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Abstract: The newly constructed optimal perturbation iteration procedure with Laplace transform is
applied to obtain the new approximate semi-analytical solutions of the fractional type of damped
Burgers’ equation. The classical damped Burgers’ equation is remodeled to fractional differential form
via the Atangana–Baleanu fractional derivatives described with the help of the Mittag–Leffler function.
To display the efficiency of the proposed optimal perturbation iteration technique, an extended
example is deeply analyzed.

Keywords: damped Burgers’ equation; Atangana–Baleanu derivative; optimal perturbation
iteration method

1. Introduction

Partial differential equations obtained in many real-life problems modeled in terms of time or
spatial variables need to be analyzed in order to understand the behaviors of the proposed models.
These equations are mostly nonlinear partial differential equations, sometimes due to the basic structure
of real-life problems and sometimes due to the complexity of the system, which often cannot be
solved analytically by conventional methods. Therefore, by developing various solution techniques,
existing methods have been improved and different solution methods have been presented.

During the last decade, some of the most remarkable methods developed to obtain the analytical,
semi-analytical, and numerical solutions of partial differential equations are the optimal homotopy
asymptotic method [1–3], homotopy analysis method [4], modified simple equation method [5],
homotopy perturbation method [6,7], and optimal perturbation iteration method [8–13].

On the one hand, as partial derivatives, which are calculated by using different definitions
of integral and derivative in fractional calculus, allow us to examine problems in more depth,
numerical solutions of fractional partial differential equations have begun to be investigated in many
articles. Following the Jafari’s Adomian Decomposition method study for fractional diffusion and
wave equations in 2006 [14], the variational iteration method for the fractional Burgers’ equation [15,16],
the homotopy perturbation method for fractional Kdv-Burgers’ equations and fractional Lotka–Volterra
equations [7,17,18], homotopy analysis method for fractional damped Burgers’ and Chan–Allen
equations [19] has been extended. Many authors working with fractional analysis have introduced
many definitions of fractional integrals and derivatives, which try to eliminate the deficiencies in the
computational process and facilitate a better understanding of the dynamics of real life problems.
In some studies, local and non-local fractional integral and derivative definitions have been proposed
in order to better define the dynamics of the problems. In 2016, Atangana and Baleanu introduced
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significant non-local Atangana–Baleanu fractional derivatives [20]. This definition has great advantage,
especially when using Laplace transforms to solve some initial conditional physical problems. In the
last three years, by taking this definition into account, better modeling and investigation of problems
in different fields has been achieved successfully [21–37].

The classical damped Burgers’ equation can be given as [38]

ut + uux − νuxx + λu = 0, (x, t) ∈ (a, b)× (0, T). (1)

In this current study, we will analyze the fractional form of the Equation (1) with the Atangana–Baleanu
derivative. We try to find the new semi-analytical solutions of the fractional damped Burgers’ equation
by optimal perturbation iteration technique. In the literature, the damped Burgers’ Equation (1)
emerges as an exemplary equation for defining diffuse waves that are subject to diffusion in fluid
mechanics, where ν is a constant parameter, which denotes the kinematics viscosity equals to 1/Re
Reynolds number and λ is a positive constant. Additionally, the equation which also appears as a
model equation in gas dynamics, nonlinear acoustics has been studied for its numerical solutions
in [19,24,38]. Malfliet has used tanh method as a perturbation technique to obtain approximate solution
of the damped Burgers equation [39]. Yılmaz and Karasözen used COMSOL Multiphysics for dealing
with optimal control problems for the unsteady Burgers equation [40].

By using the fractional differential operators instead of integer order derivatives, it is known
that a memory effect occurs in any dynamical system. It means that the future state of a physical
system depends not only on past data, but also on present data [22,23]. Therefore, it is reasonable
to convert many differential equations to fractional differential equations to intensely analyze the
solutions. The main reason why we use the definition of Atangana–Baleanu derivative is that this new
Atangana–Baleanu operator overcomes the issues in the kernel structures found in the Caputo–Fabrizio
derivative and also Caputo–Riemann–Liouville derivative [20].

Thus, let us introduce the fractional damped Burgers’ equation by replacing the time-dependent
derivative in the damped Burgers’ equation given by Equation (1) equation with the newly defined
ABC derivative:

ABC
0 Dα

t u + uux − νuxx + λu = 0, 0 < α ≤ 1. (2)

In order to obtain the semi-analytical solutions to this new proposed model, we use a scheme including
the optimal perturbation iteration technique and Laplace technique. The organization of the rest of the
paper is as follows. In Section 2, we introduce the definition and the Laplace property of ABC fractional
derivative for forming the base of our study. In Section 3, we propose a solution procedure to solve
fractional damped Burgers’ equation via optimal perturbation iteration algorithms. Finally, in Section 4,
the numerical examples are given in order to demonstrate our results.

2. Preliminaries and Definitions

Some basic definitions and the Laplace transform property of Atangana–Baleanu (AB) derivative
that we considered are given in this part. For the further theory behind the new AB derivative,
the reader may refer to work in [20].

Definition 1. Let z and α be two complex numbers with <(α) > 0. One parameter Mittag–Leffler function is
defined by Eα(z) = ∑∞

k=0
zk

Γ(αk+1) .

This special function is known as an entire function of z and the infinite series converges locally
uniformly in the whole complex plane.
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Definition 2. Let p ∈ [1, ∞) and Ω be an open subset of real numbers. The Sobolev space Hp(Ω) is defined by

Hp(Ω) =
{

f ∈ L2(Ω) : Dβ f ∈ L2(Ω), for all |β| ≤ p
}

.Definition 3. For α ∈ [0, 1], let B(α) be the normalization function that satisfies the property B(0) = B(1) = 1
and let f ∈ H1(a, b). Combining with the Caputo derivative, the AB time-fractional derivative is defined by

ABC
a Dα

t f (t) :=
B(α)
1− α

t∫
a

f ′(τ)Eα

[
−α(t− τ)α

1− α

]
dτ. (3)

Property 1. By taking the Laplace transform of both sides of the new defined ABC fractional derivative
Equation (3), we have

L
{

ABC
a Dα

t f (t)
}
(s) =

B(α)
1− α

sαL f (t)(s)− sα−1 f (0)

sα +
α

1− α

. (4)

3. Analysis of Fractional Damped Burgers’ Equation via OPIM

Optimal perturbation iteration method (OPIM) is first developed by using the ideas of
perturbation iteration [8,9] and optimal homotopy asymptotic methods [1–3]. It has been used for
solving many different types of nonlinear differential equations [41–46]. In this section, we use
OPIM and Laplace transform to obtain approximate solutions of the extended fractional damped
Burgers’ equation.

Let us consider Equation (2) with the initial condition u(x, 0) = A = A(x). Then, by applying the
Laplace transform to Equation (2) as

L
[

ABC
0 Dα

t u + uux − νuxx + λu
]
= 0. (5)

The Equation (5) can be written as

L
[

ABC
0 Dα

t u
]
+ L [uux − νuxx + λu] = 0. (6)

The first term of the Equation (6) is the Laplace transform of fractional part and it can be computed as
in Property 3. With the help of the definitions in the previous section, one can get

L[u]− 1
s

A +
α(−1 + s−α) + 1

B(α)
L[F (uxx, uux, u)] = 0 (7)

where
F = F (uxx, uux, u) = uux − νuxx + λu (8)

is the closed form of the nonlinear term of the main problem (2). Now, we exploit OPIM to decompose
the nonlinear term. The following formulation can be used to summarize the technique.

(a) The perturbation parameter can be artificially embedded into Equation (8) as

F = F (uxx, uux, u, ε) (9)

For example, for our case, ε = 1 can be replaced into the Equation (8) as

F = εuux − νuxx + λu. (10)
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(b) In order to construct the iteration scheme, we use the idea of classical perturbation theory [47].
The approximate solution may be taken in the perturbation expansion as

un+1 = un + ε(uc)n (11)

where (uc)n is the correction term and n ∈ N. In order to handle the nonlinear term, one can use the
Taylor series for multivariable functions. To achieve that, we first substitute the Equation (11) into
Equation (10), then we expand the resulting closed form function in a Taylor series with only first
derivatives. This will give the following algorithm,

F + Fu (uc)n ε + Fuxx ((uc)n)xx ε + Fuux ((uc)n)x ε + Fεε = 0 (12)

where
Fu =

∂F
∂u

, Fuux =
∂F

∂uux
, Fuxx =

∂F
∂uxx

, Fε =
∂F
∂ε

.

It should be noted that one can use higher-order derivatives to establish algorithms. However, in that
case, computations of the derivatives get harder and harder and one needs higher capacity
computer programs.

Using Equation (7) and computing all derivatives, functions at ε = 0 gives

L[un]−
1
s

A +
α(−1 + s−α) + 1

B(α)
L
[
((uc)n)x − ν(un)xx − λun − ((uc)n)xx

]
= 0. (13)

It should be emphasized that we use the decomposed form of the nonlinear term in the Laplace
transform of the second term of the above equation. Equation (13) is an iteration procedure for OPIM
algorithms of fractional damped Burgers’ Equation (2). We may start to iteration scheme by selecting
the first initial function u0. This function has to satisfy the given initial conditions. (uc)0 can be
calculated from the Equation (13) by using u0 and so on.

(c) In order to increase the accuracy of the solutions and efficiency of the technique, we propose
to follow the following equation,

un+1 = un + Cn(uc)n (14)

where Cn for n = 0, 1, ... are the parameters that control the convergence of approximate solutions.
Performing the calculations for n = 0, 1, . . ., one can get mth order approximate solutions as follows,

u1 = u(x, t; C0) = u0 + C0(uc)0
u2(x, t; C0, C1) = u1 + C1 (uc)1

...
um(x, t; C0, . . . , Cm−1) = um−1 + Cm−1(uc)m−1, m ≥ 1.

(15)

(d) Substituting the approximate solution um into the Equation (2), the general problem is
transformed to the following residual,

Re(x, t; C0, . . . , Cm−1) = F ((um)xxt, (um)x, (um)t, (um)) (16)

Undoubtedly, if residual (16) is identically zero, then the approximation um(x, t; C0, . . . , Cm−1) is the
desired analytical solution. However, such a case does not usually occur in fractional differential
equations. On the other hand, the functional can be minimized as

J(C0, . . . , Cm−1) =

Υ∫
0

ζ2∫
ζ1

Re2(x, t; C0, . . . , Cm−1)dxdt (17)
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where ζ1, ζ2, and Υ denote the domain of the physical equation. Optimum values of C0, C1, . . . can be
determined from the conditions

∂J
∂C0

=
∂J

∂C1
= ... =

∂J
∂Cm−1

= 0. (18)

The constants C0, C1, . . . may be obtained from

Re(x0, t0; Ci) = Re(x1, t1; Ci) = · · · = Re(xm−1, tm−1; Ci) = 0, i = 0, 1, . . . , m− 1 (19)

where xi, ti ∈ (ζ1, ζ2)× (0, Υ). There are much more information about finding these parameters in
the papers [1,3].

4. Numerical Example

In the present section, we solve the following fractional damped Burgers’ equation [38],

ABC
0 Dα

t u + uux − uxx + λu = 0 (20)

with the initial condition
u(x, 0) = λx (21)

for different values of α and λ.
The Equation (20) can be rewritten as

ABC
0 Dα

t u + εuux − uxx + λu = 0 (22)

where ε is the perturbation parameter. By taking the approximate solution as

un+1 = un + ε(uc)n (23)

and using the properties of Laplace transform, optimal perturbation iteration algorithm (OPIA) can be
obtained. One can initiate the procedures by taking the Equation (21) as an initial function u0. The first
correction term can be calculated as

(uc)0 = 2
[
λ2tαx

] (
1− α + αtα

Γ(α+1)

)
. (24)

In order to enhance the accuracy of the approximate solutions, we use the idea of convergence-control
parameters. Proceeding as mentioned in Section 3, a parameter C0 must be inserted into the the first
correction term as

C0(uc)0 = 2C0
[
λ2tαx

] (
1− α + αtα

Γ(α+1)

)
. (25)

Then, the first-order approximate OPIM solution will be

u1 = u0 + C0(uc)0 = λx + 2C0
[
λ2tαx

] (
1− α + αtα

Γ(α+1)

)
. (26)

By proceeding in a similar manner, one can have the following approximate OPIM solutions

u2 = u1 + C1(uc)1 = λx + 2C0
[
λ2tαx

] (
1− α + αtα

Γ(α+1)

)
+

6C1

[
C0λ2tα + λ3t2αx

] (
1− α +

αtα

Γ(2α + 1)

) (27)
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u3 = λx + 2C0
[
λ2tαx

] (
1− α + αtα

Γ(α+1)

)
+

6C1

[
C0λ2tα + λ3t2αx

] (
1− α +

αtα

Γ(2α + 1)

)
+

12C2

[
C2

0λ2tα + C1λ3t2αx + λ4t4α
] (

1− α +
αtα

Γ(3α + 1)

)
...

(28)

and so on. In order to determine the unknown constants, the method of least squares or collocation
techniques can be used as mentioned in Section 2. Before doing those calculations, we need to
attain some values to the unknown parameters. For α = 1, λ = 1 and using the collocation
technique, unknown parameters are obtained as C0 = 1.90089, C1 = −0.99063, C2 = 0.00851 for
the third-order approximate solutions. Inserting these constants into the obtained solutions, one can
get the semi-analytical approximations for the fractional damped Burgers’ equation. Tables 1 and 2
show the computed parameters for different values of α and λ. The α, λ setting was randomly selected
in order to show that the proposed technique is valid for any parameter combination.

Tables 3 and 4 display the absolute residual error for third-order approximate OPIM
solutions of the fractional damped Burgers’ equation for different α, λ’s at some control points x.
Furthermore, Figures 1–6 display the different effects of the approximations for various values of α’s.

This problem has been also considered in [19] by Esen et al. They use the homotopy analysis
method (HAM) for solving the fractional damped Burgers’ equation. From Table 5, one can see the
comparison of OPIM and HAM solutions for different values of parameters. We can say that both
methods yield a very effective solution for this equation.

Table 1. Optimal perturbation iteration method (OPIM) constants for different values of α and λ for
third-order solutions.

α = 1, λ = 1 α = 0.75, λ = 1 α = 0.75, λ = 0.75 α = 0.5, λ = 0.5

C0 1.90089 1.00214 0.99063 −0.89901
C1 −0.99063 0.00215 −0.96642 1.30558
C2 0.008510 −0.90694 0.10889 −0.20096

Table 2. OPIM constants for different values of α and λ for fourth-order solutions.

α = 1, λ = 1 α = 0.75, λ = 1 α = 0.75, λ = 0.75 α = 0.5, λ = 0.5

C0 0.20154 0.50213 −0.01888 0.40124
C1 1.00447 1.01127 1.00852 −2.00512
C2 2.00105 −1.70255 −0.80471 −0.30155
C3 1.05627 0.80221 1.11069 0.90211

Table 3. Absolute residual errors of the third-order OPIM solutions at x = 0.5.

t α = 1, λ = 1 α = 0.75, λ = 1 α = 0.75, λ = 0.75 α = 0.5, λ = 0.5

0.1 2.5022× 10−8 9.6332× 10−7 5.5522× 10−7 9.7771× 10−9

0.2 8.0933× 10−7 9.1114× 10−8 6.0125× 10−9 7.5521× 10−8

0.3 2.4441× 10−8 8.9526× 10−6 5.0231× 10−5 6.2014× 10−9

0.4 5.6022× 10−7 8.0124× 10−7 9.5561× 10−8 9.1811× 10−7

0.5 5.1784× 10−6 2.7072× 10−5 1.2014× 10−7 5.3307× 10−6

0.6 7.7258× 10−7 1.0524× 10−8 2.0334× 10−6 5.2016× 10−8

0.7 7.4391× 10−8 5.7634× 10−7 6.077× 10−8 6.3312× 10−7

0.8 9.5418× 10−7 1.0054× 10−6 6.3151× 10−7 7.1104× 10−8

0.9 5.0524× 10−9 8.2113× 10−6 2.3854× 10−8 2.3011× 10−6
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Table 4. Absolute residual errors of the third-order OPIM solutions at x = 0.75.

t α = 1, λ = 1 α = 0.75, λ = 1 α = 0.75, λ = 0.75 α = 0.5, λ = 0.5

0.1 9.1005× 10−5 8.2753× 10−6 8.7724× 10−5 5.0521× 10−6

0.2 7.1705× 10−5 6.0321× 10−5 2.6325× 10−4 6.0012× 10−5

0.3 4.1154× 10−5 6.1427× 10−13 6.1351× 10−4 8.7005× 10−4

0.4 9.5216× 10−4 5.4721× 10−6 5.0002× 10−4 1.2036× 10−7

0.5 9.1634× 10−4 6.2178× 10−4 6.0023× 10−5 6.3587× 10−4

0.6 8.5021× 10−5 7.9634× 10−5 3.1120× 10−3 6.2581× 10−4

0.7 8.4036× 10−3 8.5214× 10−6 1.0635× 10−3 9.6025× 10−6

0.8 8.0712× 10−3 8.1222× 10−4 8.5012× 10−2 9.0521× 10−6

0.9 3.3358× 10−2 9.6363× 10−4 6.0341× 10−4 5.0624× 10−4

Table 5. Comparison of absolute residual errors of the sixth-order OPIM and HAM solutions at x = 0.25
for α = 1.

t λ = 0.2 (OPIM) λ = 0.2 (HAM) λ = 0.8 (OPIM) λ = 0.8 (HAM)

0.1 3.056× 10−9 6.044× 10−9 8.114× 10−10 8.227× 10−10

0.2 2.114× 10−9 3.417× 10−9 8.556× 10−10 1.059× 10−9

0.3 1.004× 10−10 9.855× 10−9 3.337× 10−10 8.222× 10−10

0.4 9.881× 10−9 1.405× 10−9 2.112× 10−10 9.088× 10−10

0.5 7.699× 10−8 9.041× 10−8 5.426× 10−9 4.755× 10−9

0.6 5.045× 10−9 8.887× 10−9 2.332× 10−9 9.804× 10−8

0.7 1.652× 10−8 7.225× 10−8 6.666× 10−8 1.066× 10−7

0.8 5.444× 10−8 6.507× 10−8 8.077× 10−7 6.011× 10−7

0.9 5.469× 10−7 1.052× 10−6 7.145× 10−7 5.632× 10−7

It is clear that a symbolic computer program is needed to deal with high volume equations.
We use Mathematica 11.0 to compute complex derivatives and iteration steps.

Figure 1. Third-order OPIM approximate solution of the Equation (20) for α = 0.5, λ = 1.
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Figure 2. Third-order OPIM approximate solution of Equation (20) for α = 1, λ = 1.
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Figure 3. Residual errors of fourth-order OPIM approximate solution of Equation (20) for α = 0.5,
λ = 0.5.
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Figure 4. Residual errors of fourth-order OPIM approximate solution of Equation (20) for α = 0.75,
λ = 1.
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Figure 5. Fourth-order OPIM approximate solution for distinct values of α at x = 0.25, λ = 0.5 with
α = 1 (–).
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Figure 6. Fourth-order OPIM approximate solution for distinct values of α at x = 0.75, λ = 0.75 with
α = 1 (–).

5. Conclusions

In this research, we first aim to reconstruct the damped Burgers’ equation with a new fractional
operator. Then, optimal perturbation iteration technique has been implemented to get the approximate
solutions of the extended version of the damped Burgers’ equation. While doing this, we use Laplace
transform to reshape the equations for applying suitably OPIM algorithms to damped Burgers’
equations. We can say that the most important portion of the present study is modeling the damped
Burgers’ equations with the definition of fractional derivative in the sense of ABC in Section 1 and
successfully implementing OPIM to that model in Section 3. Numerical results show that the suggested
scheme is favorably applied to damped Burgers’ equations and also this means that this process can be
generalized for solving linear–nonlinear partial fractional mathematical models in nature. It can be
also deduced that the usage of fractional operators bring the new paradigms in the area of mathematics
or engineering.
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