), owl$OWL.Code), 4], 

    HMDB=owl[grep(paste0('^', x, '$'), owl$OWL.Code), 6], 

    KEGG=owl[grep(paste0('^', x, '$'), owl$OWL.Code), 7] 

  , stringsAsFactors = F) 

} 

 

2.- Gene names 

Genes may be identified by a range of synonyms. This implies that sometimes 

discrepancies exist between the gene names obtained from KEGG or HMDB 

pipelines and the gene name used as an identifier in other databases such as the 

Entrez collection. Thus, we wrote a function that returns all the possible 

synonym names for a specific gene. 

galias <- function(x){ 

  p1<-entrez_search(db='gene', term=paste0(x, '[Gene Name] AND Homo 

sapiens[Organism]'))$ids 

  if (length(p1)==0) 

  {} 

  else if (length(p1)==1){ 

    p2<-entrez_summary(db='gene', id=p1)$otheraliases 

  } 

  else { 

    p2<-sapply(p1, function(z){ 

      entrez_summary(db='gene', id=z)$otheraliases 

    }) 

  } 

  if (isTRUE(p2=="")==TRUE) 

  {} 

  else { 

    return(unlist(strsplit(as.character(p2), ', '))) 

  } 

} 
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Figure 15: Screenshot of the results of the gene aliases function retrieval, using the list of genes obtained 

from the C00157 KEGG metabolite entry. 

 

3.- OMIM database access 

Online Mendelian Inheritance in Man (OMIM) is the NCBI database that includes 

information regarding the associations between genes and diseases [232]. 

Because this bioinformatics tool was designed to retrieve information that could 

facilitate unraveling the biological context of specific metabolite alterations, we 

considered this addition to be useful for this aim. Using the list of the genes 

obtained from any of the aforementioned functions, this function returned a list 

of all the diseases that have been reported to be associated with each gene.  

omim <- function(x){ 

  omim_id<-entrez_search("omim", x)$ids 

  if (length(omim_id)==0){ 

    summary_omim<-c('No entries found for this gene') 

  } 

  else { 

    summary_omim<-sapply(omim_id, FUN=function(x){ 

      entrez_summary("omim", x)$title 

    }) 

  } 

  return(unname(summary_omim)) 

} 

 



 

85| B i o i n f o r m a t i c s   

 

Figure 16: Screenshot of the results of the OMIM database entries function retrieval, using the list of the 

genes obtained from the C00157 KEGG metabolite entry. 

 

4.- PubMed database access 

Following the idea exposed above, accessing the PubMed database was the next 

logical step. We wanted to develop a function that was able to retrieve the 

published research papers that comply with a series of criteria defined by the 

user using the list of the genes obtained from the altered metabolites. The way 

we designed the function, it retrieved the following information to aid in the 

comprehension of the identified alterations: title, authors, abstract, journal, 

volume, year of publication, PubMed ID, DOI and citation.  

pubmed <- function(x, keywords_pubmed){ 

query_search<-EUtilsSummary(paste0(x, '[Gene Name] ', 

keywords_pubmed),type="esearch", db="pubmed") 

  summary_pubmed<-as.data.frame(cbind( 

    Title=ArticleTitle(EUtilsGet(query_search)), 

    Authors=Author(EUtilsGet(query_search)), 

    Abstract=AbstractText(EUtilsGet(query_search)), 

    Journal=ISOAbbreviation(EUtilsGet(query_search)), 

    Volume=Volume(EUtilsGet(query_search)), 

    Year=YearPubmed(EUtilsGet(query_search)), 

    Article_PubMed_ID=ArticleId(EUtilsGet(query_search)), 

    DOI=ELocationID(EUtilsGet(query_search)), 

    Citation=RefSource(EUtilsGet(query_search)))) 

  return(summary_pubmed) 

} 
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Figure 17: Screenshot of the output of the function for PubMed access for the first gene obtained from 

C00157 metabolite in KEGG database search, the PLAAT3 gene. Keywords used in the search are included 
in the image. 

 

5.- NCBI Nucleotide database access 

As we discussed previously, one of the steps of the biomarker discovery pipeline 

is the validation of the identified potential biomarkers. In our case, because we 

are working with metabolites and the enzymes that produce them, we thought 

it would be a good option to include a function that retrieved the transcripts 

entries related to the identified altered genes. This way, if an experimental 

validation of altered expression of those genes is required by qPCR, we could 

speed up the primers design process. 

 

 

search_nucl <- function(x){ 

  ids<-entrez_search("nucleotide", term=paste0(x, " AND Homo 

 sapiens[porgn]"), retmax=100)$ids 

  accession<-sapply(ids, function(x){ 

    entrez_summary("nucleotide", x)$accessionversion 

  }) 

  return(unname(accession)) 

} 
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Figure 18: Screenshot of the accession codes for the Homo Sapiens transcripts identified in Nucleotides 

database from NCBI data portal for all the genes identified to be related to C00157 metabolite. 

 

3.1.2.- Microbiome 

For microbiome data analysis, the process of getting OTUs from raw reads is in fact 

pretty well established and standardized, either if using QIIME or mothur [233, 126, 124] 

pipelines. What follows, though, is more open to discussion. Some debate had arisen 

related to how microbiome data should be analyzed and which kind of statistics applied.  

Because of the sequencing machines' limited capabilities, some authors are pushing the 

idea of microbiome datasets to be compositional, so those special statistics are needed 

to interpret this data [176]. Following this idea, the total number of sequenced reads 

and thus their assignment into OTUs would depend more on the sequencer capability. 

This means that the total reads count is non-informative in its raw form, as they would 

not represent the real composition of the microbiome. Instead, these authors suggest 

that transforming the total counts for each OTU to its relative frequency would recover 

the real microbiome population composition, including the relationships between 

different OTUs. The problem with compositional data analysis is that common statistical 

approaches are not applicable. Thus, new analytical methods that take into 

consideration the special features of compositional kind of data have been developed. 

Comparisons between analytical methodologies, though, have not resolved which one 

is better, usually obtaining opposite results. What it seems, though, is that different 

methods only differentiate on the false discovery rate, some being stricter (usually the 

compositional ones) and others less. It has been described that these differences in the 

false discovery rates may depend on the features of the data, like the libraries' size and 

the number of samples per group. For our clinical projects (results Chapters 2, 4,  5 and 
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6), we decided to take into consideration our datasets characteristics and try to analyze 

which methodology fits better in each case. 

Thus, for the fibromyalgia microbiome dataset (Chapter 4), we compared the results 

obtained with a more standard statistics approach, by using DESeq2 tool [234] with the 

compositional methods one, by means of ALDEx2 [235, 236]. We saw that common 

statistics approach (DESeq2) and non-corrected compositional data approach lead to 

similar results. When multiple testing correction was applied, though, the significance 

of these results was lost (FIGURE 19). Because we had performed an experimental 

validation of the difference in fibromyalgia microbiome identified by DESeq2 

methodology, we chose to use those results [237]. It has been suggested that a non-

even sample number per group may affect ALDEx2 performance [238] and considering 

that fibromyalgia group had twice the samples as control one we think this may be the 

explanation for these differences. 

 

Figure 19: Differences between distinct microbiome analysis tools at the genus level for fibromyalgia 

study. To the left, results obtained with DESeq2 methodology as published in [237], upper-right the non-
adjusted compositional ALDEx2 results, lower-right the multitest adjusted results for ALDEx2 tool. Grey 
points represent abundant non-differential features, black points the non-differential rarely abundant 
features, blue dots the features identified as significantly different by one test (t-test or Wilcoxon) and red 
ones the significantly different features identified by both tests. 

This comparison among the different tools was also repeated with the data of CRC 

microbiome project (Chapter 6) in order to determine which analytical tool and pipeline 

was the most appropriated for the corresponding data characteristics. We combined 

three tools: ALDEx2, SIAMCAT [239] and LEfSe [240]. While LEfSe identified more 

bacterial genera to be differentially expressed between sample groups, these 



 

89| B i o i n f o r m a t i c s   

differences were lost when significance was tested by other methodologies. SIAMCAT 

and ALDEx2 results, though, were consistent (FIGURE 20).  

 

Figure 20: Relative abundance of genera identified to be differentially abundant between sample groups 

(C, AD and CRC) by the three mentioned tools. Genera are grouped by family and shaded accordingly. 
Significance of the pairwise differences are indicated in grayscale as follows: black for C-AD, dark gray for 
AD-CRC and light gray for C-CRC; * means <.05 significance, **<0.01 and ***<0.001.  

 

As can be seen in FIGURE 20, the most robust tools were both SIAMCAT and ALDEx2, 

which implement compositional methodology analytical approaches. Thus, is suggested 

that results deriving from the application of these two tools may provide with potential 

biomarkers more prone to be experimentally validated. 

Another issue that is currently in discussion is the normalization of microbiome datasets. 

While until recently rarefaction was a standardized step in the microbiome datasets 

processing pipeline, nowadays it’s been discussed if this could lead to a loss of 

information [174]. This affirmation, though, has been intensively debated [238], without 

reaching a consensus. In fact, the most recurrent argument we found in microbiome 

data analysis is that methodology should be adapted to data characteristics. For our 

case, we found that no differences were observed when β-diversity indexes were 

measured on fibromyalgia’s microbiome study (FIGURE 21). As can be seen in this figure, 

the distribution of samples in either non-rarefied and the rarefied data lead to no 

specific clustering of samples, thus suggesting that rarefaction did not affect the 

diversity measurements.  Accordingly, for this thesis rarefaction procedure was applied 

to normalize the number of sequences per sample. 
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Figure 21: PCoA plots of non-rarefied and rarefied microbiome datasets for the fibromyalgia project 

samples. While the distribution of samples seems to change a little bit, no significant differences in 
diversity of the subpopulations were found. 

 

3.1.3.- Metabolomics – microbiome integration 

We already introduced the current approach options for omics data integration, which 

in summary rely on dimension reduction techniques and/or the identification of 

correlations between individual variables of each omics and the between the full omics 

datasets. While dimension reduction methodologies are useful to easier the 

interpretation of high-throughput datasets, the identification of potential individual 

biomarkers from these kinds of analyses is less easy. In contraposition, correlation 

analysis performed at individual variables level allows the easier identification of 

potential biomarkers but complicates the identification and interpretation of potential 

regulatory interactions between different variables, simplifying in excess the 

representation of a specific phenotype.  

Thus, when we designed our analytical and integrative pipeline, we wanted to combine 

both approaches, in order to better explain and define any potentially interesting result. 

Among the distinct tools we tested for the dimension reduction approach, mixOmics 

[241] and especially their team’s tool DIABLO [242] was the easier, most user-friendly 

and less resource consumer option of all. 

For the variables correlations analyses, HAllA from Huttenhower’s laboratory [243] was 

found to be an easy to use tool, with clear instructions on how to install and run it. 

Otherwise, the most standard approach was to calculate Spearman’s correlation 

coefficient between each variable of each omics dataset using R basic tools, such as cor 

and cor.mtest R functions, specifying method = ‘Spearman’ in the available options of 

the functions. In our case, we used both approaches for the distinct project, using HAllA 

for CRC microbiome-metabolomics project and standard R functions approach for multi-

omics fibromyalgia project. 
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3.1.4.- Final pipeline 

As result of the bioinformatics tool combination and use a pipeline is proposed for the 

independent analysis of metabolomics and microbiome datasets and their integration is 

summarized in FIGURE 22. 

Briefly, raw data is processed and normalized in the first step. Then, each omics data is 

analyzed separately, using the normalized datasets. For metabolomics, both 

multivariate and univariate analyses are performed and combined. Functional profiling 

is performed by means of our ad-hoc scripts, accessing HMDB and KEGG databases.  

For microbiome, processing and taxonomical annotation are performed with QIIME2 

software. Then, α and β diversity indexes are calculated and statistical differences 

measured to identify potential differences between the compared sample groups. 

Differences in specific bacteria are computed with the taxonomically annotated dataset 

and functional profiling is inferred using specific software. 

Both omics datasets are then joined and 3 kinds of multi-omics analytical methods are 

applied: dimension reduction, using mixOmics package, Procrustes analysis, using basics 

R functions and correlation analysis, either using R basics functionalities and/or HAllA 

software. Finally, predictive modeling is performed with the combination of the distinct 

omics and most discriminating variables identified.  

A relation of all the tools, databases and resources used in this thesis can be found on 

Supplementary Table 1. 
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Figure 22: Proposed analytical pipeline for the processing and integration of metabolomics (left) and 

microbiome (right) datasets. Analytical approaches used in each step are indicated with text near the 
appropriated dataset. Tools and databases used are identified by the corresponding logo, including HMDB 
and KEGG databases, QIIME2, HAllA and R software. 
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3.2.- Chapter 2. Prostate Cancer EVs metabolomics 

The work related to this case was published as a Research Article, with first shared 

authorship, in Journal of Extracellular Vesicles and can be found as Annex I: 

Clos-Garcia, M.*, Loizaga-Iriarte, A.*, Zuñiga-Garcia, P.* et al. (2018) ‘Metabolic 

alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis 

and progression’, Journal of Extracellular Vesicles. Taylor & Francis, 7(1) [244].  

3.2.1.- Introduction 

Prostate cancer (PCa) is among the most frequently diagnosed and deadly types of 

cancer in men in Western countries (http://globocan.iarc.fr). Lack of sensitive and 

specific diagnostic tools, especially to detect early stages of the disease, and the 

unknown underlying mechanisms of onset and progression of PCa are the major 

problems to treat PCa with the highest efficacy. Thus, there is a high demand to discover 

more sensitive and specific biomarkers to improve PCa diagnosis and prognosis. 

Nowadays, prostate-specific antigen (PSA) blood screening tests, together with clinical 

T-stage and Gleason score are the standard tests to discriminate patients with low, 

intermediate or high risk to suffer PCa [245]. 

Metabolomics is recognized as the ultimate “omics” discipline with high potential to 

identify sensitive and specific markers and to understand the mechanisms involved in 

the development of pathological processes [246]. The recent technological revolution in 

separation and detection of small molecules, combined with rapid progress in 

bioinformatics, is making it possible to rapidly measure a large number of metabolites 

in a small amount of sample [247, 248]. Metabolomics comprises the qualitative and 

quantitative measurements of the metabolic response to physiological or pathological 

stimuli. It involves the extraction and measurement of low molecular weight molecules 

(e.g. amino acids, sugars, bile acids, fatty acids, vitamins, etc.) belonging to different 

metabolic pathways to generate metabolic profiles of cells, tissues or biofluids [249, 

250]. Previous studies have shown the utility of serum metabolite levels as a diagnostic 

tool for different cancer types [251], and in PCa some metabolites have already been 

suggested as candidate biomarkers. Increased serum levels of polyunsaturated fatty 

acids have been associated to reduce risk of PCa, while higher levels of serum 

testosterone were associated with an increased risk of suffering this malignancy [252]. 

Other metabolomics approaches have reported alterations of acylcarnitines, glucose, 

glycerophospholipids (including lysophosphatidylcholines and phosphatidylcholines), 

amino acids and triglycerides in PCa [253]. 

Urine samples have been intensely used to identify PCa biomarkers [254], due to its easy 

availability and handling, and its anatomical proximity to the prostate. As occurs for the 

serum, there are also several metabolomics studies of urine samples that found 

alterations in urinary levels of more than 20 metabolites including N-methyl glycine, 

kynurenine, uracil, glycerol 3-phosphate, dihydroxybutanoic acid, xylonic acid, 

pyrimidine, ribofuranoside and xylopyranose (reviewed in [255]). These studies have 

http://globocan.iarc.fr/
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pointed out that many metabolic pathways may be altered in PCa including glycine 

synthesis and degradation, and carbohydrate and energy metabolisms. Although all 

these metabolites need further clinical validation, they support the notion that 

metabolomics constitutes a suitable technology to identify candidate biomarkers of PCa. 

One important drawback of using urine sample for biomarker discovery is that many of 

their constituents are diluted avoiding to be detected by current technologies. Thus, in 

order to detect underrepresented molecules, it is still required to concentrate the 

sample. In this context, cell-secreted extracellular vesicles (EVs) are present in all body 

fluids, including urine [19], and could provide a concentrated source of molecules. Thus, 

a deep analysis of the urinary EVs composition could open a window of opportunities to 

identify more sensitive and specific PCa biomarkers. Inline, a recent lipidomics study 

performed in these urinary vesicles from healthy and PCa samples reveal up to nine lipid 

species differentially expressed as to potential PCa biomarkers [256] supporting the 

existence of metabolic changes in urine EVs from PCa patients. 

In the current study, we have compared urinary EVs obtained from PCa and benign 

prostate hyperplasia (BPH) patients and focused on the analysis of the metabolites that 

they contain by performing a UHPLC-MS targeted metabolomics analysis. We evaluated 

the levels of 248 metabolites belonging to different chemical nature including amino 

acids, nucleosides, vitamins, as well as different lipid species. Among them, 76 

metabolites were found significantly altered in PCa compared to BPH. Some of these 

metabolites were significantly correlated with current markers of PCa (e.g. PSA). 

Interestingly, dehydroepiandrosterone sulfate was among the most significantly altered 

metabolites in PCa, supporting the notion that beyond their function as “metabolic 

machines” [247, 257, 258] EVs could inform about metabolic alterations of cancerous 

tissue. 

 

3.2.2.- Methods 

3.2.2.1.- Patient samples 

All urine samples were obtained from the Basque Biobank for research (BIOEF, Basurto 

University hospital) upon informed consent and with evaluation and approval from the 

corresponding ethics committee (CEIC code OHEUN11-12 and OHEUN14-14). The 

clinical classification of the patients is described in Table 2. For each sample, urine (50 

ml) was collected by spontaneous micturition, centrifuged at 2,000 × g 10 min, filtered 

through a 0.22 μm pore membrane and immediately frozen at −80ºC. 

3.2.2.2.-Urine extracellular vesicle isolation and characterization 

To isolate EVs from urine (average ± SEM; 49.7 ± 0.86 ml), the stored samples were 

thawed, centrifuged at 10,000 × g for 30 min and the supernatant ultra-centrifuged at 

100,000 × g for 75 min. The resulting pellet was washed with an excess of phosphate-

saline buffer (PBS), and again ultra-centrifuged at 100,000 × g for 60 min. The final pellet 

was re-suspended in 150 µL of PBS, aliquot generated and kept at −80°C for further 

analysis. Protein was determined by Bradford and obtained 32.7 ± 4.6 (mean±SEM) 
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micrograms on average of total purified protein from the initial urine volume (50 ml). 

The size distribution of the particles present in the isolated preparations was 

determined by measuring the Brownian motion using a NanoSight LM10 system 

equipped with fast video capture and particle-tracking software (Malvern, UK). Pre- and 

post-acquisition settings were maintained the same for all the samples and each video 

was analyzed to give the mean, mode, and median vesicle size, as well as an estimate of 

the particle concentration. Then, an average curve was calculated for each group of 

patients to be compared among them. Cryoelectron microscopy and Western-blot 

analysis were performed as described previously [259]. 

Table 4: Clinical classification of the samples. In parentheses are indicated the median ± SD of age for 

each group of samples. 

Disease status Stage 
Perineural 
invasion 

n 

Prostate Cancer (PCA) (64±4.41) 

Stage 2 (64±4.12) 

No (Pn0) 
(65.5±5.02) 

6 

Yes (Pn1)  

(64±3.47) 
10 

Stage 3 
(64.5±4.68) 

NA 15 

Benign Hyperplasia (BPH) 

(70±5.71) 
NA NA 14 

 

3.2.2.3.-Metabolite extraction and UHPLC-MS analysis 

Metabolic profiles of urinary EVs were semi-quantified using four UHPLC-MS-based 

analytical platforms as previously described [260, 261]. Methanol was first added to 

urinary EV preparations, and after brief vortex, chloroform was added. Both extraction 

solvents were spiked with metabolites not detected in unspiked EV extracts: 

tryptophan-d5(indole-d5), PC(13:0/0:0), FA (19:0), dehydrocholic acid, SM(d18:1/6:0), 

PE(17:0/ 17:0), PC(19:0/19:0), TAG(13:0/13:0/13:0), Cer(d18:1/17:0), ChoE(12:0), 

anthranilic acid-(ring-13C6), phe-nylthiohydantoin (PTH)-valine and glycocholic- 2,2,4,4-

d4 acid. Samples were incubated at −20°C for 30 min and, after vortex, three different 

phases were collected. Platform 1 included fatty acyls, bile acids, steroids and 

lysoglycerophospholipids profiling. Supernatants were collected after centrifugation at 

16,000 × g for 15 min, dried, reconstituted in methanol, resuspended for 20 min and 

centrifuged (16,000 × g for 5 min) before being transferred to vials for UHPLC-MS 

analysis. Platform 2 included glycerolipids, cholesteryl esters, sphingolipids and 

glycerophospholipids profiling. Extracts were mixed with water (pH = 9) and after brief 

vortex mixing, the samples were incubated for 60 min at −20°C. After centrifugation at 

16,000 × g for 15 min, the organic phase was collected and the solvent removed. The 

dried extracts were then reconstituted in acetonitrile/isopropanol (50:50), resuspended 

for 10 min, centrifuged (16,000xg for 5 min) and transferred to vials for UHPLC-MS 

analysis. Platform 3 included amino acids profiling; 10 μl aliquots from the extracts 

prepared for Platform 1 were transferred to microtubes and derivatized for amino acid 

analysis. Finally, Platform 4 consisted of the analysis of polar metabolites profiling, 

including central carbon metabolism. Extracts were mixed with chloroform. After brief 
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vortex mixing, water was added and samples were mixed for 10 min at room 

temperature. Afterward, the samples were centrifuged at 16,000 × g for 10 min. The 

supernatants were collected and dried. Extracts were then solubilized in water and after 

centrifugation, supernatants were transferred to vials for UHPLC-MS analysis. 

Chromatographic separation and mass spectrometric detection conditions employed 

were previously described [260, 261]. The overall quality of the analysis procedure was 

monitored using six repeat injections of a pooled sample, considered as the quality 

control sample. For each of the four analytical platforms, randomized sample injections 

were performed, with QC calibration and validation extracts uniformly interspersed 

throughout the entire batch run. Generally, the retention time stability was <6 s 

injection-to-injection variation and the mass accuracy <3 ppm for m/z 400–1200, and 

<1.2 mDa for m/z 50–400. Details of lipid nomenclature used in this work are provided 

as supplementary material (https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442). 

3.2.2.4.- Data processing, statistical and bioinformatics analysis 

3.2.2.4.1.- Amount of urine sample and data normalization 

A similar volume of urine samples (50 ml) from each patient was employed for obtaining 

the EV preparations. Then, the complete EV preparations were analyzed by UPLC-MS 

metabolomics analysis. The peak intensities for each metabolite included in the analysis 

were normalized to the sum of the peak intensities within each sample. There was no 

significant correlation (F < Fcrit) between the sum of the peak intensities used for the 

normalization and the groups being compared in the study. 

3.2.2.4.2.- Missing values imputation 

First, metabolites that were not detected in at least 70% of the whole set of samples 

were removed from the analysis. Then, taking the minimal value for each metabolite 

and dividing it by a factor of 10, missing values were imputed in order to obtain the final 

data set. 

3.2.2.4.3.- Univariate analysis 

Three different comparisons were established for the analyses: 

- Prostate cancer (PCa) vs benign prostate hyperplasia (BPH). 

- PCa pathological stage 3 vs PCa pathological stage 2. 

- In the PCa pathological stage 2 group, perineural invasion: Pn1 vs Pn0.  

The mean and 90% Winsorized-mean for each metabolite and each group of patients 

were calculated, as well as, Student’s t-test or Wilcoxon signed-rank test, depending on 

the normality of the data that was assessed using Shapiro-Wilk test. Median, standard 

error of the mean (SEM), the standard deviation (SD), coefficient of variation and the 

Interquartile Range (IQR) were also calculated. 

Several calculations were performed for the three distinct comparisons. We calculated 

the F-test of the two variances, the Student’s t-test, Wilcoxon signed-rank and Fold 

Change for each metabolite. To test the discriminatory capacity of each metabolite for 

each one of the three comparisons we performed Receiver Operating Characteristic 

https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442
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(ROC) analysis, including in the calculations the values of the Area Under the Curve 

(AUC), sensitivity, specificity, positive predictive value, negative predictive value, 

Youden index and the optimal cut-off. 

For each one of the three pairwise comparisons, we generated box-plots for those 

metabolites with significant differences between the two groups with adjusted p-values 

following Bonferroni methodology. Heatmaps indicating log2 value of Fold Change and 

Bonferroni adjusted p-values were also calculated. Finally, volcano plots were generated 

with the log2 Fold Change values and Bonferroni adjusted p-values. 

All statistical analyses were performed using R software v3.3.2 (R Development Core 

Team, 2016; http://cran.r-project.org) with stats, caret, psych and OptimalCutpoints 

package [262]. Boxplots and volcano plots were generated with ggplot2 R package. 

Correlations with clinical parameters such as BMI were done with cor.test function in R 

software, using Spearman’s method. Both rho and p-value for each metabolite are 

reported. We studied the correlation between BMI and metabolite levels with all the 

samples together and also dividing samples depending on their clinical status. 

3.2.2.4.4.- Multivariate analysis 

Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-

DA) and Orthogonal Partial Least Squares (OPLS) were performed for each pairwise 

comparison using SIMCA-P v12.0.1.0 software (Umetrics AB). 

3.2.2.4.5.- Metabolites mapping into cellular metabolic pathways and identification of 

primary enzymes associated with their metabolism 

Metabolic pathways were determined with MetScape v3.1.2 application, running under 

Cytoscape v3.5.0 software, linking them to the KEGG Pathway database 

(http://www.genome.jp/kegg/pathway.html). Primary enzymes involved in the 

metabolism of the metabolite of interest, and their corresponding coding genes were 

retrieved from KEGG (http://www.genome.jp/kegg/compound/) and HMDB 

(http://www.hmdb.ca/) databases, using dbWalk utility on bioDBnet database searching 

online utility and specifying “9606” (Homo sapiens) Taxon ID on Organism box 

(https://biodbnet-abcc.ncifcrf.gov/db/dbWalk.php), with the following paths: 

- For KEGG compounds, we started with enzyme EC code: 

EC Number->UniProt Accession->UniProt Entry Name->KEGG Gene ID->Gene ID-

>Gene Symbol->Gene ID->GenBank Nucleotide Accession. 

- For HMDB compounds, we started with the name present on HMDB database: 

HMDB Metabolite->HMDB Enzyme -> UniProt Entry Name->Gene Symbol->Gene 

ID->GenBank Nucleotide Accession. 

For each metabolite included in this step, we reported: 

- For KEGG compounds, the related enzymes EC number, UniProt Accession, UniProt 

Entry Name, KEGG Gene ID, Gene Symbol, GeneID and the GenBank Nucleotide 

Accession for the corresponding transcripts. 

http://cran.r-project.or/
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/compound/
http://www.hmdb.ca/
https://biodbnet-abcc.ncifcrf.gov/db/dbWalk.php
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- For HMDB compounds, the HMDB enzyme Gene Symbol, Gene Symbol, Gene ID 

and GenBank Nucleotide Accession for the corresponding transcripts. 

Database normalization: all the datasets used for the data mining analysis were 

downloaded from GEO or TCGA, and subjected to background correction, log2 

transformation and quartile normalization as reported [263, 264]. In the case of using a 

pre-processed dataset, this normalization was reviewed and corrected if required. For 

normal vs. PCa comparisons, a two-tailed t-test is performed in order to indicate if the 

observed differences between the groups are significant. For tumor progression 

analysis, an ANOVA test was performed in order to evaluate if the observed differences 

of gene expression levels between the groups were significant. DFS analysis was 

performed using Taylor and TCGA datasets. In both cases, the patients were stratified 

by quartiles based on the expression of the gene of interest, Kaplan-Meier Estimator 

was used in order to estimate the survival function from different groups of patients 

while a Log-Rank test is calculated to check the significance between the curves. In the 

case of Taylor dataset, the analysis was performed using the average signal from all the 

transcripts of a gene. 

3.2.3.- Results 

Urine samples were collected from patients with BPH (n = 14) and PCa (n = 31) with 

different pathological characteristics (Table 2). In order to avoid any chemical alteration 

of the vesicles that could interfere with the metabolomics analysis, we decided to 

preserve the uromodulin status of the samples by avoiding the use of high-salt 

concentration or reducing agents. After initial clearing at low centrifugation and 

ultrafiltration, small EVs (exosomes, small microvesicles and apoptotic blebs) were 

isolated by differential ultracentrifugation as described in [259]. Cryoelectron 

microscopy revealed the presence of vesicles in the preparations (FIGURE 23A). Western 

blot analysis showed that while we could not detect mitochondria (COX IV) or endoplasmic 

reticulum (GRP78) proteins, we could detect exosomal markers (CD10, CD63, CD9, Flotillin 

and CD26), and also some uromodulin (UMOD/THP) (FIGURE 23B). As previously, we 

found high inter-individual variability in the abundance of these proteins [259, 265]. In 

agreement with previous results [259], physical characterization by NTA analysis of the 

isolated material revealed significant differences in the size distribution of particles 

isolated from PCa and BPH samples (FIGURE 23C). Interestingly, the size of the particles 

increased with the stage of the PCa, thus, the major difference was observed between 

BPH and PCa stage 3 (FIGURE 23C). A significant higher abundance of particles bigger 

than 350 nm was observed in samples from PCa stage 3 (FIGURE 23C). The mean 

concentration of particles per ml for all samples was 8.60 ± 1.19 × 1010 EVs/mL. No 

differences were found for the concentrations of EVs/mL between different groups 

(BPH, PCa stage 2 Pn0, stage 2 Pn1 and stage 3). 
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Figure 23: Isolated EVs biophysical and biochemical characterization. CryoEM pictures of both BPH and 

PCa sample groups EVs (A); western blot analysis of common EVs markers (CD10, CD63, CD9, CD26, 
Flotilin), mitochondrial marker (COX IV) and endoplasmic reticulum (GRP78) (B); size distribution and 
comparison of the EVs population for each PCa subgroup vs BPH (C). All p-values were adjusted by 
Bonferroni method. Significance levels: * <0.05, ** <0.01 and *** <0.001. 

After this initial characterization, metabolites present in the urinary EV preparations 

were extracted using different methodologies in order to cover a wide range of 

molecules with different chemical nature (see Methods section). We were able to detect 

248 metabolites (https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442) 

including amino acids, vitamins, nucleosides, as well as different lipid species. 

Considering all the samples, metabolites with more than 70% of missing values were 

eliminated from the analysis with the exception of PC(14:0/20:4), PC(0:0/20:3) and 

TG(56:8) because most of the missing values occur mainly in one of the two groups (PCa 

https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442
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or BPH). Afterward, we performed three different statistical analyses comparing BPH 

and PCa groups, as well as, the association to tumor stage and perineural invasion. 

3.2.3.1.- Metabolites differentially altered between BPH and PCa 

Univariate analysis revealed that 76 out of 248 metabolites showed statistically 

significant differences between EVs from PCa and BPH patients. These metabolites were 

distributed along most chemical families analyzed, although there was a predominance 

of phosphatidylcholines (PC), fatty acid esters (acylcarnitines) and sterols (FIGURE 24). 

Whereas a higher abundance of PC was observed in BPH samples, acylcarnitines and 

sterols were more abundant in PCa samples (FIGURE 24A). In addition, carboxylic acids 

and glycerolipids were slightly decreased, and vitamins were increased in PCa EVs. The 

other families of metabolites including amino acids, bile acids, nucleosides, 

sphingolipids, phosphatidylethanolamines (PE) contained both increased and decreased 

metabolites (FIGURE 24B). Interestingly, the abundance of ceramides with short carbon 

number in their acyl chains were increased in PCa samples, while ceramides with long 

carbon number (>23) in their acyl chains were reduced in PCa EVs. This pattern was not 

present in other sphingolipids families. In the non-esterified fatty acid family, the 

abundance of arachidonic acid (20:4n-6) was decreased in PCa samples, while other 

polyunsaturated fatty acid with shorter carbon chain (16:3n-x) was significantly 

increased in the PCa group (FIGURE 24).  
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Figure 24: Univariate differences between PCa (n=31) and BPH (n=14) sample groups. Volcano plot 

depicting alterations between PCa and BPH metabolites, with PCa increased metabolites in the positive 
region of the horizontal axis. Points were colored and shaped depending on the metabolite family (A). 
Relation of the metabolites altered between PCa and BPH sample groups ordered alphabetically. Grayscale 
indicates the significance value of the difference: light gray <0.05, medium gray <0.01 and dark gray 
<0.001 (B). Heatmap depicting the full fold-change differences in each metabolite. Red values indicate 
elevation in PCa and green reduction. P-values are indicated in grayscale (C). 

Multivariate analysis by principal component analysis (PCA) did not show a perfect 

separation of the two groups, although PCa EV samples tended to aggregate all together, 

whereas BPH samples were more disperse (FIGURE 25). Statistics of the model indicate 

a low degree of fit (2n component R2X = 0.49) and also low predictability (2n component 

Q2X = 0.37). The PCA loadings plot (FIGURE 25) indicated that the differences between 

PCa and BPH samples were explained mainly by different subfamilies of 

glycerophospholipids, confirming what was identified with the univariate analysis. 
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Figure 25: Multivariate analysis for the comparison PCa (n = 31) vs BHP (n = 14). Dots in score plot (A) 
have been colored depending on its group (PCa or BHP). Markers in loadings plot (B) have been colored 
depending on the metabolite family. AA (amino acids), AC (acylcarnitines), BA (bile acids), Carb 
(carboxylic acids), CCM (derivative carboxylic acids), Cer (ceramides), CMH (monohexosylceramides), 
DAPC (diacylglycerophosphocholines), DAPE (diacylglycerophosphoethanolamines), DAPI 
(diacylglycerophosphoinositol), DG (diacylglycerols), Exog. (exogenous), FAA (fatty amides), FFA (non-
esterified fatty acids), MAPC (1-monoacylglycerophosphocholine), MAPE 
(monoacylglycerophosphoethanolamine), MAPI (monoacylglycerophosphoinositol), MEMAPC (1-ether, 2-
acylglycerophosphocholine), MEMAPE (1- ether, 2-acylglycerophosphoethanolamine), MEPC (1-
monoetherglycerophosphocholine), MEPE (1-monoetherglycerophosphoethanolamine).  
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3.2.3.2.- Metabolites differentially altered between PCa stage 2 and stage 3 

PCa stage is a pathological sign of disease aggressiveness [245]. In an attempt to identify 

potential biomarkers to discriminate between different stages of PCa, we performed 

univariate analysis comparing the PCa stage 2 and stage 3 subgroups. We identified 5 

metabolites that showed significant differences between the two groups (FIGURE 26A). 

These metabolites were three ceramides, Cer(d18:1/16:0), Cer(d18:1/20:0), Cer 

(d18:1/22:0) one glycerophospholipid PC(30:0) [which is a combination of the isomers 

PC(16:0/14:0) and PC (14:0/16:0)] and one acylcarnitine, stearoylcarnitine [AC(18:0)]. In 

addition, we also observed a non-significant trend in other metabolite families. Thus, 

fatty esters, glycerolipids (both diacylglycerols and triacylglycerols), fatty amides, 

vitamins and 1-monoetherglycerophosphocholines showed an increase in their 

abundance in the PCa stage 3 group (https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442). 

In contrast, the levels of most of the metabolites belonging to the sphingolipids family 

including ceramides, monohexosylceramides and sphingomyelins, as well as fatty 

alcohols, some glycerophospholipids subgroups and nucleosides were reduced in stage 

3. In this comparison, unsupervised multivariate analysis could not achieve any 

separation between different PCa stages, and although supervised PLS-DA analysis was 

able to discriminate (R2X 0.47, Q2X 0.07), its loadings plot showed that the major 

https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442
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influence in the separation corresponded to the aforementioned five metabolites (data 

not shown) detected in the univariate analysis. 

 

Figure 26: Boxplots of the differentially expressed metabolites between PCa stages (A) and between 

presence and absence of perineural invasion (B). Stage 2 n = 16, Stage 3 n = 15, Pn0 = 6, Pn1 n = 10. 

3.2.3.3.- Metabolites differentially altered between PCa stage 2 perineural 

invasion: Pn1 vs Pn0 

Perineural invasion in PCa has been associated with prostate cancer prognosis [266]. 

Although a limited number of samples were available, we also attempted to identify 

metabolites tentatively associated to this pathological feature. By univariate analysis, we 

detected significant lower abundance of cyclic AMP (cAMP) and a higher abundance of 

the combination of isomers androsterone sulfate and etiocholanolone sulfate in the EV 

samples obtained from PCa patients with perineural invasion (FIGURE 26B). In addition, 
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although not significant, three bile acids showed lower levels in samples with perineural 

invasion (https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442). 

Unsupervised multivariate analysis was not able to separate the two groups of samples, 

but we could achieve this separation with PLS-DA test (R2X 0.40, Q2X 0.58) (data not 

shown). 

 

3.2.3.4.- Correlation analysis of metabolic profiling with body mass index (BMI) 

When studying circulating metabolites, the systemic metabolic state can be a critical 

contributing factor that can influence the results of the analysis. Obesogenic diets and 

obesity impact on biofluid metabolite concentration, and can also have a central effect 

on tumor tissues [267] by altering their biological features. Therefore, we considered 

evaluating the changes in urine EV metabolites that were associated with the body mass 

index (BMI). Samples were divided into three groups, corresponding to their calculated 

BMI: lean (<25), overweight (>25 and <30) and obese (>30). Taking into account all the 

samples independently of their BPH or PCa classification, no significant correlation was 

found between BMI and any of the 248 metabolites analyzed in this study. Afterward, 

we explored if some metabolites were correlating with BMI inside different groups. In 

the lean BMI group, some sterol-related metabolites including isomer pregn-5-ene-3,20-

diol sulfate and isomer androsterone sulfate showed significant positive correlations 

with rho values of 0.72 and 0.60, respectively (Table 3). On the contrary, diacylglycerol 

DG(36:3), PC(18:2/00) and triglyceride TG(56:3) showed significant negative 

correlations with rho values of −0.71, −0.69 and −0.67, respectively (Table 3). In the 

case of the overweight BMI group, a significant positive correlation was found with the 

exogenous metabolite, hydroxyphenyllactic acid (ρ 0.69). Sphingomyelin SM(43:1) 

showed a significant negative correlation (ρ −0.67) with BMI values (Table 3). In the 

obese group, we observed a high degree of correlation of some metabolites with the 

BMI values. Thus, acylcarnitine AC(8:0) (ρ 0.94) and arginine (ρ 0.85) showed a significant 

positive correlation, while 13 sphingomyelins, 8 phosphatidylethanolamines and the 

polyunsaturated fatty acid (16:3n-3) showed negative correlations with rho values 

ranging between −0.95 to −0.78) (Table 3). Finally, we evaluated if any of the metabolites 

correlated with BMI considering only the PCa group. Inside this group, the highest 

positive correlations were found for taurocholic acid and dodecanoylcarnitine, AC(12:0), 

with rho values of 0.51 and 0.38, respectively. 

Table 5: Correlation analysis between metabolites and BMI measurements. 

 Metabolite Class Correlation (ρ) p-value 

Lean 

Isomer pregn-5-ene-
3,20-diol sulfate 

Sterol 0.72 0.003 

Isomer androsterone 
sulfate 

Sterol 0.60 0.011 

Taurodeoxycholic acid Bile acid 0.59 0.03 

Malate Carboxylic acid (d) 0.56 0.025 

Arginine Amino acid 0.53 0.027 

Glycine Amino acid -0.56 0.021 

https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442
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TG(18:1+20:1+18:1) Glycerolipid -0.67 0.006 

PC(18:2/0:0) Glycerophospholipid -0.69 0.007 

DG(36:3) Glycerolipid -0.71 0.008 

Overweight 

Hydroxyphenyllactic acid Benzyl alcohol (d) 0.69 0.001 

L-citruline Amino acid (d) 0.59 0.008 

Vitamin B5 Vitamin 0.52 0.024 

Proline Amino acid 0.50 0.030 

DG(34:1) Glycerolipid 0.49 0.035 

4-Pyridoxic acid Pyridine (d) 0.49 0.036 

PC(O-16:0/20:4) Glycerophospholipid 0.47 0.042 

PE(18:0/18:1) Glycerophospholipid -0.47 0.046 

SM(d18:1/17:0) Sphinomyelin -0.48 0.038 

Stearoylcarnitine Acyl carnitine -0.49 0.037 

PE(P-18:0/18:1) Glycerophospholipid -0.50 0.030 

PE(16:0/18:2) Glycerophospholipid -0.51 0.027 

PE(0:0/20:3) Glycerophospholipid -0.51 0.027 

PE(P-16:0/18:2) Glycerophospholipid -0.53 0.021 

Alpha-Ketoglutarate Keto-acids (d) -0.54 0.028 

PE(18:1/18:2) Glycerophospholipid -0.55 0.017 

PE(P-18:0/18:2) Glycerophospholipid -0.56 0.013 

AC(12:1n-x) Fatty esters -0.57 0.014 

PE(18:2/18:2) Glycerophospholipid -0.57 0.016 

SM(43:1) Sphingomyelin -067 0.003 

Obese 

L-Octanoylcarnitine Acyl carnitine 0.94 0.017 

Arginine Amino acid 0.86 0.024 

PC(O-16:0/18:2) Glycerophospholipid 0.83 0.058 

Acylcarnitine(8:1n-x) Acyl carnitine 0.75 0.066 

Deoxycholic acid Bile acid 0.75 0.066 

PI(18:0/20:4) Glycerophospholipid -0.75 0.066 

PE(20:5/16:0) Glycerophospholipid -0.75 0.066 

L-Homoserine Amino acid -0.75 0.066 

Isoleucine Amino acid -0.75 0.066 

SM(43:1) Sphingomyelin -0.79 0.048 

SM(d18:1/24:1) + 
SM(d18:2/24:0) 

Sphingomyelin -0.79 0.048 

SM(d18:1/17:0) Sphingomyelin -0.79 0.048 

SM(33:1) Sphingomyelin -0.79 0.048 

PE(P-18:0/22:5) + PE(P-
20:1/20:4) 

Glycerophospholipid -0.79 0.048 

PUFA (16:3n-x) Fatty acid -0.79 0.048 

PE(20:4/18:2) Glycerophospholipid -0.79 0.048 

SM(32:1) Sphingomyelin -0.82 0.034 

PE(P-16:0/20:4) Glycerophospholipid -0.82 0.034 

PE(0:0/22:4) Glycerophospholipid -0.82 0.034 

SM(d18:2/22:0) Sphingomyelin -0.86 0.024 

SM(d18:1/22:0) Sphingomyelin -0.86 0.024 

SM(d18:1/18:0) Sphingomyelin -0.86 0.024 

SM(d18:1/16:0) Sphingomyelin -0.86 0.024 

PE(18:0/20:4) Glycerophospholipid -0.86 0.024 

PE(18:1e/22:4) Glycerophospholipid -0.88 0.008 

SM(d18:2/20:0) Sphingomyelin -0.89 0.012 

PE(16:0/22:6) Glycerophospholipid -0.89 0.012 

SM(42:1) Sphingomyelin -0.93 0.007 

SM(d16:1/24:1) Sphingomyelin -0.93 0.007 

PE(16:0/20:4) Glycerophospholipid -0.93 0.007 

SM(38:1) Sphingomyelin -0.96 0.003 
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3.2.3.5.- Correlation analysis of metabolic profiling with PSA in the PCa group 

PSA is the current gold standard non-invasive prognostic marker for PCa while its 

diagnostic potential remains controversial [268]. We performed a correlation analysis 

between urinary EV metabolites and the PSA values determined in our cohort of PCa 

samples. We only observed a significant positive correlation (rho value 0.88) of 

phosphatidylcholine PC(0:0/20:3), and at less extent (rho value 0.48) of the primary fatty 

amide (20:2n-x). 

3.2.3.6.- Analysis of enzymes-associated to metabolites differentially expressed 

between PCa and BPH 

We have recently shown that metabolic alterations in PCa are frequently associated with 

changes in the expression of key enzymes [264]. To better understand the cancer cell-

autonomous nature of the metabolite changes observed in urine EVs from PCa patients, we 

mapped the 76 altered urinary-EV-metabolites into cellular pathways by using MetScape 

v3.1.2 [269]. We identified several pathways that could be affected in PCa including steroid 

hormone biosynthesis and metabolism, leukotriene and prostaglandin metabolisms, 

linoleate and purine metabolisms, glycerophospholipid metabolism, TCA and urea cycle, 

and tryptophan metabolism. We identified the primary enzymes involved in the metabolism 

of each of the 76 differentially expressed metabolites between BPH and PCa, by using KEGG 

or HMDB database (see Methods). A complete list of primary enzymes is supplied as 

Supplementary Material (https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442). 

Next, we took advantage of publicly available prostate cancer transcriptomes and we 

queried the expression of the 149 enzymes in PCa. We searched for enzymes which 

expression changes in PCa would fit the metabolite abundance observed in urine EVs. From 

these gene list, we identified 7 genes with the expression changes (FIGURE 27) that were 

concordant with the observed changes in urine EV metabolite abundance among the groups 

analysed. We found gamma-aminobutyric acid (GABA) increased in PCa urine EVs (FIGURE 

24) which was consistent with a reduction in the expression of Glycine Amidinotransferase 

(GATM- use GABA as substrate for creatine synthesis) (FIGURE 27A). Arachidonic acid 

abundance was also altered in urine EV samples, being reduced in PCa patients compared 

with BPH (FIGURE 24). This fatty acid is the product of phospholipase A2 and it is relevant 

for the synthesis of proinflammatory metabolites by lipooxygenases. Interestingly, we 

found that the expression of two enzymes (ALOX15 and CYP1A2), that can catabolise 

arachidonic acid, was increased in PCa tissue (FIGURE 27B,C). Our metabolomics analysis 

also showed a consistent decrease in phosphatidylcholine. This could be explained by 

decreased synthesis of the phospholipid or elevated catabolism. When browsing the 

expression of PC synthesis and degrading enzymes, we found a reduction in the expression 

of Lysophosphatidylcholine Acyltransferase 2 (LPCAT2) (FIGURE 27D), which transforms 

lysoPC into PC, and could provide an explanation for the reduction in PC abundance. 

Two urine EV metabolites were associated with increased perineural invasion in PCa. On the 

one hand, we found a decrease in cAMP abundance in EV obtained patients with perineural 

invasion. The transcriptional analysis revealed changes in the expression of enzymes 

regulating cAMP synthesis and degradation that were associated with the aggressiveness of 

https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1470442
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the disease. The expression of adenylate cyclase 5 (ADCY5) was reduced in PCa (FIGURE 27E-

G), and a further significant reduction was observed from primary tumors to metastasis. In 

contrast, the inverse expression pattern (elevation in PCa and further increase from primary 

tumors to metastasis) was detected in the cAMP degrading enzyme PDE4C (FIGURE 27H-J). 

In none of these cAMP metabolizing enzymes we could find an association to altered 

disease-free survival (FIGURE 27G,J). 

On the other hand, the steroid biosynthesis-related metabolites were among the most 

elevated in PCa urine EVs and associated with increased perineural invasion. Interestingly, 

the three metabolites significantly altered were sulfated steroids in the final steps of 

androgen synthesis. Whereas these metabolites are found at detectable levels in circulation 

produced by the adrenal gland, we evaluated whether enzymes regulating their synthesis 

or degradation could be altered in PCa tissue. Strikingly, we found that the expression 

steroid sulfatase (STS), which would remove the sulfate group in androsterone sulfate and 

DHEAS, was decreased in PCa, and this reduction was associated to metastatic disease and 

reduced disease-free survival in one out of two datasets (FIGURE 27K-M). 
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Figure 27: Gene-enrichment analysis. In-silico transcriptomics analysis of enzymes directly involved in the 

metabolism of metabolites differentially expressed between PCa and BPH samples. 

 

3.2.4.- Discussion 

EVs are produced by normal and cancerous cells and harbor molecular features of their 

cells of origin [270]. This encapsulated material can exert biological and metabolic functions 
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[247, 257, 258, 271], which makes them entities of tremendous interest in cancer biology, 

both at the level of biomarker discovery and mechanistic. Urine contains EVs from 

different parts of the urinary tract including kidney and bladder what has awaked great 

interest to identify biomarkers affecting these organs. In addition, the anatomic proximity 

of urine to the prostate gland and the already shown presence of tumor cells in the urine 

sediment [272, 273] support also the development of potential non-invasive diagnoses 

of PCa using urine-based markers. In agreement with our previous results, we find 

differences in the size distribution of the urinary EVs between PCa and BPH [259], which 

we now report to be associated to disease stage (FIGURE 23). Our data show that urine 

from advanced PCa patients contains a higher proportion of large EVs than BPH patients. 

Given that our EV isolation procedure (filtration through 0.22 microns, and 

ultracentrifugation at 10,000×g) removed most of the large EVs from the sample, and 

enrich in small EVs (mostly exosomes and small microvesicles), this difference could be 

underestimated in our samples. Importantly, in agreement with our result, it has already 

been reported that prostate cancer cells release large EVs named oncosomes with a size 

between 1 and 10 microns [274] that contain a distinct protein cargo [275]. They have 

also been detected in circulation in models of PCa and shown that their abundance 

correlates with tumoral progression [274]. Although our studies have been focused on 

the smaller EVs, it is interesting that we have also observed this size effect. 

In a recent targeted lipidomics analysis of urinary EVs from healthy and PCa urine 

samples [256], the authors analyzed 107 lipid species and found that 9 of them were 

significantly different between the two groups. Unlike this study, we have focused ours 

in the comparison between PCa and BPH, in an attempt to provide specific biomarkers 

to discriminate the two pathological conditions, and contribute to earlier diagnosis, and 

reduce secondary effects of unnecessary biopsies, so both studies can be considered 

complementary in terms of sample groups. Both studies are also complementary in the 

metabolites that they analyze because different metabolite extraction methods and 

chromatographic procedures were used. 

We report changes in the urine EV metabolome at both structural and cargo levels. The 

composition of the urine EVs analyzed in this study varies in the abundance of 

phosphatidylcholine species that are major constituents of membranes. In particular, 

we found reduced abundance of PCs in the EVs from PCa samples, in agreement with 

previously reported by Puhka and coworkers [276]. This result along with studies 

reporting increased abundance of PC in PCa tissue [277] could suggest that less PC-

containing structures, like membrane vesicles are secreted to the extracellular 

environment. In addition to the PC content, we found additional metabolites from 

different chemical nature differentially expressed in EVs from PCa and BPH samples that 

could be considered candidate biomarkers for PCa including as candidates 

acylcarnitines, sphingomyelins, and steroids. Although more research is granted, our 

results indicate that bias in EV size and membrane composition could harbour diagnostic 

potential in PCa. 
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Apart from the potential biomarker value of the identified metabolites, they are also 

valuable to indicate possible metabolic alterations occurring in PCa. We found reduced 

levels in PCa urine EVs of arachidonic acid, the precursor of eicosanoids and 

prostaglandins that are important proliferative and inflammatory modulators. 

Interestingly, it has been also reported that arachidonic acid level is lower in prostatic 

tissue from PCa patients [278]. In agreement with the reduction of the substrate 

arachidonic acid in PCa, it has been found that the level of their products (12-and 20- 

HETE, and PGE2) are higher in the tissue [279, 280] and also in urine [281]. These studies 

along with many others have already shown that the metabolism of arachidonic acid and 

their products plays an important role in PCa development, and in fact, represents an 

important therapeutics target (reviewed in [282]). Importantly, our work suggests that the 

analysis of this metabolite in EVs isolated from urine samples may be used to evaluate in a 

non-invasive manner what is occurring in prostatic tissue itself in the context of PCa. 

We observed changes in the abundance of metabolites that are carried within the EVs 

and are a potential cargo in PCa. It is worth mentioning that intermediary metabolites 

of androgen synthesis were among the most elevated in PCa urine EVs. Moreover, 

changes in the abundance of these steroids, together with cAMP, were significantly 

associated with perineural invasion. These results uncover the potential of unbiased 

urine EV analysis to elucidate novel signaling and metabolic alterations underlying PCa 

biology. Androgen signaling is among the predominant stimuli supporting PCa growth 

and the most successful therapeutic approaches have derived from its targeting [283] 

since prostate tumors frequently remain androgen dependent even at late-stage [284]. 

We have detected 3beta-hydroxyandors-5-en-17-one-3-sulphate 

(dehydroepiandrosterone sulphate, DHEAS) in urinary EVs, and its level was significantly 

elevated in PCa samples. This metabolite, along with estrone sulphate, is one of the main 

precursors for steroid hormones including androgens. There are many reports showing 

that steroid-related metabolites and enzymes are important modulators of PCa 

progression [285]. There are four different genes coding for enzymes that were related 

to this metabolite: STS, SULT1B1, SULT2B1 and SULT2A1. The fact that urine EVs from 

PCa patients contain androgen-related metabolites is suggestive of the relevance of this 

biosynthetic pathway in the disease and the potential role of EVs in providing androgen 

signalling to neighbour or distal cells. Indeed, expression of STS was reduced in PCa and 

associated to disease progression, hence providing a feasible explanation for the 

increase in sulfated steroids. Interestingly, urinary EVs could be used to monitoring 

androgen metabolism in a non-invasive manner. 

Together with the aforementioned metabolites associated with perineural invasion, we 

also identified molecules that exhibited differential abundance in high-grade tumours. Five 

metabolites were differentially abundant between pathological stage 2 and stage 3 PCa, and 

more than half of them were ceramide species. Ceramides are signaling molecules that can 

regulate various aspects of cancer cell biology, including proliferation, survival and cell death 

[286]. The selective decrease of ceramides in association with disease aggressiveness 

provides an exciting perspective of how this family of metabolites could exert cell and non-



112 | P r o s t a t e  c a n c e r  m e t a b o l o m i c s  
 

cell autonomous functions to limit the progression of PCa. It is worth noting that sarcosine 

has been proposed also as a PCa biomarker [255]. The urine level of this metabolite was 

increased in men with metastatic PCa [287]. However, its utility as a potential diagnostic tool 

is unclear, as its validation as a biomarker has failed in several studies (reviewed in [255, 74]. 

Interestingly, we have detected sarcosine in urinary EVs, and although not significant (p = 

0.09), its level was decreased in PCa samples. 

Recent molecular and metabolic profiling of PCa also identifies lipid metabolism as a key 

pathway that undergoes metabolic reprogramming [288, 289]. These changes include an 

upregulation metabolites involved in de novo lipid biosynthesis [290] and fatty acid β- 

oxidation [291]. As a consequence, it has been shown the accumulation in the prostatic tissue 

of acylcarnitines, which are intermediates of fatty acid oxidation [292]. In agreement with 

this alteration, we found increased levels of acylcarnitines in the urinary EVs from PCa 

patients. This association of differential levels of carnitines on PCa EVs with a metabolic 

shifting towards β-oxidation of fatty acids has already been proposed by Puhka and 

coworkers [276]. 

In summary, in this work, we report several metabolites associated with urinary EVs, many 

of them exhibiting differential abundance between BPH and PCa, and mirroring some of the 

alterations described in PCa. 
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3.3.- Chapter 3. General considerations on microbiome 

3.3.1.- Introduction 

As we have previously discussed, several aspects need to be considered when 

performing microbiome-related projects. In this chapter we will discuss the 16S rDNA 

region specificity regarding the identified bacteria and data differences. 

During the development of this thesis project, two projects were done that involved 16S 

rDNA sequencing, as we have presented before. Due to technical reasons, two different 

sequencing services were used, each one specialized in sequencing distinct regions of 

the 16S gene. Thus, in order to check the consistency of the sequences obtained by each 

sequencing service, we performed a small comparison in which 4 samples were 

sequenced twice, first by sequencing the V3-V4 regions and then the V1-V2 regions of 

the 16S rDNA gene. To this comparison, we used fibromyalgia project samples, choosing 

2 control samples and 2 fibromyalgia ones.  

3.3.2.-Methods 

3.3.2.1.- 16S rDNA region sequencing 

Feces samples were delivered to the corresponding hospital by individuals recruited 

during fibromyalgia project cohort construction. Feces samples were then derived to the 

Basque Biobank, were DNA extraction was performed using PSP Spin Stool DNA Plus kit 

(STRATEC Molecular®), following the manufacturer’s protocol. Lysis buffer was added to 

the frozen feces samples to avoid nucleic acids degradation before extraction was 

performed. Once DNA extraction was performed, samples were aliquoted into 2.5µg of 

DNA at 100ng/µL concentration aliquots and frozen until sequencing. 

3.3.2.1.1.- V3-V4 samples 

The 4 samples dedicated to the 16S rDNA distinct sequenced regions comparison 

aliquots were then split into two parts, so that one was used to sequence the V3-V4 

region and the other one for the V1-V2 sequencing. V3-V4 regions sequencing was 

performed by CIC bioGUNE’s genomic platform, in collaboration with FISABIO 

Sequencing Core Facility. DNA amplicon libraries were generated and sequenced 

following Illumina Inc’s recommendations. V3-V4 surrounding primers pair were 

selected, leading to a 459bp length amplicons [293]. Amplification reaction methods are 

detailed in Table 4. 

 

Then, lllumina Inc.’s sequencing adaptors and dual-index barcodes (Nextera XT index kit 

v2, FC-131-2001) were added to each amplicon and, after PCR purification, libraries 

were normalized and pooled prior to sequencing. The pool containing indexed 

amplicons was loaded onto the MiSeq reagent cartridge v3 (MS-102-3003), spiked with 

25% PhiX control to improve base calling during sequencing, as recommended by 

Illumina for amplicon sequencing. Sequencing was conducted using a paired-end, 

2x300pb cycle run on an Illumina MiSeq sequencing system. Sequencing was done by 

FISABIO Sequencing Core Facility, who also performed the quality assessment, 
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using prinseq-lite [167] with the following parameters (min_length: 50, trim_qual_right: 

30, trim_qual_type: mean, trim_qual_window: 20), and the sequence joining, 

with FLASH software [166] using default parameters. 

 
Table 6: Amplification protocol for the V3-V4 16S rDNA region. 

  Volume 

Microbial DNA (5 ng/µl) 2.5 µl 

Amplicon PCR Forward Primer 1 µM 

5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG  

5 µl 

Amplicon PCR Reverse Primer 1 µM 

5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC  

5 µl 

2x KAPA HiFi HotStart ReadyMix (KK2602) 12.5 µl 

Total 25 μl 

  

PCR cycles protocol 

Step Temperature Time 

Denaturation 95ºC 3 min 

Annealing x25 cycles 

95ºC 30 sec 

55ºC 30 sec 

72ºC 30 sec 

Extension 72ºC 5 min 

  

Joined reads were then uploaded to QIIME2 (v2019.4), demultiplexed and clustered de 

novo into OTUs at 99% similarity threshold. Common alpha and beta diversity 

measurements were computed, both phylogenetic and non-phylogenetic ones. 

Taxonomical annotation was later performed on the OTU table using the GreenGenes 

database (v13_8). 

 

3.3.2.1.2.- V1-V2 sequencing 

Variable regions V1 and V2 of the 16S rRNA gene were amplified using the primer pair 27F-338R 

in a dual-barcoding approach according to Caporaso et al. [294]. DNA was diluted 1:10 prior PCR, 

and 3 µl of this dilution were finally used for amplification. PCR-products were verified using the 

electrophoresis in agarose gel. PCR products were normalized using the SequalPrep 

Normalization Plate Kit (Thermo Fischer Scientific, Waltham, MA, USA), pooled equimolarily and 

sequenced on the Illumina MiSeq v3 2x300bp (Illumina Inc., San Diego, CA, USA).  

Raw reads were then uploaded to QIIME2 (v2019.4), were they were demultiplexed and 

joined using default configuration. Then they were clustered de novo into OTUs at 99% 

similarity threshold. Common alpha and beta diversity measurements were computed, 

both phylogenetic and non-phylogenetic ones. Taxonomical annotation was later 

performed on the OTU table using the GreenGenes database (v13_8). 
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3.3.2.1.3.- Comparative analysis 

Both OTU tables were joined in QIIME2 and processed again for diversity differences. 

PCoA was computed upon several diversity indexes. Procrustes Analysis and Mantel’s 

test were also performed for Bray-Curtis, weighted and unweighted UNIFRAC distances 

to characterize the similarity of samples sequenced by different methods. 

3.3.3.-Results 

The reads obtained for each sample and each region sequenced, with the number of 

reads remaining after each quality control step are summarized in Table 7. 

Table 7: Number of reads obtained per sample and 16S regions sequenced. The number of remaining 

reads after each quality step is indicated and the proportion representing relative to the initial number of 
reads is indicated between parentheses. V1-V2 regions sequencing are shaded in green, while V3-V4 
regions are not shaded. 

 

In general, V1-V2 regions sequencing lead to less chimeric reads, so that the proportion 

of sequences that passed the quality control was higher than in V3-V4 region 

sequencing. Thus, more reads per sample of good quality that were later used for 

posterior analysis were obtained from V1-V2 sequencing than for the V3-V4 16S rDNA 

region sequencing. 

3.3.3.1.1.- V1 – V2 

161,602 total reads remained after the quality check, representing 1,313 distinct 

features. Reads per sample were distributed as follows: a minimum of 28,433 features, 

a maximum of 53,210 and, on average 40,400.5 reads/sample, with a median of 

39,979.5.  

 Region Input Filtered Denoised Non-chimeric 

FIBR007F 

V3V4 51,258 50,476 
(98.47%) 

49,685 
(96.93%) 

23,110 
(45.09%) 

V1V2 45,850 39,550 
(86.26%) 

37,592 
(81.99%) 

32,619 
(71.14%) 

FIBR011C 

V3V4 42,985 42,425 
(98.70%) 

41,636 
(96.86%) 

24,127 
(56.13%) 

V1V2 40,143 34,451 
(85.82%) 

33,297 
(82.95%) 

28,433 
(70.83%) 

FIBR020C 

V3V4 61,493 60,530 
(98.43%) 

59,081 
(96.08%) 

29,517 
(48.00%) 

V1V2 68,048 58,480 
(85.94%) 

55,608 
(81.72%) 

47,340 
(69.57%) 

FIBR069F 

V3V4 50,361 49,688 
(98.14%) 

48,664 
(96.12%) 

25,584 
(50.53%) 

V1V2 77,557 66,491 
(85.73%) 

63,794 
(82.25%) 

53,210 
(68.61%) 
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3.3.3.1.2.- V3 – V4 

In total, 102,338 reads passed the quality control for this region sequencing, 

representing 690 distinct features. The median frequency of reads per sample was 

24,855.5, with an average of 25.584.5 reads/sample, being the minimum number of 

reads/sample 23,110 and the maximum 29,517.  

3.3.3.1.3.- Joined samples 

We measured several α and β-diversity indexes in order to identify whether we could 

discriminate the samples depending on the rDNA regions sequenced. We saw that 

independently on which diversity index used, PCoA analysis was able to clearly 

discriminate the samples depending on the 16S rDNA region sequenced (FIGURE 28). 

 

Figure 28: Beta-diversity measurements of both V1-V2 and V3-V4 amplicons sequencing. Points are 

colored depending on the region sequenced.  

The taxonomical annotation of both sequencing methods revealed that V3-V4 identified 

fewer different OTUs than the V1-V2 region sequencing. Consistently, non-weighted 

alpha-diversity indexes were found to be higher for V1-V2 region sequences. When 

equilibrated diversity indexes were computed, though, no relevant difference was found 

between the two regions sequenced (FIGURE 29).  

 



 

117| M i c r o b i o m e  c o n s i d e r a t i o n s  
 

 

Figure 29: Alpha-diversity indexes for the V1-V2 and V3-V4 amplicons. Boxplot filling color depends on 

the 16S rDNA region sequenced. 

Taxonomic analysis revealed that V3-V4 amplicons identified at least one OTU from the 

Archaea kingdom, while no Archaea sequences were identified for V1-V2 sequencing 

regions (FIGURE 30).   

 

 

Figure 30: Rooted phylogenetic trees in circular format display obtained from the quality checked reads 

for both V1-V2 and V3-V4. Colored ring surrounding each tree indicates the phyla of each branch of the 
tree. Archaea branch has been removed from the V3-V4 tree for easier visualization reasons. 

As can be seen in FIGURE 30, for both sequenced regions the majority of reads obtained 

corresponded to the Firmicutes phylum. After that, V3-V4 captured a higher diversity, 

with more reads mapping into different phyla than V1-V2 regions sequencing. Notably, 

V3-V4 sequencing regions captured a higher number of OTUs related to both 

Bacteroidetes, Proteobacteria and Actinobacteria. V1-V2 regions, instead, had more 

OTUs pertaining to Tenericutes phylum (FIGURE 31). Although these differences in 

abundance observed, both primers set displayed similar microbiota composition 

patterns in each sample. At more detailed taxonomical levels (family and genus), more 

differences were observed, as expected. 
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Figure 31: Relative abundance comparison of each sample per each region sequenced at phylum, family 

and genus taxonomical levels.  

When the Procrustes analysis was performed, we found that the similarity between the 

V3V4 and V1V2 distance matrices obtained by three β-diversity indexes (bray-curtis, 

unweighted and weighted UNIFRAC) was notably higher (FIGURE 32). Specifically, all 

correlation scores between datasets were over 0.99, while the CIA analysis also showed 

that, for each index, RV scores were above 0.90. Monte-Carlo calculations on the 

significance of these similarities showed that weighted UNIFRAC (FIGURE 32C) was the 

only measurement that resulted to be statistically significant (p-value 0.042). The other 

two indexes didn’t reach the significance threshold, something that may be explained 

by the reduced number of samples included in the study. 



 

119| M i c r o b i o m e  c o n s i d e r a t i o n s  
 

 

Figure 32: Procrustes analysis for the comparison of 16S rDNA amplicons. In red, V3-V4 amplicons and in 

blue the V1-V2. Arrows connect the two amplicons sequenced from the same sample.  

We then performed a compositional data approach, by means of ALDEx2 pipeline, in 

order to identify which genera were the most different between each sequenced 

regions (FIGURE 33). We saw that 6 genera were differentially represented between the 

sequences obtained from V3V4 amplicons and the ones obtained with V1V2 ones: 

Ruminococcaceae Gemmiger, Bifidobacteriaceae Bifidobacterium, Lachnospiraceae 

Coprococcus, Rikenellaceae Alistipes, Staphylococcaceae Staphylococcus and 

Ruminococcaceae Subdoligranulum. 

 

Figure 33: Compositional data analysis for the genus differences between V3-V4 amplicons and V1-V2 

ones. In the left, non-corrected p-values, in the right, corrected ones. Grey points represent abundant non-
differential features, black points the non-differential rarely abundant features, blue dots the features 
identified as significantly different by one test (t-test or Wilcoxon) and red ones the significantly different 
features identified by both tests. 

3.3.3.1.4.- Functional differences 

Finally, we applied PICRUSt2 in order to identify potential differences in the functional 

capabilities of the distinct microbiota profiles obtained by each 16S rDNA region 

sequenced. From the pathway abundance data, we identified 34 pathways that were 

only identified by one of the two sequencing options, 17 in each case (TABLE 8). 

Interestingly, most of the V3-V4 primers set differential pathways were related to 

archaeal metabolic functions, thus related to the archaea OTUs amplified by those 

primers. Methane-related pathways were also identified by V3-V4, indicating thus 

increased capability for the amplification of anaerobic bacteria. 



120 | M i c r o b i o m e  c o n s i d e r a t i o n s  
 

Table 8: Amplicon-specific inferred bacterial metabolic pathways from PICRUSt2 tool. 

V1-V2 V3-V4 

Creatinine degradation I methanogenesis from H2 and CO2 

Phospholipases protocatechuate degradation I (meta-cleavage 
pathway) 

Vitamine E biosynthesis (tocopherols) superpathway of taurine degradation 

Sucrose degradation II superpathway of aerobic toluene degradation 

2-nitrobenzoate degradation I superpathway of bacteriochlorophyll a biosynthesis 

2-amino-3-carboxymuconate semialdehyde 
degradation to 2-oxopentenoate 

archaetidylserine and archaetidylethanolamine 
biosynthesis 

L-tryptophan degradation IX tetrahydromethanopterin biosynthesis 

superpathway of CDP-glucose-derived O-antigen 
building blocks biosynthesis 

chorismate biosynthesis II (archaea) 

mycolyl-arabinogalactan-peptidoglycan complex 
biosynthesis 

flavin biosynthesis II (archaea) 

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis mevalonate pathway II (archaea) 

superpathway of quinolone and alkylquinolone 
biosynthesis 

CDP-archaeol biosynthesis 

isopropanol biosynthesis archaetidylinositol biosynthesis 

1,5-anhydrofructose degradation phosphopantothenate biosynthesis III 

protein N-glycosylation (bacterial) 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis 

ergothioneine biosynthesis I (bacteria) sucrose biosynthesis III 

superpathway of demethylmenaquinol-6 biosynthesis 
II 

isoprene biosynthesis II (engineered) 

methanol oxidation to carbon dioxide sucrose biosynthesis I (from photosynthesis) 

 

3.3.4.- Discussion 

The fact that different primers targeting different regions of the 16S rDNA gene have 

different binding affinity depending on the bacteria has been already reported [295–

299]. While firstly the content of GC in each 16S rDNA region was suspected to explain 

the differences in primers specificity, this has been ruled out nowadays [295]. Instead, 

primers with different bacterial specificity have been shown to contain mismatches 

compared to 16S gene sequence for differently abundant bacteria between primers 

used. 

The taxonomical annotation of both sequencing methods revealed that V3-V4 identified 

less different OTUs than the V1-V2 region sequencing, as expected from the reduced 

number of sequences that passed the quality controls. It is relevant to note that the V1-

V2 primer pair generates an amplicon larger than the V3-V4 standard primer pair. Thus, 

due to the strict threshold used for OTU clustering (99% similarity), this higher amount 

of different OTUs observed for V1-V2 may be explained by punctual mutations and may 

not correspond to different bacterial species completely. Either if the differences are 

related to the number of quality reads or to the length of the sequenced amplicon, their 

biological relevance was null, as stated by the high similarity shown by Procrustes 

analysis. The weighted α-diversity results also supported this idea, seeing that all 

potential differences were lost.  

With the data presented, we can conclude that although each primer combination has 

a better specificity for specific bacteria they do not alter the biological interpretation of 

results. Thus, even though β-diversity analysis identifies different microbial 
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communities depending on the primers used, Procrustes analysis reveals the elevated 

similarity between each PCoA. Therefore, similar samples clustering should occur 

independently of the primers used and the same biological conclusions may be 

obtained. The characterization of these conclusions, though, will depend highly on the 

primers used. For biomarkers identification, validation and application, multiple 16S 

rDNA regions, full gene or even whole genome sequencing seem to be more 

appropriated.  
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3.4.- Chapter 4. Fibromyalgia multi-omics analysis 

The majority of the results presented in this chapter were published in Ebiomedicine as 

a Research Article with first authorship that can be found in Annex II: 

Clos-Garcia, M. et al. Gut microbiome and serum metabolome analyses identify 

molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine 

46, 499–511 (2019). 

3.4.1.-Introduction 

Fibromyalgia is a complex disease of unknown pathophysiology, for which no specific 

molecular biomarkers or biochemical alterations have been identified. In 1990, the 

American College of Rheumatology (ACR) recognised this syndrome as a disease and 

proposed the Widespread Pain Index (WPI), determined by measuring tenderness on 

pressure at 18 defined points, as a major diagnostic indicator. In 2010, the ACR 

introduced the Severity Score (SS), which also takes into account the associated 

symptoms and their severity [300]. Thus, the diagnosis of fibromyalgia is currently based 

on subjective pain evaluation and a set of associated signs and symptoms, which are 

used to assess the severity of the disease. 

Even though the fibromyalgia is a complex disease with a multitude of signs and 

symptoms associated with many organs, the participation of the Central Nervous System 

(CNS) in its pathogenesis is broadly acknowledged [301]. Some studies have tried to 

identify molecular signatures that could explain some of the features of fibromyalgia 

and have provided some potential biomarkers. Several polymorphisms linked to the 

metabolism and breakdown of neurotransmitters involved in pain modulation have 

been identified as specific markers of increased risk of fibromyalgia [302]. Such 

polymorphisms have been found for the serotonin transporter gene 5-HTT [303, 304] 

and the catechol-O-methyl-transferase (COMT) gene [305, 306]. Some environmental 

factors, such as viral and bacterial infections [307], e.g. HCV infection [308, 309] and 

psychological stressors [310], known to produce alterations in the hypothalamic-

pituitary-adrenal (HPA) axis, have been associated with this disease. Fibromyalgia is 

prevalent in individuals with chronic pain attributable to peripheral pain generators, 

such as rheumatoid arthritis [311]. At the molecular level, glutamate is elevated in the 

cerebrospinal fluid of fibromyalgia patients [312–314]. A decrease in insular levels of γ-

aminobutyric acid (GABA) has also been described [315]. An inflammatory component 

in the pathogenesis of this disease has also been proposed:  certain cells might trigger 

and perpetuate chronic pain by releasing chemokines and cytokines, such as IL-6 and IL-

8, whose levels are elevated in the sera of fibromyalgia patients [316, 317]. 

The microbiome has a significant role in maintaining health [110]Alterations in the gut 

microbiome have been linked to a large number of diseases, including intestinal bowel 

disease (IBD) [318] and metabolic [319] and neurological [320, 217] disorders [150]. The 

microbiome has been recurrently associated with the CNS [217], indicating the existence 

of a gut-brain axis [321, 322]. Disturbances in the microbiome might lead, in some cases, 
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to neural disorders such as depression or autism. Some changes linked to microbial gut 

dysbiosis, understanding dysbiosis as those differences between healthy individuals and 

disease-specific patients [323], are also associated with symptoms used to determine 

the SS2 score in the diagnosis of fibromyalgia. The gut-brain axis has been proposed as 

a bidirectional communication system between the gastrointestinal tract and the brain, 

involving both neural and humoral mechanisms (reviewed in Collins, Surette and Bercik, 

2012). The intestinal GABA produced by the bacteria from glutamate might affect the 

behaviour of the host, and it might be involved in anxiety and depression [325, 326, 211, 

215]. Alterations in the microbiome composition can escalate the interactions between 

bacteria and the gut immune system due to the breakage of the intestinal barrier, 

promoting the release of pro-inflammatory molecules. Such events have been reported 

in IBD, where a release of IL-2, IL-17, interferon and/or TNFβ has been observed [201]. 

Interestingly, several pro-inflammatory cytokines can increase the permeability of the 

blood-brain barrier [322]. The microbiome also has metabolic, immunological and gut-

protecting functions in the host. The fermentation of dietary carbohydrates by gut 

bacteria, for example, results in the production of short-chain fatty acids (SCFAs). These 

molecules are essential for the maintenance of the integrity of the intestinal barrier 

[150] and other health-related functions [151], including the correct development and 

maintenance of the blood-brain barrier [206]. 

These interactions between the microbiome and other functional systems of the 

organism have been widely studied. Microbiome data have been scrutinised in 

conjunction with host’s genome, epigenome, transcriptome and metabolome [64]. The 

integration of different omics data relies mostly on dimension reduction approaches and 

is not specific to any omics technology, except for the metabolomics data. Correlation, 

regression and network-based approaches have also been implemented to integrate 

microbiome data with other omics analyses. As a result, the role of the host genome in 

regulating microbiome composition has been revealed [327]. A combination of Genome 

Wide Association Studies (GWAS) and microbiome-GWAS has been applied also to 

assess the impact of diet on microbiome composition. For example, associations 

between lactase [66] and variations of vitamin D receptor [68] genes with specific 

bacteria have been reported. Metabolomics-microbiome integration studies using 

correlation approaches have shown the effect of microbiome on host’s insulin sensitivity 

[71] and on the development and progression of colorectal cancer [72, 73]. 

Metabolomics – microbiome integration studies employing a mix of correlation and 

network methods have obtained a comprehensive profile of the existent interactions 

between intestinal mucosa and gut microbiome [70]. The authors of these studies have 

used standard statistical methods but suggested that new, specific methods are needed 

for omics integration, to take into account the particular omics data characteristics [64]. 

The aim of this work was to identify potential molecular biomarkers for fibromyalgia 

diagnosis and characterization, employing different omics technologies: the analysis of 

microbiome from faeces samples and metabolomics, cytokine and miRNA profiling using 

serum samples. 
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3.4.2.- Methods 

3.4.2.1.- Cohort recruitment 

Individuals included in the study were recruited in two different hospitals in the Basque 

Country. Both fibromyalgia patients and healthy individuals were given a form with 

questions concerning several lifestyle variables (diet, smoking, alcohol consumption, 

physical exercise, other diseases and mood),. Blood samples were obtained from 

fibromyalgia patients and control individuals. Stool samples were collected from all 

participants, stored the samples at 4 °C until they could be delivered to the biobank. 

Blood and stool samples collected in each hospital were then sent to the Basque 

Biobank. Samples were aliquoted samples and frozen at -80 °C. The hospitals' clinicians 

(neurologists and rheumatologists) were responsible for the fibromyalgia diagnosis. The 

following criteria were used: 

- Fibromyalgia group: WPI ≥ 7 and SST (Severity Score) ≥ 5 or WPI between 3 and 6 and 

SST ≥ 9. Patients with other diseases with similar symptoms were discarded. 

- Control group: healthy individuals without any clinical manifestation of fibromyalgia 

and/or any other similar disease. To reduce the potential confounding factors 

associated with lifestyle, they also were age-paired with the patient group and came 

from the same environment. 

 
All donors signed the informed consent form, and the study was approved by the 

appropriate ethical committee (CEIC-PI2016037). DNA from faeces was extracted using 

PSP Spin Stool DNA Plus kit (STRATEC Molecular®), following the manufacturer’s 

protocol. Lysis buffer was added to the frozen samples, to ensure the preservation of 

nucleic acids. DNA extractions were then aliquoted into samples of 2.5 μg of DNA at the 

concentration of 100 ng/μL and then frozen until sequencing. All sample processing and 

distribution were managed by the Basque Biobank. The summary of the collection 

workflow can be found in FIGURE 34. 

 

Figure 34: Fibromyalgia project experimental design workflow, from patient recruitment and sample 

collection to the arrival of processed samples into the research center and their examination using distinct 
omics techniques. 
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3.4.2.2.- Microbiome 

3.4.2.2.1.- V3–V4 16S rDNA sequencing 

The amplicon sequencing protocol targeted a fusion fragment containing the V3 and V4 

regions (about 459bp) of the 16S genes with the primers designed surrounding 

conserved regions [293]. The full length primer sequences, using standard IUPAC 

nucleotide nomenclature, to follow the protocol targeting this fusion region were: 

16S Amplicon PCR Forward Primer 

5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 

16S Amplicon PCR Reverse Primer 

5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 

 

DNA amplicon libraries were generated following Illumina Inc.’s recommendations. The 

amplification reactions consisted of: 

 
Table 9: Amplification reaction mix volumes. 

  Volume 

Microbial DNA (5 ng/µl) 2.5 µl 

Amplicon PCR Forward Primer 1 µM 5 µl 

Amplicon PCR Reverse Primer 1 µM 5 µl 

2x KAPA HiFi HotStart ReadyMix (KK2602) 12.5 µl 

Total 25 μl 

 

And PCR cycling was programmed with an initial denaturation at 95ºC for 3 min, 

followed by 25 cycles of annealing (95ºC - 30 seconds, 55ºC - 30 seconds, 72ºC - 30 

seconds) and an extension at 72ºC for 5 minutes. 

Then, lllumina Inc.’s sequencing adaptors and dual-index barcodes (Nextera XT index kit 

v2, FC-131-2001) were added to each amplicon (see Illumina Inc.’s Protocol for details) 

and, after PCR purification, libraries were normalized and pooled prior to sequencing. 

The pool containing indexed amplicons was loaded onto the MiSeq reagent cartridge v3 

(MS-102-3003), spiked with 25% PhiX control to improve base calling during sequencing, 

as recommended by Illumina for amplicon sequencing. Sequencing was conducted using 

a paired-end, 2x300pb cycle run on an Illumina MiSeq sequencing system. 

Sequencing was done by FISABIO Sequencing Core Facility, who also performed the 

quality assessment, using prinseq-lite [167] with the following parameters (min_length: 

50, trim_qual_right: 30, trim_qual_type: mean, trim_qual_window: 20), and the 

sequence joining, with FLASH software [166] using default parameters. 
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3.4.2.2.2.- Microbiome sequences bioinformatics analysis 

Joined reads were uploaded to QIIME2 software (v2017.10) [125], specifying the type 

parameter (SampleData[SequencesWithQualitiy]) and QIIME2 format option for FASTQ 

data input (SingleEndFastqManifestPhred33). Samples were then clustered de novo into 

OTUs, using the 97% similarity threshold using DADA2 plugin [328]. The resulting OTU 

table was then rarefied to 12,000 reads per sample, when no increase in diversity was 

obtained from including more reads. Rarefied table was aligned with mafft plugin [329] 

and the OTUs phylogenetic tree was then obtained using fasttree plugin [330]. Several 

alpha and beta diversity indexes were computed with diversity plugin and exported for 

posterior analysis. Finally, OTUs were annotated with GreenGenes 13_8 database and 

the resulting table was exported for posterior analysis. 

  

OTU table was then imported into SIMCA-P+ 12.0.1 (Umetrics AB, Umeå, Sweden) in 

order to compute various multivariate analyses, including PCoA and PLS-DA analyses. 

OTU table, taxonomy and diversity indexes measurements were imported to R software 

(R Development Core Team, 2011; http://cran.r-project.org) in order to perform 

subsequent statistical analysis using phyloseq [331], microbiome [332] and DESeq2 [333] 

R packages. Alpha diversity indexes differences were assessed using Student’s t-test for 

the pairwise comparison (control vs fibromyalgia). p-value < 0.05 was considered 

significant. CORBATA [334] approach was used to identify and plot the bacteria 

corresponding to core microbiome, using the following thresholds: OTUs with a 

minimum ubiquity of 80% in the respective sample group and minimal abundance of 

0.01% on each sample. SIAMCAT [239] was used to assess the potential effects of 

confounding factors such as sex, hospitals and distinct drug types. Finally, OTUs 

differential abundance between control and fibromyalgia samples was assessed 

using DESeq2 R package [333], considering adjusted p-value < 0.05 significant.  

3.4.2.2.3.- qPCR validation 

From the glutamate cytoplasmatic incorporation and degradation pathways we selected 

four genes (gadC, glnA, glsA and glsB) to validate our findings related to glutamate and 

microbiome interaction. The primers were designed using the Primer-BLAST from NCBI 

website (https://www.ncbi.nlm.nih.gov/tools/primer-blast/), specifying the following 

five bacterial taxonomies (Bacteroides, Bifidobacterium, Eubacterium, Lachnospiraceae, 

Ruminococcaceae) and the “nr” database. We selected two pairs of primers for each 

gene, considering those without human subproducts (Table 10). 

Table 10: Primer pairs for each gene included in the qPCR validation targeting the 5 bacterial families. 

Gene Direction Sequence (5’→3’) 

gadC 
Forward CGGCGCGAATTGCTAAAGTT 

Reverse TACTACCAGGGTGCCCACTT 

glnA 
Forward TGTTTGACGGCTCCTCGATT 

Reverse GGTTCAAGGATGTCGCAACG 

glsA Forward  TCTGTACGTTAGCCCTTGCG 

http://cran.r-project.org/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Reverse GCTATGGCCCGGTTATGGAA 

Forward TCTGGCGAATGTACCAGGTC 

Reverse GCCCGGTTATGGAAGTTGGT 

gadB 

Forward CAGACCTGGGACGACGAAAA 

Reverse GGGCGAATTTATGCCAGCAG 

Forward  CAAACTGGGGCCGTATGAGT 

Reverse AGTTTCGGGTGATCGCTGAG 

  
The qPCR reaction was performed as follows: 

5uL of SYBR(TM) Select Master Mix from Thermofisher Scientific® (#ref 4472908). 

0.4uL of the mix of forward and reverse primers at 10uM. 

3.6uL of RNase free water. 

1uL of DNA template. 

 

The reaction was runned in a QuantStudio 6 Flex Real-Time PCR System, from 

Thermofisher Scientific® with the running protocol: 

Table 11: Amplification protocol, including step, time and temperature per each step. 

Stage Time Temperature 

Hold Stage 
2 min 50ºC 

2min 95ºc 

PCR Stage (x40 cycles) 

15sec 95ºC 

15sec 58ºC 

1min 72ºC 

Melt Curve Stage 

15sec 95ºC 

1min 60ºC 

15sec 95ºC 

 

3.4.2.3.- Metabolomics 

To 40 µL aliquots of human serum, 40 µL of water/0.15% formic acid (FA) was added. 

Then, the proteins were precipitated by the addition of 120 µL of acetonitrile. To achieve 

the optimum extraction, after the addition of acetonitrile, the samples were sonicated 

for 15 minutes and agitated at 1,400 rpm for 30 min (at 4 °C). Next, they were 

centrifuged at 14,000 rpm for 30 min at 4 °C. The supernatants were transferred to vials. 

Samples were measured with a UPLC system (Acquity, Waters Inc., Manchester, UK) 

coupled to a Time of Flight mass spectrometer (ToF MS, SYNAPT G2, Waters Inc.). A 2.1 

x 100 mm, 1.7 µm BEH amide column (Waters Inc.), thermostated at 40°C, was used to 

separate the analytes before entering the MS. Mobile phase solvent A (aqueous phase) 

consisted of 99.5% water, 0.5% FA and 20 mM ammonium formate while solvent B 
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(organic phase) consisted of 29.5% water, 70% MeCN, 0.5% FA and 1 mM ammonium 

formate. 

In order to obtain a good separation of the analytes the following gradient was used: 

from 5% A to 50% A in 2.4 minutes in curved gradient (#8, as defined by Waters), from 

50% A to 99.9% A in 0.2 minutes constant at 99.9% A for 1.2 minutes, back to 5% A in 

0.2 minutes. The flow rate was 0.250 mL/min and the injection volume was 2 µL. All 

samples were injected randomly.  

The MS was operated in positive electrospray ionization in full scan mode. The cone 

voltage was 25 V and capillary voltage was 250 V. Source temperature was set to 120 °C 

and capillary temperature to 450 °C. The flow of the cone and desolvation gas (both 

nitrogen) were set to 5 L/h and 600 L/h, respectively. A 2 ng/mL leucine-enkephalin 

solution in water/acetonitrile/formic acid (49.9/50/0.1 %v/v/v) was infused at 10 µL/min 

and used for a lock mass which was measured every 36 seconds for 0.5 seconds. Spectral 

peaks were automatically corrected for deviations in the lock mass. Scaled and 

normalised data were uploaded to R. Principal Component Analysis (PCA) was 

performed to check whether the differences between sample metabolomes were due 

to sample origin and to account for the autoclaving process used by one of the hospitals. 

We excluded the metabolites whose expression differed between the hospitals, to avoid 

the bias introduced by the sample origin. Metabolomic features with more than 30% of 

missing values in either hospital were removed from the analysis. Fold changes and p-

values (adjusted using the Bonferroni method) were computed. Afterwards, differential 

peaks were selected for further annotation and metabolite identification using the 

METLIN database [100]. The identification was confirmed using commercial standard 

injection. 

MetScape [335] and Ingenuity Pathway Analysis® were used to map the identified 

metabolites to corresponding functionalities in humans. 

3.4.2.4.- MiRNA & cytokines profiling 

Cytokines profiling was performed by Abcam’s FirePlex Service Lab (Boston, USA). The 

cytokine profiling was performed using the FirePlex Human Discovery Cytokine Panel 

(Abcam, ab227936), allowing for the simultaneous profiling of 70 targets in a single well 

of sample. Each sample was run in duplicate following the manufacturer’s instructions. 

In brief, all serum samples were diluted 1:4, adding 12.5µL of samples to 37.5µL of 

Human Assay Diluent 1X.  150µL of 1X Capture Particles were added to each well of a 

96-well plate and filtered. After a single rinse with 175µL 1X Wash Buffer the prepared 

samples were added to the corresponding wells. The plates were then incubated in the 

dark overnight at 4°C with 750rpm shaking.  After rinsing twice with 175µL of 1X Wash 

Buffer, 50µL of Detector Antibody Solution were added to each well and incubated in 

the dark for 1 hour with 750rpm shaking at room temperature.  After rinsing twice with 

175µL of 1X Wash Buffer, 50µL of 3X Reporting Mix were added to each well and 

incubated in the dark for 30min with 750rpm shaking at room temperature.  After rinsing 

twice with 175µL of Wash Buffer 1X, 175µL of Run Buffer were added to each well and 
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the particles were scanned on an EMD Millipore Guava 6HT flow cytometer. The flow 

cytometer output was analyzed with the FirePlex™ Analysis Workbench Software 

(http://www.abcam.com/FireflyAnalysisSoftware). Cytokines concentration per sample 

was interpolated from the standard curve run in duplicate on each plate. Data was log-

normalized, and then fold change and Bonferroni adjusted p-value were computed to 

assess the differences between the cytokines profile in the patients. 

 

miRNA profiling was performed by Abcam’s FirePlex Service Lab (Boston, USA).   The 

miRNAs were profiled using the FirePlex miRNA Assay Core reagent Kit (Abcam, 

ab218342) using a custom multiplex panel that was constructed to include 68 miRNA 

selected from literature revision.  Each sample was run in singlicate as previously 

described [336]. 

 

In brief, 20µL of sample was mixed with Digest Buffer + Protease Mix to a final volume 

of 80µL and was incubated at 60°C for 45min at 750rpm shaking. 35µL of FirePlex 

Particles were added to each well of a 96-well plate and filtered, including 3 wells for 

no-sample control. 25µL of Hybridization Buffer was added to each well along with 25µL 

of sample. In the case of the no-sample controls, water was added instead. The plate 

was incubated at 37°C for 60min at 750rpm.  After rinsing twice with 175µL of Rinse A 

1X buffer, 75µL of Labeling Buffer 1X was added to each well and the plate was then 

incubated at RT for 60min at 750rpm.  After two rinses with Rinse B 1X and one of Rinse 

A 1X, adapted miRNAs were eluted from the particles using 130 µL of 95°C. Particles 

were then stored in the filter plate at 4°C with 75µL of Rinse A 1X until needed.  

 

30µL of the eluant was added to a clean PCR plate and mixed with 20µL of PCR master 

mix and underwent 32 cycles of PCR amplification.  After removal of Rinse A 1X from the 

particles stored in the previous step 60µL of Hybridization Buffer were added to each 

well followed by 20µL of the PCR product. The plate was then incubated at 37°C for 

30min at 750rpm.  After rinsing twice with Rinse B 1X and once with Rinse A 1X, 75µL of 

Reporting Buffer 1X was added to each well and then incubated at RT for 15min at 

750rpm.  After rinsing twice with 175µL of Rinse A 1X, 175µL of Run Buffer were added 

to each well.  The particles were scanned on an EMD Millipore Guava 6HT flow 

cytometer.  Data analysis was performed with the FirePlex™ Analysis Workbench 

software. Three miRNAs are used for nomalization: hsa-miR-17-5p, hsa-miR-320b, hsa-

let-7i-5p were selected using the geNorm algorithm [337]. Data was log-normalized, and 

then fold change and Bonferroni adjusted p-value were computed to assess the 

differences between the miRNA profile in the patients. 

 

http://www.abcam.com/FireflyAnalysisSoftware
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3.4.2.5.- Data integration 

3.4.2.5.1.- Microbiome and metabolomics 

Spearman’s correlation coefficients were computed for relationships between relative 

abundances of microbiome bacteria with the identified genus and normalised individual 

metabolomic features. A scaled heatmap was constructed for the correlation matrix, 

including cladogram classification of the variables, using the default clustering method. 

3.4.2.5.2.- Integration of all datasets 

We employed the Data Integration Analysis for Biomarker Discovery using Latent 

cOmponents (DIABLO) implementation in the mixOmics R package [241, 242]. Thirty-six 

fibromyalgia and 35 control samples were used. Microbiome data was normalised using 

DESeq2 counts function. The mixOmics block.splsda function, with full weighted design 

and 10 components, was primarily used to identify the optimal number of components, 

which was defined in 3 methods using the centroid distance technique. To decide which 

variables to keep in each component, models with 10, 5, 5 and 5 randomly selected 

variables were tested for the microbiome, metabolomics, cytokines and miRNAs, 

respectively. Finally, different model features were obtained and the results were 

plotted using mixOmics predefined and ad-hoc functions. This procedure was followed 

for both the identified-metabolite dataset and the full dataset of unidentified 

metabolomics features. 

3.4.3.- Results 

3.4.3.1.- Clinical samples 

One hundred and five confirmed fibromyalgia patients (ACR 2010 modified criteria) 

[300] and 54 age- and environmentally-paired healthy individuals were recruited. The 

latter group consisted of individuals who did not present any disease or symptoms 

related to fibromyalgia and came from the same environment as the fibromyalgia 

patients. The characteristics of the study cohort are shown in Table 12. 

Table 12: Cohort characteristics. The number of individuals included in each group is given in parentheses. 

For Age, WPI and SST, mean values ± standard deviation are shown. 

 Controls (n = 54) Fibromyalgia-diagnosed patients (n = 105) 

Sex 48.15% ♀, 51.85% ♂ 69.52% ♀, 30.48% ♂ 

Age (years) 53.5 ± 12.4 52.52 ±10.3 

Age at diagnosis 

(years) 

NA 48.2 ± 11.1 

Time since diagnosis 

(years) 

NA 3.4 ± 6 

 WPI NA 13.28 ± 3.91 

 SST NA 8.62 ± 2.15 

SS1 NA 6.6 ± 1.8 

SS2 NA 2.1 ± 0.4 
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During WPI evaluation, more than 90% of the patients reported pain in the back, 

shoulder girdle and abdomen. Neck pain was described by 85% of patients, while upper 

and lower arm, hip and upper and lower leg pain were reported by 70% of fibromyalgia 

patients. At least 50% of the patients were affected by jaw and chest pain. The SST index 

is the combination of two sub-indexes, SS1 (the severity of 3 main symptoms in 

fibromyalgia: fatigue, sleep quality and cognitive problems) and SS2 (the list of 

associated fibromyalgia symptoms). Approximately 90% of patients reported moderate 

to severe scores for the 3 main symptoms for the SS1 sub-index in the week preceding 

the collection of the samples. In the evaluation of associated fibromyalgia symptoms 

(SS2), 70.7% of fibromyalgia patients presented at least 4 symptoms from the 

neurological sphere (muscle pain, fatigue, thinking or memory problems, headache, 

numbness/tingling, etc.). Among them, 70% used painkillers, while approximately 55% 

were taking antidepressants and benzodiazepines and approximately 30%, antiepileptic 

drugs (https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext). Half 

of the patients reported some physical exercise and some alcohol consumption, while 

23% identified themselves as smokers. 

3.4.3.2.- V3-V4 16S rDNA sequencing 

We obtained 6,110,564 reads, of which 99.56% passed the quality check. Of the cleaned 

reads, the 81.91% (4,982,956) were joined. To decide on the number of reads to which 

the samples should be rarefied; we computed the rarefaction curves for both observed 

OTUs and Shannon indices (https://www.ebiomedicine.com/article/S2352-

3964(19)30473-6/fulltext). After rarefying at 12,000 reads/sample, the median coverage 

was 96.35 ± 2.33%. Rarefaction step did not reduce diversity 

(https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext). Sequencing 

data was uploaded to ENA under Project Accession code PRJEB27227. 

https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
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3.4.3.3.- Microbiome 

 

Figure 35: Microbiome multivariate analysis. (A) Principal Component Analysis (PCoA) of the complete 

cohort. (B) Supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis, showing the 
discrimination between the sample groups. (C) Alpha-diversity indexes for each sample group, showing 
the adjusted p-value computed using Student's t-test. 

The multivariate unsupervised PCA (FIGURE 35A) did not show any differences between 

the control and the fibromyalgia samples. The supervised Partial Least Squares 

Discriminant Analysis (PLS-DA), however, provided two sample groups (FIGURE 35B) (p-

value, 0.0019). In the specific diversity analysis for 4 alpha-diversity indices (Faith’s 

Phylogenetic Distance, ace, chao1 and observed OTUs) we observed a discrete decrease 

in bacterial diversity in fibromyalgia patients although only the Faith’s PD index showed 

a statistically significant difference (FIGURE 35C). This reduction in bacterial diversity 

was also observed in the analysis of the core microbiome at the taxonomic family level. 

We used CORBATA default parameters (80% ubiquity, 1% abundance) to identify which 

bacteria families present in both fibromyalgia and control core microbiomes. The two 

core microbiomes contained the same 4 bacteria families (C. Ruminococcaceae, C. 

Lachnospiraceae, B. Rikenellaceae and B. Bacteroidaceae). We observed that the control 

group presented a more diverse bacterial community. The comparison of the two 

sample groups revealed that Clostridiales Ruminococcaceae was more abundant in the 

healthy control group than in fibromyalgia patients, although the differences were not 

statistically significant (FIGURE 36A). After reducing the cut-off to 50% ubiquity, we 

observed differences between the core microbiomes of the two groups. Specifically, two 

bacteria families that were absent in the fibromyalgia core microbiome, the 

Bifidobacteriales Bifidobacteriaceae and the Bacteroidales Prevotella, which were 
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represented in the control core microbiome (https://www.ebiomedicine.com/article/S2352-

3964(19)30473-6/fulltext). 

 

Figure 36: Core microbiome and genus-discriminant analyses. (A) The composition of core microbiome 

for each sample group and the comparison of bacterial ubiquity in the two groups. (B) Genera significantly 
different (adj p N .05) between the control and fibromyalgia samples, obtained using the protocols 
described in the Methods. Positive log2 fold changes (x-axis) indicate genera with positive fold difference 
between fibromyalgia and control. Negative log2 fold changes are shown as negative x values. Each point 
represents a single OTU, coloured by phylum. On the y-axis, the taxonomic genus level is indicated. Size of 
the points reflects the log-mean abundance of the sequence data. (C) qPCR results for the differential 
expression of bacterial genes related to glutamate bacterial degradation. Results are indicated in 
differential Cts count. 

We performed a differential OTU analysis (employing DESeq2) of the core microbiomes 

in the control and fibromyalgia samples. We identified 32 OTUs distributed among 3 

phyla (Actinobacteria, Bacteroidetes and Firmicutes) (FIGURE 36B) whose abundance 

differed between the two groups, with an adjusted p-value of 0.05. In fibromyalgia 

https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
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patients, the Bacteroidetes and Firmicutes had OTUs both with increased and decreased 

abundance, and Actinobacteria levels were reduced in this group (FIGURE 36B). 

The number of OTUs with the unassigned genus in Bacteroidaceae and Lachnospiraceae 

families were decreased in fibromyalgia samples; there were also fewer 

Bifidobacteriaceae and Erysipelotichaceae OTUs in fibromyalgia patients. The 

Rikenellaceae family showed an increased abundance in fibromyalgia patients 

(https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext). 

Finally, at the genus level, the abundance of Bacteroides OTUs was reduced in 

fibromyalgia patients, as were Bifidobacterium, Eubacterium and Clostridium OTUs. 

However, the abundances of the genera Dorea, Roseburia and Alistipes were increased 

in this group (FIGURE 36B).  

There were no significant differences between microbiome composition abundances in 

the two sexes. We did not observe any significant association between drug types (as 

summarized in https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext) and 

the relative microbiome abundance at the genus level (data not shown).  

We validated the reduction of the abundance of bacterial species by qPCR technique. 

For that, we amplified a set of genes dedicated to the glutamate incorporation to 

bacterial cytoplasm and its transformation to GABA (gadC, glnA, glsA and glsB). We 

designed specific primers for amplifying genes from 5 bacterial families that we found 

to be diminished in fibromyalgia patients (Bacteroides, Bifidobacterium, Eubacterium, 

Lachnospiraceae and Ruminococcaceae) (FIGURE 36C). We found that the gene 

encoding the transporter of glutamate into bacterial cytoplasm, represented by gadC, 

was diminished, as it was also the genes encoding enzymes involved in the 

transformation of glutamate to L-glutamine (glnA, glsA) and to GABA (gadB) 

(https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext), in agreement with 

the taxonomic analysis of 16S rDNA gene. 

 

3.4.3.4.- Metabolomics 

The metabolomics analysis yielded 8543 different metabolic features defined by 

retention time and mass/charge. One sample was removed due to technical failure. The 

PCA analysis revealed that the metabolomics profiles differed between hospitals 

(https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext). This was 

expected because of the autoclaving performed in one of the hospitals. Thus, to avoid 

the bias caused by the chemicals released during the autoclaving procedure, the 

discriminating hospital features (p = 661), were removed from the study, as well as the 

features with >30% of missing values. Two hundred and twenty-eight features differed 

between the fibromyalgia and control groups (FIGURE 37A). Of these 228, only 88 had 

tentative IDs in the METLIN database. Using MS/MS data and chemical standards, we 

found that the levels of 7 of these metabolites were significantly altered in the 

fibromyalgia samples (https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext): 

ornithine, L-arginine, Nε-Methyl-L-lysine, L-glutamate, L-glutamine, asymmetric 

https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
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dimethylarginine (ADMA) and platelet activating factor (PAF-16) (FIGURE 37B). Another 

metabolic feature among the 228 altered in fibromyalgia was tentatively identified as L-

threonine or DL-homoserine (FIGURE 37B). We could not discriminate between these 

two metabolites as they are structurally similar and have the same molecular mass and 

fragmentation pattern in LC-MS. We also analyzed the metabolites described in the 

literature, such as creatinine [338, 339], platelet activating factor [340] and 

acetylcarnitine [341]. To infer alterations in the biological processes and metabolic and 

functional pathways associated with the differentially expressed metabolites, we used 

MetScape [335] and Ingenuity Pathway Analysis® (QIAGEN) (IPA). The analyses showed 

that cell signaling and inflammatory and hypersensitivity responses were the most 

relevant biological processes. The most represented metabolic pathways were arginine, 

nitric oxide (NO) and glutamate metabolism. 

 

Figure 37: Univariate metabolomics analysis. (A) Volcano plot of 1070 metabolic features detected in 

serum samples after background subtraction and removal of the features found in 30% of the data or 
differing between hospitals. (B) Volcano plot of the identified metabolites. Positive log2 FC indicates 
increased abundance in fibromyalgia patients. All p-values were adjusted using the Bonferroni method. 

To study the potential dependencies between microbiome composition and the host 

metabolism and metabolome, we examined the correlations between the two datasets. 

We computed the Spearman’s correlation coefficient for the full set of metabolomics 

features and microbiome variables. We did not see any clear association patterns 

between the two complete datasets (https://www.ebiomedicine.com/article/S2352-

3964(19)30473-6/fulltext). We also constructed a heatmap of the scaled correlations 

between the bacteria whose abundance was changed in fibromyalgia and the identified 

metabolites (FIGURE 38A). Metabolites were grouped into two clusters, depending on 

the correlations. These were seen mainly with genera Bifidobacterium and Dorea, which 

behaved in the opposite manner. The first cluster contained 4 metabolites (3-methyl-L-

Lysine, PAF C-16, ADMA, L-Lysine). The second cluster was formed by 8 metabolites 

(glutamate, L-threonine/DL-homoserine, glutamine, Nε-methyl-L-Lysine, creatinine, 

https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
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ornithine, arginine and acetylcarnitine), although the metabolite acetylcarnitine 

behaved differently from the other metabolites in this cluster. Bifidobacterium, whose 

abundance was reduced in fibromyalgia patients, correlated negatively with the first 

metabolite cluster and positively with the second one. Dorea, with increased abundance 

in fibromyalgia patients, correlated positively with the first metabolite cluster and 

negatively with the second one. 

Finally, we checked, using Virtual Metabolic Human [342] database, whether the 

different metabolites were produced by the differentially abundant bacteria. We also 

wanted to study whether they were made by the genera for which we found most 

correlations (FIGURE 38A). Thus, we limited the search to Bifidobacterium and Dorea 

genera. For glutamate, we identified the metabolites upstream and downstream of its 

production/degradation. For lysine, threonine, homoserine, glutamine, ornithine and 

arginine (and their modifications), we found that the metabolites themselves, their 

precursors and degradation products might had been produced by bacteria. No bacterial 

associations were found for creatinine, PAF C-16, ADMA and acetylcarnitine, 

consequently suggesting that their origin was exclusively human. 
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Figure 38: Heatmap of scaled correlations between the bacteria whose abundance was altered in 

fibromyalgia and the identified metabolites. The dendrograms were unsupervised. Red arrows mark the 
bacteria with increased abundance in fibromyalgia, green arrows, with decreased abundance, and 
“equals” symbol indicates the OTUs with both increased and decreased abundance (A). Omics correlations 
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with indexes used in fibromyalgia diagnostics, as defined by ACR 2010 criteria. Only significant correlations 
(p-value < .05) are coloured. Positive correlations are indicated in red and negative correlations, in blue. 
Correlations between circulating miRNA levels (B), circulating cytokine levels (C), identified serum 
metabolites (D) and microbiome composition (at genus level) (E). 

Serum factors and miRNA analyses for a subset of samples 

A subset of the samples (n = 72; nC = 36 controls and nF = 36 fibromyalgia samples) was 

used to perform multiplex assays for different serum molecules, including miRNAs and 

cytokines. For the multiplex design, we used 70 molecules and 68 miRNAs that have 

been associated with fibromyalgia and/or chronic pain. The protein content assays and 

the miRNAs analyses did not show any differences between the fibromyalgia and the 

control groups. We observed statistically significant differences for ten serum proteins: 

PCSK9, mesothelin, BST2 (↑), procalcitonin, Axl, myoglobin, MIG, TNF-alpha, ICAM2 and 

IL-9 (↓) with fold changes ranging from 0.76 (lower level in patients) for IL-9 to 1.07 for 

BST2 (https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext). However, 

the levels of only one miRNA differed significantly between the fibromyalgia patients 

and the control group, the hsa-miR-335-5p (https://www.ebiomedicine.com/article/S2352-

3964(19)30473-6/fulltext). Predicted target genes were obtained using miRWalk 2.0 

database [343]; they were selected if they mapped to at least 8 of the 12 database 

options. The enrichment of the miRNA targets was performed using ConsensuspathDB 

[344], selecting the targets with a p-value < 0.01. Notably, we identified several 

pathways related to signaling dedicated to gene regulation processes. The complete 

results are provided in https://www.ebiomedicine.com/article/S2352-3964(19)30473-

6/fulltext. 

3.4.3.5.- Correlations between omics data and clinical data 

To determine which differences could be associated with the disease, we examined the 

correlations between different diagnostic indexes obtained for the fibromyalgia patients 

and the omics data (FIGURE 38B, C, D and E). Notably, miRNA data constituted the omics 

dataset most correlated with pain indicators (FIGURE 38B), followed by the results of 

serum protein profiling (FIGURE 38C). Metabolomics also showed a considerable 

number of correlations with several pain indexes (FIGURE 38D). The microbiome 

composition (at genus level) (FIGURE 38E) was the omics dataset with the weakest 

correlation with pain indicators. 

We also considered possible effects of medication on the observed differences between 

the patient and control samples. We checked whether the samples clustered depending 

on the drug regimen followed. However, we did not find any clusters of samples (neither 

for serum factors nor for miRNAs) that could be associated with a specific drug or drug 

combination. We also checked whether any data correlated with distinct drug types; no 

such correlation was observed (data not shown). 

 

https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
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3.4.3.6.- Modelisation of microbiome, metabolomics, cytokine and miRNA 

datasets 

We combined the four datasets of the 71 samples (nC = 36, nF = 35) that had all the data. 

Combining these datasets allowed us to discriminate between the control and 

fibromyalgia samples when a block sparse PLS-DA model was applied (block sPLS-DA) 

(FIGURE 39A). The analysis of the individual contribution of each dataset to the 

differences showed that the most correlated datasets were the microbiome 

composition and metabolomics data. We also found that the major contributor to the 

separation of the sample groups was the microbiome dataset, followed by serum 

metabolomics, proteins and, finally, miRNAs (FIGURE 39B and FIGURE 39C). In this 

analysis, we used only the metabolomics dataset containing the identified metabolites 

(n = 14). The sPLS-DA analysis using the whole unidentified metabolomics dataset (n = 

1070) showed that using the metabolomics dataset improved the discrimination 

between the two sample groups, becoming the strongest factor distinguishing the 

patients from controls (https://www.ebiomedicine.com/article/S2352-3964(19)30473-

6/fulltext) although the microbiome showed slightly better predictive ability. 

 

Figure 39: Multi-omics integration. (A) sPLS-DA consensus plot for the combination of the 4 datasets, 

showing the nearly complete discrimination of the 71 samples (36 fibromyalgia and 35 control samples). 
(B) The individual contribution of each dataset to the sPLS-DA final model, in each case showing the score 
plots for the two first components, indicating the best separation capability for microbiome data, followed 
by cytokines, metabolomics and miRNAs. (C) ROC curves for each omics dataset, with the Area under the 
Curve (AUC) values. 

  

https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
https://www.ebiomedicine.com/article/S2352-3964(19)30473-6/fulltext
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3.4.4.- Discussion 

In this study, we applied an omics approach and identified a set of potential molecular 

markers (Table 13) for the diagnosis of fibromyalgia. 

Table 13: Differences between fibromyalgia and healthy control groups observed using each omics 

technique (showing alterations in the fibromyalgia patients). 

 Increased (↑) Decreased (↓) 

Microbiome Dorea 
Roseburia 
Papillibacter 
Subdoligranulum 

Bifidobacterium 
Eubacterium 
Lachnospiraceae (family) 
Clostridium 
Firmicutes (phylum) 
 

Metabolomics L-glutamine 
L-threonine/DL-
homoserine 
L-arginine 
ADMA 
L-glutamate 
Nε-methyl-L-lysine 
Ornithine 

PAF-16 

Cytokines PCSK9 
Mesothelin 
BST2 

Procalcitonin 
Axl-UFO 
Myoglobin 
MIG 
TNF-alpha 
ICAM2 
IL-9 

miRNAs hsa-miR-335-5p  

 

The gut microbiome analysis revealed two clusters (FIGURE 35B), one cluster for 

fibromyalgia patients (modified 2010 ACR diagnostic criteria) and the other for 

individuals without any clinical manifestation of fibromyalgia. Both core microbiome 

and alpha-diversity analyses showed a reduction in bacterial diversity in the fibromyalgia 

group. This is in agreement with the report of reduced microbiota diversity in other pain 

disorders, such as myalgic encephalomyelitis/chronic fatigue syndrome [345]. 

Remarkably, our fibromyalgia microbiome analysis showed a reduction in the 

abundance of several bacterial strains associated with healthy microbiome, such those 

related to SCFA production (Bifidobacterium, Eubacterium, Lachnospiraceae) [150–153], 

and/or the reduction of Firmicutes phylum OTUs [137, 107, 108], suggesting dysbiosis 

events in fibromyalgia patients. Due to the current debate upon the dissension on the 

use of dysbiosis term and its meaning [323], we want to emphasize that with dysbiosis 

term we refer to those microbiome compositional alterations associated to disease, 
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either them being causational or consequence of the disease. In these terms, dysbiosis 

events are also associated with the disruption of the intestinal barrier, which allows the 

bacteria to interact with the immune system of the host, producing local inflammation 

[201]. This is supported not only by the large proportion of patients reporting abdominal 

pain (> 90%) but also by the number of intestinal diseases considered co-morbidities of 

fibromyalgia. The maintenance of the intestinal barrier is associated with the production 

of SCFAs, including butyric acid and butyrate [151]. In fibromyalgia, we found a decrease 

in the abundance of several members of the Lachnospiraceae family, the bacteria 

involved in butyric acid production [346]. Butyrate, the conjugate base of butyric acid, 

is produced by a small number of bacteria, including several Eubacterium species [152], 

a genus also underrepresented in fibromyalgia patients. The reduction in the diversity 

of bacteria, especially of those engaged in the production of protective SCFAs, suggests 

that this process might be implicated in the development of fibromyalgia. Notably, 

dysbiosis events, in the terms presented here, should be constant among time. Thus, we 

recognize that multiple time-point data should be studied and that the lack of this data 

is a limitation of our study. Nevertheless, we would like to highlight that this is a pilot 

study and that a follow-up study that could reinforce our statements is recommended. 

We also found differences between neurotransmitter metabolisms in the patients and 

control individuals. We detected a significant increase in the serum levels of glutamate 

in fibromyalgia patients. Moreover, the abundance of bacteria from Bifidobacterium and 

Lactobacillus genera (involved in the transformation of glutamate into GABA; [347, 348, 

211] was reduced in the fibromyalgia group. This might contribute to the elevated 

systemic levels of glutamate. The effect of GABA on the gut-brain axis, via the vagus 

nerve, has been described by several authors [211, 322]. Glutamate affects the 

development of pain, via glutamatergic synapses [349], and stress can alter the 

regulation of this pathway [350]. Stress-related events have also been associated with 

microbiome modifications [211]. The 2010 modified ACR criteria for fibromyalgia 

diagnosis include several stress-associated symptoms. Whether such elevated systemic 

levels of glutamate affect the ENS and alter the CNS is still unclear. However, some 

authors have demonstrated the activation of glutamatergic neurons and glutamate-

mediated neurotransmission in the ENS [351–353, 320]. As a result of a reduction in 

bacterial diversity, the glutamate might enter the host bloodstream after the disruption 

of the intestinal barrier by the inflammation caused by the dysbiosis. Interestingly, 

several patients presented with symptoms associated with IBD as fibromyalgia 

comorbidities (irritable bowel syndrome (46%), pain in abdomen (13%) and in the upper 

abdomen (45%), diarrhea (20%), etc.). The role of microbiome in IBD pathogenesis has 

been broadly demonstrated [354, 355], suggesting that dysregulation of intestinal 

immune system derived from microbiome alterations may lead to disease [356], as 

demonstrated by patients presenting T-cell responses against commensal bacteria 

[357]. Specifically, a reduction of Firmicutes phylum bacteria has been recurrently 

associated with IBD pathogenesis and progression [358, 359], such as that observed for 

fibromyalgia patients. These common alterations in microbiome composition could 
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explain thus some of the most frequent comorbidites reported by the patients of our 

study. 

Furthermore, it has been shown that the blood-brain barrier increases its permeability 

after a decrease in the numbers of SCFA-producing bacteria. This alters the tight junction 

organization, which can be recovered by colonization with SCFA-producing bacteria 

and/or by administration of these bacterial metabolites [206]. Cytokines can also modify 

the blood-brain barrier permeability [360, 361]. Importantly, glutamate levels increase 

in the cerebrospinal fluid (CSF) of fibromyalgia patients [312]. These data suggest an 

important role of this neurotransmitter in the pathogenesis of fibromyalgia. How 

peripheral levels of gut microbiome-derived neurotransmitters can affect the brain 

function is something still in debate [320], although several mechanisms have been 

proposed. The alteration of the blood-brain barrier permeability would lead to a 

modification on the interchange of serum metabolites with the brain. Serum levels of 5-

HT have been demonstrated to be altered in germ-free mice [362, 363] and, while 5-HT 

itself is not known to cross the blood-brain barrier, their precursor levels are able to do 

it. Microbiome could, instead, alter 5-HT precursor levels, as has been proposed by 

several authors [364, 325], like tryptophan. This same mechanism has been discussed to 

be true for other gut microbiome produced neurotransmitters, such as dopamine and 

GABA [320, 365, 366]. 

It is essential to keep in mind the relationship between GABAergic pain inhibition and 

gender as fibromyalgia is 3 times more prevalent in women than in men [367]. Steroid 

17β-estradiol (E2) suppresses the GABAergic inhibition in female rats via a sex-specific 

oestrogen receptor ERα, mGluR and endocannabinoid-dependent mechanism [368]. 

This suppression requires the activation of mGluR type I receptors by glutamate [369]. 

Therefore, in the presence of excess glutamate, as observed here in fibromyalgia 

patients, the pain inhibition by GABA might be suppressed in female patients by this E2-

specific regulation. This might partly explain the increased prevalence of fibromyalgia in 

the female population. 

The functional analysis of the metabolomics dataset showed that the most represented 

pathways were those dedicated to the metabolism of known neurotransmitters, such as 

glutamate and serine. Both arginine and ornithine levels, related to the widespread pain 

in fibromyalgia, increased in the sera of fibromyalgia patients. Consistently, IPA analysis 

identified several pathways related to arginine, such as arginine degradation (I and II) 

canonical pathways and proline biosynthesis from arginine. These two metabolites are 

required for the synthesis of nitric oxide (NO) [339]. NO plays an important role in both 

acute and chronic pain as it is a mediator of nociception [370]. However, NO contributes 

not only to nociception; it also mediates in analgesia and increases the effect of 

morphine on pain inhibition [370]. Here, we also observed strengthening of this pathway 

in fibromyalgia patients (by using IPA). The role of NO in fibromyalgia pathogenesis has 

been studied but without reaching a consensus [371]. Notably, the levels of iNOS 

isoform increase in female fibromyalgia sufferers in comparison with healthy controls, 

while the levels of constitutive isoforms (nNOS and eNOS) do not change [372]. It is 
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important to remember that our functional profiling was performed using the results 

obtained from the serum sample analysis. A relevant limitation in this study is, precisely, 

the metabolomics analysis and, more specifically, the metabolite identification step. We 

could only identify a small subset of all the metabolic features observed. Thus, the 

results obtained in this study are constrained by the reduced number of identified 

metabolites. A better metabolite identification procedure could improve not only the 

list of potential metabolite biomarkers but also the identification of potentially affected 

biological pathways and functionalities. 

Patients afflicted by chronic pain are likely to participate in many different long-term 

treatments, which could affect their microbiome composition. Differences in diets and 

lifestyles will also have some effect. Thus, it is difficult to be certain whether the 

detected alterations in the microbiota are the cause or consequence of fibromyalgia. 

Notably, no association between microbiome composition and drug type was found for 

fibromyalgia patients, although it has been demonstrated that clinical drugs have an 

impact upon microbiome composition, both antibiotic, non-antibiotic [149] and 

psychotropic [373] drugs. This lack of associations could be related to the reduced 

number of patients taking a specific drug family and/or to the interactions between 

different drugs taken. Proton pump inhibitors (PPI), for example, has been described to 

have anticommensal activity and was taken by nearly 30% of patients. One study has 

reported a reduction in Lachnospiraceae and Ruminococcaceae in PPI consumers [374], 

which is quite consistent with our observations in fibromyalgia patients. Another study 

could replicate these results, adding also a reduction in Bifidobacterium genus in PPI 

consumers [375]. Both studies also reported a decrease in α-diversity when PPI were 

taken, consistent with our findings too. Related to psychotropics, it has been reported 

that they target a similar pattern of bacterial species independently of their chemical 

similarity, thus suggesting that the anticommensal activity of these drugs may be a part 

of their mechanism of action instead of a secondary effect [373] We didn’t observe any 

microbiome alteration that could be associated to the ones that have been reported for 

antidepressant drugs, neither for tricyclic (taken by 12% of patients) nor selective 

serotonin reuptake inhibitors (SSRI) antidepressants (54% of patients). Regarding the 

antiepileptic drugs (taken by 29% of patients), it has been shown that neither lithium 

nor valproate have a significant anticommensal activity, although lithium may increase 

the relative abundance of Ruminococcaceae and reduce the Bacteroides one while 

valproate alters the levels of SCFA [376], alterations that we reported to occur in 

fibromyalgia patients too. Finally, while non antimicrobial activity has been described 

for morphine [377], opioids (prescribed to 45% of patients) chronic use has been 

associated with a reduction of Bacteroidaceae, which we also observed in fibromyalgia 

patients, and Ruminococcaceae [378]. Although no specific associations between 

specific drugs and microbiome composition were found, probiotics could be useful in 

the treatment of fibromyalgia as they affect the microbiome composition [326]. 

Notably, several authors have used this approach to treat chronic fatigue syndrome 

[379] and one pilot study has examined the effects of probiotics on fibromyalgia patients 
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[380]. The authors have shown some improvements, mainly in depression symptoms 

and impulsive behaviour, in comparison with the placebo group [381]. 

CONCLUSIONS 

To the best of our knowledge, this is the first study to report differences between the 

microbiome composition of fibromyalgia patients and healthy controls. We provided a 

list of these differences and reported the alterations in the levels of various molecules 

in the fibromyalgia sufferers, which might be useful as diagnostic biomarkers. We 

examined the functionality of these molecules and found that the most altered 

metabolic pathways were related to neurotransmitters, such as glutamate and nitric 

oxide. We checked possible interactions between the gut microbiome and serum 

metabolome; our analysis found several individual correlations between the two 

datasets. We also demonstrated that the combined microbiome and serum 

metabolome analyses could discriminate between fibromyalgia patients and control 

individuals. Thus, we report a new set of molecules and bacteria that might improve the 

diagnosis process, compensating for the current lack of objective biomarkers. Our 

results should help to shed some new light on the pathogenesis of this disease, provide 

biomarkers within a biological framework and improve our knowledge of this relatively 

unknown disease. 
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Just for once, let me look on you with my own eyes. 

Return of the Jedi, 1983. 
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Biomarker discovery is a complicated process, with a low success rate [7–10].  This low 

percentage of success has worsened with the apparition and generalization of high-

throughput technologies, such are the omics ones. The capability to analyze an 

enormous number of molecules simultaneously has provided with more potential 

biomarkers that lately fail to be validated, either using validation cohorts and/or by 

experimental means. Better approaches, technologies and protocols are thus needed in 

order to improve this success ratio.  

This Thesis work stablishes an analytical pipeline that could improve the biomarker 

discovery effectiveness, by providing more robust candidate molecules. Thus, a 

combination of distinct omics technologies with bioinformatics tools with the idea to 

provide a better comprehension of the biological alterations that could explain the 

alteration of each potential biomarker was studied. It was expected that with a better-

defined biological context for the molecules altered the list of potential biomarkers 

would be more robust, leading to less of them being discarded in the validation process. 

This hypothesis of binging closer the data to the biological context, has been applied to 

three practical cases with clinical relevance: the early prostate cancer urinary EVs 

derived biomarkers; the fibromyalgia multi-omics biomarkers identification; and the 

colorectal cancer metabolomics-microbiome biomarkers identification, including the 

advanced adenoma early stage of disease.  

For the prostate cancer (Results Chapter 2),  metabolomics analysis was performed and 

the corresponding results combined with publicly available transcriptomics datasets 

[244]. This combination allowed a better support for metabolomics findings on the 

altered metabolites, providing with an explanation for that alteration at gene regulation 

level and with the confirmation of those alteration in other cohorts, although in an 

indirect way. Another important point of relevance of the project was the choice of the 

samples to analyze. In this case, urinary EVs were used for the biomarker discovery 

process. Urine is the most proximal biofluid to prostate [254], thus its metabolome will 

reflect better the prostatic alterations than other biofluids located further away. The 

utilization of EVs for biomarker identification could also alleviate the low rates of 

success. Since the use of urine required the concentration of the sample, EVs represent 

a concentrated source of molecules [19]. EVs themselves have been shown to be 

different between early disease stage and later ones, both structurally and in their 

contents. Since cancer cells seems to release different kind of EVs than normal cells, 

using EVs as a source for biomarkers may improve the process, identifying more robust 

candidates because less background molecules may be included in the analysis.  

With the fibromyalgia project (Results Chapter 4), a different approach was followed. 

Since only one cohort was available to test the validity of the identified potential 

biomarkers, a combination of distinct omics technologies performed upon different 

sample types of the same individuals was used. Thus, sera metabolome, circulating 

miRNAs, cytokines and peptides with the fecal microbiome were combined and the 

interactions, similarities and potential influences between them were studied [237]. 

Because most of the differences found were related to fecal microbiome and serum 
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metabolome, the potential role of gut microbiota upon the host’s metabolome was 

inspected. Therefore, one of the criteria applied for ensuring biomarker candidates’ 

robustness was to identify potential roles for altered bacteria upon host’s phenotype, 

by correlating their abundance with metabolite levels. A functional explanation for these 

correlations was explored, by looking in bacterial metabolomics databases. Finally, the 

last validation strategy was experimental. Since glutamate related metabolites 

alterations were identified and these alterations correlated with specific bacterial genes, 

qPCR analysis was performed on these bacterial genes. This way, a functional 

confirmation of the difference in taxonomical levels identified by bioinformatics means 

was obtained.  

Finally, a combination of metabolomics and microbiome of fecal samples was explored 

to identify potential early biomarkers for CRC. While microbiome data acquisition was 

performed on all samples at once, metabolomics data was acquired and analyzed in two 

steps. In the first one, the fecal metabolome of 129 individuals was analyzed [449] and 

those results used to generate a metabolite-composed predictive model, to analyze how 

good the potential biomarkers could be, dividing the samples in 80% going to model 

training and 20% to model validation. In order to avoid potential lifestyle and/or 

population-related confounding factors during the model metabolites selection step, 

this specific distribution was randomly generated up to 10,000 times, evaluating the 

model on all of them. Later, the second part of the study, 116 samples, was used as a 

validation cohort for the model published. CRC, though, is known to be highly associated 

with alterations on the host’s normal gut microbiota [450, 451, 458]. Because of the 

location of gut microbiota, it has a relevant impact upon fecal metabolome composition 

too [436, 463]. Therefore, when considering which omics to perform in order to better 

identify, characterize and explain biomarker candidates, metabolomics and microbiome 

came to be the most logical options. In fact, these multi-omics analytical methods 

showed that metabolomics and microbiome revealed higher similarities and 

interactions between both of them. In a final integration step, the published metabolite-

related predictive model was updated to include selected bacterial genera identified to 

be also differentially abundant.  

In summary, in the three projects presented in this thesis work, the best way to use high-

throughput omics technologies for biomarker discovery studies has been analyzed, in 

order to try to convert the raw data into biological context. Several aspects have been 

specially considered, ranging from the project design to the final analytical tools. All the 

projects presented have been carefully designed in such a way that would comply with 

the biomarker discovery checklist. In the case it was not feasible to comply with some 

of the criteria, strategies were proposed and followed in order to reduce the potential 

drawbacks of such compliance failure. 

In all projects, the best biospecimen for each disease studied was tried to be analyzed. 

In both cancer-related projects, the most accurate biospecimen was considered to be 

the most proximal one to the tumor itself. Thus, the selection of urine for PCa and stool 

for CRC seemed logical. Biospecimen to analyze for the fibromyalgia project was harder, 
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though. Because of the characteristics of the disease no concrete location of the body 

can be associated with any main symptomatology. Therefore, a wider approach seemed 

to be more indicated. This is why different blood fractions and fecal samples were 

collected from this cohort individuals. Another relevant factor to consider when 

choosing which biospecimens to collect is what kind of analysis will be performed lately 

on those samples. For example, metabolomics experimental protocols will depend on 

the sample analyzed, as will microbiome sequencing ones too. Other molecules won’t 

even be detected depending on the biospecimen used. 

An important element when performing either single omics and/or multi-omics studies 

is the ability to isolate real, phenotype-specific alterations from background noise and 

alterations due to confounding factors. The large number of variables included in one 

omics study makes it inevitable to identify data patterns and variable alterations that 

will be associated with lifestyle, clinical and/or other confounding factors, such as the 

geographical location of the sample. This issue occurred with fibromyalgia 

metabolomics, for example, seeing that samples could be completely discriminated 

depending on the sample’s hospital origin. In fact, the influence of confounding factors 

upon the omics data will depend on the omics itself. Thus, the influence of 

environmental factors will be higher for microbiome or metabolomics than for 

genomics. Having bad metadata is, therefore, an important drawback for any omics 

study. One option to tackle this issue is to increase the number of samples included in 

the study. This, obviously, will have an important impact upon the costs of the study, 

but will generate more robust associations and may provide better resolution for the 

biomarker discovery process. Another option is to try to group common features under 

one category of the metadata, so that more samples will be included in the same 

category and statistics may be more robust. This approach was followed for the 

identification of the potential effects of fibromyalgia patients’ drug regimens upon 

microbiome composition, grouping each individual drug by drug type and indication. 

This way, patients subgroups with enough sample size were generated, allowing the 

performance of more robust differential statistical tests. A final option, that could also 

tackle the small sample size issues, is to perform multi-omics studies instead of single 

omics one. This way, contrasting and comparison of alterations found by one omics 

technology with another omics one becomes feasible. Apart from identifying more 

certain alterations, explained by more than one omics layer, this will also discard some 

potential confounding factors, because not too many of them are able to affect multiple 

omics layers at the same time and in the same way.  

Related to these confounding factors, the use of different, external validation cohort is 

highly recommended. Ideally, this validation cohort should be completely independent 

of the cohort used to generate the corresponding predictive model, including factors 

such as the geographic location of both cohorts, different sampling time points, sample 

processing, etc. A biomarker candidate that could be validated in a completely different 

and independent cohort will have much better options in posterior patenting and 

commercialization projects. When this completely different validation cohort is not an 
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option to consider, for whatever reasons, reducing as much as possible the potential 

effects of sample-related confounding factors should provide highly robust biomarker 

candidates. For this reason, this strategy in which the cohort was randomly divided into 

training and testing subpopulations up to 10,000 times was used when selecting which 

variables should be included in the predictive model. This approach allowed the 

generation of 10,000 different populations, each one of them with different individuals 

combination so that all the set of confounding factors that could influence the outcome 

of the variable selection step were included. This way, a predictive regression model 

that robust against any factor that may not be related to the phenotype trying to predict 

could be generated. This approach was shown to be quite effective for the CRC multi-

omics project, where in the first part of the project a model for metabolomics data using 

this strategy was constructed that later was showed to be good enough to be validated 

within the new cohort of samples introduced in the second part of the project. 

Economically, though, multi-omics studies are expensive, so that not all research groups 

may be able to afford them. Luckily, most research journals require the release of raw 

data for any publication. This means that there are full datasets being publicly available 

and that any researcher may use it. It’s as easy as downloading and processing one (or 

more) dataset that has been generated by other authors studying the same phenotype. 

This was done for PCa project [244] and CRC first part of the project [449], mixing our 

own metabolomics datasets with transcriptomics obtained from publicly available 

databases. 

One feature that has shown to be important for the validity of biomarkers is their 

functional characterization what is one of the major aims of this this project. In this 

aspect, the work in the bioinformatics package to retrieve information from the most 

commonly used metabolomics databases (KEGG and HMDB) has been useful to aid and 

accelerate this step. To our knowledge, no app exists that combines as many databases 

as our approach does, both at physicochemical and functional levels. The most relevant 

point, though, is that that tool allows the batch search of multiple metabolites (for KEGG 

and HMDB databases) and/or genes, for the rest of the functions included in the 

package. This metabolite > enzyme > genes > functionalities path allows the generation 

of a straightforward analytical pipeline, needing only metabolites codes to perform the 

complete search. 

While dimension reduction techniques have been shown to be useful for distinct 

datasets integration and comparison, their utility as a biomarker identification strategy 

is less clear. A reason for that is the dimensionality reduction approach itself because it 

combines distinct variables into a new one, the principal component, which is 

responsible for the sample groups differentiation. The identification of individual 

biomarkers and their potentiality for sample discrimination is, therefore, less straight-

forward. Instead, dimension reduction methodologies are useful for identifying 

alteration patterns that later may be used for biomarkers functional characterization, 

such as metabolite families and/or specific bacterial phyla. To identify individual 

biomarkers, the correlation-based approaches were found to be far more informative, 
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most probably due to the fact that correlations were established between individual 

variables. Relevantly, the same patterns were identified in both approaches, with the 

same variables being identified to be more relevant to either the sample groups 

description and/or prediction. Thus, and seemingly to what happens with metabolomics 

data analysis [97], the combination of a more global approach as dimension reduction 

methods could be with a more refined one like the correlations analysis was 

recommended, as more complete information and better-explained results were 

obtained from the same set of data. Including a final step in which regression models 

with the combined datasets were studied was also helpful in order to prove that the 

identified interactions between distinct omics datasets exist and can be exploited. 

Finally, although one of the aims of this thesis was to define a specific, standardized and 

re-usable pipeline for multi-omics integration studies, the work performed in this thesis 

suggests that, with the interest of performing the best analysis possible, each pipeline 

should be adapted to the specifics of the corresponding project. Actually, this can be 

seen in the three projects presented here, each one with its specific analytical protocol, 

although some common methods have been applied too. In summary, for a well-

performed multi-omics study the following considerations are suggested: 

1) Process and analyze each omics separately. The incorporation of specialized 

researchers in this step will suppose also a better analyzed, good quality data. Test 

different processing and normalization methodologies to identify which better suits 

the characteristics of the dataset and/or samples. 

2) With the normalized data, perform a range of multi-omics integration, both 

univariate and multivariate.  

3) No approaches should be discarded from the start. Although they may not be as 

informative as expected, each one is intended to explain specific dataset 

characteristic or interaction. 

4) Biomarkers should be identified or related to more than one omics dataset. This 

ensures higher robustness of the candidates so that less of them will be lost in 

validation steps. 

5) Experimental validation of bioinformatics results is helpful to confirm or discard some 

biomarker candidates. This step should always be considered in any study with high 

dependence on bioinformatics. 

6) Multi-omics results can be directly associated with the quality of metadata, as that is 

the factor that will ensure that differences observed can be (or cannot be) associated 

with the studied phenotype. 

 

4.1.- Limitations and considerations 

In order to tackle the lack of success rate for the biomarker discovery process, several 

approaches have been presented in the three projects performed in this thesis. The 

principal limitation of these studies, though, is that two of them have been more 

prospective projects, without a real validation step using other completely different 



 

193| D i s c u s s i o n  

cohorts. Even when the identified biomarkers were validated in a different cohort, no 

significant environmental and lifestyle-related factors were different between cohorts 

so that we could not rule out the role of confounding factors among the predictability 

of our biomarkers. Therefore, it’s evident that strong international collaborations and 

consortia are a great tool for biomarker discovery research studies, so that completely 

different cohorts may be easily accessible for researchers. It is obvious though, that for 

matters of time this kind of validation with international cohorts was not a feasible 

objective of the projects presented in this thesis. 

It is clear that bioinformatics alone will not resolve the issues presented in this work, 

even if far better methodological and analytical tools are developed. In fact, the use of 

only bioinformatics to tackle those challenges was never considered in this thesis. 

Instead, a list of checkpoints is proposed that, followed during the biomarker discovery 

process, may lead to a better and more robust list of biomarker candidates. 

Bioinformatics, thus, should provide a list of candidates, not a definitive and invariable 

list. Instead, every candidate must be proven to work by experimental methods, 

laboratory work and clinical trials when that point of the process is reached. 

Bioinformatics aims, therefore, should be limited to refine and improve the biomarker 

candidates selection steps, but validating them is a task for another scientific field. 

The combination of distinct omics technologies in a single project is not cheap and 

requires the implication of several researchers, each one specialized in one of those 

omics. Each omics technologies also have their own equipment, protocols and data 

formats. If the goal of the multi-omics research field is to achieve a standardization of 

protocols and data formats, this needs to be tackled from the data acquisition step. 

Therefore, a joint effort is needed from all the high-throughput research fields to change 

the current protocols and standards. Finally, the elevated cost of these kinds of 

technologies makes it hard to globalize and democratize their use. Consequently, if the 

goal of the omics research field is to become a standard option for biomarkers discovery, 

new methods and equipment need to be developed that reduces their costs. 
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• The data mining tool we have developed can aid in the functional description of 

potential metabolite biomarkers, helping this way to provide a biological context 

for their alteration, strengthen this way the selection process of robust 

biomarkers. 

 

• High-throughput tools allow the identification of a large number of potential 

biomarkers for a range of diseases due to the ability to measure thousands of 

variables simultaneously. 

• A combination of distinct omics technologies has demonstrated to be a useful 

approach for robust biomarker candidates' identification.  

• Analytical methods must be carefully considered for each omics, taking into 

consideration the data characteristics and structure, which will influence the 

output of the analytical process. 

• The metadata collection process needs to be carefully controlled and supervised, 

including in the process the opinion of the final data analyst.  

• Standardization of experimental protocols and data formats for single omics and 

a combination of them is still unresolved. 

 

 

• Urinary EVs are a good source for the biomarker discovery process, due to their 

easy access and the reduction of sample processing steps, especially for diseases 

related to the urogenital tract. 

• PCa EVs show altered morphology and metabolite content compared to BPH 

ones.  

• Metabolites altered in PCa EVs include PCs, which are related to cellular and 

extracellular membranes, arachidonic acid, suggesting alterations on 

inflammatory modulators and metabolites related to steroid hormones.  

• Stage 3 PCa patients presented decreased levels of metabolites related to 

ceramides, acylcarnitines and glycerophospholipids when compared to stage 2 

patients.  

• Stage 3 PCa patients with perineural invasion were found to have elevated levels 

of androsterone sulfate + etiocholanolone sulfate and lower levels of cAMP 

when compared to patients without perineural invasion. 

• Metabolomics results for PCa patients were concordant with gene expression 

alterations identified by independent transcriptomics studies. 

 

• Fibromyalgia patients present microbiota dysbiosis events, such as richness 

reduction and reduced abundance of SCFA producer bacteria. Furthermore, 

these alterations couldn’t be associated with any of the clinical metadata.  

• Fibromyalgia patients’ microbiome is less abundant on glutamate degradation 

bacterial enzymes, as identified by 16S sequencing analysis and confirmed by 

experimental methodologies. 
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• Fibromyalgia metabolomics analysis revealed alterations on neurotransmitters 

levels, like glutamate and on metabolites related to NO biosynthesis pathways. 

• Microbiome and metabolomics integration for fibromyalgia patients revealed 

the certain influence of gut microbiome upon serum metabolome, with 

correlations found for gut bacteria and glutamate levels. 

• The combination of the 4 omics datasets was able to identify fibromyalgia 

patients better than any omics alone. 

 

• Colorectal cancer fecal metabolomics revealed alterations in mainly three 

metabolite families: cholesteryl esters, ceramides and sphingomyelins.  

• A combination of 6 metabolites is predictive enough to be able to identify CRC 

patients from AD and control individuals, both in the training and validation 

cohort.  

• Microbiome analysis identifies alterations for CRC individuals when compared to 

C and AD, but is not able to discriminate between the two latter groups.  

• CRC patients presented increased abundance of Bulleidia, Erysipelotrichaceae 

(family), Fusobacterium, Gemella, Butyrivibrio, Peptococcus, 

Peptostreptococcus, Staphylococcus, Streptococcus, Parvimonas and 

Selenomonas.   

• CRC patients presented decreased abundance of Lachnospiraceae family 

bacteria. 

• AD presents an increased abundance of Adlercreutzia when compared to C and 

CRC individuals 

• Specific genera abundance alterations either increases or decreases with disease 

progression. 

• Multi-omics integration of CRC data identified both metabolomics and 

microbiome datasets to be similar, with strong correlations identified between 

altered metabolites and bacteria. 

• A combination of biomarkers obtained from fecal metabolomics and microbiome 

generated a better predictive model than each omics separately. 

 

General conclusion: 

• The results of the three projects included in this thesis demonstrate the potential 

and utility of combining distinct omics in order to improve the biomarker 

discovery process and the identification of altered metabolic pathways that may 

explain specific diseases pathogenesis.  
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• La herramienta de data mining que hemos desarrollado puede ayudar en la 

descripción funcional de los potenciales metabolitos biomarcadores, ayudando 

a proveer con un contexto biológico para su alteración, fortaleciendo así el 

proceso de selección de biomarcadores robustos. 

 

• Las herramientas de alto rendimiento permiten la identificación de un elevado 

número de biomarcadores potenciales para múltiples enfermedades a causa de 

la capacidad para medir miles de variables de forma simultánea. 

• La combinación de distintas tecnologías ómicas ha demostrado ser un método 

útil para la identificación de candidatos robustos a biomarcador.  

• Los métodos analíticos deben ser considerados de forma cautelosa para cada 

tecnología ómica, teniendo en cuenta las características y estructura de los 

datos, que afectaran sobre el resultado del proceso de análisis. 

• El proceso de recolección de los metadatos clínicos tiene que estar muy 

estrechamente controlado y supervisado y debería incluir en este proceso la 

opinión del responsable final del análisis de datos.  

• La estandarización de los protocolos analíticos y del formato de los datos, tanto 

para las ómicas individuales como en combinación, no está todavía resuelta. 

 

• Las EVs de orina son una buena fuente para el proceso de identificación de 

nuevos biomarcadores, por su facilidad de obtención y la reducción de los pasos 

de procesado de muestras, especialmente para enfermedades relacionadas con 

el tracto urogenital.  

• Las EVs de PCa muestran alteraciones en su morfología y contenido en 

metabolitos en comparación a las EVs de BPH.  

• Los metabolitos alterados en las EVs de PCA incluyen PCs, que se relacionan con 

las membranas celular y extracelular, el ácido araquidónico, sugiriendo así 

alteraciones en moduladores de la inflamación y metabolitos relacionados con 

las hormones esteroides.  

• Los pacientes de PCa estadío 3 presentaban niveles reducidos de metabolitos 

relacionados con las ceramidas, acilcarnitinas y glicerofosfolípidos en 

comparación a los pacientes en estadío 2.  

• Los pacientes de PCa en estadío 3 con invasión perineural tenían niveles elevados 

de sulfato de androesterona + sulfato de etiocolanolona y niveles reducidos de 

cAMP en comparación con los pacientes sin invasión. 

• Los resultados de metabolómica de los pacientes de PCa concordaban con las 

alteraciones en la expresión genética identificadas por estudios independientes 

de transcriptómica. 

 

• Los pacientes de fibromialgia presentan eventos de disbiosis en su microbioma, 

como la reducción de diversidad y de bacterias productoras de SCFA. Además, 

estas alteraciones no se pudieron asociar a ningún parámetro clínico.  
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• El microbioma de los pacientes de fibromialgia presentaba una reducción en la 

abundancia de las enzimas bacterianas degradadoras de glutamato, como se 

identificó con el análisis de la secuenciación del gen 16S y se confirmó 

experimentalmente. 

• El análisis de la metabolómica de fibromialgia identificó alteraciones en los 

niveles de neurotransmisores, como el glutamato y metabolitos relacionados 

con la ruta de biosíntesis de NO. 

• La integración de datos de microbioma y metabolómica de los pacientes 

identificó una cierta influencia del microbioma intestinal en el metaboloma del 

suero, con correlaciones identificadas entre las bacterias intestinales y los niveles 

de glutamato. 

• La combinación de las 4 tecnologías usadas permitió identificar los pacientes de 

fibromialgia mejor que ninguna tecnología por si sola. 

 

• La metabolómica de las heces de los pacientes de cáncer colorrectal identificó 

alteraciones en principalmente tres familias de metabolitos: esteres de 

colesterol, cermidas y esfingomielinas.  

• Una combinación de 6 metabolitos tiene suficiente capacidad predictiva para 

diferenciar a los pacientes de CRC de los de AD y los controles sanos, tanto en la 

cohorte de entrenamiento como la de validación.  

• El análisis de microbioma identifica alteraciones para los individuos con cáncer 

colorrectal comparados con los grupos C y AD, pero no es capaz de discriminar 

entre estos dos últimos grupos.  

• Los pacientes de CRC presentaban una mayor abundancia de  Bulleidia, 

Erysipelotrichaceae (familia), Fusobacterium, Gemella, Butyrivibrio, 

Peptococcus, Peptostreptococcus, Staphylococcus, Streptococcus, Parvimonas y 

Selenomonas.   

• Los pacientes de CRC mostraban menor abundancia de bacterias de la familia 

Lachnospiraceae. 

• Los individuos con AD presentan mayor abundancia de Adlercreutzia en 

comparación con los individuos de los grupos C y CRC. 

• Las alteraciones en abundancia de géneros específicos identificadas o se 

incrementan o disminuyen con la progresión de na enfermedad. 

• La integración de multi-ómicas de los datos de CRC demostraron la existencia de 

similitudes entre los datos de microbioma y metabolómica, con correlaciones 

significativas entre metabolitos y bacterias alteradas. 

• Una combinación de biomarcadores derivados de la metabolómica fecal y el 

microbioma permitieron generan un modelo predictivo mejor que los generados 

con las ómicas por separado. 
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Conclusión general: 

• Los resultados de los tres proyectos que se incluyen en esta tesis demuestran el 

potencial y utilidad de combinar distintas tecnologías ómicas para mejorar el 

proceso de identificación de nuevos biomarcadores y la identificación de 

potenciales alteraciones en rutas metabólicas que puedan explicar la 

patogénesis de enfermedades concretas.   
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Supplementary Table 1: Summary of the tools, resources and methods used in this Thesis project. The table includes 

the resource name, it’s accessibility, a brief description and the link to the tool. 
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Supplementary Figure 1: Complete correlations plot between genera annotated microbiome dataset and 

metabolomics dataset, as obtained from HAllA tool.   
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Interestingly, urine EVs recapitulated many of the metabolic alterations reported in PCa, including
phosphathidylcholines, acyl carnitines, citrate and kynurenine. Importantly, we found elevated
levels of the steroid hormone, 3beta-hydroxyandros-5-en-17-one-3-sulphate (dehydroepiandros-
terone sulphate) in PCa urinary EVs, in line with the potential elevation of androgen synthesis in
this type of cancer. This work supports urinary EVs as a non-invasive source to infer metabolic
changes in PCa.
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Introduction

Prostate cancer (PCa) is among the most frequently
diagnosed and deadly types of cancer in men in
Western countries (http://globocan.iarc.fr). Lack of
sensitive and specific diagnostic tools, especially to
detect early stages of the disease, and the unknown
underlying mechanisms of onset and progression of
PCa are the major problems to treat PCa with the
highest efficacy. Thus, there is a high demand to dis-
cover more sensitive and specific biomarkers to
improve PCa diagnosis and prognosis. Nowadays,
prostate-specific antigen (PSA) blood screening tests,
together with clinical T-stage and Gleason score are the
standard tests to discriminate patients with low, inter-
mediate or high risk to suffer PCa [1].

Metabolomics is recognised as the ultimate “omics”
discipline with high potential to identify sensitive and
specific markers, and to understand the mechanisms
involved in the development of pathological processes
[2]. The recent technological revolution in separation
and detection of small molecules, combined with rapid
progress in bioinformatics, is making possible to
rapidly measure a large number of metabolites in a
small amount of sample [3,4]. Metabolomics comprises
the qualitative and quantitative measurement of the
metabolic response to physiological or pathological
stimuli. It involves the extraction and measurement of
low molecular weight molecules (e.g. amino acids,
sugars, bile acids, fatty acids, vitamins, etc.) belonging
to different metabolic pathways to generate metabolic
profiles of cells, tissues or biofluids [5,6]. Previous
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studies have shown the utility of serum metabolite
levels as a diagnostic tool for different cancer types
[7], and in PCa some metabolites have already been
suggested as candidate biomarkers. Increased serum
levels of polyunsaturated fatty acids have been asso-
ciated to reduce risk of PCa, while higher levels of
serum testosterone were associated with an increased
risk of suffering this malignancy [8]. Other metabolo-
mics approaches have reported alterations of acyl car-
nitines, glucose, glycerophospholipids (including
lysophosphatidylcholines and phosphatidylcholines),
amino acids and triglycerides in PCa [9].

Urine samples have been intensely used to identify
PCa biomarkers [10], due to its easy availability and
handling, and its anatomical proximity to the prostate.
As occurs for the serum, there are also several meta-
bolomics studies of urine samples that found altera-
tions in urinary levels of more than 20 metabolites
including N-methyl glycine, kynurenine, uracil, gly-
cerol 3-phosphate, dihydroxybutanoic acid, xylonic
acid, pyrimidine, ribofuranoside and xylopyranose
(reviewed in [11]). These studies have pointed out
that many metabolic pathways may be altered in PCa
including glycine synthesis and degradation, and car-
bohydrate and energy metabolisms. Although all these
metabolites need further clinical validation, they sup-
port the notion that metabolomics constitutes a suita-
ble technology to identify candidate biomarkers
of PCa.

One important drawback of using urine sample for
biomarker discovery is that many of their constituents are
diluted avoiding to be detected by current technologies.
Thus, in order to detect underrepresented molecules, it is
still required to concentrate the sample. In this context,
cell-secreted extracellular vesicles (EVs) are present in all
body fluids, including urine [12], and could provide a
concentrated source of molecules. Thus, a deep analysis
of the urinary EVs composition could open a window of
opportunities to identify more sensitive and specific PCa
biomarkers. In line, a recent lipidomics study performed in
these urinary vesicles from healthy and PCa samples reveal
up to nine lipid species differentially expressed as potential
PCa biomarkers [13] supporting the existence of metabolic
changes in urine EVs from PCa patients.

In the current study, we have compared urinary EVs
obtained from PCa and benign prostate hyperplasia
(BPH) patients, and focused on the analysis of the meta-
bolites that they contain by performing an UHPLC-MS
targeted metabolomics analysis. We evaluated the levels
of 248 metabolites belonging to different chemical nat-
ure including amino acids, nucleosides, vitamins, as well
as different lipid species. Among them, 76 metabolites
were found significantly altered in PCa compared to
BPH. Some of these metabolites were significantly cor-
related with current markers of PCa (e.g. PSA).
Interestingly, dehydroepiandrosterone sulphate was
among the most significantly altered metabolites in
PCa, supporting the notion that beyond their function
as “metabolic machines” [4,14,15], EVs could inform
about metabolic alterations of cancerous tissue.

Materials and methods

Patient samples

All urine samples were obtained from the Basque Biobank
for research (BIOEF, Basurto University hospital) upon
informed consent and with evaluation and approval from
the corresponding ethics committee (CEIC code
OHEUN11-12 and OHEUN14-14). Clinical classification
of the patients is described in Table 1. For each sample,
urine (50 ml) was collected by spontaneous micturition,
centrifuged at 2,000 × g 10min, filtered through a 0.22 μm-
pore membrane and immediately frozen at −80ºC.

Urine extracellular vesicle isolation and
characterisation

To isolate EVs from urine (average ± SEM; 49.7 ± 0.86ml),
the stored samples were thawed, centrifuged at 10,000 × g
for 30 min and the supernatant ultra-centrifuged at
100,000 × g for 75 min. The resulting pellet was washed
with an excess of phosphate-saline buffer (PBS), and again
ultra-centrifuged at 100,000 × g for 60min. Final pellet was
re-suspended in 150 µL of PBS, aliquot generated and kept
at −80°C for further analysis. Protein was determined by
Bradford and obtained 32.7 ± 4.6 (mean±SEM) micro-
grams on average of total purified protein from the initial

Table 1. Clinical classification of the samples.
Disease status Stage Perineural invasion n

Prostate cancer (PCA) (64 ± 4.41) Stage 2 (64 ± 4.12) No (Pn0) (65.5 ± 5.02) 6
Yes (Pn1) (64 ± 3.47) 10

Stage 3 (64.5 ± 4.68) NA 15
Benign hyperplasia (BPH) (70 ± 5.71) NA NA 14

In parentheses are indicated the median ± SD of age for each group of samples.
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urine volume (50 ml). Size distribution of the particles
present in the isolated preparations was determined by
measuring the Brownian motion using a NanoSight
LM10 system equipped with a fast video capture and par-
ticle-tracking software (Malvern, UK). Pre- and post-
acquisition settings were maintained the same for all the
samples and each video was analysed to give the mean,
mode, and median vesicle size, as well as an estimate of the
particle concentration. Then, an average curve was calcu-
lated for each group of patients to be compared among
them.Cryo-electronmicroscopy andWestern-blot analysis
were performed as describe previously [16].

Metabolite extraction and UHPLC-MS analysis

Metabolic profiles of urinary EVs were semi-quantified
using four UHPLC-MS based analytical platforms as
previously described [17,18]. Methanol was first added
to urinary EV preparations, and after brief vortex,
chloroform was added. Both extraction solvents were
spiked with metabolites not detected in unspiked EV
extracts: tryptophan-d5(indole-d5), PC(13:0/0:0), FA
(19:0), dehydrocholic acid, SM(d18:1/6:0), PE(17:0/
17:0), PC(19:0/19:0), TAG(13:0/13:0/13:0), Cer(d18:1/
17:0), ChoE(12:0), anthranilic acid-(ring-13C6), phe-
nylthiohydantoin (PTH)-valine and glycocholic-
2,2,4,4-d4 acid. Samples were incubated at −20°C for
30 min and, after vortex, three different phases were
collected. Platform 1 included fatty acyls, bile acids,
steroids and lysoglycerophospholipids profiling.
Supernatants were collected after centrifugation at
16,000 × g for 15 min, dried, reconstituted in methanol,
resuspended for 20 min and centrifuged (16,000 × g for
5 min) before being transferred to vials for UHPLC-MS
analysis. Platform 2 included glycerolipids, cholesteryl
esters, sphingolipids and glycerophospholipids profil-
ing. Extracts were mixed with water (pH = 9) and after
brief vortex mixing, the samples were incubated for
60 min at −20°C. After centrifugation at 16,000 × g
for 15 min, the organic phase was collected and the
solvent removed. The dried extracts were then recon-
stituted in acetronitrile/isopropanol (50:50), resus-
pended for 10 min, centrifuged (16,000 × g for
5 min) and transferred to vials for UHPLC-MS analy-
sis. Platform 3 included amino acids profiling; 10 μl
aliquots from the extracts prepared for Platform 1 were
transferred to microtubes and derivatised for amino
acid analysis. Finally, Platform 4 consisted in the ana-
lysis of polar metabolites profiling, including central
carbon metabolism. Extracts were mixed with chloro-
form. After brief vortex mixing, water was added and
samples were mixed for 10 min at room temperature.
Afterwards, samples were centrifuged at 16,000 × g for

10 min. The supernatants were collected and dried.
Extracts were then solubilised in water and after cen-
trifugation, supernatants were transferred to vials for
UHPLC-MS analysis.

Chromatographic separation and mass spectrometric
detection conditions employed were previously
described [17,18]. The overall quality of the analysis
procedure was monitored using six repeat injections of
a pooled sample, considered as the quality control sam-
ple. For each of the four analytical platforms, randomised
sample injections were performed, with QC calibration
and validation extracts uniformly interspersed through-
out the entire batch run. Generally, the retention time
stability was <6 s injection-to-injection variation and the
mass accuracy <3 ppm for m/z 400–1200, and <1.2 mDa
for m/z 50–400. Details of lipid nomenclature used in
this work is provided as supplementary material.

Data processing, statistical and bioinformatics
analyses

Amount of urine sample and data normalisation

A similar volume of urine sample (50 ml) from each
patient was employed for obtaining the EV preparations.
Then, the complete EV preparations were analysed by
UPLC-MS metabolomics analysis. The peak intensities
for each metabolite included in the analysis were normal-
ised to the sum of the peak intensities within each sample.
There was no significant correlation (F < Fcrit) between
the sum of the peak intensities used for the normalisation
and the groups being compared in the study.

Missing values imputation

First, metabolites that were not detected in at least 70%
of the whole set of samples were removed from the
analysis. Then, taking the minimal value for each meta-
bolite and dividing it by a factor of 10, missing values
were imputed in order to obtain the final data set.

Univariate analysis

Three different comparisons were established for the
analyses:

● Prostate cancer (PCa) vs benign prostate hyper-
plasia (BPH).

● PCa pathological stage 3 vs PCa pathological stage 2.
● In the PCa pathological stage 2 group, perineural

invasion: Pn1 vs Pn0.
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The mean and 90%Winsorized-mean for each metabolite
and each group of patients were calculated, as well as,
Student’s t-test or Wilcoxon signed-rank test, depending
on the normality of the data that was assessed using
Shapiro-Wilk test. Median, standard error of the mean
(SEM), the standard deviation (SD), coefficient of variation
and the Interquartile Range (IQR) were also calculated.

Several calculations were performed for the three
distinct comparisons. We calculated the F-test of the
two variances, the Student’s t-test, Wilcoxon signed-
rank and Fold Change for each metabolite. To test the
discriminatory capacity of each metabolite for each one
of the three comparisons we performed Receiver
Operating Characteristic (ROC) analysis, including in
the calculations the values of the Area Under the Curve
(AUC), sensitivity, specificity, positive predictive value,
negative predictive value, Youden index and the opti-
mal cut-off.

For each one of the three pairwise comparisons, we
generated box-plots for those metabolites with signifi-
cant differences between the two groups with adjusted
p-values following Bonferroni methodology. Heatmaps
indicating log2 value of Fold Change and Bonferroni
adjusted p-values were also calculated. Finally, volcano
plots were generated with the log2 Fold Change values
and Bonferroni adjusted p-values.

All statistical analyses were performed using R soft-
ware v3.3.2 (R Development Core Team, 2016; http://
cran.r-project.org) with stats, caret, psych and
OptimalCutpoints package [19]. Boxplots and volcano
plots were generated with ggplot2 R package.
Correlations with clinical parameters such as BMI
were done with cor.test function in R software, using
Spearman’s method. Both rho and p-value for each
metabolite are reported. We studied the correlation of
BMI and metabolite levels with all the samples together
and also dividing samples depending on their clinical
status.

Multivariate analysis

Principal Component Analysis (PCA), Partial Least
Squares-Discriminant Analysis (PLS-DA) and
Orthogonal Partial Least Squares (OPLS) were per-
formed for each pairwise comparison using SIMCA-P
v12.0.1.0 software (Umetrics AB).

Metabolites mapping into cellular metabolic
pathways and identification of primary enzymes
associated with their metabolism

Metabolic pathways were determined with MetScape
v3.1.2 application, running under Cytoscape v3.5.0

software, linking them to KEGG Pathway database
(http://www.genome.jp/kegg/pathway.html). Primary
enzymes involved in the metabolism of the metabolite
of interest, and their corresponding coding genes were
retrieved from KEGG (http://www.genome.jp/kegg/com
pound/) and HMDB (http://www.hmdb.ca/) databases,
using dbWalk utility on bioDBnet database searching
online utility and specifying “9606” (Homo sapiens)
Taxon ID on Organism box (https://biodbnet-abcc.
ncifcrf.gov/db/dbWalk.php), with the following paths:

● For KEGG compounds, we started with enzyme
EC code:

EC Number->UniProt Accession->UniProt Entry
Name->KEGG Gene ID->Gene ID->Gene Symbol-
>Gene ID->GenBank Nucleotide Accession.

● For HMDB compounds, we started with the name
present on HMDB database:

HMDB Metabolite->HMDB Enzyme -> UniProt Entry
Name->Gene Symbol->Gene ID->GenBank Nucleotide
Accession.

For each metabolite included in this step, we
reported:

● For KEGG compounds, the related enzymes EC
number, UniProt Accession, UniProt Entry
Name, KEGG Gene ID, Gene Symbol, GeneID
and the GenBank Nucleotide Accession for the
corresponding transcripts.

● For HMDB compounds, the HMDB enzyme Gene
Symbol, Gene Symbol, Gene ID and GenBank
Nucleotide Accession for the corresponding
transcripts.

Database normalisation: all the datasets used for the
data mining analysis were downloaded from GEO or
TCGA, and subjected to background correction, log2
transformation and quartile normalisation as reported
[20,21]. In the case of using a pre-processed dataset,
this normalisation was reviewed and corrected if
required. For normal vs. PCa comparisons, a two-tailed
t-test is performed in order to indicate if the observed
differences between the groups are significant. For
tumour progression analysis, an ANOVA test was per-
formed in order to evaluate if the observed differences
of gene expression levels between the groups were
significant. DFS analysis was performed using Taylor
and TCGA datasets. In both cases, the patients were
stratified by quartiles based on the expression of the
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gene of interest, Kaplan-Meier Estimator was used in
order to estimate the survival function from different
groups of patients while a Log-Rank test is calculated to
check the significance between the curves. In the case
of Taylor dataset, the analysis was performed using the
average signal from all the transcripts of a gene.

Results

Urine samples were collected from patients with BPH
(n = 14) and PCa (n = 31) with different pathological
characteristics (Table 1). In order to avoid any chemi-
cal alteration of the vesicles that could interfere with
the metabolomics analysis, we decided to preserve uro-
modulin status of the samples by avoiding the use of
high-salt concentration or reducing agents. After initial
clearing at low centrifugation and ultrafiltration, small
EVs (exosomes, small microvesicles and apoptotic
blebs) were isolated by differential ultracentrifugation
as described in [16]. Cryo-electron microscopy
revealed the presence of vesicles in the preparations
(Supplementary Figure 1A). Western-blot analysis
showed that while we could not detect mitochondria
(COX IV) or endoplasmic reticulum (GRP78) proteins,
we could detect exosomal markers (CD10, CD63, CD9,
Flotillin and CD26), and also some uromodulin (THP)
(Supplementary Figure 1B). As previously, we found a
high inter-individual variability in the abundance of
these proteins [16,22]. In agreement with previous
results [16], physical characterisation by NTA analysis
of the isolated material revealed significant differences
in the size distribution of particles isolated from PCa
and BPH samples (Figure 1). Interestingly, the size of
the particles increased with the stage of the PCa, thus,
the major difference was observed between BPH and
PCa stage 3 (Figure 1). A significant higher abundance
of particles bigger than 350 nm were observed in sam-
ples from PCa stage 3 (Figure 1(d)). The mean con-
centration of particles per mL for all samples was
8.60 ± 1.19 × 1010 EVs/mL. No differences were
found for the concentrations of EVs/mL between dif-
ferent groups (BPH, PCa stage 2 Pn0, stage 2 Pn1 and
stage 3).

After this initial characterisation, metabolites pre-
sent in the urinary EV preparations were extracted
using different methodologies in order to cover a
wide range of molecules with different chemical nature
(see Methods section). We were able to detect 248
metabolites (Supplementary Table 1) including amino
acids, vitamins, nucleosides, as well as different lipid
species. Considering all the samples, metabolites with
more than 70% of missing values were eliminated from
the analysis with the exception of PC(14:0/20:4), PC

(0:0/20:3) and TG(56:8) because most of missing values
occur mainly in one of the two groups (PCa or BPH).
Afterwards, we performed three different statistical
analysis comparing BPH and PCa groups, as well as,
the association to tumour stage and perineural
invasion.

Metabolites differentially altered between BPH
and pca

Univariate analysis revealed that 76 out of 248 metabo-
lites showed statistically significant differences between
EVs from PCa and BPH patients. These metabolites
were distributed along most chemical families analysed,
although there was a predominance of phosphatidylco-
lines (PC), fatty acid esters (acyl carnitines) and sterols
(Figures 2, 3 and Supplementary Figure 2). Whereas
higher abundance of PC was observed in BPH samples,
acyl carnitines and sterols were more abundant in PCa
samples (Figures 2 and 3). In addition, carboxylic acids
and glycerolipids were slightly decreased, and vitamins
were increased in PCa EVs. The other families of meta-
bolites including amino acids, bile acids, nucleosides,
sphingolipids, phosphatidylethanolamines (PE) con-
tained both increased and decreased metabolites
(Figure 3). Interestingly, the abundance of ceramides
with short carbon number in their acyl chains were
increased in PCa samples, while ceramides with long
carbon number (>23) in their acyl chains were reduced
in PCa EVs. This pattern was not present in other
sphingolipids families. In the non-esterified fatty acid
family, the abundance of arachidonic acid (20:4n-6)
was decreased in PCa samples, while other polyunsatu-
rated fatty acid with shorter carbon chain (16:3n-x) was
significantly increased in the PCa group (Figure 3).

Multivariate analysis by principal component analy-
sis (PCA) did not show a perfect separation of the two
groups, although PCa EV samples tended to aggregate
all together, whereas BPH samples were more disperse
(Figure 4(a)). Statistics of the model indicate low
degree of fit (2n component R2X = 0.49) and also
low predictability (2n component Q2X = 0.37). The
PCA loadings plot (Figure 4(b)) indicated that the
differences between PCa and BPH samples were
explained mainly by different subfamilies of glycero-
phospholipids, confirming what was identified with the
univariate analysis.

Metabolites differentially altered between PCa
stage 2 and stage 3

PCa stage is a pathological sign of disease aggressive-
ness [1]. In an attempt to identify potential biomarkers
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Figure 1. Size distribution of urinary EVs isolated from the BPH and PCa groups.
Pairwise comparison BPH vs PCa stage 2 without perineural invasion (a), pairwise comparison BPH vs PCa stage 2 with perineural invasion (b) and
pairwise comparison BPH vs PCa stage 3 (c). Size distribution of the particles isolated from each patient, including SEM error bars (d). Number of
samples: BPH (n = 14), Stg.2 Pn0 (n = 6), Stg.2 Pn1 (n = 10) and Stg.3 (n = 13), all of them analysed in duplicate. Kruskal-Wallis Rank Sum test was
applied to study the significance of the sizes distribution differences (*p < 0.05 and **p < 0.01).
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to discriminate between different stages of PCa, we
performed univariate analysis comparing the PCa
stage 2 and stage 3 subgroups. We identified 5 meta-
bolites that showed significant differences between the
two groups (Figure 5(a)). These metabolites were three
ceramides, Cer(d18:1/16:0), Cer(d18:1/20:0), Cer
(d18:1/22:0) one glycerophospholipid PC(30:0) [which
is a combination of the isomers PC(16:0/14:0) and PC
(14:0/16:0)] and one acyl carnitine, stearoylcarnitine
[AC(18:0)]. In addition, we also observed a non-sig-
nificant trend in other metabolite families. Thus, fatty
esters, glycerolipids (both diacylglycerols and triacyl-
glycerols), fatty amides, vitamins and 1-monoethergly-
cerophosphocholines showed an increase in their
abundance in the PCa stage 3 group (Supplementary
Table 1). In contrast, the levels of most of the metabo-
lites belonging to the sphingolipids family including
ceramides, monohexosylceramides and sphingomye-
lins, as well as fatty alcohols, some glycerophospholi-
pids subgroups and nucleosides were reduced in stage
3. In this comparison, unsupervised multivariate ana-
lysis could not achieve any separation between differ-
ent PCa stages, and although supervised PLS-DA
analysis was able to discriminate (R2X 0.47, Q2X
0.07), its loadings plot showed that the major influence
in the separation corresponded to the aforementioned
five metabolites (data not shown) detected in the uni-
variate analysis.

Metabolites differentially altered between PCa
stage 2 perineural invasion: Pn1 vs Pn0

Perineural invasion in PCa has been associated to
prostate cancer prognosis [23]. Although a limited
number of samples were available, we also attempted
to identify metabolites tentatively associated to this
pathological feature. By univariate analysis, we detected
significant lower abundance of cyclic AMP (cAMP)
and higher abundance of the combination of isomers
androsterone sulphate and etiocholanolone sulphate in
the EV samples obtained from PCa patients with peri-
neural invasion (Figure 5(b)). In addition, although not
significant, three bile acids showed lower levels in
samples with perineural invasion (Supplementary
Table 1). Unsupervised multivariate analysis was not
able to separate the two groups of samples, but we
could achieve this separation with PLS-DA test (R2X
0.40, Q2X 0.58) (data not shown).

Correlation analysis of metabolic profiling with
body mass index (BMI)

When studying circulating metabolites, the systemic
metabolic state can be a critical contributing factor
that can influence the results of the analysis.
Obesogenic diets and obesity impact on biofluid meta-
bolite concentration, and can also have a central effect
on tumour tissues [24] by altering their biological

Figure 2. Volcano plot for BPH (n = 14) vs PCa (n = 31).
Positive fold change indicates an increase of the metabolite in PCa, while a negative value indicates that the levels are reduced in PCa. Dots shape
and colour depend on metabolite families.
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features. Therefore, we considered evaluating the
changes in urine EV metabolites that were associated
to the body mass index (BMI). Samples were divided
into three groups, corresponding to their calculated
BMI: lean (<25), overweight (>25 and <30) and obese
(>30). Taking into account all the samples indepen-
dently of their BPH or PCa classification, no significant
correlation was found between BMI and any of the 248
metabolites analysed in this study. Afterwards, we
explored if some metabolites were correlating with
BMI inside different groups. In the lean BMI group,
some sterol-related metabolites including isomer
pregn-5-ene-3,20-diol sulphate and isomer androster-
one sulphate showed significant positive correlations
with rho values of 0.72 and 0.60, respectively
(Table 2). On the contrary, diacylglycerol DG(36:3),
PC(18:2/00) and triglyceride TG(56:3) showed signifi-
cant negative correlation with rho values of −0.71,
−0.69 and −0.67, respectively (Table 2). In the case of

the overweight BMI group, significant positive correla-
tion was found with the exogenous metabolite, hydro-
xyphenyllactic acid (ρ 0.69). Sphingomyelin SM(43:1)
showed significant negative correlation (ρ −0.67) with
BMI values (Table 2). In the obese group, we observed
a high degree of correlation of some metabolites with
the BMI values. Thus, acyl carnitine AC(8:0) (ρ 0.94)
and arginine (ρ 0.85) showed significant positive cor-
relation, while 13 sphingomyelins, 8 phosphatidyletha-
nolamines and the polyunsaturated fatty acid (16:3n-3)
showed negative correlations with rho values ranging
between −0.95 to −0.78) (Table 2). Finally, we evalu-
ated if any of the metabolites correlated with BMI
considering only the PCa group. Inside this group the
highest positive correlations were found for taurocholic
acid and dodecanoylcarnitine, AC(12:0), with rho
values of 0.51 and 0.38, respectively.

Correlation analysis of metabolic profiling with
PSA in the PCa group

PSA is the current gold standard non-invasive prog-
nostic marker for PCa while its diagnostic potential
remains controversial [25]. We performed a correlation
analysis between urinary EV metabolites and the PSA
values determined in our cohort of PCa samples. We
only observed a significant positive correlation (rho
value 0.88) of phosphatidylcoline PC(0:0/20:3), and at
less extent (rho value 0.48) of the primary fatty amide
(20:2n-x).

Analysis of enzymes-associated to metabolites
differentially expressed between PCa and BPH

We have recently shown that metabolic alterations in
PCa are frequently associated to changes in the expres-
sion of key enzymes [21]. To better understand the
cancer cell autonomous nature of the metabolite
changes observed in urine EVs from PCa patients, we
mapped the 76 altered urinary-EV-metabolites into
cellular pathways by using MetScape v3.1.2 [26]. We
identified several pathways that could be affected in
PCa including steroid hormone biosynthesis and meta-
bolism, leukotriene and prostaglandin metabolisms,
linoleate and purine metabolisms, glycerophospholipid
metabolism, TCA and urea cycle, and tryptophan
metabolism. We identified the primary enzymes
involved in the metabolism of each of the 76 differen-
tially expressed metabolites between BPH and PCa, by
using KEGG or HMDB database (see Methods). A
complete list of primary enzymes is supplied as
Supplementary Table 2. Next, we took advantage of
publicly available prostate cancer transcriptomes and

Figure 3. Metabolites associated to urinary EVs differentially
expressed between BPH (n = 14) and PCa samples (n = 31).
Bars have been coloured depending on the significance of the differ-
ences, being lighter gray for the p-values between 0.05 and 0.01,
medium gray for p-values between 0.01 and 0.001 and darker gray
for p-values lower than 0.001.

8 M. CLOS-GARCIA ET AL.



we queried the expression of the 149 enzymes in PCa.
We searched for enzymes which expression changes in
PCa would fit the metabolite abundance observed in
urine EVs. From these gene list, we identified 7 genes
with the expression changes (Figure 6) that were con-
cordant with the observed changes in urine EV meta-
bolite abundance among the groups analysed. We
found gamma-aminobutyric acid (GABA) increased
in PCa urine EVs (Figure 3) which was consistent
with a reduction in the expression of Glycine
Amidinotransferase (GATM- use GABA as substrate
for creatine synthesis) (Figure 6(a)). Arachidonic acid
abundance was also altered in urine EV samples, being

reduced in PCa patients compared with BPH
(Figure 3). This fatty acid is the product of phospholi-
pase A2 and it is relevant for the synthesis of pro-
inflammatory metabolites by lipooxygenases.
Interestingly, we found that the expression of two
enzymes (ALOX15 and CYP1A2), that can catabolise
arachidonic acid, was increased in PCa tissue (Figure 6
(b,c). Our metabolomics analysis also showed a con-
sistent decrease in phosphatidylcholine. This could be
explained by decreased synthesis of the phospholipid
or elevated catabolism. When browsing the expression
of PC synthesis and degrading enzymes, we found a
reduction in the expression of Lysophosphatidylcholine

Figure 4. Score (a) and loadings (b) plots of PCA model for the comparison PCa (n = 31) vs BHP (n = 14).
Dots in score plot (A) have been coloured depending on its group (PCa or BHP). Markers in loadings plot (B) have been coloured depending on
metabolite family. AA (amino acids), AC (acyl carnitines), BA (bile acids), Carb (carboxylic acids), CCM (derivative carboxilic acids), Cer (ceramides),
CMH (monohexosylceramides), DAPC (diacylglycerophosphocholines), DAPE (diacylglycerophosphoethanolamines), DAPI (diacylglycerophosphoino-
sitol), DG (diacylglycerols), Exog. (exogenous), FAA (fatty amides), FFA (non-esterified fatty acids), MAPC (1-monoacylglycerophosphocholine), MAPE
(monoacylglycerophosphoethanolamine), MAPI (monoacylglycerophosphoinositol), MEMAPC (1-ether, 2-acylglycerophosphocholine), MEMAPE (1-
ether, 2-acylglycerophosphoethanolamine), MEPC (1-monoetherglycerophosphocholine), MEPE (1-monoetherglycerophosphoethanolamine). See
more details of the nomenclature in supplemental material.
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Acyltransferase 2 (LPCAT2) (Figure 6(d)), which trans-
forms lysoPC into PC, and could provide an explana-
tion for the reduction in PC abundance.

Two urine EV metabolites were associated to increased
perineural invasion in PCa. On the one hand, we found a
decrease in cAMP abundance in EV obtained patients with
perineural invasion. The transcriptional analysis revealed
changes in the expression of enzymes regulating cAMP
synthesis and degradation that were associated to the
aggressiveness of the disease. The expression of adenylate
cyclase 5 (ADCY5) was reduced in PCa (Figure 6(e–g))),
and a further significant reduction was observed from
primary tumours to metastasis. In contrast, the inverse

expression pattern (elevation in PCa and further increase
from primary tumours to metastasis) was detected in the
cAMP degrading enzyme PDE4C (Figure 6(h–j)). In none
of these cAMP metabolising enzymes we could find an
association to altered disease-free survival (Figure 6(g,j)).

On the other hand, the steroid biosynthesis-related
metabolites were among the most elevated in PCa urine
EVs, and associated with increased perineural invasion.
Interestingly, the three metabolites significantly altered
were sulphated steroids in the final steps of androgen
synthesis. Whereas these metabolites are found at detect-
able levels in circulation produced by the adrenal gland, we
evaluated whether enzymes regulating their synthesis or

Figure 5. Differentially-expressed metabolites.
Box-plots of differentially expressed metabolites between PCa stages (A) (stage 2 n = 16 and stage 3 n = 15) and of differentially expressed
metabolites between the presence and absence of perineural invasion (B) (Pn0 n = 6 and Pn1 n = 10). Significance is indicated next to metabolite
name.
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degradation could be altered in PCa tissue. Strikingly, we
found that the expression steroid sulfatase (STS), which
would remove the sulphate group in androsterone sulphate
andDHEAS, was decreased in PCa, and this reduction was
associated to metastatic disease and reduced disease-free
survival in one out of two datasets (Figure 6(k–m).

Discussion

EVs are produced by normal and cancerous cells and
harbour molecular features of their cells of origin [27].
This encapsulated material can exert biological and meta-
bolic functions [4,14,15,28], which makes them entities of
tremendous interest in cancer biology, both at the level of

Table 2. Correlation analysis of metabolites and BMI.
Metabolite Class Correlation (ρ) p-value

Lean Isomer pregn-5-ene-3,20-diol sulphate Sterol 0.72 0.003
Isomer androsterone sulphate Sterol 0.60 0.011
Taurodeoxycholic acid Bile acid 0.59 0.03
Malate Carboxylic acid (d) 0.56 0.025
Arginine Amino acid 0.53 0.027
Glycine Amino acid −0.56 0.021
TG(18:1 + 20:1 + 18:1) Glycerolipid −0.67 0.006
PC(18:2/0:0) Glycerophospholipid −0.69 0.007
DG(36:3) Glycerolipid −0.71 0.008

Overweight Hydroxyphenyllactic acid Benzyl alcohol (d) 0.69 0.001
L-citruline Amino acid (d) 0.59 0.008
Vitamin B5 Vitamin 0.52 0.024
Proline Amino acid 0.50 0.030
DG(34:1) Glycerolipid 0.49 0.035
4-Pyridoxic acid Pyridine (d) 0.49 0.036
PC(O-16:0/20:4) Glycerophospholipid 0.47 0.042
PE(18:0/18:1) Glycerophospholipid −0.47 0.046
SM(d18:1/17:0) Sphinomyelin −0.48 0.038
Stearoylcarnitine Acyl caritine −0.49 0.037
PE(P-18:0/18:1) Glycerophospholipid −0.50 0.030
PE(16:0/18:2) Glycerophospholipid −0.51 0.027
PE(0:0/20:3) Glycerophospholipid −0.51 0.027
PE(P-16:0/18:2) Glycerophospholipid −0.53 0.021
Alpha-Ketoglutarate Keto-acids (d) −0.54 0.028
PE(18:1/18:2) Glycerophospholipid −0.55 0.017
PE(P-18:0/18:2) Glycerophospholipid −0.56 0.013
AC(12:1n-x) Fatty esters −0.57 0.014
PE(18:2/18:2) Glycerophospholipid −0.57 0.016
SM(43:1) Sphingomyelin −067 0.003

Obese L-Octanoylcarnitine Acyl carnitine 0.94 0.017
Arginine Amino acid 0.86 0.024
PC(O-16:0/18:2) Glycerophospholipid 0.83 0.058
Acylcarnitine(8:1n-x) Acyl carnitine 0.75 0.066
Deoxycholic acid Bile acid 0.75 0.066
PI(18:0/20:4) Glycerophospholipid −0.75 0.066
PE(20:5/16:0) Glycerophospholipid −0.75 0.066
L-Homoserine Amino acid −0.75 0.066
Isoleucine Amino acid −0.75 0.066
SM(43:1) Sphingomyelin −0.79 0.048
SM(d18:1/24:1) + SM(d18:2/24:0) Sphingomyelin −0.79 0.048
SM(d18:1/17:0) Sphingomyelin −0.79 0.048
SM(33:1) Sphingomyelin −0.79 0.048
PE(P-18:0/22:5) + PE(P-20:1/20:4) Glycerophospholipid −0.79 0.048
PUFA (16:3n-x) Fatty acid −0.79 0.048
PE(20:4/18:2) Glycerophospholipid −0.79 0.048
SM(32:1) Sphingomyelin −0.82 0.034
PE(P-16:0/20:4) Glycerophospholipid −0.82 0.034
PE(0:0/22:4) Glycerophospholipid −0.82 0.034
SM(d18:2/22:0) Sphingomyelin −0.86 0.024
SM(d18:1/22:0) Sphingomyelin −0.86 0.024
SM(d18:1/18:0) Sphingomyelin −0.86 0.024
SM(d18:1/16:0) Sphingomyelin −0.86 0.024
PE(18:0/20:4) Glycerophospholipid −0.86 0.024
PE(18:1e/22:4) Glycerophospholipid −0.88 0.008
SM(d18:2/20:0) Sphingomyelin −0.89 0.012
PE(16:0/22:6) Glycerophospholipid −0.89 0.012
SM(42:1) Sphingomyelin −0.93 0.007
SM(d16:1/24:1) Sphingomyelin −0.93 0.007
PE(16:0/20:4) Glycerophospholipid −0.93 0.007
SM(38:1) Sphingomyelin −0.96 0.003
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biomarker discovery and mechanistic. Urine contains EVs
from different parts of the urinary track including kidney
and bladder what has awaked great interest to identify
biomarkers affecting these organs. In addition, the ana-
tomic proximity of urine to the prostate gland and the
already shown presence of tumour cells in the urine sedi-
ment [29,30] support also the development of potential
non-invasive diagnoses of PCa using urine-based markers.
In agreement with our previous results, we find differences
in the size distribution of the urinary EVs between PCa and
BPH [16], which we now report to be associated to disease

stage (Figure 1). Our data show that urine from advanced
PCa patients contains a higher proportion of large EVs
than BPH patients. Given that our EV isolation procedure
(filtration through 0.22 microns, and ultracentrifugation at
10,000 × g) removed most of the large EVs from the
sample, and enrich in small EVs (mostly exosomes and
small microvesicles), this difference could be underesti-
mated in our samples. Importantly, in agreement with
our result, it has already been reported that prostate cancer
cells release large EVs named oncosomes with a size
between 1 and 10 microns [31] that contain a distinct

Figure 6. Gene-enrichment analysis.
In-silico transcriptomics analysis of enzymes directly involved in the metabolism of metabolites differentially expresed between PCa and BPH
samples.
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protein cargo [32]. They have also been detected in circula-
tion in models of PCa and shown that their abundance
correlate with tumoral progression [31]. Although, our
studies have been focused in the smaller EVs, it is interest-
ing that we have also observed this size effect.

In a recent targeted lipidomics analysis of urinary
EVs from healthy and PCa urine samples [13], the
authors analysed 107 lipid species and found that 9 of
them were significantly different between the two
groups. Unlike this study, we have focused ours in
the comparison between PCa and BPH, in an attempt
to provide specific biomarkers to discriminate the two
pathological conditions, and contribute to earlier diag-
nosis, and reduce secondary effects of unnecessary
biopsies, so both studies can be considered comple-
mentary in terms of sample groups. Both studies are
also complementary in the metabolites that they ana-
lyse because different metabolite extraction method
and chromatographic procedures were used.

We report changes in the urine EV metabolome at
both structural and cargo levels. The composition of
the urine EVs analysed in this study varies in the
abundance of phosphatidylcholine species that are
major constituents of membranes. In particular we
found reduced abundance of PCs in the EVs from
PCa samples, in agreement with previously reported
by Puhka and coworkers [33]. This result along with
studies reporting increased abundance of PC in PCa
tissue [34] could suggest that less PC-containing struc-
tures, like membrane vesicles are secreted to the extra-
cellular environment. In addition, to the PC content,
we found additional metabolites from different chemi-
cal nature differentially expressed in EVs from PCa and
BPH samples that could be considered candidate bio-
marker for PCa including as candidate acyl carnitines,
sphingomyelins, and steroids. Although more research
is granted, our results indicate that a bias in EV size
and membrane composition could harbour diagnostic
potential in PCa.

Apart of the potential biomarker value of the iden-
tified metabolites, they are also valuable to indicate
possible metabolic alterations occurring in PCa. We
found reduced levels in PCa urine EVs of arachidonic
acid, the precursor of eicosanoids and prostaglandins
that are important proliferative and inflammatory
modulators. Interestingly, it has been also reported
that arachidonic acid level is lower in prostatic tissue
from PCa patients [35]. In agreement with the reduc-
tion of the substrate arachidonic acid in PCa, it has
been found that the level of their products (12-and 20-
HETE, and PGE2) are higher in the tissue [36,37] and
also in urine [38]. These studies along with many
others have already shown that the metabolism of

arachidonic acid and their products plays an important
role in PCa development, and in fact, represents an
important therapeutics target (reviewed in [39]).
Importantly, our work suggests that the analysis of
this metabolite in EVs isolated from urine samples
may be used to evaluate in a non-invasive manner
what is occurring in prostatic tissue itself in the context
of PCa.

We observed changes in the abundance of metabo-
lites that are carried within the EVs and are a potential
cargo in PCa. It is worth mentioning that intermediary
metabolites of androgen synthesis were among the
most elevated in PCa urine EVs. Moreover, changes
in the abundance of these steroids, together with
cAMP, were significantly associated to perineural inva-
sion. These results uncover the potential of unbiased
urine EV analysis to elucidate novel signalling and
metabolic alterations underlying PCa biology.
Androgen signalling is among the predominant stimuli
supporting PCa growth and the most successful ther-
apeutic approaches have derived from its targeting
[40], since prostate tumours frequently remain andro-
gen dependent even at late-stage [41]. We have
detected 3beta-hydroxyandors-5-en-17-one-3-sulphate
(dehydroepiandrosterone sulphate, DHEAS) in urinary
EVs, and its level was significantly elevated in PCa
samples. This metabolite, along with estrone sulphate,
is one of the main precursor for steroid hormones
including androgens. There are many reports showing
that steroid-related metabolites and enzymes are
important modulators of PCa progression [42]. There
are four different genes coding for enzymes that were
related to this metabolite: STS, SULT1B1, SULT2B1
and SULT2A1. The fact that urine EVs from PCa
patients contain androgen-related metabolites is sug-
gestive of the relevance of this biosynthetic pathway in
the disease and the potential role of EVs in providing
androgen signalling to neighbour or distal cells. Indeed,
expression of STS was reduced in PCa and associated
to disease progression, hence providing a feasible
explanation for the increase in sulfated steroids.
Interestingly, urinary EVs could be used to monitoring
androgen metabolism in a non-invasive manner.

Together with the aforementioned metabolites asso-
ciated to perineural invasion, we also identified mole-
cules that exhibited differential abundance in high
grade tumours. Five metabolites were differentially
abundant between pathological stage 2 and stage 3
PCa, and more than half of them were ceramide spe-
cies. Ceramides are signalling molecules that can reg-
ulate various aspects of cancer cell biology, including
proliferation, survival and cell death [43]. The selective
decrease of ceramides in association with disease
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aggressiveness provides an exciting perspective of how
this family of metabolites could exert cell and non-cell
autonomous functions to limit the progression of PCa.

It is worth noting that sarcosine has been proposed
also as a PCa biomarker [11]. The urine level of this
metabolite was increased in men with metastatic PCa
[44]. However, its utility as a potential diagnostic tool
is unclear, as its validation as a biomarker has failed in
several studies (reviewed in [11,45]). Interestingly, we
have detected sarcosine in urinary EVs, and although
not significant (p = 0.09), its level was decreased in PCa
samples.

Recent molecular and metabolic profiling of PCa
also identifies lipid metabolism as a key pathway that
undergoes metabolic reprogramming [46,47]. These
changes include an upregulation metabolites involved
in de novo lipid biosynthesis [48] and fatty acid β-
oxidation [49]. As consequence, it has been shown
the accumulation in the prostatic tissue of acyl carni-
tines, which are intermediates of fatty acid oxidation
[50]. In agreement with this alteration, we found
increased levels of acyl carnitines in the urinary EVs
from PCa patients. This association of differential
levels of carnitines on PCa EVs with a metabolic shift-
ing towards β-oxidation of fatty acids has already been
proposed by Puhka and coworkers [33].

In summary, in this work we report several meta-
bolites associated to urinary EVs, many of them exhi-
biting differential abundance between BPH and PCa,
and mirroring some of the alterations described
in PCa.
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Abstract: Low invasive tests with high sensitivity for colorectal cancer and advanced precancerous
lesions will increase adherence rates, and improve clinical outcomes. We have performed an
ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-(TOF) MS)-based
metabolomics study to identify faecal biomarkers for the detection of patients with advanced
neoplasia. A cohort of 80 patients with advanced neoplasia (40 advanced adenomas and 40 colorectal
cancers) and 49 healthy subjects were analysed in the study. We evaluated the faecal levels of 105
metabolites including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. We found
18 metabolites that were significantly altered in patients with advanced neoplasia compared to
controls. The combinations of seven metabolites including ChoE(18:1), ChoE(18:2), ChoE(20:4),
PE(16:0/18:1), SM(d18:1/23:0), SM(42:3) and TG(54:1), discriminated advanced neoplasia patients
from healthy controls. These seven metabolites were employed to construct a predictive model that
provides an area under the curve (AUC) median value of 0.821. The inclusion of faecal haemoglobin
concentration in the metabolomics signature improved the predictive model to an AUC of 0.885.
In silico gene expression analysis of tumour tissue supports our results and puts the differentially
expressed metabolites into biological context, showing that glycerolipids and sphingolipids
metabolism and GPI-anchor biosynthesis pathways may play a role in tumour progression.

Keywords: colorectal cancer; metabolomics; faecal samples; biomarkers
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1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death in developed countries [1].
Although knowledge of the genetic- and diet-associated mechanisms involved in CRC establishment
and progression is rapidly increasing [2], still the best prognosis is obtained when malignancy is
detected early. CRC screening, which detects both precancerous polyps and CRC, can reduce both
colorectal cancer incidence and mortality [3–7]. Through screening, the incidence of colorectal cancer
can be reduced by 30% with a mortality reduction of 50% depending on the screening modality and the
participation rates [7,8]. These data clearly support the strategy to have efficient and sensitive screening
methods. Screening tests available include detecting haemoglobin or DNA mutations/alterations in
feces [4,9], radiologic or endoscopic (flexible sigmoidoscopy, colonoscopy, and computed tomographic
colonography) methods [10]. Each test has its own advantages, has demonstrated to be cost-effective,
and has associated limitations and risks [10]. Although colonoscopy is considered the most accurate
test for early detection and prevention of colorectal cancer [11], its applicability is limited due to the
secondary effects associated with it (mild and severe), the low adherence in average and familial-risk
populations and the limited resources available [12,13].

On the other hand, most of CRC are still diagnosed in symptomatic patients, even when CRC
screening programs are established [14]. In this regard, symptoms and symptom-based prediction
models have a limited accuracy for CRC detection in this population. CRC diagnostic biomarkers,
such as faecal haemoglobin, can improve the diagnostic process either alone or within prediction
models [15–17]. For all those reasons, the development of non-invasive methods to detect CRC
either in asymptomatic and symptomatic patients is an area of interest for patients, clinicians and
healthcare providers.

Metabolomics is the omics technology dedicated to the measurement of small molecules
(<2000 Da) that are present in a biological system. Major advances and new development of analytical
instruments, together with the implementation of bioinformatics tools for robust data analysis
allows simultaneous measurement and analysis of a huge number of metabolites from a biological
system [18–21]. In consequence, metabolomics has become one of the main technologies for biomarker
identification and for unraveling pathophysiological mechanisms in many diseases, including cancer.
The development of ultra-performance liquid chromatography (UPLC) has improved both resolution
and sensitivity of metabolomics analysis. It has also allowed the rapid separation of metabolites when
compared to conventional LC methods [22,23]. Notably, several metabolomics studies have been
performed aiming to identify new CRC biomarkers, as reviewed by Zhang et al. [24]. For diagnostics
purpose, several studies exist, although the majority of them have been performed on serum
samples [25–33], tissue [34–36] and urine [37]. To our knowledge, only one study was found that
studied metabolomics differences directly in human feces samples, like our project design, using
NMR-based metabolomics [38]. Metabolomics study of faeces may be more effective in detecting novel
colon cancer makers than other approaches because faeces are in close proximity to the colorectal
mucosa and are a product of interactions between dietary components and the microbiota. This latter
is affected by and seems to play an important role in the progression of colon cancer [39,40]. Existent
literature has identified several metabolites, some being consistently altered in CRC individuals and
others being increased in some studies and decreased in other ones [24]. These studies have allowed
the identification of several altered metabolic pathways, including carbohydrate and amino acid
metabolisms, and lipid-related metabolic pathways. Significantly, most of the studies found differences
in metabolites of the tricarboxilic acid (TCA) cycle. Also, importantly, alterations on short-chain
fatty acids (SCFAs) levels were found for feces-metabolomics study, which clearly indicates a role
for the CRC-specific microbiota composition [38]. Lipid metabolism is an important pathway of
cellular energy metabolism and its alteration has been related to CRC development and progression.
Alterations on metabolic pathways for the eight distinct pathways of lipid metabolism, including
corresponding genes and lipid-specific cell receptors, have been reviewed by Yan et al. 2016 [41].
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In this study, we evaluate by UPLC-MS the levels of 105 metabolites in lyophilized faeces
from a cohort of 129 samples including patients with advanced adenoma or colon carcinoma and
healthy individuals. After applying univariate analysis, we found significant changes between healthy
individuals and advanced neoplasia patients in 18 metabolites including sphingomyelins, ceramides,
glycerophospholipis and cholesteryl esters. A combined analysis of ChoE(18:1), ChoE(18:2), ChoE(20:4),
PE (16:0/18:1), SM(d18:1/23:0), SM(42:3) and TG(54:1) provides an AUC value of 0.821. This work
supports the usefulness of metabolomics to develop low invasive diagnostic tools for colon cancer
population screenings.

2. Results

For the study, we have analysed faecal samples collected from 49 healthy, 40 CRC patients and
40 AD patients (see Materials and Methods for more details). On these samples, we have performed a
metabolomics profiling using the UPLC-MS approach as described in Materials and Methods. There is
no single method to analyse the entire set of metabolites of a biological sample, mainly due to the
wide concentration range of the metabolites joined to their extensive chemical diversity. For this study,
we have employed an UPLC-MS method (Supplementary Figure S1) capable of detecting consistently
the 105 identified metabolites listed in Supplementary Table S1, that includes fatty acyls, glycerolipids,
glycerophospholipids, sterol lipids and sphingolipids.

2.1. Multivariate Analysis

First, we analysed the metabolomic profiling of the 105 metabolites by unsupervised principal
component analysis (PCA). We did not find any clustering of samples according to their classification
as cases (AD and CRC) and controls (C), as seen on the score plot in Figure 1; neither, did if each group
(AD, CRC and C) was compared separately each other (Supplementary Figure S2).
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Figure 1. PCA scores plot of healthy individuals and patients with advanced neoplasia. (t[1]: R2X = 0.26
and Q2 = 0.22, t[2]: R2X = 0.16 and Q2 = 0.18): CRC and AD patients (n = 80), filled circles; healthy
individuals (n = 49), open circles.
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Neither the application of orthogonal (partial least squares) projections to latent structures (OPLS)
or multivariate analysis was suitable for obtaining a separation between the groups of samples (data not
shown). This lack of discrimination between groups through multivariate analysis highlights the
expected high heterogeneity that exists between individuals.

2.2. Univariate Analysis

As it is complementary to the multivariate analysis, we have applied a univariate approach that
has been shown to be an alternative for metabolomics data sets with elevated heterogeneity [26].
The comparison of the 105 metabolites between cases (AD plus CRC) versus control (C) samples,
showed significant (adjusted p-value < 0.05) difference of the fold change for 18 of them as can
be observed in the Volcano plot (Figure 2A). Differences were mostly seen in sphingolipid family
(SM and Cer, but not CMH), but also included ChoE, PC, PE and TG metabolites. The most altered
metabolite was Cer(42:3), and all metabolites were higher in the case group, except for two of them,
Cer(d18:1/16:0) and TG(54:1), which were lower than the control group (Figure 2A). Other highly
altered metabolites (log2 fold change < 1) were Cer(d18:1/24:1) + Cer(d18:2/24:0), PE(16:0/18:1),
PE(16:0/18:2) and TG(54:1) (Figure 2A).
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Figure 2. Volcano plot representation of metabolic changes in stools from control, CRC and AD sample
groups. [log10 (p-value) vs. log2 (fold-change)] for the comparison between healthy individuals
and patients with advanced neoplasia (CRC and AD). The shape and colour of the points indicates
metabolite family, while the size is determined by the absolute value of the log2 Fold Change (A).
Heatmap of metabolites altered in stools from control, CRC and AD sample groups (B).

Paired comparisons of sample groups revealed significant differences for some metabolic classes
between CRC and AD, and also between CRC and C individuals (Table 1). Stool samples of patients
with CRC had higher levels than AD or C samples of PC and also ChoE and SM metabolite classes.
TG family showed the maximum differences when AD was compared to C samples, with alterations in
12 metabolites of the family; it was lower in AD than C. Actually, most of the differences between AD
and C groups were found in this metabolite family, with only one metabolite altered for DG, PC and
PE families. CMH and MG families did not show any difference in any comparison.

Ceramides, ChoE, PC and SM metabolite families were consistently increased in cancer samples.
Only TG metabolites showed a specific trend for AD samples, being decreased with respect to the
control samples, but showing no differences when comparing C versus CRC samples. Only PE family
was consistently increased in both CRC and AD samples when compared to C group.
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Table 1. Alteration in metabolic classes. Number of metabolites per metabolic classes differentially
expressed in cases vs. control (C), CRC vs. AD, and CRC vs. control. Arrows indicate if metabolites
are higher (↑), or lower (↓) in the Case, CRC or AD, depending on the comparison. In parentheses,
the number of metabolites analyzed for each family is indicated.

Case vs. Control C vs. CRC C vs. AD AD vs. CRC

Cer (8) 2↑ 1↓ 3↑ 1↓ 0 2↑
ChoE (10) 4↑ 5↑ 0 4↑
CMH (3) 0 0 0 0
DG (8) 0 0 1↓ 1↑
MG (3) 0 0 0 0
FAA (2) 0 1↓ 0 0
PC (21) 3↑ 7↑ 1↓ 13↑
PE (4) 2↑ 2↑ 1↑ 3↑
SM (9) 5↑ 7↑ 0 7↑
TG (37) 1↓ 0 12↓ 1↑

The analysis of the individual metabolites also showed a difference between sample groups
(Figure 2B). The heatmaps display the fold change of the 105 metabolites included in the analysis
and their significances according to the Student’s t-test for the comparisons performed between
CRC and C, CRC and AD and between AD and C groups. In the comparison of case (AD plus
CRC) versus C groups, significant metabolites were found mainly in Cer, ChoE, PE and SM families.
While the ceramide family included both increased and decreased metabolites; only increased levels of
metabolites belonging to ChoE, PC, PE and SM families were found in the case group.

The comparisons of CRC versus C, and CRC versus AD groups also revealed significant alteration
of the levels of metabolites belonging to Cer, ChoE, PE and SM families, but in this case also the
abundance of many metabolites belonging to the PC family were significantly altered. Most of the
metabolites of these families were elevated in the CRC group in both comparisons. All these changes
were not observed when comparing the AD and control groups indicating that those metabolites were
mostly altered in the CRC group. Interestingly, a significant down-regulation of metabolites belonging
to the TG family was observed mainly in the AD group (Figure 2B).

We also performed ANOVA test to detect significant differences in the metabolic profile between
the three groups studies (C vs. AD vs. CRC). As a result, 29 differentially expressed metabolites
belonging to Cer, ChoE, PC, PE and SM classes were found to be statistically significant in agreement
with the previous paired analysis (Supplementary Table S2). Also, in concordance with the previous
analysis, TG altered metabolites showed a specific pattern, being decreased in the AD group.

2.2.1. Predictive Models

In order to construct prediction models for cases (CRC and AD), the cohort was randomly
separated in the training set containing 80% of the samples, and the validation set containing the
remaining 20% of samples. To avoid possible bias derived from the data separation, we applied a
bootstrap method, generating 10,000 different combinations of both training and validation datasets.
By applying general linear models to the training set, we were able to find seven metabolites that
when combined provide an AUC value of 0.821 (sensitivity 0.833 and specificity 0.800) (Figure 3).
The metabolites were ChoE(18:1), ChoE(18:2), ChoE(20:4), PE(16:0/18:1), SM(d18:1/23:0), SM(42:3)
and TG(54:1) and the model was:

Y = −5.308 − 1.92 × ChoE(18:2) + 3.087 × ChoE(18:1) − 1.564 × ChoE(20:4) − 1.025 × PE(16:0/18:1)
− 0.289 × SM(d18:1/23:0) − 0.678 × SM(42:3) + 0.386 × TG(54:1)

We computed also the potential effects of age and sex upon the performance of our model.
We were able to slightly increase the predictive ability of the model when adding the age (AUC = 0.838),
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sex (AUC = 0.837) and the combination of both (AUC = 0.848) features to the model (Figure 3C).
When combining our metabolite model with faecal occult blood (FOB) parameter we were able to
increase the AUC value up to 0.885.
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Figure 3. ROC curve of the predictive model constructed with the seven specified metabolites, including
the value of the median AUC (A). Distribution of the model’s features (AUC, sensitivity, specificity
and accuracy) obtained from the 10,000 iterations done (B). Distribution of AUC measurements for the
combination of our model with age, sex and the age + sex combination (C).

2.2.2. Correlation of the Metabolites with Clinical Parameters

A number of clinical parameters were available for the 129 samples analysed in this study
including age, gender, FOB test (cut-off 100 ng/mL), carcinoembryonic antigen (CEA) test and
COLONPREDICT index. COLONPREDICT is a CRC prediction model that takes into account
demographic, symptoms, laboratory and anorectal examination results applicable both in primary
and secondary healthcare units [16]. Thus, we evaluated if any of the 105 metabolites analysed in
faecal samples correlated with any of the clinical parameters (Supplementary Table S3). There was
not strong correlation with age, neither with CEA nor COLONPREDICT or gender, and there were
only minor correlations with some clinical data as follows. Several TG metabolites correlated inversely
with age data. Also, some metabolites belonging to the DG family correlate with age data, in the
same direction as the TG metabolites. COLONPREDICT test showed the highest degree of correlation
with metabolites of different families including CMH, PC, ChoE, PE, and SM. Although only slightly,
ChoE(18:2) correlated directly with the FOB parameter (Supplementary Table S3).

We also studied how clinical parameters classified samples between the three groups (C, CRC
and AD) and between two groups (C and Case) (Supplementary Figure S3). Both ANOVA test for the
classification into three groups (Table 2) and Tukey’s HSD test for the classification into two groups
(Table 2) showed that COLONPREDICT was the best index to discriminate between samples, followed
by FOB. We could see that gender had nearly no differences upon the discrimination between groups,
compared to all other clinical parameters. It is important to note that no clinical parameter was able to
significantly differentiate between C and AD sample groups.
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Table 2. Differences between sample classification of several clinical parameters, either for the groups
comparison (C, AD and CRC) and for the pairwise comparison (Control vs. Case). ANOVA test has
been used for the study of differences between the three groups classification (C, AD and CRC) and
Tukey’s HSD test was used to analyse pairwise classifications (C vs. AD, C vs. CRC and AD vs. CRC).
Tukey’s HSD column depicts those pairwise combinations (of the three tested combinations) that
showed to be significantly different. Avg. stands for average.

C, AD and CRC AvgC AvgAD AvgCRC p-Value Tukey’s HSD

Gender 35.4% men 56.4% men 60% men 0.042 NA
Age 62.52 68.64 73.50 0.0003 CRC vs. C

FOB * 0 49 873 1.6 × 10−9 CRC vs. C
CRC vs. AD

CEA 1.90 1.72 14.85 0.00546 CRC vs. C
CRC vs. AD

COLONPREDICT 0.048 0.104 0.470 <2 × 10−16 CRC vs. C
CRC vs. AD

Control vs. Case AvgCONTROL AvgCASE p-Value

Gender 35.4% men 58.3% men 0.013
Age 62.52 71.10 0.00083

FOB * 0 336 7.09 × 10−8

CEA 1.900 8.367 0.0036
COLONPREDICT 0.0477 0.289 1.231 × 10−10

* For FOB index, median values are given instead of mean, due to the non-normal distribution of the measurements.

2.2.3. Gene Expression Analysis of Enzymes Involved in the Metabolism of Altered Metabolites

Metabolites that were differentially expressed between case and control samples (Figure 2A),
and with a KEGG or HMDB code already defined, were employed to identify possible metabolic
pathways altered in colorectal cancer. By using the differentially expressed metabolites, we could
in-silico identify 211 gene-encoding proteins that mainly clustered in three different metabolic
pathways (Figure 4A). The identified pathways were glycerophospholipids metabolism, sphingolipids
metabolism and the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway suggesting
that these pathways could be altered in colorectal cancer (Supplementary Figure S4). We analysed
the expression levels of these gene-encoding proteins in the available gene-expression dataset of
biopsies of colorectal cancer and normal mucosae of the colon [42]. We have observed that 15
of them showed a significantly different fold change between control and cancer (case) samples
(Figure 4B). We have also observed a downregulation of CERS4, SMPD1 and SMPD3 (Figure 4B),
which are responsible for the transformation of sphingosines and sphingomyelins to ceramides.
We also observed downregulation of genes that encoded enzymes that catalyse the degradation of
phosphocholine into choline metabolite, mainly from the phospholipase D (PLD) family: PLB1, PLD1,
PNPLA7, PLA2G12B, PLA2G4C (Figure 4B). Furthermore, there was a significant downregulation of
the genes PIGK and PIGZ, which encode enzymes involved in GPI-anchor biosynthesis. In addition,
an upregulation of the genes LPCAT1 and LCAT (Figure 4B) that encode enzymes involved in the
synthesis of phosphatidylcholine and cholesteryl esters, respectively, was also observed. Together, all
these alterations on genes involved in lipid metabolism of the tumoral tissue support the lipid changes
detected in the faecal samples.
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pathways could be observed: Sphingolipid and glycerophospholipid metabolisms, and GPI-anchor
biosynthesis (A). Gene expression in silico analysis of CRC tumoral tissue. The expression of
gene-encoding enzymes involved in the metabolism of stool-altered lipids was analysed in publicly
available GEO dataset GSE37364 that compared tumoral versus healthy tissue of the same individual.
All displayed genes were highly significant (p-value < 0.001) except PLPP1 (p-value = 0.05) and PIGK
(p-value = 0.02) (B).

3. Discussion

CRC screening with faecal occult blood (FOB) test has demonstrated efficacy in randomized
trials. Nonetheless, the low sensitivity for advanced neoplasia of the test suggests the need for
more accurate alternative diagnostic tests. In the present study, we have performed an UPLC-based
targeted metabolomics analysis of stool to detect candidate endogenous metabolites suitable for the
assessment of colon cancer using minimally invasive techniques. Metabolomic study of faeces can be
more effective, because faeces are in close proximity to the colorectal mucosa. To date, metabolomics
analyses of faecal samples have mostly been restricted to experimental studies in animal and small
cross-sectional studies in humans [42–52]. While GC/MS-based metabolic profiling of faecal water has
been reported [53–55], there exists only limited studies on the profiling and identification of metabolites
within the complete faecal material; notably, lyophilized human faeces where its metabotype was
confirmed to be more comprehensive than faecal water [47]. Previously, Ponnusamy et al. [56]
profiled whole faeces from irritable bowel syndrome using GC/MS and identified several metabolites
as candidate biomarkers for the disease. In the current work, a semi-quantitative analysis of 105
metabolites reveals significant differences in the faecal composition of cancer samples in the following
lipids: PC(16:0/16:0), PC(32:1), PC(O-16:0/16:0), PE(16:0/18:1), PE(16:0/18:2), SM(d18:1/16:0),
SM(d18:1/23:0), SM(d18:2/24:1) + SM(d18:1/24:0), SM(42:1), Cer(d18:1/16:0), Cer(d18:1/24:1) +
Cer(d18:2/24:0), Cer(42:1), SM(42:3), ChoE(16:0), ChoE(18:1), ChoE(18:2), ChoE(20:4), TG(54:1). These
lipid alterations detected in stools were supported by the gene expression profile observed in tumoral
tissues showing deregulation of enzymes involved in glycerophospholipids and the glycosphingolipids
metabolisms (Figure 4B). Some of the genes were of special interest as they serve as union nexuses of
different metabolic pathways. Thus, PLPP1 and PLPP3 genes encoded lipid phosphate phosphatases
(LPPs) with broad substrate specificity that dephosphorylate lipid substrates including phosphatidic
acid, lysophosphatidic acid, ceramide 1-phosphate, sphingosine 1-phosphate, and diacylglycerol
pyrophosphate [57]. One of their enzymatic reactions is the conversion of phosphatidic acid to
diacylglycerol which is a central lipid for glycerophospholipids, triacylglycerols and sphingolipid
metabolisms. In consequence, they modulate different signalling pathways and generate building
blocks for lipid metabolism-regulating physiological and pathological processes including vascular
function and tumor progression [58]. These also indicate that the altered metabolism of the tumour
could be detected in stools, and consequently be detected in a non-invasive manner.

In our study, the most significant lipids altered in stool were cholesteryl esters, particularly
ChoE(18:2) and ChoE(20:4) that were increased in CRC samples. This was in agreement with the fact
that acetate—a short chain fatty acid—which is the precursor molecule for endogenous cholesterol
production, has been reported to be elevated in CRC [59]. In addition, our in silico analysis of the gene
expression profile of tumoral tissue reported by Valcz et al. [42] shows increased tumoral levels of the
gene encoding the enzyme phosphatidylcholine-sterol acyltransferase responsible for the cholesteryl
ester synthesis. Together, the data suggest that the levels of cholesteryl esters in stools can be a
suitable non-invasive measurement to detect and follow up colorectal cancer. Based on the cholesteryl
esters ChoE(18:1), ChoE(18:2) and ChoE(20:4), and complemented by PE(16:0/18:1), SM(d18:1/23:0),
SM(42:3) and TG(54:1), we have built a robust stool metabolomic signature with an AUC value of
0.821 (sensitivity 0.833 and specificity 0.800). In our set of samples, the AUC of the FOB was 0.744,
showing that our model of 7-metabolites performed better than the FOB in the detection of CCR.
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Interestingly, the combination of FOB with our 7-metabolites of our metabolomics model increases the
discriminating ability as judged by the AUC value that passed from 0.821 to 0.885.

It is important to highlight that one of the strengths of our study includes careful processing and
preservation of the faecal specimens, and our quantification of within-subject intraclass correlation
coefficient (ICC), from which we could estimate statistical power with our cutting-edge faecal
metabolomics platform. Our platform has high sensitivity and technical reproducibility, but it has
limited ability to detect some volatile and larger molecules.

Our study’s major limitations are its small size and cross-sectional, hospital-based case–control
design. It provided no assessment of temporality and could only detect strong associations with CRC.
Also, the fact that this is a targeted metabolomics obviously biases the results towards lipid species,
which is also an important limitation. As we mentioned in the introduction section, lipid alterations
have been previously associated with CRC development and progression [41]. We considered,
therefore, that our panel of metabolites would be sufficient to find potential CRC biomarkers. Also,
keeping in mind the diagnostics aim of this study, we decided to use targeted metabolomics because
it’s cheaper than an untargeted one, making it a more affordable option. Targeted metabolomics
allows an easier interpretation of results and, therefore, an easier translation to clinical practice, which
we also considered to be an important point for the diagnostics purpose. As no restriction on diet
was provided to the participants in the study, another limitation is the lack of control for potential
diet-confounding factors. Nevertheless, we believe this potential diet’s effects to be minimal, as all
participants came from two Spanish regions that share the same dietary patterns. We did not specifically
control for age, sex, tumour position and staging for this study, which constitutes another important
limitation. The decision of not to control for those factors was done taking into account the sample
size, not big enough to generate sufficiently big subgroups to obtain statistically robust data. In order
to minimize those variables effects, we incorporated the 10,000 iterations through random subsetting
of the population for the modelization step, thus generating 10,000 different populations, covering a
huge range of different composition trains and test subpopulations that could reduce the potential bias
towards some of the mentioned factors. Another strength of our study is the comparison against the
FOB test and other clinical parameters. For every one of these comparisons, our model composed by
the 7-metabolites performed better than the clinical parameters alone. Also, the integration of gene
expression data in the study supports the identification of differentially expressed metabolites and
puts them into context, providing some insights on how and why the levels are different between
healthy controls and cancer patients.

4. Materials and Methods

4.1. Chemicals

HPLC-MS grade solvents were purchase from Sigma Aldrich (St. Louis, MO, USA). Reference
metabolite standard compounds were obtained from Sigma Aldrich, Larodan Fine Chemicals (Malmö,
Sweden) and Avanti Polar Lipids (Alabaster, AL, USA).

4.2. Clinical Samples and Study Population

The samples were collected during COLONPREDICT study, a multicentre, cross-sectional, blinded
study of diagnostic tests aimed to create and validate a CRC prediction index in symptomatic patients
based on available biomarkers, clinical and demographical data [16]. The study was approved by
the Clinical Research Ethics Committee of Galicia (Code 2011/038). As the samples were collected
from the COLONPREDICT study, the population selection characteristics were the same of that
study. The cohort consisted of consecutive patients with gastrointestinal symptoms referred for
colonoscopy from primary and secondary health care to Complexo Hospitalario Universitario de
Ourense, Spain. Exclusion criteria for the COLONPREDICT study were: age under 18, pregnancy,
asymptomatic individuals undergoing colonoscopy for CRC screening, patients with previous history
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of colonic disease, patients requiring hospital admission, patients whose symptoms had ceased
within 3 months of evaluation, and patients who declined to participate after reading the informed
consent form. Patients self-collected a faecal sample from one bowel movement without specific diet
or medication restrictions the week before a colonoscopy was performed at home and delivered
to the hospital. The faecal sample was brought to the laboratory in less than 4 hours, split in
aliquots and immediately frozen at −80 ◦C. We selected samples from 40 patients with advanced
adenoma-AD- (≥10 mm, villous histology, high-grade dysplasia), 40with CRC and 49 with a normal
colonoscopy. The characteristics of the patients differed with respect to age (CRC = 73.1 ± 10.6 years,
AD = 68.8 ± 44.6 years, normal = 61.5 ± 14.4 years; p < 0.001) and sex (CRC = 60.0% male, AD = 59.1%
male, normal = 27.5% male; p = 0.004). The CRC were located in the rectum (32.5%), colon distal to
splenic flexure (45%) and proximal to splenic flexure (22.5%). The tumour stage at diagnosis was:
I (24.2%), II (30.3%), III (30.3%) and IV (15.2%).

4.3. Sample Preparation and UPLC®-MS Metabolomics Analysis

A UPLC−time-of-flight (TOF)-MS-based platform was used to analyze chloroform/methanol
extracts, including glycerolipids, cholesteryl esters, sphingolipids, primary fatty amides and
glycerophospholipids among the identified ion features. The metabolite extraction procedure was
as follows. Stools were lyophilized during 3 days by using the instrument Telstar LyoQuest −85.
Afterward, 15 milligrams of lyophilized stool samples were mixed with 45 µL sodium chloride (50 mM)
and 450 µL chloroform/methanol (30:1) in 1.5 mL microtubes at room temperature. The extraction
solvent was spiked with compounds not detected in unspiked human stool samples [SM(d18:1/16:0),
PE(17:0/17:0), PC(19:0/19:0), TAG(13:0/13:0/13:0), Cer(d18:1/17:0) and ChoE(12:0)]. After brief vortex
mixing, the samples were incubated for 1 hour at −20 ◦C. After centrifugation at 16,000 × g for 15 min,
35 µL of the lower organic phase was collected and the solvent was removed. The dried extracts
were then reconstituted in 1000 µL acetronitrile/isopropanol (1:1), centrifuged (16,000 × g for 5 min),
and transferred to vials for UPLC®-MS analysis on an Acquity-Xevo G2 QTof system (Waters Corp.,
Milford, MA, USA). Samples were randomly divided into three batches, which contained a maximum
of 78 samples. Chromatographic method and mass spectrometric detection conditions were described
by Barr et al. [60]. Of the different platforms described, the one corresponding to ours was Platform 3.

4.4. Data Pre-Processing

Data pre-processing was processed using the TargetLynx application manager for MassLynx
4.1 (Waters Corp). A total of 105 UPLC-MS features were analysed, all of them identified prior to
the analysis. Peak detection and noise reduction were performed as previously described [61,62].
Intra- and inter-batch normalization process was based on multiple internal standards and the pool
calibration samples approach described by Martinez-Arranz et al. [62].

4.5. Data Analysis

The biomarker assessment in this study was organized in sequential and consecutive
phases for discovery and biological validation. Firstly, 133 metabolites including glycerolipids,
glycerophospholipids, sterol lipids and sphingolipids were selected as candidate biomarkers for initial
analysis faeces samples from advanced neoplasia cases, colorectal cancer and cancer-free controls
(Discovery Phase). Secondly, the potential clinical use of the most promising validated candidates was
tested in faeces samples from colon cancer cases, a small set of adenomas, and cancer-free controls.
Reported STARD guidelines have been the basis for defining our protocol.

Metabolites with less than 70% of the values present were removed from the analysis (remaining
105 metabolites into the analysis). Remaining missing values were imputed metabolite by metabolite,
taking the minimal value for the metabolite and dividing it by 10. Data was then normalized with the
log10 transformation. Univariate statistical analyses were also performed calculating group percentage
changes and the analysis of variance (ANOVA) for the comparison among the different groups: CRC,
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AD and control (C). Student’s t-test p-values were calculated for the comparison between cases (AD
and CRC) and C groups, as well as for the comparisons CRC and C, CRC and AD and between AD and
C groups. Multivariate analyses were also performed, including both Principal Component Analysis
(PCA) and Partial Least Squares Discriminant Analysis one (PLS-DA). ANOVA tests and Tukey’s HSD
tests were also calculated for several clinical parameters (FOB, sex, age, CEA and COLONPREDICT test)
to determine its effectiveness to classify our samples into categories (CRC, AD and C or Case-Control).
All p-values were adjusted with Bonferroni methodology unless otherwise stated.

A logistic regression (LR) was performed to identify a predictive signature capable of
distinguishing between cases and control groups. LR is a commonly used technique for data
classification. We first analysed the correlations between metabolites, establishing a cut-off at ρ

0.75. For each pair of correlated metabolites, we removed the one that separated the worst out of
the two groups. A forward stepwise method was selected as variable selection approach, where the
analysis started with an empty model and variables were added one at a time as long as these additions
are worthy, by measuring the Area Under the Curve (AUC) value. This process finished when no more
variables could be added. All samples were randomly divided into estimation (80% of all subjects;
n = 101) and validation (20% of all subjects; n = 26) groups, both cohorts having an equal proportional
representation of individuals belonging to cases and control groups. Ten-thousand iterations of both
subsetting into estimation and validation groups and model constructing were generated, to avoid
population-based biases. Receiver operating characteristic (ROC) curve analysis was used to assess its
discriminatory power. Overall diagnostic accuracy for a given two-class comparison was given by
the area under the ROC curve (AUC) with its associated standard error. Sensitivity, specificity and
accuracy values were calculated.

All calculations were performed using statistical software package R v.3.1.1 (R Development
Core Team, 2011; http://cran.r-project.org) with caret, caTools and receiver operating characteristic R
(ROCR) packages to produce ROC curves and AUC estimate; MASS package was used to generate
the LR. Additionally, SIMCA-P+ 12.0.1 (Umetrics AB, Umeå, Sweden) was used for PCA and PLS-DA
multivariate data analysis.

Retrieval of genes and enzymes related with differentially expressed metabolites found in
the study was done with custom Python scripts, which takes advantage of the published Python
packages Biopython [63] and bioservices [64], which were used to access both HMDB and KEGG
databases. These custom scripts retrieve information on the metabolite entries on both HMDB
and KEGG databases regarding the enzymes involved in the metabolism of cited metabolites, as
in which pathways are they present. We identified gene-encoding proteins involved in the metabolism
of the seven metabolites of the predictive model, and we uploaded those genes to the STRING
database [65], in order to identify the interaction between them, any potential clusterization and
possible affected metabolic pathways. Genetic expression was obtained from publicly available GEO
databaset GSE37364 [42]. The datasets were uploaded to R and the expression of selected genes was
plotted into boxplots. Mapping of both metabolites and genes into metabolic pathways was done with
pathview package [66] and custom R scripts.

5. Conclusions

This study highlights the power of UPLC-MS-based metabolomics approach in the discovery of
novel non-invasive markers for colorectal cancer. With this study, we identified alterations in two
main metabolic pathways, the glycerophospholipids and glycosphingolipids metabolisms. We found
18 metabolites differentially expressed between case samples (CRC + AD) and healthy controls, being
mainly increased in case ones. We also showed how a discrimination model based only on metabolite
species was able to differentiate between case (CRC+AD) samples and healthy ones and is better than
those used nowadays, based in several clinical parameters like FOB, CEA, etc. The model generated
included these metabolites: ChoE(18:1), ChoE(18:2), ChoE(20:4), PE (16:0/18:1), SM(d18:1/23:0),
SM(42:3) and TG(54:1). Finally, we showed how the integration of different omics technologies

http://cran.r-project.org
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might be useful for supporting findings of one of them and to gain insights on how to explain the
results obtained.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/9/300/s1,
Supplementary Figure S1, Workflow of the UPLC-MS-based targeted metabolomic profiling. Supplementary
Figure S2, Multivariate analysis of paired group. (A) CRC vs. AD: R2X = 0.29 and Q2 = 0.24 t[2]: R2X = 0.19 and
Q2 = 0.22). Black CRC, grey AD. (B) CRC vs. control: R2X = 0.30 and Q2 = 0.25, t[2]: R2X = 0.19 and Q2 = 0.24).
Black CRC, white healthy. (C) AD vs. control: R2X = 0.28 and Q2 = 0.24, t[2]: R2X = 0.15 and Q2 = 0.15. Grey AD,
white healthy. Supplementary Figure S3, Boxplot representation of the clinical parameters distribution on the
distinct groups of samples (C, AD and CRC). Supplementary Figure S4, Mapping of altered genes and metabolites
into the three metabolic pathways identified: sphingolipid metabolism (A), glycerophospholipid metabolism (B)
and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (C). Genes detected are coloured in a range green-red,
depending on the Fold Change and metabolites in a range blue-yellow. Supplementary Table S1, List of the 105
metabolites analysed in the study. Supplementary Table S2, Metabolites differentially expressed between control,
AD and CRC groups (ANOVA test). Supplementary Table S3, Clinical correlations between metabolites included
in the study and the following parameters: FOB, Sex, Age, COLONPREDICT and CEA. Supplementary Table S4,
Number of missing values obtained for each metabolite.
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FAA Fatty acid amides (Primary Fatty Amides)
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Background: Fibromyalgia is a complex, relatively unknowndisease characterised by chronic, widespreadmuscu-
loskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous sys-
tem (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight
into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics tech-
niques to analyse microbiome and serum composition.
Methods:Wecollected faeces and blood samples to study themicrobiome, the serummetabolome and circulating
cytokines andmiRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy
individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabo-
lomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera
samples. Finally, we combined the different data types to search for potential biomarkers.
Results: We found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the
Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the
host) in these patients was significantly reduced. The serummetabolome analysis revealed altered levels of glu-
tamate and serine, suggesting changes in neurotransmittermetabolism. The combined serummetabolomics and
gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on met-
abolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential
sources of molecular biomarkers of fibromyalgia.
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Conclusions:Our results show that themicrobiome analysis providesmore significant biomarkers than the other
techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new
light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this dis-
ease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic
criteria.
This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background

Fibromyalgia is a complex disease of unknown pathophysiology, for
which no specificmolecular biomarkers or biochemical alterations have
been identified. In 1990, the American College of Rheumatology (ACR)
recognised this syndrome as a disease and proposed the Widespread
Pain Index (WPI), determined by measuring tenderness on pressure at
18 defined points, as a major diagnostic indicator. In 2010, the ACR in-
troduced the Severity Score (SS),which also takes into account the asso-
ciated symptoms and their severity [102]. Thus, the diagnosis of
fibromyalgia is currently based on subjective pain evaluation and a set
of associated signs and symptoms, which are used to assess the severity
of the disease.

Even though the fibromyalgia is a complex disease with a multitude
of signs and symptoms associated with many organs, the participation
of the Central Nervous System (CNS) in its pathogenesis is broadly ac-
knowledged [33]. Some studies have tried to identify molecular signa-
tures that could explain some of the features of fibromyalgia and have
provided some potential biomarkers. Several polymorphisms linked to
the metabolism and breakdown of neurotransmitters involved in pain
modulation have been identified as specific markers of increased
risk of fibromyalgia [2]. Such polymorphisms have been found for the
serotonin transporter gene 5-HTT [14,68] and the catechol-O-methyl-
transferase (COMT) gene [30,106]. Some environmental factors,
such as viral and bacterial infections [10], e.g. HCV infection [9,78] and
psychological stressors [32], known to produce alterations in the
hypothalamic-pituitary-adrenal (HPA) axis, have been associated with
this disease. Fibromyalgia is prevalent in individuals with chronic pain

Research in context
Evidence before this study

Fibromyalgia is a complex disease with chronic pain as its primary
symptom. To date, nomolecular biomarkers exist for it, leaving its
diagnosis up to subjective questionnaires. Several alterations in fi-
bromyalgia patients have pointed towards the central nervous sys-
tem as the origin of this pathology. The gut microbiome can
influence the CNS through the gut-brain axis.

Added value of this study

Employing microbiome and metabolomics analysis along with cy-
tokine and miRNA profiling we identified several alterations be-
tween healthy controls and fibromyalgia patients that could be
used as potential biomarkers. We also studied how the
microbiome and metabolomics datasets correlated with each
other to elucidate the role of microbiome alterations in host
metabolism.

Implications of all available evidence

Taken together, this study provides candidate molecular bio-
markers for fibromyalgia, and supports an alteration of neurotrans-
mitter levels in fibromyalgia patients.

attributable to peripheral pain generators, such as rheumatoid arthritis
[1]. At the molecular level, glutamate is elevated in the cerebrospinal
fluid of fibromyalgia patients [26,71,85]. A decrease in insular levels of
γ-aminobutyric acid (GABA) has also been described [21]. An inflam-
matory component in the pathogenesis of this disease has also been
proposed: certain cells might trigger and perpetuate chronic pain by re-
leasing chemokines and cytokines, such as IL-6 and IL-8, whose levels
are elevated in the sera of fibromyalgia patients [62,95].

The microbiome has a significant role in maintaining health
[37,47]. Alterations in the gut microbiome have been linked to a
large number of diseases, including intestinal bowel disease (IBD)
[45] and metabolic [43] and neurological [84,89] disorders [40]. The
microbiome has been recurrently associated with the CNS [89], indi-
cating the existence of a gut-brain axis [16,22]. Disturbances in the
microbiome might lead, in some cases, to neural disorders such as
depression or autism. Some changes linked to microbial gut
dysbiosis, understanding dysbiosis as those differences between
healthy individuals and disease-specific patients [35], are also associ-
ated with symptoms used to determine the SS2 score in the diagnosis
of fibromyalgia. The gut-brain axis has been proposed as a bidirec-
tional communication system between the gastrointestinal tract and
the brain, involving both neural and humoral mechanisms (reviewed
in [15]). The intestinal GABA produced by the bacteria from gluta-
mate might affect the behaviour of the host, and it might be involved
in anxiety and depression [8,34,57,88]. Alterations in the microbiome
composition can escalate the interactions between bacteria and the
gut immune system due to the breakage of the intestinal barrier,
promoting the release of pro-inflammatory molecules. Such events
have been reported in IBD, where a release of IL-2, IL-17, interferon
and/or TNFβ has been observed [41]. Interestingly, several pro-
inflammatory cytokines can increase the permeability of the blood-
brain barrier [16]. The microbiome also has metabolic, immunological
and gut-protecting functions in the host. The fermentation of dietary
carbohydrates by gut bacteria, for example, results in the production
of short-chain fatty acids (SCFAs). These molecules are essential for
the maintenance of the integrity of intestinal barrier [40] and other
health-related functions [77], including the correct development
and maintenance of the blood-brain barrier [7].

These interactions between the microbiome and other functional
systems of the organism has been widely studied. Microbiome data
have been scrutinised in conjunction with host's genome, epigenome,
transcriptome and metabolome [99]. The integration of different
omics data relies mostly on dimension reduction approaches and is
not specific to any omics technology, except for the metabolomics
data. Correlation, regression and network-based approaches have also
been implemented to integratemicrobiomedatawith other omics anal-
yses. As a result, the role of the of the host genome in regulating
microbiome composition has been revealed [28]. Combination of Ge-
nome Wide Association Studies (GWAS) and microbiome-GWAS has
been applied also to assess the impact of diet on microbiome composi-
tion. For example, associations between lactase [5] and variations of vi-
tamin D receptor [98] genes with specific bacteria have been reported.
Metabolomics-microbiome integration studies using correlation ap-
proaches have shown the effect of microbiome on host's insulin sensi-
tivity [70] and on the development and progression of colorectal
cancer [66,100]. Metabolomics – microbiome integration studies
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employing a mix of correlation and network methods have obtained a
comprehensive profile of the existent interactions between intestinal
mucosa and gut microbiome [58]. The authors of these studies have
used standard statistical methods but suggested that new, specific
methods are needed for omics integration, to take into account the par-
ticular omics data characteristics [99].

The aim of this work was to identify potential molecular biomarkers
for fibromyalgia diagnosis and characterisation, employing different
omics technologies: the analysis of microbiome from faeces samples
and metabolomics, cytokine and miRNA profiling using serum samples.

2. Methods

2.1. Cohort recruitment

Individuals included in the study were recruited in two different
hospitals in the Basque Country. Both fibromyalgia patients and healthy
individuals were given a form with questions concerning several life-
style variables (diet, smoking, alcohol consumption, physical exercise,
other diseases andmood),. Blood sampleswere obtained from fibromy-
algia patients and control individuals. Stool samples were collected
from all participants, stored the samples at 4 °C until they could be de-
livered to the biobank. Blood and stool samples collected in each hospi-
tal were then sent to the Basque Biobank. Samples were aliquoted
samples and frozen at −80 °C. The hospitals clinicians (neurologists
and rheumatologists) were responsible for the fibromyalgia diagnosis.
The following criteria were used:

- Fibromyalgia group:WPI ≥ 7 and SST (Severity Score) ≥ 5 orWPI be-
tween 3 and 6 and SST ≥ 9. Patients with other diseases with similar
symptoms were discarded.

- Control group: healthy individuals without any clinical manifesta-
tion of fibromyalgia and/or any other similar disease. To reduce the
potential confounding factors associated with lifestyle, they also
were age-paired with the patient group and came from the same
environment.

All donors signed the informed consent form, and the study was ap-
proved by the appropriate ethical committee (CEIC-PI2016037). DNA
from faeces was extracted using PSP Spin Stool DNA Plus kit (STRATEC
Molecular®), following the manufacturer's protocol. Lysis buffer was
added to the frozen samples, to ensure the preservation of nucleic
acids. DNA extractions were then aliquoted into samples of 2.5 μg of
DNA at the concentration of 100ng/μL and then frozenuntil sequencing.
All sample processing and distribution were managed by the Basque
Biobank. The summary of the collectionworkflow can be found in Fig. 1.

2.2. V3–V4 16S rDNA sequencing

DNA amplicon libraries were generated and sequencing performed
following the recommendations of Illumina Inc. Sequencing was con-
ducted at the FISABIO Sequencing Core Facility, as were the quality as-
sessment using prinseq-lite [87] and the sequence joining, employing
FLASH software [53] with default parameters. The complete protocol
can be found in the Supplementary Methods file.

2.3. Microbiome sequences bioinformatics analysis

QIIME2 package (v. 2017.10) [12] was employed to perform the Op-
erational Taxonomic Units (OTU) clustering and identification, using de
novo methodology at 97% similarity threshold. Diversity analysis was
performed, and the OTUswere annotated using GreenGenes 13_8 data-
base. The OTU table was exported to SIMCA-9+ 12.0.1 (Umetrics AB,
Umeå, Sweden) to perform multivariate analysis and to R programme
(R Development Core Team [108]; http://cran.r-project.org) to conduct
the statistical analysis using phyloseq [60],microbiome [48] and DESeq2

[52] R packages. CORBATA [49] approach was used to identify and plot
the bacteria in the coremicrobiome. SIAMCAT tool [107]was used to as-
sess the potential effects of confounding factors such as sex, different
hospitals and distinct drug types. The adjusted p-value b .05was consid-
ered statistically significant unless stated otherwise. The complete pro-
tocol can be found in the Supplementary Methods file.

2.4. qPCR validation

From the glutamate cytoplasmatic incorporation and degradation
pathways we selected four genes (gadC, glnA, glsA and glsB) to validate
our findings related to glutamate and microbiome interaction. We de-
signed specific primer pairs with Primer-BLAST from NCBI webtool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) indicating speci-
ficity for five bacterial families: Bacteroides, Bifidobacterium, Eubacte-
rium, Lachnospiraceae and Ruminococcaceae. Complete procotol can
be found in the Supplementary Methods file.

2.5. Metabolomics methodology

To 40 μL aliquots of human serum, 40 μL of water/0.15% formic acid
(FA)was added. Then, the proteinswere precipitated by addition of 120
μL of acetonitrile. To achieve the optimum extraction, after the addition
of acetonitrile, the samples were sonicated for 15 min and agitated at
1400 rpm for 30 min (at 4 °C). Next, they were centrifuged at
14,000 rpm for 30 min at 4 °C. The supernatants were transferred to
vials. Samples were examined using a UPLC system (Acquity, Waters
Inc., Manchester, UK) coupled to a time-of-flight mass spectrometer
(ToF MS, SYNAPT G2, Waters Inc.). A 2.1 × 100 mm, 1.7-μm BEH
amide column (Waters Inc.), kept at 40 °C, was used to separate the
analytes before the MS. The MS was operated in positive electrospray
ionisation full scan mode. Spectral peaks were automatically corrected

Fig. 1. Experimental design workflow, from patient recruitment and sample collection to
the arrival of processed samples into the research centre and their examination using
distinct omics techniques.
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for deviations in the lockmass. The complete specifications can be found
in the Supplementary Methods.

Scaled and normalised data were uploaded to R. Principal Compo-
nent Analysis (PCA) was performed to check whether the differences
between sample metabolomes were due to sample origin and to ac-
count for the autoclaving process used by one of the hospitals. We ex-
cluded the metabolites whose expression differed between the
hospitals, to avoid the bias introduced by the sample origin.
Metabolomic features with N30% of missing values in either hospital
were removed from the analysis. Fold changes and p-values (adjusted
using the Bonferroni method) were computed. Afterwards, differential
peakswere selected for further annotation andmetabolite identification
using theMETLIN database [29]. The identificationwas confirmed using
commercial standard injection.

MetScape [44] and Ingenuity Pathway Analysis® were used to map
the identified metabolites to corresponding functionalities in humans.

2.6. Cytokine and miRNA profiling

The cytokine andmiRNA profiling was performed by Abcam FirePlex
Service (Boston, USA). The cytokine analysis was conducted using the
FirePlex Human Discovery Cytokine Panel (Abcam, ab227936), allowing
simultaneous profiling of 70 targets in a single well. Each sample was
analysed in duplicate, following the manufacturer's instructions. The
flow cytometer outputwas analysed using the FirePlex™AnalysisWork-
bench software (http://www.abcam.com/FireflyAnalysisSoftware). Cy-
tokine concentration in a sample was interpolated from the standard
curve obtained in duplicate for each plate. The data was log-normalised,
and then the fold changes and Bonferroni-adjusted p-valueswere com-
puted to assess the differences between the cytokine profiles.

The miRNAs were profiled using the FirePlex miRNA Assay Core Re-
agent Kit (Abcam, ab218342) employing a custommultiplex panel with
68 miRNAs selected on the basis of literature review. Each sample was
run in singlicate, as previously described [93]. Data analysis was per-
formed using the FirePlex™ Analysis Workbench software. Three
miRNAs used for normalisation, hsa-miR-17-5p, hsa-miR-320b and
hsa-let-7i-5p, were selected employing the geNorm algorithm [96].
The data was log-normalised, and then the fold changes and
Bonferroni-adjusted p-values were computed to evaluate the differ-
ences between the miRNA profiles.

2.7. Omics integration

2.7.1. Microbiome and metabolomics
Spearman's correlation coefficients were computed for relationships

between relative abundances of microbiome bacteria with the identi-
fied genus and normalised individual metabolomic features. A scaled
heatmap was constructed for the correlation matrix, including clado-
gram classification of the variables, using the default clusteringmethod.

2.7.2. Integration of all datasets
We employed the Data Integration Analysis for Biomarker Discovery

(DIABLO) using Latent cOmponents implementation in the mixOmics R
package [79,90]. Thirty-six fibromyalgia and 35 control samples were
used. Microbiome data was normalised using DESeq2 counts function.
The mixOmics block.splsda function, with full weighted design and 10
components, was primarily used to identify the optimal number of com-
ponents, which was defined in 3 methods using the centroid distance
technique. To decide which variables to keep in each component,
models with 10, 5, 5 and 5 randomly selected variables were tested
for themicrobiome,metabolomics, cytokines andmiRNAs, respectively.
Finally, different model features were obtained and the results were
plotted using mixOmics predefined and ad-hoc functions. This proce-
dure was followed for both the identified-metabolite dataset and the
full dataset of unidentified metabolomics features.

3. Results

3.1. Clinical samples

One hundred and five confirmed fibromyalgia patients (ACR 2010
modified criteria) [102] and 54 age- and environmentally-paired
healthy individuals were recruited. The latter group consisted of indi-
viduals who did not present any disease or symptoms related to fibro-
myalgia and came from the same environment as the fibromyalgia
patients. The characteristics of the study cohort are shown in Table 1.

During WPI evaluation, N90% of the patients reported pain in the
back, shoulder girdle and the abdomen. Neck pain was described by
85% of patients, while upper and lower arm, hip and upper and lower
leg pain were reported by 70% of fibromyalgia patients. At least 50% of
the patients were affected by jaw and chest pain. The SST index is the
combination of two sub-indexes, SS1 (the severity of 3 main symptoms
in fibromyalgia: fatigue, sleep quality and cognitive problems) and SS2
(the list of associated fibromyalgia symptoms). Approximately 90% of
patients reported moderate to severe scores for the 3 main symptoms
for the SS1 sub-index in the week preceding the collection of the sam-
ples. In the evaluation of associated fibromyalgia symptoms (SS2),
70.7% of fibromyalgia patients presented at least 4 symptoms from the
neurological sphere (muscle pain, fatigue, thinking or memory prob-
lems, headache, numbness/tingling, etc.). Among them, 70% used pain-
killers, while approximately 55% were taking antidepressants and
benzodiazepines and approximately 30%, antiepileptic drugs (SUPPLE-
MENTARY TABLE S1). Half of the patients reported some physical exer-
cise and some alcohol consumption, while 23% identified themselves as
smokers.

3.2. V3 + V4 16S rDNA sequencing

We obtained 6,110,564 reads, of which 99.56% passed the quality
check. Of the cleaned reads, the 81.91% (4,982,956) were joined. To de-
cide on the number of reads to which the samples should be rarefied;
we computed the rarefaction curves for both observed OTUs and Shan-
non indices (Supplementary Fig. S1A). After rarefying at 12,000 reads/
sample, the median coverage was 96.35 ± 2.33%. Rarefaction step did
not reduce diversity (Supplementary Fig. S1B). Sequencing data was
uploaded to ENA under Project Accession code PRJEB27227.

3.3. Microbiome analysis

Themultivariate unsupervised PCA (Fig. 2A) did not showany differ-
ences between the control and the fibromyalgia samples. The super-
vised Partial Least Squares Discriminant Analysis (PLS-DA), however,
provided two sample groups (Fig. 2B) (p-value, 0.0019). In the specific
diversity analysis for 4 alpha-diversity indices (Faith's Phylogenetic Dis-
tance, ace, chao1 and observed OTUs) we observed a discrete decrease
in bacterial diversity in fibromyalgia patients although only the Faith's
PD index showed a statistically significant difference (Fig. 2C). This

Table 1
Cohort characteristics. The number of individuals included in each group is given in paren-
theses. For Age, WPI and SST, mean values ± standard deviation are shown.

Controls (n = 54) Fibromyalgia-diagnosed
patients (n = 105)

Sex 48.15% ♀, 51.85%♂ 69.52% ♀, 30.48% ♂

Age (years) 53.5 ± 12.4 52.52 ± 10.3
Age at diagnosis (years) NA 48.2 ± 11.1
Time since diagnosis
(years)

NA 3.4 ± 6

WPI NA 13.28 ± 3.91
SST NA 8.62 ± 2.15

SS1 NA 6.6 ± 1.8
SS2 NA 2.1 ± 0.4
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reduction in bacterial diversity was also observed in the analysis of the
core microbiome at the taxonomic family level. We used CORBATA de-
fault parameters (80% ubiquity, 1% abundance) to identify which bacte-
ria families present in both fibromyalgia and control core microbiomes.
The two core microbiomes contained the same 4 bacteria families (C.
Ruminococcaceae, C. Lachnospiraceae, B. Rikenellaceae and B.
Bacteroidaceae). We observed that the control group presented a
more diverse bacterial community. The comparison of the two sample
groups revealed that Clostridiales Ruminococcaceae was more abun-
dant in the healthy control group than in fibromyalgia patients, al-
though the differences were not statistically significant (Fig. 3A). After
reducing the cut-off to 50% ubiquity, we observed differences between
the core microbiomes of the two groups. Specifically, two bacteria fam-
ilies that were absent in the fibromyalgia core microbiome, the
Bifidobacteriales Bifidobacteriaceae and the Bacteroidales Prevotella,
which were represented in the control core microbiome (Supplemen-
tary Fig. S2A).

We performed a differential OTU analysis (employing DESeq2) of
the core microbiomes in the control and fibromyalgia samples. We
identified 32 OTUs distributed among 3 phyla (Actinobacteria,
Bacteroidetes and Firmicutes) (Fig. 3B) whose abundance differed be-
tween the two groups, with an adjusted p-value of 0.05. In fibromyalgia
patients, the Bacteroidetes and Firmicutes had OTUs both with in-
creased and decreased abundance, and Actinobacteria levels were re-
duced in this group (Fig. 3B).

The number of OTUs with the unassigned genus in Bacteroidaceae
and Lachnospiraceae families were decreased in fibromyalgia samples;
there were also fewer Bifidobacteriaceae and Erysipelotichaceae OTUs

in fibromyalgia patients. The Rikenellaceae family showed an increased
abundance in fibromyalgia patients (Supplementary Table S2).

Finally, at the genus level, the abundance of BacteroidesOTUswas re-
duced in fibromyalgia patients, as were Bifidobacterium, Eubacterium
and Clostridium OTUs. However, the abundances of the genera Dorea,
Roseburia and Alistipes were increased in this group (Fig. 3B).

There were no significant differences between microbiome compo-
sition abundances in the two sexes. We did not observe any significant
association between drug types (as summarized in Supplementary
Table S1) and the relative microbiome abundance at the genus level
(data not shown).

We validated the reduction of the abundance of bacterial species by
qPCR technique. For that, we amplified a set of genes dedicated to the
glutamate incorporation to bacterial cytoplasm and its transformation
to GABA (gadC, glnA, glsA and glsB). We designed specific primers for
amplifying genes from 5 bacterial families that we found to be dimin-
ished in fibromyalgia patients (Bacteroides, Bifidobacterium, Eubacte-
rium, Lachnospiraceae and Ruminococcaceae) (Fig. 3C). We found that
the gene encoding the transporter of glutamate into bacterial cyto-
plasm, represented by gadC, was diminished, as it was also the genes
encoding enzymes involved in the transformation of glutamate to L-
glutamine (glnA, glsA) and to GABA (gadB) (Supplementary Fig. S2B),
in agreement with the taxonomic analysis of 16S rDNA gene.

3.4. Metabolomics analysis

Themetabolomics analysis yielded8543 differentmetabolic features
defined by retention time and mass/charge. One sample was removed

Fig. 2.Microbiomemultivariate analysis. (A) Principal Component Analysis (PCoA) of the complete cohort. (B) Supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis,
showing the discrimination between the sample groups. (C) Alpha-diversity indexes for each sample group, showing the adjusted p-value computed using Student's t-test.
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due to technical failure. The PCA analysis revealed that the metabolo-
mics profiles differed between hospitals (Supplementary Fig. 3). This
was expected because of the autoclaving performed in one of the hospi-
tals. Thus, to avoid the bias caused by the chemicals released during the
autoclaving procedure, the discriminating hospital features (p = 661),
were removed from the study, aswell as the featureswith N30% ofmiss-
ing values. Two hundred and twenty-eight features differed between

the fibromyalgia and control groups (Fig. 4A). Of these 228, only 88
had tentative IDs in theMETLIN database. UsingMS/MS data and chem-
ical standards, we found that the levels of 7 of these metabolites were
significantly altered in the fibromyalgia samples (Supplementary
Table S3): ornithine, L-arginine, Nε-Methyl-L-lysine, L-glutamate, L-glu-
tamine, asymmetric dimethylarginine (ADMA) and platelet activating
factor (PAF-16) (Fig. 4B). Another metabolic feature among the 228

Fig. 3. Core microbiome and genus-discriminant analyses. (A) The composition of core microbiome for each sample group and the comparison of bacterial ubiquity in the two groups.
(B) Genera significantly different (adj p N .05) between the control and fibromyalgia samples, obtained using the protocols described in the Methods. Positive log2 fold changes (x-
axis) indicate genera with positive fold difference between fibromyalgia and control. Negative log2 fold changes are shown as negative x values. Each point represents a single OTU,
coloured by phylum. On the y-axis, the taxonomic genus level is indicated. Size of the points reflect the log-mean abundance of the sequence data. (C) qPCR results for the differential
expression of bacterial genes related to glutamate bacterial degradation. Results are indicated in differential Cts count.
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altered in fibromyalgia was tentatively identified as L-threonine or DL-
homoserine (Fig. 4B). We could not discriminate between these two
metabolites as they are structurally similar and have the same molecu-
larmass and fragmentation pattern in LC-MS.We also analysed theme-
tabolites described in the literature, such as creatinine [31,55], platelet
activating factor [11] and acetylcarnitine [25]. To infer alterations in
the biological processes and metabolic and functional pathways associ-
ated with the differentially expressed metabolites, we used MetScape
[44] and Ingenuity Pathway Analysis® (QIAGEN) (IPA). The analyses
showed that cell signalling and inflammatory and hypersensitivity re-
sponses were the most relevant biological processes. The most repre-
sented metabolic pathways were arginine, nitric oxide (NO) and
glutamate metabolism.

To study the potential dependencies betweenmicrobiome composi-
tion and the hostmetabolism andmetabolome, we examined the corre-
lations between the two datasets. We computed the Spearman's
correlation coefficient for the full set of metabolomics features and
microbiome variables. We did not see any clear association patterns be-
tween the two complete datasets (Supplementary Fig. S4).We also con-
structed a heatmap of the scaled correlations between the bacteria
whose abundance was changed in fibromyalgia and the identified me-
tabolites (Fig. 5A). Metabolites were grouped into two clusters, depend-
ing on the correlations. These were seen mainly with for genera
Bifidobacterium and Dorea, which behaved in an opposite manner. The
first cluster contained 4 metabolites (3-methyl-L-Lysine, PAF C-16,
ADMA, L-Lysine). The second cluster was formed by 8 metabolites (glu-
tamate, L-threonine/DL-homoserine, glutamine, Nε-methyl-L-Lysine,
creatinine, ornithine, arginine and acetylcarnitine), although themetab-
olite acetylcarnitine behaved differently from the other metabolites in
this cluster. Bifidobacterium, whose abundancewas reduced in fibromy-
algia patients, correlated negativelywith the firstmetabolite cluster and
positively with the second one. Dorea, with increased abundance in fi-
bromyalgia patients, correlated positivelywith the first metabolite clus-
ter and negatively with the second one.

Finally, we checked, using Virtual Metabolic Human [65] database,
whether the different metabolites were produced by the differentially
abundant bacteria. We also wanted to study whether they were made
by the genera for which we found most correlations (Fig. 5A). Thus,
we limited the search to Bifidobacterium and Dorea genera. For gluta-
mate, we identified the metabolites upstream and downstream of its
production/degradation. For lysine, threonine, homoserine, glutamine,
ornithine and arginine (and theirmodifications), we found that theme-
tabolites themselves, their precursors and degradation products might
had been produced by bacteria. No bacterial associations were found
for creatinine, PAF C-16, ADMA and acetylcarnitine, consequently sug-
gesting that their origin was exclusively human.

3.5. Serum factors and miRNA analysis for a subset of samples

A subset of the samples (n=72; nC=36 controls and nF=36fibro-
myalgia samples) was used to perform multiplex assays for different
serum molecules, including miRNAs and cytokines. For the multiplex
design, we used 70molecules and 68miRNAs that have been associated
with fibromyalgia and/or chronic pain. The protein content assays and
themiRNAs analysis did not showany differences between the fibromy-
algia and the control groups. We observed statistically significant
differences for ten serum proteins: PCSK9, mesothelin, BST2 (↑),
procalcitonin, Axl, myoglobin, MIG, TNF-alpha, ICAM2 and IL-9 (↓)
with fold changes ranging from 0.76 (lower level in patients) for IL-9
to 1.07 for BST2 (Supplementary Fig. S5A). However, the levels of only
one miRNA differed significantly between the fibromyalgia patients
and the control group, the hsa-miR-335-5p (Supplementary Fig. S5B).
Predicted target genes were obtained using miRWalk 2.0 database
[20]; they were selected if they mapped to at least 8 of the 12 database
options. The enrichment of the miRNA targets was performed using
ConsensuspathDB [42], selecting the targets with a p-value b .01. Nota-
bly, we identified several pathways related to signalling dedicated to

Fig. 4.Univariatemetabolomics analysis. (A) Volcano plot of 1070metabolic features detected in serum samples after background subtraction and removal of the features found in b30% of
the data or differing between hospitals. (B) Volcano plot of the identifiedmetabolites. Positive log2 FC indicates increased abundance in fibromyalgia patients. All p-valueswere adjusted
using the Bonferroni method.
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gene regulation processes. The complete results are provided in
SUPPLEMENTARY TABLE S4.

3.6. Correlations between omics data and clinical data

To determine which differences could be associated with the dis-
ease, we examined the correlations between different diagnostic in-
dexes obtained for the fibromyalgia patients and the omics data
(Fig. 5B, C, D and E). Notably, miRNA data constituted the omics dataset
most correlatedwith pain indicators (Fig. 5B), followed by the results of
serumprotein profiling (Fig. 5C).Metabolomics also showed a consider-
able number of correlations with several pain indexes (Fig. 5D). The
microbiome composition (at the genus level) (Fig. 5E) was the omics
dataset with the weakest correlation with pain indicators.

We also considered possible effects of medication on the observed
differences between the patient and control samples. We checked
whether the samples clustered depending on the drug regimen
followed. However, we did not find any clusters of samples (neither
for serum factors nor for miRNAs) that could be associated with a spe-
cific drug or drug combination. We also checked whether any data cor-
relatedwith distinct drug types; no such correlationwas observed (data
not shown).

3.7. Modelisation of microbiome, metabolomics, cytokine and miRNA
datasets

We combined the four datasets of the 71 samples (nC=36, nF=35)
that had all the data. This allowed us to discriminate between the con-
trol and fibromyalgia samples when a block sparse PLS-DA model
was applied (block sPLS-DA) (Fig. 6A). The analysis of the individual
contribution of each dataset to the differences showed that the most
correlated datasets were the microbiome composition and the metabo-
lomics data. We also found that themajor contributor to the separation
of the sample groups was the microbiome dataset, followed by serum
metabolomics, proteins and,finally,miRNAs (Fig. 6B and C). In this anal-
ysis, we used only the metabolomics dataset containing the identified
metabolites (n = 14). The sPLS-DA analysis using the whole unidenti-
fiedmetabolomics dataset (n=1070) showed that using themetabolo-
mics dataset improved the discrimination between the two sample
groups, becoming the strongest factor distinguishing the patients from
controls (Supplementary Fig. S6) although the microbiome showed
slightly better predictive ability.

4. Discussion

In this study, we applied an omics approach and identified a set of
potential molecular markers (Table 2) for the diagnosis of fibromyalgia.

The gut microbiome analysis revealed two clusters (Fig. 2B), one
cluster for fibromyalgia patients (modified 2010 ACR diagnostic
criteria) and the other for individuals without any clinical manifestation
of fibromyalgia. Both core microbiome and alpha-diversity analyses
showed a reduction in the bacterial diversity in the fibromyalgia
group. This is in agreementwith the report of reducedmicrobiota diver-
sity in other pain disorders, such as myalgic encephalomyelitis/chronic
fatigue syndrome [27]. Interestingly, ourfibromyalgiamicrobiome anal-
ysis showed a reduction in the abundance of several bacterial strains as-
sociated with healthy microbiome, such as those linked to SCFA
production (Bifidobacterium, Eubacterium and Lachnospiraceae)
[40,64,77,94], and/or to the reduction in Firmicutes phylum OTUs
([75]; Human Microbiome Project Consortium et al., 2012; [51]),

suggesting dysbiosis events in fibromyalgia patients. Currently, there
is no consensus on the use of the term “dysbiosis” or its meaning [35].
Thus, wewould like to clarify that we refer to alterations inmicrobiome
composition linked to disease (either causing the disease or appearing
as its consequence). Dysbiosis events are also associated with the dis-
ruption of the intestinal barrier; this increases the interactions of bacte-
ria with the immune system of the host, producing local inflammation
[41]. This is supported not only by the large proportion of patients
reporting abdominal pain (N90%) but also by the number of intestinal
diseases considered co-morbidities of fibromyalgia. The maintenance
of the intestinal barrier is associated with the production of SCFAs, in-
cluding butyric acid and butyrate [77]. In fibromyalgia, we found a de-
crease in the abundance of several members of the Lachnospiraceae
family, the bacteria involved in butyric acid production [61]. Butyrate,
the conjugate base of butyric acid, is produced by a small number of bac-
teria, including several Eubacterium species [64], a genus also underrep-
resented in fibromyalgia patients. The reduction in the diversity of
bacteria, especially of those engaged in the production of protective
SCFAs, suggests that this process might be implicated in the develop-
ment of fibromyalgia. If this is the case, the dysbiosis events, as under-
stood here, should be persistent. Thus, we recognise that multiple
time-point data should be acquired and studied; lack of this data is a
limitation of our study. We would like to emphasise that this is a pilot
study and that a follow-up analysis, whichmight reinforce our findings,
is recommended.

We also found differences between neurotransmitter metabolisms
in the patients and control individuals. We detected a significant in-
crease in the serum levels of glutamate in fibromyalgia patients. More-
over, the abundance of bacteria from Bifidobacterium and Lactobacillus
genera (involved in the transformation of glutamate into GABA;
[4,8,105] was reduced in the fibromyalgia group. This might contribute
to the elevated systemic levels of glutamate. The effect of GABA on the
gut-brain axis, via the vagus nerve, has been described by several au-
thors [8,16]. Glutamate affects the development of pain, via glutamater-
gic synapses [69], and stress can alter the regulation of this pathway
[74]. Stress-related events have also been associated with microbiome
modifications [8]. The 2010modified ACR criteria for fibromyalgia diag-
nosis include several stress-associated symptoms. Whether such ele-
vated systemic levels of glutamate affect the ENS and alter the CNS is
still unclear. However, some authors have demonstrated the activation
of glutamatergic neurons and glutamate-mediated neurotransmission
in the ENS [13,46,50,84]. As a result of a reduction in bacterial diversity,
the glutamate might enter the host bloodstream after the disruption of
the intestinal barrier by the inflammation caused by the dysbiosis. Inter-
estingly, several patients presented with symptoms associatedwith IBD
as fibromyalgia co-morbidities (irritable bowel syndrome (46%), ab-
dominal pain (13%) and the pain in the upper abdomen (45%), diar-
rhoea (20%), etc.). The role of microbiome in IBD pathogenesis has
been broadly demonstrated [23,86]; a dysregulation of intestinal im-
mune system caused by microbiome alterations may lead to disease
[91], as demonstrated by patients presenting T-cell responses against
commensal bacteria [73]. Specifically, a reduction in the abundance of
Firmicutes phylum bacteria (observed in fibromyalgia patients) has
been recurrently associated with IBD pathogenesis and progression
[24,63]. These common alterations in microbiome composition could
explain some of the most frequent co-morbidites reported by the pa-
tients in our study.

Furthermore, it has been shown that the blood-brain barrier in-
creases its permeability after a decrease in the numbers of SCFA-
producing bacteria. This alters the tight junction organisation, which

Fig. 5.Heatmap of scaled correlations between the bacteriawhose abundancewas altered infibromyalgia and the identifiedmetabolites. Thedendrogramswere unsupervised. Red arrows
mark the bacteria with increased abundance in fibromyalgia, green arrows, with decreased abundance, and “equals” symbol indicates the OTUs with both increased and decreased
abundance (A). Omics correlations with indexes used in fibromyalgia diagnostics, as defined by ACR 2010 criteria. Only significant correlations (p-value b .05) are coloured. Positive
correlations are indicated in red and negative correlations, in blue. Correlations between circulating miRNA levels (B), circulating cytokine levels (C), identified serum metabolites
(D) and microbiome composition (at genus level) (E).
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can be recovered by colonisation with SCFA-producing bacteria and/or
by the administration of these bacterial metabolites [7]. Cytokines can
also modify the blood-brain barrier permeability [6,103]. Importantly,
glutamate levels increase in the cerebrospinal fluid (CSF) of fibromyal-
gia patients [85]. These data suggest an important role of this neuro-
transmitter in the pathogenesis of fibromyalgia. The manner in which
the peripheral levels of gut microbiome derived neurotransmitters can
affect the brain function is still under debate [84], although several
mechanisms have been proposed. Alterations in the blood-brain barrier
permeability could modify the interchange of serum metabolites with
the brain. Serum levels of 5-HTs are altered in germ-free mice
[101,104]. Even though 5-HT itself is not known to cross the blood-
brain barrier, its precursor can. The microbiome might alter the 5-HT
precursor (e.g. tryptophan) levels, as has been proposed by several au-
thors [67,88]. The same mechanism has been suggested for other gut
microbiome neurotransmitters, such as dopamine and GABA [56,84,97].

It is essential to keep in mind the relationship between GABAergic
pain inhibition and gender as fibromyalgia is 3 times more prevalent
in women than in men [76]. Steroid 17β-estradiol (E2) suppresses the
GABAergic inhibition in female rats via a sex-specific oestrogen receptor
ERα, mGluR and endocannabinoid-dependent mechanism [92]. This

suppression requires the activation of mGluR type I receptors by gluta-
mate [36]. Therefore, in the presence of excess glutamate, as observed
here in fibromyalgia patients, the pain inhibition byGABAmight be sup-
pressed in female patients by this E2-specific regulation. This might
partly explain the increased prevalence of fibromyalgia in the female
population.

The functional analysis of themetabolomics dataset showed that the
most represented pathways were those dedicated to themetabolism of
known neurotransmitters, such as glutamate and serine. Both arginine
and ornithine levels, related to the widespread pain in fibromyalgia, in-
creased in the sera of fibromyalgia patients. Consistently, IPA analysis
identified several pathways related to arginine, such as arginine degra-
dation (I and II) canonical pathways and proline biosynthesis from argi-
nine. These twometabolites are required for the synthesis of nitric oxide
(NO) [31]. NO plays an important role in both acute and chronic pain as
it is amediator of nociception [17]. However, NO contributes not only to
nociception; it also mediates in analgesia and increases the effect of
morphine on pain inhibition [17]. Here, we also observed a strengthen-
ing of this pathway in fibromyalgia patients (by using IPA). The role of
NO in fibromyalgia pathogenesis has been studied but without reaching
a consensus [72]. Notably, the levels of iNOS isoform increase in female
fibromyalgia sufferers in comparison with healthy controls, while the
levels of constitutive isoforms (nNOS and eNOS) do not change [59]. It
is important to remember that our functional profiling was performed
using the results obtained from the serum sample analysis. One of the
limitations of this study is the metabolomics analysis, and specifically,
themetabolite identification step.We could only identify a small subset
of all the metabolic features observed. Thus, the results obtained here
are constrained by the relatively small number of identifiedmetabolites.
An improvedmetabolite identification procedure could not only expand
the list of potential metabolite biomarkers but also advance the identi-
fication of potentially affected biological pathways and functionalities.

Patients afflicted by chronic pain are likely to participate inmanydif-
ferent long-term treatments, which could affect their microbiome com-
position. Differences in diets and lifestyles will also have some effect.
Thus, it is difficult to be certain whether the detected alterations in the
microbiota are the cause or consequence of fibromyalgia. No association
between microbiome composition and drug type was found for fibro-
myalgia patients. However, it has been demonstrated that clinical
drugs have an impact upon microbiome composition; this seems to be
true for antibiotic, non-antibiotic [54] and psychotropic [19] drugs.
The lack of associations shown here could have been caused by the
small number of patients taking medication from a specific drug family
and/or by the interactions between different drugs prescribed. Proton

Fig. 6.Multi-omics integration. (A) sPLS-DA consensus plot for the combination of the 4 datasets, showing the nearly complete discrimination of the 71 samples (36 fibromyalgia and 35
control samples). (B) The individual contribution of each dataset to the sPLS-DA final model, in each case showing the score plots for the two first components, indicating the best
separation capability for microbiome data, followed by cytokines, metabolomics and miRNAs. (C) ROC curves for each omics dataset, with the Area under the Curve (AUC) values.

Table 2
Differences between fibromyalgia and healthy control groups observed using each omics
technique (showing alterations in the fibromyalgia patients).

Increased (↑) Decreased (↓)

Microbiome Dorea
Roseburia
Papillibacter
Subdoligranulum

Bifidobacterium
Eubacterium
Lachnospiraceae (family)
Clostridium
Firmicutes (phylum)

Metabolomics L-glutamine

L-threonine/DL-homoserine

L-arginine
ADMA
L-glutamate
Nε-methyl-L-lysine
Ornithine

PAF-16

Cytokines PCSK9
Mesothelin
BST2

Procalcitonin
Axl-UFO
Myoglobin
MIG
TNF-alpha
ICAM2
IL-9

miRNAs hsa-miR-335-5p
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pump inhibitors (PPI), for example, have an anticommensal activity and
were taken by nearly 30% of the patients. One study has reported a re-
duction in the abundance of Lachnospiraceae and Ruminococcaceae in
PPI consumers [39], which is consistent with our observations for fibro-
myalgia patients. Another study obtained similar results and considered
in its analysis the decrease in the abundance of Bifidobacterium genus in
PPI consumers [38]. Both studies have reported a decrease in α-
diversity after PPI administration,which is also consistentwith ourfind-
ings. It has been reported that psychotropics target a similar pattern of
bacterial species irrespective of the degree of their chemical similarity.
This suggests that the anticommensal activity of these drugs is a part
of their mechanism of action rather than a secondary effect [19].

We did not observe anymicrobiome alterations that could be associ-
ated with antidepressant drugs, either for the tricyclic antidepressants
(taken by 12% of patients) or for the selective serotonin reuptake inhib-
itors (SSRI), 54% of patients). The antiepileptic drugs (here taken by 29%
of patients), such as lithium or valproate, do not have a significant
anticommensal activity. However, lithium may increase the relative
abundance of Ruminococcaceae and reduce the abundance of
Bacteroides, while valproate alters the levels of SCFA [18]; there were
also alterations found in fibromyalgia patients. Finally, while no antimi-
crobial activity has been reported for morphine [83], chronic use of opi-
oids (prescribed to 45% of patients) has been associated with a
reduction in Bacteroidaceae (which we also observed in fibromyalgia
patients) and Ruminococcaceae [3]. Even though no associations be-
tween specific drugs and microbiome composition was found,
probiotics could be useful in the treatment of fibromyalgia as they affect
the microbiome composition [34]. Notably, several authors have used
this approach to treat the chronic fatigue syndrome [82] and one pilot
study has examined the effects of probiotics on fibromyalgia patients
[80]. The authors have shown some improvements, mainly in depres-
sion symptoms and impulsive behaviour, in comparison with the pla-
cebo group [81].

5. Conclusions

To the best of our knowledge, this is the first study to report differ-
ences between the microbiome composition of fibromyalgia patients
and healthy controls. We provided a list of these differences and re-
ported the alterations in the levels of various molecules in the fibromy-
algia sufferers, which might be useful as diagnostic biomarkers. We
examined the functionality of these molecules and found that the
most altered metabolic pathways were related to neurotransmitters,
such as glutamate and nitric oxide. We checked possible interactions
between the gut microbiome and serum metabolome; our analysis
found several individual correlations between the two datasets. We
also demonstrated that the combined microbiome and serum metabo-
lome analyses could discriminate between the fibromyalgia patients
and control individuals. Thus, we report a new set ofmolecules and bac-
teria that might improve the diagnosis process, compensating for the
current lack of objective biomarkers. Our results should help to shed
some new light on the pathogenesis of this disease, provide biomarkers
within a biological framework and improve our knowledge of this rela-
tively unknown disease.
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