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Abstract: The paper aims to present advanced algorithms arising out of adding the inertial
technical and shrinking projection terms to ordinary parallel and cyclic hybrid inertial sub-gradient
extra-gradient algorithms (for short, PCHISE). Via these algorithms, common solutions of variational
inequality problems (CSVIP) and strong convergence results are obtained in Hilbert spaces.
The structure of this problem is to find a solution to a system of unrelated VI fronting for set-valued
mappings. To clarify the acceleration, effectiveness, and performance of our parallel and cyclic
algorithms, numerical contributions have been incorporated. In this direction, our results unify and
generalize some related papers in the literature.

Keywords: variational inequality; hybrid method; parallel computation; sub-gradient extra-gradient
inertial method; cyclic inertial algorithm

1. Introduction

In this manuscript, we discuss the problem of finding fixed points which also solve VI via a
Hilbert space (Hs). Let U be a nonempty closed convex subset (ccs) of Hs k under the induced norm‖.‖
and the inner product 〈., .〉.

The structure of the variational inequality problem (VIP) was built by the authors [1], for finding
℘∗ ∈ U such that

−℘,∗℘ג〉 ℘∗〉 ≥ 0 for all ℘ ∈ U, (1)

where ג : k→ k be a nonlinear mapping. They refer to the set of solutions of VIP (1) as VI(ג,U).
VI is involved in many interesting fields like, transportation, economics, engineering mechanics,

mathematical programming. It is considered an indispensable tool in such specializations
(see, for example, [2–8]). VI widely spread in optimization problems (OPs), where the algorithms were
used solving it, see [7,9].

Under suitable stipulation to talk VIPs there is a two-way: projection modes and regularized
manners. According to these lines, many iterative schemes have been presented and discuss for
solving VIPs. Here, We focused on the first type. One of the easiest ways is using the gradient
projection method, because when calculating it only needs one projection on the feasible set. However,
the convergence of this method requires slightly strong assumptions that operators are strongly
monotone or inverse strongly monotone. Via Lipschitz continuous and monotone mappings ג
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for solving saddle point problems and generalizing VIPs. Another projection method called the
extra-gradient method has been presented by Korpelevich [10], which is built as below:{

℘n = PU(an − ,((an)ג`
an+1 = PU(an − ,((n℘)ג`

for a suitable parameter ` and the metric projection PU onto U. Finding a projection and simplicity
of the method depend on U if it simple the extra-gradient method is computable and very useful
otherwise the extra-gradient method is more complicated. The extra-gradient method used to solve
two distance OPs if U is a cc set.

In a Hs, the weak convergence of a solution of the VIPs is incorporated under the sub-gradient
extra-gradient method [11] by the below algorithm:{

℘n = PU(an − ,((an)ג`
an+1 = Pξn(an − ,((n℘)ג`

where ξn is a half-space defined as follows:

ξn = {θ ∈ k : 〈(an − −((an)ג` ℘n, θ − ℘n〉 ≤ 0}.

Authors [12] accelerate the speed of convergence of the algorithm by building the
following algorithm: 

℘n = PU(an − ,((an)ג`
Λn = ηnan + (1− ηn)Pξnan,
Un = {Λ ∈ k : ‖Λn −Λ‖ ≤ ‖an −Λ‖},
fn = {Λ ∈ k : 〈an −Λ,a0 − an〉 ≥ 0},
an+1 = PUn∩fna0.

Our paper is interested in finding CSVIP. The CSVIP here is to find a point ℘∗ ∈ < = ∩N
i=1<i

such that
℘)iג〉

∗),℘− ℘∗〉 ≥ 0 for all ℘ ∈ <i, i = 1, .., N. (2)

where <i : k→ k be a nonlinear mapping and <i be a finite family of non-empty ccs of k such that
∩N

i=1<i 6= ∅. Please note that If N = 1, CSVIP (2) reduce to VIP (1). Here CSVIPs takes many forms
such as: Convex feasibility problem (CFP), if we consider all iג = 0, then we find a point ℘∗ ∈ ∩N

i=1<i
in the non-empty intersection of a finite family of cc sets. Common fixed point problem (CFPP) If
we take the sets <i are the fixed point sets in (CFP). These problems have been studied in-depth and
expansion, and their numerous applications have become the focus of attention of many researchers
see [13–19].

For multi-valued mappings of iג : k → 2k, i = 1, .., N, an algorithm for solving the CSVIP is
given by [20]. For simplicity we list the below algorithm for iג is a single-valued: Choose ℘1 ∈ k
and compute 

℘i
n = P<i (an − `i

nגi(an)),
Λi

n = P<i (an − `i
nגi(℘n))

Ui
n = {Λ ∈ k : 〈an −Λi

n, Λ− an − γi
n(Λi

n − an)〉},
Un = ∩N

i=1U
i
n,

£n = {Λ ∈ k : 〈a1 − an, Λ− an〉 ≤ 0},
an+1 = PUn∩£na1.

(3)
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the approximation an+1 of the algorithm (3), can be found by constructing N + 1 subsets U1
n, U2

n,..,Ui
n

and £n and solve the following minimization problem:{
min ‖Λ− a1‖2 ,

such that Λ ∈ U1
n ∩ ..∩Ui

n ∩ £n.
(4)

when N is large, this task can be very costly. Respect to the power of the number of half-spaces,
the number of subcases in the explicit solution formula of the problem (4) is two.

In Banach spaces, for finding a common element of the set of fixed points via a family of
asymptotically quasi φ−non-expansive mappings the authors [21,22] derived two strongly convergent
parallel hybrid iterative methods. This algorithm can be formulated in Hilbert spaces as follows:

a0 ∈ U,
℘i

n = ηnan + (1− ηn)Sian, i = 1, .., N,

in = arg max{
∥∥℘i

n − an
∥∥ : i = 1, .., N}, −℘n = ℘in

n ,

Un+1 = {v ∈ Un :
∥∥∥v− −

℘n

∥∥∥ ≤ ‖v− an‖},
an+1 = PUn+1a0.

where ηn ∈ (0, 1), lim supn→∞ ηn < 1. According to this algorithm, the approximation an+1 is defined
as the projection of a0 onto Un+1, and finding the explicit form of the sets Un and perform numerical
experiments seems complicated. By the same scenario, Hieu [23], introduced two PCHSE algorithms
for CSVIPs in Hilbert spaces and analyze their convergence by numerical results.

Our main goal in this paper is to present iterative procedures for solving CSVIPs and prove its
strong convergence. We called it, PCHISE algorithms. Our algorithms generates a sequence that
converges strongly to the nearest point projection of the starting point onto the solution set of the
CSVIP. To simplify this convergence, we use the inertial technical and shrinking projection methods.
Also, some numerical experiments to support our results are given.

The outline of this work is as follows: In the next section, we give a definition and lemmas that
we will use in study of the strong convergence analysis. Strong convergence results are obtained bu
these procedures in Section 3, and at the ending, in Section 4, non-trivial two computational examples
to discuss the performance of our algorithms and support theoretical results are incorporated.

2. Definition and Necessary Lemmas

In this section, we recall some definitions and results which will be used later.

Definition 1. [24] For all a,℘ ∈k, a nonlinear operator ג is called

(i) monotone if
〈a− ℘, −aג 〈℘ג ≥ 0,

(ii) pseudomonotone if 〈a− ℘, −aג 〈℘ג ≥ 0 leads to

〈℘− a, −℘ג 〈aג ≤ 0,

(iii) η−inverse strongly monotone (η−ism) if there exists η > 0 such that

〈a− ℘, −aג 〈℘ג ≥ η −aג‖ 2‖℘ג ;

(iv) maximal monotone if it is monotone and its graph

G(ג) = {(a, (aג : a ∈ k}

is not a proper subset of one of any other monotone mapping,
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(v) L-Lipschitz continuous if there exists a positive constant L such that

−(a)ג|| ||(℘)ג ≤ L||a− ℘||;

(vi) nonexpansive if
−(a)ג|| ||(℘)ג ≤ ||a− ℘||.

Here, the set Θ(ג) = {a ∈ k : aג = a} is referred to the set of all fixed points of a mapping .ג

It’s obvious that a monotone mapping ג : k→ k is maximal iff, for each (a,℘) ∈ k×k such that
〈a− u,℘− v〉 ≥ 0 for all (u, v) ∈ G(ג), it follows that ℘ = .(a)ג

Lemma 1. [25] Let k be a real Hilbert space (rHs). Then for each a,℘ ∈ k and ø ∈ [0, 1],
(i) ‖a− ℘‖2 ≤ ‖a‖2 + ‖℘‖2 − 2〈a,℘〉,
(ii) ‖a+ ℘‖2 ≤ ‖a‖2 − 2〈℘,a+ ℘〉,
(iii) ‖øa− (1− ø)℘‖2 = ø ‖a‖2 + (1− ø) ‖℘‖2 − ø(1− ø) ‖a− ℘‖2 .

For each a ∈ k, the projection PUa defined by PUa = arg min{‖℘− a‖ : ℘ ∈ U}. Also,
PUa exists and is unique because U is nonempty ccs of k . The projection PU : k → U has the
following properties:

Lemma 2. [24] Assume that PU : k→ U is a projection. Then
(i) PU is 1-ism, i.e., for each a,℘ ∈ k,

〈PUa− PU℘,a− ℘〉 ≥ ‖PUa− PU℘‖2 .

(ii) For all ℘∈ k, a∈ U,

‖a− PUa‖2 + ‖PU℘− ℘‖2 ≤ ‖a− ℘‖2 .

(iii) Λ = PUa if and only if
〈a−Λ, Λ− ℘〉 ≥ 0, ∀℘ ∈ U.

Lemma 3. [25] Suppose that ג is a monotone, hemi-continuous mapping form U onto k, where U is a non-empty
ccs of a Hs k, then

VI(ג,U) = {u ∈ U : 〈v− u, 〈(v)ג ≥ 0, ∀v ∈ U}.

Lemma 4. [26] Suppose that U 6= ∅ is a ccs of a Hs k. Given that a,℘, Λ ∈ k and ι ∈ R, the set

{v ∈ k : ‖℘− v‖2 ≤ ‖a− v‖2 + 〈Λ, v〉+ ι}

is cc.

The normal cone NU to a set U at a point a ∈ U defined by

NUa = {a∗ ∈ k : 〈a− ℘,a∗〉 ≥ 0, ∀℘ ∈ U}.

Thus, the following result is very important.

Lemma 5. [27] Suppose that ג is a monotone, hemi-continuous mapping form U onto k, where U is a non-empty
ccs of a Hs k, with D(ג) = U. Let = be a mapping defined by

=(a) =
{

+aג NUa if a ∈ U
∅ if a /∈ U
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Then = is a maximal monotone and =−1(0) = VI(ג,U).

3. Main Theorems

This part is devoted to discuss the strong converges for our proposed algorithms under the
following considerations: The collection N{iג}

i=1 is Lipschitz continuous with the same constant L > 0.
Via L = max{Li : i = 1, ..., N}, iג is also L-Lipschitz continuous for each i = 1, .., N. Finally, we
consider Θ = ∩N

i=1VI(גi,<i) is non-empty.

Theorem 1. (PHISE algorithm)
Assume that k is a rHs and < = ∩N

i=1<i 6= ∅, where <i, i = 1, .., N be ccs of k. Let n{iג}
i=1 : k→ k be

a finite collection of monotone and L-Lipschitz continuous mappings and the solution set Θ is nonempty. Let
{an} be a sequence generated by a0,a1 ∈ Ui

1 = U = k, for all i = 1, .., N and

Υn = an + πn(an − an−1),
℘i

n = P<i (Υn − `nגi(Υn)),
Λi

n = Pξ i
n
(Υn − `nגi(℘

i
n)),

Ui
n+1 = {v ∈ k :

∥∥Λi
n − v

∥∥2 ≤ ‖an − v‖2 + (1− r)π2
n ‖an − an−1‖2},

Un+1 =
N⋂

i=1
Ui

n+1,

an+1 = PUn+1a1, n ≥ 1.

(5)

where ℘i
n ∈ <i, Λi

n ∈ ξ i
n = {v ∈ k : 〈(Υn − `nגi(Υn))− ℘i

n, v− ℘i
n〉 ≤ 0}, `n ∈ (0, 1

2L ) and πn ∈ [0, 1).
Assume that ∑∞

i=1 πn ‖an − an−1‖ < ∞. Then the sequence {an} converges strongly to v = PΘa1.

Proof. The proof is divided into the below steps
Step 1. Show that∥∥∥Λi

n − a∗
∥∥∥2
≤ ‖an − a∗‖2 + (1− r)π2

n ‖an−1 − an‖2 − r
(∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − an

∥∥∥2
)

, (6)

where a∗ ∈ Θ and r = 1− `nL > 0.

Let a∗ ∈ Θ, then by Lemma 1 (i), we can write

‖Υn − a∗‖2 = ‖(an − a∗)− πn(an−1 − an)‖2

= ‖an − a∗‖2 + π2
n ‖an−1 − an‖2 − 2πn〈an − a∗,an−1 − an〉 (7)

≤ ‖an − a∗‖2 + π2
n ‖an−1 − an‖2 .

Also, by simple calculations, we can find∥∥∥℘i
n − Υn

∥∥∥2
≤
∥∥∥℘i

n − an

∥∥∥2
+ π2

n ‖an−1 − an‖2 . (8)

Similarly, ∥∥∥Λi
n − Υn

∥∥∥2
≤
∥∥∥Λi

n − an

∥∥∥2
+ π2

n ‖an−1 − an‖2 .

Since, iג is monotone on <i and ℘i
n ∈ <i, we can get

℘)iג〉
i
n)− i(a∗),℘iג

n − a∗〉 ≥ 0, for all a∗ ∈ Θ.

This together with a∗ ∈ VI(גi,<i), yields
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℘)iג〉
i
n),℘

i
n − a∗〉 ≥ 0.

So
℘)iג〉

i
n), Λi

n − a∗〉 ≥ ℘)iג〉
i
n), Λi

n − ℘i
n〉. (9)

From definition of the metric projection onto ξ i
n, one can obtain

〈Λi
n − ℘i

n, (Υn − `nגi(Υn))− ℘i
n〉 ≤ 0. (10)

Thus, by (10), we get

〈Λi
n − ℘i

n, (Υn − `nגi(Υn))− ℘i
n〉 = 〈Λi

n − ℘i
n, (Υn − `nגi(Υn))− ℘i

n〉
+ `n〈Λi

n − ℘i
n, −i(Υn)ג ℘)iג

i
n)〉

≤ `n〈Λi
n − ℘i

n, −i(Υn)ג ℘)iג
i
n)〉. (11)

Put si
n = Υn − `nגi(℘

i
n) and write again Λi

n = Pξ i
n
(si

n). From Lemma 2 (ii) and (9), one can write∥∥∥Λi
n − a∗

∥∥∥2
≤
∥∥∥si

n − a∗
∥∥∥2
−
∥∥∥Pξ i

n
(si

n)− si
n

∥∥∥2

=
∥∥∥Υn − `nגi(℘

i
n)− a∗

∥∥∥2
−
∥∥∥Λi

n − (Υn − `nגi(℘
i
n))
∥∥∥2

= ‖Υn − a∗‖2 −
∥∥∥Λi

n − Υn

∥∥∥2
+ 2`n〈a∗ −Λi

n, ℘)iג
i
n)〉

≤ ‖Υn − a∗‖2 −
∥∥∥Λi

n − Υn

∥∥∥2
+ 2`n〈℘i

n −Λi
n, ℘)iג

i
n)〉.

(12)

From (11), we have∥∥∥Λi
n − Υn

∥∥∥2
− 2`n〈℘i

n −Λi
n, ℘)iג

i
n)〉

=
∥∥∥Λi

n − ℘i
n + ℘i

n − Υn

∥∥∥2
− 2`n〈℘i

n −Λi
n, ℘)iג

i
n)〉

=
∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
− 2〈Λi

n − ℘i
n, (Υn − `nגi(℘

i
n)− ℘i

n)〉

=
∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
− 2`n〈Λi

n − ℘i
n, −i(Υn)ג ℘)iג

i
n)〉

≥
∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
− 2`n

∥∥∥Λi
n − ℘i

n

∥∥∥ −i(Υn)ג∥∥∥ ℘)iג
i
n)
∥∥∥

≥
∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
− 2`nL

∥∥∥Λi
n − ℘i

n

∥∥∥ ∥∥∥Υn − ℘i
n

∥∥∥
≥
∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
− `nL

(∥∥∥Λi
n − ℘i

n

∥∥∥2
+
∥∥∥Υn − ℘i

n

∥∥∥2
)

≥(1− `nL)
(∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
)

.

(13)

From (13) in (12) and applying (7), (8), we can get

∥∥∥Λi
n − a∗

∥∥∥2
≤ ‖Υn − a∗‖ − (1− `nL)

(∥∥∥Λi
n − ℘i

n

∥∥∥2
+
∥∥∥℘i

n − Υn

∥∥∥2
)

≤ ‖an − a∗‖2 + π2
n ‖an−1 − an‖2

−(1− `nL)
(∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − an

∥∥∥2
+ π2

n ‖an−1 − an‖2
)

= ‖an − a∗‖2 + (1− r)π2
n ‖an−1 − an‖2 − r

(∥∥∥Λi
n − ℘i

n

∥∥∥2
+
∥∥∥℘i

n − an

∥∥∥2
)

.
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Hence, we have the inequality (6).
Step 2. Show that an+1 is well-defined for all a1 ∈ k and Θ ⊂ Un+1. Since iג is Lipschitz continuous,
thus, Lemma 3 confirm that VI(גi,<i) is too for all i = 1, .., N. Hence, Θ is closed and convex. It follows
from the definition of Un+1 and Lemma 4 that, Un+1 is closed and convex for each n ≥ 1.
Let v ∈ Θ, thus we obtain from Step 1 that∥∥∥Λi

n − v
∥∥∥2
≤ ‖an − v‖2 + (1− r)π2

n ‖an−1 − an‖2 − r
(∥∥∥Λi

n − ℘i
n

∥∥∥2
+
∥∥∥℘i

n − an

∥∥∥2
)

≤ ‖an − v‖2 + (1− r)π2
n ‖an−1 − an‖2 .

Therefore, we have v ∈ Un+1. Thus, Θ ⊂ Un+1 and an+1 = PΘa1 is will-defined.
Step 3. Prove that limn→∞ ‖an−1 − an‖ exists. Since Θ 6= ∅ is ccs of k, then there is a unique u ∈ Θ
such that

u = PΘa1

From an = PUna1, Un+1 ⊂ Un and an+1 ∈ Un, we can get

‖an − a1‖ ≤ ‖an+1 − a1‖ , for all n ≥ 1. (14)

On the other hand, as Θ ⊂ Un, we have

‖an − a1‖ ≤ ‖u− a1‖ , for all n ≥ 1.

This proves that {an} is bounded and non-decreasing. Hence, limn→∞ ‖an−1 − an‖ exists.
Step 4. Prove that for all i = 1, .., N., the following relation holds

lim
n→∞

‖an+1 − an‖ = lim
n→∞

∥∥∥Λi
n − an

∥∥∥ = lim
n→∞

∥∥∥℘i
n − an

∥∥∥ = lim
n→∞

∥∥∥℘i
n − Υn

∥∥∥ = 0.

From an+1 ∈ Un+1 ⊂ Un and an = PUna1, we can get

‖an − an+1‖2 ≤ ‖an+1 − a1‖2 − ‖an − a1‖2 .

For this inequality, letting n→ ∞ and using Step 3, we find

lim
n→∞

‖an+1 − an‖ = 0. (15)

Since ∑∞
i=1 θn ‖an − an−1‖ < ∞, then we have

lim
n→∞

‖Υn − an‖ = lim
n→∞

‖an − an−1‖ = 0. (16)

From (15) and the definitions of Ui
n+1, an+1 ∈ Un+1, we have∥∥∥Λi

n − an+1

∥∥∥2
≤ ‖an − an+1‖2 + (1− r)π2

n ‖an − an−1‖2 → 0 (17)

as n→ ∞ for all i = 1, .., N. By triangle inequality and using (15) and (17), one can obtain that∥∥∥Λi
n − an

∥∥∥ ≤ ∥∥∥Λi
n − an+1

∥∥∥+ ‖an+1 − an‖ → 0 (18)
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as n→ ∞ for all i = 1, .., N. From Step 1 and the triangle inequality, for each v ∈ Θ, one has

r
∥∥∥℘i

n − an

∥∥∥2
≤ ‖an − v‖2 + (1− r)π2

n ‖an−1 − an‖2 − r
∥∥∥Λi

n − ℘i
n

∥∥∥2
−
∥∥∥Λi

n − v
∥∥∥2

≤ ‖an − v‖2 + (1− r)π2
n ‖an−1 − an‖2 −

∥∥∥Λi
n − v

∥∥∥2
(19)

≤
(
‖an − v‖+

∥∥∥Λi
n − v

∥∥∥) ∥∥∥an −Λi
n

∥∥∥+ (1− r)π2
n ‖an−1 − an‖2 .

Applying (16) and (18) in (19) and the boundedness of {xn}, {Λi
n}, yields

lim
n→∞

∥∥∥℘i
n − an

∥∥∥ = 0, i = 1, .., N. (20)

By triangle inequality and using (16) and (20), one can write∥∥∥℘i
n − Υn

∥∥∥ ≤ ∥∥∥℘i
n − an

∥∥∥+ ‖an − Υn‖ → 0 (21)

as n→ ∞ for all i = 1, .., N.
Step 5. Show that the strongly convergent of {an}, {℘i

n} and {Λi
n} generated by (5) to v = PΘa1.

Let {an} has a weak cluster point v, and has a subsequence converging weakly to v, i.e., an ⇀ v,
from (20), ℘i

n ⇀ v.

Now we show that v ∈ ∩N
i=1VI(גi,<i). Lemma 5, ensures that the mapping

=i(a) =
{

+iaג N<i (a) if a ∈ U
∅ if a /∈ U

is a maximal monotone, where N<i (a) is the normal cone to <i at a ∈ <i. For all (a,℘) ∈ G(=i),
we have ℘− iaג ∈ N<i (a), where G(=i) is the graph of =i. By the definition of N<i (a), we find that

〈a−Λ,℘− 〈i(a)ג ≥ 0

for all Λ ∈ <i. Since ℘i
n ∈ <i,

〈a− ℘i
n,℘− 〈i(a)ג ≥ 0.

Therefore,
〈a− ℘i

n,℘〉 ≥ 〈a− ℘i
n, .〈i(a)ג (22)

Considering ℘i
n = P<i (Υn − `nגi(Υn)) and Lemma 2 (iii), we can get

〈a− ℘i
n,℘i

n − Υn + `nגi(Υn)〉 ≥ 0,

or

〈a− ℘i
n, 〈i(Υn)ג ≥ 〈a− ℘i

n,
Υn − ℘i

n
`n

〉. (23)

Therefore, from (22), (23) and the monotonicity of ,iג we have

〈a− ℘i
n,℘〉 ≥ 〈a− ℘i

n, 〈i(a)ג
= 〈a− ℘i

n, −i(a)ג ℘)iג
i
n)〉+ 〈a− ℘i

n, ℘)iג
i
n)− +〈i(Υn)ג 〈a− ℘i

n, 〈i(Υn)ג (24)

≥ 〈a− ℘i
n, ℘)iג

i
n)− +〈i(Υn)ג 〈a− ℘i

n,
Υn − ℘i

n
`n

〉.
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Applying (21) in (24) and iג is L-Lipschitz continuous,

lim
n→∞

℘)iג∥∥∥
i
n)− i(Υn)ג

∥∥∥ = 0. (25)

Taking the limit in (24) as n → ∞ and using (25), ℘i
n ⇀ v, we have 〈a − v,℘〉 ≥ 0 for all

(a,℘) ∈ G(=i). Taking into account the maximal monotonicity of =i implies that for all i = 1, .., N,
v ∈ =−1

i (0) = VI(גi,<i).

Finally, we show that an → v = ζ = PΘa1. From (14) and ζ ∈ Θ, we can get

‖an − a1‖ ≤ ‖ζ − a1‖ , for all n ≥ 1. (26)

By (26) and lower weak semi-continuity of the norm, we can write

‖v− a1‖ ≤ lim inf
n→∞

‖an − a1‖ ≤ lim sup
n→∞

‖an − a1‖ ≤ ‖ζ − a1‖ .

By the definition of ζ, v = ζ and limn→∞ ‖an − a1‖ = ‖ζ − a1‖ . Thus, from an − a1 ⇀ ζ − a1

and the Kadec-Klee property of k, one can get an − a1 → ζ − a1, and so an → v. Also, Steps 2, 4
ensures that the sequences {℘i

n}, {Λi
n} converge strongly to PΘa1. This completes the proof.

Theorem 2. (CHISE algorithm)
Suppose that all requirements of Theorem 1 are fulfilled. Let {an} be a sequence generated by a0,a1 ∈ U = k,
for all i = 1, .., N and

Υn = an + πn(an − an−1),
℘n = P<[n](Υn − `nג[n](Υn)),
Λn = Pξ[n]

(Υn − `nג[n](℘n)),

Un+1 = {v ∈ Un : ‖Λn − v‖2 ≤ ‖an − v‖2 + (1− r)π2
n ‖an − an−1‖2},

an+1 = PUn+1a1, n ≥ 1.

where ℘n ∈ <[n], Λn ∈ ξ[n] = {v ∈ k : 〈(Υn − `nג[n](Υn)) − ℘n, v − ℘n〉 ≤ 0}, `n ∈ (0, 1
2L ), [n] =

n(modN) + 1 with the mod function here taking values in {1, 2, .., N} and πn ∈ [0, 1). Assume that
∑∞

i=1 πn ‖an − an−1‖ < ∞. Then the sequence {an} converges strongly to v = PΘa1.

Proof. By arguing similarly as in the proof of Theorem 1, we obtain that Θ and Un+1 are cc and
Θ ⊂ Un+1 for all n ≥ 1. We have demonstrated that before {an}, {℘n} and {Λn} are bounded and

lim
n→∞

‖an+1 − an‖ = lim
n→∞

‖Λn − an‖ = lim
n→∞

‖℘n − an‖ = lim
n→∞

‖℘n − Υn‖ = 0. (27)

Now, let the sequence {an} has some weak cluster points v and subsequence {ank}. For i ∈
{1, 2, ..., N} be fixed, the set of indexes i is finite, this leads to ank ⇀ p and [nk] = i for all k. also (27)
gives ℘nk ⇀ v as k→ ∞. By the same scenario of (22)–(25), one can get v ∈ VI(גi,<i). for all i, and
v ∈ Θ. The rest of the proof comes immediately from proof Theorem 1.

Remark 1.

(i) The projection an+1 = PUn+1(a1) computed explicitly as in Theorem 1 because Un+1 is either half-spaces
or the whole space k.

(ii) If ג is η−ism mapping, then ג is 1
η−Lipschitz continuous. Thus, for i = 1, .., N, our algorithms can use to

solve the CSVIP for the η−ism mappings .iג
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4. Numerical Experiments

In this section, we consider two numerical examples to explain the efficiency of the proposed
algorithms. The MATLAB codes run in MATLAB version 9.5 (R2018b) on Intel(R) Core(TM)i5-6200
CPU PC @ 2.30GHz 2.40GHz, RAM 8.00 GB. We use the Quadratic programming to solve the
minimization problems.

(1) For Van Hieu results in [23] Algorithm 3.1 (Alg. 1) we use λ = 1
2L .

(2) For our proposed algorithms (Alg. 2) we use `n = 1
2L and πn = 0.2.

Example 1. Let the operators ii can be define on the convex set U ⊂ Rm as follows:

ii(a) = (BiBT
i + Si + Di)a+ qi, ∀i = 1, · · · , N,

where qi ∈ Rm, Bi is an m×m matrix, Si is an m×m skew-symmetric matrix and Di is an m×m diagonal
matrix whose diagonal entries are non-negative. All these above mentioned matrices and vectors qi are randomly
generated (B = rand(m), C = rand(m), S = 0.5C − 0.5CT , D = diag(rand(m, 1))) between (0, 1).
The feasible set Ui = U ⊂ Rm is cc set and defined as:

U = {a ∈ Rm : Aa ≤ d},

where A is an 20×m matrix and d is a non-negative vector. It is clear that ii is monotone and L-Lipschitz
continuous with L = max

{
‖BiBT

i + Si + Di‖ : i = 1, · · · , m
}

. In this example, we choose qi = 0. Thus, the
solution set Ω = {0}. During Example 1, we use x0 = x1 = (1, 1, · · · , 1) and Dn = ‖an‖.

Example 2. Suppose that k = L2([0, 1]) is a Hs with the norm

‖a‖ =

√∫ 1

0
|a(t)|2dt

and the inner product

〈a,℘〉 =
∫ 1

0
a(t)℘(t)dt, for all a,℘ ∈ k.

Assume that Ui := {a ∈ L2([0, 1]) : ‖a‖ ≤ 1} be the unit ball. Let us define an operator ii : Ui → k by

ii(a)(t) =
∫ 1

0

(
a(t)− Hi(t, s) fi(a(s))

)
ds + gi(t)

for all a ∈ U, t ∈ [0, 1] and i = 1, 2, where

H1(t, s) =
2tse(t+s)

e
√

e2 − 1
, f1(a) = cosa, g1(t) =

2tet

e
√

e2 − 1
.

H2(t, s) =
√

21
7

(t + s), f2(a) = exp(−a2), g2(t) =
√

21
7

(t + 0.5).

As shown in [14] the ii is monotone (hence pseudo-monotone) and L-Lipschitz-continuous with L = 2.
Moreover, the solution set of the CSVIPs for the operators ii on Ui is Ω = {0}. During example 2, we use
x0 = x1 = t and Dn = ‖an‖.

5. Discussion

We have the following observations concerning the above-mentioned experiments:

(i) Figures 1 and 2 and Table 1 demonstrates the behavior of both algorithms as the size of the
problem m varies. We can see that the performance of the algorithm depends on the size of the
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problem. More time and a significant number of iterations are required for large dimensional
problems. In this case, we can see that the inertial effect strengthens the efficiency of the algorithm
and improves the convergence rate.

(ii) Figure 3 and Table 2 display the behavior of both algorithms while the number of problems
N varies. It could be said that the performance of algorithms also depends on the number of
problems involved. In this scenario, we can see that roughly the same number of iterations are
required, but the execution time depends entirely on the number of problems N.

(iii) Figures 4–6 and Table 3 shows the behavior of both algorithms as tolerance ε varies. In this case,
we can see that, as tolerance ε is closer to zero, iteration and elapsed time also increase.

(iv) Based on the progress of the numerical results, we find that our methods are effective and
successful in finding solutions for VIP and our algorithms converges faster than the algorithms
of Hieu [19].

0 5 10 15 20 25 30 35 40 45

Elapsed time [sec]

10-4

10-3

10-2

10-1

100

(a) Example 1 for m = 2 and N = 20.

0 20 40 60 80 100 120 140

Elapsed time [sec]

10-4

10-3

10-2

10-1

100

(b) Example 1 for m = 5 and N = 20.

Figure 1. Example 1: Numerical comparison for the values of m = 2, 5 and N = 20.
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Elapsed time [sec]

10-4
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10-2
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100

(a) Example 1 for m = 10 and N = 20.

0 100 200 300 400 500 600 700 800

Elapsed time [sec]

10-4

10-3

10-2

10-1

100

(b) Example 1 for m = 20 and N = 20.

Figure 2. Example 1: Numerical comparison for the values of m = 10, 20 and N = 20.

Table 1. Numerical results for Figures 1 and 2.

N m
Algorithm 1 Algorithm 2

Number of Iter. CPU (s) Number of Iter. CPU (s)

20 2 269 43.01771 185 28.6043
20 5 788 121.0213 529 83.1379
20 10 2493 391.9032 1666 245.6833
20 20 4480 765.5070 3038 485.9237
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(a) Example 1 for m = 10 and N = 5.
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Elapsed time [sec]
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(b) Example 1 for m = 10 and N = 10.
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Elapsed time [sec]

10-4

10-3

10-2

10-1

100

(c) Example 1 for m = 10 and N = 15.

Figure 3. Example 1 for m = 10 and different values of N = 5, 10, 15.

Table 2. Numerical results for Figure 3.

N m
Algorithm 1 Algorithm 2

Number of Iter. CPU (s) Number of Iter. CPU (s)

5 10 3101 172.4298 2267 105.7254
10 10 3009 233.6499 2340 159.1928
15 10 3254 353.0176 2109 235.8372

0 20 40 60 80 100 120 140 160 180

Number of iterations

10-2

10-1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Elapsed time [sec]

10-2

10-1

Figure 4. Example 2: Numerical comparison by letting TOL = 10−2.
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Figure 5. Example 2: Numerical comparison by letting TOL = 10−3.
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Figure 6. Example 2: Numerical comparison by letting TOL = 10−4.

Table 3. Numerical results for Figures 4–6.

N TOL
Algorithm 1 Algorithm 2

Number of Iter. CPU (s) Number of Iter. CPU (s)

2 10−2 161 0.1799 118 0.1483
2 10−3 208 0.3563 150 0.1985
2 10−4 5801 6.0405 4863 4.4441

6. Conclusions

In this manuscript, we propose two strongly convergent parallel and cyclic hybrid inertial
CQ-sub-gradient extra-gradient algorithms for finding common the CSVIP. This problem consists
of finding a common solution to a system of unrelated variational inequalities corresponding to
set-valued mappings in a Hs. The algorithms presented in this article are a hybrid of synthesis the
inertial technical, shrinking projection and CQ-terms to parallel and cyclic hybrid inertial sub-gradient
extra-gradient algorithms to develop possible practical numerical methods when the number of
sub-problems is large. Finally, non-trivial numerical examples are given here to verify the efficiency of
the proposed parallel and cyclic algorithms.
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