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Abstract: In this paper we investigate Hyers-Ulam-Rassias stability of certain nonlinear functional
equations. Considerations of such stabilities in different branches of mathematics have been very
extensive. Again the fuzzy concepts along with their several extensions have appeared in almost all
branches of mathematics. Here we work on intuitionistic fuzzy real Banach spaces, which is obtained
by combining together the concepts of fuzzy Banach spaces with intuitionistic fuzzy sets. We establish
that pexiderized quadratic functional equations defined on such spaces are stable in the sense of
Hyers-Ulam-Rassias stability. We adopt a fixed point approach to the problem. Precisely, we use a
generxalized contraction mapping principle. The result is illustrated with an example.

Keywords: Hyers-Ulam stability; pexider type functional equation; intuitionistic fuzzy normed
spaces; alternative fixed point theorem

1. Introduction

In this paper, we derive Hyers-Ulam-Rassias stability results for certain functional equations
in the context of intuitionistic fuzzy Banach spaces (IFBS). The problem of stability that we study
here was for the first time mathematically formulated by Ulam [1]. It was partly solved and further
generalized by Hyers [2] and Rassias [3]. Today we know such stability problems as the problems of
the Hyers-Ulam-Rassias (H-U-R) stability. It has many extended forms and has been studied in several
domains of mathematics including differential equations [4], functional equations [5], isometries [6],
etc. Our interest is in the study of such stabilities for certain functional equations. H-U-R stability for
functional equations on linear spaces has been discussed in quite a large number of papers, some of
which are noted in [7–14].

The fuzzy concept was mathematically introduced by Zadeh [15] in 1965. Over the following
years it was adopted in almost all the domains of mathematics including linear algebra and functional
analysis. The idea of a fuzzy set has many extensions of itself. One such extension is the concept
of intuitionistic fuzzy set introduced by Atanassov [16]. Here we have an additional degree of
membership, which is sometimes referred to as the degree of non-belongingness.

In this paper we consider the intuitionistic fuzzy linear spaces as defined by S. Shakeri [17]. It is a
generalization of the definition of fuzzy normed linear space given by Mirmostafaee [18]. Stability
of functional equations on the above-mentioned space have been considered in works like [19–21].
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Precisely in this paper we consider the H-U-R stability problem for pexiderized quadratic functional
equations. These equations are generalized quadratic functional equations and appeared in the
literature in works like [22–24]. Amongst several approaches to H-U-R stability problems we adopt the
fixed point approach where the stability is established through an application of a fixed point theorem
obtained in complete generalized metric spaces [25].

2. Mathematical Background

The following is the definition of a pexiderized quadratic functional equation.
A mapping f : R→ R is said to be a quadratic form if f (x) = cx2 for all x, c ∈ R.

Let X and Y be a real vector space and a Banach space, respectively, and corresponding to a
mapping f : X → Y, consider the functional equation

f (x + y) + f (x− y) = 2 f (x) + 2 f (y) (1)

Any solution of Equation (1) is termed as quadratic mapping. Particularly, if X = Y = R, the
quadratic form f (x) = cx2 is a solution of (1). The form

f (x + y) + f (x − y) = 2 g (x) + 2 h (y) (2)

is known as pexiderized quadratic functional equation [26,27], which is an extension of the above
definition of quadratic functional equation.

Definition 1 ([28,29]). Consider the set L∗ and the order relation ≤L∗ defined by

Ł∗ = { (α1 , α2) : (α1 , α2) ∈ [ 0 , 1 ] 2 and α1 + α2 ≤ 1 },

(α1 , α2) ≤L∗ (β1 , β2) ⇔ α1 ≤ β1 , α2 ≥ β2 , ∀ (α1 , α2) , (β1 , β2) ∈ L∗ .

Then (L∗ , ≤L∗) is a complete lattice.
The elements 0L∗ = (0 , 1) and 1L∗ = (1 , 0) are its units.

Definition 2 ([16]). An intuitionistic fuzzy set A of E where E is a nonempty set, is A =

{ (x , µA (x) , νA (x)) : x ∈ E }, in which case the functions µA : E → [ 0 , 1 ] and νA : E → [ 0 , 1 ]
are the degree of membership and the degree of non-membership respectively for every x ∈ E satisfying
0 ≤ µA (x) + νA (x) ≤ 1.
For our notational purposes we denote an intuitionistic fuzzy set on X by any function Aµ, ν = X → L∗ given by
Aµ, ν (x) = (µA (x) , νA (x)) with µA, νA : X → [0, 1] satisfying 0 ≤ µA (x) + νA (x) ≤ 1.

Definition 3 ([30]). A triangular norm (t-norm) on L∗ is a mapping Γ : (L∗)2 → L∗ satisfying the
following conditions:

(a) (∀ α ∈ L∗) (Γ (α , 1L∗) = α) (boundary condition),
(b) (∀ (α , β) ∈ (L∗)2) (Γ (α , β) = Γ (β , α)) (commutativity),
(c) (∀ (α , β , γ) ∈ (L∗)3) (Γ (α , Γ (β , γ)) = Γ (Γ (α , β) , γ)) (associativity),
(d) (∀ (α , α ′ , β , β ′) ∈ (L∗)4) (α ≤ L∗ α ′ and

β ≤L∗ β ′ ⇒ Γ (α , β) ≤L∗ Γ (α ′ , β ′)) (monotonicity).

If Γ is continuous then Γ is called a continuous t-norm.

Definition 4 ([30]). A triangular conorm (t-conorm) on L∗ is a mapping S : (L∗)2 → L∗ satisfying the
following conditions:

(a) (∀ α ∈ L∗) (S (α , 0L∗) = α) (boundary condition),
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(b) (∀ (α , β) ∈ (L∗)2) (S (α , β) = S (β , α)) (commutativity),
(c) (∀ (α , β , γ) ∈ (L∗)3) (S (α , S (β , γ)) = S (S (α , β) , γ)) (associativity),
(d) (∀ (α , α ′ , β , β ′) ∈ (L∗)4) (α ≤ L∗ α ′ and β ≤L∗ β ′ ⇒ S (α , β) ≤L∗ S (α ′ , β ′))

(monotonicity).

Example 1. Let
M (α , β) = (min { α1 , β1} , max { α2 , β2})

for all α = (α1 , α2) , β = (β1 , β2) ∈ L∗.
Then M (α , β) is a continuous t-norm.

Definition 5 ([30]). A continuous t-norm Γ on L∗ is said to be continuous t-representable if we can find
a continuous t-norm ∗ and a continuous t-conorm � on [ 0 , 1 ] such that for all x = (α1 , α2) , y =

(β1 , β2) ∈ L∗ , Γ (x , y) = (α1 ∗ β1 , α2 � β2)

We now define the iterated sequence Γn recursively by Γ1 = Γ and

Γn (x (1) , x(2) , · · · , x(n+ 1)) = Γ (Γ(n− 1) (x(1) , x(2) · · · , x(n)) , x(n+ 1)) ,

∀ n ≥ 2 , x(i) ∈ L∗ .

Intuitionistic fuzzy normed linear space was defined by Saadati [31]. Shakeri [17] has stated this
definition in a more compact form. We state the definition in the form used by Shakeri [17]

Definition 6 ([17]). We call the triple (X , Pµ, ν , Γ) an intuitionistic fuzzy normed space (briefly IFN-space)
if X is a vector space, Γ is a continuous t-norm and Pµ , ν is a mapping X × (0 , ∞) → L∗ which is an
intuitionistic fuzzy set satisfying the following conditions:
for all x , y ∈ X and t , s > 0,

(i) Pµ, ν (x , 0) = 0L∗ ;
(ii) Pµ, ν (x , t) = 1L∗ if and only if x = 0 ;
(iii) Pµ, ν (α x , t) = Pµ, ν

(
x , t
|α|

)
for all α 6= 0;

(iv) Pµ, ν (x + y, t + s) ≥L∗ Γ (Pµ, ν (x , t), Pµ, ν (y , s)).

It can be noted that Pµ , ν has the form Pµ , ν (x , t) = (µx (t) , νx (t)) = (µ (x , t) , ν (x , t)) such that
0 ≤ µx (t) + νx (t) ≤ 1 for all x ∈ X and t > 0. Then with µ and ν the above definition reduces to the
more explicit form used in [31].

Definition 7 ([17]). (1) The sequence { x n} is said to be convergent to a point x ∈ X if

Pµ, ν (x n − x , s) → 1L∗ as n → ∞ f or every s > 0.

(2) A sequence { x n} in an IFN-space (X , Pµ, ν , M) is said to be a Cauchy sequence if given any ε > 0
and s > 0 , we can find n 0 ∈ N such that

Pµ, ν (x n − x m , s) > L∗ (1 − ε , ε) , ∀ n , m ≥ n 0

(3) An IFN-space (X , Pµ, ν , M) is said to be complete if every Cauchy sequence in (X , Pµ, ν , M) is
convergent in (X , Pµ, ν , M) . A complete intuitionistic fuzzy normed space is called an intuitionistic fuzzy
Banach space.

We require the following fixed point result to establish our result of stability in this paper.

Definition 8 ([25]). Let X be a nonempty set. A function d : X × X → [ 0 , ∞ ] is called a generalized
metric on X if d satisfies



Mathematics 2020, 8, 974 4 of 15

(i) d (p , q) = 0 if and only if p = q ;
(ii) d (p , q) = d (q , p) for all p , q ∈ X ;
(iii) d (p , q) ≤ d (p , r) + d (r , q) for all p , q , r ∈ X. Then (X, d) is called a generalized metric space.

Theorem 1 ([12,23,32]). Let ( X , d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant 0 < L < 1 , that is ,

d(J p , J q) ≤ L d (p , q),

for all p , q ∈ X . Then for each p ∈ X , either

d (J k p , J k+1 p) = ∞, ∀ k ≥ 0

or,
d (J k p , J k+1 p) < ∞ ∀ k ≥ ko

for some non-negative integers k0. Moreover, if the second alternative holds then

(1) the sequence { J k p } converges to a fixed point q? of J ;
(2) q? is the unique fixed point of J in the set

Y = { q ∈ X : d (J k0 p , q) < ∞ };

(3) d(q , q?) ≤ ( 1
1−L ) d (q , J q) for all q ∈ Y .

3. The Hyers-Ulam-Rassias Stability Result

Throughout the result of the paper, X is considered to be a normed linear space, (Y , Pµ, ν , M) an
IF-real Banach space, (Z , P ′ µ, ν , M) an IFN-space and M is continuous t− norm defined in Example 2,
also consider

M1 (x , t)

= M 2
{

P ′ µ, ν

(
φ (x , x) ,

t
3

)
, P ′ µ, ν

(
φ (x , 0) ,

t
3

)
,

P ′ µ, ν

(
φ (0 , x) ,

t
3

)}
(3)

where φ : X× X → Z.

Lemma 1. Let (Z , P′µ, ν, M) be an IFN-space. Let φ : X × X → Z be a mapping and further let
E = { g | g : X → Y }. Let d : E× E→ [0, ∞] be defined by

d (g , h)

:= inf { k ∈ R+ : Pµ, ν(g(x) − h(x) , kt) ≥L∗ M1 (x , t) for all x ∈ X , t > 0}

and g , h ∈ E.
Then (E , d) is a complete generalized metric space.

Proof. Let f , g , h ∈ E and d ( f , g) = k1 < ∞ , d (g , h) = k2 < ∞ .
Then Pµ, ν( f (x) − g(x) , k1 t) ≥L∗ M1 (x , t) and Pµ, ν(g(x) − h(x) , k2 t) ≥L∗ M1 (x , t)
Therefore Pµ, ν( f (x) − h(x) , (k1 + k2) t)

≥L∗ M
(

Pµ, ν( f (x) − g(x) , k1 t) , Pµ, ν(g(x) − h(x) , k2 t)
)

(by property iv of Definition 6)
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≥L∗ M (M1 (x , t) , M1 (x , t) ) (by the monotonicity property) = L∗ M1 (x , t) (Idempotent
property)s for all x ∈ X, t > 0.

Hence d ( f , h) ≤ k1 + k2 so that d ( f , h) ≤ d ( f , g) + d (g , h) which is the triangle inequality.
The other axioms are obvious, and hence, (E , d) is a generalized metric space. Now we prove that
(E , d) is complete.

Let { gn} be a Cauchy sequence in (E , d). Now for each fixed x ∈ X and for every t > 0 and
ε > 0 there exists λ > 0 such that M1 (x , t

λ ) > 1− ε . Since { gn} is a Cauchy sequence in (E, d)
corresponding to λ > 0, there exists n0 ∈ N such that d(gn, gm) < λ for all m , n ≥ n0 .

Since gn, gm ∈ E so we find,

d (gn , gm) = inf { k ∈ R+ : Pµ, ν (gn (x) − gm (x) , kt) ≥ M1 (x , t) }

That is,

d (gn , gm) = inf { k ∈ R+ : Pµ, ν (gn (x) − gm (x) , t) ≥ M1 (x ,
t
k
) }

then there exists k3 ∈ [ 0 , ∞) such that d (gn , gm) ≤ k3 < λ for all m , n ≥ n0 and Pµ, ν (gn (x) −

gm (x) , t) ≥ M1 (x , t
k3
) ≥ M1 (x ,

t
λ
) > 1− ε, as Pµ, ν (x , t) is non-decreasing with respect to t for

all m , n ≥ n0.
Thus, for fixed x ∈ X, { gn (x) } is a Cauchy sequence in Y. Again since Y is Banach space, every

x ∈ X, there exists g(x) ∈ Y such that gn (x) → g (x) as n → ∞. Then the mapping g : X → Y is
such that gn (x) → g (x) as n→ ∞ for all x ∈ X.

Again, { gn } is a Cauchy sequence in (E, d) therefore for ε > 0, t > 0 there exists
n0 ∈ N such that d (gn, gm) < ε ∀m, n ≥ n0 and hence there exists k′ ∈ [ 0, ∞) such
that d (gn, gm) ≤ k′ < ε ∀m, n ≥ n0

Pµ, ν (gn (x) − gm (x) , t) ≥ M1 (x ,
t
k′
) ≥ M1 (x ,

t
ε
).

That is
Pµ, ν (gm (x) − gn (x) , ε t) ≥ M1 (x , t), ∀ n , m ≥ n 0

Now let ε , δ > 0 be given and m, n > n0 , t > 0, then

Pµ, ν (gn (x) − g (x) , (ε + δ) t)

≥L∗ M {Pµ, ν (gn (x) − gm (x) , ε t) , Pµ, ν (gm (x) − g (x) , δ t)}

≥L∗ M {M1 (x , t) , Pµ, ν (gm (x) − g (x) , δ t)}

≥L∗ M {M1 (x , t) , 1L∗} [ bytakinglimitas m → ∞ ] =L∗ M1 (x , t))

that is, d (gn, g) ≤ ε + δ for all x ∈ X and m, n ≥ n0 .
Taking δ→ 0 we have a mapping g : X → Y such that

g (x) = Pµ, ν − lim
n→∞

gn (x) ∈ E .

Therefore, (E , d) is a complete generalized metric space.

For our purpose, we denote

Let D f (x , y) = f (x + y) + f (x − y) − 2 g (x) − 2 h (y) (4)
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Theorem 2. Let X be a linear space, (Z , P ′ µ, ν , M) be an IFN-space, φ : X × X → Z be such that

P ′ µ, ν(φ (2 x , 2 x) , t) ≥ L∗P ′ µ, ν(α φ (x , x) , t) (5)

for some real α with 0 < α < 2, (∀ x ∈ X , t > 0) and

lim
n→∞

P ′ µ, ν(φ (2 nx , 2 nx) , 2 nt) = 1L∗

where x ∈ X and t > 0. Further let (Y , Pµ, ν , M) be a complete IFN-space. If f , g , h : X → Y are odd
mappings such that

P µ, ν(D f (x , y) , t) ≥L∗ P ′ µ, ν(φ (x , y) , t) (6)

(∀ x ∈ X , t > 0), where D f (x, y) is given by Equation (4). Then there exists a unique additive mapping
A : X → Y define by A (x) := lim

n→∞

(
f (2 n x)

2 n

)
for all x ∈ X satisfying

P µ, ν( f (x) − A (x) , t) ≥L∗ M1(x , t (2 − α)) (7)

and

P µ, ν(A (x) − g(x) − h (x) , t) ≥ L∗ M1

(
x ,

t× 3 (2 − α)

5 − α

)
. (8)

Proof. Interchanging the role of x and y in Equation (6) we get

P µ, ν( f (x + y) − f (x − y) − 2 g (y) − 2 h (x), t)

≥L∗ P ′ µ, ν (φ (y , x) , t) (9)

Also from Equation (6) and using Equation (9) we get

P µ, ν(2 f (x + y) − 2 g (x) − 2 h (y) − 2 g (y) − 2 h (x), 2 t)

≥L∗ M
{

P ′ µ, ν (φ (x , y) , t) , P ′ µ, ν (φ (y , x) , t)
}

that is,
P µ, ν( f (x + y) − g (x) − h (y) − g (y) − h (x), t)

≥L∗ M
{

P ′ µ, ν (φ (x , y) , t) , P ′ µ, ν (φ (y , x) , t)
}

(10)

Now putting y = 0 in Equation (10) we have

P µ, ν( f (x) − g (x) − h (x) , t)

≥L∗ M
{

P ′ µ, ν (φ (x , 0) , t) , P ′ µ, ν (φ (0 , x) , t)
}

(11)

Replacing y by x in Equation (11) we get

P µ, ν( f (y) − g (y) − h (y) , t)

≥L∗ M
{

P ′ µ, ν (φ (y , 0) , t) , P ′ µ, ν (φ (0 , y) , t)
}

(12)

Hence using Equations (10)–(12) we get

P µ, ν( f (x + y) − f (x) − f (y) , 3 t)

≥L∗ M 5 { P ′ µ, ν (φ (x , y) , t ) , P ′ µ, ν (φ (y , x) , t )



Mathematics 2020, 8, 974 7 of 15

P ′ µ, ν (φ (x , 0) , t , ) P ′ µ, ν (φ (0 , x) , t )

P ′ µ, ν (φ (y , 0) , t ) , P ′ µ, ν (φ (0 , y) , t )

Therefore

P µ, ν( f (x + y) − f (x) − f (y) , t)

≥L∗ M 5
{

P ′ µ, ν

(
φ (x , y) ,

t
3

)
, P ′ µ, ν

(
φ (y , x) ,

t
3

)
,

P ′ µ, ν

(
φ (x , 0) ,

t
3

)
, P ′ µ, ν

(
φ (0 , x) ,

t
3

)
,

P ′ µ, ν

(
φ (y , 0) ,

t
3

)
, P ′ µ, ν

(
φ (0 , y) ,

t
3

)}
(13)

Also we put y = x in Equation (13)

P µ, ν( f (2 x) − 2 f (x) , t)

≥L∗ M 5
{

P ′ µ, ν

(
φ (x , x) ,

t
3

)
, P ′ µ, ν

(
φ (x , x) ,

t
3

)
,

P ′ µ, ν

(
φ (x , 0) ,

t
3

)
, P ′ µ, ν

(
φ (0 , x) ,

t
3

)
,

P ′ µ, ν

(
φ (x , 0) ,

t
3

)
, P ′ µ, ν

(
φ (0 , x) ,

t
3

)}
= M 2

{
P ′ µ, ν

(
φ (x , x) ,

t
3

)
, P ′ µ, ν

(
φ (x , 0) ,

t
3

)
,

P ′ µ, ν

(
φ (0 , x) ,

t
3

)}
= M1 (x , t)

that is,
P µ, ν( f (2 x) − 2 f (x) , t) ≥L∗ M1 (x , t) (14)

Now define a mapping J : E → E by J g (x) = 1
2 g (2 x) for all g ∈ E and x ∈ X, where

(E, d) is a complete generalized metric space as in Lemma 1. We now prove that J is a strictly
contractive mapping of E with the Lipschitz constant α

2 .
Let g , h ∈ E and ε > 0. Then there exists k′ ∈ R+ satisfying P µ, ν (g (x) − h (x) , k′ t) ≥L∗

M1 (x , t) such that d(g, h) ≤ k′ < d(g, h) + ε for any ε > 0.
Then inf

{
k ∈ R+ : Pµ, ν(g(x) − h(x) , kt) ≥L∗ M1(x , t)

}
≤ k′ < d(g, h) + ε

that is, inf
{

k ∈ R+ : Pµ, ν(
g(2 x)

2 − h (2 x)
2 , k t

2 ) ≥L∗ M1(2 x , t)
}

< d (g , h) + ε that

is, inf
{

k ∈ R+ : Pµ, ν(Jg(x)− Jh(x), k t
2 ) ≥L∗ M1 (2x , t)

}
< d (g , h) + ε that is,

inf
{

k ∈ R+ : Pµ, ν(Jg (x)− Jh (x), k α t
2 ) ≥L∗ M1(x , t)

}
< d(g , h) + ε as M1 (2n x, t) = M1 (x, t

αn )

or, d
{ 2

α (J g , J h)
}

< d (g , h) + ε or, d { (J g , J h)} < α
2 {d (g , h) + ε }. Taking ε → 0 we get

d { (J g , J h)} < α
2 {d (g , h) }. Therefore, J is strictly contractive mapping with Lipschitz constant α

2 .
Also from Equation (14) d ( f , J f ) ≤ 1

2 and d (J f , J2 f ) ≤ α
2 d ( f , J f ) < ∞. Again, replacing

x by 2n x in Equation (14) we get P µ, ν ( f (2 n+1x) − 2 f (2 n x) , t) ≥L∗ M1(2n x , t)

or, P µ, ν (
f (2 n+1x)

2 n+1 − f (2 n x)
2 n , t

2 n+1 ) ≥L∗ M1 (2 n x , t)

≥L∗ M1 (x ,
t

α n )
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or, P µ, ν

(
J n+1 f (x) − J n f (x) , t ( α

2 )
n

2

)
≥L∗ M1 (x , t)

Hence, d (J n+1 f , J n f ) ≤ 1
2 (

α
2 )

n < ∞ has Lipschitz constant α
2 < 1 for n ≥ n0 = 1.

Therefore, by Theorem 1 there exists a mapping A : X → Y such that the following holds:
1. A is a fixed point of J for which A (2 x) = 2 A (x) for all x ∈ X .
Further, A is a unique fixed point of J in the set E1 = { g ∈ E : d (J n0 f , g) = d (J f , g) < ∞ }.

Therefore, d (J f , A) < ∞ .
Also from Equation (14) d (J f , f ) ≤ 1

2 < ∞. Thus f ∈ E1 . Now, d ( f , A) ≤ d ( f , J f ) +

d (J f , A) < ∞ . Thus, there exists k ∈ (0 , ∞) satisfying

P µ, ν( f (x) − A (x) , k t) ≥L∗ M1(x , t)

for all x ∈ X , t > 0;
2. d (J n f , A)

= inf { k ∈ R+ : P µ, ν(J n f (x) − A (x) , k t) ≥L∗ M1 (x , t) }
= inf { k ∈ R+ : P µ, ν( f (2n x) − A (2n x) , 2n k t) ≥L∗ M1(x , ( 2

α )
n t) }

Therefore, d (J n f , A) ≤ ( α
2 )

n → 0 as n → ∞. This implies the equality

A (x) = lim
n→∞

J n f (x) = lim
n→∞

f (2 n x)
2 n (15)

for all x ∈ X.
3. d ( f , A) 6 1

1− L d ( f , J f ) with f ∈ E1 which implies the inequality

d( f , A) ≤ 1
1− α

2
× 1

2
=

1
2− α

then it follows that
P µ, ν(A (x) − f (x) ,

1
2− α

t) ≥L∗ M1(x , t)

It implies that
P µ, ν(A (x) − f (x) , t) ≥L∗ M1(x , (2− α) t) (16)

for all x ∈ X; t > 0.

Replacing x and y by 2n x and 2n y in Equation (13) we have

P µ, ν

(
f (2 n (x + y))

2 n − f (2 n x)
2 n − f (2 n y)

2 n , t
)

≥L∗ M 5
{

P ′ µ, ν

(
φ (2 n x , 2 n y) ,

2 n t
3

)
, P ′ µ, ν

(
φ (2 n y , 2 n x) ,

2 n t
3

)
,

P ′ µ, ν

(
φ (2 n x , 0) ,

2 n t
3

)
, P ′ µ, ν

(
φ (0 , 2 n x) ,

2 n t
3

)
,

P ′ µ, ν

(
φ (2 n y , 0) ,

2 n t
3

)
, P ′ µ, ν

(
φ (0 , 2 n y) ,

2 n t
3

)}
(17)

Taking the limit as n → ∞ in Equation (17) and using

lim
n→∞

P ′ µ, ν(φ (2 nx , 2 ny) , 2 nt) = 1L∗
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we have

P µ, ν(A (x + y) − A (x) − A (y) , t) = 1L∗

A (x + y) = A (x) + A (y) (18)

that is, A is additive.
Also from Equation (11) we have

P µ, ν(A (x) − g(x) − h (x) , t
5− α

3
)

= P µ, ν(A (x) − f (x) + f (x) − g(x) − h (x) , t +
2 − α

3
t)

≥ L∗ M
(

P µ, ν(A (x) − f (x) , t) , P µ, ν

(
f (x) − g(x) − h (x) ,

2 − α

3
t
))

≥L∗ M
(

M1(x , (2− α) t) , M
(

P ′ µ, ν

(
φ (x , 0) ,

2− α

3
t
)

,

P ′ µ, ν

(
φ (0 , x) ,

2 − α

3
t
)))

≥L∗ M (M1(x , (2− α) t) , M1(x , (2− α) t) )

≥L∗ M1(x , (2− α) t)

Therefore,

P µ, ν (A (x) − g(x) − h (x) , t) ≥ L∗ M1

(
x ,

t× 3 (2 − α)

5 − α

)
.

Again, A is the unique fixed point of J with the following property that there exists u ∈ (0 , ∞)

such that
P µ, ν( f (x) − A (x) , u t) ≥L∗ M1(x , t)

for all x ∈ X and t > 0 [23]. This establishes the uniqueness of A. This completes the proof of
the theorem.

Theorem 3 ([23]). Let X be a linear space and (Z , P ′ µ, ν , M) be an IFN-space. Let φ : X × X → Z be
such that

P ′ µ, ν(φ (2 x , 2 x) , t) ≥ L∗P ′ µ, ν(α φ (x , x) , t) (19)

for some real α with 0 < α < 4, (∀ x ∈ X , t > 0) and

lim
n→∞

P ′ µ, ν(φ (2 nx , 2 nx) , 4 nt) = 1L∗

for all x , y ∈ X and t > 0 . Let (Y , Pµ, ν , M) be a complete IFN-space. If f , g , h : X → Y are even
mappings with f (0) = g (0) = h (0) = 0 such that

P µ, ν(D f (x , y) , t) ≥L∗ P ′ µ, ν(φ (x , y) , t) (20)
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(∀ x ∈ X , t > 0), where D is given by Equation (4). Then there exists a unique quadratic mapping
Q : X → Y defined by Q (x) := lim

n→∞

(
f (2 n x)

4 n

)
for all x ∈ X satisfying

P µ, ν( f (x) − Q (x) , t) ≥L∗ M1(x , t (4 − α)) (21)

and

P µ, ν(Q (x) − g(x) , t) ≥ L∗ M1

(
x ,

t× 6 (4 − α)

10 − α

)
. (22)

also

P µ, ν(Q (x) − h(x) , t) ≥ L∗ M1

(
x ,

t× 6 (4 − α)

10 − α

)
.

Proof. Putting y = x in Equation (20)

P µ, ν( f (2 x) − 2 g (x) − 2 h (x) , t) ≥L∗ P ′ µ, ν (φ (x , x) , t) (23)

Also putting x = 0 in Equation (20)

P µ, ν(2 f (y) − 2 h (y) , t) ≥L∗ P ′ µ, ν (φ (0 , y) , t) (24)

Again putting y = 0 in Equation (20)

P µ, ν(2 f (x) − 2 g (x) , t) ≥L∗ P ′ µ, ν (φ (x , 0) , t) (25)

Now using Equations (20), (24), (25)

P µ, ν { f (x + y) + f (x − y)− 2 f (x) − 2 f (y), 3 t }

= P µ, ν { f (x + y) + f (x − y)− 2 g (x) − 2 h (y)−

{ 2 f (y) − 2 h (y)} − { 2 f (x) − 2 g (x)}, 3 t }

≥L∗ M 2 { P ′ µ, ν (φ (x , y) , t ) , P ′ µ, ν (φ (0 , y) , t ) , P ′ µ, ν (φ (x , 0) , t )
}

Therefore
P µ, ν { f (x + y) + f (x − y)− 2 f (x) − 2 f (y), t }

≥L∗ M 2
{

P ′ µ, ν

(
φ (x , y) ,

t
3

)
, P ′ µ, ν

(
φ (0 , y) ,

t
3

)
,

P ′ µ, ν

(
φ (x , 0) ,

t
3

)}
(26)

Now putting y = x in Equation (26) we get

P µ, ν ( f (2 x) − 4 f (x) , t )

≥L∗ M 2
(

P ′ µ, ν

(
φ (x , x) ,

t
3

)
, P ′ µ, ν

(
φ (0 , x) ,

t
3

)
,

P ′ µ, ν

(
φ (x , 0) ,

t
3

))
= M1(x , t)
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Thus,
P µ, ν ( f (2 x) − 4 f (x) , t ) ≥L∗ M1(x , t)

Similar to before [23], we consider the set E := { g : X → Y } and introduce a complete
generalized metric on E. Again, define a mapping J : E → E by J g (x) = 1

4 g (2 x) for all g ∈ E
and x ∈ X. And in a similar way as before we prove that J is strictly contractive mapping with
Lipschitz constant α

4 and d ( f , J f ) ≤ 1
4 .

Therefore by Theorem 1 there exists a mapping Q : X → Y such that the followings hold:
1. Q is a fixed point of J, that is, Q (2 x) = 4 Q (x) for all x ∈ X .
The mapping Q is a unique fixed point of J in the set E1 = { g ∈ E : d (J n0 f , g) = d (J f , g) <

∞ } and there exists k ∈ (0 , ∞) satisfying

P µ, ν( f (x) − Q (x) , k t) ≥L∗ M1(x , t)

for all x ∈ X , t > 0;
2. d (J n f , Q) ≤ ( α

4 )
n → 0 as n → ∞. This implies the equality

Q (x) = lim
n→∞

J n f (x) = lim
n→∞

f (2 n x)
4 n

3. d ( f , Q) 6 1
1− L d ( f , J f ) with f ∈ E1, which implies the inequality

d( f , Q) ≤ 1
1− α

4
× 1

4
=

1
4− α

then it follows that
P µ, ν(Q (x) − f (x) ,

1
4− α

t) ≥L∗ M1(x , t)

It implies that

P µ, ν(Q (x) − f (x) , t) ≥L∗ M1(x , (4− α) t)

for all x ∈ X; t > 0.
Replacing x and y by 2n x and 2n y in Equation(26) we have

P µ, ν

{
f (2 n (x + y))

4n +
f (2 n (x − y))

4n − 2 f (2 n x)
4n − 2 f (2 n y)

4n , t
}

≥L∗ M 2
{

P ′ µ, ν

(
φ (2 n x , 2 n y) ,

4n t
3

)
, P ′ µ, ν

(
φ (0 , 2 n y) ,

4n t
3

)
,

P ′ µ, ν

(
φ (2 n x , 0) ,

4n t
3

)}
Taking limit as n → ∞ we get

P µ, ν(Q (x + y) + Q (x − y)− 2 Q (x) − 2 Q (y) , t) = 1L∗

that is, Q (x + y) + Q (x − y) = 2 Q (x) + 2 Q (y) that is, Q is quadratic.
Also from Equation (25) we have

P µ, ν(Q (x) − g(x) ,
10− α

6
t)

= P µ, ν(Q (x) − f (x) + f (x) − g(x) , t +
(4 − α)

6
t)
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≥ L∗ M
(

P µ, ν(Q (x) − f (x) , t) , P µ, ν

(
f (x) − g(x) ,

(4 − α)

2.3
t
))

≥L∗ M
(

M1(x , (4− α) t) , M
(

P ′ µ, ν

(
φ (x , 0) ,

(4 − α)

3
t
)))

≥L∗ M (M1(x , (4− α) t) , M1(x , (4− α) t) )

≥L∗ M1(x , (4− α) t)

Therefore,

P µ, ν (Q (x) − g(x) , t) ≥ L∗ M1

(
x ,

t× 6 (4 − α)

10 − α

)
.

Similarly,

P µ, ν (Q (x) − h(x) , t) ≥ L∗ M1

(
x ,

t× 6 (4 − α)

10 − α

)
.

Corollary 1. Let p < 1 be a non-negative real number and X be norm linear space with norm ‖.‖,
(Z , P ′µ, ν , M) be an IFN-space, (Y , P µ, ν , M) be a complete IFN-space and z0 ∈ Z. If f , g , h : X → Y
are odd mappings such that

P µ, ν ( f (x + y) + f (x − y) − 2 g(x) − 2 h(y) , t )

≥L∗ P ′µ, ν (z0 ( ‖x‖ p + ‖y‖ p) , t )

(x, y ∈ X, t > 0, z0 ∈ Z)

then there exists a unique additive mapping A : X → Y such that

P µ, ν( f (x) − A (x) , t) ≥L∗ P ′µ ,ν

(
z0 ‖x‖ p ,

t
6
(2 − 2 p )

)
and P µ, ν(A (x) − g (x) − h (x), t) ≥L∗ P ′µ ,ν

(
z0 ‖x‖ p , (2−2p)

10− 2 p+1 t
)

for all x ∈ X and t > 0 , z0 ∈ Z .

Proof. Define φ (x , y) = z0 (‖x‖p + ‖y‖p ) , then the corollary is proved exactly as Theorem 2 with
α = 2 p.

Corollary 2. Let p < 2 be a non-negative real number and X be norm linear space with norm ‖.‖,
(Z , P ′µ, ν , M) be an IFN-space, (Y , P µ, ν , M) be a complete IFN-space and z0 ∈ Z. If f , g , h : X → Y
are even mappings such that

P µ, ν ( f (x + y) + f (x − y) − 2 g(x) − 2 h(y) , t )

≥L∗ P ′µ, ν (z0 ( ‖x‖ p + ‖y‖ p) , t )

(x, y ∈ X, t > 0, z0 ∈ Z)

then there exists a unique quadratic mapping Q : X → Y such that

P µ, ν( f (x) − Q (x) , t) ≥L∗ P ′µ ,ν

(
z0 ‖x‖ p ,

t
6
(4 − 2 p )

)
and P µ, ν(Q (x) − g (x), t) ≥L∗ P ′µ ,ν

(
z0 ‖x‖ p , (4−2p)

10− 2p t
)

for all x ∈ X and t > 0 , z0 ∈ Z .
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Proof. Define φ (x , y) = z0 (‖x‖p + ‖y‖p ). Then the corollary is proved exactly as Theorem 3 with
α = 2 p

Example 2. Let (X , ‖.‖) be a Banach algebra and let Z be a normed linear space, M a continuous t-norm as
defined in Example 1. Then (X , Pµ, ν , M) is a complete IFN-space in which Pµ, ν(x, t) = (µx(t), νx(t)).
Define f , g , h : X → X , by f (x) = x 2 + A ‖x‖x0, g(x) = x 2 + B ‖x‖x0, h(y) = y 2 + C ‖y‖x0,
||x0|| = 1 in X and A, B, C are positive real numbers.
Then ‖ f (x + y) + f (x − y) − 2 g (x) − 2 h (y) ‖ ≤ 2 (A + B)‖x‖ + 2 (A + C)‖y‖
for all x , y ∈ X.
Let φ : X× X → Z be defined as
φ (x , y) = 2 (A + B)‖x‖ z0 + 2 (A + C)‖y‖ z0 for all x , y ∈ X and z0 be a unit vector in Z.
Thus, Pµ, ν ( f (x + y) + f (x − y) − 2 g (x) − 2 h (y) , t)

≥L∗ P′µ, ν (2 (A + B)‖x‖ z0 + 2 (A + C)‖y‖ z0 , t )

=L∗ P′µ, ν(φ(x, y), t)

for all x , y ∈ X and t > 0.
Then Pµ, ν (φ (2 x , 2 y) , t) ≥ P′µ, ν (2 φ (x , y) , t) for all x , y ∈ X and t > 0. Hence, all the conditions of
Theorem 3 are valid for α = 2 < 4.
Therefore, f can be approximated by a mapping Q : X → X such that

Pµ, ν ( f (x) − Q (x), t)

≥L∗ M1 (x, 2t)

= P′µ, ν

(
‖x‖ z0 ,

t
6 min {(A + B) , (2 A + B + C), (A + C)}

)
for all x , y ∈ X and t > 0.

4. Conclusions

Our consideration in this paper is a pexiderized quadratic functional equation, which is an
extension of the quadratic functional equation. It may be possible to extend the cubic and higher
order functional equations on similar lines. In our proof of the main theorem, we have made extensive
use of the characteristics of intuitionistic fuzzy Banach spaces. As a future problem, we can think
of the problem of Hyers-Ulam-Rassias stability for more general forms of functional equations in
intuitionistic fuzzy linear spaces.

5. Data Availability

The data used to support the findings of this study are available from the corresponding author
upon request.
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