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ABSTRACT

Embedded systems are widely employed in consumer, industrial and mil-
itary applications. Some of such systems are used in applications in which
safety requirements need to be fulfilled. These systems, denoted safety-
critical or safety-related systems, deal with those operational contexts whose
failure or malfunction could lead to peoples death, environmental damage
and/or equipment loss. To this end, functions that prevent hazardous sit-
uations or actions are carried out. Examples of safety-critical applications
include transportation, medical and industrial automation applications.

Although these systems have traditionally been isolated from the open
communication channels, such as the Internet, in the scope of the Industrial
Internet of Things (IIoT) and/or Industry 4.0 trend, also called the fourth
industrial revolution era, high inter-connectivity among sensors, machines,
devices and people is foreseen. This new landscape and the increasing num-
ber of security weaknesses and flaws discovered in current industrial control
systems have driven the need of implementing and adopting security mea-
sures in actual computer-based safety-critical systems. These systems need
to then provide protection and resilience against cyber-security attacks and
misuses, while ensuring the required safety level. The safety community has
already started to address those cyber-security threats which might compro-
mise the safe operation of the system. Furthermore, safety-related systems
have often long operational cycles in which, during these periods, security
requirements and objectives of the system might change.

Albeit cutting-edge security measures are adopted and incorporated dur-
ing the system development, these measures may be sooner or later become
out-of-date and be dodged by an attacker. Software updates are then crucial
to address such security issues, which might also be desirable to upgrade
other non-safety software components, such as data loggers or graphical in-
terfaces. However, in contrast to security, stable, well-known and sound
technologies are used in safety engineering. If safety risks and hazards have
correctly been addressed and the operational conditions of the safety-related
system are not altered, software updates are not required. Therefore, it has
to be ensured that the upgrade of a non-safety related software component
does not negatively impact the overall system safety and timing properties.

Commonly, a system shutdown and restart is needed to accomplish such
system upgrades. Nevertheless, high-availability is frequently demanded on
safety-critical systems. Software updates may not be then admissible from
the business and/or service point of view when a zero downtime operation
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is required. The system would be then remain vulnerable to cyber-attacks.
In such case, the system would be also considered unsafe.

In this thesis, a software framework for live patching in zero downtime
safety-critical systems, named Cetratus, is proposed, where dynamic soft-
ware updates of application components are performed. The main char-
acteristic is the quarantine-mode execution and monitoring mode, similar
to the sandboxing approach, in which the new software version is executed
and monitored until enough trustworthiness of the new software version is
determined. This feature also provides protection against possible software
and patching failures, as well as the propagation of such faults through the
system. To this end, partitioning techniques are employed. Although the
software upgrade is initiated by an updater, a ratification from an auditor is
needed to proceed and accomplish the dynamic software updating process.
These users are authenticated and logged prior proceeding with an update.
The authenticity and integrity of the dynamic patch is also verified. Cetra-
tus is aligned with industrial safety and security standards with respect to
software updates.

Two case studies are provided. On the one hand, in the smart energy case
study, a smart building electrical energy management application is exam-
ined, consisting of a Building Energy Management System (BEMS) and
a Building Energy Optimization Service (BEOS) application. The BEMS
monitors and controls diverse energy-related facilities on a residential build-
ing. All energy production, savings and consumption measurements are sent
to the BEOS, which estimates and optimizes the overall building consump-
tion for cost reduction and higher energy efficiency. In this case study, a
live patching example is presented, where a new security layer is added to
increase customer data security and privacy. More specifically, a homomor-
phic cryptographic algorithm is incorporated. After the update, encrypted
data computed by the new software version is transmitted to the BEOS.

On the other hand, a railway case study is presented. In this case study,
the Euroradio application component, the software stack of the Global Sys-
tem for Mobile Communications - Railway (GSM-R), is updated. The GSM-
R technology is an adaptation of the Global System for Mobile (GSM) for
the railway domain. The Euroradio component enables the communication
among the train and track-side equipments in the European Railway Traffic
Management System (ERTMS) for level two and above. In the dynamic
patch, a new Message Authentication Code (MAC) scheme based on the
Advanced Encryption Standard (AES) symmetry encryption algorithm is
incorporated due to the security weaknesses of the former MAC scheme.
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LABURPENA

Gaur egun, sistema txertatuen erabilera oso hedatua dago aplikazio in-
dustrial, komertzial eta militarretan. Hauetako batzuek segurtasun bald-
intza batzuk bete behar izaten dituzte; segurtasun kritikozko sistemak de-
ritzegu, non segurtasun neurriren baten akats edo matxurak gizakumeon
heriotza, ingurumenean kalteak eta/edo ekipamendu galera kausa ditzaken.
Hau ekiditeko helburuz, arriskutsuak izan daitezkeen egoera eta ekintzak
aurreikusten dituzten funtzioak garatzen dira. Segurtasun kritikozko siste-
men erakusgarri dira transporte, medikuntza eta industria automatikarekin
lotutako aplikazio ugari.

Segurtasun kritikozko sistemak, tradizionalki Internet bezalako komu-
nikabide irekietatik isolatuak egon diren arren, geroz eta arruntagoak di-
ren Industrial Internet of Things (IIoT) eta Industry 4.0 bezalako inter-
komunikazio altuko kontzeptuekin lotura handiagoa izatea aurreikusten da,
makina, sentsore eta jendearen arteko komunikazio altuko ingurugiro batekin,
alegia. Honekin batera, azkenaldian egungo sistema industrialetan aurk-
itzen ari diren segurtasun zuloek ordenagailuetan oinarritutako sistemetan
segurtasun neurri berriak garatzeko beharra agerrarazi dute. Sistema hauek,
beharrezko eta oinarrizko segurtasun neurriak bermatzeaz gain, ziber-erasoen
eta erabilera okerreko jardueren aurkako neurriak hartzeko betebeharra
dute. Segurtasun komunitatea dagoeneko hasi da sistemaren segurtasunean
kalteak eragin dezaketen ziber-erasoen mehatxuaren aurkako neurrien in-
guruan kontzeptu eta teknologia berriak garatzen. Aipatzekoa, segurtasun
kritikozko sistemek askotan luze irauten duten operazio zikloak dituztela,
honek dakarren ondorioekin; ziklo hauetako bakoitzean, sistemaren segur-
tasun behar eta helburuak aldatu egin daitezke.

Aplikazioen garapen fasean punta-puntako segurtasun neurriak garatu eta
integratu arren, momentu jakin batean iraungi egin daitezke, eraginkorrak
izateari utziz eta erasotzaileari bidea erraztuz. Une horretan, segurtasun
neurriak zuzendu eta eguneratu asmoz, aplikazioetan oso beharrezko bi-
hurtzen dira software eguneratzeak. Hauetaz baliatuz, aplikazioaren beste
ezaugarri batzuk aldatu daitezke, erabiltzaile interfazea, esaterako.

Normalki, sistema hauetako software eguneratze batek hau guztiz itzali
eta berrabiaraztea dakar. Negozio edota zerbitzuaren ikuspuntutik, ordea,
baliteke eguneratze metodo hau onartezina izatea erabilgarritasun hand-
iko sistemetan, geldiezineko erabilgarritasun bat bermatzea kritikoa denean
batez ere. Izan ere, sistema ziber erasoen aurrean zaurgarri izango litzateke,
hau ez seguru bilakatuz.
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Tesi honetan, geldiezinak diren segurtasun kritikozko sistemetan zuzeneko
eguneraketak posible egiten dituen software framework bat proposatzen da,
Cetratus deiturikoa, non aplikazioen osagaientzako software eguneraketa di-
namikoak proposatzen diren. Ezaugarri nabarmenenak koarentena eta mon-
itorizazio moduak dira, sandbox soluzioaren antzerakoa; bertan, software
bertsio berria exekutatu eta monitorizatu egiten da gutxieneko segurtasun
eta egonkortasun bat bermatu arte. Ezaugarri honek, gainera, software eta
eguneraketa akatsen aurrean babes gehigarri bat ematen du, akats horien
hedapena ekiditearekin batera. Hau lortze bidera, partizio teknikak er-
abiltzen dira. Software eguneraketa eguneratzaile batek hasten duen arren,
hau bermatzen duen ikuskari baten balidazio baten beharra dago, software
eguneraketa dinamikoak egiten diren momentutik. Erabiltzaile hauek aldez
aurretik identifikatzen dira. Horrez gain, eguneraketa dinamikoaren auten-
tikazio eta integritatea egiaztatzen dira. Software eguneraketei dagokienez,
Cetratus industria segurtasun estandarrekin lerrokatuta dago.

Bi kasu azterketa ematen dira. Alde batetik, energia adimentsuaren
kasuan, eraikuntza bateko energia elektrikoaren kudeaketa aplikazio bat
aztertzen da, eraikinaren energia gestionatzen duen sistema (BEMS ingele-
sez) eta eraikinen energia optimizatzeko zerbitzua (BEOS inglesez) osagar-
riak dituena. BEMS-ak energiarekin lotutako instalazioak monitorizatu eta
kontrolatzen ditu, bizitoki eraikuntza batean. Energia produkzio, aurrezte
eta kontsumo neurketa guztiak BEOS-era bidaltzen dira, zeinek oro-harko
eraikuntzaren energia kontsumoa neurtu eta optimizatzen duen, kostu mur-
rizte eta energia eraginkortasun handiagoa lortzeko helburuz. Kasu azter-
keta honetan, zuzeneko eguneraketa bat aurkezten da adibide bezala, non
segurtasun maila handiago bat txertatzen den erabiltzaileen segurtasun eta
pribatutasun handiagoa bermatzeko. Are zehatzago, kriptografia homomor-
fiko bat dakarren algoritmo bat txertatzen da. Eguneraketa aplikatu ostean,
bertsio eguneratuak enkriptatutako datu berriak BEOS-era transmititzen
dira.

Beste aldetik, trenbide baten kasua aurkezten da. Kasu ikerketa honetan,
Global System for Mobile Communications - Railway (GSM-R) aplikazio
sortaren Euroradio osagaia eguneratzen da. GSM-R teknologia Global Sys-
tem for Mobile (GSM) trenbide domeinuaren adaptazio bat da. Eurora-
dio osagaiak trenen eta trenekin loturiko ezaugarrien arteko komunikazioak
gaitzen ditu European Railway Traffic Management System (ERTMS) sis-
temetan, bigarren maila eta gorakoetan. Eguneraketa dinamikoan, AES
simetria enkriptatze algoritmo batean oinarritutako mezu autentikazio kode
(MAC) eskema berri bat txertatzen da, aurreko eskemak erakusten dituen
segurtasun akatsak direla eta.
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RESUMEN

Los sistemas embebidos son ampliamente utilizados en aplicaciones de
consumo, industriales o militares. Algunos de estos sistemas se emplean en
aplicaciones donde se deben de cumplir requisitos de seguridad funcional.
Estos sistemas, llamados sistemas-cŕıticos, son sistemas cuyo fallo de fun-
cionamiento puede provocar pérdida de vidas, daños graves al medio ambi-
ente o pérdida de equipamiento. Para ello, estos sistemas realizan funciones
con el objetivo de evitar situaciones y/o acciones peligrosas. Ejemplos de
aplicaciones criticas incluyen las de transporte y de automatización.

Aunque estos sistemas han estado tradicionalmente aislados de los canales
de comunicación habituales, como Internet, se prevé una alta conectividad
entre sensores, máquinas, dispositivos y personas en el nuevo marco del In-
dustrial Internet of Things (IIoT) y/o Industria 4.0, también llamado la
cuarta revolución industrial. Este nuevo panorama y el creciente número
de fallos de ciber-seguridad encontrados en los sistemas de control indus-
triales han impulsado la necesidad de implementar y adoptar medidas de
ciber-seguridad en los sistemas cŕıticos basados en tecnoloǵıa digital. Estos
sistemas deben entonces, proporcionar protección y resistencia ante ataques
de ciber-seguridad y abusos, mientras que garantizan el nivel de seguridad
funcional necesaria. Los expertos en seguridad funcional han empezado a
abordar esas amenazas de ciber-seguridad que puedan comprometer el buen
funcionamiento de dichos sistemas. Además, estos sistemas suelen tener
regularmente ciclos de funcionamiento largos, donde los requisitos y los ob-
jetivos de ciber-seguridad del sistema pueden cambiar.

No obstante, pese a que se incorporen medidas de ciber-seguridad pun-
teras durante el desarrollo del sistema, estas medidas pueden quedar obso-
letas tarde o temprano y ser evadidas por un atacante. Las actualizaciones
de software son esenciales para abordar cuestiones relacionadas con la ciber-
seguridad, que pueden ser utilizadas también para mejorar otras funcional-
idades del sistema, como la interfaz gráfica. Sin embargo, a diferencia del
mundo de la ciber-seguridad, se emplean tecnoloǵıas estables y bien cono-
cidas para el desarrollo de sistemas con requisitos de seguridad funcional.
Si los riesgos relacionados con la seguridad funcional y/o las condiciones de
funcionamiento del sistema no cambian, las actualizaciones de software no
son necesarias. Aśı pues, hay que asegurar que la actualización de un com-
ponente de software no relacionado con la seguridad funcional no impacte
negativamente en las propiedades de seguridad funcional y temporales del
sistema.
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Por lo general, se require apagar y reiniciar el sistema para efectuar una
actualización de software. Sin embargo, en los sistemas cŕıticos se exige
frecuentemente una alta disponibilidad. Las actualizaciones de software
podŕıan no ser admisibles desde el punto de vista del negocio y/o del servicio
cuando se requiera un funcionamiento sin interrupciones. El sistema seguiŕıa
entonces siendo vulnerable ante ciber-ataques.

En esta tesis se presenta una arquitectura y diseño de software, llamado
Cetratus, que permite las actualizaciones en caliente en sistemas cŕıticos,
donde se efectúan actualizaciones dinámicas de los componentes de la apli-
cación. La caracteŕıstica principal es la ejecución y monitorización en modo
cuarentena, donde la nueva versión del software es ejecutada y monitor-
izada hasta que se compruebe la confiabilidad de esta nueva versión. Esta
caracteŕıstica también ofrece protección contra posibles fallos de software y
actualización, aśı como la propagación de esos fallos a través del sistema.
Para este propósito, se emplean técnicas de particionamiento. Aunque la
actualización del software es iniciada por el usuario Updater, se necesita
la ratificación del auditor para poder proceder y realizar la actualización
dinámica. Estos usuarios son autenticados y registrados antes de continuar
con la actualización. También se verifica la autenticidad e integridad del
parche dinámico. Cetratus está alineado con las normativas de seguridad
funcional y de ciber-seguridad industriales respecto a las actualizaciones de
software.

Se proporcionan dos casos de estudio. Por una parte, en el caso de uso de
enerǵıa inteligente, se analiza una aplicación de gestión de enerǵıa eléctrica,
compuesta por un sistema de gestión de enerǵıa (BEMS por sus siglas en
inglès) y un servicio de optimización de enerǵıa en la nube (BEOS por sus
siglas en inglés). El BEMS monitoriza y controla las instalaciones de enerǵıa
eléctrica en un edificio residencial. Toda la información relacionada con la
generación, consumo y ahorro es enviada al BEOS, que estima y optimiza el
consumo general del edificio para reducir los costes y aumentar la eficiencia
energética. En este caso de estudio se incorpora una nueva capa de ciber-
seguridad para aumentar la ciber-seguridad y privacidad de los datos de los
clientes. Espećıficamente, se utiliza la criptograf́ıa homomórfica. Después
de la actualización, todos los datos son enviados encriptados al BEOS.

Por otro lado, se presenta un caso de estudio ferroviario. En este ejemplo
se actualiza el componente Euroradio, que es la que habilita las comunica-
ciones entre el tren y el equipamiento instalado en la v́ıa en el sistema de
gestión de tráfico ferroviario en Europa (ERTMS por sus siglas en ingles).
En el ejemplo se actualiza el algoritmo utilizado para el código de autenti-
cación del mensaje (MAC por sus siglas en inglés) basado en el algoritmo
de encriptación AES, debido a los fallos de seguridad del algoritmo actual.
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Resumen Ejecutivo

Introducción

Los sistemas embebidos son ampliamente utilizados en aplicaciones de con-
sumo, industriales o militares. Algunos de estos sistemas se emplean en
aplicaciones donde se deben de cumplir requisitos de seguridad funcional.
Estos sistemas, llamados sistemas-cŕıticos, son sistemas cuyo fallo de fun-
cionamiento puede provocar pérdida de vidas, daños graves al medio ambi-
ente o pérdida de equipamiento. Para ello, estos sistemas realizan funciones
con el objetivo de evitar situaciones y/o acciones peligrosas. Ejemplos de
aplicaciones criticas incluyen las de transporte y de automatización indus-
trial.

Aunque estos sistemas han estado tradicionalmente aislados de los canales
de comunicación habituales, como Internet, se prevé una alta conectividad
entre sensores, máquinas, dispositivos y personas en el nuevo marco del In-
dustrial Internet of Things (IIoT) y/o Industria 4.0, también llamado la
cuarta revolución industrial. Este nuevo panorama y el creciente número
de fallos de ciber-seguridad encontrados en los sistemas de control indus-
triales han impulsado la necesidad de implementar y adoptar medidas de
ciber-seguridad en los sistemas cŕıticos basados en tecnoloǵıa digital. Estos
sistemas deben entonces, proporcionar protección y resistencia ante ataques
de ciber-seguridad y abusos, mientras que garantizan el nivel de seguridad
funcional necesaria. Los expertos en seguridad funcional han empezado a
abordar esas amenazas de ciber-seguridad que puedan comprometer el buen
funcionamiento de dichos sistemas. Además, estos sistemas suelen tener
regularmente ciclos de funcionamiento largos, donde los requisitos y los ob-
jetivos de ciber-seguridad del sistema pueden cambiar.

No obstante, pese a que se incorporen medidas de ciber-seguridad pun-
teras durante el desarrollo del sistema, estas medidas pueden quedar ob-
soletas tarde o temprano. Las actualizaciones de software son esenciales
para abordar cuestiones relacionadas con la ciber-seguridad, que pueden ser
utilizadas también para mejorar otras funcionalidades del sistema, como la
interfaz gráfica. Sin embargo, a diferencia del mundo de la ciber-seguridad,
se emplean tecnoloǵıas estables y bien conocidas para el desarrollo de sis-
temas con requisitos de seguridad funcional. Si los riesgos relacionados con
la seguridad funcional y/o las condiciones de funcionamiento del sistema no
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cambian, las actualizaciones de software no son necesarias. Aśı pues, hay que
asegurar que la actualización de un componente de software no relacionado
con la seguridad funcional no impacte negativamente en las propiedades de
seguridad funcional y temporales del sistema.

Por lo general, se requiere apagar y reiniciar el sistema para efectuar
una actualización de software. Sin embargo, en los sistemas cŕıticos se ex-
ige frecuentemente una alta disponibilidad. Las actualizaciones de software
podŕıan no ser admisibles desde el punto de vista del negocio y/o del ser-
vicio cuando se requiera un funcionamiento sin interrupciones. El sistema
seguiŕıa entonces siendo vulnerable ante ciber-ataques. Se afrontan dos re-
tos importantes que obstaculizan las actualización de dichos sistemas, que
son:

• La pérdida de la disponibilidad del servicio y/o función debido a la
actualización.

• Asegurar el nivel de seguridad funcional durante y después de la ac-
tualización.

El objetivo de esta tesis doctoral es la investigación y análisis de las
técnicas de actualización dinámica de software para sistemas cŕıticos. Primero,
se realiza una revisión de la literatura y se evalúa el uso de los mecanismos
existentes en el contexto de sistemas industriales y entornos cŕıticos. De-
spués de ello, se presenta una arquitectura y diseño de software que habilita
las actualizaciones dinámicas de la aplicación. La solución propuesta está
alineada con las normativas industriales de seguridad funcional y ciber-
seguridad. Finalmente, se presentan dos casos de estudio donde se intenta
validar la aplicabilidad de la solución propuesta en aplicaciones reales.

Cetratus

En esta tesis se presenta Cetratus, una arquitectura y diseño de software
que permite las actualizaciones en caliente en sistemas cŕıticos, donde se
efectúan las actualizaciones dinámicas de los componentes de la aplicación.
La caracteŕıstica principal es la ejecución y monitorización en modo cuar-
entena, donde la nueva versión del software es ejecutada y monitorizada
hasta que se compruebe la confiabilidad de esta nueva versión. Esta carac-
teŕıstica también ofrece protección contra los posibles fallos de software y
actualización, aśı como la propagación de esos fallos a través del sistema.
Para este propósito, se emplean técnicas de particionamiento.

Se definen dos usuarios principales, el Updater y el Auditor. El Updater
es el encargado de desarrollar y mantener el sistema. En contraste, el
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Auditor es el que verifica y valida la confiabilidad de la nueva versión del sis-
tema, con el objetivo de garantizar la ausencia de cualquier fallo sistemático.
Aunque la actualización del software es iniciada por el usuario Updater, se
necesita la ratificación del Auditor para poder proceder y realizar la actu-
alización dinámica. Estos usuarios son autenticados y registrados antes de
proceder con la actualización. Cetratus está alineado con las normativas in-
dustriales IEC 61508 y IEC 62443 de seguridad funcional y ciber-seguridad
respecto a las actualizaciones de software.

La arquitectura de la solución propuesta se divide en dos partes. Por una
parte, los componentes de software espećıficos de la aplicación y por otra
parte, los componentes de Cetratus, que son genéricos y re-utilizables para
cualquier tipo de aplicación. Se configuran dos contenedores independientes
por cada componente de aplicación, A y B respectivamente. De manera
similar a la redundancia en hardware, estos contenedores, que son definidos
durante la fase de diseño y desarrollo del sistema, son alternativamente
definidos como el principal y el secundario. Cada contenedor se define como
una partición. Las técnicas de particionamiento garantizan la independencia
de ejecución tanto en el dominio espacial como temporal, mientras que a su
vez posibilita la contención de posibles fallos sistemáticos. Los componentes
de la aplicación pueden ejecutar y/o ofrecer diferentes tipos de funciones
y/servicios, por ejemplo de ciber-seguridad, diagnóstico del sistema, pilas
de comunicaciones o interfaces gráficas de usuario.

Se utiliza un mecanismo de comunicación basado en mensajeŕıa para la
comunicación entre los componentes de la aplicación, aśı como para la co-
municación entre los módulos de Cetratus. Para ello, se emplea un en-
rutador de mensajes. Este módulo también realiza tareas de duplicación y
re-direccionamiento de mensajes en el modo cuarentena.

La actualización comienza con una petición del usuario Updater después
de que se haya verificado la autenticidad e integridad del parche dinámico.
En caso de que el Auditor apruebe dicha actualización, el sistema procede
a inicializar la nueva versión de software. En esta etapa se efectúan las
transformaciones del código y del estado del componente. Para ello, se
comprueba cual de los contenedores A y B está siendo utilizado para el
componente de la aplicación (contenedor primario). La nueva version del
software se inicializa en el contener secundario.

Una vez que se efectúa la inicialización, la nueva versión del software se
ejecuta y se monitoriza en modo cuarentena. En esta fase, las dos versiones
del componente de la aplicación se ejecutan en paralelo, donde la infor-
mación concerniente a las entradas del sistema es compartida con ambas
versiones. No obstante, la salida calculada por el componente primario se
establece como la salida del sistema en el modo cuarentena. Este inter-
cambio de información se efectúa a través de mensajes internos entre los
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componentes de la aplicación y los módulos de Cetratus, labor realizada por
el enrutador de mensajes. Después de que el Auditor determina y valida la
confiabilidad de la nueva versión del software, el sistema sustituye el com-
ponente anterior por la nueva versión. Para esta fase también se requiere
la confirmación del Auditor. En caso de que la nueva versión no cumpla
con los requisitos establecidos, tanto el Updater como el Auditor tienen la
capacidad de detener y abortar dicha actualización.

Implementación y Validación

Se ha implementado un prototipo de Cetratus como entorno de ejecución
de Ada compatible con POSIX. El uso de este lenguaje de programación
está recomendado para el desarrollo de sistemas cŕıticos. El prototipo im-
plementado fue inicialmente integrado y validado con Real-Time Linux,
ejecutándose en un ordenador de arquitectura x86. Para la validación, la
solución propuesta es evaluada a través de un experimento, en el cual se pro-
porciona una señal adicional de diente de sierra al sistema. En este punto,
el sistema genera una señal triangular. El algoritmo de procesamiento de
señal se ejecuta ćıclicamente cada veinte milisegundos. Por medio de la ac-
tualización dinámica, se modifica el algoritmo de procesamiento de señal,
suavizando la señal de salida. En vez de una señal triangular, el sistema
produce una parábola. En el experimento se pre-establecieron el compor-
tamiento de los usuarios Updater y Auditor.

En base a los resultados obtenidos, la modularidad del sistema no añade
costes de computación adicionales significativos, aunque se aprecia un im-
portante incremento en el momento de la inicialización del parche dinámico,
cuando se realizan las transformaciones de código y del estado. Aun aśı, se
necesita de doble de memoria y de tiempo de ejecución por cada componente
de la aplicación (tal y como se describe anteriormente, ya que se crean dos
contenedores para cada uno). También se requiere reservar tiempo de eje-
cución para el servicio de actualización dinámica (ofrecido por los módulos
de Cetratus). El prototipo fue luego integrado con Integrity RTOS, un
sistema operativo de tiempo real que ofrece particionamiento temporal y
espacial, en un ordenador industrial x86 y en una plataforma embebida con
un procesador PowerPC de 32 bits.

Casos de Estudio

En esta tesis, se proporcionan dos casos de estudio. Por una parte, en el
caso de uso de enerǵıa inteligente, se analiza una aplicación de gestión de
enerǵıa eléctrica, compuesta por un sistema de gestión de enerǵıa (BEMS
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por sus siglas en inglés) y un servicio de optimización de enerǵıa en la nube
(BEOS por sus siglas en inglés).

El BEMS, que implementa una arquitectura de criticidad mixta basado en
Cetratus, monitoriza y controla las instalaciones de enerǵıa eléctrica en un
edificio residencial. Toda la información relacionada con la generación, con-
sumo y ahorro es enviada al BEOS, que estima y optimiza el consumo gen-
eral del edificio para reducir los costes y aumentar la eficiencia energética.
En este caso de estudio se incorpora una nueva capa de ciber-seguridad
para aumentar la ciber-seguridad y privacidad de los datos de los clientes.
Espećıficamente, se utiliza la criptograf́ıa homomórfica. Después de la ac-
tualización, todos los datos son enviados encriptados al BEOS.

Por otro lado, se presenta un caso de estudio ferroviario. Aunque este caso
de estudio no representa una aplicación que necesariamente requiera una
operación 24/7 (se puede efectuar una actualización de software ordinario al
final de la misión del tren) existe interés teórico. En este ejemplo se actualiza
el componente Euroradio, que es el que habilita las comunicaciones entre el
tren y el equipamiento instalado en la v́ıa en el sistema de gestión de tráfico
ferroviario en Europa (ERTMS por sus siglas en inglés). En el ejemplo se
actualiza el algoritmo utilizado para el código de autenticación del mensaje
(MAC por sus siglas en inglés) basado en el algoritmo de encriptación AES,
debido a los fallos de seguridad del algoritmo actual.

Trabajo Futuro

Aunque en esta tesis se ha propuesto un mecanismo para la actualizaciones
dinámicas de software para sistemas cŕıticos de alta disponibilidad, hace
falta investigar más para poder realizar actualizaciones calientes en dichos
sistemas. En primer lugar, se requieren métodos y procedimientos para
verificar y validar la nueva versión. La validación depende enormemente
de la aplicación desarrollada y es una tarea compleja. Hay que asegurarse
de que el nuevo componente cumple con los requisitos y la funcionalidad
exigida. Para este fin, se podŕıa hacer uso de las técnicas de pruebas de
regresión. Con esto en mente, el Auditor debeŕıa de recolectar los datos de
la monitorización de la actualización de software y evaluar, por ejemplo por
medio de métodos estad́ısticos, la nueva versión de software.

En segundo lugar, actualmente los costes de re-certificación dependen
principalmente de la magnitud y complejidad del sistema a actualizar. Por
consiguiente, aunque se lleven a cabo cambios mı́nimos en el sistema, dichos
costes de re-certificación podŕıan aproximarse, o incluso superar, a los costes
iniciales de evaluación. Es por ello necesaria la investigación en procesos de
certificación modular e incremental, con el objetivo de reutilizar evidencias
previamente generadas y minimizar aśı, los costes de la nueva certificación.
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control.
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turing technologies, based on cyber-physical system, cloud computing
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MAC A security code appended to the transmitted data used to authenti-
cate the message.

partition A strictly independent execution environment that is protected
from other partitions, for which independence of execution both in
the temporal and spatial domains is usually ensured.

safety Prevention of accidents and incidents which could impact on health
or environmental damage.
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1 Introduction

The embedded systems are widely used nowadays for many kinds of ap-
plications. They are broadly found in commercial, medical, industrial and
military applications. In spite to a general purpose desktop computer, these
systems are designed to perform specific tasks, often considering real-time
and performance constraints. The use of these devices has grown exponen-
tially during the last decade. According to C. Ebert and C. Jones [1], the
worldwide market for embedded systems was around 160 billion e in 2009,
with an annual growth of 9%. Besides, more than 98% of all produced
microprocessors were embedded microprocessors.

One of the roles of these embedded systems in the industrial field such
as automotive, railway, energy or machinery sectors, is to replace or sup-
plement physical control mechanisms. For example, between a dozen and
nearly one hundred Electronic Control Unit (ECU)s are installed today on
a typical modern vehicle [2]. Moreover, one or more safety functions are
carried out on these systems. These services prevent hazardous situations
or actions which could impact on the safety of people and/or environment.
These systems, which are defined as safety-critical systems, deal with such
scenarios that whose malfunction or failure might lead to and/or equipment
loss, environmental damage and/or even peoples death.

Modern safety-critical systems are becoming more and more complex,
networked and distributed. As illustrated by Feiler et al. [3], the size and
complexity of aircraft on-board software has exponentially grown in the last
decades. This trend is also envisioned in the Industry 4.0 and/or Industrial
Internet of Things (IIoT), also known as the fourth industrial revolution,
paradigms. Moreover, even that these safety-related systems were isolated
from the open communications channels, within the scope of Industry 4.0
and IIoT, the capability of sensors, machines, devices and people to be
connected and communicated each other is intended. However, due to the
demanded high inter-connectivity among these industrial control systems,
security concerns gain importance, specially for safety-critical systems. Be-
cause of the increasing number of cyber-attacks against these systems, the
safety engineering community has started to address those cyber-security
threats, which can alter the proper functioning of such systems [4, 5].
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1 Introduction

1.1 Safety Vs. Security

The first significant cyber-attack compromising both safety and security
properties was the Stuxnet computer virus. It was identified in 2010 and
according to Ralph Langen it is possible to assume that the Natanz Uranium
Enrichment plant in Iran was the only goal [6]. This malicious program,
which was distributed locally via USB sticks and local networks, infected
any computer running a Windows operating system. Nevertheless, it was
targeting industrial controllers from a given manufacturer: Siemens. In
order to discover them, the virus used a complex fingerprinting process,
where possible available Ethernet, Profibus and MPI (Siemens proprietary
communication link) interfaces of the Windows computer were tracked.

The Stuxnet computer virus was looking for the Siemens 315 (general
purpose) and 417 (high-end) Programmable Logic Controller (PLC)s, which
were differently attacked. On the one hand, for the 315 controller attack,
during the strike condition, the execution of legitimate code simply halted.
On the other hand, the legitimate code kept running at the 417 controller,
but it was separated from the I/O interfaces. In fact, the 417 attack code
intercepted real I/O values, but provided fake values to the legitimate pro-
gram. It behaved as a fake I/O driver.

The differentiation of the safety and security terms lead to misunderstand-
ing situations. Furthermore, some languages, such as Spanish or Swedish,
provide just a single word for both concepts, which are “seguridad” and
“säkerhet” respectively. Thus, neither the linguistics aids to clarify these
concepts [7]. As stated by International Atomic Energy Agency (IAEA),
there is not a specific distinction between the safety and security terms [8].
As clarified in this book, security tries to reduce malicious risks, prevent
misuse and attacks in order to protect assets. On the contrary, safety at-
tempts to prevent accidents and incidents which could impact on health.
Safety incidents are predictable and involuntary, while security incidents
are caused by on-purpose malevolent attacks or misuses [9].

In the conceptual framework proposed by [7, 10], another distinction is
taken into account: where the risk is originated and where it impacts. This
framework, which is depicted in Figure 1.1, aims at helping to understand
the relation between safety and security concepts. As a result, the safety
and security terms are divided into three notions each, where the Defense
and Safeguards concepts are taken from the military and nuclear domains,
respectively. These terms can be used to clarify, define, develop and asses
safety and security functionalities. Three use cases are provided with the
aim of capturing the differences of safety and security terms: a power grid, a
nuclear power generation and finally, telecommunication and data networks
[7].
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Figure 1.1: SEMA referential framework [7, 10]

However, there could be some difficulties in practice to decide when each
term is applied when a system has characteristics with both safety and se-
curity connotations [11]. For example, when an Automatic Braking System
(ABS) in a car is being developed and the risk of an unauthorised modifi-
cation of the ROM memory contents is analysed, an unauthorised access or
modification would be a security issue. Nevertheless, if this action causes
fatalities, safety is also affected. In these cases, a full analysis would be
required to meticulously consider the system boundaries.

1.2 Problem Statement & Main Challenges

New security flaws are discovered every day. As reported by Kaspersky lab
[12], the number of vulnerabilities in Industrial Automation and Control
System (IACS)s keeps growing. In 2015, 189 vulnerabilities were published,
where 42% of them had medium severity and 49% were critical. Since these
vulnerabilities are widely diversified among vendors and product types, it
seems realistic to assume that an industrial control system will be vulnerable
and could be attacked at some point while it is operating.

Due to the increasing number of security flaws and weaknesses disclosed
every day, and high interconnectivity requested in current computer-based
safety-critical systems, security issues come into play. Actually, security con-
cerns have already been considered by the international safety standards,
such as the International Electrotechnical Commission (IEC) 61508 [13].
As specified in the standard, “if security threats have been identified, then
a vulnerability analysis should be undertaken in order to specify security
requirements” (clause 7.5.2.2). Furthermore, according to the Industrial
Control Systems Cyber Emergency Response Team (ICS-CERT), the num-
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ber of cyber-security incidents has notably increased in the past few years.
In consequence, safety-critical systems need to provide, in addition to the
required safety level, resilience against cyber-security attacks and misuses.

In addition, safety-related systems have often long operational periods,
up to twenty or thirty years at times, in which security requirements of the
system may change. Consequently, although state-of-the-art security coun-
termeasures are integrated while development of the system, those protec-
tion mechanisms could sooner or later become obsolete and be bypassed.
Software updates are then crucial, so security issues are solved and the
security trust level restored. Through this procedure, security flaws and
vulnerabilities are fixed, so the possibility of a successful attack is reduced.
According to IEC 62443 [14, 15], software updates are essential and shall
be tested and authorised before applying them in the destination system.
Opposed to security, well-known, stable and solid technologies are employed
for safety. The safety trust level increases through the operational period
of the system. These technologies are further tested, verified and validated
through time. In case safety hazards and risks have properly been addressed
or the operational conditions of the system do not change, software updates
are not needed. Trust levels on safety and security software technologies
through time are illustrated in Figure 1.2.

t

Trust Level

Safety

Security
with updates

Security
no updates

Updates

Security flaws

Operational period of a safety-critical system

Figure 1.2: Safety & Security trust levels throughout the operational period
of a safety-critical system

As it can be observed in Figure 1.2, while the safety trust level increases
by itself, software updates are needed to enhance the security level when a
new security bug or vulnerability is found. These upgrades may be applied
regularly, as new security flaws are discovered. Nevertheless, the main chal-
lenge resides on how to perform these software updates on safety-related
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systems, where it is not advised to modify the certified software once de-
ployed, so the safety trust level is not compromised. This problem was also
addressed by Leverett et al. [16]. Software updates might also be necessary
and/or advisable for other non-safety critical software components, such as
black channel communication stacks [17], Human Machine Interface (HMI)s
or data loggers. Figure 1.3 depicts the group or type of upgradable software
components.

Safety

Other non-safety

Security

Upgradable

Figure 1.3: Upgradable groups/types of software components

As shown in Figure 1.4, the time period between the discovery of the
vulnerability and its mitigation is defined as the window of exposure. Once
the vulnerability is disclosed, mitigation strategies shall be adopted by the
organizations. For this end, software patches are usually applied.

Time
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Exploit
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Patch
available
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(organization level)

Figure 1.4: Security vulnerability life-cycle

As affirmed by Beres and Griffin [18], “the longer the systems stay un-
patched, the bigger the risk that a vulnerability may be exploited by ma-
licious attacks or fast spreading malware”. Nonetheless, high-availability
is often expected on safety-critical systems, specially in those applications
where a safe state can not be reached in short time. Conventionally, a
system shutdown and restart is required to perform such system upgrades.

5



1 Introduction

Software updates might not be then acceptable from the service and busi-
ness viewpoint when a zero downtime operation of the safety-critical system
is desired. The system will still be considered vulnerable and not fulfilling
anymore with the demanded security requirements. At this point, the sys-
tem is considered insecure, and hence, unsafe.

In this manner, as affirmed by European Union Agency for Network and
Information Security (ENISA) “the research in the area of patching and
updating equipment without disruption of service and tools” is required
[19, 20]. Safety and security trust levels shall be then maintained without
interruption of the service. This zero downtime property makes impossible
powering off the system with the aim of applying software updates. Two
main challenges are then faced: the System Shutdown and the Safety
Assurance.

1.2.1 System Shutdown

A system shutdown due to software updates could not be plausible when
high-availability is demanded [9]. Examples of such scenarios are a nuclear
reactor safety system, the Global Positioning System (GPS) or the energy
supply infrastructure. One of the approaches is to test, validate and approve
the new software release or patch on a replicated system within a testing
benchmark, where the operational environment of the system should be
closely created, as stated by the Department of Homeland Security (DHS)
National Cyber security division [21]. As claimed, during these steps, it
should be verified that the patched software behaves correctly. However,
some environments could not be emulated on a testing benchmark due to
high inter-dependencies, complexity and/or costs.

For example, if security bugs or vulnerabilities are discovered on a nuclear
reactor safety system, a decision of upgrading or not the affected equipment
has to be taken. On the one hand, if the protection system is decided to
be updated, the whole nuclear process shall be first halted, so the software
upgrade is safely applied. This might not be conceivable from the business
and service point of view. In contrast, the safety integrity level would be
compromised if the update is applied while operation of the reactor, be-
cause the power-off of the safety system is required. On the other hand, if
the decision of not updating the system is taken, the system would remain
attackable. As the system is no longer secure, it is not safe neither. Thus,
the only approach which does not compromise safety is to halt the whole
process, which it may not be acceptable from the service and business per-
spective. Note that, nuclear reactors are usually run without interruption
for one or two years once the nuclear fuel is allocated.

Even though the nuclear reactor is powered off, decay heat is still pro-
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duced as an effect of radiation [22]. At the time instance that the reactor
is shutdown, the decay heat is approximately the 6.5 % of the previous
reactor power, assuming that a steady and long power history was accom-
plished. Because of the decay heat, essential safety functions have to be
carried out to cool down the reactor. If the decay heat is not removed,
unsafe conditions of the reactor can be reached, which could lead to a nu-
clear disaster [22, 23]. For instance, a partial meltdown of the unit 2 on the
Three-Mile Island took place after reactor shutdown because of equipment
failure and operator fault. On the contrary, in Fukushima, even though the
reactors were turned off after the earthquake, the tsunami incapacitated all
the emergency power supply generators necessary for the reactor cooling
systems. In consequence, Unit 1, 2 and 3 were meltdown [24]. Figure 1.5
shows the decay heat decrease after one year of reactor operation from the
time instance in which it was taken down [25].
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Figure 1.5: Heat decay on a nuclear reactor after shut-down

In case a cyber-attack is detected while the reactor safety systems continue
being vulnerable, the scenario get worse. If the cyber-attack compromises
the reactor protection systems, a nuclear accident might be unavoidable.
Although the nuclear reactor is shutdown, other safety systems shall main-
tain essential services, such as cooling of the reactor or the backup power
supply. These safety systems are then totally at the mercy of the cyber-
attackers, since an appropriate operation of these systems is necessary in
order to have under the reactor control. In absence of control, a nuclear
disaster could be imminent. The attackers could also take down on purpose
these safety-critical systems.

Likewise, ordinary software updates might not be feasible from the ser-
vice’s perspective when high availability is requested in energy supply in-
frastructure and equipment. As stated by Khurana et al. [26], availability is
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usually a big security concern in the energy sector, since a continuous power
flow is demanded and/or required. Energy control devices and systems shall
then offer near 24/7 operations. High availability is also requested in the
railway sector. Service disruptions, such as delays or cancelled journeys,
due to software updates would lead to high expensive losses.

1.2.2 Safety Assurance

Within the implementation phases of a safety-related system, some veri-
fication, testing and validation activities are performed. The objective of
these methods is to mitigate systematic failures of the system caused by
errors committed in the design and coding process. Once these activities
are successfully carried out and have been verified and certified by a third
party, the software within the safety-related system is considered to be safe
enough. Nevertheless, the safety standards do not specify how to deal with
security vulnerabilities discovered once the system is operational. The mod-
ification of such software is not encouraged. Thus, a new safety validation,
assessment and certification process may begin. As the security flaws which
are encountered every year is increasing [12], it is possible to assume that a
given safety-related system should continuously be updated to fix security
issues.

Furthermore, it has to be ensured that the update of a given non-safety re-
lated software component does not impact and/or put in danger the overall
system safety and/or timing properties. Other non-safety and safety-related
components shall be protected both in the spatial and temporal domains
against any possible malfunctions and breakdowns caused by such upgrade.
In addition, according to the IEC 62443-2-3 technical report [15], IACS asset
owners should “test the installation of IACS patches in a way that accu-
rately reflects the production environment, to ensure that the reliability and
operability of the IACS is not negatively affected when patches are installed
on IACS in the actual production environment. Patches which have success-
fully passed these tests are called the authorized patches”. As required by
the standard [14], “a process shall exist for verifying security updates work
correctly and do not introduce regressions” (Requirement SUM-1: Security
update qualification).

1.3 Aim of the Thesis

The goal of the thesis is the exploration and investigation of Dynamic Soft-
ware Updating (DSU) technologies for safe and secure IACSs, with the aim
of formulating and suggesting a solution to the previously described prob-
lem. The designed approach shall be able to safely and securely patch the
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running application software while run-time, without the need for a shut-
down of the system. This mechanism would make possible the update of
security-related functions while ensuring zero downtime operation. This
feature would ensure the availability, maintainability, safety and security
properties of the system. The dynamic software update process shall be
bounded in time and in case temporal deadlines are not met, the upgrade
shall be aborted. In addition, the proposed solution should try to be com-
pliant with actual industrial safety and security standards.

1.4 Research Methodology

The research methodology defines the process to be followed in order to
come upon with a solution which addresses previously described issues and
achieve the aim of this research. For this purpose, the research problem
is initially stated, and the challenges are then identified. After that, a
state of the art on DSU techniques is elaborated, and the use of these
technologies in the industrial field, especially on safety-critical systems, is
evaluated. Corresponding industrial regulations are also analysed. After
this, a solution to the problem is proposed based on the previously carried
out research. Finally, the proposed solution is validated by means of an
initial validation and two case studies: railway and smart energy.

1.5 Thesis Structure

This thesis is structured as follows:

• Chapter 1: Introduction: This chapter provides an introduction
to the thesis, describing the problem that is being addressed and the
aim of the work.

• Chapter 2: Basic Concepts: An overview of concepts and tech-
niques of safety and security engineering is given in this chapter. A
brief review respect to DSU concepts and techniques, as well for as-
surance cases, is also provided.

• Chapter 3: State of the Art: A literature review of safety and
security standards with respect to software updates is presented. The
state of the art on DSU mechanisms and systems for safe and secure
IACSs is also provided. The properties of each system are also inves-
tigated.

9



1 Introduction

• Chapter 4: Cetratus: This chapter presents and describes Cetratus,
the proposed solution to the zero downtime safety-critical systems
software patching problem.

• Chapter 5: Validation: This chapter provides the validation of
the proposed solution. After the initial validation, two case studies
are presented. On the one hand, a smart energy case study, where
a smart building electrical energy management application is investi-
gated. On the other hand, a railway case study, where the Euroradio
component, responsible for safety-related digital communications be-
tween the train and track-side equipment, is upgraded.

• Chapter 6: Conclusions: Main conclusions are drawn up and pos-
sible future work is identified.
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This chapter provides an overview of safety and security engineering tech-
niques and technologies. Security engineering fundamentals are firstly in-
troduced and safety engineering basics are then given. The inclusion of
security tactics, techniques and approaches into the safety domain is also
discussed.

2.1 Security Engineering

Security engineering deals with the design, development and manufacture
of secure systems, which shall be resistant against intentional attacks and
misuses [27]. Usually, a cross-disciplinary expertise is required, where math-
ematical knowledge, engineering skills and formal methods are implicated.
Business process study, system and software engineering are also relevant.
An overview of cyber-security technologies is given at the annex II of the
X.1205 - Data Networks, Open System Communications and Security doc-
ument [28]. In alignment with this document, cryptographic primitives,
access control fundamentals, system integrity techniques, audit and moni-
toring procedures, and management concerns are analysed. Guidelines for
securing IACSs are also provided by the National Institute of Standards and
Technology (NIST) [29].

2.1.1 Cryptography

Cryptography is the practice and study of techniques for secure activities
and operations in the presence of third parties, also defined as adversaries.
In this section, basic building cryptographic primitives are described. These
primitives are: symmetric stream and block ciphers, asymmetric ciphers,
also called public key encryption, and one-way hash functions [27]. An
overview about homomorphic cryptography is also provided. An extensive
material about cryptography is given by Alfred J. Menezes et al. [30] and
B. Schneier [31]. Recent advances in quantum computing have shown that
certain computational problems could be solved much faster than before.
Post-quantum cryptography refers to those cryptographic algorithms that
are considered to be secure against an attack by a quantum computer [32].
Nonetheless, this cryptography field is not reviewed in this work.
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Stream Ciphers

Stream ciphers are symmetric ciphers, where the encryption and the de-
cryption keys are equal. In order to create the cypher-text, the plain-text
is combined with a pseudo-random cipher stream. The symmetric key is
used as the seed for such stream bit by bit. Figure 2.1 depicts the stream
cipher-based encryption and decryption process.

Key Stream
Generator

Key Stream
Generator

Key Key

Plain-text Cipher-text Plain-text

Figure 2.1: Stream cipher-based encryption and decryption

As depicted in Figure 2.1, the plain-text is combined with the key stream
using the exclusive OR operation (XOR). The generated cipher-text is then
decrypted through the same operation. The sender and receiver have to
exactly use the same key stream to successfully perform the encryption
and decryption process. If some cipher-text is lost during transmission, the
synchronization of both ciphers is lost. These ciphers are usually faster than
block ciphers in hardware, and have simpler circuitry.

Block Ciphers

Block ciphers are deterministic encryption/decryption algorithms which op-
erate on fixed-length bit sizes, denoted blocks. The block size determines the
length of the bit chain that will be encrypted. Both the output (cipher-text)
and the input (plain-text) are the same length. Block ciphers usually sup-
port different key sizes. For example, the Advanced Encryption Standard
(AES) cipher [33], which is one of the most used cryptographic algorithm,
offers key sizes of 128, 192, and 256 bits. In the same way as stream ciphers,
block ciphers are also symmetric algorithms.

Block ciphers can be used in different modes of operation. The block
cipher mode of operation defines how a block cipher should be employed in
order to provide security. A mode of operation specifies how to, repeatedly,
apply the corresponding single block cipher for such plain-text data that
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does not fill within a block. The simplest approach is the Electronic Code-
book (ECB) mode, where the plain-text is divided into separated blocks.
Padding bits are often used to fill empty slots in the last block. Each block is
then independently encrypted and decrypted by the sender and the receiver,
respectively. This scheme is commonly considered insecure.

Figure 2.2 illustrates the Cipher Block Chaining (CBC) mode. As de-
picted, in this mode, each block of plain-text is combined with the preceding
cipher-text prior to its encryption. Each cipher-text block is then subjected
to all previously plain-text block processed. As shown, an Initialization
Vector (IV) is used at the beginning in the first block encryption process.
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Figure 2.2: The Cipher Block Chaining (CBC) mode

The CBC mode can be applied for the computation of a Message Au-
thentication Code (MAC), denoted Cipher-based Message Authentication
Code (CMAC), which is constructed on a block cipher. In this form, the
IV is set to zero. The finally computed cipher-text in the encryption pro-
cedure is used for the MAC (Cn in Figure 2.2). This last cipher-text block
depends on previous blocks. This sequence ensures that any changes on
the plain-text will cause the computed MAC value to change. The receiver
can, consequently, verify the integrity and authenticity of the transmitted
message by checking the MAC field, even though, the message is sent in
plain-text. For an authenticated and encrypted communication channel,
the Galois/Counter Mode (GCM) mode could be used.

Asymmetric Ciphers

Asymmetric cryptography, or public-key cryptography, is a cryptographic
system that uses a pair of a private and a public keys. Through the public
key encryption, a given message is encrypted with the public key. The mes-
sage would be then decrypted by using the corresponding private key. The
public key is usually openly distributed while the private one is securely
stored by the owner. This scheme is widely employed for key exchange pro-
cedures and protocols, for example in the Transport Layer Security (TLS)
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protocol. At the beginning of the communication between two parties, ran-
dom numbers are exchanged by these parties by using public key cryptog-
raphy. These random numbers are then used to generate session symmetric
keys, as generally, asymmetric cryptography demands much higher resources
than symmetric cryptography.

Public key ciphers are also used for digital signatures. In this approach,
the information is signed with the private key of the sender. Afterwards,
the receiver verifies such signature, and hence the authenticity of the in-
formation, by using the public key of the sender. The digital signature
also ensures that the transmitted information has not been tampered or
non-repudiated by any attacker.

One-way Hash functions

One-way hash functions, also known as digest functions, is a function, math-
ematical or otherwise, that produces fixed-length checksums (alias hash val-
ues) receiving variable-length input data. In other words, it computes a
fingerprint representation of the input data. These hash functions are de-
signed to prevent any attacker reversing the operation and recovering the
original data from the hash-value.

One of the most usual uses of these functions are with digital signatures.
Instead of directly signing a long message or information, such as text file,
the computed hash-value is signed. In this way, computational resources
are saved. Another usage, is the calculation of MACs. To this end, a
hash value of the message is first calculated and then encrypted using a
symmetric encryption algorithm. The length of the Hash-based Message
Authentication Code (HMAC) depends on which hash function has been
used for its calculation. In the same manner to a CMAC, message integrity
and authenticity is provided by the HMAC. The receiver can verify the
legitimacy of the received message by, once decrypting the HMAC field,
checking if the provided hash value matches with the locally computed one.

Homomorphic Cryptography

Homomorphic cryptography is a cryptographic system in which computa-
tions can be performed on the cipher-text space. These operations are
accomplished on encrypted data, from where the result of such calculations
remains also encrypted. When decrypted, the solution matches the result of
the computations as if they had been executed on the plain-text data [34].
This approach protects private information contained in the transmitted
data [35]. An non-trusted party can then perform given computations on
encrypted data without being aware of the included information.
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2.1.2 Access control

The purpose of the access control is to regulate which principal, such as
people, processes or machines, is allowed to access which resources in the
system [27]. Reading, sharing and executing rules are also defined. First the
principal should be authenticated, so the principal can confirm its identity
claimed to the system. The system checks then the access policy, and decide
if access, read or execution permissions for a given resource are granted to
the authenticated principal or not (authorization).

Authentication

Authentication is the process where the identity claimed by an entity is con-
firmed. Different factors of authentication can be utilized for this purpose,
which can be categorized into three families: something the entity knows
(such as passwords), something the entity has (such as physical tokens) and
something the entity is (such as biometrics or measurement of a human
body feature). User plus password authentication is commonly adopted.
Cryptography based authentication is also feasible through the use of dig-
ital certificates. According to the X.1205 - Data Networks, Open System
Communications and Security document, authentication systems based on
public cryptography are expensive. Thus, they are not widely adopted [28].
As stated by NIST, device identity and geo-localization mechanisms may
also be employed to enforce security policies. Nevertheless, the authentica-
tion confidence level is not directly increased [36].

For a higher authentication confidence, two factor or multi-factor authen-
tication schemes are usually used, which rely on a combination of several
authentication factors. A successful authentication against all factors is re-
quired in order to confirm the identity of the entity. Physical tokens, for
example smart cards, are typically employed for a two-factor authentication
scheme, in addition to the user plus password authentication procedure.
Even that the use of more authentication factors increase security, cost and
complexity are also added. Consequently, an optimum trade-off has to be
selected.

Authorization

The access rights to resources are specified through an access policy. The
access to the resource is then granted or denied to an authenticated entity
depending on these rules, which may also include read and write operations.
This procedure is known as authorization. Two types of access control
policies exist, which define who is the responsible of granting or denying
access permissions [37]. On the one hand, access grants can be provided by
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the owner of the resource. This access control type is called Discretionary
Access Control (DAC). On the other hand, in Mandatory Access Control
(MAC), access grants are given by the system itself, such as the operating
system.

As far as the access policies are concerned, different approaches exist to
define the permissions of each of the users of the system, such as Identity
Based Access Control (IBAC) and Role Based Access Control (RBAC). In
IBAC, permissions are granted according to the identity of the entity. An
Access Control List (ACL) is usually employed, which contains a record of
all identities and their access permissions. On the contrary, in RBAC, users
are assigned to a role or a set of roles [38].

Firewalls

Firewalls are network security elements which monitor the incoming and
out coming traffic in order to enforce a given access control policy. Three
generations of firewall exist. In first generation firewalls, also known as
stateless firewalls, packet filtering on the IP layer is performed. For this
purpose, source and destination ports, and IP addresses are inspected. If
the analysed packet does not fulfil the security rules, the packet is dropped.
On the contrary, in the second generation stateful firewalls, in addition to
the basic packet filtering procedures, packets are retained until enough data
is available to make a judgement. For example, the stages of the TCP/IP
protocol three-way handshake are observed, and packets are refused if an
out of sequence of packages for the handshake is detected. In this case,
transport layer protocols are examined [39].

Last generation firewalls work at the application layer, which inspect the
application-related data contained within the IP packets. These are also
known as layer 7 filters, referring to the last level in the Open Systems
Interconnection (OSI) model. A packet classifier, such as the L7-filter1 for
the Linux kernel, could be used [40].

2.1.3 System Integrity

Malicious software (trojan horses, worms, viruses, etc) or unauthorised users
might modify and/or tamper the system and data stored in it. Therefore, it
shall continuously verify that the integrity of the system has not been com-
promised. In the Information Technology (IT) domain, antivirus software,
computer programs dedicated to the detection and removal of computer
viruses, and more generally, malware, is widely used. This software pro-
vides protection against cyber-threats. Signature methods can be used to

1http://l7-filter.sourceforge.net/
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identify the execution of malicious code. To this end, previous knowledge
concerning different malicious software is needed. As stated by the X.1205 -
Data Networks, Open System Communications and Security technical doc-
ument [28], the signature database has to be consistently up-to-date. On
the contrary, behaviour methods check for illegitimate and/or suspicious
behaviour of running programs.

2.1.4 Audit & Monitoring

Audit and monitoring refer to the process of checking and evaluating the
overall system security. The compliance against the established security
policies and criteria is regularly measured, for example access control poli-
cies, security configuration, managed security vulnerabilities or applied soft-
ware updates. Systems can include servers, desktop and personal computers,
network devices and IACSs. Commonly, this audit management, measure-
ment and reporting is automatically performed. Modern operating systems
already provide utilities for audit event logging.

Intrusion Detection System (IDS)s are widely employed for both network-
based and host-based security incidents detection. As described by the
NIST [41], these devices or software applications monitor and analyse the
computer system activities and/or network traffic for signs of possible inci-
dents. Intrusion Prevention System (IPS)s may try to, in addition to just
detecting, stop recognised possible incidents. Usually, a central manage-
ment server collects all audited and monitored events and reports. This
information is then examined by the security administrators.

2.1.5 Management

Security management is the process of identifying the assets, analysing the
security threats and implementing the corresponding security measures, pro-
cedures and policies to protect them from security-related threats and vul-
nerabilities. Assets may make reference to data, IACSs, people, etc. Dif-
ferent methods to evaluate such security risks exist. Four risk analysis
methods were analysed by Syalim et al. [42]. The investigated techniques
were: Mehari, Magerit, NIST SP800-30 and Microsoft’s Security Manage-
ment Guide. Depending on the severity of the identified risks, asset owners
should take the appropriate countermeasures to mitigate them.

Configuration management allows verifying and modify (if needed) the
security-related configuration options of the devices. Access control poli-
cies, such as firewall rules, might be specified. Access rights for entities
(system users, applications, services or other devices) could be limited. Or-
ganizations should also define and establish methods and procedures for
patch management, which as stated by the NIST [43], “is the process for
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identifying, acquiring, installing, and verifying patches for products and sys-
tems”. An effective and efficient patch management is essential to achieve
and maintain a sound security through the systems and products lifecycle.

2.2 Safety Engineering

In order to design, develop and maintain safety-related systems, functional
safety technologies and engineering methods are employed. A guide to func-
tional safety is provided by Smith and Simpson [44]. Because of the wide
spectrum of the safety engineering field, this section provides a brief sum-
mary of some safety concepts and technologies. The following topics are
outlined: Reliability, Partitioning, Software Techniques and Security for
Safety.

2.2.1 Reliability

Reliability is defined as the ability or probability of an item to provide the
required function under given conditions for a given time interval [45, 46].
An item can be a single component, a group or a system composed by several
components. The reliability block diagram is first designed, which reflects
how each element contributes to a system failure. Parallel (redundant)
and series configuration are usually employed. After that, the operating
conditions and the failure rate for each element are determined. This infor-
mation can be obtained in several ways, for example from historical data,
government and commercial data or testing. Finally, the reliability for each
element is calculated and the system reliability is computed, denoted RS(t).
Common cause failures shall also be taken into account, where failure links
and dependencies are analysed.

In safety engineering, the failure rate λ of elements and the Probability
of Failure on Demand (PFD)avg and Probability of Failure per Hour (PFH)
values of the system are calculated [44]. The probabilities of failure and
reliability are antagonisms measures. The first one measures how often the
system fails, while the second one quantifies the probability of the system
to provide the required function. More detailed information, data, proce-
dures and calculations are provided by Alessandro [45], Rausand et al. [46],
Shooman [47], and Smith and Simpson [44].

2.2.2 Partitioning

In order to assure that the specification, design, implementation, valida-
tion and certification (if needed) stages are independent among the mixed-
criticality software components, partitioning is used. Partitioning prevents
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applications interfering each other, except if not specifically designed for
it. A partition is a strictly independent execution environment that is pro-
tected from other partitions. It ensures the separation of information of
differing sensitivity or criticality levels, which can alter the correct opera-
tion or real-time performance of the system [48, 49]. These techniques are
applicable for both safety and security domains. In safety, the objective is
fault containment, so it does not propagate through the system. On the
contrary, in security, the consequences of misuse or malicious intrusions are
kept under control. The possible faults and intrusions are encapsulated or
contained within a partition.

Two approaches exist for partitioning: operating system based or exec-
utive kernel based. In the first approach, the operating system distributes
client processes among partitions, where the isolation is obtained by enhanc-
ing the host operating system’s features so that partitioning techniques can
be implemented. The INTEGRITY RTOS developed by Green Hills Soft-
ware2 is an example of such approach. In contrast, an executive kernel offers
a virtualization layer, where several virtual machines with their own oper-
ating systems could be independently executed, for example in Xtratum
[50, 51]. Figure 2.3 depicts an example of partitioned Integrated Modu-
lar Avionics (IMA) architecture given by Blasch et al. [52] based on an
executive kernel:
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Flight Control
Application

Java
Partition OS

POSIX
Partition OS

ARINC 653
Partition OS

Application Executive Interface (APEX)

Architecture
Support packages

Board Support
packages

O/S Support
packages

Hardware

Figure 2.3: Example of an IMA architecture [52]

Partitioning is used to integrate on the same computing platform crit-
ical and non-critical applications. These systems are often called mixed-
criticality systems [53]. However, as stated by the IEC 61508 standard
[13], independence of execution both in the spatial and temporal domains

2https://www.ghs.com/products/rtos/integrity.html
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shall be achieved and demonstrated [49]. Spatial and temporal partitioning
concepts explained by Rushby [49] are next summarized.

Spatial partitioning

Spatial partitioning ensures that the software within a partition can not
access the resources, such as code, data or private devices, of another par-
tition. Hardware mechanisms such as Memory Management Unit (MMU)
and Memory Protection Unit (MPU) are usually used. These techniques
prevent to an application hosted within a partition access and write to a
memory belonging to another one. The MMU or MPU tables are managed
by the operating system or the executive kernel. This software layer is also
protected itself, so applications running in top of it can not modify it. As
an alternative, Software Fault Isolation (SFI) techniques might be used [54].

Temporal partitioning

Temporal partitioning ensures that the activities carried out within a par-
tition do not compromise the timing properties of other partitions. The
main matter is to avoid an application denying service to other partitions,
such as monopolizing the CPU or, crashing or halting the system. Schedule
overruns, for example when a given partition takes longer time to perform
its activities, and runaway executions, such as infinite loops, have to be
also avoided. Two approaches to achieve temporal partitioning exist. On
the one hand, a two-level structure in which first the kernel only schedules
partitions. The application running in each partition is then responsible
of scheduling the desired tasks. On the other hand, in second single-level
structure approach, the kernel directly schedules applications tasks. Ap-
plications are then executed only during the time slices they are assigned
to.

2.2.3 Software Techniques

In order to achieve and ensure the required functional safety level, different
software techniques are employed. These techniques are used for the design,
implementation and validation of all safety-related software, including ap-
plication software, operating systems, communication stacks, HMI software,
in addition to firmware. The overall goal of these methods and/or guidelines
is the avoidance and control of systematic system faults and failures.

Table 2.1 provides the recommended software techniques for software ar-
chitecture and design described by the IEC 61508 [13] standard for different
Safety Integrity Level (SIL)s, where R, HR and NR denote Recommended,
Highly Recommended and Not Recommended, respectively.
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ID Technique SIL 1 SIL 2 SIL 3 SIL 4

1 Fault detection – R HR HR

2 Error detecting codes R R R HR

3a Failure assertion programming R R R HR

3b/c

Diverse monitor techniques
(independence between the
monitor and monitored function
on the same computer)

– R R –

3b
Diverse monitor techniques (with
separation between the monitor
and monitored computer)

– R R HR

3d Diverse redundancy – – – R

3e Functionally diverse redundancy – – R HR

3f Backward recovery R R – NR

3g Stateless software design – – R HR

4a Re-try fault recovery mechanism R R – –

4b Graceful degradation R R HR HR

5
Artificial intelligence -
fault correction

– NR NR NR

6 Dynamic reconfiguration – NR NR NR

7 Modular approach HR HR HR HR

8 Use of trusted/verified software R HR HR HR

9
Forward traceability between
requirements and architecture

R R HR HR

10
Backward traceability between
requirements and architecture

R R HR HR

11a Structured diagrammatic methods HR HR HR HR

11b Semi-formal methods R R HR HR

11c
Formal design and refinement
methods

– R R HR

11d Automatic software generation R R R R

12
Computer-aided specification and
design tools

R R HR HR

13a Cyclic behaviour R HR HR HR

13b Time-triggered architecture R HR HR HR

13c Event-driven R HR HR –

14 Static resource allocation – R HR HR

15
Static synchronization of access to
shared resources

– – R HR

Table 2.1: Recommended software techniques by the IEC 61508 [13] for soft-
ware architecture and design
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As far as safety-related communications are concerned, the IEC 61508
uses the concepts of the so called black channel or white channel approaches
to define the requirements of the base fieldbuses for transmission of safety
data. Whether a communication channel is white or black is determined
by where the safety measures are accomplished with respect to the base
fieldbus and/or communication channel. The IEC 61784-3 standard [17]
specifies the functional safety communication profiles that use the black
channel approach. Figure 2.4 shows the black channel approach.

Safety
software

Safety
software

Non-safety
software

Non-safety
software

Safety
Layer

Safety
Layer

Stardard Protocol Stardard Protocol

Figure 2.4: The black channel approach

As shown in Figure 2.4, the safety-related data is transmitted via stan-
dard networking elements. To this end, a safety layer implements the re-
quired measures to ensure the integrity of the data across the communica-
tion link. Countermeasures against data corruption, unintended repetition
and incorrect sequence delays (among others) are taken over the standard
communication protocol. In contrast, Figure 2.5 depicts the white channel
approach.

Safety
software

Safety
software

Safety Protocol Safety Protocol

Figure 2.5: The white channel approach

On the contrary to black channel approach, in the so called white channel
approach, all the hardware and software elements involved in the safety-
related digital communications shall be designed, implemented and vali-
dated according to the functional safety requirements (safety protocols).
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2.2.4 Security for Safety

At the hazard and risk analysis phase, hazards, hazardous events and haz-
ardous situations are agreed so the risks associated with those events can
be determined. Due to the security threats, this evaluation needs to be
extended in case malevolent or unauthorised actions are identified. During
this security threat analysis, deliberate misuse, vandalism and criminalism
are taken into account [44]. After that, security requirements are defined
for the safety-critical system.

An integrated safety and security co-engineering is fundamental for the
design, development and maintenance of safe and secure mixed-criticality
systems. As claimed by Hunter [55], “ensuring continued alignment of the
dependence and compatibility of safety and security through the lifecyle by
is the key to their integration”. This topic was also analysed at the ITEA
3 MERgE project [4, 5, 56]. As part of it, an extensive literature review on
safety and security co-engineering of software intensive critical information
systems was carried out. An overview of methods, techniques and tools
which have been adjusted in order to cover both safety and security aspects
is also presented [56, 57]. Utilities and procedures coming from the safety
engineering were revised and arranged for the security one, and vice versa.
A broad state of the art on industrial safety and security standards is also
provided. A survey of approaches for IACS risk assessments and design
involving both safety and security risks was provided by Kriaa et al. [58]. As
discussed, the trend is to keep safety and security activities separated from
each other. As stated by Hunter [59], the safety and non-safety boundaries
have to be established, and isolation among such functions ensured. This
could be achieved through partitioning techniques.

The combination of safety and non-safety-critical applications, such as
security, is defined as a mixed-criticality system, where a strong isolation
among applications is crucial [53]. In safety, the objective is fault contain-
ment, where the propagation of the fault through the system is prevented. In
security, the consequences of misuse or malicious intrusions are kept under
control. Possible faults and intrusions are confined through partitioning. A
mixed-criticality architecture for safety and security was proposed by Bock
et all. [60]. An onion approach was considered, where a security shell is
placed between the network and the safety application layer.

The onion skin approach is also applicable for safe and secure digital com-
munications. As stated by the IEC 61784-3 technical standard [17], “when
an application requires electronic security measures, the security shall be
implemented within the black channel”. According to Åkerberg et al. [61],
wired fieldbus protocols have often incorporated safety measures to con-
form functional safety requirements, while, on the contrary, security coun-
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termeasures are usually provided in wireless technologies as a result of high
accessibility to the communication media.

Figure 2.6 shows the onion skin design approach for mixed-criticality safe
and secure systems.

Security

Safety

Process

Figure 2.6: Onion skin approach for mixed-criticality safe and secure sys-
tems

An approach to secure an industrial fieldbus protocol was presented by
Wieczorek et al. [62], where a stream cipher and a MAC algorithm were em-
ployed. Some initial runtime analyses were performed on proof-of-concept
implementation for the EtherCAT fieldbus communication protocol. Fur-
thermore, a framework for wired and wireless communications addressing
both functional safety and security was proposed by Åkerberg et al. [61].
For this purpose, a security layer is introduced between the Safety Layer
and the Standard Protocol ones shown in Figure 2.4. Following the black
channel principle and the onion skin approach shown in Figure 2.6, the
safety-related data is recursively encapsulated and protected. Initially, the
information is protected against unintentional and/or random communica-
tion failures. To this end, safety measures are adopted in the Safety Layer.
After that, end-to-end integrity and authentication, as similarly proposed
by Wieczorek et al. [62], is then provided by the security layer.

2.3 Assurance Cases

Assurance cases (safety or a security cases) is defined as an evidences sup-
ported argumentation to justify that the system is safe or secure enough to
operate in a given context. This information is then supplied to a certifica-
tion body. The main elements of a safety or security case are requirements,
evidences, arguments, and context. The safety case shall define a safety
goal, which usually is the compliance of the system or product against given
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safety or security standards and/or requirements. The main safety or se-
curity goal is repetitively divided into safety sub-goals. In the end, these
sub-goals shall be connected to a given set of claims. These claims should
be sustained and justified by clear evidences. The context of the safety or
security goal shall be clearly stated, since any safe system might behave un-
safely if inappropriately used [63]. Even that this argumentation approach
is usually adopted for safety, the same strategy can directly be employed
for security. This is the reason why this thesis refers to safety and security
cases instead of safety ones exclusively. Security cases were presented and
used by Goodenough et al. [64], Graydon and Kelly [65], He and Johnson
[66] and Preschern [67].

Nowadays, safety and security cases are usually reported through the use
of the Goal Structuring Notation (GSN). GSN, which was introduced by
Kelly [63, 68, 69], is a graphical argumentation notation, where require-
ments, evidences, arguments, the context of the safety case and the links
among them are graphically represented. A preliminary safety case, which
is created in the early phases of the system development, of a distributed
computing platform for an aero-engine control was provided by Kelly et al.
in [69]. Specific architectural level random and systematic (both timing and
functional) failures modes were taken into account. Quantitative and qual-
itative argumentation, based on claims and conclusively supported by evi-
dences, is depicted. This argumentation justifies the adopted safety mecha-
nisms so the considered failure modes of the system are kept under control,
and the system behaves safely enough. Timing behaviour correctness of
the system is also verified. Nevertheless, a more extensive software tim-
ing argumentation for a computer-assisted braking system was constructed
by Graydon and Bate [70]. A top-level safety argumentation is firstly pro-
vided. After that, safety argumentations over Worst Case Execution Time
(WCET) estimations and timing analysis are depicted. Moreover, a modu-
lar safety case for a generic hypervisor was presented by Larrucea [71]. The
minimum reasonable safety evidences and argumentations for this software
component are described. The modularity strategy permits the reuse of
safety case elements and components.

On the contrary, a similar argumentation methodology is employed for
security. A security assurance case arguing which security countermea-
sures are necessary in order to avoid common coding defects is presented by
Goodenough et al. [64]. More specifically, a partial security assurance case
is given, where claims and evidences to justify that the system is free of
buffer overflow coding defects is illustrated. Results gathered at the devel-
oping process of the system, for example from static analyses or robustness
testing, are presented as evidences. For this purpose, the GSN representa-
tion is used. This graphical notation is also used by He and Johnson [66]
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to justify that the adopted cyber-security policies and procedures on com-
plex healthcare organisations provide a sound protection and confidentiality
level. In a similar way to safety, security cases can be used to prove the
conformity of the system against security standards, as done by Graydon
and Kelly [65] and Preschern [67], where the security tactic goals are linked
to the Common Criteria [72] framework through the use of GSN.

As far as the development process and maintainability of a safety and
security case are concerned, a progressive development approach is usually
chosen to elaborate it [63]. As stated by Goodenough et al. [64], “developing
even the preliminary outlines of an assurance case as early as possible in the
software development life cycle can lead to improvement in the development
process”. This is due to the fact that the developers can then focus their
attention on those concerns and matters to resolve. As indicated by M.
Nicholson et al. [73], an assurance case might be incrementally maintained
because of system changes. In fact, from the security perspective, some se-
curity standards introduce objectives and requirements concerning firmware
or software upgrades, such as in Common Criteria [72, 74]. The maintain-
ability of a safety case for an IMA is analysed by M. Nicholson et al. [73].
As stated, an incremental certification, which has been already used in large
and complex platforms, enables the qualification of new applications while
the existing one is maintained. A re-evaluation of the whole system would
not be necessary. However, only safety considerations are contemplated.
Security changes are more susceptible to happen.

2.4 Dynamic Software Updates

A Dynamic Software Update (DSU) consist on updating a computer pro-
gram while it is being executed without the need of a restart. These tech-
niques improve system uptime and availability, which is an attractive feature
for mission-critical or safety-critical systems, such as the air traffic control
system or the telephone switches. When a software update is desired, the
new code is first loaded and the actual state transformed then into a new
one, which should be understandable by the new program. At this point,
the new program is ready to be run. Nevertheless, an acceptable update
availability must be guaranteed during this process for those applications
where time constraints are present.

The execution of a computer program can be considered as a tuple (P, δ),
where P is the program code and δ is the current program state. The current
program state δ can include the state maintained by the operating system
for the program P (such as file descriptors or open network connections), the
heap (where global variables are stored), stack frames and program counters.
In contrast, the program code P includes a set instructions executable by the
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system. The DSU mechanism transforms the actual running program (P, δ)
to a new version (P ′, δ′). For this purpose, code and state transformations
are performed [75, 76]. The program code is first updated and the actual
program state δ then transformed to δ′, so it is coherent with the new
program code P ′ [75, 76]. The program state must be transformed into the
representation P ′ expects. To this end, a state transformer is usually used.

Redundant hardware is often used as an alternative to dynamic software
updating to modify a running system on the fly. In this approach, a sec-
ondary machine is employed. When a system update is desired, the new
version of the code is loaded to the secondary system and the necessary state
or information passed from the primary. After that, a role change between
these machines is performed, where the primary machine is turned into the
secondary, and the secondary into the primary one [75]. The program state
might also be transferred.

Due to the availability of CPU and memory resources on modern com-
puter systems and virtualization technologies, software-based replication
instead of hardware ones are feasible, which are commonly extended to
many machines, so availability is increased. For example, on IBM POWER
processor-based servers, many firmware updates can be installed and acti-
vated without rebooting the system [77, 78]. Multiple firmware releases are
supported in the field, so the current up-to-date firmware version can be
used each time. However, changes to some server functions are not feasible
during operation, such as initialization values for chip controls.

Another approach was followed by P. Hosek and C. Cadar [79, 80]. In
this case, taking advantage of virtualization technologies, the new program
version is executed in parallel with the old one, where their executions are
synchronized. The aim of this technique is to maintain the stability of the
old version while new features and bug fixes from the new version are also
offered. When a divergence between the two versions occurs while running,
the behaviour of the version which has not crashed is taken as the correct
one. A prototype called MX was implemented, where several applications
were executed on multi-version mode. The system is composed upon three
main components. The first one is the Static Executable Analyser (SEA),
which performs a static analysis on both version binaries. The second one
is the Multi-eXecution Monitor (MXM), where both versions are executed
concurrently. Finally, the Runtime Execution Manipulator (REM) selects
between the available behaviours and resynchronizes both versions in case
of divergence.

A dynamic software update process consists of three aspects, which are:
code transformation, state transformation and the update point.
The code transformation refers to the process of updating the executable
code, while the state transformation stands for the procedure of trans-

27



2 Basic Concepts

forming the actual state of the program, so it is understandable by the new
program. Finally, update point refers to the execution instance where the
software update occurs. The term update time is also employed, which de-
notes the time instance when the update takes place. Both of them (update
point and update time) refer to the same execution/time event. Figure 2.7
shows the timeline process of a DSU process.
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Figure 2.7: DSU process time-line

Code transformation

Code transformation refers to the process of updating, modifying or replac-
ing the actual executable code into the new one. Figure 2.8 shows such
procedure. In native or compiled languages such as C or C++, function-
pointer indirections can be inserted by a source analyser, a compiler or
manually by the developer. These indirections change the address of the
function calls that will be next invoked. For this, a dummy jump at the
start of each function is introduced as a trampoline. Note that, according to
Hayden et al. [81], trampolines lead to a code injection attack susceptible
computer program. Moreover, an extra level of indirection can be created,
a modular approach, where function call and return indirections are man-
aged from an indirection handling component or module. For this purpose
a function table is designed, where every direct function call and returns
are written. At update time, new updated function addresses are specified
to the function table [82].

Another option is binary rewriting, where the whole program can be up-
dated at once. This is achieved by accessing and modifying a specific region
within the memory. Moreover, this technique, which is extremely platform
dependent, permits inserting function indirection trampolines at runtime,
in a similar way as buffer overflow attacks are carried out [83]. It might not
be appropriate when an operating system with memory management tools
is utilized. In this case, the DSU tools can not directly access or modify the

28



2.4 Dynamic Software Updates

memory region or registers where the operating system kernel has placed
the executable code or the program state data.
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Figure 2.8: Code transformation procedure

Dynamic loading is commonly used to load the new code into the sys-
tem, where the running program (usually the kernel) loads and accesses a
new piece of code through an extension interface. This connection abstrac-
tion does not vary with time. This approach is regularly used by modern
desktop operating system, such as in UNIX systems, to load and execute a
given executable file which is stored within the file system [75]. A software
architecture and a method for composable dynamic loading was proposed
by Shina et al. [84] for time-critical system. If the program to be updated
is executed within a virtual machine, the available infrastructure provided
by the virtual machine can be used to load the new code, such as the Just-
In-Time (JIT) compiler and the garbage collector [85].

Finally, the unit of update, as described by Solarsky [86], is the small-
est software artefact which is possible to upgrade through a DSU process.
While some DSU systems have been designed to upgrade a single software
component, other ones are able to update a complete computer program.
In case that it is not possible to upgrade at whole, an approach of dividing
among several modules and update them progressively can be taken. The
target application needs to be then built upon several modules.

State transformation

During an update, the program state must be transformed from the original
representation to the new one. This procedure, which if depicted in Figure
2.9, is denoted the state transformation process. The current program
state δ can include the stack frames, program counters, the heap and ad-
ditional states maintained by the operating system such as open network
connections. In order to adjust the current program state to the new ex-
ecution code, a function which transforms a state object is used, which is
referred to as a transformer function or state transformer. In some DSU
systems, this transformation needs to be manually defined by the program-
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mer, which is a laborious and error-prone task. In others, they try to syn-
thesize the transformation operations. These two approaches can be also
combined, where the DSU system first tries to automatically construct state
transformer, whereas the supervision and/or adjustment from the developer
is also required. In general, arbitrary transformations are possible, where
no input from the programmer is necessary [75, 87].
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Figure 2.9: State transformation procedure

The state transformation process can be performed lazily or eagerly.
Lazily means that a subset of the program state is transformed each time, as
the related updated piece of the upgraded executable code is accessed, which
causes steady-state overhead. As an advantage, stack-allocated values and
global variables can be reached and handled easily. In contrast, all the state
is updated at once if performed eagerly. While accomplishing in this mode,
all other program executions are paused, so the state transformer functions
are executed. This process wraps all the possible updating delays into the
time instance where the state transformation is executed, while performing
lazily, transformation costs are amortized [88].

Three main ways to update the current state data of the program exist.
The first approach is to provide checkpointing and recovery features at the
application level. These services would provide a method to serialize and
deserialize a given program state, so it can be packed from an old program
version and unpacked into an updated program version. This process is
also known as state transferring or migration. C-strider is a type-aware
heap transversal targeting C programs, which was used as the state trans-
formation component for the Kitsune DSU system. Specifically, C-strider
walks through the program heap. As the addresses located in this memory
region are inspected, a small set callbacks are called. These invocations are
used by the developer to build the program-independent serialization ser-
vices [89, 90]. In this way, Ekiden is a state transfer updating library, which
allows to pack the actual program state representation from the old run-
ning program and transfer it to the new one, where it will be unpacked and
the program state re-instantiated [91]. A modification of such transferred
program state is also possible.
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The second way is to overwrite the old data in place with the new up-
dated one at the same storage or memory [88]. However, the new state
representation may require a bigger amount of memory than the old state
representation. In order to address this issue shadow data structure and
type wrapping techniques are used by the DSU systems [82]. Shadow data
structures consist on adding extra fields which do not fit in the original data
state. For this purpose, a pointer to a shadow structure is inserted at the
end of each data structure. In contrast, in type wrapping , the DSU system
holds extra unallocated memory while releasing the first program version.
The aim of this activity is to keep free available space for future program
state representations which may require larger memory than the previous
ones. Nevertheless, the maximum size of the program data remains fixed.

Finally, the last option is to use indirections, referred as struct replace-
ment by de Pina [82]. The new program state is moved to a new memory
location, and represented as pointer of the underlying type. This technique
deals with the problem of requiring extra memory by the new program state.
Nevertheless, the memory management mechanism is needed, so the DSU
system keeps track of available memory regions and it is able to release those
memory regions where old unnecessary program data is located. These indi-
rections inserted within the program should point out to the latest program
data structure locations [88].

Update point

An update point, as depicted in Figure 2.10, is defined as the time instance
and location where a program is updated. When an software updating
request is received, the DSU mechanisms need to wait until an allowed
update point is found. The DSU process starts then, where first the exe-
cutable code is updated (code transformation) and the program state is
then transformed (state transformation). The order of these steps may
be switched. However, it shall be ensured that the running executable code
uses the correct representation of the state.

In order to maintain the correctness of the running program, dynamic
updates shall not take place while affected data or executable code is em-
ployed. The program might crash. Consequently, it is crucial to properly
define when a software update can be safely realized, which is indicated by
the update point. As explained by Hayden [92], three strategies exist to
determine the update point of a running program: Activeness Safety (AS),
Con-Freeness Safety (CFS) and Manual. A static analysis is typically per-
formed to evaluate if the selected update point satisfies safety guarantees
[87, 93].
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Figure 2.10: Update point specification

On the one hand, in the AS approach, a software update may occur
only if the piece of executable code which will be upgraded is not active.
Therefore, no updated function should reside on the call stack at update
time. Safety is guaranteed with the confirmation that the old code would not
be accessible anymore. The software updated is delayed until a quiescence
state is reached. This approach is most likely the most widespread one used
by the commercial DSU systems. On the other hand, CFS allows updates
to active executable program if the old program that will be executed after
the upgrade will never access the program state or a call a function whose
type signature has been modified. This approach was proposed by Stoyle
[94], after he observed that AS can be too restrictive in some applications.

Lastly, in the manual approach, it is up to the developer to decide in
which point may the executing program be updated. In this case, it is the
responsibility of the developer to specify those update points. This anno-
tation is commonly inserted in long-running loops, where no resources are
held. In case active calls are encountered on the stack, a stack reconstruction
procedure can be applied. This method was employed in Upstare. Software
upgrade safety depends then on the maintainer/developer judgement or on
the adopted stack reconstruction algorithm and implementation.

In case that the application is multi-threaded, the DSU of such application
becomes more challenging. Firstly, the executable code and the program
state from each thread need to be transformed. Secondly, it is required that
all threats reach an update point and wait to the others so the DSU process
can begin. Nevertheless, the possibility of unbounded delays of those threads
when reaching an update point could lead to a service interruption from the
application. Furthermore, a deadlock may occur, when a given thread is
waiting for accessing given resource before reaching an update point while
another one has already reached it without releasing the resource. The
application would then be halted [76, 92].
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In order to be feasible for multi-threaded program to be updated, the
following three preconditions are needed to be met [92], which are:

1. An update point shall be repeatedly reached by every long-running
thread.

2. A thread shall not hold resources.

3. The program to be updated should not matter the order in which
threads are restarted in the new version.

The DSU procedure for a multi-threaded program starts with all threads
reaching an update point. At this point, the main execution thread updates
all the threads as if they were ordinary single-threaded applications. The
main thread continues executing until an update point is reached, where it
updates itself. Finally, each of the threads are relaunched then, initializing
or migrating first the new program state data [92].

33





3 State of the Art

In this chapter, the state of the art is presented. On the one hand, a review
of industrial safety and security standards with respect to software updates
is provided. On the other hand, an analysis of existing dynamic software
updating techniques is given. In this review, the requirements for dynamic
software updates in safe and secure systems are also collected.

3.1 Standards

The IEC 61508 is the main international standard for electrical, electronic
and programmable electronic safety-related systems, which is contemplated
as the fundamental functional safety standard [13]. The requirements for
ensuring that systems are designed, implemented, operated and maintained
to provide the required safety integrity level (SIL) are specified. Although
the IEC 61508 standard is generic and applicable to all kinds of industry,
it has been adapted to application-specific safety domains. Table 3.1 shows
some of the domain specific safety standards.

Domain Standard Name

Automotive ISO 26262 [95] Road vehicles – Functional safety

Railway

IEC 62278 [96]
Specification and demonstration of
reliability, availability, maintainability and
safety

IEC 62279 [97]
Communication, signalling and processing
systems - Software for railway control and
protection systems

IEC 62425 [98]
Communication, signalling and processing
systems - Safety-related electronic systems
for signalling

Process
industry

IEC 61511 [99]
Functional safety - Safety instrumented
systems for the process industry sector

Machinery IEC 62061 [100]
Safety of machinery - Functional safety of
safety-related electrical, electronic and
programmable electronic control systems

Table 3.1: Domain specific safety standards
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An state of the art about safety and security standards was realized at
the ITEA3 MERgE project, where multi-concerns, particularly focused on
safety and security co-engineering were tried to be efficiently handled [4, 5,
56]. Figure 3.1 presents the analysed safety and security standards, which
are depicted as undashed boxes. The diagram also shows related standards
which may be taken into account for the development of safe and secure
systems, even if safety or security concerns are not directly addressed on
them. These standards, shown as dashed elements, are not studied.

IEC 61158
Industrial communication networks

Fieldbus specification

IEC 61784
Industrial communication networks

Profiles

IEC 62443
Security for industrial

automation and
control systems

ISO 15408
Common Criteria

IEC 61508
Functional Safety

IEC 61326-3-1
Test EMC & FS

IEC 61000-1-2
Methodology EMC & FS

Fieldbus
profiles

Part 1

Additional
profiles

Part 2

Safety
profile

Part 3

Security
profile

Part 4

Installation

Part 5

Figure 3.1: Investigated safety, security and related standards

As pointed out by [5], it seems that each safety standardisation institu-
tion produces its own domain-specific security regulation instead of creating
generic ones for security. In Figure 3.1, it can be seen that the IEC 61784
standard is used to associate safety and security domain standards, which
is also illustrated within the mentioned normative [101]. Even International
Organization for Standardization (ISO) 15408 is reviewed, there is not a
direct and clear association with other norms. This is the reason why this
element is not connected to any other item in the diagram.
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As far as security is concerned, several well-known standards are widely
applied on the development and certification and management of IT system
and devices, such as the ISO 27000 series or the Common Criteria. The ISO
27000 series provide information security management and best practice rec-
ommendations [102]. This normative introduces the Information Security
Management System (ISMS), whose purpose is to manage information se-
curity risks through information security controls. In addition, continuous
feedback and improving activities are incorporated to the ISMS. The aim
of these adjustments is to respond to new threats and/or vulnerabilities.

The ISO 27000 framework is applicable to any kind of organization, which
covers more than just cyber-security concerns. Organizations are encour-
aged to assess, supervise and handle their information security risks by
following the guidances and recommendations defined in the norm. The
standard is reviewed and updated more or less every five years. It is ex-
pected that its next version will cover cyber-security and digital forensics
aspects. On the contrary, the Common Criteria, also known as ISO 15408
[103], is a framework where the functional and assurance requirements for a
given product are first defined and successively evaluated by a security eval-
uation laboratory to determine if they actually satisfy those claims. Even it
is mainly focused for IT environments, industrial control systems can also
be evaluated.

In order to address security issues on IACSs, the International Society of
Automation (ISA) created the ISA99 standard, which addresses the security
of industrial automation and control systems. These technical documents
were then renumbered to the corresponding IEC standards, the IEC 62443
series.

3.1.1 IEC 62443

The ISA/IEC 62443 is a series of standards, technical reports, and related
information that define procedures for implementing electronically secure
IACS [14]. This standard, created by the International Society of Automa-
tion ISA, was originally named ISA 99. Nevertheless, this normative was
renumbered to ISA 62443 in 2010. The purpose of this modification was
to align ISA documents with the analogous IEC standards. The ISA-62443
standards and technical reports are organized into four general categories,
which are General, Policies and Procedures, System and Component.

Table 3.2 provides a short description for each general category.
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Name Part Description

General
IEC

62443-1-X
Provides background information such as
concepts, terminology and metrics

Policies and
procedures

IEC
62443-2-X

Defines the necessary elements to establish a
cyber-security management system, security
policies, practices and patch management
processes

System
IEC

62443-3-X
Provides system development requirements
and guidances

Component
IEC

62443-4-X
Provides product development and technical
requirements, intended for product vendors

Table 3.2: General categories of the IEC 62443 standard

Within the scope of IEC 62443, special attention is given to software
updates. An evidence of it is that it provides a dedicated document de-
ferring to patch management within the Policies and procedures cate-
gory. This technical report is the IEC 62443-2-3: Patch management
in the IACS environment, which states that patch management is an
element of a complete cyber security-strategy, where cyber-security vulner-
abilities, bugs, operability and reliability issues are resolved [15]. Neverthe-
less, the standard does not differentiate among operative system, library or
application-oriented patches. The aim of it is to provide a generic guidance
for all type of patches. Note that, as stated in this technical document,
“Applying patches is a risk management decision”. The software upgrade
may be rejected or delayed if the cost to apply the patch is greater than the
risk evaluated cost [15]. Patch management is defined by the IEC 62443-2-3
[15] “set of processes used to monitor patch releases, decide which patches
should be installed to which system under consideration, if the patch should
be tested prior to installation on a production system under consideration,
at which specified time the patch should be installed and of tracking the
successful installation”.

At some point, because of the long operational periods of IACSs, a given
product may become obsolete and/or could be no longer supported by the
product supplier. However, new security vulnerabilities might still be dis-
covered on such products. Asset owner should then adopt other mitigation
strategies when software updates on the target system are not an option.

Patch lifecycle

The patch lifecycle defines a series of states through which a patch passes
from the time that it is available by a third party or a product supplier
until it is installed or rejected by the asset owner. Figure 3.2, which is a
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replica of the patch state model scheme provided in the IEC 62443-2-3 [15]
technical document, depicts the patch lifecycle state model.

Product supplier

In testAvailable Not approved

ApprovedReleased Not applicable

Asset owner

In internal test Not authorised

Authorised

Effective Installed

Directly

used

Used

Failed

tests

Not applicable
Passed

tests

Shared

Passed tests

Failed tests or

not applicable

Authorised

Patch installed

Figure 3.2: Patch state model

Not all available patches will be approved and installed. Thus, it is im-
portant to keep the track of all available patches for an efficient patch man-
agement procedure. In addition, clear evidences will be needed to gather
to ensure that the system will behave correctly functional once the patch
is applied. As it can be observed in Figure 3.2, the patch lifecycle state
model is divided into two parts. The first part corresponds to the states
maintained by the product supplier. In contrast, the second part conforms
to the states associated with the asset owner. Furthermore, as illustrated
by the standard, the asset owner is also able to directly gather available
patches and release, share or distribute them. This is the reason why the
Available and Released states are shown as dashed elements in Figure 3.2.

Table 3.3 gives the description of each of the states defined in the patch
lifecyle model [15] and shown in Figure 3.2.
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Patch state Patch state definition

Available
The patch has been provided by a third party or an
IACS supplier but has not been tested

In test The patch is being tested

Not approved
The patch has failed the testing and should not be
used, unless and until the patch has been Approved

Not applicable
The patch has been tested and is not considered
relevant to IACS use

Approved The patch has passed testing

Released
The patch is released for use or third party, or the
patch may be directly applicable by the asset owner
for their internally developed systems

In internal test The patch is being tested by the testing team

Not authorised
The patch has failed internal testing, or may not be
applicable

Authorised
The patch is released and meets company standards
for updatable devices, or by inspection did not need
testing

Effective The patch is posted for use

Installed The patch is installed on the system

Table 3.3: Patch lifecycle states

Guidance on patching

Two different guides on patching are provided by the IEC 62443-2-3 techni-
cal document [15]. The first one is oriented to product suppliers, while the
second one instead asset owners. The product supplier guidance on patch-
ing provides a reference procedure to develop and distribute new software
updates. This guidance defines four major activities:

• Discovery of vulnerabilities: Guidance identifying new cyber-security
vulnerabilities, and monitoring third-party software products which
are dependant.

• Development of security updates: Guidance developing and validating
updates, where all the dependent third-party software has to be also
taken into account.

• Distribution of security information: Guidance distributing patches
and associated information, which shall be proceeded securely and on
time.

• Communication and outreach: Guidance about how the product sup-
plier should maintain communication with asset owners.
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On the contrary, the main goal of asset owner guidance on patching is to
describe patch management procedures and processes for the asset owner.
Four major activities for patch management are explained. These activities
are: Information gathering, Project planning and implementation, Proce-
dures and policies for patch management and Operating a patch manage-
ment system. Once the procedure for patching is defined and documented, it
can be shared with the individuals who are responsible of executing it. This
task is essential, so patching activities are carried out efficiently and appro-
priately by the personal. This assignment is applicable for both product
suppliers and asset owners.

Patch information

“Determining the compatibility of patches can be a complex task” [15]. Be-
fore releasing the new software update, several tests are performed by the
product supplier to figure out if the patch fits on their industrial control
system products. Moreover, it may be required that the industrial control
product is accurately tested and verified on a experimentation environment
with the patch applied to it prior to the installation within the real produc-
tion system.

From the users perspective, it is important to keep track of the differ-
ent patches concerning industrial control systems. Consequently, a patch
management system shall be implemented, which should content knowledge
about:

• What patches are available

• The applicability of those available patches

• Previous testing results on the installed products

• Recommendations from the product supplier

Industrial control system users operate products from separate suppliers.
Thus, patch compatibility information for those systems needs to be man-
aged. This information determines if a specific patch for a given product
from a given supplier is compatible with a third party product from another
vendor. It also points out which versions of the software have been tested
and verified. This information aids the users to decide which patch should
be applied or not. Nevertheless, it may be a difficult task to handle all the
patch compatibility information due to the lack of an unified approach to
exchange patch compatibility information. Thus, in order to share the min-
imal compatibility information of a patch, a Vendor Patch Compatibility
(VPC) file format is proposed within the technical report IEC 62443-2-3,
which is based on the eXtensible Markup Language (XML) specifications.
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More detailed definition of this information exchange format can be found
at the Annex A [15].

3.1.2 ISO 15408

The ISO 15408, also known as Common Criteria, is a framework in which
users can indicate their security functional and assurance requirements (SFR
and SAR respectively) through Protection Profiles (PP). Manufacturers can
then develop their products upon the specifications described in those pro-
tection profiles and make claims about security attributes of their products.
A testing laboratory would be the responsible of evaluating those products
to determine if they meet the claims manifested by the vendors, where the
level of confidence is also established [103, 72, 74].

A certification process starts with a Security Target (ST) document. This
report identifies the security properties of the product or system which
is intended to be evaluated, referred as Target Of Evaluation (TOE). It
includes an overview of the product or system, possible security threats,
detailed information on the implementation of all security features and any
claims against a protection profile, which defines security requirements for
a class of security device such as network firewalls.

Even the Common Criteria is mainly focused on IT environments, a pro-
tection profile for industrial systems exits, which is the System Protection
Profile for Industrial Control Systems (SPP-ICS) provided by the NIST
[104]. This protection profile includes SFRs and SARs. Nevertheless, as
stated within the document, it has been written in such a way that it may
be used as the basis for preparing a System Security Target for a specific
IACS or as the basis for a more detailed security PP. Although a new pro-
tection profile for safety-related communications in railway was proposed by
[60], at the time of writing protection profiles targeting industrial control
and/or safety-critical systems are missing. Thus, albeit this standard can be
used to certify wide range of IT security products such as operative systems,
databases or smart cards, protection profiles for the industrial domain are
needed to be defined still.

Some protection profiles introduce objectives and requirements concern-
ing software or firmware updates. An example of such profiles is the Pro-
tection Profile for Smart Card Reader with PIN-Pad supporting eID based
on Extended Access control, created by the Bundesamt für Sicherheit in
der Informationstechnik [105]. As defined in this document, software up-
dates must be signed, and installed if the signature is correctly verified. On
the contrary, industrial control system oriented protection profiles do not
include any requirement concerning software updates. Indeed, within the
Protection Profile for safety-related communication in railway automation,
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objectives, requirements or procedures related to software updates were not
contemplated [60].

Finally, the security product or system are rated according to the Eval-
uation Assurance Level (EAL), which is a numerical rating which indicates
the depth and rigour of the evaluation. Seven levels are defined, from EAL1
being the lowest one, up to EAL7. Note that, a higher level does not mean
that the product or the system has more and/or better security capabilities,
but the level of confidence against PPs.

3.1.3 IEC 61784

The digital data communications for measurement and control IEC 61784
standard defines a set of protocols specific communication profiles based
mainly on the IEC 61158 norm [101]. The purpose of the IEC 61784 is to
aid to properly state the compliance to the IEC 61158 series, where field-
buses for industrial control systems are specified. Functional safety and
information security profiles are also addressed. As stated in the third
part, additional security requirements are detailed in IEC 62443 series. The
IEC 61784 standard includes several communication profile families, which
specify one or more communication profiles. The specifications for the com-
munication protocol stack are then determined for each profile, where the
minimal set of required services at the Application layer are provided. In
absence of this layer, minimal set of required services at the Data Link
layer are indicated. Specification of options at the intermediate layers are
also defined. It has to be mentioned that devices or systems complying
to the same communication profile will accomplish a direct interoperability
between them. The IEC-61784 standard is divided among 5 parts: Profile
sets for continuous and discrete manufacturing relative to fieldbus use in
industrial control systems (IEC 61784-1), Physical layer specification and
service definition (IEC 61784-2), Functional safety fieldbuses (IEC 61784-
3), Profiles for secure communications in industrial network (IEC 61784-4)
and Installation (IEC 61784-5).

The IEC-61784-3 document describes important principles for functional
safety communications, and specifies certain safety communication layers
based on the communication profiles and protocol layers defined in the first
and second parts of the IEC 61784 and in the IEC 61158 standards. These
specifications, which are intended to be applied employing fieldbus tech-
nology within a distributed network, are aligned with the requirements of
the IEC 61508 functional safety norms [13]. Safety communications provide
a mandatory confidence in the information transportation between two or
more participants in a safety-related systems and enough reliance of safe
behaviour in the event of communication errors or failures. Analogously
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specified in the IEC 61508 standard, a SIL level is defined for the safety-
related information transportation channel, depending on the functional
safety communication profile that has been applied.

As far as profiles for secure communications in industrial network is con-
cerned, this part of the IEC 61784 standard provides security communica-
tion profiles [101]. Similar to functional safety information transmissions,
communication profiles and protocol layers defined by the IEC 61158 and
other IEC 61784 parts are redefined and improved from the security point of
view. Some profiles permit to be used as a black channel for functional safety
applications. For this purpose, the delay of the secured channel are bounded.
Different network application scenarios are contemplated by those security
communication profiles, where different security mechanisms are supported
in each one. Twelve possible scenarios are considered, which they vary from
a standalone embedded device until an external network interconnection to a
control network or an interactive remote access to a control network. How-
ever, it should be noted that just a draft version from 2005 of IEC 61784-4
has been found. The contents of it have been overlapped by the IEC 62443
standard.

3.1.4 IEC 61508

The IEC 61508 normative is contemplated as the basic functional safety
standard applicable to all domains. It covers the safety issues of electrical,
electronic or programmable electronic systems or devices, but concerns like
long-term exposure to a toxic substance or an electrical shock are not within
the scope of it [13, 44]. It is divided among seven parts, where the first
three parts contain the normative itself and the rest ones are guidelines and
examples. The normative aims at reducing the risk, which is a function of
frequency or probability of the hazardous event and the event consequence
severity, to a tolerable level. For this purpose, safety functions are applied.

The standard covers the complete safety life cycle for the development
of the system, consisted on sixteen main steps. They are divided among
three groups: analysis, realization and operation. These phases specify how
should be developed and maintained a safety-related system (both hard-
ware and software). At the hazard and risk analysis phase, the hazards,
hazardous events and hazardous situations are agreed so the risks associ-
ated with those events can be determined. Due to the security threats,
this evaluation needs to be extended in case malevolent or unauthorised ac-
tions are identified. During this security threat analysis, deliberate misuse,
vandalism and criminality are taken into account [44].

However, even if safety hazards and risk will not change through opera-
tional period, security threats evolve continuously. This means that security
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issues need to be addressed at the overall operation, maintenance and repair
phase, where it shall be ensured that the functional safety is maintained to
the specified level. An example of such scenario would be the modification
of the communication stack software when a new security-enhanced com-
munication protocol is requested to be adopted. Thus, a security patch
management system may be needed as required by the IEC 62443 standard.

Four different safety integrity levels are established. Each level defines the
risks involved in the system applications, where SIL4 is used for applications
entailing high risks. These measures are taken from the first part of the
standard. For systems that operate on a low demand mode, SIL specifies
an allowable probability that the system will fail to respond on demand.
These metrics are depicted in the following table 3.4.

Safety integrity level
Average probability of dangerous

failure on demand (PFDavg)

SIL1 ≥ 10−2 to < 10−1

SIL2 ≥ 10−3 to < 10−2

SIL3 ≥ 10−4 to < 10−3

SIL4 ≥ 10−5 to < 10−4

Table 3.4: Safety integrity levels - target failure measures for a safety func-
tion operating in low demand mode of operation

For systems that operate on continuous mode or systems that operate
on high demand mode, SIL specifies an allowable frequency of dangerous
failure. These metrics are depicted in the following table 3.5.

Safety Integrity Level
Average frecuency of a dangerous

failure per hour (PFH)

SIL1 ≥ 10−6 to < 10−5

SIL2 ≥ 10−7 to < 10−6

SIL3 ≥ 10−8 to < 10−7

SIL4 ≥ 10−9 to < 10−8

Table 3.5: Safety integrity levels - target failure measures for a safety func-
tion operating in high demand mode of operation or continuous
mode of operation
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3.1.5 Evaluation

The IEC 61508 [13, 44] and the IEC 62443 [14] could be considered the
reference standards when it comes to the design, development and mainte-
nance of safe and secure systems. In addition, the IEC 61784 [101] could
be also employed in case of safe and secure communications are required.
Since the IEC 62443 addresses security issues and challenges for generic
industrial control systems, it could also be applied as the security-related
guide for domain specific safety standards, such as automotive, railway or
process industry [95, 96, 97, 98, 99].

At the time of writing, the Common Criteria framework [103, 72, 74, 104]
provides the necessary facilities for the design, development and mainte-
nance of secure industrial systems. However, protection profiles for indus-
trial automation systems, which shall also define objectives and require-
ments with respect to software updates, are missing. In case of the ISO
27000 series [102], even though information security management and best
practice recommendations are given, it does not provide any guideline, pro-
cedure and/or requirements for the design and development of secure sys-
tems. Concepts and methods from the ISMS, and the patch management
guidelines proposed by the IEC 62443-2-3 [15] technical document could
be merged or combined with the aim of building an effective and complete
patch management system for safe and secure industrial systems.
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3.2 Analysis of Existing DSU Systems

Over the years, many DSU systems have been proposed. These systems tar-
get many kinds of applications, from real-time control purposes to servers
and databases [106, 107]. Moreover, formal approaches have also been pro-
posed, where DSU support at the programming language level is investi-
gated. An underlying theory for languages which offer DSU features is
presented by Stoyle [94], named Proteus. This theory is a program cal-
culus and it was applied to the design and implementation of updatable
C-programs. The most important challenges reside on how to address the
unsafe features of C programming language, and how to design an efficient
DSU feature.

Some actual programming languages already provide DSU support. Four
programming languages were analysed by de Pina [82], which are: Common
Lisp, Smalltalk, Erlang and UpgradeJ. Even that these programming lan-
guages provide high-level DSU features, the developer is required to write
the target applications on those languages. Consequently, the usage of these
approaches is restricted for those applications developed from scratch in
these languages. Incompatibility issues while integrating already existing
libraries with the target application written in such programming language
may also arise.

A review of techniques, evaluation metrics and a survey of existing DSU
systems have been provided [106, 107]. These systems are then catego-
rized according to the used or characterized code transformation, state
transformation and update point techniques and attributes. The DSU
mechanisms are also assessed and discussed against the defined evaluation
metrics. In this subsection, DSU systems which could be feasible for indus-
trial control applications are analysed. They have been divided into three
categories, as similarly done by de Pina [82] and Seifzadeh et al. [106],
which are:

• Compiled application-oriented DSU systems which target appli-
cations compiled to an executable binary. These objects are then
natively executed.

• Kernel-oriented DSU systems which target the core of an operating
system.

• Real-time-oriented DSU systems, which have specifically been cre-
ated for real-time, embedded system or IACSs.

Compiled application and Kernel-oriented DSU systems could be
used or be adapted to embedded system, real-time or IACSs, while Com-
piled application-oriented ones could be reused for Kernel ones.
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Table 3.6 presents the investigated DSU systems for each of the categories.
In total, twenty systems have been analysed and compared.

Name Target Date

DLpop

Compiled Application

2001
OPUS 2005
DynSec 2013
POLUS 2007
UpStare 2009
Ginseng 2008
Ekiden 2011
Kitsune 2012

LUCOS

Kernel

2006
DynAMOS 2007

KSplice 2009
K42 2006

PROTEOS 2013

DURTS

Real-time

2004
EmbedDSU 2011

Gracioli 2014
EcoDSU 2008
Seif-Real 2009
Wahler 2009
FASA 2014

Table 3.6: Analysed DSU systems

Note that the DSU systems are not ordered according to the date within
each category. A similar arrangement used by de Pina [82] and Seifzadeh
et al. [106] has been employed. Besides, DSU systems not suitable for
industrial applications have been omitted and new ones added. After the
analysis of each investigated DSU system, a classification is provided, where
the different properties and capabilities are compared and summarized.

Compiled application

Compiled application refers to a software application which is compiled
into an executable binary. This binary code is then executed natively on
the target. The C programming language is probably the most common
language for the development of compiled applications. As pointed out by
de Pina [82], this programming language is also used for the development of
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operating system kernels. Thus, DSU systems targeting operating system
kernels were included in this group. Nevertheless, in this investigation, these
DSU systems have been classified into their own category.

DLpop

DLpop is a dynamic linking framework suitable for DSU, which targets
UNIX execution environments [75]. The Typed Assembly Language (TAL)
and Popcorn (type-safe C) languages were used with the aim of providing
safety and robustness. This DSU system provides TAL/Load, which is
a type-safe version of DLopen [108], a dynamic-linking procedure for C on
UNIX systems. The DSU approach consists of four different phases, which is
applied for each software module that is wanted to be dynamically updated.
The steps are:

1. Generate a dynamic patch.

2. Compile the dynamic patch to a loadable TAL file.

3. Link and update dynamically the file on the running program.

4. Switch to the patch from the running program.

First of all, a dynamic patch needs to be generated, which is defined as
the difference between two versions of a software module. In contrast to
static patch a dynamic patch contains both the updated program code plus
the additional code and data required to switch to the new program version.
This information may contain changes to code, program data and type def-
initions. Also, stub functions are provided where call indirections are spec-
ified. Consequently, a dynamic patch is defined as tuple of (f,S, stubset),
where f is the new program code, S is the state transformer which may
modify the static data and the heap, and stubset is a set of mappings from
program functions to their corresponding stubs. These dynamic patches are
constructed by a dynamic patch building system.

A patch is described by a patch description file containing four parts:
the implementation filename, the interface code filename, the shared type
definitions, and the type definitions to rename. The first two parts describe
the patch: its implementation in the first file, and the state transformer and
stub functions in the second file. The final two parts are for type namespace
bookkeeping. The shared type definitions are those types that the new file
has in common with the old one, while the changed definitions are in the
renaming list, along with a new name to use for each. The compiler uses
this information to syntactically replace occurrences of the old name with
the new one.
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In order to be loadable, the dynamic patch it has to be compiled and
linked along with the updating library. At this stage, a Global Offset Table
(GOT) is created in each binary, where all references to data are inserted
and a hash table for each binary file is included. These tables are linked and
unlinked from the GOT when program modules are loaded and unloaded.
In addition, code, data, and type definitions may be modified. Finally,
DLpop is used to enable the dynamic updating. This utility allows to first
load dynamically a given dynamic patch and build a hash table for symbols.
The update module is then linked and the rest of the program re-linked.

OPUS

The Online Patches and Updates for Security (OPUS) is a DSU system
which works transparently with the classic building tools found on UNIX
systems. It consists on three main steps, which are: patch analysis, patch
generation and patch application [93]. Initially, a static patch is performed,
so the changes between the source files are inspected and reported. This
information, which will be later on passed to the compiler, is used to decide
if the static patch requires a static analysis or not.

At the static analysis phase, the compatibility and safety attributes of
the patch are investigated. In case that the static patch does not meet
the approval conditions, the patch is rejected, providing an error message
to the developer. This is assessed by evaluating the previous static patch
information. On the contrary, the static patch is further analysed conser-
vatively in order to ensure that, once dynamically applied, it will lead to
an unsafe DSU case. After the patch is validated and it is free of errors
and, desirably, also of warnings, the patch generation step starts. Firstly,
files and the information required to build dynamic patches are gathered,
where changes to global variables and executable functions are identified.
This information is then extracted and explicit binary code created.

A dynamic patch object is built next, where all these binary objects are
packed together with patch definition information. This is then transferred
to the target. At this point, a patch installer service, which is able to
examine and modify the application process address, is dispatched. This
service blocks the execution of the old program, loads the new executable
code (using the dlopen and dlsym utilities) and applies the dynamic patch
by redirecting calls. For this, the first instruction of the old code is over-
written. Nevertheless, AS is verified before applying the dynamic patch. A
similar interface to usual C compilers is provided by OPUS, where errors
and warnings from the source analysis, compilation and dynamic patch gen-
eration steps are presented. These processes are invoked by the developer.
This DSU system supports the upgrade of multi-threading applications.
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DynSec

DynSec is a DSU system, which is built on top of a Dynamic Binary Trans-
lator (DBT). Once the new binary file is loaded, this code is rewritten
through with the DBT. A sandbox virtualization layer is then employed,
where apart from the DSU utilities, the protection of the system against
software upgrades leading to unsafe situations is also provided. System call
policy, stack integrity and code integrity are safeguarded [109].

In DynSec, a DSU service is created, which is responsible of processing the
requests gotten from the developer. This utility, which is executed outside
the sandbox, manages the DSU process. This procedure has three main
steps:

1. The patching service waits for a DSU request.

2. The patching service synchronizes all running application threads, so
they can reach a safe update point.

3. A DSU is applied for each application thread. For this purpose, their
code cache is flushed.

In this DSU system, a dynamic patch is a binary file, where after specify-
ing the number of patched instructions, the information about these instruc-
tions is given. This data contains the address of the instruction, previous
and actual length of the instruction and the new native code. DynSec exam-
ines which libraries, modules and loaded symbols are charged and utilized.
In addition, it keeps tracks of all running threads by monitoring system
calls, so it can be ensured that all the application threads reach a safe up-
date point. Once the patch is applied to those instructions specified by the
developer using the DBT, these patched instructions are executed within
the sandbox (virtualization layer).

POLUS

POwerful Live Updating System (POLUS) is a software maintenance utility
which permits to dynamically update the new application software code and
data [110]. This DSU system permits the coexistence of two different data
representations. State synchronization functions are invoked when a write
instruction is called, so the coherence of both data versions are maintained.
The DSU is safely completed when no more access to the old version data
exists. Support for both single-threaded and multi-threaded applications is
provided.

POLUS includes a patch constructor, a patch injector and the runtime
library. The patch constructor is a source-to-source compiler, which is able
to recognise the syntactic and semantics differences between two program
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versions. In contrast, the patch injector is the process executing in the target
which is capable of applying a dynamic patch. Finally, the runtime library
provide DSU-oriented tools for the dynamic patch management. These
userspace utilities are linked to the patch injector, so the developer can
send requests to the POLUS core, such as a DSU command.

First of all a static patch is produced. This data is then used to generate
dynamic patch by the patch constructor. In POLUS, a dynamic patch is
a whole-program patch compressed on a single file. This file contains the
modified code, changed global variables, changed type definitions and addi-
tional supportive code to maintain the consistency between new functions
and variables, including state transformer functions. The created dynamic
patch can be applied by invoking the patch injector. For this, the developer
needs to use the runtime library tools. The patch injector will insert an
indirect jump instruction just at the header of the old executable block, so
function calls are redirected to the new updated ones.

As far as the state transformation is concerned, POLUS is not able to up-
date function level state information, such as local variables or local stacks.
Only global visible state is visible and considered. In POLUS the old and
the new program state representations can coexist concurrently. In order to
avoid inconsistencies and concurrent access between those state representa-
tions, state synchronization functions are used. These methods are invoked
by the signal handler, so data from one program state version is updated to
the other one. The DSU procedure is completed when all threads accessing
old data are not active anymore.

UpStare

UpStare is collection of tools which aims at providing DSU capabilities. The
framework comprises a patch generator, a custom compiler, a DSU runtime
environment and a DSU tool [76, 111, 112]. The target application, which
could be a multi-threaded program, is required to be compiled using the
custom compiler. Nevertheless, it is a straightforward process. The call to
an existing compiler in the application building process has to be changed,
so instead of calling for example, the gcc compiler, the UpStare one shall
be invoked. There is no need to modify the source code [112].

When a new software version is released, the source code of it in addi-
tion to the old one, is provided to the patch generator. The source code of
a dynamic patch is then created, where information about new functions,
new global variables and modified data type definitions for both global or
declared on the stack are incorporated. A partial state mapping and data
transformers are also produced. Typically, the user is required to adjust
the state mapping functions and to determine the update points which are
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inserted at the next stage. This dynamic patch source code is then compiled
using the UpStare compiler, which is based on the Common Intermediate
Language (CIL) framework [113], so an executable update patch is gener-
ated. The executable dynamic patch shall be saved on the target machine.
When DSU of a given application is desired, the developer should send an
update request to the runtime environment. This is achieved through a
TCP/IP connection, which means that a software update across the net-
work is possible. The runtime environment is statically linked to the target
program and it is able to dynamically load the dynamic patch using the
dlopen function. Once the update request is received, the runtime environ-
ment blocks all the application threads and starts the stack reconstruction
procedure.

The stack reconstruction is the essence of this DSU system, which is
automatically implemented by the UpStare compiler. For this purpose, a
source-to-source transformation is applied. A program is placed in stack
reconstruction mode when after receiving the update request, all threads
are blocked. At this point two main steps are performed. First of all, the
program stack frames of every thread to be updated are automatically saved
and unrolled. State transformer functions are then called by the runtime
environment to convert the old state representation to the new one. Next,
the stack of each thread needs to be reconstructed. At this point, the
formal parameters, the execution point and local variables of a function are
restored. This is recursively reproduced until the whole stack is rebuilt.
Finally, after the stack reconstruction process, the update is complete and
the runtime environment starts to resume the application threads.

However, library functions and signal handlers are not compatible with
this technique. This information is stored within the operating system,
so UpStare avoids resetting the signal handlers. Instead, function pointer
indirection is used to initiate calls. If the application, which is wanted to be
updated dynamically, is executing a signal handler at the time of receiving
the update request, the software upgrade is rejected.

Ginseng

Ginseng is a tool suite for building updatable programs, so they can be
updated during runtime [114]. Before designing the tool suite, several long
running C program evaluations were studied. For this, the ASTdiff tool
was developed, which is able to parse and compare the two source code
versions of the program. Six server applications were dynamically updated
with Ginseng, three single-threaded and three multi-threaded [114]. It is
composed upon a patch generator, a compiler and a runtime system, where,
for the first two components, the CIL framework [113] was used.
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The patch generator compares two versions of a program, where changes
at the global variables, functions and types are reported. Based on this
information, a type transformer is automatically generated, so the old type
representations are mapped into the new ones, where adjustments from the
developer are possible. In contrast, the state transformation function may
be written by the developer. This function is invoked at the update time and
it defines how the actual program state representation should be adapted
so it is consistent with the new executable program. All this data is then
sent to the compiler.

Two tasks are accomplished by the Ginseng compiler. On the one hand,
target applications are compiled and the dynamic patch generated. Safety
analysis are performed to ensure that safety properties will not be disrupted
while DSU tasks are carried out. State transformations are also specified,
so the new program data is aligned with the new executable code, as well
as type transformers. These conversion methods have been created at the
patch generation step. Type wrappers are used, where new types with
larger amount of memory are defined as the replacement for the old ones.
In case of an update which requires more memory, previously defined types
will hold usable memory area. Moreover, function indirections are inserted.
A level of indirection is included through a global variable, so the new
updated function can be invoked from the old code. On the other hand,
static analyses are performed on the program source code. The aim of this
study is to guarantee that the DSU process will not lead to unsafe execution
incidents.

The Ginseng runtime system is responsible of executing the DSU process.
When a DSU command is received, the runtime system waits until the
program reaches an update point, where the dynamic patch is loaded and
linked. These update points are automatically introduced by the compiler.
Nevertheless, they can be added or modified by the developer.

Ekiden

Ekiden is a state transfer updating library, which allows to pack the actual
program state representation from the old running program and transfer
it to the new one, where it will be unpacked and the program state re-
instantiated [91]. At this point, the new program can be launched and the
old one halted. It offers several advantages. First, there is no need of static
analyses, and compiler optimizations can be enabled when the new program
version is compiled. Secondly, only the state which changes through time
is required to be transmitted and upgraded because the new state is auto-
matically initialized. However, multiple instances of the program need to
simultaneously to executed to accomplish the transfer process.
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The source code of the target application needs to be modified in order
support Ekiden. The program state to be transferred and updated later
on needs to be defined as the tagged program state. Apart from that,
update points need to be manually specified by the developer. The author
recommends inserting those update points at the starting point of each
long-running loop [91]. Ekiden is used to serialize the program state, and
de-serializing it into the new program version. A checkpointing approach is
adopted, where a tool parses the annotations written by the developer and
creates the serialized object. Ekiden is the precursor of the Kitsune DSU.
As stated by Hayden [92], who is the author of both schemes (Ekiden and
Kitsune), the state transferring cost was notable in Ekiden. For this reason,
a new strategy was chosen in Kitsune, so in-place data and code updates
are possible.

Kitsune

Kitsune, which was designed after the weaknesses of Ekiden were found,
provides a program level DSU system [92, 81]. In the same manner as other
DSU systems, code transformation, state transformation and update
point attributes are needed to be specified to the original program source.
Whole program are upgraded by this DSU system, which is able to update
also multi-threaded programs. For this, each thread is updated stopped
and updated separately. Once completed, the Kitsune runtime system re-
launches each upgraded thread, where first of all, data initialization and
migration tasks are performed.

A state transformation tool is provided, which is named xfgen. This tool
is used to specify how the global state of the old program version will be
transformed and migrated to the new program version. This information
is then passed to the compiler. For this, the data contained in the xf file,
which is generated by the xfgen tool, is converted to C code. Kitsune uses
standard compilation utilities, where the updatable program is compiled
and linked with the Kitsune runtime system library to generate a shared
object file. The new program source files plus the C code transformed xf
files are the inputs for the compiler. The Kitsune building chain is composed
by the Kitsune custom compiler kitc, the state transformer xfgen and the
GCC GNU Compiler Collection.

Firstly, when the target application is executed, which shall be built with
Kitsune, a DSU driver routine starts. This component launches the shared
object file where the target program has been embedded. At the moment
that a DSU request is received, the driver waits until the program reaches
an update point. These points are manually specified by the developer and
it is encouraged to place them on long-running loops of the programs, so
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they can be reached periodically. The main execution thread jumps then to
driver routine where the DSU process starts. First, the new program code is
loaded and the entry point of it is invoked. State transformation functions
are then executed, so the program state is consistent with the new updated
code. The program is updated eagerly.

Kernel

A kernel is the core of an operating system, where the interaction between
the user-space applications and the hardware is handled. It is the first code
that is executed and it manages all the computer resources, such as memory
or peripheral. Kernel-oriented DSU systems have commonly been oriented
to general purpose operating systems. The analysed DSU system target
UNIX-like ones.

LUCOS

LUCOS provides DSU capability for operating systems using virtualization
[115], which was proposed by the same authors of POLUS [110]. Through
virtualization, an extra layer is inserted between the hardware and the oper-
ating system, which is usually handled by a virtual machine monitor. This
software element has the control of the execution and the state of the vir-
tualized operating systems. The DSU process is carried out by the virtual
machine monitor. For this, function redirection calls and state transferring
tasks are performed. A prototype was built and tested, where the Linux ker-
nel was dynamically updated from version 2.6.10 to 2.6.11. Four steps are
commonly carried out: analysis of the static patch, dynamic patch source
code generation, building an executable dynamic patch binary and dynamic
patch injection and the DSU operation.

The Linux kernel permits to insert a new code on run-time through a
loadable kernel module. This module is the LUCOS dynamic patch module,
where changes to the executable instructions and data structures are speci-
fied. State transformation functions are also included, which convert the old
data structure version to the new one. Furthermore, a register for callback,
dynamic patch initialization and clean-up, and module init and module exit
functions may also be enclosed. LUCOS provides a set of helper methods
with the aim of guiding the developer while writing all these functions. At
the time of writing, this DSU does not offer any automatic dynamic patch
building toolchain or framework. Nevertheless, this work is considered as
one of the tasks to be achieved for future work.

The DSU process in LUCOS is carried out in three main states. First
of all, when a DSU request is received, the dynamic patch is validated and
prepared. Before applying the dynamic patch, LUCOS verifies that those
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threads, which are executing the code to be updated, are halted. In case
that none of these threads are active, state transfer functions are invoked.
The consistency between the old and new program state is managed by the
virtual machine monitor. Whenever a write instruction is called from the
program, both program states are synchronized. For the code transforma-
tion, a jump instruction is inserted at the beginning of the old executable
program through binary rewriting. Finally, LUCOS inspects the stack to
see if no old execution thread still resides on the stack. At this point, the
DSU process is concluded.

DynAMOS

DynAMOS is a DSU system designed to perform dynamic kernel updates
[116]. The core subsystems of the Linux kernel were dynamically updated,
where the source code differences were not needed. It is based on the adap-
tive function cloning technique, where updates are not applied at the basic
block level, but at the function level.

DynAMOS detects quiescent functions by inserting usage counters be-
cause none of the functions to be updated shall be idle on the stack. For
this purpose, entries and exits for all the code to be updated are monitored
and the stack is examined. For the code transformation, execution flow
redirection mechanism through trampolines is employed. Nevertheless, the
adaptive function cloning technique allows switching dynamically between
multiple function versions. This switching decision is managed by the kernel
itself, where, for example, the system workload could be measured to decide
which version to execute. Because of this, the program state of the running
program version needs to be synchronized and handled, so it does not lead
to an inconsistent state. The new program code should not access the old
incompatible program state. Locks such as semaphores are used to handle
program state data accesses.

Shadow data structures are used for the state transformation. When
new data types are encountered in the new program version, new variables
are instantiated on different memory addresses. These memory locations
are freed when the original ones are released. As far as update points are
concerned, the developer is not required to manually define update points.
This is decided by the system. Dynamic kernel patches are manually built
by the developer using standard building utilities such as the gcc compiler.
As future work, the authors plan to create an automatized dynamic kernel
updates building system.
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KSplice

KSplice allows applying patches to the operating system kernel on the fly,
without the need of rebooting [117]. During the testing phase, 64 kernel
patches were applied. As the result, 87.5 % (56 out of 64) were successfully
applied without the mediation of the developer. The remaining patches (8
out of 64) required additional code to be written. These software updates
correspond to the security patches for the Linux kernel from May 2005 to
May 2008. On contrary to other DSU systems, Ksplice examines the old and
the new program compiled object files and meta-data, instead of analysing
the source code. This DSU system was acquired by Oracle in July 2011.
Actually, a commercial dynamic Linux kernel updating service is offered by
the Oracle Linux Premier Support [118]. The sucessors (presented publicly)
of KSplice are KGraft and KPatch, developed by SUSE 1 and RedHat2

respectively . KGraft is able to update or replace functions. For this, ftrace
utility is used to jump upon old function versions. In contrast, KPatch
sends a stop machine command to the kernel so, whenever it is safe, a halted
condition is reached. At this point, the new code is injected. Nevertheless,
changes to the internal data structures of the kernel are not possible neither
in KSplice, KGraft nor KPatch. These two sucessors were unified when Red
Hat created the livepatch system in 2014, which also uses the ftrace utilities
as kGraft. livepatch is available at the mainstream kernel [118].

This kernel live patching functionality is self-contained, which means
that it does not rely on or use any other kernel module. As indicated by
Chris Binnie, this kernel functionality is only available for x86 architectures.
Thus, this DSU is not still available for PowerPC or ARM [118]. KSplice
works directly with binary files and the meta-data instead of program source
code [117]. Thus, legacy binaries can be updated. Implementation limita-
tions, safety issues and the involvement of the developer are also avoided
or reduced. Nevertheless, this approach introduces new compilation related
challenges, such as how to deal with optimized binaries which camouflage
the purpose of the patch. Safe multi-threaded updates are not possible.
This DSU mechanism replaces the entire function, in case that some part
of it has changed. A new function version is linked by inserting a jump in-
struction at the beginning of the old version. The DSU process usually takes
about 700 µs, in which the system is blocked. Firstly, pre-post differencing
is used to build the object code for the upgrade. The run-pre matching is
then employed in order to resolve symbols properly and to provide safety.

The modified code is identified by comparing the old and the new binary
codes at the pre-post differencing. For this, the original kernel sources and

1https://www.suse.com/
2https://www.redhat.com
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the patched ones are compiled, and the object files generated. Two compiler
options are enabled (-ffunction-sections and -fdata-sections) to guarantee
that the functions and the data structures are placed in their own section
inside the binary. In case that these binary function instructions differ but
although they provide the same behaviour, KSplice would replace them.
This would be unnecessary itself, however, it does not compromise safety.
After the comparison, the modified functions are extract and a DSU patch
generated with this information. Even the replacement is ready, the symbols
are required to be resolved. The information needed to perform this task
is included in the DSU patch. At the run-pre matching phase A jump
instruction is introduced at the start of the old program code, so the new
code can be executed next time. This is performed in the kernel space for
security reasons. As far as the update point is concerned, which is time
instance when the DSU process starts, the stop machine utility is used
by KSplice in order to end up to a safe update point. In case of multiple
unsuccessful tries, the DSU process is discarded.

K42

K42 is a open source object-oriented operating system kernel which fo-
cuses on customizability, scalability and maintainability [119, 120, 121, 122].
Linux Application Programming Interface (API) and Application Binary In-
terface (ABI) are supported. Consequently, Linux libraries and applications
can be executed in top of this kernel, as the replacement of the Linux ones.
In a similar way to Linux read copy update, quiescent states are also de-
tected. Nevertheless, an object translation table is used in K42, where each
of the entry specifies the per-address space of each operating system object.
Calls are performed through this table.

In this operating system, hot-swapping of objects is possible. For this
purpose, incoming calls to the object are first temporally suspended. The
program state is then transferred to the new object when a quiescent state
is detected. The global reference is finally modified by changing the corre-
sponding object translation table entry, and the incoming calls redirected,
so the new objects are called and used at the next invocation. The DSU
mechanism of K42 is based on this functionality.

The DSU feature was implemented and tested by Andrew Baumann [120,
122, 121]. In order to provide DSU capabilities, factory objects were added,
which are responsible of creating and tracking dynamically updatable ob-
jects. When an object to be updated dynamically is desired, a factory object
is first instantiated. If an old version of it already exits, it is updated itself
before proceeding with the DSU process. However, the objects instances
associated with the old factory need to be associated first to the new fac-
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tory object. The factory object is then able to instantiate and hot-swap
the desired objects. As far as state transfers are concerned, a state transfer
protocol is used to transfer the state from the old objects to the new ones.
A common intermediate format, which shall be understandable by both ob-
ject versions, is employed. No automatic state transfer function generation
is provided. Consequently, the developer is required to write all the needed
code, which could be a laborious task in some cases. In contrast to other
DSU systems, DSU process may be applied lazily, for example depending
on the amount of instances of an object.

PROTEOS

PROTEOS is a research operating system, designed from the beginning to
provide DSU capabilities [123, 124]. Through its DSU feature, upgrades at
the process level are performed, instead of at the function level. An auto-
matic state transfer is provided, which is used to transform and transport
the old program data to the new one. State checking and hot roll-back
functionalities are also given. PROTEOS, which is based on Minix 3 [125]
and is compatible with the Portable Operating System Interface (POSIX)
interface, can be initiated on x86 architecture computers.

All the PROTEOS operating system kernel components are enclosed
within processes. These kernel modules are for example the network stack,
memory management, process management, scheduling and drivers. This
architecture, shown in Figure 3.3, permits updating and replacing those
modules independently, where the new code and program data is inserted.
The kernel module which provides DSU capabilities is the update manager
(UM), which is in fact able to update itself on the fly. Moreover, the micro-
kernel provides interprocess communications, which are achieved by message
passing. These messages are used for the communication and synchroniza-
tion between the kernel processes and the UM. The hardware interface is
also provided in this layer.

When a DSU request is received, the new program version is loaded as
a new process instance in the memory. At this point, the update manager
waits until all the remaining processes reach a safe update state. The old
program process is then atomically replaced by the new one. The next step
is to transfer the old program state to the new one. For this, a state transfer
framework is provided, which first inspects the program state of the old and
the new version and secondly performs type and memory transformations
so the transferred state is compatible with the new program version. This
process is based on the LLVM framework [126], through an instrumentation
pass [126]. The new program process is ready to be executed and the old
program process is deleted.
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Figure 3.3: Architecture of PROTEOS [123, 124]

PROTEUS is able to monitor and analyse the state transfer process. In
case of an anomaly or an error is detected, this DSU system is able to
rollback, so it can recover and launch the old program. This is possible
because the old process has not been modified during the state transfer
process. A time-traveling state transfer mechanism was also presented [124,
127], where state transfers across three process instances are performed.
These instances are: the old program version, the new program version and
the reversed program version. The goal of the time-traveling state transfer
is to provide a fault tolerant state transferring utility, suitable for a reliable
DSU system. Apart from the usual forward state transfer between the
old and the new program, a reverse conversion is performed from the new
program one to the reversed version. As a result, deviations between the old
and the reversed program states may indicate corruption or memory errors
while the state transfer processes.

Real-time

In this group, in alignment with [106], DSU systems which were created for
real-time, embedded system or IACSs are analysed.
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DURTS

Dynamic Update for Real-Time Systems (DURTS) is able to produce and
load the replacement code into the system and perform a dynamic update
[128]. This DSU system was implemented on RT-Match, which is a UNIX-
like RTOS. Two new operating system primitives were added in addition to
the DSU features. Updates at the function level are performed, where the
local state information is not conserved. Because of the timing constraints
which the DSU system needs to meet, a schedulability analysis is performed,
where the fault-tolerant rate monotonic scheduling algorithm is considered.
The aim of this analysis is to ensure that timing deadlines are met while
the DSU process. On average, a delay of 5.6 µ seconds was achieved on a
Compaq Deskpro® 200 MHz Pentium Computer.

The DSU process consists of three main steps. First, a pseudo-linker is
used to create the replacement code. Once the source file of the application
to be updated is edited and compiled, the pseudo-linker creates a loadable
module (using a standard linker, a binary file corresponding to the whole
application would be generated). The pseudo-linker generates a pseudo-
linked object file (*.o.plo). This file contains the addresses for externally
referenced symbols which are attached to the target application. Secondly,
the new replacement code is loaded into the memory, in the heap section
of the application memory, more specifically. Finally, the execution to the
new replacement object is switched. For this, a pointer-to-function variable
is used as a trampoline. Thus, at the next function invocation, the replace-
ment code placed in the heap will be executed. In case of multi-threaded
applications, additional steps are needed. Two new system calls were added
(rt thread set and rt thread get) to the RT-Match operating system in order
to change the process control structure of the thread. This information is
modified to specify which should be the next execution instruction.

EmbedDSU

EmbedDSU, is a DSU framework for Java based smart cards, which is based
on a modified SimpleRTJ embedded Java virtual machine [129]. An indi-
rection table approach is used. However, multi-threaded applications are
not supported in this embedded Java virtual machine. Thus, this kind of
applications can not be deployed and neither dynamically updated.

The DSU is divided in two main steps. On the one hand, at the off-
card phase, the differences between the classes of two versions are obtained
through a DIFF generator. The result is a DIFF file, which is then parsed
and transformed into a compressed binary format. This binary object is
ready to be transferred to the smart card target. On the other hand, at the
on-card phase, the binary DIFF file is loaded, where the digital signature
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is checked and the information from it is extracted and interpreted. This
information is passed to the Patcher, which is responsible of performing
the dynamic update. The DSU process starts when a safe update point
is detected. The modified Java virtual machine is then able to inspect and
modify the required data structures, such as class meta-data, method bodies
or object instances, to perform the desired update.

Gracioli

A operating system infrastructure for remote code updates was presented by
Gracioli [130]. This infrastructure, which adds low-overhead, is based on the
Embedded Parallel Operating System (EPOS). It is a multi-platform and
component-based embedded operating system. In this operating system,
an indirection level between components is possible. This characteristic is
employed for the dynamic updates.

The updatable components are marked during the first compilation and
building process. Once the operating system is initiated, the infrastructure
is only able to update those components marked as updatable ones. When
a DSU of a component is wanted, the invocation to the component passes
through Proxy, where a indirection to the updated code is performed. A
semaphore is used to ensure that the invoked component is not executed
while it is being updated.

EcoDSU

EcoDSU (ETRI CPS open Dynamic Software Updater) is a DSU system
designed for cyber-physical systems [131]. Whole program updates are per-
formed. However, global and local data can be just partially updated. When
a DSU process is desired to be performed, the application to be updated is
halted at the update point. In this instance, the executable region of the
program is replaced by the new version. By default, data and stack areas
are not modified. A set of command line utilities are provided to control,
monitor and customize the DSU process.

Seif-Real

An approach to perform DSU operations in real-time applications is pre-
sented [132]. The update of real-time tasks is considered, where the Rate
Monotonic scheduling algorithm is used to assign and manage the different
resources employed by those tasks, usually the CPU. A simulation exper-
iment is performed to evaluate the approach. However, it has not been
implemented yet, and neither tested through a case study.
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A dummy task is created, which is executed every hyper-period and has
the lower priority among tasks, does not perform any operation by default.
Nevertheless, DSU operations are executed when a DSU request is received.
In this case, it is assumed that the new task version may have a differ-
ent execution time, period or deadline. Thus, a schedulability analysis is
performed. For this, the set of tasks is gathered, the new hyper-period is
calculated and the schedulabilty study is performed. If the schedulability
criteria is not achieved, the DSU request is rejected. If met, the updated
task is loaded into memory and the task execution points are resolved. As
a result, the new updated task is executed at the next second hyper-period.
As stated, in the worst case the DSU process is achieved at the starting of
the next second hyper-period.

Wahler

An approach to apply DSU procedures on real-time systems is presented
by Wahler et al. [133]. It is based on an underlying Commercial-Off-the-
shelf (COTS) operating system, where features provided by it are used
to support DSU capabilities. Three commercial operating systems were
evaluated for this purpose: QNX Neutrino3, VxWorks4 and Integrity5. None
of them provides DSU features directly. Nevertheless, a component-based
framework infrastructure can be created in top of the operating system,
where taking advantage of the features provided by the operating system,
DSU features for those components may be supported. The framework is
built upon components and channels, which provide communications among
components through a message passing mechanism.

The system checks at the end of each execution cycle if any of the com-
ponents needs to be updated. In case that the DSU process for these com-
ponents takes more time than the available one, the DSU process is carried
out among several execution cycles. The new component version is trans-
ferred to the target with low priority. This ensures that other component
deadlines are fulfilled. In order to transform the actual running component
into the new version, the message passing mechanism is used. The compo-
nent manager changes the message passing channels configuration, so the
information flow is redirected to the new component.

For the state transformation, a size-fixed shared memory is reserved. This
area is where the terminating old component saves the actual program state,
in addition to some meta-data. After that, this memory is accessed by the

3http://www.qnx.com/content/qnx/en/products/neutrino-rtos/neutrino-rtos.

html
4https://www.windriver.com/products/vxworks/
5http://www.ghs.com/products/rtos/integrity.html
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new component, so the information contained in it is used to compute the
new program state. It is assumed that the component state is possible to
be transferred within the same cycle while the DSU process is performed.

An improved solution was then presented by the same authors [134]. In
this approach, the state of the new component is gradually constructed af-
ter the DSU component is loaded. An atomic operation is then performed
when the whole state is transferred. This method permits performing dy-
namic updates to those components with large states, which could not be
possible to achieve by the previous described method. This solution was
implemented and tested on top of RT-Linux6. However, it could be applied
on other POSIX-compatible operating system.

First of all, the new component is instantiated and initialized, and the
corresponding channels for message passing are generated. The execution
of this component is also scheduled. Secondly, the state transfer process
begins. This DSU permits the transfer of large states, which may be ac-
complished in multiple execution cycles. However, due to the fact that the
component state transfer may be altered or modified through those execu-
tion cycles, a state synchronization algorithm is needed. This algorithm
tracks the modification occurred within the old component, so the correct
state representation is transferred and visible for the new component.

Finally, once the state transfer and synchronization is performed, which
means that both the old and the new components hold the same component
state data, each of them in their respective valid representations, the last
step of the DSU process starts. At this point, the system switches to the
new configuration, where the new component will be used.

As concluded by Wahler et al. [134], the most important challenge re-
sides on how to deal with the updated or updatable software involved on a
certification process against a standard, for example the IEC 61508 [13]. A
whole re-certification of the system would be needed in case any software
update is performed.

FASA framework

FASA (Future Automation System Architecture) is a scalable component
framework for distributed control systems, where the application compo-
nents can be executed on a single core platform, on a multiple core platform
or distributed among several platforms [135, 136, 137, 138]. DSU features
are provided, where new versions of the components may be updated dy-
namically. Figure 3.4 shows the software stack of FASA deployed on a
multi-core platform.

6https://rt.wiki.kernel.org/index.php/Main_Page
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Function block Function block N...

FASA Runtime Framework

FASA Platform Abstraction Layer

Operating System

CPU Core 1 ... CPU Core m

Applications

Kernel

Platform

Figure 3.4: The FASA Software Stack on a multi-core platform

As it can be observed in Figure 3.4 above, the FASA framework is built
on top of a commercial real-time operating system and provides an ab-
straction level to the application layer. This ensures that the execution
of the application-oriented functions is transparent to the underlying op-
erating system and platform [135, 136, 137]. After providing the software
components to be executed by the developers, an initial deployment plan is
calculated and the most suitable communication protocol is chosen. At this
phase, the resource allocation, such as cores and hosts, is performed and
the static schedule of the executions is determined [135].

The Applications layer of the FASA framework is composed upon the
function blocks, where one or several of these function blocks may con-
stitute a component. These function blocks are communicated each other
through unidirectional channels, which means that a function block can
either write or read on a single channel port. The channel implementa-
tion, which can be only used for data transmission, differs depending if the
corresponding blocks are located on the same core, same platform or on a
separated platform. All these blocks are executed cyclically at a fixed rate.

The DSU process is divided into five main phases [138, 139]. It has to be
noted that, it is assumed that the functional and timing behaviour of the
new component version has been already assessed before proceeding with the
update. The process begins by loading the new component into memory as
a shared library. Several ways to do it exist depending on the platform, such
as through a serial communication, storage devices, debugging interfaces or
network.
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The next step is to prepare the system configuration, which describes
the components, schedule and channels arranged in the system. A clone
of the actual configuration is done, where a couple of modifications is then
made. An instance of the new component plus the communication channels
are created. In addition, a new schedule is created for the defined new
component, so it can later on replace the old one. At this point, the state
transfer phase starts. In case that no stateless information is used, this step
can be safely omitted. On the contrary, state synchronization mechanism
are employed to keep track of the state changes through the execution cycles.
This is realized using two special function blocks in FASA, Teach and Learn.
In addition, auxiliary monitoring components can be added to monitor and
compare the behaviour of the new component against the old one. Finally,
in order to complete DSU process, an atomic switchover is performed. This
is accomplished by readjusting the system configuration. A common time
stamp among platforms is used in order to ensure that all the states are
up to date and the execution traces are synchronized. Rollback feature is
also provided in FASA, which is able to restore the previous configuration
in case of a safety violation.

3.2.1 Comparison

All the DSU systems targeting compiled applications perform dynamic up-
dates in top of a UNIX-like operating system, usually GNU/Linux running
on a x86 computer. Moreover, UpStare has been tested on Linux 2.4-2.6
running on a i386 architecture computer, Solaris 5.10 running on a SPARC
computer and MAC OSX running on a PowerPC computer. However, none
of these DSU systems provides real time features, which may be needed
for an industrial control application. Except for DynSec, all the DSU sys-
tems targeting compiled applications present a dynamic patches building
toolchain.

In case of DSU systems designed for operating system kernels, LUCOS,
DynAMOS and kSplice (and its successors KGraph and KPatch) target
the Linux kernel while K42 is the operating system kernel itself, designed
to provide customizability, scalability and maintainability. PROTEOS is
designed for the MINIX 3 [125] operating system, which is compatible with
the POSIX interface. In this DSU system, where process level upgrades are
performed, automatic state transfers are provided. PROTEOS is executed
on x86 computers and according to the author, the proposed technique can
be easily applied to other operating systems, for example: L4, Integrity or
QNX. To the best of our knowledge, kSplice and its successors, KPatch and
KGraft mechanisms, are the unique DSU systems which are applied and
offered commercially for the Linux kernel.
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DURTS is the only real-time DSU targeting a UNIX-like operating sys-
tem, specifically, the RT-Mach operating system. Other specific operat-
ing systems were used on EmbedDSU and Gracioli. While EcoDSU works
purely on bare metal, without the support of an operating system, Wahler
and FASA are operating system agnostics. This means that any operat-
ing system can be used. Nevertheless, they shall be POSIX-compatible.
Wahler and FASA use operating system utilities to perform those software
upgrades, where application components are updated.

Commonly, each of the DSU systems provides a dynamic patches build-
ing system, which is used to generate such dynamic patches. It has to be
noted that, as stated by Hicks [75], the concept of a dynamic patch differs
from the regular static patch from the software development implementa-
tion or maintenance phase (diff and patch commands on UNIX), where
it is described as the differences between sources of two program versions.
A dynamic patch can consist of new updated executable code, new global
variables, type/state transformers and additional meta-data. This informa-
tion is then transferred to the DSU runtime system, where after receiving a
DSU request, the DSU process is carried out [88]. These systems most of-
ten provide a set of tools, such as custom-compilers, source-to-source patch
generators or source analysers in order to create dynamic patches. CIL [113]
and LLVM [126] compilation, source analysis and transformation tools are
commonly utilized [82]. Table 3.7 shows the required tasks to be accom-
plished to generate a dynamic patch [75, 82]. The order in which these tasks
are accomplished may vary among dynamic patches building systems.

Task Description

1
Identification and syntactical comparison of the new program
version against the old one(s).

2
Adaptation of the program (source or object) so it can be
updatable.

3
Construct the type/state transformer functions (whenever
possible).

4
DSU meta-data generation, where the information about current
program version is defined.

5 Dynamic patch construction and/or assembly.

Table 3.7: Tasks for building dynamic patches

Many of the DSU systems provide utilities to create dynamic patches.
The tool developed by Hicks et al. [75] analyses and calculates the differ-
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ences between two source files. A dynamic patch is then generated with
the information obtained from it, which reflects those source code modifi-
cations. By default, the tool tries to automatically construct the required
state transformation functions. Nevertheless, the programmer might need
to complete or adjust these methods if the task could not successfully be
accomplished. Stub functions are also inserted, where call indirections are
specified. In order to attest robustness and safety, a safe C-like language
was used.

In OPUS [93], a static patch analysis is firstly performed to examine the
safety attributes and the compatibility of such source code modifications. If
the required evaluations are successfully met, the dynamic software patch
binary is generated. Patch definition meta-data is also embedded in this file.
Similarly, dynamic patches are created through a source-to-source compiler
in POLUS [110] (referred as patch constructor by Chen et al.), which is
capable of identifying the semantics and syntactic differences between two
software versions. In POLUS, the whole-program dynamic patch is com-
pressed on a single file, which is the most adopted approach.

After generating the dynamic patch source code through the patch gen-
erator, a custom compiler, based on the CIL framework [113], is used by
Makris to create an executable update patch [112, 76]. It has to be noted
that the programmer is usually required to adjust the state mapping func-
tions and determine the update points. The patch generator and the custom
compiler are part of the UpStare framework.

In the Ginseng DSU system, a patch generator and a compiler are used,
which are both based on the CIL framework [113]. Although the patch
generator is able to automatically generate type transformers, the program-
mer needs to specify and define the state transformations functions. Type
wrappers are used, where new types with larger amount of memory are de-
fined as the replacement for the old ones. Safety analyses are performed
to ensure that safety properties are met while DSU tasks are carried out.
In Kitsune, code transformations, state transformations and update point
attribute need to be manually specified within the original program source
[81]. For this purpose, the xfgen tool might be used. Besides, Kitsune uses
standard compilation utilities.

Code transformation

Table 3.8 classifies the analysed DSU systems according to the code trans-
formation properties. Employed technique and the upgraded unit of up-
date are inspected. As shown in Table 3.8, most of the DSU systems employ
trampolines (45 %) and indirection handling (30 %) techniques. Trampo-
lines can be inserted by employing functions pointers or by rewriting the
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register where the next invocation is stored. As a special case, in DynSec,
software updates are performed indirectly by flushing the code cache. The
patched instruction is first translated and then executed, while the original
code is not altered. As it can be observed in Table 3.8, software components
are commonly updated by these DSU mechanisms (35 %), while functions
and whole-programs are upgraded 30 % and 25 %, respectively. In kernel-
oriented systems, the operating system kernel is considered as the computer
whole-program.

Name
Code transformation

Technique Unit of update

DLpop ◻ ▼

OPUS ▽ ▲

DynSec △ ▲

POLUS ▽ ▲

UpStare ▽ ∎

Ginseng ◻ ∎

Ekiden – not supported –

Kitsune △ ∎

LUCOS ▽ ∎

DynAMOS ▽ ▲

KSplice ▽ ▲

K42 ◻ ▼

PROTEOS ▽ ▼

DURTS ▽ ▲

EmbedDSU ◻ ▼

Gracioli ▽ ▼

EcoDSU △ ∎

Seif-Real ?

Wahler ◻ ▼

FASA ◻ ▼

△ Binary rewriting ▲ Function
▽ Trampolines ▼ Component
◻ Indirection handling ∎ Whole program

Table 3.8: Code transformation properties of the analysed DSU systems

A distinction on the unit of update property definition is necessary. The
component and module terms are widely used by the DSU system designers.
However, the definition of them depends on how each of the author defines
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them. The differentiation of these terms may be misunderstanding, since a
module can be defined as a component and vice-versa. Consequently, in this
work, a software component is referred to a piece of software, composed by
one or more functions or methods. As it can be seen in Table 3.8, modules
are commonly replaced by these DSU systems (45 %), while components
and whole-programs 20 % and 25 % of the times, respectively.

State transformation

Table 3.9 shows the state transformation properties for each of the anal-
ysed dynamic software updating techniques listed in Table 3.6. State trans-
former, mode and data update properties are examined.

Name
State transformation

State transformer Mode Data update

DLpop ◁ ▷ ▸ ⊞

OPUS ◁ ▸ ⊞

DynSec – not supported –

POLUS ◁ ▷ ◂ ⊞

UpStare ◁ ▷ ▸ ∪

Ginseng ◁ ▷ ◂ ∪

Ekiden ▷ ◂ ▸ ∩

Kitsune ◁ ▷ ▸ ∩

LUCOS ▷ ◂ ⊞

DynAMOS ▷ ◂ ⊞

KSplice – not supported –

K42 ▷ ◂ ▸ ∩

PROTEOS ◁ ▸ ∩

DURTS – not supported –

EmbedDSU ◁ ▸ ∪

Gracioli – not supported –

EcoDSU ◁ ▸ ∪

Seif-Real ?

Wahler ▷ ◂ ∩

FASA ◁ ▷ ◂ ▸ ∩

◁ Automatic ◂ Lazily ∩ Checkpointing
▷ Manual ▸ Eagerly ∪ In-place

⊞ Indirection

Table 3.9: State transformation properties of the analysed DSU systems
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As observed in Table 3.9, Dynsec, KSplice, DURTS and Gracioli do
not provide state transformation features. Even that automatic state
transformer generation and construction is possible, input from the devel-
oper is often required and/or advised. OPUS, PROTEOS, EmbedDSU and
EcoDSU are the only DSU system, in which the state transformations are
automatically handled. Lazy state transformations are possible in some
DSU systems. In Ginseng, type transformers are not called at update time.
These functions are invoked when the values to be updated are accessed. In
Ekiden, it is up to the developer to decide and design if the state transfer
should be performed lazily or not. On the contrary, in case of DSU systems
targeting operating system kernels, LUCOS, DynAMOS and K42 allow the
co-existence of old and new program data. A state synchronization proce-
dure is then used to maintain the coherence between them. As stated by
Andrew Baumann [121] DSU lazy transformations can also be performed in
K42. A state synchronization algorithm is also used in FASA.

For the data update procedure, the described three methods are similarly
adopted. While using the in-place approach, once the first version of the
program data is located within the memory, it has to be verified that the
new program representation data fits into the reserved memory. The check-
pointing method provides the most versatile approach. Nevertheless, it is
the most difficult one when it comes to the design and development of ap-
plications, since procedures to serialize and de-serialize need to be prepared
and integrated within. Ekiden provides a state transfer updating library
which enables serialization and de-serialization tasks.

Update point

Finally, as far as the update point is concerned, most of the DSU systems
use the Activeness Safety approach to determine the update instance, which
means that the old program which will be updated shall not be active.
Two common approaches are used when an underlying operating system
or virtualization layer exists: invoke a stop machine system call or stop
the execution of the virtual machine, as done by LUCOS. For compiled
applications, manual specification is also adopted. In this case, it is the
responsibility of the developer to specify safe update points. Usually, this
instruction is inserted in long-running loops, where no resources are held.
Only Ginseng and DynAMOS follow the Con-Freeness Safety approach.

All the DSU systems targeting compiled applications except DLpop and
Ekiden allow the upgrade of multi-threaded applications. In DSU systems
targeting operating system kernels, neither KSplice or K42 provides multi-
threaded kernel module updates. With respect to PROTEOS, a single kernel
module process, which is the unit of update, may contain apart from the
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main control thread, additional auxiliary execution threads. When it comes
to the DSU systems targeting real-time control systems, in DURTS the
underlying RTOS was modified to support this feature. Apart from DURTS,
none of the examined real-time embedded system DSU systems provides
multi-threaded program upgrade capacities. Notice that in Wahler and
FASA several processes can be updated simultaneously in parallel taking
advantage of the underlying commercial RTOS.

Table 3.10 depicts the update point properties of the analysed DSU
systems:

Name
Update point

Specification Multi-threaded

DLpop ⊠ No

OPUS ⋒

Yes
DynSec ⊠

POLUS ⊠

UpStare ⊠

Ginseng ⊠

Ekiden ⊠ No

Kitsune ⊠ Yes

LUCOS ⋓ Yes

DynAMOS ⊠
No

KSplice ⋒

K42 ⋒
Yes

PROTEOS ⋒

DURTS ⋒ Yes

EmbedDSU ⋒

No

Gracioli ⋒

EcoDSU ⊠

Seif-Real ⋒

Wahler ⋒

FASA ⋒

⋒ Activeness Safety (AS)
⋓ Con-Freeness Safety (CFS)
⊠ Manual

Table 3.10: Update point properties of the analysed DSU systems

Table 3.11 provides a summary of the analysed DSU system categorization
and classification.
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3.2.2 Requirements for Safety & Security Compliance

None of the analysed DSU system provide an industrial safety-compliant
solution. As stated by Wahler et al. [134], the biggest challenge for updat-
ing the software of real-time systems is that they often need to be certified
according to standards such as the IEC 61508 [13]. Commonly, if the soft-
ware of such system is updated, the system as a whole must be re-certified
before it can be used in the field. Most of the DSU systems target or employ
a UNIX-like operating system, which are not advised for safety-related sys-
tems, even that initiatives to evaluate and assess the Linux kernel against
safety standards exist [140, 141].

Wahler, FASA and PROTEOS systems are the closest proposed solutions
towards a safety-compliant DSU technique, since as stated by the authors,
the described techniques are compatible with any POSIX-compliant op-
erating system, where a safety certified one could be chosen. In case of
PROTEOS, the core of the operating system needs to be modified. Conse-
quently, after the changes, it shall be re-certified. Nevertheless, Wahler and
FASA take advantage of the operating system utilities, so the DSU is trans-
parent to the underlying operating system. The application, libraries and
the dynamic updating mechanism running on top of the operating system
shall be then certified.

Most of the studied systems do not provide protection against patch-
ing failures and the spread of such faults through the system, which might
disturb and/or disrupt safety-related software components (or other non-
safety-related ones), as well as compromising the availability of the sys-
tem. Protection mechanisms are necessary to protect from patching failures
and/or systematic failures of the new software version, which may for ex-
ample monopolize the CPU or access unauthorised memory regions. At the
application level, only DynSec provides a sandbox execution environment,
for which a virtualization layer is employed. This technique was also used
in LUCOS for the dynamic update of the Linux kernel. In PROTEOS, the
new program version is loaded as a new process instance in the memory.
This DSU system is able to perform a rollback in case of an anomaly or an
error is detected during the patching process. Temporal independence could
be achieved through the enforcement of an adequate scheduling policy. The
solution proposed in Wahler might provide the protection against system-
atic patching failures, but it depends on the selected underlying RTOS and
taken and/or implemented additional measures.

Fault monitoring and detection measures are widely adopted and imple-
mented in safety-critical systems [13]. Software updates monitoring features
were only employed in DynSec, PROTEOS and FASA. On the one hand, sys-
tem calls are monitored in DynSec. On the other hand, PROTEOS is able to

75



3 State of the Art

monitor and analyse the state transfer process. Lastly, auxiliary monitoring
components can be added to monitor, compare and analyse the properties
and behaviour of the new component against the old one in FASA. However,
remote monitoring features are not included by default. In the presented
DSU systems, except in FASA, monitoring activities are performed within
the same computer system and are automatized. Although, the separation
between the monitor and monitored computer is highly recommended by
the safety IEC 61508 [13] standard.

In addition, dynamic reconfiguration techniques are not recommended for
the development of safety-critical systems [13]. A static resource allocation
approach is advised. In these lines, the required hardware resources, spe-
cially execution time and memory, should be bounded before, during and
after the DSU process. In Wahler, enough free memory must be ensured in
the system to load the new component. Moreover, the CPU time employed
by the main application should be low enough to enable the DSU service
while executing it. Execution time and memory should be then initially
assessed. In FASA, the system switches to a new configuration in the final
phase. The hardware resources to be used by the new software component
are not initially statically assigned. This characteristic introduces challenges
for the compliance of the system against the safety standards, such as the
IEC 61508 [13].

One of the requirements for the safety assessment (for any cyber-physical
system in general) is the schedulability analysis, where it is ensured that
tasks are executed and completed according to their timing requirements.
The temporal delay caused by the DSU and its possible effects are not usu-
ally considered. Temporal constraints and requirements due to DSU mech-
anisms were analysed by Seif-Real [132]. As stated, the upgrade procedure
should not cause any deadline to be missed. Therefore, the dynamic software
updating service (enabled by a dummy task), performs first a schedulability
analysis of the system upon the request of a software upgrade. If the new
tasks are not schedulable, the update process is aborted. Just the main idea
was presented in Seif-Real, without specifying the code transformation,
state transformation and update point properties. These temporal is-
sues were also taken into account by DURTS. Besides, in Wahler, in order
to ensure that other software component deadlines are met, the new com-
ponent is transferred to the target with low priority. However, during the
real-time update of the component, the component manager shall replace
the old one with the new one within a single execution cycle. If this con-
dition is not met, the deadlines of other application components might be
missed. In FASA, it is assumed that the functional and timing behaviour of
the new component version has already been evaluated before proceeding
with the update.
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Regarding security, in order to fulfil with the requirements and guidelines
specified by the IEC 62443 standard [14, 15], even adopting a DSU system,
a fully replicated system would be needed to firstly verify the robustness
and reliability of the DSU mechanism, to make sure that this process does
not compromise the safety and temporal properties of the system, and sec-
ondly, to ensure the correctness of the new software patch. According to
the standard [15], software patches should be tested and authorised by the
asset owner before effecting and being installed in the production system.
Nevertheless, it might not be possible to replicate the whole production en-
vironment or compose an accurate testing benchmark to test and validate
a given software update. As far as the security of the dynamic patch is
concerned, none of the systems introduces measures to ensure the integrity
and confidentiality of it. Access control measures for system users are nei-
ther taken. An attacker could replace the security-related component with
a dummy one, and dodge then already implemented security countermea-
sures.

Table 3.12 shows the main requirements for enabling DSU in safe and
secure systems.

ID Definition Source

R1 Protection against patching failures IEC 61508 [13]

R2 Software updates fault monitoring IEC 61508 [13]

R3 Static resource allocation IEC 61508 [13]

R4 Time-triggered architecture IEC 61508 [13]

R5 Internal testing capability IEC 62443 [14, 15]

R6 Software patch integrity and confidentiality IEC 62443 [14]

R7
Authentication and authorization of system

users
IEC 62443 [14]

Table 3.12: DSU requirements for safety and security compliance
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4 Cetratus

Cetratus is a DSUs enabled runtime framework for safety-critical systems,
which is founded upon a quarantine-mode execution and monitoring mode.
This approach, similar to the sandboxing technique widely used in the se-
curity field [142], aims at protecting the computer program, and therefore
the system, against new possible security bugs or weaknesses introduced in
the new software patch (R1 in Table 3.12). In line with the ENISA [19, 20],
software and patching malfunctions and breakdowns are taken into account.
Patching failures due to patch incompatibility issues are also avoided. Fig-
ure 4.1 illustrates the DSU-featured actors of the system respect to dynamic
software updates.

Cetratus
Cetratus

≪include≫
≪include≫

Dynamic Update

Login

Logout

Time

Updater

Auditor

User

Figure 4.1: DSU-featured actors

As represented in Figure 4.1, two different system users have been defined:
the Auditor and the Updater. Both the Auditor and the Updater inherit the
User, which is a generic actor. Any system user shall be authenticated and
logged in, in order to use the live patching features of the system, if allowed
(R7 in Table 3.12). The Updater is the system developer and/or maintainer.
The dynamic update process is initiated by this user. On the contrary, the
Auditor refers to the system examiner who shall check and validate the
trustworthiness of the updated system. This is accomplished through the
quarantine-mode execution and monitoring. The Auditor is able to revoke
the dynamic software upgrade if the required system behaviour and/or per-
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formance is not achieved. All the DSU process is also accomplished taking
into account the real-time demands of the system (R4 in Table 3.12). Figure
4.2 illustrates the dynamic update use case sequence diagram.

confirmation

setup(patch)

getQuaranExecInfo(patch)
patch exec info

verifyPatchExec(patch)

validate(patch)

confirmation

confirmQuarantine(patch)

quarantine(patch)

approved

removePatch(patch)
patch removed

confirmSubstitute(patch)

confirmation

substitution sucessfull

substitute(patch)

Updater Auditor System

loop

[tested]
Quarantine-mode
execution &
monitoring

Quarantine-mode
execution &
monitoring

[true]

alt

[false]

Figure 4.2: Dynamic update sequence diagram

The system first initializes the software patch, where code and state trans-
formations are performed. At this point, the new software is ready to be run
within the quarantine-mode, similar to a sandbox isolation. The new soft-
ware version is then executed and monitored at the quarantine-mode phase
(R2 in Table 3.12). In case enough trustworthiness of the new software ver-
sion is determined by the Auditor, the substitution is performed, where a
role change between the old and the new software is performed. For this
purpose, a version consistency strategy, as proposed by Baresi et al. [143],
could be adopted. A ratification from the Auditor is then necessary in order
to successfully proceed and succeed a dynamic software updating process.
This user shall validate that new security functionalities behave as expected
while the safety integrity level is not compromised [13].
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4.1 Design

Cetratus, in which application component upgrades are performed, uses
a similar approach adopted by P. Hosek and C. Cadar [80] and Wahler et
al. [139]. A multi-version execution strategy is adopted. Nevertheless, in
Cetratus, while quarantine-mode execution, the output of the old program
is always selected. In contrast to Wahler et al. [139], and in alignment with
the ENISA [19, 20], possible software and patching failures are considered
in Cetratus. The quarantine-mode aims at protecting the system against
those events. Possible software patching failures are contained within the
quarantine-mode (R1 in Table 3.12). This technique prevents any propa-
gation of faults through the system. New software faults while running, in
addition to possible software patch setup errors at the setup(patch) step,
are also kept under control. These failures shall be then reported by the
diagnostics component.

Cetratus fits in with current industrial safety and security standards with
respect to software updates [15]. The Cetratus dynamic update use case, il-
lustrated in Figure 4.2, fulfils at the methodological and procedural level the
IACS patching procedure proposed for the asset owner by the IEC 62443-2-3
technical document [15]. Indeed, the quarantine-mode execution and mon-
itoring approach introduced in Cetratus accomplishes the In internal test
activity required by the IEC 62443-2-3 [15], without compromising and/or
affecting the whole system safety and/or timing properties or requiring a
replicated system to reproduce the cyber-physical environment. Through
Cetratus, this step is internally performed inside the system (R5 in Table
3.12). As recommended by the standard [15], in order to enforce trustwor-
thiness, a third-party authorization which endorses the software upgrade is
required to perform such updates.

4.1 Design

The Cetratus system architecture for an application, which is composed by
three upgradable components, is shown in Figure 4.3, in which the amount
of application components are specified at the system design stage. The
software architecture is divided in two parts. At the top, application spe-
cific components are provided. At the bottom, the Cetratus framework
components are defined (depicted in yellow color in Figure 4.3). These el-
ements are generic and reusable for any kind of application. For each of
the upgradable application components, two containers are configured, A
and B respectively (depicted in blue and green color in Figure 4.3). These
containers are defined while system design and development phase, and
might statically be allocated (R3 in Table 3.12). A modular approach is
also adopted, as recommended by the safety standards [13].
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4.1 Design

Partitioning techniques are adopted in Cetratus for the execution of appli-
cation components and for the quarantine-mode execution and monitoring
of software patches. Each of the container is defined as a partition. For
example, as depicted in Figure 4.3, six partitioned containers are created
for three application components. These partitioning measures, widely used
in mixed-criticality systems [53], provide independence of execution both in
the spatial and time domains. Fault containment is then achieved (R1 in
Table 3.12). As far as live updates are concerned, the propagation of patch-
ing failures across the system are prevented. During the quarantine-mode
execution and monitoring phase, new software faults while running are also
kept under control.

A message-based communication is used among system runtime modules
and application components, which are handled by the Message Router.
System input data is provided to the application components by the Provider
module and system outputs dispatched out by the Dispatcher. Apart from
that, the quarantine-mode based dynamic software updating procedure is
handled by the Updater module, while the Monitor provides the software
patch execution data to the Auditor user (R2 in Table 3.12).

4.1.1 Cetratus Framework Components

In this subsection the Cetratus framework components depicted in Figure
4.3 are described. The implemented interfaces by these modules are also
provided.

Provider & Dispatcher

The Provider and Dispatcher runtime modules provide system input and
output management services to the application components. They act as
wrappers to the underlying specific input and output drivers, such as digital
or analogous I/O, fieldbus communications, etc. System input information
is fetched by the Provider from the data sources. In contrast, the Dispatcher
manages system output communications and actuators. In a similar way
to safety or security payloads produced by the application modules and
forwarded to the Dispatcher are analogously handled.

In case safety-related or security-related digital communications are em-
ployed, the transportation layer of such data is just rearranged. Safety
or security associated data payload is firstly acquired from the physical
datagrams (for example from a PROFIsafe, Ethernet POWERLINK safety
or Safety-over-EtherCAT fieldbus) and embedded then within an inter-
partition message. This message will be next forwarded to the correspond-
ing application component in which such communications are handled and
processed. A black channel approach, widely employed for safety-related
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4 Cetratus

communications, is adopted, in which security measures could also be im-
plemented [17]. Figure 4.4 shows the ISysPro and ISysDis interfaces
provided respectively by the Provider and Dispatcher modules.

≪interface≫
ISysPro

+getInputs() : Inputs
-readSysInputs() : void

≪interface≫
ISysDis

+setOutput (output : Output) : void
-dispatchSysOutputs () : void

Figure 4.4: ISysPro and ISysDis interfaces

Message Router

The Message Router enables the information exchange among all applica-
tion components and other system modules. All inter-partition communica-
tions are handled by this element. An ARINC-653 [144] inter-partition com-
munication model has been adopted, where a message-passing mechanism is
used. Firstly, communication services among application components and
I/O wrappers (Provider and Dispatcher) are offered. Secondly, message du-
plications and redirections tasks are accomplished for the quarantine-mode
execution and monitoring.

Two different interfaces are implemented by the Message Router. On the
one hand, the ISysUpdater interface, shown in Figure 4.5 is presented to the
Updater module. This interface offers to the Updater the necessary means
for the interaction of it with other system modules. The ComID is an
identifier label used within the system which specifies in which application
component is the operation performed. It is extracted from the dynamic
patch meta-data information.

≪interface≫
ISysUpdater

+packStateCmd() : StateStream
+execStateTransCmd (stateStream : StateStream) : void
+startQuarantineMode (comId : ComID) : int
+stopQuarantineMode (comId : ComID) : int
+rmQuarantineSetup (comId : ComID) : int
+subsCompPrimaryCmd (comId : ComID) : int
+log (message : String) : void

Figure 4.5: ISysUpdater interface
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4.1 Design

On the other hand, the ISysMonitor interface shown in Figure 4.6 en-
ables the quarantine-mode monitoring. Quarantine-mode patch execution
information is retrieved through this interface while running by the Monitor
module. The information supplied from the application component and the
outcome produced by it are collected. This information is then supplied to
the Auditor. The QuaranInputInfo and QuaranOutputInfo data objects
contain respectively, input and output information transmitted and received
from the application component while the quarantine-mode execution is ac-
complished. This data will be then supplied to the Auditor.

≪interface≫
ISysMonitor

+getQuarantineInputInfo(comId : ComID) : QuaranInputInfo
+getQuarantineOutputInfo(comId : ComID) : QuaranOutputInfo

Figure 4.6: ISysMonitor interface

Updater & Monitor

The quarantine-mode based dynamic software updating procedure is han-
dled itself by the Updater module, while the Monitor provides software
patch execution data to the Auditor system user. The Updater and Moni-
tor modules, as depicted in Figure 4.3, enable the interaction of the Updater
and Auditor users with the system. Nevertheless, an access control scheme
regulates which user is allowed to perform given operations in the system.

The dynamic software updating process is managed by the Updater mod-
ule, where an indirection handling table is used. This factory design pattern
was also employed by Baummann in the K42 operating system kernel [121].
In this table, records associated to each of the application components are
registered. Application component meta-data (name of the component, ver-
sion and description) is stored and the status of the application components
supervised.

≪interface≫
IUpdater

+quarantine (patch : Patch) : int
+remove (patch : Patch) : int
+substitute (patch : Patch) : int

≪interface≫
IAudit

+validate (patch : Patch) : int
+reject (patch : Patch) :int

Figure 4.7: IUpdater and IAudit interfaces
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In contrast, the Monitor collects quarantine-mode execution monitoring
information for the Auditor, in which the input supplied to application com-
ponent and the computed output from it is gathered. This is accomplished
through the IMonitor interface, which is shown in Figure 4.8. In addi-
tion, the execution footprint (such as CPU usage, timings and the required
memory) evidences could be also obtained. This information might also be
included in the Patch exec info data structure. The diverse monitoring
approach with separation between the monitor and the monitored system
is highly recommended by the IEC 61508 [13].

≪interface≫
IMonitor

+getQuarantineExecInfo (patch : Patch) : Patch exec info

Figure 4.8: IMonitor interface

4.1.2 Application Components

Application components are the basics of the safety-critical program, which
may execute or offer many types of functions or services, such as security,
safety, diagnostics, communications stacks or HMIs. Once the system is de-
ployed, a replacement component can be created and a dynamic patch pro-
duced. In a similar way to hardware redundancy, these A and B component
containers are alternatively switched as the primary application component
racks. The second container is adopted as the secondary one, more specif-
ically, on the quarantine-mode execution and monitoring stage. Despite, a
secondary container would be not necessary if an application component is
defined as not upgradable. The system shall hold enough resources for the
allocation and execution of future software updates. Thus, most likely, it
might initially be oversized.

Every application component shall fulfil with a predefined IApp API con-
tract. This interface compliance is mandatory in order to incorporate and
couple new software components within the system. The application com-
ponent shall be self-contained, single-threaded and not hold any hardware
resource. This interface is depicted in Figure 4.9. Moreover, state packing
and unpacking related operations depicted in Figure 4.9 would be not nec-
essary in case stateless software design patterns are used for the design and
development of application components. This strategy, which is encouraged
by safety guidelines [13], reduces the number of steps to be accomplished in
the DSU process.

86



4.1 Design

≪interface≫
IApp

+setInput (input : Input) : void
+getOutput () : Output
+getActualState() : StateStream
+savePackedState(stateStream : StateStream) : int
+execStateTransformer() : int
-execComponent() : void

Figure 4.9: IApp interface diagram

In order to perform the state transformation, the actual state is packed
and a StateStream, which is a binary encoded string, composed through the
getActualState() method. In contrast to the Input and Output data ob-
jects, the state contains application component specific information, which
might not be public for other components, for example the state of a commu-
nication protocol, Proportional Integral Derivative (PID) parameter values
or application or component configuration. The application components
can also employ the inter-component communication services offered by the
Message Router. The IComm interface is offered to the application com-
ponents for inter-component, as well as and other system module commu-
nications. This interface defines the methods to create, open and close a
communication channel from which messages are sent and received. This
interface is not depicted in the software architecture shown in Figure 4.3.

≪interface≫
IComm

+createChannel (name : String, ComID) : Channel
+openChannel (channel : Channel, ComID) : int
+closeChannel (channel : Channel) : int
+sendMessage (channel : Channel, Message : message) : int
+receiveMessage (channel : Channel) : Message

Figure 4.10: IComm interface

On the contrary to a static patch (diff and patch utilities on UNIX), as
pointed out by Hicks [75], a dynamic patch may include, in addition to the
new updated executable binary, state transformation procedures (new global
variables, type and data transformers) and meta-data. A patch description
file is described and used by Hicks [75]. This file contains the description
and the implementation of the patch.

87



4 Cetratus

In Cetratus, the name of the application component to be updated and its
version is supplied in the dynamic patch meta-data information. Code and
state transformation procedures are also included in this file. Typically, a
dynamic patches building system is needed, where source code compilation,
analysis and transformation utilities are often utilized [82]. Static analysis
are also frequently performed. Figure 4.11 shows the Cetratus dynamic
patch building procedure.

Application
component
source code

v(n)

Application
component
source code
v(n− 1)

Static
analyser

Meta-data

State
transformers
template

[Cross-]
Compiler

Linker &
Composability

tester

Dynamic
Patch
(.cdp)

Developer

Cetratus Dynamic Patches Generation

Figure 4.11: Cetratus dynamic patch building procedure

As depicted, a static analysis is initially performed. Through the se-
mantics and syntactic analysis, the application component meta-data is
extracted and the state transformation template created by looking and
examining accessible variables. To this end, annotations are inserted by
the Developer in the source code. The Updater user shall verify the gen-
erated state transformation functions, most likely, adjust and/or complete
them. Additional static analyses might be also carried out that attempt
to highlight possible security-related bugs and/or vulnerabilities. The dy-
namic patch is then compiled and linked. After linking, the composability
of the new application component is checked. More specifically, the compli-
ance of the generated dynamic patch against the IApp and IComm APIs
is validated.

The information contained within the dynamic patch shall be protected
when transmitted to the target system (through reverse-engineering, an
attacker could obtain valuable information regarding system weaknesses
and/or embedded malicious code). For this purpose, a secure communica-
tion protocol, such as the TLS, is necessary. In addition, a digital signature
is created. The dynamic patch must be then transmitted together with
this digital signature (R6 in Table 3.12). These measures would ensure its
integrity and confidentiality.
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4.2 Safe Live Updates

4.2 Safe Live Updates

In this subsection, the quarantine-mode based live patching approach em-
ployed in Cetratus is described. This sandboxing strategy was also applied
by Payer et al. in DynSec [109] and suggested as future work by Chen [115]
for LUCOS. In a similar way to the approach adopted by P. Hosek and
C. Cadar [80] and Wahler et al. [139], a multi-version execution tactics is
employed in Cetratus. In contrast to Wahler et al. [139] and FASA [139],
the inclusion of new application components in Cetratus is only possible if
unoccupied containers are available in the system. In FASA, where a whole
system reconfiguration is feasible, system flexibility and reconfigurability
is prioritized over safety. A roll-back mechanism is also provided in case
unexpected behaviour is encountered in the new software version. How-
ever, neither dynamic reconfigurations nor backward recoveries are advised
in safety-critical systems [13]. In Cetratus, such features are not present.

Figure 4.12 shows the quarantine-mode based dynamic software updating
process time-line introduced in Cetratus.

Time

Update
request

Quarantime
mode starts

Wait time
for confirmation

Substitution

Quarantine-mode

Setup

Code
transformation

State
transformation

Execution & Monitoring

Figure 4.12: Quarantine-mode based dynamic software updating process
time-line

Concerning real-time properties, the dynamic software updating process
shall not alter or disrupt the services or performance of the system. Usu-
ally, the updating procedure stops the actual running program in order to
apply the corresponding code and state transformation procedures. In case
demanding transformations are faced or a constrained system is employed,
this interruption might lead to a disruption of the service. Accordingly, in
Cetratus, spare time (previously assigned) is employed to complete those
transformations at the Setup stage.

As described previously, two containers are initially configured for each
of the application components: A and B. These containers, which are both
spatially and temporally isolated, are alternatively switched for the current
executing application component and the possible quarantine-mode execu-
tion. Current primary container, which indicates in which of the containers
the stable application component version is placed, is recorded in the PRI-
MARY state variable.

89
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Figure 4.13 illustrates the PRIMARY state-transition diagram. As de-
picted, the A container is selected as the primary one when the system is
initially deployed. The PRIMARY state variable specifies which of the A
and B containers is actually employed as the primary one.

AA BB

Figure 4.13: Application component patching PRIMARY state-transition
diagram

Furthermore, an application component goes from a series of states dur-
ing the dynamic software update process. This information is stored in the
STATUS state variable and is aligned with the patch lifecycle model pro-
vided by the IEC 6244-3-2 technical document [15]. Figure 4.14 depicts the
system STATUS state-transition model.

ExecutingExecuting

SetupSetup

QuarantineQuarantine

ValidatedValidated

RemovingRemoving SubstitutingSubstituting

C1C2

C3

C4

C5

C6

C7

C8
C9

Figure 4.14: Application component patching STATUS state-transition di-
agram
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Table 4.1 provides the description for each of the conditions shown in
Figure 4.14.

ID Description

C1

A dynamic software update has been requested by the Updater and
endorsed by the Auditor.The quarantine(patch ∶ Patch) method,
available in the IUpdater interface shown in Figure 4.7 is used.

C2
A time out exception occurs while trying to set up the dynamic patch.
The dynamic software updating process is then aborted.

C3
The setup has successfully been accomplished and the quarantine-mode
based execution and monitoring starts.

C4
The dynamic patch is validated by the Auditor. The
validate(patch ∶ Patch) method from the IAudit interface is used.

C5

The dynamic patch is removed by the Updater or rejected by the
Auditor.This is accomplished through the remove(patch ∶ Patch) (in
interface IUpdater) or reject(patch ∶ Patch) (in interface IAudit)
methods shown in Figure 4.7.

C6
The dynamic patch is rejected by the Auditor. The
reject(patch ∶ Patch) method is used.

C7

A substitution request is received from the Updater and confirmed by
the Auditor. The substitute(patch ∶ Patch) method (in IUpdater
interface) is invoked.

C8 The dynamic patch has been successfully removed.

C9
The dynamic patch has been substituted. The PRIMARY state
variable is switched.

Table 4.1: Transition conditions for the application component STATUS
states

Application component PRIMARY and STATUS states information, de-
picted in Figure 4.13 and Figure 4.14, are used and handled by the Updater
module for the patching process.

The quarantine-mode execution and monitoring enables an isolated soft-
ware patch execution, where software patching failures are contained. This
method stops any propagation of failure through the system, likewise a
mixed-criticality [53] approach. New software and patching defects are not
considered by Wahler et al. [133] and in FASA [139]. These failures are
kept under control through the quarantine-mode. Moreover, the live patch-
ing process is aborted and the patch rejected in case insufficient resources
(memory and time) are faced. The goal of Cetratus is to ensure an uninter-
rupted safety integrity level of the system while high maintainability and
availability is achieved.
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4 Cetratus

Initially, the primary application component is only executed, for which
the value of the PRIMARY state variable is consulted. This procedure is
depicted in Figure 4.15. As observed, the Message Router redirects system
input and output data to the corresponding application component con-
tainer. To this end, the Message Router gets the input information from
the Provider and delivers then to the corresponding application component
container.

readSysInputs()

getInputs()
inputs

saveInput(input)

execComponent()

getOutput()
output

setOuput(output)

getInputs()
inputs

saveInput(input)

execComponent()

getOutput()
output

setOuput(output)

dispatchSysOutputs()

MessageRouter CX-A CX-B Provider DispatcherTime

[B]

alt

[A]

loop

[executing]

Figure 4.15: Application component execution sequence diagram

The safe live update is carried out in three main phases, which are: Update
request and patch setup (subsection 4.2.1), Quarantine-mode execution and
monitoring (subsection 4.2.2) and Substitution (subsection 4.2.3). These
phases, which are represented in Figure 4.16, Figure 4.17, Figure 4.18 and
Figure 4.19, are detailed in the rest of this section. A safe live update of a
single application component is presented.
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4.2 Safe Live Updates

4.2.1 Update request & patch setup

After the dynamic patch is transferred to the target system (for example
through sFTP or FTPS) and the integrity and authenticity of it are checked
(R6 in Table 3.12), the dynamic software updating process starts with an
update request by the Updater. Nonetheless, in alignment with the IEC
62443 standard [14], the Updater and Auditor system users shall be first
identified and authenticated (R7 in Table 3.12). This prevents that the
presented live patching feature is not maliciously employed by an attacker
to dodge already introduced security countermeasures.

As long as the Auditor endorses the software update, the Setup stage
begins, which is performed while the former application is being executed.
This phase is illustrated in Figure 4.16. Both procedures shown in Fig-
ure 4.15 and 4.16 take place simultaneously, in parallel. The application
component STATUS state variable is then set to Setup.

The Updater module firstly checks which of the containers holds the pri-
mary application component by examining the application component PRI-
MARY state variable. This variable defines which of the A and B containers
is considered currently the primary one, and therefore, which container is
empty and/or available as the secondary one. The dynamic patch is then in-
stantiated and configured in the secondary container. On the one hand, code
transformation is accomplished by loading the new executable code included
in the dynamic patch into the secondary container. In contrast to binary
rewriting and trampolines, the indirection handling technique employed in
Cetratus makes sure that the primary executable code is not affected by the
dynamic updating process.

On the other hand, for the state transformation, the state of the old
application component is wrapped, and unwrapped then in the new appli-
cation component. This state is later on adjusted (if needed) through the
execution of state transformers. To this end, methods defined in the IApp
interface, shown in Figure 4.9, are employed. The Message Router is used
to move the wrapped application component state from the old component
to the new one. Once the new state is transferred, the state transformation
methods are invoked by calling the execStateTrasformer method defined
the IApp interface. By checkpointing, the state of the old application is only
obtained through the IApp interface. Likewise, the state transformation is
also accomplished by means of this interface. The runtime framework can
not directly access the internal states of the application components, en-
forcing safety. In-place or by use of indirection data updates would require
access privileges while running.
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confirmQuarantine(patch)

confirmation

quarantine(patch)

loadCode(CX-B)

getActualState()

stateStream

packStateCmd()

stateStream

savePackedState(stateStream)
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Figure 4.16: Update request & patch setup sequence diagram
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As affirmed by Wahler et al. [133], this state has to be transformed within
the same execution cycle. If this task is not completed in the same cycle, an
outdated application component state could be transformed and perhaps,
an inconsistent state encountered. As depicted in Figure 4.16, Cetratus
sends a stateTransT imeOut state transformation timeout notification. The
dynamic update is also cancelled. The time required to perform the code
and state transformations depend on the computation capabilities of the
utilized hardware platform. These state transformation limitations pushes
to minimize the program state size, or even better, the adoption of stateless
software design patterns, as recommended by IEC 61508 [13]. In this case,
simply the code transformation would be necessary. The constraints of
Cetratus push towards the design of stateless software, as advised by safety
guidelines [13]. As can be seen in Figure 4.16, the setup of the dynamic
patch is realized while the old application component is cyclically being
executed.

4.2.2 Execution & monitoring

Once the setup phase is successfully completed, the quarantine-mode exe-
cution and monitoring starts, where a multi-version execution is performed.
At this point, STATUS state variable is set to Quarantine. Figure 4.17
shows the quarantine-mode execution procedure.

In this execution-mode, both the old application component and the new
one are run in parallel, in which the input data collected by the Provider
module is shared with both of them. In addition, the supplied input and
computed output information from each application component version are
sent to the Monitor module. However, the outcome produced by the ap-
plication component enclosed in the primary container (as specified in the
PRIMARY state variable) is only delivered by the Message Router to the
Dispatcher. This procedure is iteratively accomplished in each execution
cycle. As depicted in Figure 4.17, the execution of both versions is synchro-
nized.
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readSysInputs()
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saveInput(input)
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Figure 4.17: Quarantine-mode execution sequence diagram
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Meanwhile, the Monitor module enables the quarantine-mode based mon-
itoring for the Auditor system user. This process is depicted in Figure 4.18.
Quarantine-mode execution information is included in the patch exec info
data, in which CPU and memory usage information might also be incorpo-
rated. As illustrated, this information is supplied to the Auditor by invoking
the getQuaranExecInfo(patch) method. After certain time, the Auditor
might collect enough evidences that confirm the correctness of the new ap-
plication component and validate the dynamic patch. The given patch is
then marked as validated. The STATUS state variable is set to V alidated.

getQuarantineInputInfo(comId)
quaranInputInfo

getQuarantineOutputInfo(comId)
quaranOutputInfo

patch exec info

getQuaranExecInfo(patch)

verifyPatchExec(patch)

validate(patch)

confirmation

log(patchValidated)

approved

Updater Auditor Updater MessageRouter Monitor

opt

loop

[tested]

Figure 4.18: Quarantine-mode monitoring sequence diagram

4.2.3 Substitution

In the last phase of the dynamic software update process, the substitution
operation is performed. To that end, the dynamic patch needs to previously
be validated by the Auditor (the value of the STATUS state variable has to
be V alidated). A confirmation from this system user is also necessary later
on. Alternatively, the software update can be discarded at any moment
by the Updater or the Auditor. In the substitution phase, the quarantine-
mode execution and monitoring is stopped first. Afterwards, if the patch
is removed, the quarantine-mode setup is disabled. The old application
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component is not replaced with the new one (the PRIMARY state variable is
not commutated). On the contrary, if the software update is endorsed by the
Auditor, the substitution of the application component is accomplished and
the PRIMARY state variable, which indicates to the system the version of
the application component to be executed, is switched. Figure 4.19 depicts
this procedure.

stopQuarantineMode(comId)

confirmation

rmQuarantineSetup (comId)

confirmation

remove(patch)

patch removed

confirmSubstitute(patch)

confirmation

stopQuarantineMode(comID)

confirmation

subsCompPrimaryCmd(comId)

confirmation

substitution sucessfull

substitute(patch)

Updater Auditor Updater MessageRouter

[substitute]

alt

[remove]

Figure 4.19: Substitution sequence diagram

98



4.3 Implementation

4.3 Implementation

Safety is a big concern in dynamic software updates. Even more, in our case,
the proposed solution might be certified against safety standards, such as
IEC 61508 [13], and be adopted on the design, development and maintenance
of a safety-critical system. Thus, not only software safety, but whole system
safety has to be also warranted. A prototype version of Cetratus has been
implemented as an Ada runtime system, which fulfils with the software
architecture and design level safety requirements and provides a proof-of-
concept of the proposed solution.

As claimed by Stoyle [94], the most important technical challenge resides
on how to address the unsafe features of the C programming language. In-
stead of C, TAL and Popcorn were used by Hicks [75]. TAL incorporates
typing rules, which guarantee type safety, control flow safety and memory
safety on an untyped assembly language. A variant of TAL was developed
and employed by Hicks for Popcorn, a safe C-like language. In this pro-
gramming language, unsafe C features, for instance pointer casts or generic
address operators, are excluded. Static analyses are often also performed
to ensure the correctness of software patches when unsafe programming
languages are used. This is the main reason why the Ada programming
language has been chosen for the implementation of the Cetratus prototype
system. Besides, this language is widely adopted on the development of
safety-critical and/or mission-critical systems and it is highly advised by
the safety community [13].

In a similar way to Wahler et al. [133], utilities from an underlying
commercial operating system are employed, since dynamic software updates
are indirectly supported by these operating systems. Long-term support
and liability is also achieved. In this case, the implemented prototype of
Cetratus is POSIX compatible. It has initially been integrated with Real-
Time Linux, running on a x86 architecture computer (Intel I5 core running
at 1.2 GHz). Even that predictability and efficiency is decreased, as shown
by De la Puente et al. [145], POSIX interface provides high portability of
the solution among operating systems, and hence architectures. Indeed, the
implemented Cetratus proof-of-concept could be reasonably cross-compiled
for another computer architecture, such as ARM or PowerPC.

In order to be able to accomplish a dynamic software update, it is ad-
vised to reach recurrently a possible update point. For this reason, a cyclic
behaviour of the application is required, which means that application com-
ponents should run in an infinite loop. This software design pattern is highly
recommended by the safety software guidelines [13]. A time-triggered ar-
chitecture is employed. In contrast to the usual dynamic software updating
process, in Cetratus, there is no need for any update point for the initial-
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ization of the patch. Nevertheless, an update point has to be reached to
start the quarantine-mode execution and monitoring and the substitution
stages. Furthermore, similarly to the approach presented by P. Hosek and
C. Cadar [80], the thread execution shall be synchronized in the quarantine-
mode execution, where the old and the new program run in parallel.

Figure 4.20 depicts the cyclic execution timeline of all Cetratus frame-
work modules and application components depicted in Figure 4.3. In order
to ensure that the real-time requirements are satisfied, at design time, exe-
cution time is statically allocated for all framework elements, including both
A and B containers for each application component (R4 in Table 3.12).
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Figure 4.20: Schedule of Cetratus runtime modules and application compo-
nents

As observed in Figure 4.20, the DSU functionality demands higher plat-
form resources. Double memory and execution time is needed for each
application component (two containers are created for each one). Some ex-
ecution time has to be also allocated for the dynamic software updating
service (enabled by the Updater and Monitor modules). Nevertheless, in
case a multi-core platform is employed instead of a single-core one, another
processor could be used to execute the quarantine-mode container. This
would decrease the required execution time in each processor.

4.4 Conclusions

In this chapter, the Cetratus framework has been described. As stated
throughout, the proposed solution fulfils with the main requirements pre-
sented in Table 3.12 for enabling dynamic updates in safety-critical systems.
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In order to protect the computer program, and in consequence the system,
a quarantine-mode execution and monitoring mode is adopted (R1 in Table
3.12), where the new software version is executed and monitored for software
and patching faults (R2 in Table 3.12). This mode allows the internal testing
of new application component versions (R3 in Table 3.12). To this end, two
different containers are created for each upgradable application component.
These containers are statically allocated, as recommended by the safety
standards [13] (R3 in Table 3.12). A static temporal partitioning is also
implemented (R4 in Table 3.12), ensuring that application executions of a
container do not compromise the timing properties of others.

Moreover, an authentication and authorization of system users is enforced
(R7 in Table 3.12). This measure prevents that the dynamic updating fea-
ture is not maliciously employed by an attacker to dodge currently im-
plemented security countermeasures. At the update request, the digital
signature of the dynamic patch is also verified to ensure its integrity and
authenticity (R6 in Table 3.12). Table 4.2 summarizes the employed meth-
ods to satisfy the requirements defined in Table 3.12.

ID Definition Measure

R1
Protection against
patching failures

A quarantine-mode execution and
monitoring mode, similar to

sandboxing. For this purpose,
partitioning techniques are used

R2
Software updates fault

monitoring

The new software is executed and
monitored in such mode for software

and patching failures

R3 Static resource allocation
Upgradable application component
containers are statically allocated

R4
Time-triggered

architecture
Temporal partitions are initially

defined

R5
Internal testing

capability

The new software version is tested
while quarantine-mode execution and

monitoring phase

R6
Software patch integrity

and confidentiality
A digital signature is provided

together with the dynamic patch.

R7

Authentication and
authorization of system

users

The Updater and Auditor system
users are authenticated.

Table 4.2: Employed methods for safe and secure DSU compliance
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In this chapter the validation of the proposed solution is presented. The
validation has been carried out by means of an initial validation and two
case studies:

• Initial Validation: The proposed solution is initially validated to en-
sure that the developed prototype fulfils the functional requirements.

• Smart Energy Case Study: A smart building energy management ap-
plication is considered. In this case study, an additional security layer
is dynamically incorporated to enhance customer data security and
privacy.

• Railway Case Study: In the railway case study, the Euroradio com-
ponent, which is responsible for safety-related digital communications
between the train and track-side equipment is upgraded. A more se-
cure MAC scheme is incorporated to the system while runtime.

5.1 Initial Validation

For the initial validation, the proposed solution is evaluated through an
experiment. First of all, the system reads several inputs. After that, the
system output is determined based on the obtained data. This procedure
is cyclically executed every 20 ms. For the assessment of the dynamic soft-
ware updating functionality presented in this paper, an additional sawtooth
wave signal is provided to the system as an input. This signal is then trans-
formed into a triangular wave by the program and settled as an extra system
output. Through the dynamic update, the signal processing algorithm is ad-
justed, smoothing the output signal. Instead of the triangular wave signal,
a parabola is produced. The described process is shown in Figure 5.1.

As shown in Figure 5.1, a triangular wave signal is initially produced by
the system. After a dynamic update request from the Updater, the new
software patch is initialized. The quarantine-mode execution and monitor-
ing step would indefinitely be then accomplished until a remove or substi-
tution command is received from the Updater. For this purpose, in this
experiment, the behaviour of the Updater and the Auditor were predefined
beforehand. At cycle 63, the software patch is configured and initialized.
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Figure 5.1: Validation - Input, output & internal signals

The new software patch is then internally executed and monitored between
cycles 64 and 112. At this point, a substitution is finally performed. The
old Program application component is halted. This is the reason why no
output computed by the old Program is no longer illustrated after cycle 112
in Figure 5.1.

Figure 5.2 shows the CPU usage on each execution cycle for the imple-
mented Cetratus runtime, the old program and the new software compo-
nents. As observed, the implemented runtime introduces a relatively small
overhead. Nevertheless, a meaningful boost is appreciated at cycle 63, where
the setup of the patch is accomplished, in which the code and state transfor-
mations are performed. The required amount of time is determined by the
size of new executable code to be imported (including state transformation
functions), the size of the application component state to be transferred,
and the computational capabilities of the hardware platform. A time-out
notification is sent by Cetratus in case the state was not possible to be
transferred within a single execution cycle. The dynamic software update
process is also aborted.
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5.2 Smart Energy Case Study

These days, information and communication technologies are being em-
ployed and integrated towards the accomplishment of interconnected and
intelligent smart cities, where the comprehensive goal is to improve the
quality of living of citizens. This might include the reduction of wastage,
resource consumption and/or the improvement of overall living costs. To
this aim, smart and advanced services are offered. High interconnectivity
among all sensing, storing, processing and analysing devices is fundamental,
a tendency enabled and promoted by the IoT and the IIoT technologies.

In case of energy sector, Smart Energy and Smart Energy Systems refer
to the design and implementation of sustainable and cost-effective energy
management strategies [146]. This topic is actually being analysed and
investigated in several research projects, such as in/by CITyFiED [147].
The goal of this project is “to develop a replicable, systemic and integrated
strategy to adapt European cities and urban ecosystems into the smart city
of the future, focusing on reducing the energy demand and Green House
Gas (GHG) emissions and increasing the use of renewable energy sources
by developing and implementing innovative technologies and methodologies
for building renovation, smart grid and district heating networks and their
interfaces with ICTs and Mobility” [147].

5.2.1 Building Energy Management System

A smart grid platform which makes use of information and communication
technologies is employed in CITyFiED for grid management solutions. Fig-
ure 5.3 illustrates the adopted approach. The system is divided in different
levels. First, a Building Energy Management System (BEMS) is defined,
which gathers the energy flows information of each of the buildings in the
district. Electric car charging points are also installed in some parking slots.
Secondly, the District Energy Management System (DEMS) monitors en-
ergy generation and distribution at district level. Data collected by the
DEMS and BEMS system is transmitted to the application server. For this
purpose, third party information, e.g. weather forecast or electricity tariff
published by the Energy Service Company (ESCO) is used. Moreover, a
remote HMI provides home actual status, historical data and trending, as
well as third-party information. The graphical user interface will provide a
dashboard to depict such data, as well as alerts and notification in case of
unnecessary waste of energy.

In this case study, a smart building electrical energy management appli-
cation is considered, consisting of the BEMS, and a Building Energy Opti-
mization Service (BEOS) cloud application. On the one hand, the BEMS
is responsible of monitoring and controlling diverse energy-related facilities
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Figure 5.3: Smart Grid and ICT system in CITyFiED [147]

on a residential building. Firstly, different energy sources are managed and
scheduled: a wind turbine, solar cells and the electrical grid. It is assumed
that a wind turbine and solar cells have been installed at the roof of the
building. Secondly, the supplied electric power is used by various home ap-
pliances, the elevator and a electric car charger. The BEMS continuously
measures the energy consumption of these equipments. Finally, an energy
storage unit is also used. The BEMS directly controls the wind turbine and
solar cells, as well as the energy storage unit and the electric car charger,
which have safety requirements. We assume that the electric car charging
points are installed in an underground parking garage, within the building.

Figure 5.4 depicts the described smart energy application. On the con-
trary to the Smart Grid and ICT system proposed in CITyFiED [147], the
DEMS is ignored.
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Figure 5.4: Building Energy Management System (BEMS)

On the other hand, all energy consumption and savings measurements are
transmitted to a BEOS. This cloud application estimates and optimizes the
overall building energy consumption for higher energy efficiency and cost
reduction. For this purpose, in addition to the data sent by the BEMS,
other information sources are analysed: the actual and expected electricity
fees, and weather forecasts for renewable energy sources estimations.

In this chapter, a mixed-criticality software architecture based on the Ce-
tratus runtime framework is proposed for the BEMS. The presented scheme
allows the dynamic update of application components. A live update exam-
ple is also later on provided, where the customer data privacy is improved
through the use of homomorphic cryptography techniques. Certainly, the
cloud service should be able or be adapted to process this kind of encrypted
data.

5.2.2 Software Architecture

The software architecture of the BEMS is shown in Figure 5.5. The appli-
cation software running in the BEMS is divided among several application
components, identified in Table 5.1. Wind and solar energy productions
are measured by the C-WEM and C-SEM components. The C-HEM ap-
plication component measures the electrical energy consumption of home
appliances, including non-shift habits, such as lighting, installed in each
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flat. The C-EEM monitors the energy consumption of the elevator. The C-
ESC controller manages the energy storage unit, where previously produced
and captured energy is accumulated for use at a later time. For this purpose,
rechargeable batteries are employed. The C-ECC manages and controls the
electric vehicle charging station. Due to the involved risks, such as electrical
surges and leakages, both the C-ECC and C-ESC components need to fulfil
with safety standards.

ID Name

C-BEM Building Energy Manager
C-SDC Secure Data Collector

C-WEM Wind Energy Meter
C-SEM Solar Energy Meter
C-HEM Home Energy Meter
C-EEM Elevator Energy Meter
C-ECC Electric Charger Controller
C-ESC Energy Storage Controller

Table 5.1: Application components in BEMS

The C-BEM is the overall building energy manager, and it is able to
decide when the electrical energy is purchased and obtained from the grid.
These electrical energy purchasing and saving profiles might manually be
determined or, preferably, requested to the BEOS. All energy production
and consumption data are gathered by the C-SDC. This component shall
integrate the required security countermeasures to ensure the confidentiality
and integrity of the records sent to the cloud application.

Two containers (depicted in blue and green color in Figure 5.5), which
provide isolated execution environments both in the spatial and temporal
domain, are defined for each of the application components (except for the
C-ECC and C-ESC). These containers are defined in the software design
phase, and are statically allocated, as advised by safety guidelines [13].
Safety-related application components C-ECC and C-ESC (depicted in red
color in Figure 5.5) are determined as not upgradable, since in case that
safety hazards and risks have been properly addressed or the operational
conditions of the system do not change, software updates are not recom-
mended in safety engineering [13]. Therefore, a secondary container is not
required.
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5.2 Smart Energy Case Study

As far as Cetratus framework components are concerned, the dynamic
software update functionality is enabled by the Updater and Monitor run-
time modules. On the one hand, the dynamic software updating process
is managed by the Updater, which performs the required code and state
transformations. All application components shall be compliant with the
IApp interface and be developed under the proposed framework. On the
other hand, patch execution monitoring data is gathered by the Auditor.
The execution footprint, such as memory usage, CPU or timing behaviour,
is also gathered.

Input and output abstraction are offered by the Provider and Dispatcher
framework modules, which act as wrappers to the underlying specific input
and output drivers, such as fieldbus communications, digital or analogous
I/O, etc. This information is forwarded to the corresponding application
components through the Message Router. Message passing procedure is
transparently handled by the Message Router, without modifying the data
contained in the message.

Finally, the Message Router enables the inter-component and other sys-
tem module communications, by means of a message-passing mechanism.
The IComm interface is offered to the application components for such
inter-component communications. This interface defines the methods to
create, open and close a communication channel from which messages are
sent and received.

5.2.3 Partitioning

Typically there are many agents involved in the design of such complex
systems, and their integration is a growing concern. In order to assure that
specification, design, implementation and certification (if needed) stages
are independent among components, partitioning is used. A partition is
a strictly independent execution environment that is protected from other
partitions. For this purpose, independence of execution both in the temporal
and spatial domains shall be achieved.

On the one hand, temporal partitioning ensures that application exe-
cutions of a partition do not compromise the timing properties of other
partitions by monopolizing the CPU or shutting down the system, for in-
stance. To achieve this, applications are executed only during the time
slices they are assigned to. During this time, services received from shared
resources must not be affected by applications in other partitions. In the
case of control applications as BEMS, it is essential to guarantee that each
temporal partition is assigned enough processing time to complete its exe-
cution. On the other hand, spatial partitioning ensures that the software
within a partition can not access memory resources of another partition. To
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this end, the access to memory regions where data and code reside is con-
trolled, which avoids unauthorised read/write operations and commanding
resources hosted in different partitions.

Two main partitioning approaches exist: hypervisors and partitioning en-
abled operating systems. In the case of hypervisors, e.g. Xtratum [50] [51],
different operating systems can be run in a processing element, creating
completely isolated virtual execution environments. Regarding partitioning
enabled operating systems, isolation is obtained by enhancing the host oper-
ating system’s features so that partitioning techniques can be implemented.
As an example of this approach, the INTEGRITY RTOS (POSIX compli-
ant) developed by Green Hills Software has been certified for security, safety
and reliability domains, including IEC 61508 SIL3 [13]. Spatial partitioning
is obtained by Virtual Address Space (VAR)s, which are protected memory
regions of code and data that can only be reached by authorised processes.
A Partition Scheduler is used to set a cyclic schedule of temporal partitions
where different VARs are allocated, so that they can be bounded in time by
designers. The combination of these two elements provides a great flexibil-
ity for virtualization, since code and data stored at a certain VAR can be
executed several times in different temporal partitions if desired, without
violating any partitioning principle.

Each component of the BEMS application is allocated in an independent
spatial partition to have isolation. Each one of these spatial partitions is
executed at least in one temporal partition, but may be executed in more
than one depending on the containing component, such as Message Router
or Monitor components, which are executed several times.

Figure 5.6 shows a proposal for scheduling the execution of the parti-
tions. The Major Frame is the execution that is repeated periodically and
it is defined at the design phase using adequate timing analysis techniques.
Timing analysis techniques are mathematical methods to formally calculate
the response time of a system, easing its design towards obtaining the cer-
tainty that the system is schedulable even in the worst-case scenario [148].
If a component is going to be updated, a temporal partition for the execu-
tion of its secondary version must be scheduled, as shown in the picture.
Moreover, extra time within the provider-dispatcher frame can be allocated
in case another component is going to be executed in the future, considering
its secondary version for dynamic updating as well (components C-X-A and
C-X-B). This provides the system a higher degree of expandability without
compromising its temporal restrictions.
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As shown in Figure 5.6, the Major Frame is divided into three stages:
First one acquires system inputs and delivers them among their correspond-
ing components. Then, each component performs its processing tasks during
their assigned periods of time, and finally the last stage corresponds to sys-
tem output delivery. The Provider component is executed first, since it is
the only one that has an input interface. As shown in the software architec-
ture depicted in Figure 5.5, it is connected to the Message Router so that
inputs can be delivered to the rest of the components. The Message Router
component allows communication between all components, which is why
it is executed after each component has been run. Monitor and Updater
components are in charge of controlling the software update process, and
finally the Dispatcher, using the information transmitted through the Mes-
sage Router, selects the outputs from the different application components.
Thanks to partitioning, it is guaranteed that when running components in
Cetratus, if any misfunction occurs during the dynamic software update pro-
cess, it shall be contained and it will not jeopardize the correct functioning
of the rest of the system.

In the INTEGRITY RTOS, the temporal partitions are defined by the
following parameters:

• AddressSpace: allows allocating spatial partitions within temporal
partitions.

• Offset : sets the relative time in the Major Frame when the partition
starts its execution.

• Exectime: sets the length of time it is executed. It is guaranteed
that after this time, no matter what happens, the execution of that
partition will be stopped and the scheduled next one will start.

Therefore, the Major Frame will be the sum of all temporal partitions in
the schedule. In this case, it has been set to 25 ms, which has been proved
to meet all temporal constraints of the system. In Listing 5.1 an extract
from the INTEGRITY Integration File is shown. Here the scheduling of
the temporal partitions within the periodic the Major Frame is defined.
Temporal partitions must be, at least, long enough to allow components
allocated to them to be executed in their worst-case execution times.
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Par t i t i onSchedu l e BEMS

MajorFramePeriod 25
# Major Frame per iod i s 25 m i l l i s e c o n d long

P a r t i t i o n Provider
AddressSpace Provider #Provider VAS
O f f s e t 0
Exectime 1
# At 0 mi l i s e conds in to the major frame run 1 mi l i s e conds

EndPart i t ion
. . .

P a r t i t i o n Updater
AddressSpace Updater #Updater VAS
O f f s e t 1 . 5
Exectime 3 .5

EndPart i t ion

P a r t i t i o n Message Router
AddressSpace Message Router
O f f s e t 5
Exectime 0 .5

EndPart i t ion

P a r t i t i o n Monitor
AddressSpace Monitor
O f f s e t 5 . 5
Exectime 0 .75

EndPart i t ion
. . .

P a r t i t i o n C−SDC A
AddressSpace CSDC A #Secure Data Co l l e c to r A VAS
O f f s e t 17 .07
Exectime 0 .78

EndPart i t ion

P a r t i t i o n C−SDC B
AddressSpace CSDC B #Secure Data Co l l e c to r B VAS
O f f s e t 17 .85
Exectime 0 .78

EndPart i t ion
. . .

P a r t i t i o n Dispatcher
AddressSpace Dispatcher #Dispatcher VAS
O f f s e t 24
Exectime 1

EndPart i t ion

EndPart i t ionSchedule

Listing 5.1: Partition Scheduler integration file
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5.2.4 Live Patching

In this section, a live update example is presented, where a new security layer
is incorporated to enhance customer data security and privacy. Concretely,
the C-SDC application component is upgraded. In this new application com-
ponent, a homomorphic encryption algorithm is integrated [34]. Through
homomorphic encryption, all data exchanged by the BEMS with third-party
cloud services is then protected against information leakages. Other secu-
rity weaknesses, bugs or misconfigurations could also be fixed through this
update. A prototype of the presented BEMS has been developed, which is
executed on a x86 industrial computer. The implemented Cetratus runtime
framework has been integrated over INTEGRITY RTOS. Regarding DSU,
features from the underlying operating system are employed.

Although a secure communication channel is used for the transmission of
energy production, savings and consumption data, e.g. by means of TLS or
any other encrypted and authenticated communication protocol, the smart
energy data is stored and processed in clear text by third-party services.
Confidential information is then exposed to them. As stated previously,
software updates are necessary to address security and privacy issues that
might be encountered during the operational period of the system. Assum-
ing that the system has already been deployed and it is being executed, a
live update would be necessary to address this problem. As a solution to
the presented privacy issue, homomorphic cryptography algorithms might
be employed [149].

Figure 5.7 illustrates the outputs produced processed by both C-SDC ap-
plication component, and the data transmitted to the BEOS cloud service
by the Dispatcher, during the quarantine-mode based live patching proce-
dure. The new C-SDC also encrypts such data in that processing phase. As
depicted, at the beginning, plain data gathered by the first component ver-
sion is transmitted to the cloud application. The BEOS receives, stores and
processes plain customer energy production, savings and consumption data,
where customer living behaviour patterns and private information might be
obtained from. At 26th hour, the second version of the C-SDC applica-
tion component is initialized. This component is then internally executed
and monitored on quarantine-mode. During this stage, both versions are
executed and the behaviour of the new component verified.

After the validation, a substitution of the former application component
is performed. This step is accomplished at hour 63. The former C-SDC
component is then halted. As shown, after performing the live update, cus-
tomer information is hidden. The encrypted data computed by the second
component version is sent to the BEOS. Citizen privacy is then ensured.
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Figure 5.8 shows the system performance in terms of CPU and response
times. At the top, the CPU time of both C-SDC version application com-
ponent versions during the live update process is depicted in µs. As said
before, The first version C-SDC component is executed for the first 26 hours,
and after that, when its secondary version starts its execution, a notable
increase in CPU time is observable. This period of time, which is in fact
the quarantine-mode period, the use of CPU will reach its peak, since both
components are being executed at the same time. Almost the whole avail-
able CPU time is required at this stage for both application components.
After that, when the quarantine-mode and live update process are already
accomplished, the usage decreases again to a slightly higher value than the
one at the beginning. The new C-SDC application component version de-
mands higher CPU usage than the old one due to the higher computational
cost required for the data encryption operations. Consequently, the new
application component makes use of all the available CPU time assigned to
it.

Temporal requirements of the system might be in danger when the total
CPU usage demanded by the application components and/or other system
modules increases significantly. The plot at the bottom of Figure 5.8 shows
the system response time, i.e. the time required by the application to pro-
duce and send the output. As noted, the system response time values do not
go beyond the time limits defined through temporal partitions. As stated
before, these temporal partitions have been designed so that all temporal
requirements can be met in any case. The system shall be able to deliver
outputs before the end of the major frame period (25 ms). The system
is then capable of ensuring all the temporal requirements and constraints
while both application component versions are being executed.
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5.3 Railway Case Study

In this section, a railway case study is presented. Even though it does not
consider a strictly zero downtime safety-critical application (an usual soft-
ware update could be accomplished at the end of the mission for example),
a theoretical interest exists.

5.3.1 European Railway Traffic Management System

The European Railway Traffic Management System (ERTMS) is an Euro-
pean major project which aims at promoting interoperability and safety by
replacing previous national signalling systems with an unique signalling and
communication standard. It is, at the time of writing, formed upon two
parts: The Global System for Mobile Communications - Railway (GSM-
R) communications and the European Train Control System (ETCS). The
GSM-R is a radio system which provides voice and data communication
between the track and the train. On the contrary, the ETCS system is an
Automatic Train Protection (ATP) system, which constantly computes a
safe maximum speed for the train. For safety purposes, the on-board could
then gain control over the driver in case the authorised speed is exceeded.

Three levels of operation modes are defined in ERTMS. These levels are:

• Level 1: In the first level, a non-continuous communication between
the train and track-side equipment exists. This is usually achieved by
Euro-balises. Furthermore, the train position is detected by former
track-side systems. Traditional line-side are also needed.

• Level 2: In this level, GSM-R technology is incorporated for a con-
tinuous communication and supervision by and for the train. Likewise
level 1, the detection of the train is accomplished by equipments out-
side ERTMS. Former line-side are not compulsory.

• Level 3: Lastly, the third level involves full ERTMS-based train in-
tegrity, supervision and management, which is entirely based on GSM-
R radio communications. Line-side signals and track-side equipment
except Euro-balises are not longer necessary.

Figure 5.9 shows the high-level picture of the ERTMS railway signalling
system for levels 2 and 3. The European Vital Computer (EVC), also de-
noted Eurocab, is the heart of the ETCS system. This safety-related con-
troller supervises the speed of the train. In case it exceeds the permitted
vehicle speed (or a fault within the system is detected), the emergency brak-
ing is activated to stop the train. Other equipments, such as the Juridical
Recording Unit (JRU) and odometry units, which measure and estimate the
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speed and position of the vehicle, are also used on-board. Usually, a HMI
is provided to the driver, denoted Man Machine Interface (MMI). These
elements are connected to the EVC.

EVC

GSM-R

antenna

Traffic Management
(TMS)

RBC Interlocking

Train Detection
Track Controls

Balise

GSM-R

Figure 5.9: High-level ERTMS railway signalling system for levels 2 and 3

The radio messages sent from the train are collected by the Radio Block
Center (RBC). This information is then forwarded to the Traffic Manage-
ment System (TMS). The TMS manages the interlocking systems, train
detection and track controls, as well as balises, installed on the track-side.
It is also able to deliver safety-related information, such as movement au-
thorities, to the vehicles through the GSM-R communications.

For the compatibility of the new system with former national railway
management systems, two more levels are established. On the one hand, in
ERTMS level 0 missions, ETCS equipped trains are operated along railway
lines in which neither ERTMS nor a national signalling system is present.
On the other hand, the ERTMS level National Train Control (NTC) refers
to trains equipped with the ETCS system which are run in lines equipped
with a national signalling system.

From the security point of view, the authentication and integrity of such
radio messages transmitted among trains and track-side equipments have
to be ensured. However, as affirmed by I. Lopez and M. Aguado [150],
presently adopted security measures do not provide enough trustworthiness.
Consequently, an update of such security mechanisms is necessary.

In this case study, an overview of GSM-R communications is firstly given
and the security measures adopted to be adopted in these communications
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then explained. The need of security measure replacements is also moti-
vated. Specifically, a new cryptographic algorithm as an alternative to the
one used in the Euroradio protocol is proposed. After that, a live patching
process to replace such cryptographic algorithm is presented. This update
is dynamically carried out by means of Cetratus.

5.3.2 GSM-R communications

GSM-R technology, which is an adaptation of the Global System for Mobile
Communications (GSM) for the railway domain, enables the information
exchange among trains and track-side systems in ERTMS level two and
above. In order to prevent interferences with other radio communications,
an specific frequency range is used by GSM-R, where the A5/1 encryption
algorithm is applied (the A5/3 block cipher may also be supported). This
cryptographic mechanism provides data confidentiality among mobile and
base stations. Two layers are adopted on top of GSM-R in ERTMS: Euro-
radio and Application Layer. The communication layers used in ERTMS
are illustrated in Figure 5.10.

Application layer
[Safety-related Data]

EuroRadio
Type Direction MAC

GSM-R
Header Footer

Figure 5.10: Communication layers in ERTMS

At the application layer, the safety-related messages are generated for
data exchange between the trackside and the train. This application pro-
tocol provides protection against message delays, replay, malformation or
deletion. To achieve this aim, message acknowledgements and timestamps
are used. The specifications of this layer are given by the Subset-026 [151]
technical document. On the contrary, a MAC is provided by the Eurora-
dio layer to ensure the authentication and integrity of the messages. For
this end, the Triple Data Encryption Algorithm (TDEA) block cipher, also
known as 3DES, is used on a CBC-MAC mode (CMAC). In TDEA, the Data
Encryption Standard (DES) encryption algorithm is applied three times to
each data block. As a result, a 64 bit MAC is generated. This procedure is
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specified at the subset-037 [152] technical document, where a 192 bit key,
named KsMAC is necessary.

The selection of a more cost-efficient and secure cryptographic algorithm
instead of TDEA is recommended by ENISA [153] and NIST [154]. As an
alternative, the AES is proposed by the NIST. Furthermore, a key shorter
than 128 bits will be not recommended by security agencies after 2020 [150].
A proof-of-concept attack against the Euroradio layer was presented by
Chothia et al. [155], showing the security weaknesses of the actual ERTMS
communications. In this work, a Movement Authority (MA) command was
forged. In a similar way, the use of a different cryptographic primitive up-
date, such as AES, is proposed to enhance the security level of the Euroradio
layer. A 128 bits MAC is produced by the AES-128-CBC-MAC scheme with
a 128-bit length key.

5.3.3 Live MAC Algorithm Update

In this section, a live patch is applied to the system through Cetratus, in
which the GSM-R communication stack component is updated. The goal
of this procedure is to bring up to date the former Euroradio TDEA based
MAC algorithm with the recommended AES-128-CBC-MAC one. This case
study was performed on a testing workbench, within a laboratory. A 32 bits
single-core PowerPC embedded platform is employed and the INTEGRITY
RTOS is used as the underlying operating system. The developed prototype
is connected to a testing platform, from which inputs and outputs are driven.
GSM-R communications are emulated as serial communications, since the
developed prototype does not incorporate any GSM-R transceiver. In the
final implementation, a GSM-R hardware module would be coupled to this
serial interface.

In this live update process, a dynamic patch is firstly created and trans-
ferred then to the target system. In this dynamic patch, a new Euroradio
component is enclosed. For compatibility reasons, the new application mod-
ule processes both Euroradio MAC and AES-128-CBC-MAC schemes based
messages. As depicted in Figure 5.11, four MA commands are sent to the
train. The acquired authorisation speed is also visualized. In this case
study, the Euroradio application component is cyclically executed every 30
ms.
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The first half of the transmitted MA messages include a 64 bit MAC,
computed by applying the TDEA-based Euroradio MAC algorithm. In
contrast, the remaining messages incorporated a 128 bit MAC, calculated
using the AES-128-CBC-MAC scheme. These messages are given in Table
5.2. Meanwhile, eleven Position Report (PR) messages are transmitted from
the train to the base station. These messages are not depicted in Figure
5.11.

Packet
ID

Safety-related Data

MAC algorithm
T TRAIN V STATIC V LOA

MA1 1153 200 km/h 200 km/h
Euroradio MAC

MA2 1159 250 km/h 250 km/h

MA3 1161 120 km/h 100 km/h
AES-128-CBC

MA4 1165 120 km/h 100 km/h

Table 5.2: Received Movement Authority (MA) messages by the train from
the base station

As it can be observed in Figure 5.11, the Euroradio component firstly ob-
tains and processes the MA1 message. The authorised speed for the train
is then settled to 200 km/h. After that, as request by the Updater, the
new Euroradio component is initialized at cycle 115 and the quarantine-
mode execution and monitoring starts. During this mode, two commands
are received by the train: MA2 and MA3. On the one hand, MA2 is pro-
cessed by both EuroradioDES and EuroradioAES component Nevertheless,
because a MAC based on the former Euroradio MAC scheme is employed,
the safety data contained in the message is discarded by the EuroradioAES

component. A maximum speed permission of 250 km/h is then accepted.
On the other hand, the MA3 message can not be processed by the old
EuroradioDES component, since it can not corroborate the authenticity of
it. The MA3 message is not then taken into account by the system, since
during the quarantine-mode period, the information processed by the new
software EuroradioAES is not considered. The safety-related command is
then omitted by the system. Therefore, in order to address this problem,
two MA3 messages containing the same safety-related information, each of
them authenticated with a different MAC algorithm, should be transmitted
by the track-side equipment to the train. As illustrated in Figure 5.11, while
quarantine-mode execution, a limited speed of 120 km/h is obtained by the
EuroradioAES . Finally, once the behaviour of EuroradioAES is validated
by the Auditor, the substitution is performed and the new EuroradioAES
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component is executed as the primary one. This is carried out at cycle 283.
Afterwards, when the MA4 is received, which contains the same safety-
related data of MA3, the authorised speed is set to 120 km/h.

Table 5.3 shows the transmitted PRs from the train to the base station,
which contains the actual position and speed information of the vehicle.

Packet
ID

Safety-related Data MAC
algorithmT TRAIN V TRAIN

PR1 1154 100 km/h

Euroradio-
MAC

PR2 1155 100 km/h

PR3 1156 101 km/h

PR4 1157 101 km/h

PR5 1158 102 km/h

PR6 1160 102 km/h

PR7 1162 103 km/h

PR8 1163 103 km/h

PR9 1164 104 km/h
AES-128-

CBC-MAC
PR10 1166 103 km/h

PR11 1167 103 km/h

Table 5.3: Transmitted PR messages from the train to the base station

Figure 5.12 shows the CPU time employed in each execution cycle for the
old EuroradioDES and new EuroradioAES components. The CPU time
used to receive and process MA messages, as well as to construct and send
PR messages is displayed. Besides, the CPU time used by the Cetratus
runtime is also presented. By default, a small overhead is introduced by
Cetratus to the system. Yet, a significant increment is detected at cycle 115,
where the setup of the patch is accomplished, up 13,56 % of CPU usage. As
far the Euroradio component is concerned, as confirmed by Chothia et al.
[155], the AES-128-CBC-MAC algorithm is executed much faster than the
former EuraRadio MAC scheme. In the worst case, a CPU usage of 13,02 %
is reached at cycle 136 while the quarantine-mode execution and monitoring,
specifically, when the PR4 message is assembled and transmitted.
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6 Conclusions

High interconnectivity is desired in the actual IIoT era, also known as In-
dustry 4.0 or the fourth industrial revolution. In this automation trend,
which is referred as the industrial subset of the IoT, machine learning and
big data technologies are incorporated to the already existing automation
technologies, where connectivity, data acquisition and machine to machine
communications are essential. However, due to the high interconnectivity
among all connected devices, security concerns arise, specially for safety-
critical systems, which deal with those scenarios that might lead to serious
injury to people, loss of life, or damage to the natural environment. Conse-
quently, the safety engineering community has started to take into account
those security threats. It has to be ensured that these mixed-criticality sys-
tems provide not only the required safety integrity level, but also be resilient
against cyber-attacks.

Safety-critical systems have usually long operational periods, up to twenty
or thirty years from time to time, and might require a recertification pro-
cess after any modification. Due to these reasons, software updates are
rarely applied to these systems. However, even that leading edge security
countermeasures are adopted at the development phase, these protection
mechanisms could be overtaken sometime, since new security vulnerabili-
ties are discovered every day. Consequently, software updates are necessary.
Nevertheless, system shutdown and restarts may not be acceptable in those
safety-related applications where high-availability is requested.

6.1 Contribution

This PhD thesis provides a review of industrial safety and security standards
regarding software updates. Besides, a literature review on DSU techniques
and systems for safe and secure IACS is given. In this study, twenty different
DSU systems were analysed, categorised and compared. The DSU proper-
ties of each DSU system was also examined and the compliance against
safety and security requirements evaluated.

Besides, a novel software framework, called Cetratus, is proposed for
safety-critical systems in this PhD thesis, which enables the dynamic up-
date of application components. The fundamental characteristic is the
quarantine-mode, where the initialization and the execution of the soft-
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ware patch is isolated. As a result, patching failures do not lead to any
unsafe scenario or disruption of the service. The proposed solution is able
to enhance current security protection measures without system shutdown.
Cetratus is aligned with the industrial IEC 61508 [13] and IEC 62443 [14]
standards and satisfies the internal test activity recommended by the IEC
62443-2-3: Patch management in the IACS environment technical docu-
ment [15]. As required by this standard, the integrity and authenticity of
the dynamic patch is checked before proceeding with the update. Table 6.1
shows the dynamic software updating methods utilized in Cetratus.

Characteristic Property Employed Method

Code
transformation

Technique Indirection handling

Unit of update Component

State
transformation

State transformer Manual

Mode Eagerly

Data update Checkpointing

Update
point

Specification Activeness Safety

Multi-threaded No

Table 6.1: Dynamic software updating methods employed in Cetratus

A proof-of-concept of Cetratus has been implemented as an Ada runtime
service. The Ada programming language is highly recommended by the
safety and even security engineering communities for the development of
safety-critical and/or mission-critical systems. High portability among op-
erating systems, and thus hardware platforms, is achieved firstly by means
of the selected programming language, and secondly, by virtue of the POSIX
API. Cetratus prototype has been successfully built for x86 and PowerPC
architectures. The initial validation of the prototype was performed on a
x86 computer, running the Real-Time Linux operating system, where the
signal processing algorithm was dynamically modified. The prototype was
then integrated with Integrity RTOS and executed on a x86 industrial com-
puter and on a 32 bits single-core PowerPC embedded platform.

Furthermore, two case studies are presented. On the one hand, a mixed-
criticality solution based on the Cetratus is presented for a BEMS. This
system observes and manages different energy sources and outcomes on a
residential building, where energy-related data, such as energy savings and
consumption measurements, are transmitted to a BEOS cloud application.
In the presented live update example, an homomorphic encryption algorithm
is included in the new application component version. The experiment is
performed on the x86 industrial computer.
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On the other hand, in the railway case study, the former MAC scheme
of the Euroradio application component, for which security flaws have been
disclosed, is upgraded. As an alternative, a MAC algorithm based the AES
block cipher, a cryptographic algorithm suggested by NIST, is employed.
This new MAC scheme would allow to ensure the integrity and authenticity
of the GSM-R messages exchanged among trains and track-side ERTMS
systems. The live update is carried out on the 32 bits single-core PowerPC
embedded platform, on a testing workbench.

This research topic has garnered attention in recent years during the
preparation of this PhD thesis. A patent was fulfilled and granted by/to the
National Technology & Engineering Solutions of Sandia, LLC [156], where
a system and a method for real-time upgrade of industrial control software
is presented. The same approach and DSU techniques employed in/for Ce-
tratus are used. Nevertheless, it does not provide software patch monitoring
features and the whole program is updated at once. A re-certification of the
system would be then needed. A multi-version execution approach based
DSU system, called MVEDSUA, was also proposed by L. Pina et al. [157]
(in collaboration with A. Andronidis, M. Hicks, the author of DLpop, and
C. Cadar [79, 80]), which targets high-performance servers. To this end,
they extended the Kitsune DSU system to enable multi-version execution.
A leader-follower strategy is adopted, which is analogous to the quarantine-
mode based approach presented in this PhD thesis. Figure 6.1 shows the
DSU stages in MVEDSUA [157].

Leader

Follower

Ring-Buffer

t0 t1 t2 t3 t4 t5 t6 t7

Version 0

Version 1

t0 t1 t2 t3 t4 t5 t6 t7

Single
Leader

Outdated
Leader

Updated
Leader

Single
Leader

Stage

Figure 6.1: Update stages of MVEDSUA (reproduced from ref. [157] with
permission from L. Pina)
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6.2 Dissemination

In this section, the peer-reviewed conference papers and journal articles
published during this thesis are shown. Actually, some passages in this
PhD thesis have been quoted verbatim from these sources.

Conference Papers

Title: Software Updates in Safety and Security Co-engineering

Authors: Imanol Mugarza, Jorge Parra and Eduardo Jacob

Conference: SAFECOMP2017: International Conference on Computer Safety,
Reliability, and Security. 12th International ERCIM/EWICS/ARTEMIS
Workshop on “Dependable Smart Embedded and Cyber-physical Systems and
Systems-of-Systems”.

Publication: Lecture Notes in Computer Science book seriec (LNCS, volume
10489, pp. 199-210)

Date & Venue: September 12, 2017 - Trento (Italy)

Title: Cetratus: Towards a live patching supported runtime for mixed-criticality
safe and secure systems

Authors: Imanol Mugarza, Jorge Parra and Eduardo Jacob

Conference: SIES 2018: International Symposium on Industrial Embedded
Systems

Publication: IEEE proceedings (pp. 1-8)

Date & Venue: June 6-8, 2018 - Graz (Austria)
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Journal Articles

Title: Analysis Of Existing Dynamic Software Updating Techniques For Safe
And Secure Industrial Control Systems

Authors: Imanol Mugarza, Jorge Parra and Eduardo Jacob

Journal: International Journal of Safety and Security Engineering (ISSN:
2041-904X)

Quality: SJR in 2018: 0.163, Q3

DOI: https://doi.org/10.2495/SAFE-V8-N1-121-131

Editorial: WIT Press

Date: February 1, 2018

Title: Dynamic Software Updates to Enhance Security and Privacy in High
Availability Energy Management Applications in Smart Cities

Authors: Imanol Mugarza, Andoni Amurrio, Ekain Azketa and Eduardo Jacob

Journal: IEEE Access (ISSN: 2169-3536)

Quality: JCR in 2018: 4.098, Q1

DOI: https://doi.org/10.1109/ACCESS.2019.2905925

Editorial: IEEE

Date: March 21, 2019

Journal Articles under Review

Title: Cetratus: A framework for zero downtime secure software updates in
safety-critical systems

Authors: Imanol Mugarza, Jorge Parra and Eduardo Jacob

Journal: Software: Practice and Experience

Quality: SJR in 2018: 0.45, Q2

Editorial: Wiley
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6 Conclusions

6.3 Future Work

Although a dynamic software update mechanism for zero downtime safety-
critical systems is proposed in this thesis, further research is necessary in
order to be able to accomplish live software updates on computer-based
safety-critical systems.

On the hand one, procedures and methods to verify and validate the new
software versions are necessary. The validation of a new software version
is a challenging task, which highly depends on the deployed application. It
has to be ensured that the new software components fulfil with the expected
functionality and requirements. To this end, a regression testing technique,
which is defined by G. Rothermel [158, 159] as ”an expensive task performed
on modified software to provide confidence that modified code behaves as
intended, and that modifications have not inadvertently disrupted the of
unmodified code”, might be used. Usually, in regression testing, previously
generated test-suits are used instead of generating new ones. With this
in mind, the Auditor should gather software updates monitoring data and
evaluate, for example by means of statistical analyses or formal methods,
as proposed by M. Jalili [160], the correctness of the new software version.
A general testing framework was proposed by L. Pina and M. Hicks [161]
to systematically test if the dynamic update introduces any undesired mis-
behaviours and/or crashes. Besides, the specifications of a secure remote
dynamic software updating service could be defined.

On the other hand, as reported by J.L. Fenn et al. [162], actual re-
certification costs depend on the size and complexity of the system to
be updated. Consequently, even that a minimal change is performed, re-
certification costs might reach or exceed the initial assessment costs. As
stated, the goal is to relate those costs to the characteristics of the change
itself, instead to the system. Based on the feedback and lessons learned
[162], in order to reduce re-certification costs and time to market, previ-
ously generated engineering artefacts might be reused.

As indicated by J.L. Fenn et al. [162], a successful elaboration of a mod-
ular assurance case is firstly mandatory in order to achieve an incremental
certification. This property is also a key factor for the maintainability of the
assurance cases. Modularity enables broad granularity and high cohesion
among system components. The use of COTS products is also propitious.
The design of the assurance case starts at the early system development
phases. In this step, a study focusing on the expected or possible changes
to the system is crucial, for example due to the new functional security re-
quirements. This analysis allows to build assurance cases which are more
receptive to changes. In case no change scenario is contemplated at all, it
is conceived that the system will remain unchangeable over its lifetime.
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6.3 Future Work

Figure 6.2 illustrates the conceptual idea of a modular and incremental
certification approach. The fundamental idea is to reuse engineering arte-
facts from a previously accomplished certification process. The volume of
the required new artefacts subset might also be tried to reduce. This proce-
dure would repeatedly be achieved for each system software upgrade. Notice
that performing a software upgrade is a risk and business management de-
cision [162].

Old
artefacts

New
artefacts

Reused
artefacts

Certification
n

Certification
n + 1

Figure 6.2: Reuse of engineering artefacts in an incremental certification

After categorizing and filtering each software modification, system main-
tainers shall determine which changes are required for the system. For
the re-certification of the system, it is crucial to came upon with highly
maintainable and long living assurance cases, where new argumentation ele-
ments and therefore new evidences, are incorporated. As stated by Larrucea
[71], the modularity strategy permits the reuse of safety case elements and
components. An additive argumentation approach is necessary. Moreover,
historical evidences, argumentation and certification data for each system
certification shall also be preserved. In the context of this thesis, these
evidence gathering and argumentation tasks should be carried out by the
Auditor user.
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[7] L. Piètre-Cambacédès and C. Chaudet, “The sema referential frame-
work: Avoiding ambiguities in the terms “security” and “safety”,” In-
ternational Journal of Critical Infrastructure Protection, vol. 3, no. 2,
pp. 55–66, 2010.

[8] INTERNATIONAL ATOMIC ENERGY AGENCY, IAEA Safety
Glossary. Vienna: INTERNATIONAL ATOMIC ENERGY
AGENCY, 2008.

[9] N. Kuntze, C. Rudolph, G. B. Brisbois, M. Boggess, B. Endicott-
Popovsky, and S. Leivesley, “Security vs. safety: Why do people die
despite good safety?,” in Integrated Communication, Navigation, and
Surveillance Conference (ICNS), 2015, pp. A4–1, IEEE, 2015.

[10] P.-c. Ludovic and C. Claude, “Disentangling the relations between
safety and security,”

137



BIBLIOGRAPHY

[11] A. Burns, J. McDermid, and J. Dobson, “On the meaning of safety
and security,” The Computer Journal, vol. 35, no. 1, pp. 3–15, 1992.

[12] Kaspersky Security Intelligence, “Industrial cybersecurity threat land-
scape,” 2016. [Online; Accessed 19. November 2016].

[13] International Electrotechnical Commission, “Functional safety of elec-
trical/electronic/programmable electronic safety related systems,”
IEC 61508, 2000.

[14] International Electrotechnical Commission, “IEC 62443: Industrial
communication networks - Network and system security,” 2010.

[15] International Electrotechnical Commission, “IEC 62443-2-3: Indus-
trial communication networks - Network and system security - Patch
management in the IACS environment,” 2010.
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[65] P. J. Graydon and T. P. Kelly, “Using argumentation to evaluate
software assurance standards,” Information and Software Technology,
vol. 55, no. 9, pp. 1551–1562, 2013.

[66] Y. He and C. Johnson, “Generic security cases for information system
security in healthcare systems,” 2012.

[67] C. Preschern, “Catalog of security tactics linked to common crite-
ria requirements,” in Proceedings of the 19th Conference on Pattern
Languages of Programs, p. 7, The Hillside Group, 2012.

[68] T. P. Kelly, Arguing safety: a systematic approach to managing safety
cases. PhD thesis, University of York, 1999.

[69] T. Kelly, I. Bate, J. McDermid, and A. Burns, “Building a prelimi-
nary safety case: An example from aerospace,” ROLLS ROYCE PLC-
REPORT-PNR, 1998.

[70] P. Graydon and I. Bate, “Realistic safety cases for the timing of sys-
tems,” The Computer Journal, vol. 57, no. 5, pp. 759–774, 2013.

[71] A. Larrucea, I. Martinez, C. F. Nicolas, J. Perer, and R. Ober-
maisser, “Modular development and certification of dependable
mixed-criticality systems,” in 2017 Euromicro Conference on Digital
System Design (DSD), pp. 419–426, IEEE, 2017.

[72] SANS Institute, “Common Criteria and Protection Profiles: How to
Evaluate Information,” 2003.

142



BIBLIOGRAPHY

[73] M. Nicholson, P. Conmy, I. Bate, and J. McDermid, “Generating and
maintaining a safety argument for integrated modular systems,” in
5th Australian Workshop on Industrial Experience with Safety Critical
Systems and Software, Melbourne, Australia, pp. 31–41, 2000.

[74] SANS Institute, “The Common Criteria ISO/IEC 15408 - The Insight,
Some Thoughts, Questions and Issues,” 2001.

[75] M. Hicks, J. T. Moore, and S. Nettles, Dynamic software updating,
vol. 36. ACM, 2001.

[76] K. Makris, Whole-program dynamic software updating. PhD thesis,
Arizona State University, 2009.

[77] J. Mitchell, D. Henderson, and G. Ahrens, “Ibm power5 processor-
based servers: A highly available design for business-critical applica-
tions,” IBM White paper, 2005.

[78] D. Henderson, J. Mitchel, and G. Ahrens, “Power7 r system ras: Key
aspects of power systemst m reliability, availability, and serviceabil-
ity,” 2010.

[79] C. Cadar and P. Hosek, “Multi-version software updates,” in Pro-
ceedings of the 4th International Workshop on Hot Topics in Software
Upgrades, pp. 36–40, IEEE Press, 2012.

[80] P. Hosek and C. Cadar, “Safe software updates via multi-version exe-
cution,” in Proceedings of the 2013 International Conference on Soft-
ware Engineering, pp. 612–621, IEEE Press, 2013.

[81] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S. Foster,
“Kitsune: Efficient, general-purpose dynamic software updating for
c,” in ACM SIGPLAN Notices, vol. 47, pp. 249–264, ACM, 2012.

[82] L. G. G. de Pina, Practical Dynamic Software Updating. PhD thesis,
INSTITUTO SUPERIOR TECNICO, 2016.

[83] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic adap-
tive detection and prevention of buffer-overflow attacks.,” in Usenix
Security, vol. 98, pp. 63–78, 1998.

[84] S. Sinha, M. Koedam, R. Van Wijk, A. Nelson, A. B. Nejad, M. Geilen,
and K. Goossens, “Composable and predictable dynamic loading for
time-critical partitioned systems,” in 2014 17th Euromicro Conference
on Digital System Design, pp. 285–292, IEEE, 2014.

143



BIBLIOGRAPHY

[85] S. Subramanian, M. Hicks, and K. S. McKinley, Dynamic software
updates: a VM-centric approach, vol. 44. ACM, 2009.

[86] M. Solarski, “Dynamic upgrade of distributed software components,”
2004.

[87] Y. Berbers and Y. Vandewoude, “Dynamically updating component-
oriented systems.,” 2007.

[88] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic
software updating for c,” in Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06, (New York, NY, USA), pp. 72–83, ACM, 2006.

[89] K. Saur, M. Hicks, and J. S. Foster, “C-strider: type-aware heap
traversal for c,” Software: Practice and Experience, 2015.

[90] K. Saur, “Dynamic upgrades for high availability systems,” 2015.

[91] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster, “State
transfer for clear and efficient runtime updates,” in Data Engineer-
ing Workshops (ICDEW), 2011 IEEE 27th International Conference
on, pp. 179–184, IEEE, 2011.

[92] C. M. Hayden, “Clear, correct, and efficient dynamic software up-
dates,” 2012.

[93] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “Opus: Online
patches and updates for security.,” in Usenix Security, vol. 5, p. 18,
2005.

[94] G. Stoyle, “A theory of dynamic software updates,” 2007.

[95] “ISO/DIS 26262 - Road vehicles – Functional safety,” tech. rep.,
Geneva, Switzerland, July 2009.

[96] International Electrotechnical Commission, “IEC 62278: Railway Ap-
plications—Specification and Demonstration of Reliability, Availabil-
ity, Maintainability and Safety (RAMS),” ed. GENEVA, SWITZER-
LAND: IEC Central Office, pp. 21–24, 2002.

[97] International Electrotechnical Commission, “IEC 62279: Railway
applications-Software for railway control and protection systems,” ed.
GENEVA, SWITZERLAND: IEC Central Office, 2002.

144



BIBLIOGRAPHY

[98] International Electrotechnical Commission, “IEC 62425: Railway ap-
plications - Communication, signalling and processing systems - Safety
related electronic systems for signalling,” ed. GENEVA, SWITZER-
LAND: IEC Central Office, pp. 21–24, 2002.

[99] “IEC 61511 Functional Safety - Safety instrumented systems for the
process industry sector,” tech. rep., International Electrotechnical
Commission, 2003.

[100] International Electrotechnical Commission, “IEC 62061: Safety of ma-
chinery—Functional safety of safetyrelated electrical, electronic and
programmable electronic control systems,” IEC, 2005.

[101] International Electrotechnical Commission and others, “IEC 61784:
Digital data communications for measurement and control,” ed.
GENEVA, SWITZERLAND: IEC Central Office, pp. 21–24, 2010.

[102] G. Disterer, “ISO/IEC 27000, 27001 and 27002 for information secu-
rity management,” 2013.

[103] The Common Criteria Recognition Agreement Members, “Com-
mon Criteria for Information Technology Security Evaluation.”
http://www.commoncriteriaportal.org/, Sept. 2006.

[104] R. Melton, T. Fletcher, and M. Earley, “System protection profile–
industrial control systems,” Version 1.0, National Institute of Stan-
dards and Technology, 2004.

[105] Bundesamt für Sicherheit in der Informationstechnik, “Common cri-
teria protection profile standard reader - smart card reader with pin-
pad supporting eid based on extended access control,” Bundesamt für
Sicherheit in der Informationstechnik, 2013.

[106] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, “A survey of
dynamic software updating,” Journal of Software: Evolution and Pro-
cess, vol. 25, no. 5, pp. 535–568, 2013.

[107] E. Miedes and F. D. Munoz-Escoı, “Dynamic software update,” tech.
rep., Technical Report ITI-SIDI-2012/004, 2012.

[108] A. Richter, “Dlopen (3),” Linux Programmer’s Manual, 1995.

[109] M. Payer, B. Bluntschli, and T. R. Gross, “Dynsec: On-the-fly code
rewriting and repair.,” in HotSWUp, 2013.

145



BIBLIOGRAPHY

[110] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “Polus: A powerful
live updating system,” in Proceedings of the 29th international confer-
ence on Software Engineering, pp. 271–281, IEEE Computer Society,
2007.

[111] K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic soft-
ware updates using stack reconstruction.,” in USENIX Annual Tech-
nical Conference, vol. 2009, 2009.

[112] K. Makris, “Upstare manual,” 2012.

[113] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: In-
termediate language and tools for analysis and transformation of c
programs,” in International Conference on Compiler Construction,
pp. 213–228, Springer, 2002.

[114] I. G. Neamtiu, Practical Dynamic Software Updating. ProQuest, 2008.

[115] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live updating
operating systems using virtualization,” in Proceedings of the 2nd in-
ternational conference on Virtual execution environments, pp. 35–44,
ACM, 2006.

[116] K. Makris and K. D. Ryu, “Dynamic and adaptive updates of non-
quiescent subsystems in commodity operating system kernels,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 327–340, 2007.

[117] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless ker-
nel updates,” in Proceedings of the 4th ACM European conference on
Computer systems, pp. 187–198, ACM, 2009.

[118] C. Binnie, “Zero downtime linux,” in Practical Linux Topics, pp. 33–
39, Springer, 2016.

[119] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xeni-
dis, D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen,
et al., “K42: building a complete operating system,” ACM SIGOPS
Operating Systems Review, vol. 40, no. 4, pp. 133–145, 2006.

[120] A. Baumann, J. Appavoo, D. Da Silva, O. Krieger, and R. W. Wis-
niewski, “Improving operating system availability with dynamic up-
date,” in Proceedings of the 1st Workshop on Operating System and
Architectural Support for the On-Demand IT Infrastructure, pp. 21–
27, 2004.

146



BIBLIOGRAPHY

[121] A. Baumann, “Dynamic update for operating systems,” Doctor of Phi-
losophy, School of Computer Science and Engineering, The University
of New South Wales, vol. 112, 2007.

[122] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva, O. Krieger, R. W.
Wisniewski, and J. Kerr, “Providing dynamic update in an operating
system.,” in USENIX Annual Technical Conference, General Track,
pp. 279–291, 2005.

[123] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic
live update for operating systems,” in ACM SIGARCH Computer
Architecture News, vol. 41, pp. 279–292, ACM, 2013.

[124] C. Giuffrida et al., Safe and Automatic Live Update. VU University
Amsterdam, 2014.

[125] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design
and Implementation (3rd Edition). Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 2005.

[126] C. Lattner and V. Adve, “Llvm: A compilation framework for life-
long program analysis & transformation,” in Proceedings of the inter-
national symposium on Code generation and optimization: feedback-
directed and runtime optimization, p. 75, IEEE Computer Society,
2004.

[127] C. Giuffrida, C. Iorgulescu, A. Kuijsten, and A. S. Tanenbaum, “Back
to the future: Fault-tolerant live update with time-traveling state
transfer.,” in LISA, pp. 89–104, 2013.

[128] J. Montgomery, “A model for updating real-time applications,” Real-
Time Systems, vol. 27, no. 2, pp. 169–189, 2004.

[129] A. C. Noubissi, J. Iguchi-Cartigny, and J.-L. Lanet, “Hot updates for
java based smart cards,” in Data Engineering Workshops (ICDEW),
2011 IEEE 27th International Conference on, pp. 168–173, IEEE,
2011.
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“Real-time programming with gnat: specialised kernels versus posix
threads,” in ACM SIGAda Ada Letters, vol. 19, pp. 73–77, ACM,
1999.

[146] H. Lund, P. A. Østergaard, D. Connolly, and B. V. Mathiesen, “Smart
energy and smart energy systems,” Energy, vol. 137, pp. 556–565,
2017.

[147] D. CAR, “Replicable and innovative future efficient districts and
cities,” ENERGY, vol. 2013, pp. 8–1.

[148] J. C. Palencia, M. G. Harbour, J. J. Gutiérrez, and J. M. Rivas,
“Response-time analysis in hierarchically-scheduled time-partitioned
distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 7, 2017.

[149] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, and X. S. Shen, “Security
and privacy in smart city applications: Challenges and solutions,”
IEEE Communications Magazine, vol. 55, no. 1, pp. 122–129, 2017.

[150] I. Lopez and M. Aguado, “Cyber security analysis of the european
train control system,” IEEE Communications Magazine, vol. 53,
no. 10, pp. 110–116, 2015.

[151] UNISIG, “Subset- 026, system requirements specification, version
3.0.0.”

[152] UNISIG, “Subset- 037, euroradio fis, version 3.2.0.”

[153] N. P. Smart, V. Rijmen, B. Gierlichs, K. Paterson, M. Stam, B. Warin-
schi, and G. Watson, “Algorithms, key size and parameters report,”
European Union Agency for Network and Information Security, pp. 0–
95, 2014.

149



BIBLIOGRAPHY

[154] National Institure of Standards and Technology (NIST), “Itl bulletin
for novenber 2017 - guidance on tdea block ciphers,”

[155] T. Chothia, M. Ordean, J. de Ruiter, and R. J. Thomas, “An at-
tack against message authentication in the ertms train to trackside
communication protocols,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pp. 743–756,
ACM, 2017.

[156] A. R. Chavez, K. Phan, J. Hosic, R. M. Birmingham, and J. D. Pa-
tel, “Real-time software upgrade,” July 31 2018. US Patent App.
10/037,203.

[157] L. Pina, A. Andronidis, M. Hicks, and C. Cadar, “Mvedsua: Higher
availability dynamic software updates via multi-version execution,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[158] G. Rothermel and M. J. Harrold, “Selecting tests and identifying test
coverage requirements for modified software,” in Proceedings of the
1994 ACM SIGSOFT international symposium on Software testing
and analysis, pp. 169–184, ACM, 1994.

[159] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritiz-
ing test cases for regression testing,” IEEE Transactions on software
engineering, vol. 27, no. 10, pp. 929–948, 2001.

[160] M. Jalili Kordkandi, “Towards change validation in dynamic system
updating frameworks,” 2018.

[161] L. Pina and M. Hicks, “Tedsuto: A general framework for testing
dynamic software updates,” in 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp. 278–287,
IEEE, 2016.

[162] J. L. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner, and Y. Oak-
shott, “The who, where, how, why and when of modular and incre-
mental certification,” in 2nd IET International Conference on System
Safety, pp. 135–140, IET, 2007.

150






